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Abstract. Idealized constructions in cryptography prove the security of
a primitive based on the security of another primitive. The challenge of
building a pseudorandom function (PRF) from a random permutation
(RP) has only been recently tackled by Chen, Lambooij and Mennink
[CRYPTO 2019] who proposed Sum of Even-Mansour (SoEM) with a
provable beyond-birthday-bound security. In this work, we revisit the
challenge of building a PRF from an RP. On the one hand, we describe
Keyed Sum of Permutations (KSoP) that achieves the same provable
security as SoEM while being strictly simpler since it avoids a key ad-
dition but still requires two independent keys and permutations. On the
other hand, we show that it is impossible to further simplify the scheme
by deriving the two keys with a simple linear key schedule as it allows
a non-trivial birthday-bound key recovery attack. The birthday-bound
attack is mostly information-theoretic, but it can be optimized to run
faster than a brute-force attack.

Keywords: RP-to-PRF, SoEM, KSoP, beyond-birthday-bound, provable secu-
rity

1 Introduction

1.1 Background

Idealized Constructions. This paper pursues the long line of symmetric cryp-
tographic effort to analyze constructions that combine some primitives into an-
other type of primitive. Such constructions notably include the Feistel network
by Luby and Rackoff [24] that constructs a pseudorandom permutation (PRP)
from pseudorandom functions (PRF); the key-alternating Feistel (KAF) network
of Lampe and Seurin [23] that uses random functions (RF) to build a PRP; as
well as the Even-Mansour construction [18] that constructs a PRP from a ran-
dom permutation (RP).

Those constructions provide an information-theoretical analysis of the strate-
gies employed to design ciphers. For instance, the Feistel network is an idealized
DES [16] and the key-alternating cipher (KAC) [6], which is akin to an iteration
of Even-Mansour, is an idealized AES [1].



Pseudorandom Functions. The previously cited constructions aim at build-
ing PRPs as they are interested in idealized constructions of block ciphers. How-
ever, the security of many modes of operation such as Galois Counter Mode
(GCM) [21] can be improved with a PRF instead. The proofs of such modes typi-
cally start by applying the PRP/PRF switching lemma [4] allowing to consider
the underlying primitive as an actual PRF. In a nutshell, the PRP/PRF switch-
ing lemma says that a PRP behaves like a PRF up to the birthday-bound, that
is up to O

(
2n/2

)
queries with n the bit-size of the PRP. The main drawback

of this composition is that proofs using such technique cannot show security
beyond the birthday-bound. Hence, it is of interest to build a secured PRF with
provable security beyond the birthday-bound.
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Fig. 1. Chen et al. [10] proposed to sum two single-keyed Even-Mansour with inde-
pendent keys and permutations together to build a PRF: SoEM(x) = P1(x⊕ k1)⊕ k1 ⊕
P2(x⊕ k2)⊕ k2.

From RP to PRF. Chen, Lambooij and Mennink [10] proposed the Sum of
Even-Mansour construction (SoEM, Fig. 1), an RP-based PRF provably secure
beyond the birthday-bound by summing two independent single-keyed Even-
Mansour constructions. The single-keyed Even-Mansour construction is known
to be secure only up to the birthday-bound [17], but Chen et al. gives a dedicated
proof of SoEM that indeed shows SoEM is provably secure beyond the birthday-
bond and up to O

(
22n/3

)
queries. In the same work, Chen et al. also showed that

the scheme cannot be simplified by having the two Even-Mansour constructions
sharing the same key or the same permutation as it allows for a birthday-bound
attack.

RP-based PRF construction is the topic of this paper. In particular, we look
for possible simplifications of the scheme and study the effect on its provable
security.

1.2 Results

There are two results, a positive and a negative one. We first show how SoEM

can be simplified and its proof adapted to a new scheme we called Keyed Sum
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Fig. 2. Some examples of idealized constructions [10] between random/pseudorandom
permutation/function (RP, PRP, RF, PRF).

of Permutations that drops the last key addition of SoEM:

KSoP(x) = P1(x⊕ k1)⊕ P2(x⊕ k2) .

Then, we show that the scheme cannot be simplified by having the two keys
related by a simple linear key schedule as it leads to a non-trivial information-
theoretic birthday-bound attack.

Keyed Sum of Permutations. In Section 2 we prove Theorem 1 stating that
KSoP (Fig. 3) is secure beyond the birthday-bound and up to Õ

(
22n/3

)
queries.

While KSoP can be described as SoEM without the last key addition, one can
argue that the design strategy is opposite. Indeed, looking at Figure 2, SoEM
strategy goes to first build two PRPs via Even-Mansour and then add their
output to build a PRF:

SoEM : RP
EM−→ PRP

SoP−→ PRF

Indeed, it is known that Even-Mansour is a secure PRP and that the sum of
two PRPs is a secure PRF. Although the direct combination of the proofs only
guarantees a birthday-bound security, Chen et al. [10] gives a better dedicated
proof.

On the other hand, by removing the last key addition, KSoP can no longer be
described as the sum of two PRPs. Instead, KSoP’s strategy goes the other way
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around:
KSoP : RP

SoP−→ RF
GT−→ PRF

It first sums two random permutations to build a random function; that is prov-
ably indifferentiable from a random function [5]; and then masks the inputs with
two keys which is also known to be enough to build a secure PRF [19]. Again,
this requires a dedicated analysis to prove the construction secure beyond the
birthday-bound which is the topic of Section 2.1.

Linear Key-Schedule. Chen et al. [10] showed that SoEM is insecure when re-
using the same key for both Even-Mansour construction. The attack they showed
applies as such for KSoP. However, they did not study the effect of simple key-
schedules on the security. For instance, it is known that the two-round Even-
Mansour can be made secure using the same permutation, and using a linear
key schedule (precisely a linear orthomorphism, like a finite field multiplication)
is enough to guarantee a beyond birthday-bound security [8] even though the
security collapses to birthday-bound in the absence of key-schedule.

In a paper studying the quantum security of SoEM and its variants, Shinagawa
and Iwata [29] left the security of using a linear key schedule as an open question.
Indeed, it is natural to consider the security of KSoP* with a linear key schedule
Γ :

KSoP*(x) = P1(x⊕ k)⊕ P2(x⊕ Γ (k)) .

We answer the question of its classical security in Section 3 with an attack
showing that the information-theoretic security of KSoP* is actually no better
than birthday-bound. The cryptanalysis is more technical and differs substan-
tially from the cryptanalyses of variants of SoEM with identical keys or identical
permutations that are essentially looking for a collision. In particular, the time
complexity of our birthday-bound attack is much higher, at Õ(2n). However,
since in practice permutation queries can be assimilated to offline computations,
we give in Section 3.3 a range of trade-offs to reduce the time and online query
complexities at the expense of offline permutation queries. In particular, the time
complexity can be lowered down to Õ

(
23n/4

)
.

We also verified the correctness of our attack experimentally1.

Organization. We prove the security of KSoP in Section 2. A key-recovery
attack when a linear key-schedule is used is described in Section 3 and concrete
examples on how to run this attack are shown in Section 4.

1.3 Notations

We denote by { 0, 1 }n the set of all n-bit strings. a
$←−− A means that a is

randomly uniformly drawn from the set A. A∗ is shorthand for A\{ 0 }.
A value x ∈ { 0, 1 }n equivalently represents a row vector of n bits or a

value in a finite field of characteristic 2 that is x ∈ GF(2n). Similarly, an m× n
bit-matrix X can be equivalently seen as a set of m values in GF(2n).

1 The source code is available in https://anonymous.4open.science/r/soem-335F/

README.md.
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The set spanned by all elements of an m × n matrix X is written sp{X} =
{ eX : e ∈ { 0, 1 }m }. The set spanned by all elements of two matrices X and
Y (equivalently, by all elements of X ∪ Y ), is written sp{X,Y }. By convention,
sp{∅} = { 0 }.
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Fig. 3. The Keyed Sum of Permutation is a SoEM without the last key addition and
computes y = KSoP(x) = P1(x⊕ k1)⊕ P2(x⊕ k2).

2 Simplifying the Scheme

The SoEM scheme [10] can be further simplified by removing the last two key
additions as in Figure 3. The results in a scheme that is strictly simpler than
SoEM while retaining a beyond-birthday-bound PRF security.

Theorem 1. Let the KSoP scheme, parametrized by two n-bit permutations P1

and P2 and two n-bit keys k1 and k2, be an oracle that for every input x returns
KSoPk1,k2

(x) := P1(x ⊕ k1) ⊕ P1(x ⊕ k2). Let P and F be the set of all n-bit
to n-bit permutations and functions, respectively. Then, for any distinguisher D
interacting with three oracles, making p forward and backward queries to the first
two oracles and q queries to its third oracle we have:

Pr
[
DP1,P2,KSoPk1,k2 → 1

]
−Pr

[
DP1,P2,$ → 1

]
≤ 4q(p+ q)2

22n
+ 22−n + 3

qp2

22n
+ 4
√
n
p
√
q

2n

with the randomness of (P1, P2)
$←−− P2, $

$←−− F , (k1, k2)
$←−− { 0, 1 }2n and

the choices of D.

2.1 Proof of KSoP

The proof of KSoP is mostly similar to the original proof of SoEM [10] and follows
Patarin’s H-Coefficient Technique. In fact, the only difference is in the analysis
of the bad transcripts that will require the sum-capture Theorem [2,30]:
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Theorem 2. Let B1 and B2 ⊆ { 0, 1 }n be arbitrary sets of p elements and
Y ⊆ { 0, 1 }n a set of q elements drawn uniformly at random. Define the set of all
triplets that sum to zero that is T := { (y, b1, b2) ∈ Y × B1 × B2 : y ⊕ b1 ⊕ b2 = 0 }
and ρ := |T | the number of such triplets. Then for any value c we have:

Pr

[
ρ ≥ qp2

2n
+ cp
√
q

]
≤ 2n+1e−

c2

2 .

Patarin’s H-Coefficient Technique. Consider a computationally unbounded
deterministic adaptive adversary D for a distinguishing game between a real and
an ideal world.

Let τ be the transcript all interactions made by D to its oracles. Let Xre and
Xid be random variables denoting the transcripts in the real and ideal worlds,
respectively. The probability that the transcript τ is realized in the real and ideal
world is noted Pr[Xre = τ ] and Pr[Xid = τ ], respectively. Let Θ be the set of all
attainable transcripts in the ideal world. The main theorem of the H-coefficient
technique [27,9] is as follows.

Theorem 3 (H-coefficient technique). Let D be an adversary that has access
to either the real world oracles Ore or the ideal world oracles Oid. Let Θ = Θg⊔Θb

be some partition of the set of all attainable transcripts into good and bad
transcripts. Suppose there exists ϵratio ≥ 0 such that for any τ ∈ Θg,

Pr[Xre = τ ]

Pr[Xid = τ ]
≥ 1− ϵratio ,

and there exists ϵbad ≥ 0 such that Pr[Xid ∈ Θb] ≤ ϵbad. Then,

Pr
[
DOre → 1

]
−Pr

[
DOid → 1

]
≤ ϵratio + ϵbad . (1)

Game Setting. The adversary D interacts with 3 oracles. In both the real and
ideal worlds, P1 and P2 are drawn randomly from the set of all n-bit permutations
andD can perform forward and backward queries to them via two oracles. That is
D can query a and add (a, P1(a)) to its transcript or query b and add (P−1

1 (b), b)
to its transcript. Similarly for P2.

In the real world, the third oracle first draws k1 and k2 at random and
answers every query x by computing EKSoP(x) = P1(x⊕ k1)⊕P2(x⊕ k2), that is
the KSoP cipher, thus adding (x,EKSoP(x)) to the transcript. In the ideal world,

the third oracle answers every query x by a random value y
$←−− { 0, 1 }n thus

adding (x, y) to the transcript. The keys k1 and k2 are only drawn at the end of
interactions.

We abuse notations and call the oracles of the real world P1, P2 and E while
the ideal world oracles are P1, P2 and $. Moreover, at the end of interactions,
k1 and k2 are revealed to the adversary before its output decision.

Hence, the transcript τ contains three sets of pairs of n-bit values P1,P2,Q
that record the interactions to the three oracles P1, P2 and E (or $) respectively,
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as well as the keys k1 and k2. We further define the following sets:

Ai = { a : (a, b) ∈ Pi } i ∈ { 1, 2 }
Bi = { b : (a, b) ∈ Pi } i ∈ { 1, 2 }
X = { x : (x, y) ∈ Q }
Y = { y : (x, y) ∈ Q }

Bad Events. Following the H-coefficient technique, the attainable ideal world
transcripts are split into two categories: the good and bad transcripts. Good
transcripts are all transcripts that aren’t bad and bad transcripts are defined as
transcripts where there exists three pairs (a1, b1), (a2, b2), (x, y) ∈ P1 × P2 × Q
such that one of the following so-called bad events occurs:

1.

{
x⊕ a1 = k1

x⊕ a2 = k2

2.

{
x⊕ a1 = k1

y ⊕ b1 ⊕ b2 = 0

3.

{
x⊕ a2 = k2

y ⊕ b1 ⊕ b2 = 0

Notice that the definition of the bad events implies that for a good transcript,
for all x ∈ X we have x⊕ k1 /∈ A1 or x⊕ k2 /∈ A2 which intuitively ensures that
each real world encryption EKSoP(x) = P1(x⊕ k1)⊕P2(x⊕ k2) is randomized by
at least one permutation call.

Bad Transcripts. Let XKSoP
re and XKSoP

id be random variables denoting the tran-
scripts in the real and ideal worlds of the KSoP game. We now bound the prob-
ability that a transcript in the ideal world is bad as the sum of the probabilities
of every bad event:

Pr
[
XKSoP

id ∈ Θb

]
≤

3∑
i=1

Pr[badi]

The first bad event is easily bounded with the randomness of k1 and k2 since
they are drawn after interactions. Thus,

Pr[bad1] ≤
qp2

22n
.

The second and third bad events’ analysis first requires to bound the number
of triplets that satisfies the second condition that is y ⊕ b1 ⊕ b2 = 0. Let ρ be
the number of such triplets; since all values y are random in the ideal world we
can directly apply Theorem 2:

Pr

[
ρ ≥ qp2

2n
+ cp
√
q

]
≤ 2n+1e−

c2

2 .
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Then, we can use the randomness of k1 (or k2) to finish the analysis:

Pr[bad2] =
ρ

2n

Pr[bad2] ≤ Pr

[
ρ ≥ qp2

2n
+ cp
√
q

]
+

qp2

2n + cp
√
q

2n

Pr[bad2] ≤ 2n+1e−
c2

2 +
qp2

22n
+

cp
√
q

2n

Pr[bad2] ≤ 2n+1e−2n +
qp2

22n
+ 2
√
n
p
√
q

2n
c← 2

√
n

Pr[bad2] ≤ 21−n +
qp2

22n
+ 2
√
n
p
√
q

2n
.

The same bound applies to Pr[bad3].
Thus, we conclude that:

Pr
[
XKSoP

id ∈ Θb

]
≤

3∑
i=1

Pr[badi] ≤ 22−n + 3
qp2

22n
+ 4
√
n
p
√
q

2n

Good Transcripts. We can use the analysis of the original SoEM [10] for the
good transcripts of KSoP. Indeed, the only difference between the SoEM and KSoP

game is that the real world encryption oracle of SoEM computes ESoEM(x) =
P1(x⊕ k1)⊕ P2(x⊕ k2)⊕ k1 ⊕ k2 = EKSoP(x)⊕ k1 ⊕ k2 and the bad transcripts
are defined as containing three pairs (a1, b1), (a2, b2), (x, y) ∈ P1 × P2 ×Q such
that one of the following occurs:

1.

{
x⊕ a1 = k1

x⊕ a2 = k2

2.

{
x⊕ a1 = k1

y ⊕ b1 ⊕ b2 = k1 ⊕ k2

3.

{
x⊕ a2 = k2

y ⊕ b1 ⊕ b2 = k1 ⊕ k2

Let XSoEM
re and XSoEM

id be random variables denoting the transcripts in the real
and ideal worlds of the SoEM game. We will use the proof of Jha and Nandi [22]
that shows that for all good transcript τ we have:

Pr[XSoEM
re = τ ]

Pr[XSoEM
id = τ ]

≥ 1− 2qp2 + 6q2p+ 5q3

22n

Notice that for each good transcript τ = { P1,P2,Q, k1, k2 } in the KSoPgame,
we can build a good transcript τ ′ = { P1,P2,Q′, k1, k2 } for the SoEM game
such that Q′ = { (x, y ⊕ k1 ⊕ k2) : (x, y) ∈ Q }. Such related good transcripts
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τ , τ ′ are built using the same randomness, so it is clear that Pr[XSoEM
re = τ ′] =

Pr[XKSoP
re = τ ] and Pr[XSoEM

id = τ ′] = Pr[XKSoP
id = τ ]. Therefore

Pr[XKSoP
re = τ ]

Pr[XKSoP
id = τ ]

=
Pr[XSoEM

re = τ ′]

Pr[XSoEM
id = τ ′]

≥ 1− 2qp2 + 6q2p+ 5q3

22n

Security of KSoP. By combining the analysis of the bad and good transcripts
with the H-coefficient technique of Theorem 3 we obtain the following security
bound for KSoP:

Pr
[
DP1,P2,KSoP → 1

]
−Pr

[
DP1,P2,$ → 1

]
≤ 5qp2 + 6q2p+ 5q3

22n
+ 22−n + 4

√
n
p
√
q

2n
.

Hence, KSoP is a PRF secure beyond the birthday-bound and up to Õ
(
2

2n
3

)
queries.

3 (In)Security of Linear Key Schedule

A typical way to further simplify a scheme is to reduce the number of keys.
Chen et al. [10] already showed that SoEM is not secure when using the same key
k1 = k2, but they did not consider the case of a simple key schedule.

For instance, it is known that the 2-round Even-Mansour is not safe beyond
birthday-bound when using the same key thrice, but it can become so with a
simple linear key-schedule, as simple as a doubling in a Galois field GF(2n).
Shinagawa and Iwata [29] asked whether we could do the same for SoEM as using
a linear key schedule seems to effectively thwart the simple collision attack in
the case of k1 = k2 [10].

In this section, we show that a linear key schedule is not enough to guarantee
a PRF security beyond the birthday-bound of KSoP. These attacks are easily
extendable to the original SoEM with the same linear key schedule. We show
examples of the described attack on concrete instances in Section 4.

3.1 Generic Strategy

Let Γ (·) be a linear key schedule and define the KSoP* scheme as KSoP where
k1 = k and k2 = Γ (k), as in Figure 4. We can alternatively write the linear
function Γ as a matrix multiplication Γ (k) = kΓ where k is a row vector and Γ
is now an n× n bit matrix.

The proof of KSoP of Section 2.1 does not apply to KSoP* as it fails to bound
the first bad event that is to find a triplet of queries (a1, b1) to P1, (a2, b2) to
P2, and (x, y) to KSoP* such that:

1.

{
x⊕ a1 = k

x⊕ a2 = kΓ
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Fig. 4. KSoP with a linear key schedule Γ (·) computes y = KSoP*(x) = P1(x ⊕ k) ⊕
P2(x⊕ Γ (k)).

which is equivalent to (I is the n by n identity matrix):{
x⊕ a1 = k

x(I ⊕ Γ )⊕ a1Γ ⊕ a2 = 0
(2)

where only k is random, everything else is chosen by the adversary. In particular,
the adversary can choose the sets X , A1 and A2 that are the values he will query
to its oracles.

Key Recovery. The attack strategy starts by defining three n/2 by n bit
matrices X,A1, A2 that will guide our query sets:

X = sp{X} =
{
eX : e ∈ { 0, 1 }n/2

}
Ai = sp{Ai} =

{
eAi : e ∈ { 0, 1 }n/2

}
i ∈ { 1, 2 }

where e is an n/2-bit row vector. In other words, X is the set of all linear
combinations of the n/2 row vectors forming the matrix X. Algorithm 1 shows
the generic attack procedure. The algorithm is quite non-trivial, but the objective
of each step becomes clear as we prove that it actually recovers the key.

Success Analysis. Notice that if there is a triplet (x, a1, a2) ∈ X×A1×A2 that
satisfies Equations 2 then it will pass the test of Step 10 and the key recovery
will succeed.

Now we claim that for all couple (x, a1) ∈ X × A1, there is a value a2 ∈ A2

such that x(I ⊕ Γ ) ⊕ a1Γ ⊕ a2 = 0. By construction, A1 = X(I ⊕ Γ−1) and
A2 = X(I ⊕ Γ ) therefore:

x(I ⊕ Γ ) ∈ sp{X(I ⊕ Γ )}
a1Γ ∈ sp{A1Γ} = sp{X(I ⊕ Γ−1)Γ} = sp{X(I ⊕ Γ )}
a2 ∈ sp{A2} = sp{X(I ⊕ Γ )}

Since x(I ⊕ Γ ) ⊕ a1Γ ∈ sp{X(I ⊕ Γ )} there is necessarily a matching value
a2 ∈ sp{X(I ⊕ Γ )} that will satisfy the equation x(I ⊕ Γ )⊕ a1Γ = a2.
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Algorithm 1 Generic Key Recovery

1: input: P1, P2, E .
2: output: k : E(x) = P1(x⊕ k)⊕ P2(x⊕ kΓ ) .
3: procedure KeyExtractor(P1, P2, E)
4: Find n/2 by n bit matrix X such that sp{XΓ,X} = { 0, 1 }n.

▷ See Section 3.2.
5: A1 ← X(I ⊕ Γ−1)
6: A2 ← X(I ⊕ Γ )

7: LX ← { e1(x) = x(I ⊕ Γ ) ∥ E(x) : x ∈ sp{X} }
8: LA1 ← { e2(a1) = a1Γ ∥ P1(a1) : a1 ∈ sp{A1} }
9: LA2 ← { e3(a2) = a2 ∥ P2(a2) : a2 ∈ sp{A2} }

10: Φ← { (e1(x), e2(a1), e3(a2)) ∈ LX × LA1 × LA2 : e1 ⊕ e2 ⊕ e3 = 0 } ▷ 3-XOR
11: for all (e1(x), e2(a1), e3(a2)) ∈ Φ do
12: k̂ ← x⊕ a1

13: if k̂ is the key then ▷ Test with a few stored online queries
14: return k̂
15: end if
16: end for
17: end procedure

Let us assume that we can do Step 4, we discuss this step in the next
Section 3.2. Next, we claim that for any value k ∈ { 0, 1 }n there is a couple
(x, a1) ∈ X × A1 such that x ⊕ a1 = k. In other word, sp{X,A1} = { 0, 1 }n.
This is again coming from the fact that we computed X and A1 such that:

{ 0, 1 }n = sp{XΓ,X} = sp{XΓ ⊕X,X} = sp{X(I ⊕ Γ ), X} = sp{A1, X}

Combining the two observations shows that there will be a triplet satisfying
Equations 2 of Step 10 thus the algorithm will succeed. The number of false
positives is expected to be 1 on average as we showed that 2n triplets will collide
on the first n-bit half and the second half is an n-bit filter. It is easy to deal with
false positives by testing the guessed key and continuing until the key recovery
is successful.

Complexity analysis. The online and offline query complexities depend on the
dimension of X found in Step 4. To span n dimension, X and XΓ must contain
at least n elements thus X must contain at least n/2 elements of { 0, 1 }n. We
show in Section 3.2 that we can always find such a minimal X that makes for
a total online and offline query complexities of q = p = 2⌈n/2⌉, that is the
birthday-bound.

On the other hand, the time and memory complexities are determined by
how we tackle Step 10, that is how we filter the triplets to find the correct one.
Unfortunately, even if we treat it as a 3-XOR problem (Definition 1) with three

lists of size 2n/2, the best algorithms [7] run in Õ(2n) time and O
(
2n/2

)
memory.
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Definition 1. The 3-XOR problem. Let ℓ > 0 an integer. Given three lists
L1, L2, L3 ⊆ { 0, 1 }ℓ find a triplet (e1, e2, e3) ∈ L1 × L2 × L3 such that:

e1 ⊕ e2 ⊕ e3 = 0 .

Discussion. Brute-forcing uses a handful of online queries and almost no mem-
ory but requires O(2n) offline queries that are computations of the underlying
permutations. Therefore, our present key recovery attack requires more online
queries and memory and, most importantly, O(2n) computations as well. How-
ever, this birthday-bound attack shows that one cannot prove KSoP* information-
theoretically secure beyond the birthday-bound.

This raises the question of any computational beyond-birthday-bound secu-
rity of KSoP*. While proving computational security is hard, we can actually
optimize the attack to reduce the time complexity down to Õ

(
23n/4

)
which

represents an exponential speed-up with respect to brute-force. We show in Sec-
tion 3.3 trade-offs for reducing the time and online query complexities at the
cost of more offline queries.

3.2 Looking For The Minimal Matrix

All discussion regarding Algorithm 1 assumes that Step 4 returns a minimally
sized X such that sp{XΓ,X} = { 0, 1 }n. In this section, we show how it can
systematically be done in the case of finite field multiplication which can then
be adapted to other linear key schedule.

Algorithm 2 Set gathering

1: input: n by n bit matrix Γ .
2: output: Multiple sets such that all elements of all sets together span { 0, 1 }n .
3: procedure SetGathering(Γ )
4: Φ← ∅
5: while ∃u ∈ { 0, 1 }n : u /∈ sp{Φ} do
6: S ← { u }
7: while uΓ /∈ sp{S} do ▷ Effectively builds Su as in Theorem 4.
8: u← uΓ
9: S ← S ∪ { u }
10: end while
11: Φ← Φ ∪ { S } ▷ Φ is a set of sets.
12: end while
13: return Φ
14: end procedure

Theorem 4. Let Γ be an invertible n by n matrix in GF(2). For any u ∈
{ 0, 1 }n \0, define h as the smallest natural number such that uΓh ∈ sp{Su}
with Su :=

{
uΓ i : i ∈ [0, h− 1]

}
.

Then we have:

• v ∈ sp{Su} ⇔ vΓ ∈ sp{Su}.
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Proof of Theorem 4. Since h is minimal, uΓh−1 /∈ sp{
{
uΓ i : i ∈ [0, h− 2]

}
},

therefore uΓh /∈ sp{Su\ { u }}. Hence, uΓh can be written as a linear combina-
tion depending on u, so we can remove u and add uΓh to the set S without
affecting the span: sp{Su} = sp{

{
uΓ i : i ∈ [1, h]

}
}.

If v ∈ sp{Su} then vΓ ∈ sp{
{
uΓ i : i ∈ [1, h]

}
} = sp{Su}. The forward

implication is done.
By induction, we deduce that sp{Su} = sp{

{
uΓ i : i ∈ [j, j + h− 1]

}
} for

any j ≥ 0. Moreover, Γ being invertible means that its application is a permuta-
tion over the finite set { 0, 1 }n. Therefore, there exists a ρ ≥ 0 such that uΓ ρ = u
(note that ρ depends on both u and Γ ) thus uΓ i = uΓ i+ρ for any i. In particular,
sp{Su} = sp{

{
uΓ i : i ∈ [ρ− 1, ρ+ h− 2]

}
} = sp{

{
uΓ i : i ∈ [−1, h− 2]

}
}.

If vΓ ∈ sp{Su} then v ∈ sp{
{
uΓ i : i ∈ [−1, h− 2]

}
} = sp{Su}. The back-

ward implication is done.

Set Gathering. The goal of Algorithm 2 is to build sets
{
u, uΓ, uΓ 2, ..., uΓ ℓ−1

}
that, taken together, span the whole space { 0, 1 }n. For instance, if the set
Su =

{
u, uΓ, uΓ 2, ..., uΓn−1

}
spans { 0, 1 }n, then we can build the row of

X with the elements
{
u, uΓ 2, ..., uΓn−2

}
, and we have that sp{X,XΓ} =

sp{Su} = { 0, 1 }n.
We show that this algorithm is particularly efficient when Γ represents some

Galois field multiplication by a value γ ∈ GF(2n)\ { 0, 1 }. In that case, following
Theorem 5, Algorithm 2 will output exactly n/h sets containing h elements from
some h ≥ 2.

Theorem 5. Let γ ∈ GF(2n)∗. Define h as the smallest natural number such
that γh ∈ sp{S} with S :=

{
γi : i ∈ [0, h− 1]

}
. For any u ∈ GF(2n)∗, define

Su :=
{
uγi : i ∈ [0, h− 1]

}
.

Then we have:

• 1 ∈ sp{Su} ⇔ u ∈ sp{S}.
• v ∈ sp{S}∗ ⇔ v−1 ∈ sp{S}∗.
• ∀i ≥ 1,∀ { u1, u2, ..., ui } ⊆ GF(2n)∗,∀v /∈ sp{Su1

, Su2
, ..., Sui

} :
sp{Su1 , Su2 , ..., Sui} ∩ sp{Sv} = { 0 }.

• h divides n.

Proof of Theorem 5. We can equivalently write sp{S} as the set of all polyno-
mials of γ and sp{Su} the set of all polynomials of γ multiplied by u. Therefore,
for any k ∈ sp{S} and any u ∈ GF(2n)∗ we have uk ∈ sp{Su}.

If 1 ∈ sp{Su} for some u ∈ GF(2n)∗ then so does γ, γ2, ... ∈ sp{Su} (The-
orem 4) that is S ⊆ sp{Su}; since S contains h linearly independent values
sp{S} = sp{Su} thus u ∈ sp{S}.

Assume that v−1 ∈ sp{S} then vv−1 = 1 ∈ sp{Sv} implying v ∈ sp{S}.
Same for the converse.

For some i ≥ 1, let { u1, u2, ..., ui } ⊆ GF(2n)∗ and v /∈ sp{Su1
, Su2

, ..., Sui
}.

Assume there exists a value a ̸= 0 such that a ∈ sp{Su1
, Su2

, ..., Sui
} and a ∈

sp{Sv}. We can thus write a = vβ = u1α1 + u2α2 + ... + uiαi for some αj and
β values in sp{S}. Note that β ∈ sp{S}∗ therefore β−1 ∈ sp{S}∗ and so does
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αjβ
−1 ∈ sp{S} for all j. Hence, v = u1α1β

−1 + u2α2β
−1 + ... + uiαiβ

−1 ∈
sp{Su1

, Su2
, ..., Sui

} which is a contradiction. Such a value a cannot exist thus
sp{Su1 , Su2 , ..., Sui} ∩ sp{Sv} = { 0 }.

By construction, Algorithm 2, with Γ the multiplication by γ, will output k ≥
1 sets { Su1

, Su2
, ..., Suk

} built such that sp{Su1
, Su2

, ..., Suk
} = { 0, 1 }n thus

| sp{Su1 , Su2 , ..., Suk
}| = 2n. Since | sp{Su1}| = 2h and at each step we choose

ui+1 /∈ sp{Su1 , Su2 , ..., Sui} therefore sp{Su1 , Su2 , ..., Sui}∩ sp{Sui+1} = { 0 } we
deduce by induction that | sp{Su1

, Su2
, ..., Suk

}| = 2kh. Therefore, kh = n for
some k ≥ 1 that is h divides n.

Selecting Elements. Let us describe how to build the matrix X from the sets
of set Φ = { Su1

, Su2
, ..., Suk

}. Note that when we consider finite field multipli-
cation, all the sets will be of the same size. Nevertheless, we describe how to
pick elements of X in the general case with sets of multiple sizes with at least 2
elements.

After gathering the sets { Su1
, Su2

, ..., Suk
}, we first deal with sets of even

size Su =
{
u, uΓ, ..., uΓ 2ℓ−1

}
, and we simply select one out of two elements that

is X ⊇
{
u, uΓ 2, ..., uΓ 2ℓ−2

}
which implies that XΓ ⊇

{
uΓ, uΓ 3, ..., uΓ 2ℓ−1

}
.

All elements of Su are present when combining X and XΓ .

When the size of the set is odd and greater than 1, we cannot split it in
two, but there is a trick to deal with two such sets of odd sizes and keep X

to a minimum. Let Su =
{
u, uΓ, ..., uΓ 2ℓ

}
and Sv =

{
v, vΓ, ..., vΓ 2ℓ′

}
two

sets of odd sizes. We keep elements X ⊇ { u⊕ v } ∪
{
uΓ 2, uΓ 4, ..., uΓ 2ℓ

}
∪{

vΓ, vΓ 3, ..., vΓ 2ℓ′−1
}
implying XΓ ⊇ { uΓ ⊕ vΓ }∪

{
uΓ 3, uΓ 5, ..., uΓ 2ℓ+1

}
∪{

vΓ 2, vΓ 4, ..., vΓ 2ℓ′
}
. Considering the span of all these elements combined, we

see that uΓ ⊕ vΓ and vΓ spans uΓ , so the span contains
{
uΓ, uΓ 2, ..., uΓ 2ℓ+1

}
which precisely spans sp{Su} and in particular the element u; therefore v is
spanned thanks to u⊕ v which completes the elements of Sv. We conclude that
sp{X,XΓ} ⊇ sp{Su, Sv} and X contains 1 + ℓ + ℓ′ elements which is exactly
half of 2ℓ+ 1 + 2ℓ′ + 1.

Conclusion. When Γ is equivalent to a Galois field multiplication everything
works flawlessly: Algorithm 2 will output equally sized sets with at least two
elements that we can split evenly to build X with the minimum of ⌈n/2⌉ values.

While it is not easy to generalize the approach for all linear key schedules Γ ,
other choices than a GF(2n) multiplication hardly seems to pose any issue. For
instance, the presence of fixed points, xΓ = x, may make Algorithm 2 outputs
sets with a single element or even make it impossible to build a minimally sized
X. However, key schedules with many fixed points are not known to offer much
security especially as a birthday-bound attack is already known when there is no
key-schedule, that is when Γ is the identity. Alternatively, we choose the values
u of Algorithm 2 to avoid fixed points: choosing u with a single active bit will
avoid all fixed points of circular-shift key schedules and output equally sized sets.
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3.3 Optimizing the Online and Time Complexities

The attack described in Section 3.1 is great as an information-theoretically tight
key-recovery attack, but it still requires Õ(2n) computations which may make
this cryptanalysis not practical at all even for relatively short n. We can actually
describe a range of possible trade-offs by combining a few tricks on the way we
build the matrices X,A1, A2 and the lists for the 3-XOR problem filtering the
triplets. Concretely, for two parameters α and β such that 2α+β ≤ n/2, the key
recovery attack requires 2n/2−β online queries, 2n/2+α+β offline queries, 2n−α

time and 2n/2+β memory.

Coupling Related Solutions. Let us first describe an optimization that in-
creases the number of offline queries to 2n/2+α and lowers the time complexity
to Õ(2n−α) for some 0 ≤ α ≤ n/4. In practice, we may consider offline queries
as mere computations of a fully described permutation. Therefore, if one con-
siders that computing a permutation takes 1 unit of time then, taking α = n/4,
this optimized attack requires 2n/2 chosen plaintexts (still birthday-bound), 2n/2

memory and takes Õ
(
23n/4

)
computations.

The optimization mainly exploits the fact that all solutions are strongly re-
lated. Indeed, we are looking for a solution (x, a1, a2) such that:{

x⊕ a1 = k

x⊕ a2 = kΓ
(3)

so it is clear that if (x, a1, a2) satisfies Equation (3) then { (x⊕ c, a1 ⊕ c, a2 ⊕ c) : c ∈ { 0, 1 }n }
is the set of all solutions to Equation (3).

The idea then is to couple a set of solutions and look for this set. That is,
take α linearly independent values in a set C and consider for some (x, a1, a2)
(not necessarily a solution) the set { x⊕ c : c ∈ sp{C} }×{ a1 ⊕ c : c ∈ sp{C} }×
{ a2 ⊕ c : c ∈ sp{C} } : if it contains a solution to Equation (3) then it necessarily
contains 2α related solutions, and we have: ⊕

c∈sp{C}

E(x⊕ c)

⊕
 ⊕

c∈sp{C}

P1(a1 ⊕ c)

⊕
 ⊕

c∈sp{C}

P2(a2 ⊕ c)

 = 0

This is Algorithm 3 with parameter β = 0. Notice that Step 13 of Algorithm 3
always finds a set of solutions for the same reason that Algorithm 1 always finds
a solution. Indeed, as we just showed, even if there is no solution (x, a1, a2) ∈
sp{X ′}×sp{A1}×sp{A2} it suffices that a solution (x⊕c, a1, a2) exists for some
c ∈ sp{C} to pass the test of Step 13 and return the right key directly derived
from a1 and a2.

Reducing Online Complexity. The second trick is a simple way to reduce
the online query complexity at the direct expanse of the offline query complexity.
The idea is to “transfer” a dimension from sp{X} to both sp{A1} and sp{A2}.
Concretely, this means removing a value v (that is a row) from X and adding
it to A1 and A2. It is clear that if (x, a1, a2) ∈ sp{X} × sp{A1} × sp{A2} is a
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solution to Equation (3) then so is (x ⊕ v, a1 ⊕ v, a2 ⊕ v) and since one of x or
x⊕ v belongs to sp{X}\ { v } we have that sp{X}\ { v }× sp{A1, v}× sp{A2, v}
also contains a unique solution. We can thus “transfer” multiple rows, β rows
for instance, of X, and keep the property that we have a unique solution. This
is Algorithm 3 with parameter α = 0. This modification directly reduces the
number of online queries to 2n/2−β while increasing the number of offline queries
to both permutations, as well as the memory to 2n/2+β .

Algorithm 3 Optimized Key Recovery

1: input: (α, β : 2α+ β ≤ n/2), Γ, P1, P2, E .
2: output: k : E(x) = P1(x⊕ k)⊕ P2(x⊕ kΓ ) .
3: procedure KeyExtractor(P1, P2, E)
4: Find n/2 by n bit matrix X such that sp{XΓ,X} = { 0, 1 }n.

▷ See Section 3.2.
5: A1 ← X(I ⊕ Γ−1)
6: A2 ← X(I ⊕ Γ )

7:

 Cα×n

Dβ×n

X ′
(n/2−α−β)×n

← X ▷ Split the values of X between C, D and X ′.

8: A′
1 ←

[
D
A1

]
▷ A′

1 and A′
2 are (n/2 + β)× n matrices.

9: A′
2 ←

[
D
A2

]
10: LX′ ←

{
e1(x) =

⊕
c∈sp{C} E(x⊕ c) : x ∈ sp{X ′}

}
11: LA′

1
←

{
e2(a1) =

⊕
c∈sp{C} P1(a1 ⊕ c) : a1 ∈ sp{A′

1}
}

12: LA′
2
←

{
e3(a2) =

⊕
c∈sp{C} P2(a2 ⊕ c) : a2 ∈ sp{A′

2}
}

13: Φ←
{
(e1(x), e2(a1), e3(a2)) ∈ L′

X × LA′
1
× LA′

2
: e1 ⊕ e2 ⊕ e3 = 0

}
▷ 3-XOR

14: for all (e1(x), e2(a1), e3(a2)) ∈ Φ do
15: k̂ ← (a1 ⊕ a2)(I ⊕ Γ )−1

16: if k̂ is the key then ▷ Test with a few stored online queries
17: return k̂
18: end if
19: end for
20: end procedure

Complexity Analysis. The two mentioned tricks can trivially be combined and
the resulting key recovery attack is described in Algorithm 3. The main difference
with Algorithm 1 is that now the lists are unbalanced: LX′ contains 2n/2−α−β

elements while LA′
1
and LA′

2
contains 2n/2+β elements. First, notice that the

number of false positives passing through the filter of Step 13 is negligible with
regard to the total complexity as we test 21.5n−α+β triplets with an n-bit filter,
so we expect only about 2n/2−α+β false positives. Moreover, as in Algorithm 1,
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the bottleneck regarding the time complexity is in the filtering process itself.
Again, the best algorithms solving the 3-XOR problem have a time complexity
comparable (ignoring log factors) to combining the two shortest lists and solve a
classical collision problem. Hence, for instance combining LX′ and LA′

1
, we get

a time complexity of Õ(2n−α).

By construction of the lists, Algorithm 3 requires 2n/2−β online queries and
2n/2+α+β offline queries. As the time complexity cannot be lower than the query
complexity (a query has to be read at least), the total time complexity is thus

Õ
(
max(2n−α, 2n/2+α+β

)
). The complexity profile seems to strictly worsen as the

offline queries dominate the time complexity. Therefore, we only look at positive
α, β parameters such that 2α + β ≤ n/2 where the total time complexity is

indeed Õ(2n−α).

The extreme case α = n/4, β = 0 optimizes the most the time complexity

which becomes Õ
(
23n/4

)
while the other extreme α = 0, β = n/2 only requires a

handful of known plaintexts but is actually equivalent to the trivial brute-force
approach.

4 Cryptanalysis Examples

In this section, we show two examples that help readers understand our attack.
Independently of the actual key, it is the set-up that we show with concrete
settings. After describing the queries required for the attack we show that there
will be a successful triplet for any key.

4.1 Attack in GF(28) with γ = 2

Let us consider the finite field used in AES [1] which is GF(28) with feedback
polynomial x8 = x4 + x3 + x + 1. A multiplication by γ = 2 in that field is
equivalent to a bit-matrix multiplication by Γ defined as:

Γ =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 1 0 1 1 0 0 0


Set Gathering. Now if we run the Set gathering Algorithm 2 starting with the
element u = [10000000] it’s easy to see that we get a collection Φ containing a
single set that contains all vectors with a single active bit that is the identity
matrix Φ = { I8 }. Then we simply build X by picking one element of Φ out of
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two and compute A1 = X(I8 ⊕ Γ−1) and A2 = X(I8 ⊕ Γ ):

X =


1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

 A1 =


0 0 1 1 0 0 0 1
0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0

 A2 =


1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1


Key Recovery. Therefore, the online, P1 and P2 queries are of the form x =
exX, a1 = e1A1 and a2 = e2A2, respectively for all ex, e1, e2 ∈ { 0, 1 }4. In fact,
we can explicitly write the solution for any 8-bit key k = [k0, k1, k2, k3, k4, k5, k6, k7]:

ex =[k0, k1 + k2 + k7, k3 + k4 + k7, k5 + k6]

e1 =[k7, k1, k3 + k7, k5]

e2 =[k0 + k7, k2 + k7, k4, k6]

We have indeed exX ⊕ e1A1 = k and exX ⊕ e2A2 = kΓ = 2k.

4.2 Attack in GF(29) with γ = 273

Let us now demonstrate how we can set up the attack in the finite field GF(29)
with feedback polynomial x9 = x8 + x5 + x4 + 1. The key schedule is a mul-
tiplication by γ = 273 which is equivalent to a bit-matrix multiplication by Γ
defined as:

Γ =



1 0 1 1 1 1 1 0 1
1 1 0 1 0 0 1 1 1
1 1 1 0 0 1 0 1 0
0 1 1 1 0 0 1 0 1
1 0 1 1 0 1 0 1 1
1 1 0 1 0 1 1 0 0
0 1 1 0 1 0 1 1 0
0 0 1 1 0 1 0 1 1
1 0 0 1 0 1 1 0 0


This setting is interesting because of the following corollary:

Corollary 1. In GF(29), for all primitive elements α, either α73 = α146⊕α292

or α73 = α219 ⊕ α292.

Proof of Corollary 1. Since 29 − 1 = 511 = 73 × 7 we deduce that α511 = 1

and thus by repeatedly multiplying by α73 we obtain 1
×α73

→ α73 ×α73

→ α146 ×α73

→
α219 ×α73

→ α292 ×α73

→ α365 ×α73

→ α438 ×α73

→ 1 a chain with 7 different values. From
Theorem 5, those values span a dimension h that divides n = 9. As it contains 7
distinct elements it cannot span 9 dimensions nor can it span only 1 dimension,
so it has to span 3 dimension; that is α292 can be written as a sum involving{
α73, α146, α219

}
.

α73 has to appear in the sum to span 3 dimensions; α73 = α292 is impossible
because there are distinct; α73 = α146 ⊕ α219 ⊕ α292 implies that α365 = α146 ⊕
α219 ⊕ α292 = α73 which is again impossible. Therefore, only two possibilities
are left to Corollary 1.
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Set Gathering. Since 2 is a primitive element of this field, according to Corol-
lary 1 we know that the Set gathering Algorithm 2 will output a collection of
sets containing three values. In fact in our case we have 273 = 2219 ⊕ 2292 (eq.
Γ 4 = Γ 3⊕Γ ). Choosing successively the starting points u with Hamming weight
1 we get a Φ containing three sets of three elements:

Φ =



[
[100000000] [101111101] [101101111]

]
[
[010000000] [110100111] [110101110]

]
[
[001000000] [111001010] [011010111]

]
All 9 elements of Φ indeed span { 0, 1 }9.

In order to get a minimal working set X, we do the trick of adding to X
the sum of the first elements of the two first sets followed with the third and
second of the first and second sets, respectively. Lastly we add two elements
of the last set to X which makes for a minimal matrix with 5 values, and we
compute A1 = X(I8 ⊕ Γ−1) and A2 = X(I8 ⊕ Γ ):

X =


1 1 0 0 0 0 0 0 0
1 0 1 1 0 1 1 1 1
1 1 0 1 0 0 1 1 1
0 0 1 0 0 0 0 0 0
0 1 1 0 1 0 1 1 1

 A1 =


1 1 0 0 1 1 0 1 1
0 0 0 0 1 0 0 1 0
1 0 0 1 0 0 1 1 1
1 0 1 0 1 1 1 0 1
1 0 0 0 1 1 1 0 1

 A2 =


1 0 1 0 1 1 0 1 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1
1 1 0 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0


Key Recovery. In the odd case such as n = 9, after building a minimal X and
computing the corresponding A1 and A2, there always exists a value in X that
we can drop without affecting the span sp{X,A1} to reduce the online queries.

In our case, let X ′ = X\
{ [

0 0 1 0 0 0 0 0 0
] }

; note that sp{X ′, A1} = { 0, 1 }9
as the removed element is actually equal to the sum of the 4th and 5th elements
of A1.

Therefore, the online, P1 and P2 queries are of the form x = exX
′, a1 = e1A1

and a2 = e2A2, respectively for all ex ∈ { 0, 1 }4 and e1, e2 ∈ { 0, 1 }5. In fact, we
explicitly write the solution for any 9-bit key k = [k0, k1, k2, k3, k4, k5, k6, k7, k8]:

ex = [k0 + k4 + k6 + k7 + k8, k3 + k4 + k5 + k6 + k7 + k8,

k0 + k1 + k6, k4 + k6 + k7]

e1 = [k6 + k8, k3 + k4 + k8, k0 + k1 + k4 + k5 + k7 + k8,

k2 + k3 + k5 + k8, k2 + k4 + k5 + k7 + k8]

e2 = [k0 + k4 + k7, k5 + k6 + k7, k4 + k5 + k6 + k7 + k8,

k2 + k3 + k5 + k8, k2 + k5 + k6 + k8]

We have indeed exX
′ ⊕ e1A1 = k and exX

′ ⊕ e2A2 = kΓ = 273k.
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