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Abstract. Recently, many cryptographic primitives such as homomorphic encryption (HE),
multi-party computation (MPC) and zero-knowledge (ZK) protocols have been proposed in
the literature which operate on prime field Fp for some large prime p. Primitives that are de-
signed using such operations are called arithmetization-oriented primitives. As the concept
of arithmetization-oriented primitives is new, a rigorous cryptanalysis of such primitives is
yet to be done. In this paper, we investigate arithmetization-oriented APN functions. More
precisely, we investigate APN permutations in the CCZ-classes of known families of APN
power functions over prime field Fp. Moreover, we present a new class of APN binomials
over Fq obtained by modifying the planar function x2 over Fq. We also present a class of
binomials having differential uniformity at most 5 defined via the quadratic character over
finite fields of odd characteristic. We give sufficient conditions for which this family of bino-
mials is permutation. Computationally it is confirmed that the latter family contains new
APN functions for some small parameters. We conjecture it to contain an infinite subfamily
of APN functions.

1. Introduction

Zero-knowledge (ZK) proof systems were introduced by Goldwasser et al. [13] in 1989. In
this system, a prover P convinces a verifier V that a certain statement z is true while keeping
some elements of a computation secret. With a ZK protocol, V can verify that the result
of this computation is correct without even knowing some of the details of the computation,
e.g., its intermediate values or any potentially secret inputs.

Cryptographic hash functions are often used as part of the ZK protocol, e.g., by com-
pressing multiple public inputs to a single hash. Modern cryptographic hash functions such
as SHA2, SHA3 and BLAKE are designed over finite fields of even characteristic, while ZK
protocols often operate over prime field Fp for some large prime p. Therefore, efficient hash
functions which are designed over Fp, for some large prime p, were needed. In view of this,
many cryptographic hash functions such as MiMCHash [1], Rescue-Prime [2, 24], Reinforced
Concrete [3], Anemoi [5], Poseidon [14] and Grendel [23], to name a few, have been proposed
in the literature which operate on prime field Fp for some large prime p. These cryptographic
primitives are called arithmetization-oriented primitives. Except for Anemoi [5] and Gren-
del [23], all of these primitives use low-degree non-linear functions such as power maps. The
non-linear function of Grendel [23] is defined via the Legendre symbol whereas Anemoi [5]
is defined via the so-called Flystel structure. As the concept of arithmetization-oriented
primitives is new, a rigorous cryptanalysis of such primitives is yet to be done.

One of the main design requirements of an arithmetization-oriented hash function is that
it should be efficient in verification. Thus, in order for a function F to be arithmetization-
oriented, it is necessary that verifying whether y = F (x) can be done using few multiplications
in a specific field. One way to achieve this is to use a function F such that F (x) can be
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evaluated using a small number of multiplications. Cryptographic hash functions MiMC-
Hash [1] and Poseidon [14] work in this way, i.e., they use power map xd, d ∈ {3, 5} as a
round function which can be evaluated easily. However, using a low degree round function may
imply vulnerability to some algebraic attacks [9]. As a consequence, these algorithms have to
use a high number of rounds. To overcome this, the designers of Rescue-Prime [2, 24] adopted
a different strategy which was based on the fact that for a permutation F checking y = F (x)
is equivalent to checking x = F−1(y). The authors chose α ∈ Fp, where gcd(α, p − 1) = 1,

in such a way that the evaluation of xα is efficient and its compositional inverse x
1
α has

very high algebraic degree. It allows them to use xα for evaluation and both xα and x
1
α in

their round function. As a consequence, much fewer rounds were needed to prevent algebraic
attacks. The designers of Anemoi [5] observed that the idea of using a low degree permutation
for the verification purpose (for cheap verification) and its compositional inverse (which is
of high algebraic degree) as a round function can be generalised using the so-called CCZ-
equivalence [10]. The idea was to use a low degree function for the verification and some
permutation of high algebraic degree in its CCZ-class as a round function. In view of this,
finding permutations with good cryptographic properties (including a high algebraic degree)
that are CCZ-equivalent to functions with a low number of multiplications is an intriguing
problem.

In this paper we shall focus on a cryptographic property of functions over finite fields
called differential uniformity. Let Fq be the finite field with q = pn elements, where p is a
prime number and n is a positive integer. We denote by F∗

q the multiplicative cyclic group of
nonzero elements of the finite field Fq. The ring of polynomials in indeterminate x over Fq

is denoted by Fq[x]. Let F be a function from the finite field Fq to itself. Using Lagrange’s
interpolation formula, F can be uniquely represented by a polynomial in Fq[x] of degree at
most q− 1. Therefore, throughout this paper we shall use the term function and polynomial
for F , interchangeably. A polynomial F (x) ∈ Fq[x] is called a permutation polynomial over
Fq if the induced mapping x 7→ F (x) is a bijection of Fq. A function F is called differentially
δ-uniform if for every a ∈ F∗

q and every b ∈ Fq, the equation F (x + a) − F (x) = b admits
at most δ solutions. When used as a substitution box in a block cipher, the differential
uniformity of a function F quantifies its resistance against the differential attack (see [20]).
Lower the differential uniformity, higher is the immunity of the function against differential
attacks. The lowest possible differential uniformity of a function is 1 and in this case we
say that the function is perfect nonlinear. Perfect nonlinear functions are commonly known
as planar functions, and were first introduced by Dembowski and Ostrom [11] in connection
to the study of projective planes. It is well-known that planar functions can never be a
permutation. Therefore, the minimum differential uniformity that a permutation function
can have over finite fields of odd characteristic is 2 and such functions are known as almost
perfect nonlinear (APN). To the best of our knowledge, a systematic study of APN functions
in odd characteristic starts with the seminal work of Helleseth, Rong and Sandberg [15],
where the authors gave several infinite classes of APN power maps. These infinite classes
of APN power functions were based on the computational results over fields of small orders
popularly known as Helleseth-Rong-Sandberg (HRS) tables. The entries in the HRS tables
which were not explained in the infinite class of families were the basis of investigation of
many infinite families of APN power mappings in characteristic 3 and 5 (see [12, 16, 28, 29]).
It is worth mentioning here that all the infinite families of APN power mappings obtained
in [12, 16, 28, 29] are in the case of characteristic 3 or 5. Thus, over fields of characteristic
p ≥ 7, the only known infinite classes of APN power maps are due to Helleseth, Rong and
Sandberg [15] (see Table 1).
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In [5], the authors gave the following definition of arithmetization-oriented function in
terms of CCZ-equivalence: A subfunction is arithmetization-oriented if it is CCZ-equivalent
to a function that can be verified efficiently. In this paper, we shall study arithmetization-
oriented APN functions, i.e., those APN functions over prime fields which are CCZ-equivalent
to a function with a low number of multiplications. More precisely, we investigate APN
permutations in the CCZ-classes of known families of APN power functions over prime field
Fp. Moreover, we present a new class of APN binomials over Fq obtained by modifying
the planar function x2 over Fq. We also present a class of binomials having differential
uniformity at most 5 defined via the quadratic character over finite fields of odd characteristic.
Sufficient conditions for which this family of binomials is permutation have also been obtained.
Computationally it is confirmed that the latter family contains new APN functions for some
small parameters. We conjecture it to contain an infinite subfamily of APN functions

The paper is organised in the following way. In Section 2, we give a brief survey of APN
functions over finite fields of odd characteristic. In Section 3, we study different equiv-
alence relations over prime fields and investigate arithmetization-oriented functions in the
CCZ-classes of known families of APN power maps. We present some new classes of APN
functions and differentially low uniform functions over finite field Fq, in Section 4. Finally,
we summarize the paper with an open problem in Section 5.

2. Known classes of APN functions in odd characteristic

In the study of the differential uniformity of functions over finite fields, we often classify
them with respect to some equivalence relations which preserve the differential uniformity of
the functions. It is then sufficient to consider the differential uniformity of a single representa-
tive from each equivalence class. Two functions F,G : Fq → Fq are called linear (affine) equiv-
alent if there exist linear (affine) permutations A1, A2 : Fq → Fq such that G = A2 ◦ F ◦ A1.
We say that F and G are extended affine (EA) equivalent if there exist affine permutations
A1, A2 : Fq → Fq and an affine function A : Fq → Fq such that G = A2 ◦ F ◦ A1 + A. The
most general equivalence relation, known so far, which preserves the differential uniformity
is the Carlet-Charpin-Zinoviev (CCZ) equivalence [10]. Two functions F and G are called
CCZ-equivalent if there exists an affine permutation A : Fq × Fq → Fq × Fq which maps the
graph GF := (x, F (x)) to the graph GG := (x,G(x)). Thus, we can classify functions over
finite fields in CCZ-equivalence classes and then each CCZ-equivalence class can be further
classified into EA-equivalent classes. Thus, the CCZ-class of a function F always contains the
EA-class of the function F . It is well-known [8] that if F is a permutation then CCZ-class also
contains the EA-class of F−1, the compositional inverse of the function F . This property of
CCZ-equivalence motivated the designers of Anemoi [5] to use CCZ-equivalence in the design
of arithmetization-oriented functions.

In this section, we give a brief survey of known classes of APN functions, upto CCZ-
equivalence, over finite fields of odd characteristic. The simplest kind of functions over finite
fields are the monomials xd, where d is a positive integer. The Table 1 gives the known classes
of APN power functions xd over finite fields Fpn of odd characteristic.

We say a class of APN functions F over Fpn or an infinite family of APN functions if either
it is APN over Fpn for infinitely many values of n, or it is APN over Fpn for infinitely many
primes p. In arithmetization-oriented primitives we are mainly interested in functions which
are APN for infinitely many primes p. One may note, from Table 1, that the infinite families
of APN power maps Ci, 1 ≤ i ≤ 6, given by Helleseth, Rong and Sandberg [15], are the only
families of APN power maps which are APN for infinitely many extensions n and infinitely
many primes p.
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d p Conditions Ref
C1 3 p ̸= 3 [15, Theorem 3]
C2 pn − 2 pn ≡ 2 (mod 3) [15, Theorem 3]

C3
pn−3

2 p ≡ 3, 7 (mod 20), pn > 7, pn ̸= 27, n odd [15, Theorem 3]

C4
pn+1

4 + pn−1
2 pn ≡ 3 (mod 8) [15, Theorem 4]

C5
pn+1

4 pn ≡ 7 (mod 8), pn > 7 [15, Theorem 4]
C6 pm + 2 pm ≡ 1 (mod 3), n = 2m [15, Theorem 8]
C7 pn − 3 p = 3 n > 1 is odd [15, Theorem 7]

C8
3

n+1
2

−1

2 p = 3 n ≡ 3 (mod 4), n > 3 [12, Theorem 2.1]

C9
3

n+1
2

−1

2 + 3n−1
2 p = 3 n ≡ 1 (mod 4), n > 1 [12, Theorem 2.1]

C10
3n+1−1

8 p = 3 n ≡ 3 (mod 4) [12, Theorem 2.2]

C11
3n+1−1

8 + 3n−1
4 p = 3 n ≡ 1 (mod 4) [12, Theorem 2.2]

C12
3n+1−1

3
n+1

2ℓ +1
p = 3 n ≡ −1 (mod 2ℓ) [16] [28, Theorem 4.1]

C13
5k+1

2 p = 5 gcd(2n, k) = 1 [15, Corollary 1]

C14
5n−1

4 + 5
n+1
2 −1
2 p = 5 n odd [12] [28, Theorem 4.5]

C15
5n+1−1

2(5
n+1

2ℓ +1)
+ 5n−1

4 p = 5 ℓ ≥ 2, n ≡ −1 (mod 2ℓ) [28] [16, Theorem 1.9]

Table 1. Known classes of APN power maps xd over Fpn , p > 2.

Until 2007, only known classes of APN functions over finite fields of odd characteristic
were power maps. The first infinite class of non-monomial APN functions was a class of
APN binomials in characteristic 3 introduced by Ness and Helleseth [19]. More precisely, the
authors showed that the binomials

(2.1) F (x) = xp
n−2 + ux

pn−3
2 ∈ Fpn [x],

where p = 3, n ≥ 3 is odd and u ∈ F3n such that χ(u+ 1) = χ(u− 1) = χ(u), is APN. Here,
χ : Fq → {0, 1,−1} is the quadratic character of the finite field Fq defined as follows:

χ(a) =


0 if a = 0;

1 if x2 = a has a solution x ∈ Fq;

−1 if x2 = a has no solution x ∈ Fq.

The binomial F is known as Ness-Helleseth function. Later, Zeng et al. [26] showed that the
Ness-Helleseth function F is APN for all pn ≡ 3 (mod 4), pn > 7 and u ∈ Fpn satisfies either
of the following conditions:{

χ(u+ 1) = χ(u− 1) = −χ(5u+ 3); or

χ(u+ 1) = χ(u− 1) = −χ(5u− 3).

The authors also showed that the Ness-Helleseth function is CCZ-inequivalent to all other
known APN power functions when p ≥ 7.

In 2014, by using the idea of some known construction methods of quadratic APN functions
over finite fields of even characteristic [4, 7], Zha et al. [27] gave a general construction of
APN polynomials of the form

(2.2) F (x) = c30x
3 + c03x

3q +

2∑
i=0

2∑
j=0

cijx
i+qj ∈ Fq2 [x].
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After APN power maps C1 and C6 in Table 1, this was the third class of APN functions over
finite field Fpn , with n even. The authors also showed that similar to C1 and C6 in Table 1, F is
also not a permutation. Some non-monomial APN functions in odd characteristic constructed
via switching method can be found in [25].

3. CCZ-equivalence and Arithmetization-oriented APN functions

In this section, we study EA-equivalence and CCZ-equivalence over prime fields. We know
that over finite field Fp, affine functions are of the form ax + b, a ̸= 0 which are always
permutations. Therefore, over prime fields, two functions F and G are EA-equivalent if and
only if there exist affine functions A1 = a1x+ b1, A2 = a2x+ b2 and A3 = a3x+ b3 such that

G = (a1x+ b1) ◦ F (a2x+ b2) + a3x+ b3 = a1F (a2x+ b2) + a3x+ b1 + b3,

where a1, a2 ∈ F∗
p. If a3 = 0 = b3 then F and G are called affine equivalent. If a3 = b1 =

b2 = b3 = 0 then F and G are called linear equivalent.
We shall now recall the definition of CCZ-equivalence. Two functions F and G from Fpn

to itself are said to be CCZ-equivalent if there exists an affine permutation A of Fpn × Fpn

such that

(3.1) A({(x, F (x)), x ∈ Fpn}) = {(x,G(x)), x ∈ Fpn}.
Let L be the linear part of the affine permutation A. Then [6, Lemma 3.1] shows that
the affine permutation A simply adds constants to input and output of the CCZ-equivalent
function obtained by applying L. Thus CCZ-equivalent functions obtained by applying affine
permutation A and linear permutation L are in the same affine class. Therefore, in what
follows, we shall always consider A to be a linear function and shall denote it by L. Recall
that, any linear function L : Fpn × Fpn → Fpn × Fpn can be described in the following way:

(3.2) L =

[
L1 L2

L3 L4

]
,

where Li are linear maps over Fpn for 1 ≤ i ≤ 4, and

L(x, y) =
[
L1 L2

L3 L4

]
·
[
x
y

]
= (L1(x) + L2(y), L3(x) + L4(y)).

In general, given a function F : Fpn → Fpn and a linear permutation L of Fpn × Fpn , there
does not always exist a function G such that Equation (3.1) holds. Let F1, F2 be mappings
from Fpn → Fpn defined as follows:

F1(x) 7→ L1(x) + L2(F (x)),

F2(x) 7→ L3(x) + L4(F (x)).

Then it is necessary for G to be well-defined that the mapping F1 is a permutation. We can
then define the function G : Fpn → Fpn as

G = F2 ◦ F−1
1 (x) = L3(F

−1
1 (x)) + (L4 ◦ F )(F−1

1 (x)).

It is easy to observe that when L2 = 0, then F1 is a permutation if and only if the linear
function L1 is a permutation. Let L−1

1 be the compositional inverse of L1 then L−1
1 is also

linear and the function G is given by

G = (L4 ◦ F + L3) ◦ L−1
1 = L4 ◦ F ◦ L−1

1 + L3 ◦ L−1
1 .

Thus, G is EA-equivalent to F . Also, one may note that when L1 = 0 then F1 is a permutation
if and only if both L2 and F are permutations of Fpn . Let L2 and F are permutations of Fpn

and L−1
2 and F−1 are their compositional inverses, respectively. Then F−1

1 = F−1◦L−1
2 , where
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L−1
2 , being the compositional inverse of a linear function, is a linear function. Therefore, G

is given by

G = (L4 ◦ F + L3) ◦ (F−1 ◦ L−1
2 ) = L4 ◦ L−1

2 + L3 ◦ F−1 ◦ L−1
2 .

Thus, G is EA-equivalent to F−1. From here we see that CCZ-class of a function F always
contains EA-class of F and EA-class of F−1 (if inverse exist).

Another important property of CCZ-equivalence is that it does not preserves the algebraic
degree of the function. This was the motivation for the designers of Anemoi [5] to use
CCZ-equivalence to construct arithmetization-oriented functions. Let G be a function with
a low number of multiplications and it is CCZ-equivalent to a function F whose evaluation
involves large number of multiplications than G, i.e., there exists linear function L such that
L({(x, F (x)), x ∈ Fpn}) = {(x,G(x)), x ∈ Fpn}. Then verifying y = F (x) is equivalent to
verifying that L1(x) + L2(y) = G(L3(x) + L4(y)) which only involves linear functions and
G. Arithmetization-oriented primitives designed in the recent years such as MiMCHash [1],
Rescue–Prime [2, 24], Reinforced Concrete [3] and Poseidon [14] use low-degree non-linear
functions as power maps x 7→ xd with d ∈ {3, 5}. The non-linear function of Grendel [23]
is defined as xd · χ(x), where χ is the quadratic character of the finite field Fp (the authors
used the term Legendre symbol for quadratic characters over prime fields). The non-linear
function of Anemoi [5] is defined via the flystel structure which is inspired from the butterfly
structure [21] and a Feistel network. It gives a pair of functions called open flystel and closed
flystel which are CCZ-equivalent to each other. The open flystel is a permutation whereas the
closed flystel is not necessarily a permutation. In order to provide more choices for the non-
linear functions of arithmetization-oriented primitives, we investigate functions over prime
fields with following properties:

(i) Optimal differential uniformity,
(ii) Simple algebraic structure,
(iii) CCZ-equivalent to a permutation with high algebraic degree.

We call such functions arithmetization-oriented APN functions. In the remaining of this
section, we investigate permutations in the CCZ-classes of known classes of APN power
functions over prime field Fp.

It is easy to observe that the linear maps over Fp are of the form x 7→ αx for some α ∈ Fp.
Therefore, any linear permutation L : Fp × Fp → Fp × Fp can be represented as

L =

[
α1 α2

α3 α4

]
,

where αi ∈ Fp for 1 ≤ i ≤ 4 and α1α4 − α3α2 ∈ F∗
p. Let F (x) = xd, d > 1 be a power

map over Fp. Since the trivial cases α1α2 = 0 has already been considered, we shall always

assume that α1α2 ̸= 0. Notice that when F (x) = xd then F1(x) = α2x
d + α1x is a binomial.

Also, if F1 permutes Fp then so does α−1
2 F1. Therefore, without loss of generality, we may

assume that α2 = 1. Thus, finding functions CCZ-equivalent to xd but EA-inequivalent to

both xd and its inverse (if x
1
d exists) over Fp is equivalent to finding permutation binomials

of the form xd + ax ∈ Fp[x] with a ̸= 0. We now recall the following lemma concerning the
non-existence of certain types of permutation binomials.

Lemma 3.1. [18, Theorem 1.3] If xm + axn permutes the prime field Fp, where m > n > 0
and a ∈ F∗

p. Then gcd(m− n, p− 1) >
√
p− 1.

The following theorem gives a condition on the exponent d for which the CCZ-class of
the power map xd contains at most two EA-classes, namely, the EA-classes of xd and the
EA-class of its compositional inverse (if it exists).
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Theorem 3.2. Let F (x) = xd, 1 < d < p be a power map over prime field Fp. If gcd(d −
1, p−1) ≤ √

p−1 then for F , CCZ-equivalence class coincides with the EA-equivalence classes

of F and F−1 (if F−1 exists).

Proof. Result directly follow from the previous discussions and Lemma 3.1. □

We shall now use Theorem 3.2 to investigate permutations in the CCZ-classes of known
classes of APN power maps over Fp. We consider p > 7 to avoid some extra conditions in
certain cases and the cases for p = 3, 5, 7 can be easily verified using SageMath [22]. The
following table gives, up to CCZ-equivalence, the known classes of APN power maps over
prime fields Fp, p > 7.

d Conditions Ref
D1 3 p ̸= 3 [15, Theorem 3]
D2 p− 2 p ≡ 2 (mod 3) [15, Theorem 3]

D3 p−3
2 p ≡ 3, 7 (mod 20) [15, Theorem 3]

D4 3p−1
4 p ≡ 3 (mod 8) [15, Theorem 4]

D5 p+1
4 p ≡ 7 (mod 8) [15, Theorem 4]

Table 2. APN power maps xd over Fp, p > 7.

The following theorem shows that for all the APN power maps in Table 2, CCZ-equivalence
class coincides with EA-equivalence class, if xd is not a permutation; and contains exactly
two EA-classes, namely, EA-class of xd and EA-class of its compositional inverse, if xd is a
permutation.

Theorem 3.3. Let F (x) = xd be an APN power map given in the Table 2. Then, the
CCZ-class of xd

(i) coincides with the EA-class of xd if gcd(d, p− 1) > 1,

(ii) consists of exactly two EA-classes, namely, EA-class of xd and EA-class of x
1
d , if

gcd(d, p− 1) = 1.

Proof. From Theorem 3.2, we know that if gcd(d − 1, p − 1) ≤ √
p − 1 then for the power

map xd, CCZ-equivalence class is consists of EA-equivalence class of xd and EA-equivalence

class of x
1
d , (if it exists). Now, we show that in all the five classes given in Table 2,

gcd(d− 1, p− 1) ≤ √
p− 1.

Case 1. d = 3. In this case gcd(d− 1, p− 1) = gcd(2, p− 1) = 2 <
√
p− 1 for all p > 7.

Case 2. d = p− 2 and p ≡ 2 (mod 3). In this case

gcd(d− 1, p− 1) = gcd(p− 3, p− 1) = gcd(2, p− 1) = 2 <
√
p− 1,

for all p > 7.

Case 3. d =
p− 3

2
and p ≡ 3 or 7 (mod 20). It is easy to observe that since p ≡ 3 or 7

(mod 20), we have p ≡ 3 (mod 4) and hence p−5 ≡ 2 (mod 4) and p−1 ≡ 2 (mod 4) which
further implies that gcd(p− 5, p− 1) = gcd(4, p− 1) = 2. Therefore,

gcd(d− 1, p− 1) = gcd

(
p− 5

2
, p− 1

)
= 1 <

√
p− 1,
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for all p > 7 and the second last equality holds as
p− 5

2
is odd.

Case 4. d =
3p− 1

4
and p ≡ 3 (mod 8). Notice that, since p ≡ 3 (mod 8), we have p−1 ≡ 2

(mod 8) and 3p − 5 ≡ 4 (mod 8). Hence, gcd(3p − 5, p − 1) = gcd(2(p − 2), p − 1) = 2.
Therefore,

gcd(d− 1, p− 1) = gcd

(
3p− 5

4
, p− 1

)
= 1 <

√
p− 1,

for all p > 7 and the second last equality holds as
3p− 5

4
is odd.

Case 5. d =
p+ 1

4
and p ≡ 7 (mod 8). One may note that, since p ≡ 7 (mod 8), we have

p − 1 ≡ 6 (mod 8) and p − 3 ≡ 4 (mod 8). Hence, gcd(p − 3, p − 1) = gcd(2, p − 1) = 2.
Therefore,

gcd(d− 1, p− 1) = gcd

(
p− 3

4
, p− 1

)
= 1 <

√
p− 1,

for all p > 7 and the second last equality holds as
p− 3

4
is odd. □

A well-known strategy for finding APN permutations is to start with any non-permutation
APN function and then finding a permutation in its CCZ-class. The following theorem gives
a list of all APN permutations that can be obtained from the CCZ-classes of APN power
maps given in Table 2.

Theorem 3.4. Let F (x) = xd be an APN power map given in Table (2) and let G be a
function CCZ-equivalent to F . Then G is a permutation if and only if p ≡ 2 (mod 3) and
either

(i) G is affine equivalent to x3; or

(ii) G is affine equivalent to x
2p−1

3 ; or
(iii) G is affine equivalent to xp−2.

Proof. Let gcd(d, p − 1) > 1, where d is an exponent given in the Table 2. Then, from
Theorem 3.3, CCZ-class of xd is same as the EA-class of xd. Let G be a function which
is EA-equivalent to xd then G will be of the form G(x) = a′(ax + b)d + b′x + c, where
aa′ ̸= 0. Also, notice that G(x) is a permutation polynomial if and only if its multiplicatively
equivalent polynomial G′(x) = xd+ b′′x is a permutation polynomial for some b′′ ∈ Fp. From
Theorem 3.3, we have seen that for all the exponents d in Table 2, gcd(d− 1, p− 1) ≤ √

p− 1
therefore, from Lemma 3.1, G′ is never a permutation for any exponent d in Table 2. Thus,
when gcd(d, p − 1) > 1 then there is no permutation function in the CCZ-classes of APN
power maps given in the Table 2.

Let gcd(d, p−1) = 1, where d is an exponent given in the Table 2. Then, from Theorem 3.3,

CCZ-class consists of EA-classes of xd and x
1
d . One may note that, in this case, any function

that is affine equivalent to xd or x
1
d will also be a permutation. Also, it is easy to verify

that if p ≡ 1 (mod 3) then for all the exponents d in the Table 2, gcd(d, p − 1) > 1 and
if p ≡ 2 (mod 3) then d ∈ {3, p − 2} are the only exponents such that gcd(d, p − 1) = 1.

Note that, the compositional inverse of x3 is given by x
2p−1

3 and the function xp−2 is self-
inverse. We now show that any function G that is EA-equivalent but not affine-equivalent
to xd, where d ∈ {3, 2p−1

3 , p − 2} is not a permutation. This is equivalent to show that for

d ∈ {3, 2p−1
3 , p−2}, there is no permutation binomial xd+b′′x with b′′ ̸= 0. From Lemma 3.1,

xd + b′′x is not a permutation for all d ∈ {3, 2p−1
3 , p− 2}. This completes the proof. □
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Remark 3.5. Any APN permutation over prime field Fp, p > 7, that is not affine equivalent

to x3, x
2p−1

3 or xp−2, is CCZ-inequivalent to all the known APN power functions in odd
characteristic.

4. Some new APN and differentially low-uniform functions over Fq

In this section, we present some new infinite classes of APN and differentially low-uniform
binomials over finite fields of odd characteristic. In [19], Ness and Helleseth introduced a
family of APN binomials

(4.1) f(x) = xp
n−2 + ux

pn−3
2 ∈ Fpn [x],

where p = 3, n ≥ 3 is odd and the element u ∈ F∗
pn satisfies χ(u + 1) = χ(u − 1) = χ(u).

Later, Zeng et al [26] showed that F is APN over Fpn , where pn ≡ 3 (mod 4), pn ≥ 7 and
the element u ∈ F∗

pn satisfies{
χ(u+ 1) = χ(u− 1) = −χ(5u+ 3); or

χ(u+ 1) = χ(u− 1) = −χ(5u− 3).

We performed computer search for all the APN binomials of the form xd2 + uxd1 over prime
field Fp for 5 ≤ p ≤ 97. In the Table 3, we have listed all the values of D = (d2, d1) for

which binomial xd2 + uxd1 is APN over prime field Fp for some u ∈ F∗
p. Here, D1 = (3, 2),

D2 = (p − 1, 2), D3 =
(
pn − 2, p

n−3
2

)
, D4 =

(
pn+3

2 , 2
)
and D = (d2, d1). We give necessary

and sufficient conditions on u ∈ F∗
p for which binomials corresponding to D1 and D2 are APN

in Remark 4.1 and Theorem 4.2, respectively. One may note that the class of APN binomials
corresponding to D3 is the generalised Ness-Helleseth function. For the class of binomials
corresponding to D4, we have proved in Theorem 4.4 that its differential uniformity is ≤ 5.
We leave open the problem of explicitly finding conditions on u and p for which the binomial
corresponding to D4 is APN.

The first class of APN binomials, corresponding to D1, is turned out to be EA-equivalent
to x3 as can be seen in the following remark.

Remark 4.1. Let p > 3 be an odd prime. Then the binomial F (x) = x3 + ux2, u ∈ F∗
pn is

APN over Fpn.

Proof. We know that the function x3 is APN over Fpn for all p > 3. Also, notice that

x3 + ux2 =
(
x+

u

3

)3
− u2x

3
− u3

27
.

Therefore, F is EA-equivalent to x3 for all u ∈ F∗
pn and hence is APN. □

The following theorem give necessary and sufficient conditions on u ∈ F∗
pn , p and n for

which binomials corresponding to D2 is APN over Fpn .

Theorem 4.2. Let p be an odd prime and n be a positive integer. Then the binomial F (x) =
xp

n−1 + ux2, u ∈ F∗
pn over Fpn is APN if{

χ(u) = −1 and pn ≡ 1 (mod 4); or

χ(u) = 1 and pn ≡ 3 (mod 4),

and differentially 3-uniform, otherwise.



10 L. BUDAGHYAN AND M. PAL

p D1 D2 D3 D4 D
5 (3,2) (4,2) * * *
7 (3,2) (6,2) (5,2) * (6,3), (5,4), (6,4)
11 (3,2) (10,2) (9,4) (7,2) (8,3)
13 (3,2) (12,2) * (8,2) (10,2), (9,3), (7,4), (10,4), (8,5), (8,6), (10,6), (12,9)
17 (3,2) (16,2) (15,7) (10,2) (13,5), (14,6), (14, 10)
19 (3,2) ((18,2) (17,8) (11,2) (12,3),(15,3),(10, 4),(13,4),(16,4),(14,5),(15,6),(10,7),(16,7), (16,10)
23 (3,2) (22,2) (21,10) (13,2) (14,3), (15,4), (16,5), (17,6), (18,7), (19, 8), (20,9)
29 (3,2) (28,2) * (16,2) (18,4), (24,10), (25,11), (26,12)
31 (3,2) (30,2) (29,14) (17,2) (19,4), (21,6), (22,7), (23,8), (24,9), (26,11), (28,13), (29,16)
37 (3,2) (36,2) * * (26,14), (32,14)
41 (3,2) (40,2) * * (34,14), (38,18)
43 (3,2) (42,2) (41,20) * (26,5), (33,12), (34,13), (36,15), (39,18)
47 (3,2) (46,2) (45,22) * (32,9), (39,16), (41,18)
53 (3,2) (52,2) * (28,2) (34,8), (38,12), (46,20),
59 (3,2) (58,2) (57,28) * *
61 (3,2) (60,2) * * (52,22)
67 (3,2) (66,2) (65, 32) * (46,13), (61,28)
71 (3,2) (70,2) (69,34) * *
73 (3,2) (72,2) * * *
79 (3,2) (78,2) (77,38) * *
83 (3,2) (82,2) (81,40) * *
89 (3,2) (88,2) * * (86,42)
97 (3,2) (96,2) * * *

Table 3. Exponents (d2, d1) for which xd2 + uxd1 is APN over Fp for some
u ̸= 0.

Proof. Recall that the differential uniformity of F is given by the maximum number of solu-
tions of the following equation

(4.2) (x+ a)p
n−1 + u(x+ a)2 − xp

n−1 − ux2 = b

where a, b ∈ Fpn and a ̸= 0. We shall now consider three cases, namely, x = 0, x = −a and
x ̸∈ {0,−a}.
Case 1. Let x = 0. In this case Equation (4.2) reduces to

1 + ua2 = b.

Case 2. Let x = −a. In this case Equation (4.2) reduces to

−(1 + ua2) = b.

Case 3. Let x ̸∈ {0,−a}. In this case Equation (4.2) reduces to

(x+ a)2 − x2 = bu−1 =⇒ x =
b− ua2

2au
.

It is easy to observe that x = 0 and x = −a both will be a solution of Equation (4.2) if and
only if b = 0 and a2 = − 1

u . We know that

χ(−1) =

{
−1 if pn ≡ 3 (mod 4),

1 if pn ≡ 1 (mod 4),
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and for any non-zero u ∈ Fpn , χ

(
1

u

)
= χ(u). Thus, x = 0,−a both will be a solution of

Equation (4.2) if and only if b = 0, 1 + ua2 = 0 and{
χ(u) = −1 and pn ≡ 3 (mod 4); or

χ(u) = 1 and pn ≡ 1 (mod 4).

This completes the proof. □

We now prove that the above family of APN binomials is CCZ-inequivalent to all the
known APN functions over finite fields of odd characteristic. The following lemma will be
used in proving inequivalence.

Lemma 4.3. [17, Theorem 7.4] A polynomial F (x) ∈ Fpn [x] is a permutation polynomial
over Fpn if and only if the following two conditions hold:

(i) F has exactly one root in Fpn;
(ii) for each integer t with 1 ≤ t ≤ pn − 2 and t ̸≡ 0 (mod p), the reduction of F (x)t

(mod xp
n − x) has degree < pn − 1.

It is easy to observe that the APN binomial F (x) = xp
n−1+ux2 can never be a permutation.

Recall that, in order to show that CCZ-equivalence is more general than EA-equivalence we
need to show the existence of the permutations of the form

F1 = L1(F (x)) + L2(x),

where L1, L2 are linearized polynomials over Fpn and are not zero polynomials. From
Lemma 4.3, we know that F1 can never be a permutation as its degree is pn − 1. Thus, for
the APN binomial F (x) = xp

n−1 + ux2, CCZ-equivalence coincides with the EA-equivalence.
Since, EA-equivalence preserves the algebraic degree and there is no APN function whose
algebraic degree is equal to the algebraic degree of F (x), we conclude that F (x) is CCZ-
inequivalent to all the known classes of APN functions over finite finite fields of odd charac-
teristic.

The following theorem shows that the binomial corresponding to D3 has differential uni-
formity ≤ 5.

Theorem 4.4. Let p ≡ 3 (mod 4) be a prime number and n is an odd positive integer. Then

the differential uniformity of the binomial F (x) = x
pn+3

2 + ux2, u ∈ Fpn\{0, 1,−1} is less
than or equal to 5.

Proof. Recall that the differential uniformity of F is given by the maximum number of solu-
tions of the following equation

(x+ a)
pn+3

2 + u(x+ a)2 − x
pn+3

2 − ux2 = b

=⇒ χ(x+ a)(x+ a)2 − χ(x)x2 + u((x+ a)2 − x2) = b

=⇒ (χ(x+ a)− χ(x))x2 + (u+ χ(x+ a))(2ax+ a2) = b.

(4.3)

where a, b ∈ Fpn , a ̸= 0. We shall now consider three cases, namely, x = 0, x = −a and
x ̸∈ {0,−a}.
Case 1. Let x = 0. In this case Equation (4.3) reduces to

(u+ χ(a))a2 = b.

Case 2. Let x = −a. In this case Equation (4.3) reduces to

−(u− χ(a))a2 = b.
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Case 3. Let x ̸∈ {0,−a}. In this case χ(x + a), χ(x) ∈ {1,−1} and we shall consider four
subcases.
Subcase 3.1. Let χ(x+ a) = 1 = χ(x). In this case Equation (4.3) reduces to (u+1)(2ax+
a2) = b, which has a unique solution

x =
b− (u+ 1)a2

2a(u+ 1)
.

Notice that this x will be a solution of Equation (4.3) if and only if

χ

(
b− (u+ 1)a2

2a(u+ 1)

)
= 1 = χ

(
b+ (u+ 1)a2

2a(u+ 1)

)
.

Subcase 3.2. Let χ(x+a) = −1 = χ(x). In this case Equation (4.3) reduces to (u−1)(2ax+
a2) = b, which has a unique solution

x =
b− (u− 1)a2

2a(u− 1)
.

This solution x will be a solution of Equation (4.3) if and only if

χ

(
b− (u− 1)a2

2a(u− 1)

)
= −1 = χ

(
b+ (u− 1)a2

2a(u− 1)

)
.

Subcase 3.3. Let χ(x+ a) = −1 and χ(x) = 1. In this case Equation (4.3) reduces to

− 2x2 + (u− 1)(2ax+ a2) = b

=⇒ x2 − a(u− 1)x+
b− (u− 1)a2

2
= 0.

(4.4)

Let x1, x2 be the two solutions of Equation (4.4), then

x1x2 =
b− (u− 1)a2

2
.

One may note that both x1 and x2 can be a solution of Equation (4.3) only if

χ(x1x2) = χ

(
b− (u− 1)a2

2

)
= 1.

It is easy to observe that both x1 + a and x2 + a will be a solution of the equation

x2 − a(u+ 1)x+
b+ (u+ 1)a2

2
= 0,

and hence

(x1 + a)(x2 + a) =
b+ (u+ 1)a2

2
.

Again, both x1 and x2 can be solution of Equation (4.3) only if

χ((x1 + a)(x2 + a)) = χ

(
b+ (u+ 1)a2

2

)
= 1.

From here we conclude that we can have{
at most two solutions if χ

(
b−(u−1)a2

2

)
= 1 = χ

(
b+(u+1)a2

2

)
,

at most 1 solution otherwise,

of Equation (4.3) from this subcase.
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Subcase 3.4. Let χ(x+ a) = 1 and χ(x) = −1. In this case Equation (4.3) reduces to

2x2 + (u+ 1)(2ax+ a2) = b

=⇒ x2 + a(u+ 1)x+
−b+ (u+ 1)a2

2
= 0.

(4.5)

Let x1, x2 be the two solutions of Equation (4.5), then

x1x2 =
−b+ (u+ 1)a2

2
.

One may note that both x1 and x2 can be a solution of Equation (4.3) only if

χ

(
b− (u+ 1)a2

2

)
= −1.

It is easy to observe that x1 + a and x2 + a will be a solution of the equation

x2 + a(u− 1)x+
−b− (u− 1)a2

2
= 0,

and hence

(x1 + a)(x2 + a) =
−b− (u− 1)a2

2
.

Again, both x1 and x2 can be solution of Equation (4.3) only if

χ

(
b+ (u− 1)a2

2

)
= −1

From here we conclude that we can have{
at most two solutions if χ

(
b−(u+1)a2

2

)
= −1 = χ

(
b+(u−1)a2

2

)
,

at most 1 solution otherwise,

of Equation (4.3) from this subcase.
We shall now consider different possibilities for the number of solutions of Equation (4.3).

Let (u + χ(a))a2 = b. Then x = 0 will be a solution of Equation (4.3) from Case 1. Notice
that, in this case, x = −a can not be a solution of Equation (4.3), as u ̸= 0. Now consider
the solution from Subcase 3.1 which is given by

x =
(χ(a)− 1)a

2(u+ 1)
=

{
0 if χ(a) = 1,
−a

(u+1) if χ(a) = −1.

Thus, we have a solution x = − a

u+ 1
of Equation (4.3) from the Subcase 3.1 if and only if

χ(a) = −1, χ(u + 1) = 1 and χ(u) = −1. Now consider the solution from the Subcase 3.2,
which reduces to

x =
(χ(a) + 1)a

2(u− 1)
=

{
a

(u−1) if χ(a) = 1

0 if χ(a) = −1.

Thus, we have a solution x =
a

u− 1
of Equation (4.3) from the Subcase 3.2 if and only if

χ(a) = 1, χ(u− 1) = −1 and χ(u) = 1. Now consider the solutions from Subcase 3.3, i.e, the
solution of equation

(4.6) x2 − a(u− 1)x+
(χ(a) + 1)a2

2
= 0
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We shall now consider two different cases, namely, χ(a) = 1 and χ(a) = −1. Let χ(a) = 1
then Equation (4.6) reduces to

x2 − a(u− 1)x+ a2 = 0

Let x1, x2 be the solutions of the above equation. Since χ(x1x2) = χ(a2) = 1 therefore either
both or none from x1, x2 will be a solution of Equation (4.3). It is easy to observe that x1+a
and x2 + a will be a solution of the equation

x2 − a(u+ 1)x+ (u+ 1)a2 = 0.

Consider χ((x1+a)(x2+a)) = χ((u+1)a2) = χ(u+1). From here, we conclude the following{
at most two solutions if χ(u+ 1) = 1,

0 otherwise.

Let χ(a) = −1 then we have only one solution x = a(u−1) of Equation (4.6) as x ̸= 0. Notice
that x = a(u− 1) will also be a solution of Equation (4.3) if and only if χ(u− 1) = −1 and
χ(u) = 1. We shall now consider the solutions from Subcase 3.4 which, in this case, reduces
to

(4.7) x2 + a(u+ 1)x+
(1− χ(a))a2

2
= 0.

Again, we shall consider two cases, namely, χ(a) = 1 and χ(a) = −1, respectively. Let
χ(a) = 1 then we have only one solution x = −a(u+1) of Equation (4.7), as x ̸= 0. It is easy
to see that this solution will also be a solution of Equation (4.3) if and only if χ(u+ 1) = 1
and χ(u) = −1. Let χ(a) = −1 then Equation (4.7) reduces to

x2 + a(u+ 1)x+ a2 = 0.

Let x1, x2 be the solutions of the above equation. Since χ(x1x2) = χ(a2) = 1 either both or
none from x1, x2 will be a solution of Equation (4.3). It is easy to observe that x1 + a and
x2 + a will be a solution of the equation

x2 + a(u− 1)x− (u− 1)a2 = 0.

Consider χ((x1 + a)(x2 + 1)) = χ(−(u − 1)a2) = −χ(u − 1). From here, we conclude the
following {

at most two solutions if χ(u− 1) = −1,

0 otherwise.

We summarize the above discussion in the first two rows of Table 4.
Let (χ(a)− u)a2 = b. Then x = −a will be a solution of Equation (4.3) from Case 2. We

have already seen that x = 0 can not be a solution of Equation (4.3), as u ̸= 0. Now consider
the solution from Subcase 3.1 which is given by

x =
(χ(a)− 2u− 1)a

2(u+ 1)
=

{
−ua
(u+1) if χ(a) = 1,

−a if χ(a) = −1.

Thus, we have a solution x = − ua

u+ 1
of Equation (4.3) from the Subcase 3.1 if and only if

χ(a) = 1, χ(u + 1) = 1 and χ(u) = −1. Now consider the solution from the Subcase 3.2,
which reduces to

x =
(χ(a)− 2u+ 1)a

2(u− 1)
=

{
−a if χ(a) = 1
−ua
(u−1) if χ(a) = −1.
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Thus, we have a solution x =
−ua

u− 1
of Equation (4.3) from the Subcase 3.2 if and only if

χ(a) = −1, χ(u − 1) = −1 and χ(u) = 1. Now consider the solutions from Subcase 3.3, i.e,
the solution of equation

(4.8) x2 − a(u− 1)x+
(χ(a)− 2u+ 1)a2

2
= 0

We shall now consider two different cases, namely, χ(a) = 1 and χ(a) = −1. Let χ(a) = 1
then Equation (4.8) reduces to

x2 − a(u− 1)x− (u− 1)a2 = 0.

Let x1, x2 be the solutions of the above equation. Since χ(x1x2) = χ(−(u−1)a2) = −χ(u−1),
we infer the following {

at most two solutions if χ(u− 1) = −1,

at most one solutions if χ(u− 1) = 1,

of Equation (4.3). It is easy to observe that x1+a and x2+a will be a solution of the equation

x2 − a(u+ 1)x+ a2 = 0.

Consider χ((x1 + a)(x2 + a)) = χ(a2) = 1. Therefore, either both x1, x2 or none will be a
solution of Equation (4.3). Let χ(a) = −1 then Equation (4.8) reduces to

x2 − a(u− 1)x− ua2 = 0.

Let x1, x2 be the solution of the above equation, then x1 + a, x2 + a will be the solutions of
the following equation

x2 − a(u+ 1)x = 0.

Since x1, x2 ̸= −a, x ̸= 0 in the above solution. Therefore, we have x1 + a = a(u + 1). One
may note that this x1 will be a solution of Equation (4.3) if and only if χ(a(u+1)) = −1 =⇒
χ(u + 1) = 1 and χ(au) = 1 =⇒ χ(u) = −1. We shall now consider the solutions from
Subcase 3.4 which, in this case, reduces to

(4.9) x2 + a(u+ 1)x+
(−χ(a) + 2u+ 1)a2

2
= 0.

Again, we shall consider two cases, namely, χ(a) = 1 and χ(a) = −1, respectively. Let
χ(a) = 1 then Equation (4.9) reduces to

x2 + a(u+ 1)x+ ua2 = 0.

Let x1, x2 be the solution of the above equation. Then x1 + a, x2 + a will be the solution of
the following equation

x2 + a(u− 1)x = 0.

Since x1, x2 ̸= −a, we have only one solution x1 + a = −a(u − 1). It is easy to see that x1
is a solution of Equation (4.3) if and only if χ(−a(u − 1)) = 1 =⇒ χ(u − 1) = −1 and
χ(−au) = −1 =⇒ χ(u) = 1. Let χ(a) = −1 then Equation (4.9) reduces to

x2 + a(u+ 1)x+ (u+ 1)a2 = 0.

Let x1, x2 be the solutions of the above equation. Since χ(x1x2) = χ((u+ 1)a2) = χ(u+ 1),
we have {

at most two solutions if χ(u+ 1) = 1,

at most one solutions if χ(u+ 1) = −1.
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of Equation (4.3). It is easy to observe that x1+a and x2+a will be a solution of the equation

x2 + a(u− 1)x+ a2 = 0.

Since χ((x1 + a)(x2 + 1)) = χ(a2) = 1, either both or none from x1, x2 will be a solution of
Equation (4.3). We summarize the above discussion in the third and fourth row of Table 4.

Let {(a, b) ∈ F∗
pn × Fpn | b ̸= ±(u± 1)a2} then we do not have solutions from Case 1 and

Case 2. Now suppose we have a solution from Subcase 3.1 then we have

(4.10) χ

(
b− (u+ 1)a2

2a(u+ 1)

)
= 1 = χ

(
b+ (u+ 1)a2

2a(u+ 1)

)
.

If we have a solution from Subcase 3.2, then we have

(4.11) χ

(
b− (u− 1)a2

2a(u− 1)

)
= −1 = χ

(
b+ (u− 1)a2

2a(u− 1)

)
.

We now show that for any fixed (a, b) ∈ F∗
pn × Fpn , if we have a solution from Subcase 3.1

and Subcase 3.2, simultaneously then we can not have at most 2 solutions from Subcase
3.3 and at most 2 solutions from Subcase 3.4, simultaneously. Assume that for any fixed
(a, b) ∈ F∗

pn × Fpn , we have solutions from Subcase 3.1 and Subcase 3.2, simultaneously, i.e.,
both Equation (4.10) and Equation (4.11) hold. Now, we have at most two solution from the
Subcase 3.3 only if

χ

(
b− (u− 1)a2

2

)
= 1 = χ

(
b+ (u+ 1)a2

2

)
=⇒ χ

(
b− (u− 1)a2

2a(u− 1)

)
χ(a(u− 1)) = 1 = χ

(
b+ (u+ 1)a2

2a(u+ 1)

)
χ(a(u+ 1))

=⇒ − χ(a(u− 1)) = 1 = χ(a(u+ 1))

(4.12)

Similarly, we have at most two solution from the Subcase 3.4 only if

χ

(
b− (u+ 1)a2

2

)
= −1 = χ

(
b+ (u− 1)a2

2

)
=⇒ χ

(
b− (u+ 1)a2

2a(u+ 1)

)
χ(a(u+ 1)) = −1 = χ

(
b+ (u− 1)a2

2a(u− 1)

)
χ(a(u− 1))

=⇒ χ(a(u+ 1)) = −1 = −χ(a(u− 1))

(4.13)

It is easy to observe that for any fixed u and a, Equation (4.12) and Equation (4.13) can not
hold simultaneously. We summarize the above discussion in the last four rows of Table 4. □
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Remark 4.5. We have verified computationally over prime fields Fp, 5 ≤ p ≤ 97 that if the

binomial F (x) = x
pn+3

2 + ux2, u ∈ Fpn\{0, 1,−1} is APN then it is CCZ-inequivalent to all
the known APN power functions and Ness-Helleseth binomials.

Based on computational results over fields of small orders we propose the following con-
jecture.

Conjecture 4.6. The family of binomials given in Theorem 4.4 contains an infinite subfamily
of APN functions.

The motivation behind the construction of differentially low-uniform permutations involv-
ing quadratic characters stems from the fact that such functions have been used in the
nonlinear layers of some arithmetization-oriented hash functions such as Grendel [23]. The
benefit of using quadratic characters is that it corresponds to a high-degree power map, i.e.,

χ(x) = x
q−1
2 , which significantly increase the algebraic degree of the function and there is an

efficient algorithm for computing it which makes the evaluation easy. The following theorem
give sufficient conditions on parameters u, p and n for which the family of binomials given in
Theorem 4.4 is permutation.

Theorem 4.7. Let pn ≡ 3 (mod 4) and u ∈ Fpn\{0, 1,−1} such that χ(u2 − 1) = −1 then

the binomial F (x) = x
pn+3

2 + ux2 ∈ Fpn [x] is a permutation polynomial over Fpn.

Proof. Notice that F (x) = x
pn+3

2 + ux2 = x2(χ(x) + u). Let b ∈ Fpn such that F (b) =
b2(χ(b) + u) = 0 then b = 0 as u ∈ Fpn\{0, 1,−1}. Now, let b, c ∈ F∗

pn such that F (b) = F (c)
then we have following three cases:

Case 1. χ(b) = χ(c). In this case we have

F (b) = F (c) =⇒ b2(χ(b) + u) = c2(χ(c) + u) =⇒ b2 = c2 =⇒ b = ±c.

Since pn ≡ 3 (mod 4), χ(−1) = −1 and hence χ(c) ̸= χ(−c). Therefore, the only possibility
is b = c.

Case 2. χ(b) = 1 and χ(c) = −1. In this case we have

F (b) = F (c) =⇒ b2(χ(b) + u) = c2(χ(c) + u) =⇒ b2

c2
=

u− 1

u+ 1
.

This is a contradiction as χ
(
u−1
u+1

)
= χ((u−1)(u+1)−1) = χ((u−1)(u+1)) = χ(u2−1) = −1,

whereas χ
(
b2

c2

)
= 1.

Case 3. χ(b) = −1 and χ(c) = 1. In this case we have

F (b) = F (c) =⇒ b2(χ(b) + u) = c2(χ(c) + u) =⇒ b2

c2
=

u+ 1

u− 1
.

Again, this is a contradiction as χ
(
u+1
u−1

)
= χ((u+ 1)(u− 1)−1) = χ(u2 − 1) = −1, whereas

χ
(
b2

c2

)
= 1. This completes the proof. □

5. Conclusion

In this paper, we investigated arithmetization-oriented APN functions. More precisely, we
showed that for the known classes of APN power functions over prime fields CCZ-class is
consists of EA-classes of APN power maps and their compositional inverses, if they exist.
Moreover, we gave a new class of APN binomials over Fq obtained by modifying the planar
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function x2 over Fq and showed that it is CCZ-inequivalent to the known classes of APN func-
tions in odd characteristic. We also gave a class of binomials having differential uniformity
at most 5 defined via the quadratic character over finite fields of odd characteristic. Suffi-
cient conditions for which this family of binomials is permutation have also been obtained.
Experimental results suggest that these functions are new APN for certain values of u and
p. We have conjectured that these binomials contain an infinite subfamily of APN functions.
We leave open the problem of explicitly finding conditions on u and p for which the binomial
corresponding to D4 is APN. The APN cases corresponding to D in the last column of Table 3
correspond to new unclassified cases. We hope that this paper would attract researchers in
discrete mathematics to construct new arithmetization-oriented APN functions.
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