
Foundations of Data Availability Sampling
Mathias Hall-Andersen∗1 Mark Simkin 2 Benedikt Wagner† 3,4

February 12, 2024

1 Aarhus University
ma@cs.au.dk

2 Ethereum Foundation
mark.simkin@ethereum.org

3 CISPA Helmholtz Center for Information Security
benedikt.wagner@cispa.de

4 Saarland University

Abstract
Towards building more scalable blockchains, an approach known as data availability sampling

(DAS) has emerged over the past few years. Even large blockchains like Ethereum are planning
to eventually deploy DAS to improve their scalability. In a nutshell, DAS allows the participants
of a network to ensure the full availability of some data without any one participant downloading
it entirely. Despite the significant practical interest that DAS has received, there are currently no
formal definitions for this primitive, no security notions, and no security proofs for any candidate
constructions. For a cryptographic primitive that may end up being widely deployed in large real-world
systems, this is a rather unsatisfactory state of affairs.

In this work, we initiate a cryptographic study of data availability sampling. To this end, we
define data availability sampling precisely as a clean cryptographic primitive. Then, we show how
data availability sampling relates to erasure codes. We do so by defining a new type of commitment
schemes which naturally generalizes vector commitments and polynomial commitments. Using our
framework, we analyze existing constructions and prove them secure. In addition, we give new
constructions which are based on weaker assumptions, computationally more efficient, and do not
rely on a trusted setup, at the cost of slightly larger communication complexity. Finally, we evaluate
the trade-offs of the different constructions.

Keywords: Data Availability Sampling, Commitments, Erasure Codes, Coupon Collector

∗Funded by the Concordium Foundation.
†This work was done while the third author was doing an internship at the Ethereum Foundation.

mailto:mail here
mailto:mail here
mailto:mail here
mailto:mail here
mailto:mail here
mailto:mail here
mailto:mail here
mailto:mail here

Part I

Main Content
Table of Contents

1 Introduction 3
1.1 Our Contributions . 3
1.2 Related Work . 4

2 Preliminaries 5

3 Definition of Data Availability Sampling 6
3.1 Basic Definition . 6
3.2 Extensions . 9

4 Overview of Constructions 10
4.1 From Codes and Commitments to Data Availability 10
4.2 Constructions of Erasure Code Commitments . 11

5 Background on Coding Theory 12
5.1 Codes and Distance . 12
5.2 Special Families of Codes . 13

6 From Codes and Commitments to Data Availability Sampling 14
6.1 Erasure Code Commitments . 15
6.2 Index Samplers . 17
6.3 Construction of Data Availability Sampling Schemes 20

7 Commitments for Arbitrary Codes 23

8 Commitments for Tensor Codes 25

9 Commitments for Interleaved Codes 27
9.1 Construction from Hash Functions . 27
9.2 Construction from Homomorphic Hash Functions . 29

10 Evaluation and Comparison 31
10.1 Setting the Stage . 31
10.2 Results . 31

Appendix 38

2

1 Introduction
As cryptocurrencies continue to grow in popularity, their scalability is becoming more and more of an
issue. While the VISA1 payment system handles around 1700 transactions per second and claims to be
able to handle up to 24000 transactions per second, the Ethereum blockchain can at most handle around
60 per second2. Increasing the number of transactions that a blockchain can process is not an easy task.
Transactions correspond to data that needs to be stored in a replicated fashion across a large number of
independent validators. Thus, increasing the number of transactions means increasing the amount of
data that needs to be stored and validated. At its core, blockchains aim to be distributed systems by the
people for the people, which should not require any sort of trusted centralized authorities. As such, it
is of crucial importance that regular individuals with reasonable amounts of computational power and
memory are able to participate in the distributed systems that form the blockchain.

The data that comprises a blockchain can be seen as a sequence of blocks, where each block is
composed of a small block header and a larger block content. To enable everyone to participate, clients
can either join as so called full nodes that store and verify both block header and content or as light nodes
that only store the headers. Light nodes can still use the functionalities that a blockchain provides as
they can verify the information they receive is consistent with the corresponding block headers. However,
they can not verify whether all data associated with the block headers they store is valid. A block may,
for instance, contain transactions that illegally attempt to spend the same coin twice. This would not
be visible from inspecting the header alone. Therefore, light nodes rely on full nodes to inform them
when an adversarial party tries to provide them with a header for malformed data. This is done via a
mechanism known as fraud proofs.

Abstractly speaking, a fraud proof allows a full node to convince a light node that a block header
and the corresponding block content do not form a valid block. To produce a fraud proof, the full node
needs access to the malformed block’s content, but the adversary may only publish a header and either
partially or fully withhold the corresponding block content. While full nodes can convince light nodes
that a block is malformed, they cannot convince them that a block’s content is just not available on
the network. For this reason, light nodes need a mechanism for determining whether the block content
corresponding to some header is available or not. Naively, light nodes could attempt to download the full
content in addition to the header, but this would completely defeat the whole point of being a light node
in the first place. Thus, light nodes need some way of efficiently checking that block contents are fully
available on the network without actually fully retrieving them.

Data availability sampling (DAS) schemes, first introduced by Al-Bassam et al. [ASBK21], aim to
solve the problem outlined above. Informally speaking, such schemes allow a possibly malicious block
proposer to encode a bit string data, such as a block’s content, into a short commitment com and a
codeword π. The commitment com is added to the block header and allows light nodes to verify the
availability of the full encoded block content π by randomly probing it in only a few positions. If enough
light nodes successfully probed π, DAS ensures that the data is indeed fully available. Note that one
light node alone cannot be convinced that the data is fully available, as it only queries a small part of the
encoding and thus we need to talk about sufficiently large groups of light nodes.

Unfortunately, and despite its significant practical importance, there are no proper theoretical
foundations for this new primitive. Existing works [ASBK21, YSL+20, SXKV21, NNT21] all discuss
DAS schemes at an informal level without precise security definitions and without full proofs of security
for the proposed constructions. For a cryptographic primitive that is planned to become a key component
of major blockchains like Ethereum3, this is a rather unsatisfactory state of affairs.

1.1 Our Contributions
In this work, we provide a comprehensive theoretical treatment of data availability sampling. We formally
define what DAS schemes are, precisely state the security notions they should satisfy, prove existing
constructions such as as the one on the Ethereum roadmap secure, present new constructions, and finally
compare all constructions in terms of concrete efficiency and discuss various trade-offs.

1See https://usa.visa.com/run-your-business/small-business-tools/retail.html.
2A new block on the Ethereum blockchain is produced every 12 seconds, has 15000000 gas available, and a transaction

costs 21000 gas, meaning that the network can process at most 15000000/(21000 · 12) ≈ 60 transactions per second.
3See https://ethereum.org/en/developers/docs/data-availability.

3

https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://ethereum.org/en/developers/docs/data-availability

Formal Definitions. On an intuitive level, a DAS scheme should satisfy three main properties. First, it
should be complete, meaning that verifiers4 holding a valid commitment com and probing a valid encoding
π, should successfully conclude that the encoded data is fully available. Second, it should be sound in
the sense that enough successful probes to the encoding should allow for recovering some data bit string.
Third, a DAS scheme should provide consistency, requiring that for a fixed but possibly malformed
commitment com, one can recover at most one unique data bit string. We stress that DAS schemes
ensure the full availability of some data, but they do not provide any guarantees about the structure or
the contents thereof. A more detailed discussion and the main formal definitions themselves, along with
several extensions are given in Section 3.
Constructions. We present multiple constructions, some being new, some being old but previously
unproven. More concretely, we provide four constructions in this work. We show how to build DAS
schemes (1) generically from vector commitments and SNARKs, (2) from collision-resistant hash functions
in the random oracle model, (3) from homomorphic collision-resistant hash functions in the random
oracle model, and (4) from polynomial commitments. The first construction can be seen as the “trivial
solution”, the second and third constructions are new to this work, whereas the fourth construction is the
one that is currently envisioned by Ethereum, but was previously lacking any kind of security proof.

As a building block that may be of independent interest, we introduce the notion of erasure code
commitments. Roughly, these ensure that any set of openings belonging to the same commitment must be
consistent with at least one codeword from the corresponding erasure code. Polynomial commitments, for
example, can be seen as erasure code commitments for Reed-Solomon codes. We formalize the notion of
erasure code commitments, study their properties, and explain how they are related to DAS in Section 6.
We describe our DAS schemes in Sections 7 to 9.
Benchmarks. In addition to the theoretical parts of our work, we also investigate the concrete efficiency
of all constructions presented in this work. We compare them with each other, but also with some “naive”
approaches to DAS, with respect to metrics like commitment size, encoding size, number of probes needed
per verifier, and number of probes needed for reconstruction of the data. Our experiments show that
no one shoe fits all and that the choice of construction really depends on the context within which they
are used. We provide a detailed analysis and do our best to elucidate the trade-off between the different
constructions in Section 10.

1.2 Related Work
DAS schemes are closely related to multiple already existing cryptographic primitives. In the following,
we highlight some differences that make DAS a primitive of its own.
Proofs of Retrievability. The general concept of verifiers ensuring that some encoded data is fully
available via a small number of probes is not new. Proofs of retrievability (PoR) [JK07, ABC+07, SW08,
DVW09, CKW13, SSP13] consider a setting, where a trusted client encodes some data and then stores
the encoding on an untrusted server. DAS schemes and PoRs are different in multiple ways. The most
important difference is that in DAS, we do not assume the encodings to be generated in an honest manner.
To deal with malicious encodings, we additionally require a consistency property as outlined above. While
it is conceivable that some PoR constructions do achieve some form of consistency, they would only do so
with very poor parameters as they are not designed to quickly detect malicious encodings. In PoR, a
single server stores the encoding and may need to perform computations on it to respond to verifiers’
queries. In our setting, the verifiers only need the ability to access arbitrary symbols of the encoding. In
particular, this means that our codewords can be stored in a distributed fashion in a network and need
not be fully stored on a single machine. Lastly, we consider retrieving back the data from the codeword
as part of the functionality that DAS provides, whereas PoR consider it part of the security definition. As
such, PoR schemes may use non-blackbox techniques to extract the original data, whereas our definitions
require that the data is extractable from a sufficient number of independently performed probes.
Verifiable Information Dispersal. In the verifiable information dispersal setting [Rab89, CT05,
NNT21] a potentially malicious party encodes a data bit string and stores the encoding in a distributed
fashion among n servers of which at most t are corrupt. Upon receiving their share of the encoding, the
servers interact with each other to determine whether the encoding they jointly store is valid or not.

4From now on we take a step back from the concrete application and focus more on the primitive itself. We we shall use
light nodes, light clients, clients, and verifiers interchangeably to denote the same entities.

4

This setting inherently considers a non-adaptive adversary as the encoding needs to be fixed before the
servers start interacting with each other. In our setting, we do not make any assumptions about how
many servers there are, how many of them are corrupt, or how the encoding is stored in the network and
leave this up to the application that makes use of our DAS schemes, thus allowing for greater flexibility
as the storage servers could for example change over time. Consequently, we also do not require any
interaction between any servers, meaning that encoding is a non-interactive process. The security notions
we formulate for DAS consider adaptive adversaries that are not bound to a specific malicious encoding,
but that can instead just answer probe requests by the verifiers in an adaptive malicious fashion.
PCPP, IOPP and Proximity Testing. Intuitively, the concepts of (extractable) probabilistically
checkable proofs of proximity (PCPP) [BGH+06] and its interactive generalization interactive oracle
proofs of proximity (IOPP) [BCG+17] share features with our notion of erasure code commitments:
namely a verifier which makes a small number of queries to the encoding. There are, however, some
crucial differences. PCPPs and IOPPs require that openings are close to a valid codeword, but we require
openings to be consistent with a valid codeword. Furthermore, our commitments rely on computational
assumptions, whereas PCPPs and IOPPs are usually studied in the information-theoretic security setting
and computational assumptions are only used to compile them into non-interactive arguments. We leave
it up to future work to explore the connection between PCPP/IOPP literature [BGKS20] and erasure
code commitments more closely.
Vector, Polynomial, and Functional Commitments. Our new notion of erasure code commitments
is a generalization of both vector commitments [CHL+05, CFM08, LY10] and polynomial commit-
ments [KZG10, BDFG20, CHM+20], but can (conceptually at least) be seen as a special case of functional
commitments [LRY16]. Our constructions of erasure code commitments are simpler, computationally
more efficient, and rely on weaker assumptions than the currently known constructions of functional
commitments. In [ADVZ21], the notion of erasure coding proof systems is introduced to construct
verifiable information dispersal. Although their notion shares some similarities with our notion of erasure
code commitments, the presentation in [ADVZ21] is rather informal, especially when it comes to security
definitions. We on the other hand provide precise security definitions and full proofs for all of our
constructions.

2 Preliminaries
In this section, we fix notation and preliminaries.
Notation. The set [L] := {1, . . . , L} ⊆ N is the set of the first L natural numbers. If S is a finite set,
s←$S means that s is sampled uniformly at random from S. If D is a distribution, x← D means that x
is sampled from D. If A is a probabilistic algorithm, we write s := A(x; ρ) to indicate that A outputs
s on input x with random coins ρ, and s← A(x) means that ρ is sampled uniformly at random. The
notation s ∈ A(x) means that there are random coins ρ such that A outputs s on input x with these
coins ρ. For an algorithm A, a string s ∈ Σ∗ over some alphabet Σ, and an integer t ∈ N, the notation
y ← As,t(x) indicates that A has t-time oracle access to s on input x and outputs y. That is, A can
query i and obtains the ith symbol si ∈ Σ of s, for at most t queries. Let A be an algorithm as above,
and let B be a (potentially stateful) algorithm B. We write y ← AB,t(x) to indicate that the oracle
queries of A are answered by B. Further, we use the notation (yi)`i=1 ← Interact [A,B]t,` (x) to indicate
that ` independent copies of A get x as input, and have t-time oracle access to B (i.e., the oracle queries
of A are answered by B), and the ith copy outputs yi for each i ∈ [`]. Here, B can schedule the oracle
queries of these ` copies in an arbitrary concurrently interleaved way. That is, B has access to an oracle
OnextQ, that on input i ∈ [`] outputs the next query of the ith copy, given that B already submitted
the response to the previous queries of that copy. All algorithms get the security parameter λ in unary
at least implicitly as input. An algorithm A is said to be PPT if its running time, denoted by T(A),
is bounded by a polynomial in its input. An algorithm A is said to be EPT if its expected running
time, denoted by ET(A), is bounded by a polynomial in its input. We write PrG [E] or Pr [E | G] to
denote the probability that some event E occurs in the experiment G. Also, we denote the event that an
experiment G outputs a bit b by G⇒ b. A function f is said to be negligible in its input λ, if f ∈ λ−ω(1).
Throughout, negl always denotes a negligible function.
Cryptographic Building Blocks. For some constructions, we make use of common cryptographic

5

Encode π

V1 V2 · · · · · · V1 V2

Ext

data

com com

com

tran tran

data

i πi i πi

Figure 1: Overview of the syntax of a data availability sampling scheme. All algorithms get sytem
parameters par ← Setup(1λ) as input. Algorithm Encode encodes data into an encoding π. Multiple
clients (V1,V2) can then query this encoding. From enough transcripts, data can be reconstructed using
algorithm Ext.

building blocks, including vector commitments, non-interactive arguments, and homomorphic hash
functions. We recall their formal definitions in Appendix A.

3 Definition of Data Availability Sampling
This section is dedicated to presenting our definition of data availability sampling. In Section 3.1, we
define a data availability sampling scheme as a cryptographic primitive. Then, in Section 3.2, we introduce
extensions for this basic definition.

3.1 Basic Definition
Here, we introduce our definition of a data availability sampling scheme.
Setting. We consider a scenario in which a party, called the proposer, holds a large piece of data. The
proposer wants to store this data within a network, possibly in a distributed way. For example, this data
could be a block that should be published in a peer-to-peer network running a blockchain. In addition
to the proposer and the network, there are parties with limited resources, which we call (light) clients,
or verifiers. They can only download small headers, which hold information about the corresponding
data, but are not capable of downloading the entire data itself. Still, they want to verify that the data
is available within the network. To do so, light clients can issue queries to the network. Our formal
definition of data availability sampling models such a scenario.
Syntax. We give a schematic overview of our syntax in Figure 1. Suppose the proposer holds a piece
of data data to be distributed. In our syntax, the proposer runs an algorithm Encode with input data
to obtain a commitment com and an encoding π of the data. We assume that every party downloads
com. For example, we may think of com to be part of a block header. We do not explicitly model how π
is being stored. As our security notions treat π as being fully controlled by the adversary, this means
any way of storing π is covered. For example, we may think of π as being stored in a distributed way on
nodes within a network. We model clients by two algorithms V1 and V2, where V1 can probabilistically
query positions of the encoding π. The resulting transcript tran, which contains all queries and responses,
is then input into V2, which deterministically outputs 0 (for reject) or 1 (for accept). We split the client
into these two algorithms to talk about (accepting) transcripts explicitly. Finally, we define an algorithm
Ext that extracts the original data data from enough of these transcripts. The idea is that clients share
their transcripts with others and, once a party has enough transcripts, it can run Ext to get data.
Properties. Having defined the syntax of a data availability sampling scheme, we now turn to the
properties these algorithms should satisfy. Clearly, we need a completeness definition. As usual, this
definition states that everything works as expected, given that all algorithms are executed honestly. In
our concrete case, this means that if some data data is encoded honestly, then all clients will accept, and
Ext outputs data when run on enough transcripts.

Of course, we need to include security definitions for the case of malicious behavior. On a high level,
we want light clients to verify that data is available. Informally, this means that if they accept, then

6

data should be available. We capture this formally in our definition of soundness. To understand this
definition, we need to make the concept of data being available more precise. We do this using the
extraction algorithm Ext that we defined. Namely, we think of data as being available if Ext can extract
something, and does not output ⊥. With this in mind, soundness means that if enough clients accept,
then Ext can extract something from their transcripts. Notably, we have to define this in the presence of
a malicious encoding π that is fully controlled by an adversary. The adversary can thus schedule the
queries that the clients issue, and it can answer these queries adaptively. This also shows why we require
that enough clients accept, and not only that one client accepts. An adversary could, for example, answer
the queries of one client honestly and not respond anything to any of the other clients. Clearly, there is
no hope to extract anything from only one accepting transcript, as it is shorter than the data.

The definitions of completeness and soundness alone are not meaningful by themselves yet, since Ext
could just output some default value when it fails to reconstruct. This is clearly not what we want. Also
note that in applications of data availability, clients may want to pool together their transcripts to run
Ext to recover the encoded data. In this case, it is essential that we always recover the same data, no
matter where the transcripts come from. We capture this wish by defining consistency. This notion
means that whenever Ext is run twice on two (possibly intersecting) sets of transcripts and the same
commitment com, and it outputs data1 6= ⊥ and data2 6= ⊥, respectively, then data1 = data2, i.e., the
extracted data is consistent. In other words, the data availability sampling scheme bootstraps consensus
on the commitment com to consensus on data. Furthermore, it should be noted that for our consistency
notion we let the adversary output the transcripts, which makes it very strong and flexible. We are now
ready to present the complete formal definition.

Definition 1 (Data Availability Sampling Scheme). A data availability sampling scheme (DAS) with
data alphabet Γ, encoding alphabet Σ, data length K ∈ N, encoding length N ∈ N, query complexity
Q ∈ N, and threshold T ∈ N is a tuple DAS = (Setup,Encode,V,Ext) of algorithms with the following
syntax:

• Setup(1λ)→ par is a PPT algorithm that takes as input the security parameter, and outputs system
parameters par. All algorithms get par implicitly as input.

• Encode(data) → (π, com) is a deterministic polynomial time algorithm that takes as input data
data ∈ ΓK and outputs an encoding π ∈ ΣN and a commitment com.

• V = (V1,V2) is a pair of algorithms, where

– Vπ,Q1 (com)→ tran is a PPT algorithm that has Q-time oracle access to an encoding π ∈ ΣN ,
gets as input a commitment com, and outputs a transcript tran, containing the Q queries to π
and the respective responses.

– V2(com, tran)→ b is a deterministic polynomial time algorithm that takes as input a transcript
tran, and outputs a bit b ∈ {0, 1}.

• Ext(com, tran1, . . . , tran`) → data/⊥ is a deterministic polynomial time algorithm that takes as
input a commitment com, a list of transcripts trani, and outputs data data ∈ ΓK or an abort symbol
⊥.

We require that the following properties are satisfied:

• Completeness. For any par ∈ Setup(1λ) and any integer ` = poly(λ) with ` ≥ T , and all data ∈ ΓK ,
we have

Pr

 ∀i ∈ [`] : bi = 1 ∧ data′ = data

∣∣∣∣∣∣∣∣
(π, com) := Encode(data),
∀i ∈ [`] : trani ← Vπ,Q1 (com),
bi := V2(com, trani),

data′ := Ext(com, tran1, . . . , tran`)

 ≥ 1− negl(λ).

• Soundness. For any stateful PPT algorithm A and any integer ` = poly(λ) with ` ≥ T , the

7

following advantage is negligible:

Advsound
A,`,DAS(λ) := Pr

 ∀i ∈ [`] : bi = 1 ∧ data′ = ⊥

∣∣∣∣∣∣∣∣
par← Setup(1λ), com← A(par),
(trani)`i=1 ← Interact [V1,A]Q,` (com),
∀i ∈ [`] : bi := V2(com, trani),
data′ := Ext(com, tran1, . . . , tran`)

 .
• Consistency. For any PPT algorithm A and any `1, `2 = poly(λ), the following advantage is

negligible:

Advcons
A,`1,`2,DAS(λ) := Pr

 data1 6= ⊥
∧ data2 6= ⊥
∧ data1 6= data2

∣∣∣∣∣∣∣∣
par← Setup(1λ),
(com, (tran1,i)`1

i=1 , (tran2,i)`2
i=1)← A(par),

data1 := Ext(com, tran1,1, . . . , tran1,`1),
data2 := Ext(com, tran2,1, . . . , tran2,`2)

 .
Discussion. We want to highlight a few aspects of our definition. First, note that we require Encode
to be deterministic. At a first glance, this may seem to be too restrictive, as encoding could make use
complex cryptographic tools, e.g., a (succinct) non-interactive argument [BFM88, Kil92, Gro16]. However,
observe that in the context of data availability sampling, we do not require any privacy properties, e.g.,
zero-knowledge, from these tools. If any, we require their correctness and soundness properties, which hold
even if the randomnes is fixed, i.e., we make these schemes deterministic. Second, one could wonder why
we do not require that re-encoding data leads to the same commitment com in our soundness definition.
Here, we observe that this is not satisfied by natural constructions based on perfectly-hiding commitments
in style of [Ped92, KZG10]. Namely, an adversary could run (π, com) := Encode(data), rerandomize com
(and adjust π if needed), and then behave honestly. Third, we emphasize that our definition of soundness
and consistency allows the adversary to be fully adaptive. That is, the adversary can schedule the queries
of clients and answer them in an adaptive way. This is much stronger than what is present in the informal
security goals stated by previous works, where the adversary first decides which parts of the encoding
should be available, and then clients start probing. We believe that such strong adaptive security notions
are more appropriate for real-world settings, where independent verifiers asynchronously query parts of
an encoding that is stored in a distributed fashion among multiple possibly malicious nodes.
Efficiency Measures. When constructing data availability sampling schemes, there are several properties
we aim to optimize. It is of primary interest to minimize the computational and communication
complexity of clients. In particular, we would like to minimize the the computational complexity of
V, the communication complexity logN + maxs∈Σ |s| per query5, and the size of commitments |com|.
Additionally we would also like to minimize the encoding size |π| and the computational complexity of
Encode, i.e., the effort of the parties encoding the data and storing the encoding. Lastly, we want to
minimize the number T of transcripts that are needed to reconstruct the data. The smaller the number T ,
the more “meaningful” is each verifier’s transcript, when it comes to establishing the availability of some
data. Note that minimizing T and the query complexity per client Q at the same time also minimizes the
total communication complexity that is needed to reconstruct the data.
Strawman Solutions. At first sight, it may seem easy to construct DAS schemes. Let us discuss a
few natural, but failing attempts. Firstly, we can easily achieve query complexity Q = 1 and threshold
T = 1 by setting Σ := ΓK , i.e., by considering the full data as a single symbol and letting every client
download it in full. Obviously, this solution has a terrible communication complexity per client query.
Alternatively, one can also make this communication complexity small by storing the whole data as part of
the commitment com, which would be equally undesirable. A slightly more intelligent approach may be to
store the root of a Merkle tree [Mer88], computed over the data, as the commitment and let the verifiers
query random leaves in the tree. This solution has a small commitment size and a small communication
complexity per query, but the required number of transcripts T for reconstructing the data with high
probability would be very large (cf. Example 5). Intuitively, T being very large corresponds to each
client individually not really being very much convinced about the availability of the full data. Lastly,
one could try and use ideas from the proofs of retrievability literature and first encode the data with
an erasure code, before computing a Merkle tree over the symbols of the code. Note however, that the

5One needs log N bits upload for the query (to specify which position) and maxs∈Σ |s| bits download for the response.

8

encoding may be done in a malicious way. For instance, the first half of the leaves could correspond to
the first half of a valid codeword encoding data, whereas the second half of the leaves could correspond
to the second half of a codeword encoding data′ with data 6= data′, which would allow an adversary to
violate the consistency requirement. To prevent this attack, one would need to pick a large value for Q,
which would then render the solution inefficient.
Subset-Soundness. We imagine that clients send the transcripts of their interaction to the network.
Then any node that collects enough of these transcripts should be able to reconstruct data from these
transcripts, according to soundness. However, under the realistic assumption that an adversary controls
parts of the network, it may adaptively drop some of the transcripts after seeing them. We extend our
basic soundness definition to cover this attack scenario, and call the resulting notion subset-soundness. In
this notion, we run the basic soundness experiment, but additionally let the adversary select a subset
of the transcripts from which we try to reconstruct data. In other words, we let the adversary drop a
limited number of transcripts of its choice. After defining subset-soundness, we show that it is implied by
standard soundness for certain parameter ranges.

Definition 2 (Subset-Soundness). Let DAS = (Setup,Encode,V = (V1,V2),Ext) be a data availability
sampling scheme. We say that DAS satisfies (L, `)-subset-soundness, if for any stateful PPT algorithm A,
the following advantage is negligible:

Advsub-sound
A,L,`,DAS(λ) := Pr

 ∀j ∈ [`] : bij = 1 ∧ data′ = ⊥

∣∣∣∣∣∣∣∣∣∣
par← Setup(1λ), com← A(par),
(trani)Li=1 ← Interact [V1,A]Q,L (com)
∀i ∈ [L] : bi := V2(trani),
(ij)`j=1 ← A(tran1, . . . , tranL),
data′ := Ext(com, trani1 , . . . , trani`)

 .
Lemma 1. Let DAS = (Setup,Encode,V = (V1,V2),Ext) be a data availability sampling scheme with
threshold T ∈ N, and let L, ` ∈ N be such that

(
L
`

)
≤ poly(λ) and ` ≥ T . Then, DAS satisfies (L, `)-subset-

soundness. More specifically, for any stateful PPT algorithm A, there is a stateful PPT algorithm B with
T(B) ≈ T(A) and

Advsub-sound
A,L,`,DAS(λ) ≤

(
L

`

)
· Advsound

A,`,DAS(λ).

Proof. The proof is trivial via a guessing argument, i.e. the reduction B simply guesses the subset that
will be chosen by A.

Necessity of Assumptions. Naturally, one can ask whether it is possible to construct a (non-trivial)
data availability sampling scheme satisfying our notions. Throughout this work, we will show several
constructions and therefore show that it is possible. However, all constructions rely on computational
assumptions or idealized models, e.g., the random oracle model. Again, one can ask whether this is
necessary, or whether one can construct data availability sampling schemes without any cryptographic
assumption. The result is negative: we show that any non-trivial scheme, i.e where the commitment is
smaller than the data, implies a collision-resistant hash function. The hash function is induced by the
mapping from data to com via algorithm Encode. We formally show this in Appendix C.1.

3.2 Extensions
Here, we informally introduce two extensions of our basic definition of data availability sampling schemes.
We postpone a formal definition to Appendices C.2 and C.3.
Repairability. Ideally, a data availability sampling scheme allows to reconstruct data even if small parts
of the encoding are broken or lost. In this case, it is natural to ask whether one can return from such a
damaged state to a stable state by repairing the encoding. More precisely, we would like to have a way to
recover an encoding from a set of transcripts with which we can continue as if it was the original encoding.
Importantly, it should work with the original commitment. This enables a transparent repair on the fly
without notifying every party about the change, and without updating the commitment. For example,
one problem when changing the commitment is that we would have to convince every party that the new
commitment commits to the same data as the old one. We define an extension of data availability with

9

such a repairability feature by requiring the existence of an algorithm Repair. On input a commitment
com and a set of transcripts, Repair outputs a new encoding π̄. Informally, we expect π̄ to be compatible
with the commitment com, and function as the original encoding, assuming that Repair obtained enough
accepting transcripts. We make this formal by introducing the notion of repair liveness. In this notion,
we let an adversary output a com and interact with clients as in the subset-soundness notion, i.e., clients
query an encoding provided adaptively by the adversary. Then, we repair from a subset of the resulting
transcripts by running algorithm Repair. Finally, we expect that all clients accept when querying this
repaired encoding with com as input. If this does not hold, the adversary breaks repair liveness.

Example 1 (Accountability for Trivial Repairability). If we were to naively implement repairability, we
would extract the data from a sufficient number of transcripts and recompute an encoding. Note that
this approach will not work in general, because there is no guarantee that the new encoding is compatible
with the old commitment. Especially, an adversary might be able to compute a functioning pair of
commitment and encoding different from an honestly computed pair for some data. However, when this
trivial approach fails, it produces a certificate that the original commitment was computed incorrectly.
Namely, by having the proposer sign the commitment, a set of transcripts from which reconstruction is
possible but the re-encoding of the data does not yield the original commitment forms a publicly verifiable
certificate that the original encoding and commitment was not computed honestly. This observation
has possible applications in scenarios where fallback to the trivial data availability scheme is feasible.
For example, in cryptocurrency applications, the full data can be posted on the chain to repair and the
malicious encoders deposit can be forfeited to cover the cost of posting the full data.

Local Accessibility. A natural question to ask is whether one needs to reconstruct the entire data,
even if one is only interested in small parts of it. Concretely, say a client is interested in learning the
ith symbol of the encoded data. We enhance our basic definition of data availability sampling schemes
with such a local accessibility feature by introducing an algorithm Access. Roughly, it recovers a specific
symbol of the encoded data by querying the encoding. Namely, it gets as input a commitment com and
an index i ∈ [K], has oracle access to an encoding, and outputs a symbol d, which should be understood
as being the ith symbol of the encoded data data. Crucially, we need to ensure that this new way of
obtaining (parts of) the data does not introduce inconsistencies. Thus, we introduce the notion of local
access consistency, which states that whatever Access outputs is consistent with data extracted using a
set of transcripts. More precisely, for any index i ∈ [K], we let the adversary output a commitment com
and a set of transcripts. Then, we run Access on input com, i to obtain a symbol d. The queries of Access
are answered by the adversary. Further, we run the extractor Ext on input com and the set of transcripts
to extract data data. We require that d is the ith symbol of data, given that both are not ⊥.

Example 2 (Trivial Local Accessibility). There is a simple way to make every data availability sampling
scheme locally accessible. Namely, every data availability sampling scheme with query complexity Q ∈ N
and threshold T ∈ N is locally accessible with query complexity L = QT , i.e., Access makes QT queries
to access one symbol of the data. This is because Access can simply run T clients internally and then
extract from the resulting transcripts. The clear drawback of this trivial approach is that Access has a
huge query complexity. Ideally, we aim for a way that lets us access any symbol with query complexity
significantly smaller than QT , e.g., only with one query.

4 Overview of Constructions
In this section, we give an overview of our constructions of data availability sampling. We first introduce a
generic framework of constructing data availability sampling from erasure codes and associated commitment
schemes with suitable properties (Section 6). Equipped with this framework, we then focus on constructing
such commitment schemes for several erasure codes (Sections 7 to 9). Finally, we compare instantiations
of these constructions in terms of efficiency (Section 10). In this overview, we explain our framework and
the constructions.

4.1 From Codes and Commitments to Data Availability
We construct data availability schemes by the introducing the new notion we call erasure code commitments.
In the following, we first explain what erasure code commitments are. Then, we explain how to turn

10

them into data availability sampling schemes.
Erasure Code Commitments. Erasure code commitments are binding vector commitments with
the additional property that any set of openings produced by a computationally bounded adversary is
consistent with at least one codeword from the erasure code. We call this additional notion code-binding.
The existing notion of polynomial commitments is a special case for the Reed-Solomon code, although
we do not require extraction of the commitment which is often required in applications of polynomial
commitments, nor do we require hiding. Similarly vector commitments are erasure code commitments for
the trivial erasure code, mapping every message to itself. In Section 6.1, we formally define erasure code
commitments. Additionally, we also define a variety of additional security notions for these commitments
and study their relations. We are confident in the usefulness of this natural generalization of polynomial
commitments beyond data availability schemes.
Data Availability from Erasure Code Commitments. From erasure code commitments we follow
an intuitive avenue to arrive at a data availability scheme:

• Encoding. The encoding algorithm Encode(data) first applies the erasure code to data obtaining
a codeword, and then commits to the codeword using an erasure code commitment, which forms
the data availability commitment com. The resulting encoding π consists of the symbols of the
codeword and their corresponding openings of com.

• Clients. The first part of the client Vπ,Q1 (com) relies on a randomized index sampler which returns
a set of indices in the codeword. The client V1 then queries the provided indexes of π, the list of
responses forms the tran. The second part of the client V2(com, tran) verifies all the erasure code
commitment openings obtained by V1 against com.

• Extraction. Given enough accepting transcripts, one can then extract the encoded data (i.e., run
algorithm Ext), assuming the transcripts contain sufficiently many of the symbols of the codeword.

The details on our compiler from erasure code commitments to data availability sampling are given
in Section 6.3. It is clear that the parameters of the data availability sampling scheme depend on the
parameters of the erasure code. In addition, the choice of the index sampler (e.g., sampling uniformly
with replacement or without replacement) influences how many transcripts we need to collect enough
distinct symbols of the codeword with high probability. To capture this, we define the quality of an index
sampler. We study different index samplers and their quality in Section 6.2.

4.2 Constructions of Erasure Code Commitments
When constructing data availability sampling schemes, our framework introduced above allows us to
concentrate on erasure codes, erasure code commitments, and index samplers. Here, we give a brief
overview of our erasure code commitments.
Generic Construction. We show that one can generically construct erasure code commitments for any
erasure code from vector commitments and succinct arguments of knowledge. Namely, this is done by
proving that a vector commitment contains a codeword using a succinct argument of knowledge. The
code commitment consists of the vector commitment and the succinct proof, and the proof is verified by
clients. While this construction is far from being practical in general, it serves as a template for other
constructions. We formally define and analyze this generic construction in Section 7.
Tensor Construction (Ethereum Construction). Ethereum has proposed a data availability scheme
which can be phrased as an erasure code commitment for the tensor code of two Reed-Solomon codes:
The data is arranged into a square k × k matrix, then every row is encoded using a Reed-Solomon code,
yielding a k×n matrix, finally every column is encoded using a Reed-Solomon code yielding a n×n matrix.
A commitment is formed by committing to each column individually using a polynomial commitment
(i.e., a code commitment for the Reed-Solomon code), then checking consistency of the rows by exploiting
the linear homomorphism of the commitment similar to Feldman secret sharing [Fel87]. We provide a
formal description and analysis of this scheme for the tensor code of arbitrary codes in Section 8.
Hash-Based Construction. We provide a new construction for interleaved linear codes from random
oracles, which is partially inspired by the Ligero proximity test [AHIV17]. Encoding and committing is
done as follows: The message is first interpreted as a k × k matrix M ∈ Fk×k over a finite field F. Each

11

row is encoded independently using a linear code C, leading to a k × n matrix X ∈ Fk×n. The columns
are now treated as the symbols of the interleaved code. To commit to such a codeword, the encoder
commits to each column individually by hashing it with a collision-resistant hash function, producing n
hashes h1, . . . , hn. Including these hashes in the commitment already ensures position-binding. To ensure
code-binding, i.e., that openings are always consistent with the code, the hashes are fed into a random
oracle, which returns a challenge vector6 r ∈ Fk. The encoder then computes the linear combination
w = r>X of the rows and includes w in the commitment. Note that the resulting w always forms a
codeword in the code C, which is checked by the clients as we will describe below. For any fixed set
I ⊆ [n] of positions that an adversary may now open inconsistently with the code, we could in principle
argue that the verification only passes with negligible probability. However, in the notion of code-binding,
the adversary is allowed to freely choose this set I ⊆ [n]. It turns out that, if the committed X is far
from the code, then we need a too wasteful union bound over the different choices of I. To solve this
issue, we need to add a proximity test: Using another random oracle, a random set of indices J ⊆ [n] is
determined, and the encoder has to add the columns {Xj}j∈J to the commitment. The encoding π is
simply the codeword X of the interleaved code. To be explicit, a coordinate Xj of the encoding is verified
by checking wj = r>Xj and hj = H(Xj). In addition, the openings in J are checked in a similar manner
and it is verified that w is in the code C. An advantage of this scheme is that we can implement it over
small fields for computational efficiency, and the very small opening overhead. Namely, the opening proof
of a position is simply the symbol itself. On the other hand, the commitment is large, both concretely
and asymptotically. We present the construction in detail in Section 9.1.
Construction from Homomorphic Hashing. The hash-based construction for interleaved codes
can be optimized by relying on linearly homomorphic hashes, which improves both the concrete and
asymptotic size of the commitment. The description of this construction is provided in Section 9.2.

5 Background on Coding Theory
In this section, we discuss background about coding theory. We introduce notation, definitions, and
basic facts about some specific codes. Looking ahead, we will show how codes relate to data availability
sampling in subsequent sections.

5.1 Codes and Distance
We will now introduce codes and their properties. Informally, a code allows to deterministically encode a
message over some alphabet Γ into a codeword over some alphabet Λ.
Erasure Codes. An erasure code has the additional property that any t symbols of the codeword are
sufficient to reconstruct the message, for some t ∈ N. The parameter t is called the reception efficiency of
the code. In this work, we only consider erasure codes. Before we give the formal definition, we highlight
that throughout the paper, we assume that the encoding and the reconstruction algorithm are efficiently
computable. To make this assumption formal, we would have to talk about families of codes. We opt for
a concise and readable notation instead of doing this.

Definition 3 (Erasure Code). Let k, n, t ∈ N be natural numbers and Γ,Λ be sets. A function C : Γk → Λn
is an erasure code with alphabets Γ,Λ, message length k, code length n, and reception efficiency t, if
there is a deterministic algorithm Reconst, such that for any m ∈ Γk, and any I ⊆ [n] with |I| ≥ t we
have Reconst((m̂i)i∈I) = m for m̂ := C(m). We say that Reconst is the reconstruction algorithm of C, and
assume that Reconst outputs ⊥ if its input is not consistent with any codeword in C or if it gets less than
t symbols as input. For convenience, we sometimes treat an erasure code C as a subset C ⊆ Λn, where we
implicitly mean the image of C, i.e., C(Γk). We may then write x ∈ C to indicate that x is a codeword.

Distance. In coding theory, we are often interested in the distance between words. Naturally, the metric
we consider is the Hamming metric. Concretely, for two strings x, y over the same alphabet and with the
same length L, we define d (x, y) to be the number of positions i ∈ [L] for which xi 6= yi. An important
attribute of a code is its minimum distance, which we define next.

6Depending on the field size, some parallel repetition may be needed.

12

Definition 4 (Minimum Distance). Let C : Γk → Λn be an erasure code. The (absolute) minimum
distance d of C is defined as

d := min
m1 6=m2∈Γk

d (C(m1), C(m2)).

Further, we introduce the notion of column-wise distance of matrices in Λ`×n for some ` ∈ N. This
is just the hamming distance when the matrices are treated as strings over Λ`, i.e., every column is
interpreted as a symbol. To make this explicit when needed, we write dcol (X,X′) for two such matrices
X,X′. Moreover, we extend the notion of distance to sets. Concretely, for a set of strings S ⊆ Λ` over
some alphabet Λ and a string x ∈ Λ`, we define d (S, x) = d (x, S) := mins∈S d (s, x). The same can be
done for the column-wise distance. Finally, we highlight an important property of the minimum distance
d. Namely, if C is an erasure code with minimum distance d and d (C, x) ≤ b(d− 1)/2c for some string x,
then there is a unique codeword c ∈ C which is closest to x. We may say that x is within unique decoding
distance of C.

5.2 Special Families of Codes
In this section, we introduce some families of codes that will be of interest for this work.
Systematic Encoding. We say that a code C has a systematic encoding, if the message m is contained in
the codeword C(m). Such a systematic encoding makes it easy to retrieve (parts of) the message from the
codeword. In our context, we will use this property to extend the basic functionality of data availability
sampling with local accessibility. We slightly generalize the standard definition of a systematic encoding.
One reason for this generalization is that messages and codewords are over different alphabets.

Definition 5 (Generalized Systematic Encoding). Let C : Γk → Λn be an erasure code with alphabets
Γ,Λ, message length k, code length n, and reception efficiency t, with reconstruction algorithm Reconst.
We say that C has a generalized systematic encoding, if the following hold:

• There are two deterministic polynomial time algorithms Find and Proj, such that for any m ∈ Γk
and m̂ := C(m), and for any i ∈ [k] and î := Find(i), we have Proj(i, m̂î) = mi.

• Let I ⊆ [n] be arbitrary with |I| ≥ t, and let (m̂i)i∈I ∈ Λ|I| be any sequence of symbols in Λ. Let
m := Reconst((m̂i)i∈I), and let I∗ := {i ∈ [k] | Find(i) ∈ I}. Then, for all i ∈ I∗ and î := Find(i) it
should hold that Proj(i, m̂î) = mi.

We say that Proj is the symbol projection algorithm and Find is the symbol finding algorithm of C.

Linear Erasure Codes. If C is a code that is a subspace of some vector space, we call it a linear
erasure code. Alternatively, when viewing the code as an encoding function, it corresponds to an injective
homomorphism of vector spaces. We restrict ourselves to vector spaces of finite size in this work.

Definition 6 (Linear Erasure Codes). Let F be a finite field, possibly implicitly parameterized by the
security parameter. A linear erasure code over F is an erasure code C : Fk → Fn, such that C is an injective
homomorphism from the vector spaces Fk to the vector space Fn over F.

Let us discuss some important properties of linear erasure codes. Linear erasure codes can be specified
by one of two matrices. Namely, if C : Fk → Fn is a linear erasure code, then there is a generator matrix
G ∈ Fn×k with full rank such that for all m ∈ Fk we have C(m) = Gm. Additionally, there is a
parity-check matrix H ∈ F(n−k)×n such that C is exactly the kernel of H. We also have HG = 0.
MDS Codes. The well-known singleton bound states that for linear7 erasure codes C : Fk → Fn with
minimum distance d we have d ≤ n − k + 1. An MDS (maximum distance separable) code is a linear
erasure code that satisfies the singleton bound with equality.

Definition 7 (MDS Code). Let C : Fk → Fn be a linear erasure code over field F, and let d denote its
minimum distance. Then, C is called an MDS code, if d = n− k + 1.

7The singleton bound can also be stated for arbitrary codes, but we do not need that in our work.

13

MDS codes have several interesting properties. Most importantly for us, every set of n− k columns
of the parity-check matrix forms an invertible matrix. Further, one can show that for any k symbols
xi1 , . . . , xik there is a unique codeword x ∈ C such that the ijth symbol of x is xij for all j ∈ [n]. That is,
every k symbols are consistent with the code. To see this, note that the function that maps messages to
the symbols of the codeword at positions i1, . . . , ik is injective and thus surjective.
Reed-Solomon Codes. One of the most widely used MDS codes is the Reed-Solomon code. Roughly, it
corresponds to evaluations of polynomials. More precisely, given an (ordered) set E = {e1, . . . , en} ⊆ F of
size n, the Reed-Solomon code for message length k works as follows. To encode a given message m ∈ Fk,
interpret m as a degree k − 1 polynomial f over F. This can be done in various ways. For example, if a
systematic encoding is needed, one can interpolate f such that it satisfies f(ei) = mi for all i ∈ [k]. Next,
f is evaluated at all points in E, leading to the codeword c = (f(e1), . . . , f(en))>. As said, Reed-Solomon
codes are MDS codes, meaning that their minimum distance is n− k + 1. Throughout this work, we will
denote the Reed-Solomon code as defined above by RS[k, n,F], where we leave the set E implicit.
Interleaved Codes. Let C : Γk → Λn be an erasure code with alphabets Γ,Λ, message length k, code
length n, and reception efficiency t. Given C, we construct a new code C≡` : Γ`k → Λ′n as follows, where
Λ′ := Λ`. To encode a message m ∈ Γ`k, write it as m = (m(1), . . . ,m(`)), where m(i) ∈ Γk for each
i ∈ [`]. Then, for each i ∈ [`], compute m̂(i) := C(m(i)). Now, for each j ∈ [n], the jth symbol of the
codeword m̂ is m̂j := (m̂(1)

j , . . . , m̂
(`)
j). It is easy to see that if C has reception efficiency t and minimum

distance d, then C≡` also has reception efficiency t and minimum distance d. The code C≡` that we just
constructed is sometimes called interleaved code. We note that sometimes the interleaved code is defined
with codewords of length `n over alphabet Λ. For us, it will be better to treat the codeword as a string
of length n over alphabet Λ`. This is also done in [CDD+16].
Linear Interleaved Codes. Starting with a linear erasure code C : Fk → Fn, the interleaved code
C≡` : F`k → (F`)n can be written in a more concise way. For that, let G ∈ Fn×k be the generator matrix
of C. To encode a message m ∈ F`k using C≡`, m is first written as a matrix M ∈ F`×k in an arbitrary
canonical way. Then, each row is encoded with G. That is, we compute X := MG> ∈ F`×n. Finally, the
columns of X are interpreted as the symbols of the resulting codeword.
Tensor Codes. Given two codes Cr and Cc, with message lengths kr, kc, respectively, one can write the
message as a kc × kr matrix. Then, one can encode the message by encoding rows with Cr and columns
with Cr. This is called the tensor code8 of Cr and Cc. More concretely, assume two linear erasure codes
Cr : Fkr → Fnr and Cc : Fkc → Fnc over the same field F. Let tr, tc denote their respective reception
efficiencies, and Gr ∈ Fnr×kr and Gc ∈ Fnc×kc denote their respective generator matrices. The tensor
code of Cr and Cc is Cr ⊗ Cc : Fkr·kc → Fnr·nc , which works as follows. To encode a message m ∈ Fkr·kc ,
write m as a matrix M ∈ Fkc×kr in some fixed canonical way. Then, compute X := GcMG>r ∈ Fnc×nr .
Finally, flatten X into a vector x ∈ Fncnr , which is the codeword. To ease notation, for each j′ ∈ [ncnr],
we will write (i, j) := ToMatIdx(j′) to indicate the unique pair of indices i ∈ [nc], j ∈ [nr] such that
xj′ = Xi,j . One can show that the tensor code is also a linear code. Next, we give a bound on the
reception efficiency of the tensor code. In Appendix D, we show that the reception efficiency of Cr ⊗Cc as
above is ncnr − (nc − tc + 1)(nr − tr + 1) + 1. For instance, consider a code C : Fk → F2k with reception
efficiency k. Then, the reception efficiency of C ⊗ C is 3k2 − 2k.

6 From Codes and Commitments to Data Availability Sampling
In this section, we show how to generically construct a data availability sampling scheme from a special class
of commitments for codes. Namely, we abstract existing constructions that use vector commitments, and
polynomial commitments, or similar structured commitments. First, we formally define the commitments
that we consider. In a second step, we introduce and analyze index samplers as the combinatorial core
component of the final data availability sampling scheme. Third, we present and analyze our generic
construction of data availability sampling from any such commitment and any such index sampler.

8Sometimes the tensor code is also called the product code.

14

Extractability
(Definition 24)

Comp. Uniqueness
(Definition 23)

Code-Binding
(Definition 10)

Reconstruction-Binding
(Definition 11)

Message-Bound Openings
(Definition 22)

Consistency of DASSoundness of DASRepair Liveness of DAS

Lemma 29 Lemma 2

Lemma 9

Lemma 12

Lemma 10

Lemma 27

Lemma 28

Lemma 30

Figure 2: Overview of the different security properties we define for erasure code commitments, how they
relate to each other, and how they relate to the security of the resulting data availability sampling scheme.
An arrow denotes an implication. A dashed arrow denotes an implication that holds if additionally
position-binding is assumed. For the implication from computational uniqueness to code-binding (double
dashed), we additionally assume position-binding and that the code is an MDS code.

6.1 Erasure Code Commitments
We introduce erasure code commitments as a generalization of vector commitments and polynomial
commitments. Roughly, we can use such a commitment to commit to a codeword of an erasure code.
One can view a vector commitment as an erasure code commitment for the identity code, and polynomial
commitment as an erasure code commitment for the Reed-Solomon code.
Syntax. The next definition introduces the syntax of erasure code commitments.

Definition 8 (Erasure Code Commitment Scheme). Consider an erasure code C : Γk → Λn with alphabets
Γ,Λ, message length k, code length n, reception efficiency t, and reconstruction algorithm Reconst. An
erasure code commitment scheme for C with opening alphabet Ξ is a tuple CC = (Setup,Com,Open,Ver)
of PPT algorithms, with the following syntax:

• Setup(1λ)→ ck takes as input the security parameter and outputs a commitment key ck.

• Com(ck,m)→ (com, St) takes as input a commitment key ck and a string m ∈ Γk, and outputs a
commitment com and a state St.

• Open(ck, St, i) → τ takes as input a commitment key ck, a state St, and an index i ∈ [n], and
outputs an opening τ ∈ Ξ.

• Ver(ck, com, i, m̂i, τ)→ b is deterministic, takes as input a commitment key ck, a commitment com,
and index i ∈ [n], a symbol m̂i ∈ Λ, and an opening τ ∈ Ξ, and outputs a bit b ∈ {0, 1}.

Further, we require that the following completeness property holds: For every ck ∈ Setup(1λ), every
m ∈ Γk, and every i ∈ [n], we have

Pr

Ver(ck, com, i, m̂i, τ) = 1

∣∣∣∣∣∣
(com, St)← Com(ck,m),
m̂ := C(m),
τ ← Open(ck, St, i)

 ≥ 1− negl(λ).

Now that we have specified the syntax of erasure code commitment schemes, we turn to the security
properties they should have. We define a variety of such properties, most importantliy position-binding
and code-binding. Later, we will see how these properties imply the security of the resulting data
availability sampling scheme. We summarize the relations between these properties in Figure 2.
Binding Notions. The first notion we define is position-binding, which is analogous to the position-
binding notion for vector commitments. The intuition of position-binding is that no efficient adversary
can open a commitment to two different values at the same position.

Definition 9 (Position-Binding of CC). Let CC = (Setup,Com,Open,Ver) be an erasure code commitment
scheme for an erasure code C. We say that CC is position-binding, if for every PPT algorithm A, the

15

following advantage is negligible:

Advpos-bind
A,CC (λ) := Pr

 m̂ 6= m̂′

∧ Ver(ck, com, i, m̂, τ) = 1
∧ Ver(ck, com, i, m̂′, τ ′) = 1

∣∣∣∣∣∣ ck← Setup(1λ),
(com, i, m̂, τ, m̂′, τ ′)← A(ck)

 .
Requiring only position-binding, we could easily implement an erasure code commitment by committing

to a codeword using a standard vector commitment. However, one should only be able commit to codewords.
For that, we define code-binding. Roughly, it requires that an adversary can not open a commitment on a
set of positions in a way that is inconsistent with the code.

Definition 10 (Code-Binding of CC). Let CC = (Setup,Com,Open,Ver) be an erasure code commitment
scheme for an erasure code C. We say that CC is code-binding, if for every PPT algorithm A, the following
advantage is negligible:

Advcode-bind
A,CC (λ) := Pr

[
¬
(
∃c ∈ C(Γk) : ∀i ∈ I : ci = m̂i

)
∧ ∀i ∈ I : Ver(ck, com, i, m̂i, τi) = 1

∣∣∣∣ ck← Setup(1λ),
(com, (m̂i, τi)i∈I)← A(ck)

]
.

We introduce a third binding notion called reconstruction-binding. When we want to use erasure code
commitments in the context of data availability sampling schemes, reconstruction-binding, as defined
next, is a natural requirement. Namely, it will ensure that extracting from two sets of transcripts leads
to consistent results. In other words, reconstruction-binding states that one can not provide two sets
of openings for the same commitment, such that reconstructing from these sets leads to inconsistent
messages. After giving the formal definition of reconstruction-binding, we show that it is implied by
position-binding and code-binding. Later, we show that it implies the consistency property of our data
availability sampling scheme.

Definition 11 (Reconstruction-Binding of CC). Let CC = (Setup,Com,Open,Ver) be an erasure code
commitment scheme for an erasure code C with reception efficiency t and reconstruction algorithm Reconst.
We say that CC is reconstruction-binding, if for every PPT algorithm A, the following advantage is
negligible:

Advrec-bind
A,CC (λ) := Pr

|I| ≥ t ∧ |I ′| ≥ t ∧ ⊥ /∈ {m,m′}

∧ ∀i ∈ I : Ver(ck, com, i, m̂i, τi) = 1
∧ ∀i ∈ I ′ : Ver(ck, com, i, m̂′i, τ ′i) = 1
∧ m 6= m′

∣∣∣∣∣∣∣∣∣∣
ck← Setup(1λ),
(com, (m̂i, τi)i∈I , (m̂′i, τ ′i)i∈I′)

← A(ck),
m := Reconst((m̂i)i∈I),
m′ := Reconst((m̂′i)i∈I′)

 .

Lemma 2. Let CC = (Setup,Com,Open,Ver) be an erasure code commitment scheme for an erasure code
C. If CC is position-binding and code-binding, then CC is reconstruction-binding. Precisely, for any PPT
algorithm A, there are PPT algorithms B1,B2 with T(B1) ≈ T(A), T(B2) ≈ T(A), and

Advrec-bind
A,CC (λ) ≤ Advpos-bind

B1,CC (λ) + Advcode-bind
B2,CC (λ).

The proof of Lemma 2 is given in Appendix F.1.
Other Notions. We introduce further security notions for erasure code commitments. As indicated
by Figure 2, these notions are not directly necessary if we want to construct data availability sampling
schemes satisfying our basic definition in Section 3.1. However, they turn out to be useful for two reasons.
First, these notions are necessary if we want to construct repairable data availability sampling schemes.
Second, some of these notions are stronger than others and help us to avoid repeating parts of our analysis.

The first of these additional notions is a strong notion called extractability. Intuitively, a (deterministic)
erasure code commitment is extractable, if there is an efficient algorithm Ext that can extract a message m
from any commitment com output by an adversary, as long as the adversary provides at least one opening.
When committing to the extracted message m, one obtains com. This typically requires the use of the
algebraic group model. We formally define the notion of extractability and study it in Appendix E.3.

16

A second property we consider is called message-bound openings. This property turns out to be useful
for repairability. Intuitively, we want to repair an encoding from a set of transcripts by first reconstructing
the data, and then re-encoding this data. The challenge is that the new encoding has to be compatible
with the old commitment that an adversary made up. Our notion of message-bound openings ensures
this. Namely, it requires that it is hard for an adversary to come up with two commitments for the same
message and enough valid openings that can not be arbitrarily “mixed-and-matched”. We postpone the
formal definition to Appendix E.1.

A final notion we introduce and study is computational uniqueness. The notion is almost as the notion
of message-bound openings, but just requires the adversary to output two distinct commitments. In
other words, if a scheme is computationally unique, it means that whenever an adversary can open two
commitments to codewords that reconstruct to the same message, then the commitments are the same.
In Appendix E.2, we give the formal definition and show that this notion is strong enough to imply both
code-binding and message-bound openings.
Simple Examples. Before finishing this section, we mention simple examples of erasure code commit-
ments. These examples also shed light on how erasure code commitments relate to other commitment
schemes.

Example 3 (Vector Commitments). We can view any vector commitment [Mer88, CF13] for vectors in Γk
as being an erasure code commitment for the code C : Γk → Γk with x 7→ x for all x ∈ Γk. In this case,
code-binding holds trivially and position-binding is equivalent to the definition of position-binding for
vector commitments.

Example 4 (Polynomial Commitments). Polynomial commitments [KZG10] are a special case of erasure
code commitments for the Reed-Solomon code. Our notion of position-binding matches the definition of
position-binding for polynomial commitment schemes in [KZG10]. Interestingly, [KZG10] does not define
a notion matching code-binding. That is, there is no notion in [KZG10] stating that an adversary can
not open a commitment to points which are not on a polynomial of appropriate degree. It is easy to see
that the KZG polynomial commitment scheme [KZG10] satisfies this notion. For that, it is sufficient to
observe that it is extractable in the algebraic group model [FKL18], see Appendix E.3.

6.2 Index Samplers
Our goal is to construct a data availability sampling scheme from any erasure code commitment scheme.
The high level idea is that clients query and verify some positions of the encoding. Every such position
contains a symbol of a codeword and its corresponding opening for the erasure code commitment. Now, a
natural question is how clients sample the indices that they query. We abstract the strategy that the
clients use by defining so called index samplers. An index sampler is just an algorithm that outputs
Q indices in some range [N]. An example of an index sampler is given by sampling uniformly with
replacement, i.e., the index sampler outputs Q indices sampled uniformly at random from [N]. Intuitively,
different index samplers may lead to different guarantees for the resulting data availability sampling
scheme. For example, an index sampler is a good choice if only a few clients with a few samples are
needed to guarantee that at least a certain number of distinct indices (i.e., symbols of the codeword)
from [N] are touched, and thus data can be reconstructed. We make this intuition formal by defining the
quality of an index sampler. This measure will translate to the soundness and completeness error of the
resulting data availability sampling scheme.

Definition 12 (Index Sampler). An index sampler with quality ν : N4 → R is a PPT algorithm Sample
with the following syntax and properties:

• Sample(1Q, 1N)→ (ij)j∈[Q] takes as input integers Q,N ∈ N and outputs Q indices ij ∈ [N].

• For any N,∆ ∈ N with ∆ < N , and any Q, ` ∈ N, we have

Pr
G

 ∣∣∣∣∣∣
⋃
l∈[`]

{il,j | j ∈ [Q]}

∣∣∣∣∣∣ ≤ ∆

 ≤ ν(∆, N,Q, `),

where experiment G is given by running (il,j)j∈[Q] ← Sample(1Q, 1N) for each l ∈ [`].

17

In the context of data availability sampling schemes, the encoding may be distributed over many
physical nodes. Ideally, indices are sampled in a way that minimizes the number of nodes a client has to
query. For that reason, we define a locality measure for index samplers. It is defined as the number of
physical nodes that the index sampler touches.

Definition 13 (Locality of Index Samplers). Let Sample be an index sampler, Q,N,D ∈ N, ε ∈ [0, 1]
with D ≤ Q, and S : [N]→ N be a function. We say that Sample is (Q,N,S, D, ε)-local, if

Pr
G

[|{S(ij) | j ∈ [Q]}| > D] ≤ ε,

where G is given by running (ij)j∈[Q] ← Sample(1Q, 1N).

Of course, every index sampler has optimal locality (i.e. ε = 0,Σ = 1) if the function S is constant, i.e.,
the entire encoding is stored on one physical node. A more natural function S would be S(x) = b(x− 1)/Qc,
i.e., each node stores a contiguous part of the encoding of equal size.

Next, we discuss three examples of index samplers. Namely, we consider natural index samplers that
sample all indices uniformly at random, either with replacement or without replacement. Finally, we also
introduce an index sampler that is optimized in terms of locality.
Sampling With Replacement. Sampling with replacement is given via the following algorithm.

• Samplewr(1Q, 1N) : For each j ∈ [Q], sample ij←$ [N]. Return (ij)j∈[Q].

We analyze the quality of algorithm Samplewr that samples indices uniformly at random with replacement.

Lemma 3. Algorithm Samplewr is an index sampler with quality νwr : N4 → R, where

νwr(∆, N,Q, `) =
(
N

∆

)(
∆
N

)Q`
.

In particular, Samplewr is an index sampler with quality ν′wr : N4 → R, where

ν′wr(∆, N,Q, `) = cQ`−(1−logc(e))∆ for c := ∆/N.

The proof of Lemma 3 is given in Appendix F.2. In Section 6.3, we will see that the quality ν(∆, N,Q, `)
of an index sampler corresponds to the advantage of an adversary against soundness of the resulting data
availability sampling scheme. Namely, if our data consists of K symbols, and our encoding consists of
N symbols, such that any ∆ + 1 are sufficient to reconstruct the data, then we need to choose Q and `
such that ν(∆, N,Q, `) is negligible in the security parameter λ. To get an intuition for the bound that
Lemma 3 provides, let us consider two examples.

Example 5 (Trivial Encoding). Assume that we do not use any erasure code at all, or in other words, we
use the identity function as an erasure code. In this case, we have K = N and ∆ = K − 1, because we
need all symbols to reconstruct the data. Using the first bound in Lemma 3, we can upper bound the
advantage against soundness by(

N

N − 1

)(
1− 1

N

)Q`
= N

(
1− 1

N

)N Q`
N

≤ 2logNe−
Q`
N = 2logN−log eQ`

N .

This bound is negligible once we set

Q` ≥ Ω(Nλ+N logN) = Ω(Kλ+K logK).

Example 6 (Using Erasure Codes). Assume that we encode the K symbols of data with an erasure code
into N = 2K symbols, such that any K of these are sufficient to reconstruct the data. For example,
we could use a Reed-Solomon code and a polynomial commitment to realize this. We can now use the
second bound in Lemma 3 with c = ∆/N < 1/2. This yields an upper bound on the advantage against
soundness of 2−Q`+(1−log1/2 e)(K−1) ≤ 2−Q`+3K . The bound is negligible once we set

Q` ≥ Ω(K + λ).

18

Now, let us consider the notion of subset-soundness instead. In Lemma 1, we showed that soundness implies
(L, `)-subset-soundness, with a security loss of at most (Le/`)`. Assuming L = C · ` for some constant
C > 1, we get an upper bound on the advantage against (L, `)-subset-soundness of 2`(logC+log e)−Q`+3K .
If Q ≥ logC + log e+ 1, this bound is also negligible once we set Q` ≥ Ω(K + λ).

The two examples demonstrate that using an erasure code results in a significant improvement in terms
of the number of samples we need to reconstruct the data with overwhelming probability. Additionally, the
second example demonstrates a significant difference between soundness and subset-soundness. Namely,
while having ` clients with Q queries per client is equivalent to having 1 client with `Q queries and to
having `Q clients with 1 query in terms of soundness, these three settings are not equivalent in terms of
subset-soundness. Especially, to get subset-soundness, we have to set Q large enough. Intuitively, this is
because the number of transcripts from which the adversary can choose differs in the three settings.

Next, we want to understand the locality of algorithm Samplewr. Intuitively, sampling indices uniformly
at random should lead to a bad locality. The next lemma states exactly that, especially when N or Q−D
is large.

Lemma 4. Let Q,N,D ∈ N, ε ∈ [0, 1] with D ≤ Q, and S : [N]→ N be a Q-to-1 function mapping onto
a set of size N/Q. Then, if Samplewr is (Q,N,S, D, ε)-local, then

ε > 1− eD ·
(

D

N/Q

)Q−D
.

The proof of Lemma 4 is given in Appendix F.2.
Sampling Without Replacement. Sampling without replacement is given by the following algorithm.

• Samplewor(1Q, 1N) : For each j ∈ [Q], sample ij←$ [N] \ {i1, . . . , ij−1}. Return (ij)j∈[Q].

We analyze the quality of algorithm Samplewor in the following lemma.

Lemma 5. Algorithm Samplewor is an index sampler with quality νwor : N4 → R, where

νwor(∆, N,Q, `) =
(
N

∆

)((
∆
Q

)/(
N

Q

))`
.

The proof of Lemma 5 is given in Appendix F.2.
Segment Sampling. We introduce a third index sampler. The idea is to partition the set [N] into
N/Q segments of size Q. Then, the sampler picks one of the segments at random and queries this entire
segment. The advantage is minimal randomness complexity and the locality of the sampled indices. We
define algorithm Sampleseg as follows:

• Sampleseg(1Q, 1N) : If N mod Q 6= 0, return (ij)j∈[Q] ← Samplewr(1Q, 1N). Otherwise, sample
seg←$ [N/Q]. For each j ∈ [Q], set ij := (seq− 1)Q+ j. Return (ij)j∈[Q].

Next, we analyze the quality and locality of Sampleseg. Intuitively, the analysis of Sampleseg reduces to an
analysis of Samplewr over the segments.

Lemma 6. Assuming algorithm Samplewr is an index sampler with quality νwr : N4 → R, the algorithm
Sampleseg is an index sampler with quality νseg : N4 → R, where

νseg(∆, N,Q, `) =
{
νwr(∆, N,Q, `) if N mod Q 6= 0
νwr(∆/Q,N/Q, 1, `) if N mod Q = 0

.

In particular, Sampleseg is an index sampler with quality ν′seg : N4 → R, where

ν′seg(∆, N,Q, `) =
{
cQ`−(1−logc(e))∆ if N mod Q 6= 0
c`−(1−logc(e))∆/Q if N mod Q = 0

for c := ∆/N .

19

The proof of Lemma 6 is given in Appendix F.2.

Lemma 7. Let Q,N ∈ N be such that Q divides N . Consider S : [N] → N with S(x) = b(x− 1)/Qc.
Then, Sampleseg is (Q,N,S, 1, 0)-local.

Lemma 7 follows trivially by inspection.
Simulation. The analytical results in this section heavily rely on the use of probabilistic bounds, e.g.,
the union bound or the Chernoff bound. One may ask whether more precise results can be obtained by
other means. To this end, we simulated the three index samplers discussed in this section and compared
their quality. We present and discuss our results in Appendix J.

6.3 Construction of Data Availability Sampling Schemes
Now that we have introduced erasure code commitments and index samplers, we come to the main
construction of this section. Namely, we show how to construct a data availability sampling scheme
from any erasure code commitment scheme and any index sampler. If the erasure code has a generalized
systematic encoding, the resulting data availability sampling scheme is locally accessible with optimal
query complexity L = 1.
Overview. We start with an erasure code C with reception efficiency t and an erasure code commitment
scheme CC for it. In the data availability sampling scheme, a proposer encodes the data data by first
applying the code C to it to get a codeword d̂ata = C(data). For consistency, the proposer commits to
this codeword using CC. The resulting commitment com will be given to the clients. In addition to that,
the proposer computes openings τi for all positions i of the codeword. Then, each symbol d̂atai together
with its opening τi forms a symbol πi of the encoding π. Clients are defined in the following way: First,
they determine some set of indices i1, . . . , iQ using an index sampler and query these indices, getting
(d̂ataij , τij) as responses. Then, they verify all openings with respect to com, and accept if and only if
they are all valid. To extract data from a given set of transcripts, we first check that all transcripts are
accepting, and that they contain at least t distinct positions of π. If this holds, then we have at least t
distinct positions of the codeword d̂ata and can reconstruct the data.
Construction. Let C : Γk → Λn be an erasure code with alphabets Γ,Λ, message length k, code length
n, and reception efficiency t, with reconstruction algorithm Reconst. Let CC = (Setup,Com,Open,Ver)
be an erasure code commitment scheme for C with opening alphabet Ξ. Further, let Sample be an index
sampler with quality ν. We construct a data availability sampling scheme DAS[CC,Sample] = (Setup,
Encode,V,Ext) with data length K := k, encoding length N := n, data alphabet Γ, encoding alphabet
Σ = Λ × Ξ, query complexity Q ∈ N, and threshold T ∈ N. We emphasize that T and Q have to be
chosen appropriately and depend on n, t, and the quality ν of Sample. We refer to our analysis for a
concrete bound. The construction is as follows.

• Setup(1λ)→ par: Run ck← Setup(1λ) and set par := ck.

• Encode(data)→ (π, com):

1. Run (com, St) := Com(ck, data; ρ) for some hardcoded coins ρ.
2. Compute d̂ata := C(data).
3. For each i ∈ [N], run τi ← Open(ck, St, i), and set πi := (d̂atai, τi).

• Vπ,Q1 (com)→ tran: Run (ij)j∈[Q] ← Sample(1Q, 1N) and query (d̂ataij , τij) := πij for each j ∈ [Q].
Set tran := (ij , d̂ataij , τij)j∈[Q].

• V2(com, tran) → b: If there is a j ∈ [Q] with Ver(ck, com, ij , d̂ataij , τij) = 0, then return b := 0.
Otherwise, return b := 1.

• Ext(com, tran1, . . . , tranL)→ data/⊥:

1. Write tranl := (il,j , d̂atal,il,j
, τl,il,j

)j∈[Q] for each l ∈ [L].
2. If there is an l ∈ [L] such that V2(com, tranl) = 0, return ⊥.

20

3. Let I ⊆ [N] be the set of indices i ∈ [N] such that there is a (l, j) ∈ [L]× [Q] with il,j = i. If
|I| < t, then return ⊥.

4. Otherwise, for each i ∈ I, pick an arbitrary such (l, j) ∈ [L] × [Q] with il,j = i and set
d̂atai := d̂atal,il,j

.

5. Return data := Reconst((d̂atai)i∈I).

Analysis. Next, we analyze the construction given above. Namely, we show completeness, soundness,
and consistency. For analyzing completeness and soundness, we rely on the quality of the index sampler
in combination with the reception efficiency of C. Namely, reception efficiency tells us how many of
the N indices we need to recover the data. Then, the quality of the index sampler gives a bound on
the probability that we did not collect enough indices when we have a certain number of clients with a
certain number of queries. This determines the threshold of the scheme, i.e., the number of clients needed
to make the completeness and soundness error negligible. For soundness, we additionally need to rule
out the case that we collected enough indices, but the responses of the adversary at these indices are
not consistent with the code. For that, we can use code-binding of the commitment scheme. To show
consistency, we rely on reconstruction-binding of the commitment scheme.

Lemma 8. The scheme DAS[CC,Sample] satisfies completeness, if

ν(∆, N,Q, T) ≤ negl(λ), where ∆ := t− 1.

Proof. Let ` = poly(λ), ` ≥ T and data ∈ ΓK as in the definition of completeness. First, by the
completeness of CC, we know that the ` copies of V2 output 1 in the completeness experiment, except
with negligible probability. Thus, it remains to bound the probability of the bad event that Ext outputs
⊥ because not enough indices are covered, i.e. the set I ⊆ [N] of indices i ∈ [N] such that there is a
(l, j) ∈ [L]× [Q] with il,j = i has size strictly less than t. This is equivalent to saying it has size at most
∆. Clearly, if we only consider the first T instead of all ` ≥ T transcripts, the size of this set can not
increase. As the indices are sampled using Sample, one can easily verify that the probability of the bad
event is at most the probability that ∣∣∣∣∣∣

⋃
l∈[T]

{il,j | j ∈ [Q]}

∣∣∣∣∣∣ ≤ ∆,

where (il,j)j∈[Q] ← Sample(1Q, 1N) for all l ∈ [T]. By definition of the quality of Sample, this is at most
ν(∆, N,Q, T).

Lemma 9. Assume that CC is code-binding and ν(∆, N,Q, T) is negligible for ∆ := t − 1. Then, the
scheme DAS[CC,Sample] satisfies soundness. Concretely, for any PPT algorithm A there is a PPT
algorithm B with T(B) ≈ T(A) such that for any ` ≥ T we have

Advsound
A,`,DAS[CC,Sample](λ) ≤ ν(∆, N,Q, T) + Advcode-bind

B,CC (λ).

Proof. Consider an adversary A against soundness of DAS[CC,Sample]. We first recall the soundness
game and introduce some notation. First, parameters par := ck ← Setup(1λ) are sampled and given
to A. Then, A outputs a commitment com. Then, ` copies of V1 are run and their oracle queries
are answered by A. Let tranl = (il,j , d̂atal,il,j

, τl,il,j
)j∈[Q] for l ∈ [`] be the respective transcripts.

The adversary A breaks soundness if all of these verify, i.e., for all l ∈ [`] and all j ∈ [Q] we have
Ver(ck, com, il,j , d̂atal,il,j

, τl,il,j
) = 1, and Ext(com, tran1, . . . , tran`) outputs ⊥. Recall that Ext outputs ⊥

either because a transcript does not verify, or the set I ⊆ [N] of covered indices is not large enough, i.e.,
|I| < t, or if algorithm Reconst outputs ⊥. We analyze the game by considering these cases separately.
Namely, we define the following events.

• Event InvalidTrans: This event occurs, if A breaks soundness and Ext outputs ⊥ because a transcript
does not verify.

21

• Event NotEnough: This event occurs, if A breaks soundness and Ext outputs ⊥ because |I| < t.

• Event Inconsistent: This event occurs, if A breaks soundness and Ext outputs ⊥ because algorithm
Reconst outputs ⊥.

It is clear that

Advsound
A,`,DAS[CC,Sample](λ) ≤ Pr [InvalidTrans] + Pr [NotEnough] + Pr [Inconsistent].

We bound these three terms separately. First, it is clear that event InvalidTrans can not occur. This is
because if one transcript does not verify, A never wins by definition. Second, if all copies of V2 output
1, i.e. all transcripts are accepting, we can argue exactly as in the analysis of completeness. That is,
using the quality of Sample, we rule out that not enough indices are covered and Ext outputs ⊥. We get
that the probability of NotEnough is at most ν(∆, N,Q, T). Finally, we have to bound the probability of
Inconsistent. Recall that algorithm Reconst outputs ⊥ if either not enough symbols are input, or if its
input is not consistent with any codeword. The first case can not happen, as in this case Ext would have
output ⊥ because of |I| < t and Reconst would not have been run. The second case easily reduces to
code-binding. Namely, a reduction B can run A in the soundness game while forwarding its input ck to
A. Then, if Inconsistent occurs, B knows valid openings that are not consistent with a codeword, and can
output these openings to break codebinding. We get that

Pr [Inconsistent] ≤ Advcode-bind
B,CC (λ).

Lemma 10. If CC is reconstruction-binding, then DAS[CC,Sample] satisfies consistency. Concretely, for
any PPT algorithm A there is a PPT algorithm B with T(B) ≈ T(A) such that for any `1, `2 = poly(λ),
we have

Advcons
A,`1,`2,DAS[CC,Sample] ≤ Advrec-bind

B,CC (λ).

Proof. Let A be an algorithm running in the consistency game of DAS[CC,Sample]. We construct a
reduction B that simulates the consistency game for A and breaks reconstruction-binding of CC if A breaks
consistency. Namely, the reduction B gets as input a commitment key ck, sets par := ck, and runs A on
input par as in the consistency game. Then, A outputs (com, (tran1,i)`1

i=1 , (tran2,i)`2
i=1). We use the notation

Ij , d̂ataj,i for the variables I, d̂atai as in Ext for the jth extraction, j ∈ {1, 2}. The reduction B outputs
com,

(
d̂ata1,i, τ1,i

)
i∈I1

,
(

d̂ata2,i, τ2,i

)
i∈I2

. It remains to argue that B breaks reconstruction-binding,
assuming that A breaks consistency. For that, assume both extractions Ext(com, tran1,1, . . . , tran1,`1) and
Ext(com, tran2,1, . . . , tran2,`2) do not output ⊥, and they output data1 6= data2. As both extractions did
not output ⊥, the transcripts must contain valid openings τ1,i such that Ver(ck, com, i, d̂ata1,i, τ1,i) = 1
for all i ∈ I1, and τ2,i such that Ver(ck, com, i, d̂ata2,i, τ2,i) = 1 for all i ∈ I2. Also, it must hold that
|I1| ≥ t and |I2| ≥ t. This is by definition of algorithm Ext. In combination with data1 6= data2, this
implies that B breaks reconstruction-binding.

Local Accessibility. Now, assume that C has a generalized systematic encoding with symbol projec-
tion algorithm Proj and symbol finding algorithm Find. Then, we show that our generic construction
DAS[CC,Sample] is locally accessible with optimal query complexity L = 1. For that, we define algorithm
Access as follows.

• Accessπ,L(com, i)→ d/⊥:

1. Compute î := Find(i) and query (d̂ataî, τî) := πî.

2. If Ver(ck, com, î, d̂ataî, τî) = 0, return ⊥. Otherwise, return Proj(i, d̂ataî).

By the first part of the definition of a generalized systematic encoding and the completeness of CC, it is
easy to see that local access completeness holds. We show that local access consistency holds.

22

Lemma 11. Assume that CC is reconstruction-binding and C has a generalized systematic encoding.
Then, DAS[CC,Sample] with algorithm Access satisfies local access consistency. Concretely, for any
PPT algorithm A there is a PPT algorithm B with T(B) ≈ T(A) such that for any i0 ∈ [K], and any
` = poly(λ), we have

Advacc-cons
A,i0,`,DAS,Access(λ) ≤ Advrec-bind

B,CC (λ).

The proof of Lemma 11 is given in Appendix F.3.
Repairability. Now, assume that CC has message-bound openings. Then, we show that our generic
construction DAS[CC,Sample] is (L, `)-repairable, provided that it satisfies (L, `)-subset-soundness. For
that, we define algorithm Repair as follows.

• Repair(com, tran1, . . . , tran`)→ π̄/⊥:

1. Run data := Ext(com, tran1, . . . , tran`). If data := ⊥, return ⊥.
2. Compute (π̄, com) := Encode(data) and return π̄.

Lemma 12. If CC has message-bound openings and DAS[CC,Sample] satisfies (L, `)-subset-soundness,
then DAS[CC,Sample] is (L, `)-repairable. Concretely, for any PPT algorithm A there are PPT algorithms
B1,B2 with T(B1) ≈ T(B2) ≈ T(A) such that

Advrepairlive
A,L,`,DAS[CC,Sample],Repair(λ) ≤ Advsub-sound

B1,L,`,DAS(λ) + Advmb-open
B2,CC (λ).

The proof of Lemma 12 is given in Appendix F.3.

7 Commitments for Arbitrary Codes
In this section, we show how to construct an erasure code commitment scheme for any erasure code from
a vector commitment and a non-interactive argument of knowledge. The idea is simple. We encode the
message and commit to the encoding using a vector commitment. Then, we prove that we committed to
a valid codeword. The vector commitment and the proof will form our erasure code commitment, and
openings will correspond to openings of the vector commitment.
Supported Erasure Code. The scheme presented in this section works generically for an arbitrary
erasure code. Throughout the section, we let C : Γk → Λn be an erasure code with alphabets Γ,Λ, message
length k, code length n, and reception efficiency t, with reconstruction algorithm Reconst.
Commitment Construction. Let VC = (Setup,Com,Open,Ver) be a vector commitment scheme over
alphabet Λ with length n and opening alphabet Ξ, and let PS = (Setup,PProve,PVer) be a non-interactive
argument of knowledge for relation

R :=
{

(stmt,witn)
∣∣∣∣ witn = m, stmt = (ckVC, comVC, ρ),
∃StVC : (comVC, StVC) = VC.Com(ckVC, C(m); ρ)

}
.

We construct an erasure code commitment scheme CC[C,VC,PS] = (Setup,Com,Open,Ver) for C with
opening alphabet Ξ as follows.

• Setup(1λ)→ ck:

1. Compute ckVC ← VC.Setup(1λ) and crs← PS.Setup(1λ).
2. Sample coins ρ for algorithm VC.Com.
3. Set and return ck := (ckVC, crs, ρ).

• Com(ck,m)→ (com, St):

1. Compute m̂ := C(m).
2. Run (comVC, StVC) := VC.Com(ckVC, m̂; ρ).

23

3. Compute π ← PProve(crs, stmt,witn) for witn := m and stmt := (ckVC, comVC, ρ).
4. Set and return com := (comVC, π) and St := StVC.

• Open(ck, St, i)→ τ : Return τ ← VC.Open(ckVC, StVC, i).

• Ver(ck, com, i, m̂i, τ)→ b

1. Parse com = (comVC, π)
2. If PVer(crs, stmt, π) = 0 for stmt := (ckVC, comVC, ρ), then return b := 0.
3. If VC.Ver(ckVC, comVC, i, m̂i, τ) = 0, then return b := 0.
4. Return b := 1.

Completeness follows directly from the completeness of VC and PS.
Security. We show that the construction CC[C,VC,PS] above is position-binding and code-binding. In
addition, we show that it has message-bound openings. To recall, the notion of message-bound openings
(cf. Definition 22) implies repairability for the resulting data availability sampling scheme. In the following,
let PS.Ext be the knowledge extractor of PS.

Lemma 13. If VC is position-binding, then CC[C,VC,PS] is position-binding. Concretely, for any PPT
algorithm A, there is a PPT algorithm B with T(B) ≈ T(A) and

Advpos-bind
A,CC[C,VC,PS](λ) ≤ Advpos-bind

B,VC (λ).

Proof. Let A be an algorithm breaking position-binding of CC[C,VC,PS]. We construct an algorithm
B breaking position-binding of VC. It gets as input a commitment key ckVC for VC. It computes
crs← PS.Setup(1λ) and samples coins ρ for algorithm VC.Com. Then, it defines ck := (ckVC, crs, ρ) and
runs A on input ck. Finally, A outputs (com = (comVC, π), i, m̂, τ, m̂′, τ ′) and the reduction B outputs
(comVC, i, m̂, τ, m̂

′, τ ′). As Ver internally runs VC.Ver, it is clear that B breaks position-binding of VC if
A breaks position-binding of CC[C,VC,PS].

Lemma 14. If VC is position-binding and PS satisfies knowledge soundness, then CC[C,VC,PS] is code-
binding. Concretely, for any PPT algorithm A, there are PPT algorithms B1,B2 with T(B1) ≈ T(A),
T(B2) ≈ T(A) + T(PS.Ext) + T(C), and

Advcode-bind
A,CC[C,VC,PS](λ) ≤ Advkn-sound

B1,PS,PS.Ext(λ) + Advpos-bind
B2,VC (λ).

We postpone a formal proof to Appendix G. The intuition is as follows. Assume an adversary breaks
code-binding of the scheme. This means the adversary outputs a commitment com and some openings,
such that these openings are valid, but they are not consistent with the code. In the first step, we extract
a witness from the proof contained in com. This witness is a message m such that the vector commitment
part of com is a commitment of C(m). Because the openings are not consistent with the code, we know
that at least one of these openings is not consistent with the symbol of C(m) at this position, which
allows us to break position-binding.

Lemma 15. If VC is position-binding and PS satisfies knowledge soundness, then CC[C,VC,PS] has
message-bound openings. Concretely, for any PPT algorithm A, there are PPT algorithms B1,B2 with
T(B1) ≈ T(A), T(B2) ≈ T(B3) ≈ T(A) + 2 ·T(PS.Ext) + 2 ·T(C), and

Advmb-open
A,CC (λ) ≤ 2 · Advkn-sound

B1,PS,PS.Ext(λ) + Advpos-bind
B2,VC (λ).

We postpone a formal proof to Appendix G.
Instantiation and Discussion. On the positive side, the construction presented in this section is
generic. That is, we can construct an erasure code commitment for arbitrary codes from it. Also, the
construction serves as a high level recipe for other constructions that we will present. While these other

24

constructions are tailored to more specific families of codes, they will also contain parts that mimic
the role of the vector commitment, and parts that take the role of the proof. On the negative side the
construction presented in this section is hard to instantiate efficiently. For example, if we use a hash-based
vector commitment, e.g., a Merkle Tree [Mer88], then the relation for which we need a non-interactive
argument is also defined a hash function, and thus it is too unstructured for an efficient argument.
Additionally, computing the non-interactive argument is computationally expensive. Finally, well-known
impossibility results [GW11, CGKS22] show the need of non-falsifiable assumptions when we rely on
succinct non-interactive arguments.

8 Commitments for Tensor Codes
In this section, we give a construction of an erasure code commitment scheme for the tensor code of two
given linear codes.
Supported Erasure Code. For our construction, we assume two linear erasure codes Cr : Fkr → Fnr

and Cc : Fkc → Fnc over the same field F. Let tr, tc denote their respective reception efficiencies, and
Gr ∈ Fnr×kr and Gc ∈ Fnc×kc denote their respective generator matrices. We consider the tensor code
Cr ⊗ Cc : Fkr·kc → Fnr·nc .
Commitment Construction. We present an erasure code commitment scheme CC⊗ for the code
Cr ⊗ Cc : Fkr·kc → Fnr·nc as above. In the construction, we assume that we already have an erasure code
commitment scheme CCc for the code Cc. Further, we have to assume that CCc is linear and extractable,
in a sense we define next.

Definition 14 (Linear Erasure Code Commitment Scheme). Let C : Fk → Fn be a linear erasure code,
where F is a finite field. Let CC = (Setup,Com,Open,Ver) be an erasure code commitment scheme for C.
We say that CC is linear if the following properties hold:

• Com is deterministic. We use the notation com = Ĉom(ck,m) for (com, St) = Com(ck,m).

• The commitment space is a vector space over F with efficiently computable vector addition and
scalar multiplication. We use the usual symbols + and · to denote these operations.

• For any fixed key ck ∈ Setup(1λ), the function Ĉom(ck, ·) is a vector space homomorphism over F
from the vector space Fk to the commitment space.

From now on, assume that CCc = (Setupc,Comc,Openc,Verc) is linear and extractable. The new
erasure code commitment scheme CC⊗ = (Setup⊗,Com⊗,Open⊗,Ver⊗) for code Cr ⊗Cc : Fkr·kc → Fnr·nc

is as follows.

• Setup⊗(1λ)→ ck: Return ck← Setupc(1λ).

• Com⊗(ck,m)→ (com, St):

1. Write m as a matrix M ∈ Fkc×kr and compute Y := MG>r ∈ Fkc×nr . Let Yj ∈ Fkc denote
the jth column of Y, for each j ∈ [nr].

2. For each j ∈ [nr], compute (comj , Stj) := Comc(ck,Yj).
3. Set and return com := (com1, . . . , comnr

) and St := (St1, . . . , Stnr
).

• Open⊗(ck, St, j)→ τ : Let (i∗, j∗) := ToMatIdx(j) and return τ ← Openc(ck, Stj∗ , i∗).

• Ver⊗(ck, com, j, m̂j , τ)→ b:

1. Let com = (com1, . . . , comnr
).

2. Let H ∈ F(nr−kr)×nr be the parity-check matrix of Cr.
3. Sample a←$ Fnr−kr and set h := H>a.
4. If Ĉomc(ck,0) 6=

∑nr

i=1 hj · comj , return 0.
5. Let (i∗, j∗) := ToMatIdx(j).

25

6. If Verc(ck, comj∗ , i
∗, m̂j , τ) = 0, return 0.

Completeness follows directly from the completeness and linearity of CCc.
Security. We first show that the scheme CC⊗ satisfies position-binding. Second, we show that it is
computationally unique (cf. Definition 23). By Lemma 27, this implies that it has message-bound
openings, and thus the resulting data availability sampling scheme is repairable. Note that the tensor
code is not an MDS code, and so Lemma 28, which lifts computational uniqueness to code-binding, does
not apply. Thus, we show code-binding from scratch.

Lemma 16. If CCc is position-binding, then CC⊗ is position-binding. Concretely, for every PPT
algorithm A, there is a PPT algorithm B with T(B) ≈ T(A), such that

Advpos-bind
A,CC⊗ (λ) ≤ Advpos-bind

B,CCc
(λ).

Lemma 16 is proven by giving a simple reduction. We postpone the formal details to Appendix H.

Lemma 17. Assume that Cc is an MDS code. If CCc is linear, extractable, and satisfies position-binding,
then CC⊗ is computationally unique. Concretely, for every PPT algorithm A, there are PPT algorithms
B,B′ with T(B) ≈ T(B′) ≈ T(B′′) ≈ T(A), such that

Advc-uniq
A,CC⊗(λ) ≤ 2

(
Advextr

B,Ext,CCc
(λ) + Advpos-bind

B′,CCc
(λ) + 1

|F|

)
.

The formal proof of Lemma 17 is given in Appendix H. We provide an intuition for the proof. To prove
that the scheme is computationally unique, we prove a simpler yet stronger statement. Namely, we
show that whenever an adversary outputs a commitment com = (com1, . . . , comnr

) and enough valid
openings Xi,j ∈ F, τi,j for (i, j) ∈ I ⊆ [nc]× [nr] that define a message M ∈ Fkc×kr via reconstruction,
then committing to M yields com. To prove this, we first consider every column j ∈ [nr] for which the
adversary output an opening. In the first kr of these columns, we leverage the extractability of CCc to
extract a preimage of the corresponding column commitment comj . Now, we can extend these columns
into a matrix Y with rows in Cr. Our next step is to show that the columns of Y commit to the comj . For
that, we rely on the homomorphic check and the fact that multiplying by a random element in the span
of the parity-check matrix of Cr is as good as multiplying by the entire parity-check matrix. Next, we use
position-binding to argue that the GcY has to be consistent with the openings Xi,j that the adversary
output. Finally, we use this to argue that Y = MG>r . In combination, this implies that committing to
M yields com, as desired.

Lemma 18. Assume that Cc is an MDS code. If CCc is linear, extractable, and satisfies code-binding
and position-binding, then CC⊗ satisfies code-binding. Concretely, for every PPT algorithm A, there are
PPT algorithms B,B′ with T(B) ≈ T(B′) ≈ T(B′′) ≈ T(A), such that

Advcode-bind
A,CC⊗ (λ) ≤ Advcode-bind

B,CCc
(λ) + Advextr

B′,Ext,CCc
(λ) + Advpos-bind

B′′,CCc
(λ) + 1

|F|
.

We provide an intuition for proof of Lemma 18. The formal analysis is given in Appendix H. Assume
that an adversary breaks code-binding. By definition, this means that it outputs a commitment com =
(com1, . . . , comnr) and some openings, such that all of the openings verify, and no codeword in Cr ⊗ Cc
is consistent with these openings. In particular, there is at least one row or one column for which the
openings are not consistent with any codeword in Cr or Cc, respectively. Consider the case that there
is such a column. As com contains a commitment to that column for scheme CCc, this means that the
adversary breaks code-binding of CCc, which we assume is not possible. In the other case, the adversary
outputs openings in a row that are not consistent with Cr. This case is more involved, because there are
no commitments for rows in com. It turns out that we can handle this case in a way almost identical to
the proof of Lemma 17. Roughly, we can combine the strong statement that we showed there with the
assumption that Cr is an MDS code and binding of CCc.

26

Instantiation and Discussion. As an example, we can instantiate the construction in this section
using Reed-Solomon codes for both Cr and Cc. In this case, we need an extractable linear polynomial
commitment scheme for the construction. Here, we can use the KZG commitment scheme [KZG10]. One
can easily see that KZG is extractable and linear, see Appendix E.3. An instantiation like this is used by
Ethereum [Fei23]. One advantage of this construction is that the size of openings is constant, i.e., it does
not depend on the data length. The main drawback in this case is that we rely on a trusted setup.

9 Commitments for Interleaved Codes
In this section, we show two constructions of erasure code commitments for linear interleaved codes.
These construction are partially inspired by Ligero [AHIV17, AHIV22] and mostly make use of hash
functions.

9.1 Construction from Hash Functions
In this section, we present a construction of erasure code commitments for linear interleaved codes. The
main benefit of this construction is that we can purely rely on hash functions.
Supported Erasure Code. Let C : Fk → Fn be a linear erasure code with generator matrix G ∈ Fn×k
and minimum distance d∗ ∈ N. We construct an erasure code commitment for the interleaved code
C≡k : Fk2 →

(
Fk
)n. To recall, this code consists of all sets of columns of matrices that have the form

MG> for some M ∈ Fk×k.
Commitment Construction. Let H : {0, 1}∗ → {0, 1}λ be a random oracle. Let P,L ∈ N be parameters,
and H1 : {0, 1}∗ → FP×k be a random oracle. Also, let H2 : {0, 1}∗ →

([n]
L

)
be a random oracle. We

construct an erasure code commitment scheme CC = (Setup,Com,Open,Ver) for C≡k. The construction
is as follows, making use of subroutines VerCol and VerCom.

• Setup(1λ)→ ck: Return ck := ⊥.

• Com(ck,m)→ (com, St):

1. Write m as a matrix M ∈ Fk×k, and compute X := MG> ∈ Fk×n. Let Xj ∈ Fk for j ∈ [n] be
the jth column of X.

2. For each j ∈ [n], compute hj := H(Xj).
3. Compute R := H1(h1, . . . , hn). We have R ∈ FP×k.
4. Compute linear combinations of rows, i.e., W := RX ∈ FP×n. Observe that each row of W is

in the code C.
5. Compute J := H2(h1, . . . , hn,W). We have J ⊆ [n] and |J | = L.
6. Set com :=

(
(hj)j∈[n],W, (Xj)j∈J

)
and St := ⊥.

• Open(ck, St, j)→ τ : Return τ := ⊥.

• Ver(ck, com, j∗, m̂j∗ = Xj∗ , τ = ⊥)→ b:

1. If VerCol(ck, com, j∗,Xj∗) = 0, return 0, where subroutine VerCol(ck, com, j∗,Xj∗) is as follows:
(a) Let com =

(
(hj)j∈[n],W, (Xj)j∈J

)
.

(b) If hj∗ 6= H(Xj∗), return 0.
(c) Compute R := H1(h1, . . . , hn).
(d) Let Wj∗ be the j∗th column of W. If Wj∗ 6= RXj∗ , return 0. Otherwise, return 1.

2. If VerCom(ck, com) = 0, return 0, where subroutine VerCom(ck, com) is as follows:
(a) Let com =

(
(hj)j∈[n],W, (Xj)j∈J

)
.

(b) If there is a row w> ∈ F1×n of W such that w /∈ C, then return 0.
(c) If J 6= H2(h1, . . . , hn,W), return 0.
(d) Return 1, if for all j ∈ J , we have VerCol(ck, com, j,Xj) = 1. Otherwise, return 0.

27

3. Return 1.

Completeness can easily be checked.
Security. We show position-binding and code-binding of our construction.
Lemma 19. Let H : {0, 1}∗ → {0, 1}λ be a random oracle. Then, the scheme CC is position-binding.
Concretely, for every algorithm A that makes at most QH queries to random oracle H, we have

Advpos-bind
A,CC (λ) ≤ Q2

H
2λ .

Proof. If we have an adversary that breaks position-binding of CC, then it must provide two distinct
preimages of one of the hash values contained in the commitment. Formally, let A be an algorithm in the
position-binding game of CC making at most QH queries to random oracle H. This includes the queries
that algorithm Ver issues when it checks the validity of openings in A’s final output. The probability
that there are two queries x and x′ of A with x 6= x′ but H(x) = H(x′) is at most Q2

H/2λ. Assuming this
event does not occur, A can not break position-binding, and the claim follows.

Lemma 20. Let H : {0, 1}∗ → {0, 1}λ,H1 : {0, 1}∗ → FP×k, and H2 : {0, 1}∗ →
([n]
L

)
be a random oracle.

Then, the scheme CC is code-binding. Concretely, for any ∆1,∆2 ∈ [n] with ∆1 +∆2 < d∗ and ∆1 ≤ d∗/4,
and every algorithm A that makes at most QH, QH1 , QH2 queries to random oracles H,H1,H2, respectively,
we have

Advcode-bind
A,CC (λ) ≤ Q̄HQ̄H1n+ Q̄2

H
2λ

+ Q̄H1Q̄H2 ·

((
∆1 + 1
|F|

)P
+
(

1− ∆1 + 1
n

)L
+
(

1− ∆2

n

)L
+ 1
|F|P

)
,

where Q̄H := QH + n, Q̄H1 := QH1 +QH2 + 1, Q̄H2 := QH2 + 1.
Code-binding is proven via a sequence of lemmas. The goal is to show Lemma 20, which states that CC
satisfies code-binding. To do that, we first abstract the interactions of the adversary with the random
oracles away. In the resulting game, the adversary essentially runs an interactive five round protocol with
the challenger. Namely, it sends a matrix X and receives a random challenge matrix R. Then, it sends
a matrix W and receives a challenge J ⊆ [n]. Finally, it submits a set J ′ ⊆ [n]. The adversary wins
the game if these matrices suffice to break code-binding, namely, if (1) there is no X′ in the interleaved
code C≡k that is consistent with X on all columns in J ′, and (2) each row of W is in the code C, and (3)
for all j ∈ J ∪ J ′, we have Wj = RXj . The central lemma of our analysis (Lemma 35) shows that the
adversary can not win this game. We split the proof of it into three main steps (Lemmata 32 to 34):

1. Lemma 32: X has to be close to the interleaved code for a winning adversary. Concretely, it has to
be within the unique decoding distance, i.e., there is a unique X∗ in the code that is close to X.

2. Lemma 33: RX and W have to be sufficiently close, due to the randomness of challenge set J .

3. Lemma 34: Using the previous two statements, we get that the distance of RX∗ and W is at most
d∗. As both are in the code, we get that RX∗ = W. Therefore, there is a column in which X∗ and
X differ, but RX∗ and RX agree on that column. The probability of this can then be bounded,
which allows us to prove the central lemma.

We give the formal analysis in Appendix I.1.
Instantiation and Discussion. The main drawback of the construction presented in this section is
the following. When we use it to construct a data availability sampling scheme, a single symbol of the
encoding is rather large. Concretely, it has size

√
|data|/ log |F| · log |F| bits, where |data| denotes the size

of the encoded data in bits. Another drawback is that the scheme does not have message-bound openings,
as defined in Definition 22. We can easily see this by considering an adversary that outputs (1) an honest
commitment to some message and enough openings including the first symbol, and (2) an almost honest
commitment to the same message, where h1 is malformed, and enough openings not including the first
symbol. On the other hand, the main advantage of the construction in this section is that it only relies
on the security of hash functions and does not require expensive operations such as multiplications over
cyclic groups or pairings. Especially, no trusted setup is needed, and we can instantiate the construction
over a small field F, e.g., the field with 232 elements, leading to computational efficiency.

28

9.2 Construction from Homomorphic Hash Functions
In this section, we present a variant of our construction in Section 9.1. This variant makes use of
homomorphic hash functions (see Definition 19). Compared to the construction in Section 9.1, this can
reduce the size of the commitment for certain instantiations.
Supported Erasure Code. Let C : Fk → Fn be a linear erasure code and let G ∈ Fn×k be its generator
matrix. We construct an erasure code commitment scheme for the interleaved code C≡k : Fk2 →

(
Fk
)n.

Commitment Construction. We make use of random oracles H1 : {0, 1}∗ → FP×k and H2 : {0, 1}∗ →
Fn×L, where P,L ∈ N are parameters. In addition, we rely on a homomorphic hash function family
HF = (Gen,Eval) with domain D = Fk (see Definition 19). Denote the key space and range of HF by
K,R, respectively. Our erasure code commitment scheme CC[HF] = (Setup,Com,Open,Ver) for C≡k is as
follows.

• Setup(1λ)→ ck: Return ck := hk← HF.Gen(1λ).

• Com(ck,m)→ (com, St):

1. Write m as a matrix M ∈ Fk×k, and compute X := MG> ∈ Fk×n. Let Xj ∈ Fk for j ∈ [n] be
the jth column of X.

2. For each j ∈ [n], compute hj := HF.Eval(hk,Xj).
3. Compute R := H1(h1, . . . , hn). We have R ∈ FP×k.
4. Compute W := RX ∈ FP×n.
5. Compute S := H2(h1, . . . , hn,W). We have S ∈ Fn×L.
6. Compute Y := XS ∈ Fk×L.
7. Set com :=

(
(hj)j∈[n],W,Y

)
and St := ⊥.

• Open(ck, St, j)→ τ : Return τ := ⊥.

• Ver(ck, com, j∗, m̂j∗ = Xj∗ , τ = ⊥)→ b:

1. If VerCol(ck, com, j∗,Xj∗) = 0, return 0, where subroutine VerCol(ck, com, j∗,Xj∗) is as follows:
(a) Let com =

(
(hj)j∈[n],W,Y

)
.

(b) If hj∗ 6= HF.Eval(hk,Xj∗) or Xj∗ /∈ Fk, return 0.
(c) Compute R := H1(h1, . . . , hn).
(d) Let Wj∗ be the j∗th column of W. If Wj∗ 6= RXj∗ , return 0. Otherwise, return 1.

2. If VerCom(ck, com) = 0, return 0, where subroutine VerCom(ck, com) is as follows:
(a) Let com =

(
(hj)j∈[n],W,Y

)
.

(b) If there is a row w> ∈ F1×n of W such that w /∈ C, then return 0.
(c) Compute R := H1(h1, . . . , hn).
(d) Set S := H2(h1, . . . , hn,W). Let Sj ∈ Fk and Yj ∈ Fk for j ∈ [L] be the jth column of S

and Y, respectively.
(e) Return 1, if for each j ∈ [L], we have HF.Eval(hk,Yj) = [h1, . . . hn]Sj and RY = WS.

Otherwise, return 0.
3. Return 1.

Completeness easily follows from the homomorphism property of HF.
Security. We show position-binding and code-binding. Position-binding follows directly from the
collision-resistance of HF.

Lemma 21. Given that HF is a homomorphic family of hash functions, we have that CC[HF] is position-
binding. Concretely, for every PPT algorithm A, there is a PPT algorithm B with T(B) ≈ T(A), such
that

Advpos-bind
A,CC[HF](λ) ≤ Advcoll

B,HF(λ).

29

Proof. If we have an adversary that breaks position-binding of CC[HF], then it must provide two distinct
preimages of one of the hash values contained in the commitment. More formally, let A be a PPT
algorithm in the position-binding game of CC[HF]. We construct a reduction B against collision-resistance
of HF as follows. Reduction B gets input hk from the collision-resistance experiment. It defines ck := hk,
and runs A on input ck. When A terminates, it outputs com, j∗,Xj∗ , τ,X′j∗ , τ ′. The reduction outputs
Xj∗ and X′j∗ to the collision-resistance game. It is clear that B perfectly simulates the position-binding
game for A, and its running time is dominated by the running time of A. Further, assume A breaks
position-binding, i.e. Xj∗ 6= X′j∗ , Ver(ck, com, j∗,Xj∗ , τ) = 1, and Ver(ck, com, j∗,X′j∗ , τ ′) = 1. Write
com =

(
(hj)j∈[n],W,Y

)
. By definition of Ver, in particular the definition of subroutine VerCol, we know

that this implies
HF.Eval(hk,Xj∗) = hj∗ = HF.Eval(hk,X′j∗).

As Xj∗ 6= X′j∗ , B breaks collision-resistance.

Lemma 22. Let HF be a homomorphic family of hash functions. Let H1 : {0, 1}∗ → FP×k, and
H2 : {0, 1}∗ → Fn×L be a random oracle. Then, the scheme CC[HF] is code-binding. Concretely, for any
PPT algorithm A that makes at most QH1 , QH2 queries to random oracles H1,H2, respectively, there is an
EPT algorithm B with expected running time ET(B) ≈ (1 + n)T(A) and

Advcode-bind
A,CC[HF](λ) ≤ Q̄H1Q̄H2 ·

(
n

|F|L
+ 1
|F|P

+ 1
|F|L

+ Advcoll
B,HF(λ)

)
,

where Q̄H1 := QH1 +QH2 + 1 and Q̄H2 := QH2 + 1.

We provide an overview of the proof strategy we use to prove Lemma 22. The formal analysis is given
in Appendix I.2. To show code-binding, we first specify a security game without random oracles by
abstracting random oracles away. The central lemma of our analysis (Lemma 36) shows that the adversary
can not win this game. Then, we show code-binding using this central lemma, similar to what we have
done for our construction based on (non-homomorphic) hash functions. In the game of our central lemma,
the adversary first obtains a hash key hk and then specifies hash values h1, . . . , hn. Then, a matrix
R is sampled at random from FP×k and given to the adversary. The adversary outputs a matrix W,
and gets back a random matrix S ∈ Fn×L. This reflects the interaction between the adversary and the
random oracles. Finally, the adverary outputs Y, J ′, (Xj)j∈J′ , which reflects that the adversary outputs
a commitment and some openings in the code-binding game. The adversary wins if the matrices and
openings satisfy all conditions as in the code-binding game. For examples, the openings Xj have to satisfy
HF.Eval(hk,Xj) = hj . A major challenge we have to deal with when proving our central lemma is that
initially we only get hash values h1, . . . , hn from the adversary, and not their preimages. Later, we get
some of the preimages. This is in contrast to our construction based on non-homomorphic hash functions
modeled as random oracles, for which we could easily extract the preimages by observing the random
oracle. Thus, we need another way of extracting these preimages. Our idea is as follows. We first fix
some hash key and adversarial randomness, leading to fixed hash values h1, . . . , hn. Then, we run the rest
of the experiment a number of times, i.e., we rewind the adversary. Recall that one winning condition is
that a homomorphic check on the hash values, given by the condition HF.Eval(hk,Yj) = [h1, . . . hn]Sj for
each j ∈ [L]. From this check, we observe that if we have enough such S with enough linearly independent
columns, we find the preimages of h1, . . . , hn by solving a linear system of equations. Once we have
this, we run the game a final time, rule out inconsistent openings by reducing to collision-resistance, and
conclude using statistical arguments. Turning this intuition into a formal proof is surprisingly challenging,
especially to make the rewinding work without subtle problems. For example, to get expected polynomial
running time of our reduction, we have to ensure that the rewinding always (not only in an overwhelming
fraction of cases) ends after a finite number of repetitions.
Instantiation and Discussion. The scheme presented in this section comes with many of the drawbacks
and advantages of the scheme presented in Section 9.1. Namely, while a single symbol of the encoding is
rather large, we avoid a trusted setup when instantiating the homomorphic hash function appropriately.
In contrast to the scheme in Section 9.1, we can get a smaller commitment when using a large field. This
is because we only require minimal parallel repetition (parameter L) whereas the scheme in Section 9.1
requires a large L even with a large field. The prize we pay is the use of a computationally more expensive

30

large field and public key operations. An example instantiation of the homomorphic hash function is the
function

Zkp → G, (x1, . . . , xk) 7→
k∏
i=1

gxi
i

over a cyclic group G of prime order p with generators gi. The function is collision-resistant if the DLOG
assumption holds in G. We leave investigating a lattice-based instantiation of the homomorphic hash
function as future work.

10 Evaluation and Comparison
In this section, we give an overview of how the different constructions compare in terms of efficiency. As
many of these constructions are written in a generic way, we can not cover all possible instantiations and
parameter settings. Instead, we pick reasonable instantiations, suitable for comparison across schemes.

10.1 Setting the Stage
Before we discuss the results of our comparison, we first explain which constructions of data availability
sampling we consider, which aspects we analyze, and how our results are derived.
Schemes. We consider data availability sampling schemes that follow our construction in Section 6.
That is, they are constructed using an erasure code C, an erasure code commitment CC for C, and an
index sampler. We use the index sampler Samplewr from Section 6.2, i.e. sampling with replacement, and
assume that each client makes Q = 1 query, which has no effect for this particular sampler.
Concrete Erasure Code Commitments. All our concrete instantiations of erasure code commitments
target 128-bits of computational security, and we include two “trivial” schemes as a baseline. The following
schemes are compared: 1. Naive, the naive scheme, where the encoding has a single symbol, containing all
the data, and the commitment is a SHA-256 hash of the data. 2. Merkle, a trivial scheme based on Merkle
Trees [Mer88] and the identity code. 3. RS, a scheme where we encode the data using a Reed-Solomon code
and commit to it using the KZG [KZG10] polynomial commitment scheme. 4. Tensor, an instantiation of
the tensor code construction (Section 8) using KZG as a base scheme. 5. Hash, the scheme for interleaved
codes from random oracles (Section 9.1), instantiated with SHA-256 and Reed-Solomon codes over a
32-bit field. 6. HomHash, the scheme for interleaved codes from homomorphic hashing (Section 9.2),
instantiated with Pedersen commitments over the Secp256k1 curve, SHA-256, and Reed-Solomon codes
over the scalar field of Secp256k1. An overview is provided in Table 1.
Qualitative Criteria. To evaluate the schemes mentioned above, we consider both qualitative aspects
and efficiency aspects. In terms of qualitative aspects we are interested in the cryptographic assumptions,
the idealized models that the schemes rely on and whether the schemes require a trusted setup.
Efficiency Criteria. We compare the schemes by fixing the data size. Then, we compute the encoding
and commitment size and the communication complexity per query of a client. We are also interested in
estimating the threshold of the schemes, i.e., the number of queries need to be made by clients, such that
the probability of reconstructing is overwhelming. In our comparison, we want it to be at least 1− 2−40

(40-bits of statistical security). We determine the threshold using the bounds in Lemma 3 and Examples 5
and 6. Once we determined the threshold, we can then also compute the overall communication complexity
required to reconstruct the data. Finally, we will briefly discuss the asymptotic computational efficiency
of the schemes. We leave implementing the schemes and comparing concrete running times for future
work.

10.2 Results
We implemented our methodology in Python scripts given in Appendix K. Our results are presented in
Tables 2 and 3 and Figure 3. We now discuss the results.
Assumptions, Models, and Setup. In terms of qualitative criteria, the schemes Hash, Naive, Merkle
are the most desirable ones, as they do not rely on a trusted setup and only rely on hash functions.
Scheme HomHash is also a good choice as it avoids trusted setup. Depending on the instantiation of the

31

Name Code C Commitment CC Parameters/Comments
Naive - Hash All data in one encoding symbol
Merkle Identity Merkle Tree Size of Leaf: 210 bit
RS RS[k, n,F] KZG [KZG10] n = 4k, F = Zp
Tensor RS[k, n,F]⊗ Section 8 n = 2k, F = Zp
Hash RS[k, n,F]≡k Section 9.1 n = 4k, |F| = 232, P = 8, L = 64
HomHash RS[k, n,F]≡k Section 9.2 Pedersen Hash, n = 4k,F = Zp, P = L = 2

Table 1: Overview of the different instantiations of erasure code commitments that we compare in
Section 10. For each scheme, parameter k is picked such that the input domain fits the data length. The
notation RS[k, n,F]⊗ is a short notation for RS[k, n,F]⊗RS[k, n,F].

Scheme Assumption Idealized Model Trusted Setup
Naive Hash - 7
Merkle Hash - 7
RS q-Type AGM 3
Tensor q-Type AGM 3
Hash - ROM 7
HomHash DLOG ROM 7

Table 2: Qualitative comparison of different data availability sampling schemes. The details of the
schemes are given in Table 1. We compare the cryptographic assumptions and idealized models that
these schemes use, and whether they rely on a trusted setup or not.

homomorphic hash function, it only relies on mild cryptographic assumptions, e.g., DLOG. Schemes RS
and Tensor require trusted setup and stronger assumptions.
Encoding Size. In terms of encoding size, schemes RS and Tensor have a slightly larger encoding than
Hash and HomHash, which comes from the KZG [KZG10] openings that have to be stored in addition
to the codeword. It is natural that Hash and HomHash have (almost) the same encoding size, as they
encode data using the same code with no explicit opening, the field size does not affect the size of the
encoding significantly – the minimal discrepancy comes from rounding.
Commitment Size. In terms of commitment size, schemes Naive, Merkle, RS, and Tensor perform best.
The commitment for Naive, Merkle is a single hash value. For RS, the commitment is a single group
element over a group of size p, namely, a single KZG [KZG10] commitment. Especially, the commitment
size for these three schemes Naive, Merkle, and RS is constant, i.e., independent of the size of the data. For
Tensor, Θ(

√
|data|/ log p) such KZG commitments are needed. The schemes Hash and HomHash perform

worse in terms of commitment size. Especially, Hash has a larger commitment. This is because due to the
small field size, we require large repetition factor L which shows up in the commitment size. Concretely,
the commitment contains L random colums of the codeword, which are of size k =

√
|data|/32 field

elements. On the other hand, for HomHash, we had to choose a large field to implement the homomorphic
hash function, leading to small repetition factors and thus a smaller commitment size than for Hash.
Communication per Query. In terms of communication complexity per query, scheme Naive disqualifies,
as expected. Optimal with respect to this measure are RS and Tensor, for which the communication
complexity per query is constant, i.e., independent of the data size. This is because both return a single
KZG [KZG10] opening and a single field element. Schemes Hash and HomHash perform worse in terms of
communication complexity per query, which is due to the use of the interleaved code, which has symbols
of size f ·

√
|data|/f , where f is the number of bits needed to represent one field element. If we compare

these two schemes, we see the inverse of what we saw for the commitment size. Namely, Hash performs
better. This can be explained by the different field sizes. Namely, f does not cancel out in the symbol
size f ·

√
|data|/f =

√
|data| ·

√
f . The ratio between

√
256 and

√
32 matches the gap that we see in

Table 3 and Figure 3.
Total Communication. Multiplying the communication per query with the number of samples required
to reconstruct the data with high probability, we obtain the total communication cost. We see that Merkle
disqualifies due to a huge number of samples, which follows Lemma 3 and Examples 5 and 6. Further, we

32

see that RS and Tensor perform worse than Hash and HomHash. This is because Hash and HomHash use
an interleaved code, leading to a smaller number of symbols and therefore to a smaller number of required
samples. One could expect that the large communication per query of Hash and HomHash outweighs this,
but our results show that this is not the case. We can explain this by comparing with scheme Naive, which
has only one symbol. Of course, this scheme achieves the optimal total communication of exactly |data|.
We can think of Hash and HomHash as being between this naive scheme and schemes like RS and Tensor.
Namely, they have a small number of large symbols. We thus expect that the total communication gets
worse if we increase the number of symbols and decrease their size.
Computational Efficiency. Clients are computationally lightweight in all schemes. For example, in
KZG-based constructions (RS and Tensor), each sample is verified using two pairings. For encoding, the
computational complexity for all schemes depends on the encoding complexity for the underlying code.
For the interleaved constructions (Hash and HomHash), we can assume that the code has encoding time of
Θ(k log k) using FFT techniques. Then, encoding for the interleaved code takes time Θ(

√
k·(
√
k log

√
k)) =

Θ(k log k). A similar complexity can be achieved for Tensor if KZG opening proofs are computed efficiently
using recent techniques [FK23].
Conclusion. Clearly, the schemes Naive and Merkle are far from being usable in practice due to huge
communication costs per query or in total, respectively. They should only be understood as a baseline. If
we are interested in using schemes that do not rely on trusted setup and use minimal assumptions, the
schemes Hash and HomHash are desirable. If we compare these two, Hash performs better in terms of
communication complexity per query, but worse in terms of commitment size. Additionally, Hash avoids
computationally expensive public key operations and instead only needs hash operations and arithmetic
over small fields. On the other hand, if the communication effort per client is our primary goal, schemes
RS and Tensor are the best choice, as the commitment size is minimal and the communication per query
is constant.

Scheme |com| [KB] |π| [MB] Query [KB] Samples Total [MB]

|d
at

a|
=

1
M
B Naive 0.03 1.00 1000.00 1 1.00

Merkle 0.03 4.25 0.55 286655 156.40
RS 0.05 8.00 0.10 35881 3.52
Tensor 6.96 8.07 0.10 160115 15.70
Hash 256.00 4.00 2.00 879 1.76
HomHash 80.00 4.01 5.67 323 1.83

|d
at

a|
=

32
M
B Naive 0.03 32.00 32000.00 1 32.00

Merkle 0.03 176.00 0.71 10038776 7089.80
RS 0.05 256.00 0.10 1147584 113.23
Tensor 39.22 256.32 0.10 4626776 456.52
Hash 1448.45 128.05 11.32 4888 55.32
HomHash 452.00 128.00 32.00 1740 55.68

Table 3: Efficiency comparison of different data availability sampling schemes. Details of the schemes
are given in Table 1. For given size of data, we compare the size of commitments com, encodings π, and
communication complexity per query. Column “Samples” shows the total number of samples that clients
need to query such that data can be reconstructed with probability at least 1− 2−40, and the final column
denotes the total communication cost for this process.

33

0 50 100 150
0

1

2

3

|data| [MB]

|c
om
|[

M
B

]

0 50 100 150
0

0.5

1

|data| [MB]

|π
|[

G
B

]

0 50 100 150
0

20

40

60

|data| [MB]

Q
ue

ry
[K

B
]

0 50 100 150
0

1

2

|data| [MB]

To
ta
l[

M
B

]

RS Tensor Hash HomHash

Figure 3: Efficiency of data availability sampling schemes. The details of the schemes are given in Table 1.
We compare the size of commitments, the size of the encoding, the communication complexity per query,
and the total communication complexity when increasing the data size. Schemes Naive and Merkle are
omitted.

34

References
[ABC+07] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary

N. J. Peterson, and Dawn Song. Provable data possession at untrusted stores. In Peng Ning,
Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM CCS 2007, pages
598–609. ACM Press, October 2007. (Cited on page 4.)

[ADVZ21] Nicolas Alhaddad, Sisi Duan, Mayank Varia, and Haibin Zhang. Succinct erasure coding
proof systems. Cryptology ePrint Archive, Report 2021/1500, 2021. https://eprint.iacr.
org/2021/1500. (Cited on page 5.)

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 2087–2104. ACM
Press, October / November 2017. (Cited on page 11, 27.)

[AHIV22] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.
Ligero: Lightweight sublinear arguments without a trusted setup. Cryptology ePrint Archive,
Paper 2022/1608, 2022. https://eprint.iacr.org/2022/1608. (Cited on page 27, 55.)

[ASBK21] Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi. Fraud and data
availability proofs: Detecting invalid blocks in light clients. In Nikita Borisov and Claudia
Díaz, editors, Financial Cryptography and Data Security - 25th International Conference,
FC 2021, Virtual Event, March 1-5, 2021, Revised Selected Papers, Part II, volume 12675 of
Lecture Notes in Computer Science, pages 279–298. Springer, 2021. (Cited on page 3.)

[BCG+17] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner.
Interactive oracle proofs with constant rate and query complexity. In Ioannis Chatzigiannakis,
Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, ICALP 2017, volume 80 of LIPIcs,
pages 40:1–40:15. Schloss Dagstuhl, July 2017. (Cited on page 5.)

[BDFG20] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Efficient polynomial commitment
schemes for multiple points and polynomials. Cryptology ePrint Archive, Report 2020/081,
2020. https://eprint.iacr.org/2020/081. (Cited on page 5.)

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its
applications (extended abstract). In 20th ACM STOC, pages 103–112. ACM Press, May 1988.
(Cited on page 8.)

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Robust
pcps of proximity, shorter pcps, and applications to coding. SIAM Journal on Computing,
36(4):889–974, 2006. (Cited on page 5.)

[BGKS20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI: Sampling
outside the box improves soundness. In Thomas Vidick, editor, ITCS 2020, volume 151, pages
5:1–5:32. LIPIcs, January 2020. (Cited on page 5.)

[CDD+16] Ignacio Cascudo, Ivan Damgård, Bernardo David, Nico Döttling, and Jesper Buus Nielsen.
Rate-1, linear time and additively homomorphic UC commitments. In Matthew Robshaw
and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 179–207.
Springer, Heidelberg, August 2016. (Cited on page 14.)

[CF13] Dario Catalano and Dario Fiore. Vector commitments and their applications. In Kaoru
Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 55–72.
Springer, Heidelberg, February / March 2013. (Cited on page 17.)

[CFM08] Dario Catalano, Dario Fiore, and Mariagrazia Messina. Zero-knowledge sets with short proofs.
In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 433–450. Springer,
Heidelberg, April 2008. (Cited on page 5.)

35

https://eprint.iacr.org/2021/1500
https://eprint.iacr.org/2021/1500
https://eprint.iacr.org/2022/1608
https://eprint.iacr.org/2020/081

[CGKS22] Matteo Campanelli, Chaya Ganesh, Hamidreza Khoshakhlagh, and Janno Siim. Impossibilities
in succinct arguments: Black-box extraction and more. Cryptology ePrint Archive, Report
2022/638, 2022. https://eprint.iacr.org/2022/638. (Cited on page 25.)

[CHL+05] Melissa Chase, Alexander Healy, Anna Lysyanskaya, Tal Malkin, and Leonid Reyzin. Mer-
curial commitments with applications to zero-knowledge sets. In Ronald Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 422–439. Springer, Heidelberg, May 2005.
(Cited on page 5.)

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and Nicholas P.
Ward. Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768.
Springer, Heidelberg, May 2020. (Cited on page 5.)

[CKW13] David Cash, Alptekin Küpçü, and Daniel Wichs. Dynamic proofs of retrievability via oblivious
RAM. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 279–295. Springer, Heidelberg, May 2013. (Cited on page 4.)

[CT05] Christian Cachin and Stefano Tessaro. Asynchronous verifiable information dispersal. In
Pierre Fraigniaud, editor, Distributed Computing, 19th International Conference, DISC
2005, Cracow, Poland, September 26-29, 2005, Proceedings, volume 3724 of Lecture Notes in
Computer Science, pages 503–504. Springer, 2005. (Cited on page 4.)

[DVW09] Yevgeniy Dodis, Salil P. Vadhan, and Daniel Wichs. Proofs of retrievability via hardness
amplification. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 109–127.
Springer, Heidelberg, March 2009. (Cited on page 4.)

[Fei23] Dankrad Feist. Data availability encoding. https://notes.ethereum.org/
ReasmW86SuKqC2FaX83T1g, 2023. Accessed: 2023-05-08. (Cited on page 27.)

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. In 28th FOCS,
pages 427–437. IEEE Computer Society Press, October 1987. (Cited on page 11.)

[FK23] Dankrad Feist and Dmitry Khovratovich. Fast amortized KZG proofs. Cryptology ePrint
Archive, Report 2023/033, 2023. https://eprint.iacr.org/2023/033. (Cited on page 33.)

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992
of LNCS, pages 33–62. Springer, Heidelberg, August 2018. (Cited on page 17.)

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and
Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
305–326. Springer, Heidelberg, May 2016. (Cited on page 8.)

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC,
pages 99–108. ACM Press, June 2011. (Cited on page 25.)

[JK07] Ari Juels and Burton S. Kaliski Jr. Pors: proofs of retrievability for large files. In Peng Ning,
Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM CCS 2007, pages
584–597. ACM Press, October 2007. (Cited on page 4.)

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In
24th ACM STOC, pages 723–732. ACM Press, May 1992. (Cited on page 8.)

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to
polynomials and their applications. In Masayuki Abe, editor, ASIACRYPT 2010, volume
6477 of LNCS, pages 177–194. Springer, Heidelberg, December 2010. (Cited on page 5, 8, 17,
27, 31, 32, 45.)

36

https://eprint.iacr.org/2022/638
https://notes.ethereum.org/ReasmW86SuKqC2FaX83T1g
https://notes.ethereum.org/ReasmW86SuKqC2FaX83T1g
https://eprint.iacr.org/2023/033

[LRY16] Benoît Libert, Somindu C. Ramanna, and Moti Yung. Functional commitment schemes:
From polynomial commitments to pairing-based accumulators from simple assumptions. In
Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors,
ICALP 2016, volume 55 of LIPIcs, pages 30:1–30:14. Schloss Dagstuhl, July 2016. (Cited on
page 5.)

[LY10] Benoît Libert and Moti Yung. Concise mercurial vector commitments and independent
zero-knowledge sets with short proofs. In Daniele Micciancio, editor, TCC 2010, volume 5978
of LNCS, pages 499–517. Springer, Heidelberg, February 2010. (Cited on page 5.)

[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryption function. In Carl
Pomerance, editor, CRYPTO’87, volume 293 of LNCS, pages 369–378. Springer, Heidelberg,
August 1988. (Cited on page 8, 17, 25, 31.)

[NNT21] Kamilla Nazirkhanova, Joachim Neu, and David Tse. Information dispersal with provable
retrievability for rollups. Cryptology ePrint Archive, Report 2021/1544, 2021. https:
//eprint.iacr.org/2021/1544. (Cited on page 3, 4.)

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.
In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer,
Heidelberg, August 1992. (Cited on page 8.)

[Rab89] Michael O. Rabin. Efficient dispersal of information for security, load balancing, and fault
tolerance. J. ACM, 36(2):335–348, 1989. (Cited on page 4.)

[SSP13] Elaine Shi, Emil Stefanov, and Charalampos Papamanthou. Practical dynamic proofs of
retrievability. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS
2013, pages 325–336. ACM Press, November 2013. (Cited on page 4.)

[SW08] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In Josef Pieprzyk, editor,
ASIACRYPT 2008, volume 5350 of LNCS, pages 90–107. Springer, Heidelberg, December
2008. (Cited on page 4.)

[SXKV21] Peiyao Sheng, Bowen Xue, Sreeram Kannan, and Pramod Viswanath. ACeD: Scalable data
availability oracle. In Nikita Borisov and Claudia Díaz, editors, FC 2021, Part II, volume
12675 of LNCS, pages 299–318. Springer, Heidelberg, March 2021. (Cited on page 3.)

[YSL+20] Mingchao Yu, Saeid Sahraei, Songze Li, Salman Avestimehr, Sreeram Kannan, and Pramod
Viswanath. Coded merkle tree: Solving data availability attacks in blockchains. In Joseph
Bonneau and Nadia Heninger, editors, FC 2020, volume 12059 of LNCS, pages 114–134.
Springer, Heidelberg, February 2020. (Cited on page 3.)

37

https://eprint.iacr.org/2021/1544
https://eprint.iacr.org/2021/1544

Part II

Appendix

Table of Contents
A Definition of Cryptographic Building Blocks 38

B Some Useful Bounds 40

C Omitted Details from Section 3 40
C.1 Omitted Details from Section 3.1 . 40
C.2 Extension: Repairability . 41
C.3 Extension: Local Accessibility . 41

D Omitted Details from Section 5 42

E Additional Notions for Erasure Code Commitments 42
E.1 Message-Bound Openings . 42
E.2 Computational Uniqueness . 43
E.3 Extractability . 44

F Omitted Details from Section 6 45
F.1 Omitted Details from Section 6.1 . 45
F.2 Omitted Details from Section 6.2 . 46
F.3 Omitted Details from Section 6.3 . 47

G Omitted Details from Section 7 48

H Omitted Details from Section 8 49

I Omitted Details from Section 9 54
I.1 Omitted Details from Section 9.1 . 54
I.2 Omitted Details from Section 9.2 . 58

J Simulation of Index Samplers 64

K Script for Parameter Computation 66

A Definition of Cryptographic Building Blocks
Definition 15 (Vector Commitment Scheme). A vector commitment scheme over alphabet Σ with length
` and opening alphabet Ξ is a tuple VC = (Setup,Com,Open,Ver) of PPT algorithms, with the following
syntax:

• Setup(1λ)→ ck takes as input the security parameter, and outputs a commitment key ck.

• Com(ck,m)→ (com, St) takes as input a commitment key ck and a string m ∈ Σ`, and outputs a
commitment com and a state St.

• Open(ck, St, i) → τ takes as input a commitment key ck, a state St, and an index i ∈ [`], and
outputs an opening τ ∈ Ξ.

• Ver(ck, com, i,mi, τ)→ b is deterministic, takes as input a commitment key ck, a commitment com,
and index i ∈ [`], a symbol mi ∈ Σ, and an opening τ ∈ Ξ, and outputs a bit b ∈ {0, 1}.

38

Further, we require that the following completeness property holds: For every ck ∈ Setup(1λ), every
m ∈ Σ`, and every i ∈ [`], we have

Pr
[
Ver(ck, com, i,mi, τ) = 1

∣∣∣∣ (com, St)← Com(ck,m),
τ ← Open(ck, St, i)

]
≥ 1− negl(λ).

Definition 16 (Position-Binding of VC). Let VC = (Setup,Com,Open,Ver) be a vector commitment
scheme over alphabet Σ with length `. We say that VC is position-binding, if for every PPT algorithm A,
the following advantage is negligible:

Advpos-bind
A,VC (λ) := Pr

 m 6= m′

∧ Ver(ck, com, i,m, τ) = 1
∧ Ver(ck, com, i,m′, τ ′) = 1

∣∣∣∣∣∣ ck← Setup(1λ),
(com, i,m, τ,m′, τ ′)← A(ck)

 .
Definition 17 (NP-Relation). Let R = (Rλ)λ be a family of binary relations Rλ ⊆ {0, 1}∗ × {0, 1}∗.
We define the language of yes-instances Lλ via

Lλ :=
{

stmt ∈ {0, 1}∗
∣∣ ∃ witn ∈ {0, 1}∗ : (stmt,witn) ∈ Rλ

}
.

We say that R is an NP-relation, if the following properties hold:

• There exists a polynomial poly, such that for any stmt ∈ Lλ, we have |stmt| ≤ poly(λ).

• Membership in Rλ is efficiently decidable, i.e. there exists a deterministic polynomial time algorithm
that decides Rλ.

• There is a polynomial poly′ such that for all (stmt,witn) ∈ Rλ we have |witn| ≤ poly′(|stmt|).

Definition 18 (Non-Interactive Argument of Knowledge). Let R be an NP-relation. A non-interactive
argument of knowledge for R is a tuple PS = (Setup,PProve,PVer) of PPT algorithms with the following
syntax:

• Setup(1λ)→ crs takes as input the security parameter, and outputs a common reference string crs.

• PProve(crs, stmt,witn)→ π takes as input a common reference string crs, a statement stmt, and a
witness witn, and outputs a proof π.

• PVer(crs, stmt, π)→ b is deterministic, takes as input a common reference string crs, a statement
stmt, a proof π, and outputs a bit b ∈ {0, 1}.

We require that the following properties hold:

• Completeness. For all crs ∈ Setup(1λ), and all (stmt,witn) ∈ Rλ, we have

Pr [PVer(crs, stmt, π) = 1 | π ← PProve(crs, stmt,witn)] = 1.

• Knowledge Soundness. There is a PPT algorithm Ext, such that for any PPT algorithm A, the
following advantage is negligible:

Advkn-sound
A,PS,Ext(λ) := Pr

(stmt,witn) /∈ Rλ ∧ PVer(crs, stmt, π) = 1

∣∣∣∣∣∣
crs← Setup(1λ),

(stmt, π)← A(crs),
witn← Ext(crs, stmt, π).

 .
We say that Ext is the knowledge extractor of PS.

Definition 19 (Homomorphic Hash Function). Let K = {Kλ}λ,D = {Dλ}λ,R = {Rλ}λ be families of
sets, such that for each λ, Dλ and Rλ are abelian groups. We denote both group operations additively. A
homomorphic hash function family with key space K, domain D, and range R is a pair HF = (Gen,Eval)
of PPT algorithms, with the following syntax:

• Gen(1λ)→ hk takes as input the security parameter, and outputs a hash key hk ∈ Kλ.

39

• Eval(hk, x)→ y is deterministic, takes as input a hash key hk ∈ Kλ, and an element x ∈ Dλ, and
outputs an element y ∈ Rλ.

Further, we require that the following properties holds:

• Homomorphism. For any hk ∈ Gen(1λ), and all x, x′ ∈ Dλ, we have

Eval(hk, x+ x′) = Eval(hk, x) + Eval(hk, x′).

• Collision-Resistance. For any EPT algorithm A, the following advantage is negligible:

Advcoll
A,HF(λ) := Pr

[
x 6= x′

∧ Eval(hk, x) = Eval(hk, x′)

∣∣∣∣ hk← Gen(1λ),
(x, x′)← A(hk)

]
.

For simplicity, we omit the subscript λ and write K,D,R instead of Kλ,Dλ,Rλ, if λ is clear from the
context.

B Some Useful Bounds
Lemma 23 (Chernoff Bound). Let X1, . . . , Xt be independent random variables with values in {0, 1}.
Let δ ≥ 0. Then, we have

Pr
[

t∑
i=1

Xi ≤ (1− δ)µ
]
≤ exp(−δ2µ/2), for µ := E

[
t∑
i=1

Xi

]
.

Lemma 24. Let N,D,L ∈ N with D,L ≤ N , L ≤ N −∆. Then, we have(
N −D
L

)/(
N

L

)
≤
(

1− D

N

)L
.

Proof. We have(
N −D
L

)/(
N

L

)
= (N −D)! · L! · (N − L)!

L! · (N −D − L)! ·N ! =
L−1∏
i=0

N −D − i
N − i

=
N∏

j=N−L+1

j −D
j

=
N∏

j=N−L+1
1− D

j
≤

N∏
j=N−L+1

1− D

N
=
(

1− D

N

)L
.

C Omitted Details from Section 3
C.1 Omitted Details from Section 3.1
The following lemma shows that data availability sampling, in particular the consistency property, implies
a collision-resistant hash function induced by the mapping from data to com via algorithm Encode, given
that the commitment com is smaller than the data data.

Lemma 25. Let DAS = (Setup,Encode,V = (V1,V2),Ext) be a data availability sampling scheme with
threshold T ∈ N. For any PPT algorithm A, there is a PPT algorithm B with T(B) ≈ T(A)+2T(Encode)+
2TT(V1) and

Pr

 data1 6= data2
∧ com1 = com2

∣∣∣∣∣∣∣∣
par← Setup(1λ),
(data1, data2)← A(par),
(π1, com1) := Encode(data1),
(π2, com2) := Encode(data2).

 ≤ Advcons
B,T,T,DAS(λ) + negl(λ).

40

Proof. Let A be a PPT algorithm that on input par outputs (data1, data2) such that there are π1, π2 with
(π1, com) = Encode(data1) and (π2, com) = Encode(data2). Then, we construct an algorithm B against
consistency of DAS as follows:

• When B gets as input par, it runs (data1, data2)← A(par).

• Then, it computes (π1, com1) := Encode(data1) and (π2, com2) := Encode(data2). If data1 = data2
or com1 6= com2, B aborts. Otherwise, it sets com := com1 = com2.

• Next, B runs tranj,i ← Vπj ,Q
1 (com) for all i ∈ [T] and j ∈ {1, 2}

• Finally, B outputs (com, (tran1,i)Ti=1 , (tran2,i)Ti=1).

We claim that, except with negligible probability, B breaks consistency. Namely, by completeness of DAS,
with overwhelming probability the following event holds for both j ∈ {1, 2}:

datak = Ext(tranj,1, . . . , tranj,`j
).

As data1 6= data2, B breaks consistency.

C.2 Extension: Repairability
Definition 20 (Repairable DAS). Let DAS = (Setup,Encode,V = (V1,V2),Ext) be a data availability
sampling scheme with encoding alphabet Σ, data length K ∈ N, and encoding length N ∈ N. We say that
DAS is (L, `)-repairable, if there is a deterministic polynomial time algorithm Repair, with the following
syntax and properties:

• Repair(com, tran1, . . . , tran`) → π̄/⊥ takes as input a commitment com, a list of transcripts trani,
and outputs an encoding π̄ ∈ ΣN or an abort symbol ⊥.

• Repair Liveness. Let A be a stateful algorithm and consider the following experiment G:

1. Run par← Setup(1λ) and com← A(par).
2. Run (trani)Li=1 ← Interact [V1,A]Q,L (com) and bi := V2(com, trani) for all i ∈ [L].
3. Run (ij)`j=1 ← A(tran1, . . . , tranL).
4. Run π̄ ← Repair(com, trani1 , . . . , trani`).
5. For all i ∈ [L], run tran′i ← Vπ̄,Q1 (com) and b′i := V2(com, tran′i).

Then, we require that for any stateful PPT algorithm A, the following advantage is negligible:

Advrepairlive
A,L,`,DAS,Repair(λ) := Pr

G

[
∀j ∈ [`] : bij = 1 ∧ ∃i ∈ [L] : b′i = 0

]
.

On Soundness and Consistency. One may wonder why we do not define any consistency or soundness
property for a scenario where clients interact with a repaired codeword. We claim that this is not needed,
as our consistency and soundness notions for data availability sampling schemes are robust enough to
cover such scenarios. The intuition is that whatever scenario could happen including algorithm Repair
and violate soundness or consistency, could be simulated by an adversary in the soundness or consistency
game, respectively.

C.3 Extension: Local Accessibility
Definition 21 (Locally Accessible DAS). Let DAS = (Setup,Encode,V = (V1,V2),Ext) be a data
availability sampling scheme with data alphabet Γ, encoding alphabet Σ, data length K ∈ N, and
encoding length N ∈ N. We say that DAS is locally accessible with query complexity L, if there is a PPT
algorithm Access, with the following syntax and properties:

• Accessπ,L(com, i) → d/⊥ takes as input a commitment com, and an index i ∈ [K], gets L-time
oracle access to an encoding π ∈ ΣN , and outputs a symbol d ∈ Γ or an abort symbol ⊥.

41

• Local Access Completeness. For any par ∈ Setup(1λ), any i ∈ [K], and all data ∈ ΓK , we have

Pr
[
d = datai

∣∣∣∣ (π, com) := Encode(data),
d← Accessπ,L(com, i)

]
≥ 1− negl(λ).

• Local Access Consistency. For any stateful PPT algorithm A, any index i ∈ [K], and any integer
` = poly(λ), the following advantage is negligible:

Advacc-cons
A,i,`,DAS,Access(λ) := Pr

 data 6= ⊥ ∧ d 6= ⊥ ∧ d 6= datai

∣∣∣∣∣∣∣∣
par← Setup(1λ), com← A(par),
d← AccessA,L(com, i),
(tran1, . . . , tran`)← A(par),
data := Ext(com, tran1, . . . , tran`)

 .

D Omitted Details from Section 5
Lemma 26. Let Cr : Fkr → Fnr and Cc : Fkc → Fnc be linear erasure codes with reception efficiencies
tr, tc, respectively. Then, Cr ⊗ Cc : Fkr·kc → Fnr·nc is an erasure code with reception efficiency

t = ncnr − (nc − tc + 1)(nr − tr + 1) + 1.

Proof. We want to reconstruct data M ∈ Fkc×kr given a set of symbols of X = GcMG>r ∈ Fnc×nr .
Let X ⊆ [nc] × [nr] be the set of indices of these symbols in X, i.e., for each (i, j) ∈ X , we know
Xi,j ∈ F. We say that a row i ∈ [nc] (resp. column j ∈ [nr]) is saturated if we have at least tr (resp.
tc) symbols, i.e., |X ∩ {i} × [nr]| ≥ tr (resp. X ∩ [nc] × {j} ≥ tc). Clearly, if a row (resp. column) is
saturated, we can reconstruct the entire row (resp. column) using reconstruction of the codes Cr (resp.
Cc). Now, assume there is no way in which we can reconstruct M. If at least tc rows are saturated, we
can reconstruct the entire matrix, contradicting our assumption. Thus, assume that at most tc − 1 rows
are saturated. Each saturated row has at most nr symbols in X . There are nc − (tc − 1) remaining rows,
all of which are not saturated. Each of those has at most tr − 1 symbols in X . Thus, we have at most
(tc− 1)nr + (nc− tc + 1)(tr − 1) symbols in X . In summary, if we can not reconstruct M, then X has size
at most (tc−1)nr+(nc− tc+1)(tr−1), which can be simplified to ncnr− (nc− tc+1)(nr− tr+1)+1.

E Additional Notions for Erasure Code Commitments
In this section, we define additional notions for erasure code commitment schemes that are helpful in
some cases.

E.1 Message-Bound Openings
We formally define the notion of message-bound openings for erasure code commitment schemes. To
recall, this notion is used when proving repairability of the resulting data availability sampling scheme,
see Section 6.3.

Definition 22 (Message-Bound Openings). Let CC = (Setup,Com,Open,Ver) be an erasure code com-
mitment scheme for an erasure code C with reception efficiency t and reconstruction algorithm Reconst.
We say that CC has message-bound openings, if for every PPT algorithm A, the following advantage is
negligible:

Advmb-open
A,CC (λ) :=

Pr

|I0| ≥ t ∧ |I1| ≥ t ∧ ⊥ /∈ {m0,m1}

∧ m0 = m1
∧ ∀i ∈ I0 : Ver(ck, com0, i, m̂0,i, τ0,i) = 1
∧ ∀i ∈ I1 : Ver(ck, com1, i, m̂1,i, τ1,i) = 1
∧ ∃i ∈ I1 : Ver(ck, com0, i, m̂1,i, τ1,i) = 0

∣∣∣∣∣∣∣∣∣∣
ck← Setup(1λ),(

(com0, (m̂0,i, τ0,i)i∈I0)
(com1, (m̂1,i, τ1,i)i∈I1)

)
← A(ck),

m0 := Reconst((m̂0,i)i∈I0),
m1 := Reconst((m̂1,i)i∈I1)

 .

42

E.2 Computational Uniqueness
We define the notion of computational uniqueness for erasure code commitments and study its implications.

Definition 23 (Computational Uniqueness). Let CC = (Setup,Com,Open,Ver) be an erasure code
commitment scheme for an erasure code C with reception efficiency t and reconstruction algorithm
Reconst. We say that CC is computationally unique, if for every PPT algorithm A, the following
advantage is negligible:

Advc-uniq
A,CC (λ) :=

Pr

|I0| ≥ t ∧ |I1| ≥ t ∧ ⊥ /∈ {m0,m1} ∧m0 = m1

∧ ∀i ∈ I0 : Ver(ck, com0, i, m̂0,i, τ0,i) = 1
∧ ∀i ∈ I1 : Ver(ck, com1, i, m̂1,i, τ1,i) = 1
∧ com0 6= com1

∣∣∣∣∣∣∣∣∣∣
ck← Setup(1λ),(

(com0, (m̂0,i, τ0,i)i∈I0)
(com1, (m̂1,i, τ1,i)i∈I1)

)
← A(ck),

m0 := Reconst((m̂0,i)i∈I0),
m1 := Reconst((m̂1,i)i∈I1)

 .

We show that computational uniqueness implies both message-bound openings and code-binding.
Remark that the converse direction is not true. Message-bound openings do not imply computational
uniqueness.

Lemma 27. Let C : Γk → Λn be an erasure code. Let CC = (Setup,Com,Open,Ver) be an erasure code
commitment scheme for C such that CC is computationally unique. Then, CC has message-bound openings.
Concretely, for any PPT algorithm A, there is a PPT algorithm B with T(B) ≈ T(A) and

Advmb-open
A,CC (λ) ≤ Advc-uniq

B,CC (λ).

Proof. Let A be an adversary against the message-bound openings property of CC. We construct an
adversary B against computational uniqueness as follows:

1. B gets as input a commitment key ck. Then, B runs A on input ck to get commitments and openings
(com0, (m̂0,i, τ0,i)i∈I0) and (com1, (m̂1,i, τ1,i)i∈I1).

2. B outputs (com0, (m̂0,i, τ0,i)i∈I0) and (com1, (m̂1,i, τ1,i)i∈I1).

Note that if com0 = com1, the adversary A trivially loses the message-bound opening game. Thus, if A
wins in the message-bound openings game, B wins the computational uniqueness game.

Lemma 28. Let C : Γk → Λn be an MDS code. Let CC = (Setup,Com,Open,Ver) be an erasure code
commitment scheme for C such that CC is computationally unique and satisfies position-binding. Then,
CC satisfies code-binding. Concretely, for any PPT algorithm A there are PPT algorithms B1,B2 with
T(B1) ≈ T(A),T(B2) ≈ T(A), and

Advcode-bind
A,CC (λ) ≤ Advpos-bind

B1,CC (λ) + Advc-uniq
B2,CC(λ).

Proof. We first recall the code-binding game for an adversary A as in the statement. The adversary
A first gets a freshly sampled commitment key ck ← Setup(1λ). Then, it outputs a commitment and
a few openings. Denote them by (com0, (m̂0,i, τ0,i)i∈I0), where I0 ⊆ [n] is the set of positions for
which the adversary opens the commitment. Then, A breaks code-binding, if all openings verify, i.e.,
Ver(ck, com0, i, m̂0,i, τ0,i) = 1 for all i ∈ I0, and there is no codeword in C that is consistent with these
openings m̂0,i. Our proof is as follows. We first oberve that |I0| > k has to hold, as C is an MDS code.
Next, let R ⊂ I0 be the set of the first k of the openings. Further, let m = Reconst((m̂0,i)i∈R), m̂1 = C(m),
and (com1, St) ← Com(ck,m). We know that m 6= ⊥ as C is an MDS code. In other words, m̂1 ∈ C is
the unique codeword consistent with the openings in R. Now, we can consider two cases. In the first case,
com1 = com0. In this case, we break position-binding. This is because there has to be at least one i∗ ∈ I0
with m̂0,i∗ 6= m̂1,i∗ , as otherwise the openings output by A would be consistent with the codeword m̂1.
A reduction can just compute an opening for m̂1,i∗ honestly and use it in combination with m̂0,i∗ , τ0,i∗

to break position-binding. In the second case, com1 6= com0. Here, we break computational uniqueness.
Namely, a reduction can output com0 with all openings output by the adversary in R, and output com1
with enough honestly computed openings. We omit a more formal exposition of these two reductions.

43

E.3 Extractability
We define the notion of extractability for erasure code commitment schemes, and study its implications.
We start with the formal definition.

Definition 24 (Extractable CC). Let C : Γk → Λn be an erasure code. Let CC = (Setup,Com,Open,Ver)
be an erasure code commitment scheme for C such that Com is deterministic, and use the notation
com = Ĉom(ck,m) for (com, St) = Com(ck,m). We say that CC is extractable, if there is a PPT
algorithm Ext, such that for any PPT algorithm A, the following advantage is negligible:

Advextr
A,Ext,CC(λ) := Pr

 Ver(ck, com, i, m̂, τ) = 1
∧ Ĉom(ck,m) 6= com

∣∣∣∣∣∣
ck← Setup(1λ),
(com, i, m̂, τ)← A(ck),
m← Ext(ck, com, i, m̂, τ)

 .
Next, we show that extractability is a strong notion, in a sense that, in combination with position-

binding, it implies code-binding and computational uniqueness.

Lemma 29. Let C : Γk → Λn be an erasure code. Let CC = (Setup,Com,Open,Ver) be an erasure code
commitment scheme for C such that Com is deterministic. Further, assume that CC is position-binding
and extractable. Then, CC is computationally unique. Concretely, for any PPT algorithm A, there are
PPT algorithms B,B′ with T(B) ≈ T(A),T(B′) ≈ T(A), and

Advc-uniq
A,CC (λ) ≤ 2 · Advextr

B,Ext,CC(λ) + Advpos-bind
B′,CC (λ).

Proof. Let A be an algorithm that breaks computational uniqueness of CC. That is, it gets as input a
commitment key ck and outputs commitments com0 and com1 as well as two sets of openings (m̂0,i, τ0,i)i∈I0

and (m̂1,i, τ1,i)i∈I1 . It breaks computational uniqueness if com0 6= com1, all openings verify, i.e., for all
b ∈ {0, 1} and all i ∈ Ib we have Ver(ck, comb, i, m̂b,i, τb,i) = 1, and both sets of openings reconstruct to
the same message, i.e., |I0| ≥ t, |I1| ≥ t, and for m0 := Reconst((m̂0,i)i∈I0) and m1 := Reconst((m̂1,i)i∈I1)
we have m0 = m1 and both are not ⊥. To prove that A can not win, our strategy is to extract two
messages that commit to com0 and com1, respectively. For that, we use the extractability of CC. Then,
we argue that they have to be the same. More precisely, we run m∗0 ← Ext(ck, com0, i0, m̂0,i0 , τ0,i0)
for some arbitrary, say the first, i0 ∈ I0, and m∗1 ← Ext(ck, com1, i1, m̂1,i1 , τ1,i1) for some arbitrary,
say the first, i1 ∈ I1, where Ext is the extractor that exists by extractability of CC. Extractability
tells us that Ĉom(ck,m∗0) = com0 and Ĉom(ck,m∗1) = com1, except with probability 2 · Advextr

B,Ext,CC(λ)
for some reduction B. Thus, as soon as we can show that m∗0 = m∗1, we know that A can not break
computational uniqueness. To show this, we define m̃0 := C(m0) and m̃1 := C(m1). Using a reduction
B′ to position-binding, we can argue that m̂b,i = m̃b,i for both b ∈ {0, 1} and each i ∈ Ib, except with
probability Advpos-bind

B′,CC (λ). Thus, we have

m∗0 = Reconst((m̃0,i)i∈I0) = Reconst((m̂0,i)i∈I0) = m0.

Analogously, we can show that m∗1 = m1. As m0 = m1, we can conclude that m∗0 = m∗1.

Lemma 30. Let C : Γk → Λn be an erasure code. Let CC = (Setup,Com,Open,Ver) be an erasure code
commitment scheme for C such that Com is deterministic. Further, assume that CC is position-binding and
extractable. Then, CC is code-binding. Concretely, for any PPT algorithm A, there are PPT algorithms
B,B′ with T(B) ≈ T(A),T(B′) ≈ T(A), and

Advc-uniq
A,CC (λ) ≤ Advextr

B,Ext,CC(λ) + Advpos-bind
B′,CC (λ).

Proof. We only sketch the proof, as it is very similar to the proof of Lemma 29. Let A be an adversary
against code-binding of CC. That is, A gets as input a commitment key ck ← Setup(1λ) and outputs
a commitment and a few openings. We denote them by (com, (m̂i, τi)i∈I), where I ⊆ [n] is the set

44

of positions for which the adversary opens the commitment. The adversary A breaks code-binding
if all openings verify, and there is no codeword that is consistent with the openings. Now, our goal
is to break position-binding with a reduction B′. For that, B′ first runs the extractor, namely, it
runs m∗ ← Ext(ck, com, i0, m̂i0 , τi0) for some arbitrary, say the first, i0 ∈ I. Except with probability
Advextr

B,Ext,CC(λ) for some reduction B, we have that Ĉom(ck,m∗) = com. Then, setting m̂∗ := C(m∗),
reduction B′ can compute valid openings τ∗i for m̂∗ with respect to com for any position i ∈ [n]. As
no codeword is consistent with A’s openings m̂i, we know that there is at least one i∗ ∈ I for which
m̂∗i∗ 6= m̂i∗ . Reduction B′ can thus output com, i∗, m̂∗i∗ , τ∗i∗ , m̂i∗ , τi∗ to break position-binding of CC.

Lemma 31 (Informal). The KZG polynomial commitment scheme [KZG10] is extractable in the algebraic
group model.

Proof Sketch. Suppose A is an algebraic algorithm running in the extractability game. It gets as input
a commitment key g, gs, . . . , gsk−1 for some degree bound k − 1. Then, it outputs a commitment com,
elements x, y ∈ Zp, and an opening τ . As both com and τ are group elements and A is algebraic, it also
outputs coefficients αi and γi such that com =

∏k−1
i=0

(
gs

i
)αi

and τ =
∏k−1
i=0

(
gs

i
)γi

. The extractor can
now just output the polynomial defined by coefficients αi.

F Omitted Details from Section 6
F.1 Omitted Details from Section 6.1
Proof of Lemma 2. Let A be an adversary against reconstruction-binding of CC. That is, A outputs
(com, (m̂i, τi)i∈I , (m̂′i, τ ′i)i∈I′) on input ck← Setup(1λ). We distinguish two cases by defining the following
events:

• Event Win: This event occurs if A breaks reconstruction-binding, i.e. for m := Reconst((m̂i)i∈I)
and m′ := Reconst((m̂′i)i∈I′) we have |I| ≥ t,|I ′| ≥ t, m 6= m′, Ver(ck, com, i, m̂i, τi) = 1 for all i ∈ I
and Ver(ck, com, i, m̂′i, τ ′i) = 1 for all i ∈ I ′.

• Event BreakPosBind: This event occurs if there is an index i∗ ∈ I ∩ I ′ such that m̂i∗ 6= m̂′i∗ .

Clearly, we can write

Advrec-bind
A,k,CC(λ) = Pr [Win] = Pr [Win ∧ BreakPosBind] + Pr [Win ∧ ¬BreakPosBind].

We bound these terms individually. First, consider the event Win ∧ BreakPosBind. Note that if this event
occurs, then especially τi∗ and τ ′i∗ are valid openings for m̂i∗ 6= m̂′i∗ , respectively. Therefore, we can
easily bound the probability of this event using a reduction B1 that breaks position-binding of CC as
follows: On input ck, B1 runs A(ck) and gets (com, (m̂i, τi)i∈I , (m̂′i, τ ′i)i∈I′). Then, B1 checks if event
Win∧BreakPosBind occurs, which can be done efficiently. If it does, B1 outputs (com, i∗, m̂i∗ , τi∗ , m̂

′
i∗ , τ

′
i∗),

where i∗ is the index in the definition of BreakPosBind. It is easy to see that B1 breaks position-binding
if event Win ∧ BreakPosBind occurs, and the running time of B1 is dominated by running A.

Next, we bound the probability of Win ∧ ¬BreakPosBind. Assume that this event occurs. Then we
know that for all i ∈ I ∩ I ′ we have m̂i = m̂′i, i.e. m̂ and m̂′ are consistent on I ∩ I ′. We can define

m̂∗i :=

m̂i, if i ∈ I \ I ′,
m̂i = m̂′i, if i ∈ I ∩ I ′,
m̂′i, if i ∈ I ′ \ I

for all i ∈ I ∪ I ′.

Note that for all m̂∗i , i ∈ I ∪ I ′, we have valid openings τi, as Win occurs. We claim that there is no
m∗ ∈ Γk, such that the codeword c = C(m∗) is consistent with (m̂∗i)i∈I∪I′ . Once this is established, the
reduction B2 breaking code-binding by outputting (m̂∗i)i∈I∪I′ is clear. Assume towards contradiction
that such an m∗ ∈ Γk exists. Then by completeness of algorithm Reconst, and because both (m̂i)i∈I
and (m̂′i)i∈I′ are a subsequence of c = C(m∗), we have Reconstk((m̂i)i∈I) = m∗ = Reconst((m̂′i)i∈I′). A
contradiction.

45

F.2 Omitted Details from Section 6.2
Proof of Lemma 3. We want to analyze the quality of algorithm Samplewr that samples indices uniformly
at random with replacement. Recall that for that, we have to upper bound the probability that `
invocations of Samplewr(1Q, 1N) jointly sample at most ∆ distinct indices in [N]. To this end, consider
the experiment (il,j)j∈[Q] ← Samplewr(1Q, 1N) for each l ∈ [`] as in the definition of index samplers. For
each subset I ⊆ [N] with |I| ≤ ∆, let EI be the event that the sampled indices il,j are all in I. Then, it
is clear that

Pr
G

 ∣∣∣∣∣∣
⋃
l∈[`]

{il,j | j ∈ [Q]}

∣∣∣∣∣∣ ≤ ∆

 ≤ ∑
I⊆[N], |I|≤∆

Pr [EI].

Now, we fix one such subset I. The probability of EI is at most(
|I|
N

)Q`
≤
(

∆
N

)Q`
,

because all Q` indices are sampled independently. As there are
(
N
∆
)
such subsets, the first part of the

lemma follows. To obtain the simpler bound, we use the fact

∀n ∈ N : ∀k ∈ [n] :
(
n

k

)
<
(n · e

k

)k
.

Then, we have (
N

∆

)(
∆
N

)Q`
<
N∆ · e∆

∆∆ · ∆Q`

NQ`
= e∆ ·N∆−Q` ·∆Q`−∆.

Now, we use c := ∆/N , and conclude with

e∆ ·N∆−Q` ·∆Q`−∆ = e∆ ·N∆−Q` · (cN)Q`−∆ ≤ e∆ · cQ`−∆ ≤ clogc(e)∆+Q`−∆ ≤ cQ`−(1−logc(e))∆.

Proof of Lemma 4. We analyze the locality of sampling uniformly with replacement. For that, consider
the experiment (ij)j∈[Q] ← Samplewr(1Q, 1N) and define the set Γ := {S(ij) | j ∈ [Q]}. Then, we need
to upper bound the probability that Γ is of size at most D. For that, fix any subset I ⊂ N of size D.
Using a union bound, we can as well upper bound the probability of Γ ⊆ I. As all indices ij are sampled
independently from [N], and S is a Q-to-1 mapping onto a set of size N/Q, the probability that I ⊂ N is
(D/(N/Q))Q. In combination, we have

Pr [|Γ| ≤ D] =
(
N/Q

D

)
· Pr [Γ ⊆ I] =

(
N/Q

D

)
·
(

D

N/Q

)Q
<

(
e ·N/Q
D

)D
·
(

D

N/Q

)Q
= eD ·

(
D

N/Q

)Q−D
,

where we used the fact
∀n ∈ N : ∀k ∈ [n] :

(
n

k

)
<
(n · e

k

)k
.

Proof of Lemma 5. We want to analyze the quality of sampling uniformly without replacement. Recall
that for that, we have to upper bound the probability that ` invocations of Samplewor(1Q, 1N) jointly
sample at most ∆ distinct indices in [N]. Consider the experiment (il,j)j∈[Q] ← Sample(1Q, 1N) for each
l ∈ [`] as in the definition of index samplers. For each subset I ⊆ [N] with |I| = ∆, let EI be the event
that the sampled indices il,j are all in I. Then, we have

Pr

 ∣∣∣∣∣∣
⋃
l∈[`]

{il,j | j ∈ [Q]}

∣∣∣∣∣∣ ≤ ∆

 ≤ ∑
I⊆[N], |I|≤∆

Pr [EI].

46

Now, fix one such subset I. The probability of EI is at most((
∆
Q

)/(
N

Q

))`
.

This is because each of the ` invocations of the sampler samples uniformly from
([N]
Q

)
, and all invocations

are independent. As there are
(
N
∆
)
such subsets I, the claim follows.

Proof of Lemma 6. It is clear that the claim holds for N mod Q 6= 0. Thus, assume that N is a multiple
of Q and set N ′ := N/Q. Now, observe that ` copies of Sampleseg output at most ∆ distinct indices, if
and only of they sample at most ∆′ := ∆/Q distinct segments seg1, . . . , seg` ∈ [N ′]. We can view the
sampling of seg1, . . . , seg` as ` independent executions of Samplewr(11, 1N ′), which shows the claim.

F.3 Omitted Details from Section 6.3
Proof of Lemma 11. Let A be an algorithm against local access consistency, and let i0 ∈ [K]. We first
recall the local access consistency game. In this game, A first gets parameters par = ck← Setup(1λ) as
input. Then, it outputs a commitment com. Next, algorithm Access is run on input com, i0 and with
oracle access to A. The algorithm outputs d after making exactly one query to A. Finally, A outputs
transcripts (tran1, . . . , tran`) and data := Ext(com, tran1, . . . , tran`) is run. The adversary A breaks local
access consistency, if data 6= ⊥, d 6= ⊥, and d 6= datai0 . Intuitively, this means that the outputs of
Access and Ext are not consistent. Now, let us introduce some notation. As in algorithm Ext, write
tranl := (il,j , d̂atal,il,j

, τl,il,j
)j∈[Q] for each l ∈ [L], and define the set I ⊆ [N] of indices i ∈ [N] such

that there is a (l, j) ∈ [L] × [Q] with il,j = i. Further, let (d̂ata
′
î0 , τ

′
î0

) be the result of the query that
Access made. Assuming data 6= ⊥, we know that |I| ≥ t, by definition of Ext. Define the index i1 := î0
if î0 ∈ I and i1 ∈ I arbitrary if î0 /∈ I. Then, define the set I ′ := (I \ {i1}) ∪ {̂i0}. Clearly, we have
|I ′| = |I| ≥ t(K). For each i ∈ I, define d̂atai exactly as in algorithm Ext. Further, for each i ∈ I

define τi to be the corresponding opening such that Ver(ck, com, i, d̂atai, τi) = 1. For each i ∈ I \ {i1},
set d̂ata

′
i := d̂atai and τ ′i := τi. Now, we claim that (com, (d̂atai, τi)i∈I , (d̂ata

′
i, τ
′
i)i∈I′) is an output with

which a reduction B can break reconstruction-binding of CC. Clearly, a reduction can compute this output.
Further, we |I| ≥ t and |I ′| ≥ t, as already observed. As data 6= ⊥ and d 6= ⊥, we know that all openings
are valid, i.e. Ver(ck, com, i, m̂i, τi) = 1 and Ver(ck, com, i, m̂′i, τ ′i) = 1 for all i ∈ I, i′ ∈ I ′. Finally, we
know that the i0th symbol of m := Reconst((m̂i)i∈I) and the i0th symbol of m′ := Reconst((m̂′i)i∈I′)
are distinct. This is because the i0th symbol of m′ is d by the second property generalized systematic
encoding, and the i0th symbol of m is datai0 by definition of Ext.

Proof of Lemma 12. Let A be an adversary against the (L, `)-repairability of DAS[CC,Sample]. We first
recall the repair liveness game. In this game, parameters par := ck← Setup(1λ) are generated and A is
run on input par. Then, A outputs a commitment com. After that, L copies of V1(com) are run, where
their oracle queries are answered by A. Let tran1, . . . , tranL denote the resulting transcripts that they
output, and bi := V2(com, trani) for all i ∈ [L]. Then, A gets to pick a subset {i1, . . . , i`} ⊆ [L] of ` of
these transcripts and algorithm Repair is run on input com, trani1 , . . . , trani` . It outputs a new encoding π̄
or ⊥. If it does not output ⊥, all L clients are run again, i.e., tran′i ← Vπ̄,Q1 (com) and b′i := V2(com, tran′i)
for all i ∈ [L]. The adversary A breaks repair liveness, if for all j ∈ [L], we have bij = 1, i.e., all selected
clients accepted before the repairing took place, but there is some i ∈ [L] with b′i = 0. The latter includes
the case where Repair output ⊥. We will now distinguish two cases, captured by the following two events.

• Event RepairBot: This event occurs, if Repair outputs ⊥ and the adversary breaks repair liveness.

• Event RepairSucc: This event occurs, if Repair does not output ⊥, i.e., it outputs an encoding π̄,
and the adversary breaks repair liveness.

Clearly, we have
Advrepairlive

A,L,`,DAS[CC,Sample],Repair(λ) ≤ Pr [RepairBot] + RepairSucc.

We will bound the probability of both events separately. Let us start with event RepairBot. Recall that
algorithm Repair internally runs Ext(com, trani1 , . . . , trani`), and only outputs ⊥ if Ext does. Therefore, if

47

event RepairBot occurs, the adversary first received parameters, then it output a commitment, and then it
found ` accepting out of L transcripts, such that these do not suffice to reconstruct the data. Intuitively,
this means that the adversary breaks subset-soundness of DAS[CC,Sample]. Indeed, one can make this
intuition formal. We only sketch a reduction B1 here. A reduction that runs in the subset-soundness
game gets as input par and forwards them to A. Then, it gets a commitment com and outputs it to the
subset-soundness game. It simulates the interaction with L copies of V1 by forwarding between A and
the subset-soundness game. Finally, it forwards A’s selection of indices i1, . . . , i` to the subset-soundness
game. One can easily see that this reduction breaks (L, `)-subset-soundness if event RepairBot occurs.
We have

Pr [RepairBot] ≤ Advsub-sound
B1,L,`,DAS(λ).

Next, we want to bound the probability of event RepairSucc. Intuitively, if this event occurs, then Ext
run within Repair was able to reconstruct data data, and thus (π̄, com) = Encode(data), but the new
encoding π̄ does not verify with respect to the initial commitment com. If we recall the structure of
an encoding, i.e., each symbol consists of an opening for the erasure code commitment com, then we
see that the adversary must intuitively break message-bound openings in this case. More precisely, this
works as follows. Because d̂ata was extracted by Ext, we know by definition of Ext that the transcripts
trani1 , . . . , trani` contain at least t valid symbols and openings d̂atai, τi for commitment com. Due to
completeness, the new encoding π̄ contains at least t valid openings τ̄i for d̂atai and commitment com.
Here d̂ata := C(data) as computed in Encode by algorithm Repair. Assuming adversary breaks repair
liveness, we know that one of the clients after the repairing rejects, i.e., b′i = 0 for some i ∈ [L]. By
definition of V2, this means that at least one of the new valid openings, say the jth, contained in the
new encoding π̄ does not work with the old commitment com. More precisely, letting (d̂ataj , τ̄j) be the
jth symbol of π̄, we know that Ver(ck, com, j, d̂ataj , τ̄j) = 0. This leads to a reduction B2 that breaks
the message-bound openings property of CC. The reduction gets as input the commitment key ck and
runs A in the repair liveness game with par := ck. If event RepairSucc occurs, the reduction outputs
com, (d̂ataj , τj)j and com, (d̂ataj , τ̄i)j . We have

Pr [RepairSucc] ≤ Advmb-open
B2,CC (λ).

G Omitted Details from Section 7
Proof of Lemma 14. We prove the statement via a sequence of games. Let A be an algorithm in the
code-binding game of CC[C,VC,PS].
Game G0: We define G0 to be the code-binding game of CC[C,VC,PS]. That is, adversary A gets as
input ck = (ckVC, crs, ρ) generated as in Setup and outputs (com, (m̂i, τi)i∈I) to break code-biding. The
game outputs 1 if all τi are valid openings for m̂i,, i.e. Ver(ck, com, i, m̂i, τi) = 1 for all i ∈ I, and there is
no m such that the m̂i are compatible with C(m). By definition, we have

Pr [G0 ⇒ 1] = Advcode-bind
A,CC[C,VC,PS](λ).

Game G1: This game is defined as G0, with an additional check at the end. Namely, after A outputs
(com, (m̂i, τi)i∈I), the game parses com = (comVC, π) and sets stmt := (ckVC, comVC, ρ). Then, it runs
witn← PS.Ext(crs, stmt, π). It returns 0 if we have (stmt,witn) /∈ R and PVer(crs, stmt, π) = 1. Otherwise,
it returns whatever G0 would have returned. It is clear that the difference between G0 and G1 can be
bounded using a straight-forward reduction B1 that breaks knowledge soundness of PS. We have

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ Advkn-sound
B1,PS,PS.Ext(λ).

Finally, we bound the probability that G1 outputs 1 using a reduction B2 that breaks position-binding of
VC. The intuition is as follows: If G1 outputs 1, we extracted witness witn = m such that for m̂∗ := C(m)
we have (comVC, StVC) = VC.Com(ckVC, m̂

∗; ρ) for some state StVC, due to the definition of relation R. If
G1 outputs 1, then in particular A breaks code-binding. Thus, there must be some index i such that the

48

returned m̂i is different from m̂∗i . By completeness of VC, we can use StVC to compute a valid opening τi
for m̂∗i for commitment comVC. Now, we have valid openings for comVC for two different symbols m̂i 6= m̂∗i
at position i, i.e. we break position-binding. It is trivial to turn this intuition into a formal reduction B2,
which gets as input ckVC, simulates G1 for A, and outputs m̂i, m̂

∗
i along with their respective openings.

We have
Pr [G1 ⇒ 1] ≤ Advpos-bind

B2,VC (λ).

Proof of Lemma 15. We prove the statement via a sequence of games.
Game G0: Game G0 is the message-bound openings game. Recall that in this game, A outputs
com0, (m̂0,i, τ0,i)i∈I0 and com1, (m̂1,i, τ1,i)i∈I1 on input ck = (ckVC, crs, ρ). The game G0 outputs 1,
i.e., A breaks the message-bound openings property of CC, if both sets of openings (m̂0,i, τ0,i)i∈I0 and
(m̂1,i, τ1,i)i∈I1 allow to reconstruct the same message, the openings verify with respect to their respective
commitments, but the openings in I1 do not all verify with respect to com0. Recall that com0 and com1
have the form com0 = (comVC,0, π0) and com1 = (comVC,1, π1), respectively. It will be our goal to show
that the vector commitments comVC,0, comVC,1 are the same. It is clear from the construction that this
implies that A can not win. We have

Advmb-open
A,CC (λ) = Pr [G0 ⇒ 1].

Game G1: InG1, we use the knowledge extractor PS.Ext of PS to extract witnesses from the proofs π0 and
π1 contained in com0 and com1. Namely, the game runsm0 ← PS.Ext(crs, (ckVC, comVC,0, ρ), π0) andm1 ←
PS.Ext(crs, (ckVC, comVC,1, ρ), π1). The game outputs 0 if the first component of VC.Com(ckVC, C(m0); ρ)
is not comVC,0 or the first component of VC.Com(ckVC, C(m1); ρ) is not comVC,1. Otherwise, G1 behaves
as G0. Clearly, the difference between games G0 and G1 can bounded using the knowledge soundness of
PS, i.e., we have a reduction B1 with

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ 2 · Advkn-sound
B1,PS,PS.Ext(λ).

Game G2: Game G2 is as game G1, but with an additional modification of the winning condition.
Namely, if there is a b ∈ {0, 1}, and an i ∈ Ib such that m̂b,i 6= C(mb)i, then the game outputs 0.
Otherwise, it behaves as G1. Here, recall that m̂b,i is part of the opening that A outputs, and mb is
the message that the game extracts from πb as described in G1. Note that for m̂b,i, A also outputs
an opening τb,i that verifies with respect to comVC,b. Also, a reduction can obtain a valid opening for
C(mb)i using ρ. Thus, we can easily construct a reduction B2 that breaks position-binding of VC if A
can distinguish G1 and G2. We have

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤ Advpos-bind
B2,VC (λ).

We can now argue that the probability that G2 outputs 1 is zero. For that, observe that

m0 = Reconst((m̂0,i)i∈I0) = Reconst((m̂1,i)i∈I1) = m1,

where the second equality follows from the winning condition of message-bound openings, and the first
and last equality follow from correctness of Reconst. From that, we get that the vector commitments
comVC,0 and comVC,1 contained in com0 and com1 are the same. One can observe that in this case, A can
never win, i.e.,

Pr [G2 ⇒ 1] = 0.

H Omitted Details from Section 8
Proof of Lemma 16. Let A be an adversary against position-binding of CC⊗. We give a reduction B
that runs A internally, and breaks position-binding of CCc if A breaks position-binding of CC⊗. Namely,
B gets as input a commitment key ck and runs A on input ck. Then, A terminates with output
(com, j, m̂, τ, m̂′, τ ′). Finally, B writes com = (com1, . . . , comnr

), sets (i∗, j∗) := ToMatIdx(j), and outputs

49

(comj∗ , i
∗, m̂, τ, m̂′, τ ′). Clearly, B perfectly simulates the position-binding game forA, and its running time

is dominated by the running time of A. Assuming that A breaks position-binding, we know that m̂ 6= m̂′,
and by definition of Ver⊗, we have Ver⊗(ck, comj∗ , i

∗, m̂, τ) = 1 and Ver⊗(ck, comj∗ , i
∗, m̂′, τ ′) = 1. This

means that B breaks position-binding of CCc.

Proof of Lemma 17. We prove computational uniqueness by showing a simpler yet stronger statement.
Namely, let A be a PPT algorithm. Assume that A gets as input a commitment key ck ← Setupc(1λ)
and outputs a commitment com = (com1, . . . , comnr

), and some openings. We denote these openings
by Xi,j ∈ F, τi,j for (i, j) ∈ I ⊆ [nc] × [nr], where I denotes the set of indices for which A opens the
commitment. Further, assume the following three conditions hold:

• The size of I is at least the reception efficiency t of Cr ⊗ Cc.

• The reconstruction algorithm of Cr ⊗Cc does not output ⊥. The output is m ∈ Fkckr , which defines
a matrix M ∈ Fkc×kr .

• All openings Xi,j ∈ F, τi,j are valid according to Ver⊗.

In this case, we have (except with some negligible probability δ) that for all j ∈ [nr] we have
Ĉomc(ck, (MG>r)j) = comj , where (MG>r)j denotes the jth column of MGr. It can easily be ob-
served that this statement implies computational uniqueness and the advantage against computational
uniqueness is bounded by 2δ. The rest of the proof is dedicated to showing this statement. We do so by
providing a sequence of games.
Game G0: We start with G0, which models the setting above. Namely, in game G0, the game
first samples ck ← Setupc(1λ). Then, it runs A on input ck. As a result A outputs a commitment
com = (com1, . . . , comnr) and openings Xi,j ∈ F, τi,j for (i, j) ∈ I ⊆ [nc]×[nr] as above. The game outputs
1 if the three conditions from above hold, but there is a j ∈ [nr] such that Ĉomc(ck, (MG>r)j) 6= comj .
Our goal is to upper bound

δ := Pr [G0 ⇒ 1].

Before we continue with the next game, we introduce the set I∗ ⊆ [nr], which is defined as

I∗ := {j ∈ [nr] | ∃i ∈ [nr] : (i, j) ∈ I} .

Intuitively, I∗ corresponds the set of columns in which the adversary opened any index. It is easy to see
that I∗ contains at least kr elements if G0 outputs 1.
Game G1: This game is as G0, but we additionally run the extractor Ext of the commitment scheme
CCc a few times. Precisely, after obtaining the output from A, the game does the following for each
j ∈ I∗: It first tries to extract a preimage of the commitment comj via Yj ← Ext(ck, comj , i,Xi,j , τi,j),
where i ∈ [nr] is the first index such that (i, j) ∈ I. Here, we have Yj ∈ Fkc . Then, the game outputs 0
and terminates if for (com, St) = Comc(ck,Yj) we have com 6= comj . Finally, if the game did not yet
terminate after having done this for all j ∈ I∗, it returns whatever G0 would return. Clearly, games
G0 and G1 only differ if extraction fails, i.e., A manages to output an opening Xi,j , τi,j as above which
verifies with respect to commitment comj , but for which Ext does not output a correct preimage Yj . A
straight-forward reduction B against extractability of CCc shows

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ Advextr
B,Ext,CCc

(λ).

Game G2: This game is as G1, but we introduce a bad event and let the game abort if it occurs. To
define the bad event, we first recall that during verification of A’s output, vectors a ∈ Fnr−kr are sampled
uniformly, and the equation Ĉomc(ck,0) 6=

∑nr

i=1 hj ·comj is checked, where h = H>a. Written differently,
it is checked that Ĉomc(ck,0) = com H>a.

• Event LinCol: This event occurs, if Ĉomc(ck,0) = com H>a, but there is a column of com H>

which is not equal to Ĉomc(ck,0), where a ∈ Fnr−kr is sampled uniformly during verification (see
algorithm Ver⊗).

50

We can easily bound the probability of LinCol. For that, observe that if a column of com H> is not
equal to Ĉomc(ck,0), then the map a 7→ com H>a is a non-zero homomorphism from Fnr−kr to the
commitment space. As a is sampled uniformly and independent of everything else, the probability that it
ends up being in the kernel of this map is at most 1/|F|. We have

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤ Pr [LinCol] ≤ 1
|F|
.

Next, we introduce some notation. Namely, we define the set H ⊆ [nr] to be the first kr indices in I∗.
Further, we define the set W := [nr] \ H of the remaining indices. Having defined the sets H and W, we
now define certain matrices and vectors:

• Consider the parity-check matrix H ∈ F(nr−kr)×nr of Cr. We split H into two matrices HH ∈
F(nr−kr)×kr and HW ∈ F(nr−kr)×(nr−kr). This is done in the following way: The matrix HH
contains all columns with indices in H, and the matrix HW contains all columns with indices in W .
Both are ordered in the canonical way. Observe that because of our assumption that Cr is an MDS
code, we know that HW and H>W are invertible.

• We partition the commitments comj , j ∈ [nr] in the same way into comH = (comj)j∈H and
comW = (comj)j∈W .

• Recall from G1 that the game extracts vectors Yj ∈ Fkc for every j ∈ I∗. In particular, it extracts
Yj for every j ∈ H ⊆ I∗. We arrange these Yj for j ∈ H into a matrix YH ∈ Fkc×kr . Further, we
define the matrix

YW := −YHH>H
(
H>W

)−1
.

Also, we define the matrix Y ∈ Fkc×nr by merging YH and YW in the natural way, i.e., the columns
in H of Y are filled by YH and the columns in W are filled by YW , both by respecting the natural
order.

• We encode the matrix Y that we just defined using the code Cc. That is, we define a matrix
X̂ := GcY ∈ Fnc×nr .

The intuition is as follows: The matrix YW completes the extracted YH into a matrix with rows in the
code. The matrix is consistent with the commitments and openings output by A, as we will show. We
continue by making this intuition formal in the following claims.

Claim 1. Consider the notations and assumptions from the proof of Lemma 17. Every row of Y and
every row of X̂ is in the code Cr.

We prove Claim 1. To do so, it is sufficient to show that YH> = 0. Observe that

YH> = YHH>H + YWH>W
= YHH>H −YHH>H

(
H>W

)−1 H>W
= YHH>H −YHH>H = 0.

Claim 2. Consider the notations and assumptions from the proof of Lemma 17. Let j ∈ [nr] be arbitrary.
Then for the jth column Yj of Y, we have that Ĉomc(ck,Yj) = comj .

To prove Claim 2, we first observe that by G1 and the definition of YH, the claim holds for all j ∈ H.
Thus, it remains to prove the claim for all j ∈ W . For that, we first recall from G2, that every column of
com H> is equal to Ĉomc(ck,0). Using the homomorphic properties of Ĉomc(ck, ·), this implies that

comW H>W = −comH H>H.

Now, multiplying both sides with
(
H>W

)−1, we have

comW = −comH H>H
(
H>W

)−1
.

51

If we now look at one specific column j ∈ W of this equation, we have

comj = −comH H>H
(
H>W

)−1
j

= Ĉomc(ck,YHH>H
(
H>W

)−1
j

) = Ĉomc(ck,Yj),

as desired.

Claim 3. Consider the notations and assumptions from the proof of Lemma 17. Let (i, j) ∈ I be arbitrary.
Then, we have Xi,j = X̂i,j , except with probability Advpos-bind

B′,CCc
(λ), for a reduction B′ with T(B′) ≈ T(A).

To see that Claim 3 holds, observe that a reduction simulating G2 knows a preimage Yj for all
commitments comj output by the adversary (cf. Claim 2). Thus, in case Xi,j 6= X̂i,j holds for some
(i, j) ∈ I, a reduction can output comj , the opening Xi,j , τi,j , and an opening for X̂i,j to break position-
binding of CCc. The reduction can compute the latter opening as it knows Yj .

Finally, we show how to use the three claims to argue that (except with the probability bounded by
reduction B′ in Claim 3) G2 does not output 1. This is done as follows. From Claim 1, we know that
X̂ = GcM̃G>r for some M̃ ∈ Fkc×nr . As |I| ≥ t, we thus know that M̃ is defined by the output by the
reconstruction algorithm on input (X̂i,j)(i,j)∈I . As Xi,j = X̂i,j for all (i, j) ∈ I, we know that this input
is the same as (Xi,j)(i,j)∈I . An initial assumption (see G0) was that reconstructing from (Xi,j)(i,j)∈I

yields M. Therefore, we have M̃ = M. Thus, we showed that GcY = X̂ = GcMG>r . As Gc induces
an injective mapping, we have Y = MG>r . Thus, by Claim 2, we have that the jth column of MG>r
commits to comj for all j ∈ [nr], which is what we wanted to show. In summary, we showed that

δ ≤ Advextr
B,Ext,CCc

(λ) + Advpos-bind
B′,CCc

(λ) + 1
|F|
.

Proof of Lemma 18. We want to prove that CC⊗ is code-binding. For that, we consider two cases. Namely,
either the adversary outputs openings such that in at least one column the openings are not consistent
with any codeword, or it does the same for at least one row. Formally, consider the code-binding game
of CC⊗. In this game, first a key ck ← Setupc(1λ) is generated. Then, the adversary A gets this key
and outputs a commitment com = (com1, . . . , comnr), and some openings. We denote these openings
by Xi,j ∈ F, τi,j for (i, j) ∈ I ⊆ [nc] × [nr], where I denotes the set of indices for which A opens the
commitment. In terms of notation, we define Ir(i) to be the set of indices in row i that are contained in
I, and Ic(j) to be the set of indices in column j that are contained in I. More formally, we set

Ir(i) := {j ∈ [nr] | (i, j) ∈ I}, Ic(j) := {i ∈ [nc] | (i, j) ∈ I},

for each i ∈ [nc] and each j ∈ [nr] The adversary A breaks code-binding, if all openings verify, and there
is no codeword that is consistent with these openings. Now, we define two events.

• Event BreakCol: This event occurs, if all openings verify, and there is a column j ∈ [nr], such that
no codeword of code Cc is consistent with the openings Xi,j for i ∈ Ic(j).

• Event BreakRow: This event occurs, if all openings verify, and there is a row i ∈ [nc], such that no
codeword of code Cr is consistent with the openings Xi,j for j ∈ Ir(i).

If A breaks code-binding, at least one of these two events must occur. Therefore, we have

Advcode-bind
A,CC⊗ (λ) ≤ Pr [BreakCol] + Pr [BreakRow ∧ ¬BreakCol].

Note that each column j ∈ [nr] is associated to a commitment comj output by the adversary. Thus, if
event BreakCol occurs, a reduction B can break code-binding of CCc. The reduction is trivial and we omit
it here. We have

Pr [BreakCol] ≤ Advcode-bind
B,CCc

(λ).

For the rest of the proof, we focus on bounding the probability of event BreakRow ∧ ¬BreakCol. That is,
we need to argue that the adversary can not output openings of a row such that no codeword (in the

52

code Cr) is consistent with the openings. We prove this via a sequence of games. This is almost identical
to the proof of Lemma 17, and we encourage the reader to read the proof of Lemma 17 first.
Game G0: Game G0 is exactly the code-binding game as above, with the modification that it outputs 1
if and only if event BreakRow ∧ ¬BreakCol occurs. If it occurs, let i∗ ∈ [nc] be the first row that triggers
event BreakRow. That is, let i∗ be the first row for which no codeword of Cr is consistent with the
openings Xi∗,j for j ∈ Ir(i∗). By definition, we have

Pr [BreakRow ∧ ¬BreakCol] = Pr [G0 ⇒ 1].

The rest of the proof will not use the openings other than Xi∗,j for j ∈ Ir(i∗).
Game G1: Game G1 is as G0. In addition, G1 runs the extractor Ext of the column commitment
scheme CCc a few times. Namely, when obtaining the output from A, the game does the following for
each j ∈ Ir(i∗): It first runs Yj ← Ext(ck, comj , i

∗,Xi∗,j , τi∗,j) to extract a preimage of comj . We have
Yj ∈ Fkc . The game outputs 0 and terminates if for (com, St) = Comc(ck,Yj) we have com 6= comj .
Finally, if the game did not yet terminate after having done this for all j ∈ Ir(i∗), it continues as G0 would
do. The difference between G0 and G1 can easily be bounded using reduction B′ against extractability
of CCc. We have

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ Advextr
B′,Ext,CCc

(λ).

Game G2: This game is as G1, with an additional bad event on which the game aborts. Namely,
recall that during verification of A’s output, vectors a ∈ Fnr−kr are sampled uniformly, and the game
checks the equation Ĉomc(ck,0) 6=

∑nr

i=1 hj · comj , where h = H>a. That is, it is checked that
Ĉomc(ck,0) = com H>a. We define event LinCol exactly as in G2 of the proof of Lemma 17.

• Event LinCol: This event occurs, if Ĉomc(ck,0) = com H>a, but there is a column of com H>

which is not equal to Ĉomc(ck,0), where a ∈ Fnr−kr is sampled uniformly during verification (see
algorithm Ver⊗).

The probability of LinCol is at most 1/|F|, which can be seen as in the proof of Lemma 17. We have

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤ Pr [LinCol] ≤ 1
|F|
.

Next, we introduce some notation, which is similar to the notation in the proof of Lemma 17. The set
H ⊆ [nr] is defined to be the first kr indices in Ir(i∗). The set W is defined as W := [nr] \H. Recall that
if the game outputs 1, the adversary output openings for all indices j ∈ H in row i∗. Additionally, it may
have output openings for some indices in W. We will later see that there is at least one index in W for
which the adversary provided an opening. We now define certain matrices and vectors as in the proof of
Lemma 17:

• Let H ∈ F(nr−kr)×nr be the parity-check matrix of Cr. We split H into two matrices HH ∈
F(nr−kr)×kr and HW ∈ F(nr−kr)×(nr−kr). This is done as follows: The matrix HH contains all
columns with indices in H, and the matrix HW contains all columns with indices in W. Both are
ordered in the canonical way. As Cr is an MDS code, we know that HW and H>W are invertible.

• We partition the commitments comj , j ∈ [nr] in the same way into comH = (comj)j∈H and
comW = (comj)j∈W .

• Recall that the game extracts vectors Yj ∈ Fkc for every j ∈ Ir(i∗) (see G1). Especially, it extracts
Yj for every j ∈ H ⊆ Ir(i∗). We arrange these Yj for j ∈ H into a matrix YH ∈ Fkc×kr . We define

YW := −YHH>H
(
H>W

)−1
.

We define the matrix Y ∈ Fkc×nr by merging YH and YW in the natural way, i.e., the columns in
H of Y are filled by YH and the columns in W are filled by YW , both by respecting the natural
order.

• We define a matrix X̂ := GcY ∈ Fnc×nr .

53

The intuition is as follows: The matrix YW completes the extracted YH into a matrix with rows in the
code, which is consistent with the commitments output by A. As we assume that A breaks code-binding,
we know that this completed matrix has to be different from the output of A, which will allow us to
break binding of CCc. To make this intuition formal, we will show three claims.

Claim 4. Consider the notations and assumptions from the proof of Lemma 18. Every row of Y and
every row of X̂ is in the code Cr.

The proof of Claim 4 is identical to the proof of Claim 1.

Claim 5. Consider the notations and assumptions from the proof of Lemma 18. Let j ∈ [nr] be arbitrary.
Then for the jth column Yj of Y, we have that Ĉomc(ck,Yj) = comj .

The proof of Claim 5 is identical to the proof of Claim 2.

Claim 6. Consider the notations and assumptions from the proof of Lemma 18. There is at least one
j∗ ∈ W such that A output an opening of index (i∗, j∗), i.e., j∗ ∈ Ir(i∗), and for this j∗, the opening
Xi∗,j∗ ∈ F output by A is different from the element X̂i∗,j∗ .

To prove Claim 6, observe that if no j∗ ∈ W is opened or all openings in W are consistent with X̂,
then the opened indices in row i∗ are consistent with the i∗th row of X̂. However, by Claim 4, the i∗th
row of X̂ is in Cr. This contradicts the definition of i∗.

Now that we made these observations, we can bound the probability thatG2 outputs 1 using a reduction
B′′ that breaks position-binding of CCc. The reduction can be summarized as follows: It gets as input
the commitment key ck and forwards it to A. Once A outputs a commitment com = (com1, . . . , comnr

)
and openings, B′′ does all the steps as in G2. If G2 outputs 1, B′′ knows the row i∗. It computes the
matrix Y as defined above. Then, B′′ finds the index j∗ as in Claim 6. Now, note that B′′ can break
position-binding of CCc by outputting comj∗ , the opening that A output, and an opening for X̂i∗,j∗ .
Note that B′′ can compute this opening, because it knows the commitment preimage Yj∗ of comj∗ (see
Claim 5). We have

Pr [G2 ⇒ 1] ≤ Advpos-bind
B′′,CCc

(λ).

I Omitted Details from Section 9
I.1 Omitted Details from Section 9.1
Lemma 32. Let ∆ ∈ [n]. Let A be any stateful algorithm, and consider the following experiment G:

1. Run A to obtain X ∈ Fk×n. Let Xj ∈ Fk for j ∈ [n] be the jth column of X.

2. Sample a matrix R←$ FP×k.

3. Run A on input R, and get a matrix W ∈ FP×n from A. Let Wj ∈ FP be the jth column of W,
for each j ∈ [n].

4. Sample J←$
([n]
L

)
and set Win := 0. If the following three conditions hold, set Win := 1:

(a) For each row w> ∈ F1×n of W, we have w ∈ C.
(b) For all j ∈ J , we have Wj = RXj.
(c) We have dcol

(
C≡k,X

)
> ∆.

Then, for any A and any ∆ as above that satisfies ∆ < d∗/4, we have

Pr
G

[Win = 1] ≤
(

∆ + 1
|F|

)P
+
(

1− ∆ + 1
n

)L
.

54

Proof. The proof follows the arguments in [AHIV22], Theorem B.1. Consider game G specified in the
lemma, and let the variables X,R,W be as in the game. We define the following event in game G:

• Event CloseRX: This event occurs, if there is a Y ∈ C≡P such that dcol (Y,RX) ≤ ∆.

Note that CloseRX implies that for each row y> of Y and the corresponding row r>X of RX, we have
d
(
y>, r>X

)
≤ ∆. Now, we can apply Lemma 4.2 in [AHIV22] to each column and get

Pr
G

[Win = 1 ∧ CloseRX] ≤
(

∆ + 1
|F|

)P
.

Further, we can write

Pr
G

[Win = 1] ≤ Pr
G

[Win = 1 ∧ ¬CloseRX] + Pr
G

[Win = 1 ∧ CloseRX].

Thus, it remains to bound the probability that CloseRX does not occur and Win = 1. If CloseRX does not
occur and Win = 1, we know that W ∈ C≡P , and for each Y ∈ C≡P we have dcol (Y,RX) > ∆. Thus,
we have dcol (W,RX) > ∆, meaning that there are at most n−∆− 1 columns on which W and RX
agree. Denote the set of these columns by J∗ ⊆ [n], |J∗| ≤ n−∆− 1. The probability that CloseRX does
not occur and Win = 1 can now be bounded by the probability that J ⊆ J∗, which is at most(|J∗|

L

)(
n
L

) ≤ (n−∆−1
L

)(
n
L

) ≤
(

1− ∆ + 1
n

)L
,

where we used Lemma 24.

Lemma 33. Let ∆ ∈ [n]. Let A be any stateful algorithm, and consider the following experiment G:

1. Run A to obtain matrices X ∈ Fk×n, W ∈ FP×n, and R ∈ FP×k. Let Xj ∈ Fk (resp. Wj ∈ FP)
for j ∈ [n] be the jth column of X (resp. W).

2. Sample J←$
([n]
L

)
and set Win := 0. If the following two conditions hold, set Win := 1:

(a) For all j ∈ J , we have Wj = RXj.
(b) We have dcol (RX,W) > ∆.

Then, for any A and any ∆ as above, we have

Pr
G

[Win = 1] ≤
(

1− ∆
n

)L
.

Proof. Consider an algorithm A running in the game specified by the lemma. Clearly, if n−∆ < L, the
probability that Win = 1 is zero. So, assume that L ≤ n−∆, and let J∗ be the set of columns j ∈ [n]
in which RX and W differ. Note that J∗ is fixed before J is sampled. If the second winning condition
holds, we know that |J∗| > ∆. If the first winning condition holds, we know that J ⊆ [n] \ J∗. As J is
sampled uniformly at random from the size L subsets of [n], we have can upper bound the probability of
J ⊆ [n] \ J by (

n−|J∗|
L

)(
n
L

) ≤
(
n−∆
L

)(
n
L

) ≤
(

1− ∆
n

)L
,

where we used Lemma 24.

Lemma 34. Let ∆1,∆2 ∈ [n]. Let A be any stateful algorithm, and consider the following experiment G:

1. Run A to obtain X ∈ Fk×n. Let Xj ∈ Fk for j ∈ [n] be the jth column of X.

2. Sample a matrix R←$ FP×k.

55

3. Run A on input R, and get a matrix W ∈ FP×n and a set J ⊆ [n] from A. Let Wj ∈ FP be the
jth column of W, for each j ∈ [n].

4. Set Win := 0. If the following four conditions hold, set Win := 1:

(a) There is a X∗ ∈ C≡k, such that dcol (X∗,X) ≤ ∆1.
(b) There is no X′ ∈ C≡k, such that for each j ∈ J , the jth column of X′ is equal to Xj.
(c) For each row w> ∈ F1×n of W, we have w ∈ C.
(d) For all j ∈ J , we have Wj = RXj, and we have dcol (RX,W) ≤ ∆2.

Then, for any A and any ∆1,∆2 as above that satisfy ∆1 + ∆2 < d∗ and ∆1 ≤ b(d∗ − 1)/2c, we have

Pr
G

[Win = 1] ≤ 1
|F|P

.

Proof. Let A be an algorithm in the game specified in the lemma. Consider the event that A wins, i.e.
Win = 1. If this event occurs, we note that due to the assumption ∆1 ≤ b(d∗ − 1)/2c, we know that X∗
from the first winning condition is uniquely determined by X. Because X∗ ∈ C≡k, the second winning
condition implies that there is at least one column j∗ ∈ J such that the j∗th column of X∗, denoted X∗j∗
is not equal to Xj∗ . By the fourth winning condition, we have Wj∗ = RXj∗ . Further, we have

dcol (RX∗,W) ≤ dcol (RX∗,RX) + dcol (RX,W) ≤ ∆1 + ∆2 < d∗.

Because dcol (RX∗,W) < d∗ and RX∗ ∈ C≡P and W ∈ C≡P , we have RX∗ = W. Thus, we have

RXj∗ = Wj∗ = RX∗j∗ .

In summary, we showed the probability that Win = 1 can be upper bounded by the probability of
RXj∗ = RX∗j∗ , where Xj∗ ,X∗j∗ are fixed arbitrarily such that Xj∗ 6= X∗j∗ , and R ∈ FP×k is sampled
uniformly. Each row of R is sampled independently, and thus we have

Pr
R

[
RXj∗ = RX∗j∗

]
≤
(

1
|F|

)P
.

Lemma 35. Let A be any stateful algorithm, and consider the following experiment G:

1. Run A to obtain X ∈ Fk×n. Let Xj ∈ Fk for j ∈ [n] be the jth column of X.

2. Sample a matrix R←$ FP×k.

3. Run A on input R, and get a matrix W ∈ FP×n. Let Wj ∈ FP be the jth column of W, for each
j ∈ [n].

4. Sample a set J←$
([n]
L

)
.

5. Run A on input J , and obtain an output J ′ from A.

6. Set Win := 0. If the following four conditions hold, set Win := 1:

(a) There is no X′ ∈ C≡k, such that for each j ∈ J ′, the jth column of X′ is equal to Xj.
(b) For each row w> ∈ F1×n of W, we have w ∈ C.
(c) For all j ∈ J , we have Wj = RXj.
(d) For all j ∈ J ′, we have Wj = RXj.

Then, for any A as above, and any ∆1,∆2 ∈ [n] with ∆1 + ∆2 < d∗ and ∆1 ≤ d∗/4, we have

Pr
G

[Win = 1] ≤
(

∆1 + 1
|F|

)P
+
(

1− ∆1 + 1
n

)L
+
(

1− ∆2

n

)L
+ 1
|F|P

.

56

Proof. We prove the statement via a sequence of games, using Lemmata 32 to 34.
Game G0: This game is as game G from the lemma, and it outputs 1 if and only if Win = 1. We have

Pr
G

[Win = 1] = Pr [G0 ⇒ 1].

Game G1: In this game, we change the winning condition of the game. Namely, the game additionally
checks if dcol

(
C≡k,X

)
≤ ∆1. If dcol

(
C≡k,X

)
> ∆1, the game outputs 0. If all previous winning conditions

hold, and dcol
(
C≡k,X

)
≤ ∆1, the game outputs 1. It is clear that games G0 and G1 only differ if

dcol
(
C≡k,X

)
> ∆1. A simple reduction that runs in the game in Lemma 32 shows that

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤
(

∆1 + 1
|F|

)P
+
(

1− ∆1 + 1
n

)L
.

Game G2: In this game, we change the winning condition of the game again. Namely, as an additional
check, the game checks if dcol (RX,W) > ∆2. If this holds, it outputs 0. Otherwise, it behaves as G1.
We can easily bound the difference between G1 and G2 using a reduction that runs in the game in
Lemma 33, and get

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤
(

1− ∆2

n

)L
.

Finally, we can easily bound the probability that G2 outputs 1 using Lemma 34. We get

Pr [G2 ⇒ 1] ≤ 1
|F|P

.

Proof of Lemma 20. We first make some simple changes using a sequence of games. Then, we prove the
statement via a reduction that runs in the game specified in Lemma 35.
Game G0: Let A be an algorithm as in the lemma, running in the code-binding game of CC. We refer
to this game as G0. That is, A is run with input ck := ⊥ and access to random oracles H,H1,H2.
It makes at most QH, QH1 , QH2 queries to random oracles H,H1,H2. Then, A outputs a commitment
com =

(
(hj)j∈[n],W, (Xj)j∈J

)
and symbols X′j ∈ Fk for all j in some set J ′ ⊆ [n]. Technically, A

also outputs openings τj = ⊥ for all j ∈ J ′. The game outputs 1, if there is no X̂ ∈ C≡k such that
X̂ is consistent with (X′j)j∈J′ , and all openings verify, i.e. VerCom(ck, com) = 1 and for all j ∈ J ′ it
holds that VerCol(ck, com, j,X′j) = 1. Without loss of generality, we assume that A never queries the
same input to the same random oracle twice, and that A made all queries that algorithm Ver makes to
check A’s final output. Also, we assume that whenever A makes a query H2(h1, . . . , hn,W), it queried
H1(h1, . . . , hn) before. These assumptions can be achieved by wrapping an additional algorithm around
A, which increases QH, QH1 , QH2 to Q̄H := QH + n, Q̄H1 := QH1 +QH2 + 1, Q̄H2 := QH2 + 1, respectively.
We have

Pr [G0 ⇒ 1] = Advcode-bind
A,CC (λ).

Game G1: This game is defined as G0, but we introduce two bad events HashPre and HashColl and let
the game abort if this event occurs. The events are defined as follows.

• Event HashPre: This event occurs, if A ever makes a query H1(h1, . . . , hn), and later makes a query
H(x) for some input x ∈ {0, 1}∗ such that H(x) = hj for some j ∈ [n]. Phrased differently, this
event occurs, if A makes a query H(x) that evaluates to hj , and hj has been input to H1 before in a
query H1(h1, . . . , hn).

• Event HashColl: This event occurs, if A ever makes two different query H(x),H(x′) for x 6= x′ ∈
{0, 1}∗ such that H(x) = H(x′).

Using a union bound over all pairs of queries to H, we can bound the probability of HashColl by Q̄2
H/2λ.

To bound the probability of event HashPre, note that for a fixed query to H, a fixed query to H1, and a

57

fixed index j ∈ [n], the probability that HashPre occurs for these queries and this index is 2−λ. Thus, a
union bound leads to

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ Pr [HashPre] + Pr [HashColl] ≤ Q̄HQ̄H1n

2λ + Q̄2
H

2λ .

Game G2: In this game, we guess the random oracle queries that are used for A’s final output. More
precisely, the game is as G1, but if first samples two indices i1←$ [Q̄H1] and i2←$ [Q̄H2]. Then, it runs G1
as it is. If the i1th query to H1 occurs after the i2th query to H2, the game aborts. Also, let the i1th query
to H1 be H1(h1, . . . , hn) and the i2th query to H2 be H2(h′1, . . . , h′n,W). If (h1, . . . , hn) 6= (h′1, . . . , h′n),
the game also aborts. Consider the final output com =

(
(hj)j∈[n],W, (Xj)j∈J

)
of A. If the i1th query to

H1 was H1(h1, . . . , hn) and the i2th query to H2 was H2(h1, . . . , hn,W), the game continues as G1 does.
Otherwise, it aborts. If G1 outputs 1, there has to be some indices i∗1, i∗2 that correspond to the hash
queries of A’s final output, and such that i∗1th query to H1 occurs before the i∗2th query to H2. Therefore,
G2 outputs 1 if and only if i1 = i∗1 and i2 = i∗2 and G1 outputs 1. Note that A’s view is independent of
the indices i1, i2 until a potential abort occurs. Thus, we have

Pr [G1 ⇒ 1] ≤ Q̄H1Q̄H2 · Pr [G2 ⇒ 1].

Now, we can easily bound the probability that G2 outputs 1 using a reduction B that runs in the
game specified in Lemma 35. The reduction is as follows.

1. Reduction B simulates G2 for A, including all aborts specified before.

2. Let the i1th query to H1 be H1(h1, . . . , hn) and the i2th query to H2 be H2(h1, . . . , hn,W). We
know that the i1th query to H1 occurs first, as otherwise G2 and the reduction would abort.

(a) When the i1th query to H1 happens, B extracts a matrix X̂ as follows: For each j ∈ [n],
reduction B checks if there is a previous random oracle query of the form H(X̂j) = hj , where
X̂j ∈ Fk. As we ruled out event HashColl, there can be at most one such query. If such a query
is found, it sets the jth column of X̂ to be X̂j . Otherwise, it sets the jth column of X̂ to be 0.
Then, the reduction outputs X̂ to the game, and gets as input a matrix R. The reduction sets
H1(h1, . . . , hn) := R, and continues the execution of A.

(b) When the i2th query to H2 happens, the reduction outputs W to the game, and gets as input
a set J . It sets H2(h1, . . . , hn,W) := J , and continues A’s execution.

3. When A terminates with final output com =
(
(hj)j∈[n],W, (Xj)j∈J

)
and X′j ∈ Fk for all j in some

set J ′ ⊆ [n], the reduction first does all checks as in G2. Note that if all checks pass, we know that
all Xj and all X′j are consistent with X̂ (cf. events HashColl and HashPre). The reduction now
outputs J ′ and terminates.

It is clear that the reduction perfectly simulates G2 for A. Also, one can observe that if G2 outputs 1,
then all winning conditions in the game specified in Lemma 35 hold. Thus, using Lemma 35, we have

Pr [G2 ⇒ 1] ≤
(

∆1 + 1
|F|

)P
+
(

1− ∆1 + 1
n

)L
+
(

1− ∆2

n

)L
+ 1
|F|P

.

I.2 Omitted Details from Section 9.2
Lemma 36. Let A be any stateful algorithm, and consider the following experiment G:

1. Generate hk← HF.Gen(1λ).

2. Run A on input hk to obtain h1, . . . , hn ∈ R.

3. Sample a matrix R←$ FP×k.

4. Run A on input R, and get a matrix W ∈ FP×n. Let Wj ∈ FP be the jth column of W, for each
j ∈ [n].

58

5. Sample a matrix S←$ Fn×L.

6. Run A on input S, and obtain an output Y, J ′, (Xj)j∈J′ from A.

7. Set Win := 0. If the following four conditions hold, set Win := 1:

(a) There is no X′ ∈ C≡k, such that for each j ∈ J ′, the jth column of X′ is equal to Xj.
(b) For all j ∈ J ′, we have Wj = RXj and HF.Eval(hk,Xj) = hj.
(c) For each row w> ∈ F1×n of W, we have w ∈ C.
(d) For each j ∈ [L], we have HF.Eval(hk,Yj) = [h1, . . . hn]Sj and RY = WS.

Then, for any PPT algorithm A in the above game, there is an EPT algorithm B with expected running
time ET(B) ≈ (1 + n)T(A) we have

Pr
G

[Win = 1] ≤ n

|F|L
+ 1
|F|P

+ 1
|F|L

+ Advcoll
B,HF(λ).

Proof. Our proof strategy is as follows. We first sample a random a hash key hk and adversarial
randomness, and fix it. Then, we run game G with this fixed key and randomness multiple times with
independent challenges, until we can extract preimages of all hash values h1, . . . , hn. We run G′ a final
time, rule out inconsistencies by reducing to collision-resistance, and use statistical arguments to finish
the proof.

We will now proceed more formally. Let A be a PPT algorithm in the game G specified in the lemma.
We define ε0 := PrG [Win = 1]. We want to bound this probability ε0. Assume that A makes use of
` = poly(λ) random coins. By making states and randomness explicit, we can write A as a triple of PPT
algorithms (A0,A1,A2), with the following syntax:

• A0(hk; ρ)→ (St0, h1, . . . , hn) takes as input the key hk and random coins ρ ∈ {0, 1}`. It outputs a
state St0 and values h1, . . . , hn ∈ R.

• A1(St0,R)→ (St1,W) is deterministic, takes as input St0, a matrix R, and outputs a state St1
and a matrix W.

• A2(St1,S) → (Y, J ′, (Xj)j∈J′) is deterministic, takes as input St1 and a matrix S, and outputs
Y, J ′, (Xj)j∈J′ .

Note that assuming that A gets all its random coins in the beginning is without loss of generality, as
A0 can just pass these coins to A1 and A2 via its state. We introduce another notation. Namely, we
denote the game G with fixed hash key hk and fixed adversarial random coins ρ by G(hk, ρ). Also, we
define εhk,ρ := PrG(hk,ρ) [Win = 1] for any hk, ρ.
Game G′: We define a new game G′. In this game, we run the adversary multiple times with the same
hk and ρ. Formally, we define G′ as follows.

1. Generate hk← HF.Gen(1λ) and sample ρ←$ {0, 1}`.

2. Run G(hk, ρ) and denote all variables x involved in this game run by x0. For example, variables
Win,S in this game run are denoted by Win(0),S(0), respectively. If Win(0) = 0, abort.

3. Initialize an empty list S := ∅, an empty map SY[·], and a counter q := 1.

4. While |S| < n, repeat the following:

(a) Run G(hk, ρ). Denote all variables x involved in this game run by x(q). For example, variables
Win,S in this game run are denoted by Win(q),S(q), respectively.

(b) If Win(q) = 1, then insert S(q) into S. Further, set SY[S] := Y.
(c) Set q := q + 1.

5. Set q∗ := q.

59

We will now analyze this game. Namely, we shall show two things. First, we establish a relation between
the probability of Win = 1 in G and Win(0) = 1 in G′. Second, we argue that the game runs in expected
polynomial time.

Claim 7. Consider the notations and assumptions from the proof of Lemma 36. We have

Pr
G′

[
Win(0) = 1

]
= Pr
G

[Win = 1] = ε0.

We prove Claim 7. Namely, first observe that if hk, ρ is fixed in G′, then Step 2 is clearly independent
of the rest of the game. Therefore, we have

Pr
G′

[
Win(0) = 1

∣∣∣ (hk, ρ) = (h̄k, ρ̄)
]

= Pr
G(h̄k,ρ̄)

[Win = 1] = Pr
G

[
Win = 1

∣∣ (hk, ρ) = (h̄k, ρ̄)
]

for each h̄k, ρ̄. Now, we can use the law of total probability to finish the proof of the claim, i.e.

Pr
G′

[
Win(0) = 1

]
=
∑
h̄k,ρ̄

Pr
G′

[
Win(0) = 1

∣∣∣ (hk, ρ) = (h̄k, ρ̄)
]
· Pr

hk,ρ

[
(hk, ρ) = (h̄k, ρ̄)

]
=
∑
h̄k,ρ̄

Pr
G

[
Win = 1

∣∣ (hk, ρ) = (h̄k, ρ̄)
]
· Pr

hk,ρ

[
(hk, ρ) = (h̄k, ρ̄)

]
= Pr
G

[Win = 1].

Claim 8. Consider the notations and assumptions from the proof of Lemma 36. The expected running
time of G′ is at most 1 + n times the running time of G.

We prove Claim 8. We show the bound on the running time for any fixed hk, ρ, which implies that
it holds for random hk, ρ. Denote the random variable modeling the running time of G′ by T ′ and the
running time of G by T . Consider the case where εhk,ρ = 0. Then, game G′ always stops in Step 2. Thus,
we can assume that εhk,ρ > 0 from now on. We shall first argue that the expected number of iterations q∗
of the loop in Step 4 is bounded by n/εhk,ρ. Then, we can conclude using the law of total expectation
and linearity of expectation. Namely,

E [T ′] = Pr
[
Win(0) = 0

]
E
[
T ′ |Win(0) = 0

]
+ Pr

[
Win(0) = 1

]
E
[
T ′ |Win(0) = 1

]
·

= (1− εhk,ρ) · T + εhk,ρ ·
(
T + E

[
q∗ |Win(0) = 1

]
· T
)

= (1 + εhk,ρ · E [q∗]) · T = (1 + n) · T,

where we used that for fixed hk, ρ, the random variable q∗ is indepdendent of Win(0). It remains to argue
that E [q∗] ≤ n/εhk,ρ. For each i ∈ [n], let Xi be the random variable equal to the number of iterations of
Step 4 needed to increase the size of S from i− 1 to i. Then, by linearity of expectation and the fact that
q∗ =

∑n
i=1, it is sufficient bound the expectation of each Xi by 1/εhk,ρ. For that, consider the probability

that in a fixed iteration of the loop in Step 4, a matrix is added to the list S. By definition, it is added if
Win(q) = 1. The probability of Win(q) = 1 is exactly εhk,ρ. Thus, Xi follows a geometric distribution with
parameter εhk,ρ, which has expectation 1/εhk,ρ, as desired. This finishes the proof of Claim 8.

Game G′′: We slightly modify game G′ into a game G′′. Formally, we define G′′ as follows.

1. Run Steps 1 to 5 of game G′.

2. Set X̄ = 0. Also, initialize an empty set S ′ = ∅ and an empty map SY′[·].

3. Iterate over the matrices in S. Namely, for each i ∈ [n], do the following:

(a) Let S ∈ Fn×L be the ith matrix in S.
(b) If there is no column s of S that is linearly independent to the set S ′, then set Extr := 0 and

abort the game.
(c) Otherwise, let s be such a column, say the jth. Insert s into S ′, and set SY′ := y, where y is

the jth column of SY[S].

60

4. Set Extr := 1.

5. By construction, the vectors contained in S ′ are linearly independent. Arrange them as columns into
an invertible matrix S̄ ∈ Fn×n. Similarly, arrange the n vectors in the multi-set {SY′[s] | s ∈ S ′}
into a matrix Ȳ ∈ Fk×n. Ensure that for each s ∈ S ′, if s is the jth column of S̄, then y := SY′[s]
is the jth column of Ȳ.

6. Compute X̄ := ȲS̄−1. We denote the columns of X̄ by X̄j for each j ∈ [n].

In Claim 9, we bound the probability of Extr = 0 conditioned on the game not aborting and any fixed
hash key and randomness. Using this claim, we get for any fixed h̄k, ρ̄ with εh̄k,ρ̄ > 0, that

Pr
G′′

[
Win(0) = 1 ∧ Extr = 0 | (hk, ρ) = (h̄k, ρ̄)

]
= Pr

G′′

[
Extr = 0 |Win(0) = 1 ∧ (hk, ρ) = (h̄k, ρ̄)

]
· Pr
G′′

[
Win(0) = 1 | (hk, ρ) = (h̄k, ρ̄)

]
≤ n

εh̄k,ρ̄ · |F|L
· εh̄k,ρ̄ = n

|F|L
.

The same upper bound holds trivially for any h̄k, ρ̄ with εh̄k,ρ̄ = 0. This implies that

Pr
G′′

[
Win(0) = 1 ∧ Extr = 0

]
=
∑
h̄k,ρ̄

Pr
G′′

[
Win(0) = 1 ∧ Extr = 0 | (hk, ρ) = (h̄k, ρ̄)

]
· Pr
G′′

[
(hk, ρ) = (h̄k, ρ̄)

]
≤
∑
h̄k,ρ̄

n

|F|L
Pr
G′′

[
(hk, ρ) = (h̄k, ρ̄)

]
= n

|F|L
.

Thus, we have

ε0 = Pr
G′

[
Win(0) = 1

]
≤ Pr
G′′

[
Win(0) = 1 ∧ Extr = 1

]
+ Pr
G′′

[
Win(0) = 1 ∧ Extr = 0

]

≤ Pr
G′′

[
Win(0) = 1 ∧ Extr = 1

]
+ n

|F|L
.

Finally, we will bound the probability that Win(0) = 1 and Extr = 1 in game G′′. For that, we introduce
the following events in G′′.

• Event HColl: This event occurs, if Y(0) 6= X̄S(0) or there is a j ∈ J ′(0), such that X̄j 6= X(0)
j .

• Event InCode: This event occurs, if R(0)X̄ ∈ C≡P .

By the law of total probability, we have

Pr
G′′

[
Win(0) = 1 ∧ Extr = 1

]
≤ Pr

G′′

[
Win(0) = 1 ∧ Extr = 1 ∧ HColl

]
+ Pr
G′′

[
Win(0) = 1 ∧ Extr = 1 ∧ ¬HColl ∧ InCode

]
+ Pr
G′′

[
Win(0) = 1 ∧ Extr = 1 ∧ ¬HColl ∧ ¬InCode

]
.

We bound these terms separately in claims Claims 10 to 12. In combination, this will conclude the proof.

Claim 9. Consider the notations and assumptions from the proof of Lemma 36. Let h̄k ∈ HF.Gen(1λ)
and ρ̄ ∈ {0, 1}` be fixed arbitrarily. Then, we have

Pr
G′′

[
Extr = 0 |Win(0) = 1 ∧ (hk, ρ) = (h̄k, ρ̄)

]
≤ n

εh̄k,ρ̄ · |F|L
.

61

We prove Claim 9. To this end, consider a fixed h̄k and ρ̄ and assume Win(0) = 1. We can bound the
probability of Extr = 0 occurring in a fixed iteration of the loop, say the ith. Then, the result will follow
using a union bound over all the n iterations. So, consider the ith iteration of the loop, and assume that
at the beginning of this ith iteration of the loop, we have r := |S ′| < n. Then, S ′ is a set of r linearly
independent vectors over F, which span a subspace D ⊂ Fn of dimension r < n. Let qi be the iteration
of the loop in Step 4 of game G′ in which the ith matrix of S has been added to S. Recall that in this
qith iteration, G(h̄k, ρ̄) has been executed, and the only random choices in this game are the challenge
matrices R(qi) and S(qi). As we know that Win(qi) = 1, we can think of R(qi),S(qi) as being sampled
uniformly at random from the set Γ ⊆ FP×k × Fn×L of matrices (R,S) for which Win = 1 in G(h̄k, ρ̄)
with challenges R,S. This set has size at least one. More precisely, by definition of εh̄k,ρ̄, it has size
εh̄k,ρ̄ · |FP×k| · |Fn×L| > 0. Then, by what we have discussed so far, the probability of Extr = 0 occurring
in the ith iteration of the loop is at most

Pr
(R(qi),S(qi))←$ Γ

[
S(qi) ∈ DL

]
= |F

P×k| · |D|L

|Γ| = |FP×k| · |F|rL

εh̄k,ρ̄ · |FP×k| · |Fn×L|

= 1
εh̄k,ρ̄ · |F|(n−r)L

≤ 1
εh̄k,ρ̄ · |F|L

,

where we used r < n. This finishes the proof of Claim 9.

Claim 10. Consider the notations and assumptions from the proof of Lemma 36. Then, there is an
algorithm B with expected running time ET(B) ≈ (1 + n)T(A) and

Pr
G′′

[
Win(0) = 1 ∧ Extr = 1 ∧ HColl

]
≤ Advcoll

B,HF(λ).

To prove Claim 10, we will argue that the two sub-events specified in event HColl imply a collision
for HF. Then, one can construct a reduction to collision-resistance. Such a reduction gets as input the
hashing key hk, runs G′′, and outputs the collision if event Win(0) = 1 and Extr = 1 and HColl occurs. In
this way, the reduction perfectly simulates G′′ for A, and the expected running time of the reduction is
polynomial. It remains to argue that Win(0) = 1 and Extr = 1 and HColl implies a collision. The reader
may then observe that these collisions can be efficiently found by the reduction. So, assume that these
three events occur. First, it is clear that for each q ∈ [q∗] ∪ {0}, the hash values h(q)

1 , . . . , h
(q)
n sent by

A are the same. This is because A gets the same hk and randomness ρ in every run of G. Thus, we
can just denote these hash values by h1, . . . , hn. Now, we claim that for each column j ∈ [n], we have
HF.Eval(hk, X̄j) = hj . To see this, fix an arbitrary j∗ ∈ [n]. We have

HF.Eval(hk, X̄j∗) = HF.Eval(hk, ȲS̄−1
j∗) =

[
HF.Eval(hk, Ȳ1)

∣∣ · · · ∣∣ HF.Eval(hk, Ȳn)
]

S̄−1
j∗

using the definition of X̄ := ȲS̄−1 and the homomorphic property of HF. We continue using the fact
that the responses are accepting, namely

[
HF.Eval(hk, Ȳ1)

∣∣ · · · ∣∣ HF.Eval(hk, Ȳn)
]

S̄−1
j∗ =

 n∑
j=1

hjS̄j,1

∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣

n∑
j=1

hjS̄j,n

 S̄−1
j∗

= [h1 | · · · | hn] · S̄ · S̄−1
j∗ = hj∗ .

Now that we established this, it is clear that the two sub-events of HColl imply a collision, and the claim
follows.

Claim 11. Consider the notations and assumptions from the proof of Lemma 36. Then

Pr
G′′

[
Win(0) = 1 ∧ Extr = 1 ∧ ¬HColl ∧ InCode

]
≤ 1
|F|P

.

To prove Claim 11, assume event Win(0) = 1∧Extr = 1∧¬HColl∧ InCode occurs in G′′. Then, because
of ¬HColl, we know that the columns X(0)

j for j ∈ J ′(0) are consistent with the columns of X̄. Because of

62

the second condition required for Win(0) = 1, we thus know that X̄ /∈ C≡k. Thus, the event of interest
implies that

X̄ /∈ C≡k ∧R(0)X̄ ∈ C≡P ,

where X̄ is independent of R(0) ∈ FP×k. Let H ∈ F(n−k)×n be the parity-check matrix of G. That is, for
all a ∈ Fn, we have Ha = 0 if and only if a ∈ C. Then, we have

X̄H> 6= 0 ∧R(0)X̄H> = 0.

As all rows of R(0) are independent, this event occurs with probability at most 1/|F|P .

Claim 12. Consider the notations and assumptions from the proof of Lemma 36. Then

Pr
G′′

[
Win(0) = 1 ∧ Extr = 1 ∧ ¬HColl ∧ ¬InCode

]
≤ 1
|F|L

.

To prove Claim 12, assume that event Win(0) = 1 ∧ Extr = 1 ∧ ¬HColl ∧ ¬InCode occurs in G′′. Then,
we know that R(0)Y(0) = W(0)S(0), because Win(0) = 1. Also, we know that Y(0) = X̄S(0) because
¬HColl. This implies that R(0)X̄S(0) = W(0)S(0). Because ¬InCode, we also know that R(0)X̄ 6= W(0).
Thus, we obtain that

(R(0)X̄−W(0))S(0) = 0 ∧R(0)X̄−W(0) 6= 0,

where R(0)X̄−W(0) and S(0) ∈ Fn×L are independent. This occurs with probability at most 1/|F|L, as
all columns of S(0) are sampled independently.

Proof of Lemma 22. We prove the lemma using Lemma 36. Except for that, the proof is almost identical
to the proof of Lemma 20.
Game G0: Let A be an algorithm as in the lemma, running in the code-binding game of CC[HF]. We call
this code-binding game G0. Recall that in this game, A receives a commitment key ck = hk← HF.Gen(1λ)
and gets oracle access random oracles H1,H2. We assume that A makes at most QH1 , QH2 queries to
random oracles H1,H2, respectively. Then, A outputs a commitment com =

(
(hj)j∈[n],W,Y

)
and

symbols X′j ∈ Fk for all j in some set J ′ ⊆ [n]. The game G0 outputs 1, if there is no X̂ ∈ C≡k such
that X̂ is consistent with (X′j)j∈J′ , and all openings verify, i.e. VerCom(ck, com) = 1 and for all j ∈ J ′ it
holds that VerCol(ck, com, j,X′j) = 1. As in the proof of Lemma 20, we assume without loss of generality
that A never queries the same input to the same random oracle twice, and that A made all queries
that algorithm Ver makes to check A’s final output. Also, we assume that whenever A makes a query
H2(h1, . . . , hn,W), it queried H1(h1, . . . , hn) before. As in the proof of Lemma 20, this increases QH1 and
QH2 to Q̄H1 := QH1 +QH2 + 1 and Q̄H2 := QH2 + 1, respectively. We have

Pr [G0 ⇒ 1] = Advcode-bind
A,CC[HF](λ).

Game G1: In game G1, we let the game guess the random oracle queries related to A’s final output.
Namely, in the beginning of the game, indices i1←$ [Q̄H1] and i2←$ [Q̄H2] are sampled. Then, G1 behaves
as G0. Let the i1th query to H1 be H1(h1, . . . , hn) and the i2th query to H2 be H2(h′1, . . . , h′n,W). If
(h1, . . . , hn) 6= (h′1, . . . , h′n), or the i1th query to H1 occurs after the i2th query to H2, the game aborts.
Once A outputs com =

(
(hj)j∈[n],W,Y

)
and X′j ∈ Fk for all j ∈ J ′, the game checks if the i1th query

to H1 was H1(h1, . . . , hn) and the i2th query to H2 was H2(h1, . . . , hn,W). If not, the game aborts.
Otherwise, it continues as G0 does. One can easily see that

Pr [G0 ⇒ 1] ≤ Q̄H1Q̄H2 · Pr [G1 ⇒ 1].

Now, we can bound the probability that G1 outputs 1 using a reduction, which runs in the game given in
Lemma 36. Roughly, it embeds its challenges into the i1th and i2th random oracle queries to H1 and H2,
respectively. By Lemma 36, we get that there is an algorithm B with

Pr [G1 ⇒ 1] ≤ n

|F|L
+ 1
|F|P

+ 1
|F|L

+ Advcoll
B,HF(λ).

63

J Simulation of Index Samplers
While the analytical results in Section 6.2 provide bounds on the quality of different index samplers, their
analysis makes heavy use of bounds, e.g., the union bound. Thus, it is natural to ask whether one can
obtain more precise results by analyzing and comparing index samplers other means, e.g., via simulation.
Experiment. We can think of index sampling as the following balls-into-bins experiment. We have N
bins and ` players. Each player is allowed to throw Q balls into the bins, following some fixed strategy,
which is given by the index sampler algorithm Sample(1Q, 1N). More precisely, the players all start
with the same state. Further, they are not aware of any identifiers to break symmetry and can not
communicate. Each player starts with a random tape and runs (ij)j∈[Q] ← Sample(1Q, 1N). Then, it
throws its balls into the bins i1, . . . , iQ. We want to estimate the probability that less than K bins are
non-empty after the experiment.
Setup. For our simulation, we implemented the experiment in C++. We ran the experiment for the
three index samplers Samplewr (sampling uniformly with replacement), Samplewor (sampling uniformly
without replacement), and Sampleseg (segment sampling). We estimated the probability of interest by
averaging over 20000 runs of the experiment. This process was repeated for various combinations of `,Q,
N,K. When we select such parameter sets, we pay attention to avoid divisibility issues. For example,
say we used segment sampling with Q = 64 and we want to have at least K = N/4 non-empty bins out
of N . A first intuition would tell us that for N = 1152 we would need less samples to ensure that than
for N = 1280. However, we would observe the opposite due to a divisibility phenomenon. Namely, for
N = 1152 we would have to collect at least K/Q = 4.5 out of N/Q = 18 segments, i.e., 5 out of 18. For
N = 1280 we would have to collect K/Q = 5 out of N/Q = 20 segments, i.e., 5 out of 20. Collecting 5 out
of 20 requires less samples than 5 out of 18, contradicting our initial intuition. Such phenomenons distract
from the actual message we want to convey and the asymptotic behavior of index samples. Therefore, we
choose parameters that avoid these divisibility issues. The code of our simulation can be found in

https://github.com/b-wagn/collectiveBallsInBins.

Results. We present our some of our simulation results in Figures 4 and 5. We briefly want to discuss
them here. First, consider Figure 4. The figure shows how the failure probability p, i.e., the probability
of having less than K non-empty bins out of N bins in total, relates to the total number of samples ` ·Q.
We see that both for collecting quarter and half of the bins, the failure probability rapidly decreases
when the number of samples is slightly more than K. For collecting three quarters, we see that we need
about 2K samples to reach that point, which fits our intuition. Comparing the different samplers, we see
that for sampling uniformly range in which the failure probability decreases is smaller than for segment
sampling.

Second, consider Figure 5. The figure shows how many samples we need to get the failure probability
p below a fixed threshold. Again, we see that segment sampling with a large segment size Q = 32
leads to worse results. Namely, to get p below the treshold, we need significantly more samples than for
uniform sampling with and without replacement. Segment sampling with a small segment size Q = 8 has
only a minimal impact. Also, Figure 5 shows that there is almost no difference between sampling with
replacement and sampling without replacement. We expect the difference to grow when Q approaches K.
For all samplers, Figure 5 suggests that the number of samples is linear in the number of bins N , which
is in line with our analytical results in Section 6.2.
Conclusion. Our simulation suggests that sampling without replacement does not perform significantly
better than sampling with replacement. As sampling with replacement is much easier to implement
efficiently, we may disregard sampling without replacement. Segment sampling with small segment sizes
seems to lead only to a minimal loss in quality. Due to its reduced randomness complexity, the improved
locality, and ease of implementation, it qualifies a good choice in practice.

64

https://github.com/b-wagn/collectiveBallsInBins

500 600 700 800 900
0

0.5

1

Samples ` ·Q

Fa
ilu

re
P
ro
ba

bi
lit
y
p

K = 512, N = 2048

1,000 1,200 1,400 1,600 1,800 2,000
0

0.5

1

Samples ` ·Q

Fa
ilu

re
P
ro
ba

bi
lit
y
p

K = 1024, N = 2048

With Replacement
Without Replacement, Q = 8
Without Replacement, Q = 32

Segment, Q = 8
Segment, Q = 32

1,500 2,000 2,500 3,000 3,500 4,000
0

0.5

1

Samples ` ·Q

Fa
ilu

re
P
ro
ba

bi
lit
y
p

K = 1536, N = 2048

Figure 4: Simulation results for the failure probability p, i.e., the probability of having less than K
non-empty bins out of N bins in total after ` players threw Q balls into the bins according to the given
index sampler.

1,000 1,200 1,400 1,600 1,800 2,000

400

600

800

Number of Bins N

Sa
m
pl
es
`
·Q

K/N = 1/4

1,000 1,200 1,400 1,600 1,800 2,000

1,000

1,500

2,000

Number of Bins N

Sa
m
pl
es
`
·Q

K/N = 1/2

With Replacement
Without Replacement, Q = 8
Without Replacement, Q = 32

Segment, Q = 8
Segment, Q = 32

1,000 1,200 1,400 1,600 1,800 2,000

2,000

3,000

4,000

Number of Bins N

Sa
m
pl
es
`
·Q

K/N = 3/4

Figure 5: Simulation results for the total number of samples ` ·Q needed to get p ≤ 0.001, where p is the
failure probability, i.e., the probability of having less than K non-empty bins out of N bins in total after
` players threw Q balls into the bins according to the given index sampler.

65

K Script for Parameter Computation

Listing 1: Python script to compute the parameters for different codes. A discussion is given in Section 10.
from dataclasses import dataclass

import math

Statistical Security Parameter for Soundness
SECPAR_SOUND = 40

@dataclass
class Code:

size_msg_symbol : int # size of one symbol in the message
size_code_symbol : int # size of one symbol in the code
msg_len : int # number of symbols in the message
codeword_len : int # number of symbols in the codeword
reception : int # number of symbols needed to reconstruct (worst case)
samples : int # number of random samples to reconstruct with high probability

def interleave (self , ell):
return Code(

size_msg_symbol = self. size_msg_symbol * ell ,
size_code_symbol = self. size_code_symbol * ell ,
msg_len = self.msg_len ,
codeword_len = self. codeword_len ,
reception = self.reception ,
samples = self. samples

)

def tensor (self , col):
assert self. size_msg_symbol == col. size_msg_symbol
assert self. size_code_symbol == col. size_code_symbol
assert self. size_msg_symbol == self. size_code_symbol

row_dist = self. codeword_len - self. reception + 1
col_dist = col. codeword_len - col. reception + 1
codeword_len = self. codeword_len * col. codeword_len

’’’
Example :

D D | o o
D D | o o
----+----
o o | o o
o o | o o

Where D is the data.
The reception is 8, since 7 is not enough to reconstruct :

o o | o x
o o | o x
----+----
o o | o x
x x | x x

Given the symbols marked with x, I cannot reconstruct the data.
’’’
reception = codeword_len - row_dist * col_dist + 1
’’’
To determine the number of samples , we have multiple options .
we can use the minimum of all resulting number of samples

Option 1: use reception and generalized coupon collector
As reception is a " worst case bound ", this may not be tight

Option 2: use a more direct analysis .
not being able to reconstruct
-> there is a row we can not reconstruct
-> union bound over all rows
-> for fixed row , assume we can not reconstruct
-> there is a set of t_r - 1 positions (t_r = reception in rows)
such that all queries in that row are in that set
-> we union bounding over all of these sets
-> for each fixed set , the probability that
all queries in that row are in that set is
(1 -((n_r - t_r + 1) /(n_r*n_c)))^{ number of samples }
so the total probability of not being able to reconstruct is at most
n_c * (n_r choose t_r - 1) * (1 -((n_r - t_r + 1) /(n_r*n_c)))^{ number of samples }
and (n_r choose t_r - 1) <= (n_r * e / (t_r - 1))^(t_r - 1)

Option 3: same as Option 2 but reversed roles

Asymptotic example : Tensor C: F^k -> F^{2k} with itself
Option 1 -> Omega (k^2 + sec_par) samples
Option 2/3 -> Omega (k^2 + sec_par * k) samples

Concretely , Option 2/3 will be tighter , especially for large k
’’’
samples_via_reception = samples_from_reception (SECPAR_SOUND , reception , codeword_len)

loge = math.log2(math.e)
lognc = math.log2(col. codeword_len)
lognr = math.log2(self. codeword_len)
logbinomr = (self. reception - 1) * (lognr + loge - math.log2(self. reception - 1))
loginnerr = math.log2 (1.0 - (self. codeword_len - self. reception + 1)/ codeword_len)
logbinomc = (col. reception - 1) * (lognc + loge - math.log2(col. reception - 1))
loginnerc = math.log2 (1.0 - (col. codeword_len - col. reception + 1)/ codeword_len)

samples_direct_via_rows = int(math.ceil (-(lognc + logbinomr + SECPAR_SOUND)/ loginnerr))
samples_direct_via_cols = int(math.ceil (-(lognr + logbinomc + SECPAR_SOUND)/ loginnerc))

samples_direct = min(samples_direct_via_rows , samples_direct_via_cols)
samples = min(samples_direct , samples_via_reception)

return Code(
size_msg_symbol = self. size_msg_symbol ,

66

msg_len = self. msg_len * col.msg_len ,
size_code_symbol = self. size_code_symbol ,
codeword_len = codeword_len ,
reception = reception ,
samples = samples

)

def __eq__ (self , other):
return (

self. size_msg_symbol == other . size_msg_symbol
and self. size_code_symbol == other . size_code_symbol
and self. msg_len == other . msg_len
and self. codeword_len == other . codeword_len
and self. reception == other . reception

)

def is_identity (self):
return (

self. size_msg_symbol == self. size_code_symbol
and self. msg_len == self. codeword_len

)

def samples_from_reception (sec_par , reception , codeword_len):
’’’
Compute the number of samples needed to reconstruct
data with probability at least 1 -2^{ - sec_par } based on
the reception efficiency and a generalized coupon collector .
Note: this may not be the tightest for all schemes (e.g. Tensor)
’’’
special case: if only one symbol is needed , we are done
if reception == 1:

return 1

special case: if all symbols are needed : just regular coupon collector
if reception == codeword_len :

n = codeword_len
s = math.ceil ((n / math.log(math.e, 2)) * (math.log(n, 2) + sec_par))
return int(s)

generalized coupon collector
delta = reception - 1
c = delta / codeword_len
s = math.ceil(- sec_par / math.log2(c) + (1.0 - math.log(math.e,c))* delta)
return int(s)

Identity code
def makeTrivialCode (chunksize , k):

return Code(
size_msg_symbol = chunksize ,
msg_len = k,
size_code_symbol = chunksize ,
codeword_len = k,
reception = k,
samples = samples_from_reception (SECPAR_SOUND , k, k)

)

Reed - Solomon Code
Polynomial of degree k -1 over field with field element length fsize
Evaluated at n points
def makeRSCode (fsize , k, n):

assert k <= n
assert 2** fsize >= n, ’no such reed - solomon code :(’
return Code(

size_msg_symbol = fsize ,
msg_len = k,
size_code_symbol = fsize ,
codeword_len = n,
reception = k,
samples = samples_from_reception (SECPAR_SOUND , k, n)

)

tests
assert makeRSCode (5, 2, 4). tensor (makeRSCode (5, 2, 4)). reception == 8
assert makeRSCode (5, 2, 4). reception == 2

Listing 2: Python script to compute the parameters for different data availability sampling schemes. A
discussion is given in Section 10.
#!/ usr/bin/env python

import math

Some constants .
Sizes of group elements , field elements , and hashes in bits
BLS_FE_SIZE = 48.0 * 8.0
BLS_GE_SIZE = 48.0 * 8.0

Let ’s say we use the SECP256_k1 curve
PEDERSEN_FE_SIZE = 32.0 * 8.0
PEDERSEN_GE_SIZE = 33.0 * 8.0

Let ’s say we use SHA256
HASH_SIZE = 256

from dataclasses import dataclass

from codes import *

@dataclass
class Scheme :

code: Code # code that is used
com_size : int # size of commitment in bits
opening_overhead : int # overhead of opening a symbol in the encoding

def samples (self):

67

’’’
i.e. the number of random samples needed to collect
enough symbols except with small probability
’’’
return self.code. samples

def total_comm (self):
’’’
Compute the total communication in bits.
’’’
return self. comm_per_query () * self. samples ()

def comm_per_query (self):
’’’
Compute the communication per query in bits.
’’’
return math.log2(self.code. codeword_len) + self. opening_overhead + self.code. size_code_symbol

def encoding_size (self):
’’’
Compute the size of the encoding in bits.
’’’
return self.code. codeword_len * (self. opening_overhead + self.code. size_code_symbol)

def reception (self):
’’’
Compute the reception of the code.
’’’
return self.code. reception

def encoding_length (self):
’’’
Compute the length of the encoding .
’’’
return self.code. codeword_len

Naive scheme
Put all the data in one symbol , and let the commitment be a hash
def makeNaiveScheme (datasize):

return Scheme (
code = Code(

size_msg_symbol = datasize ,
msg_len = 1,
size_code_symbol = datasize ,
codeword_len = 1,
reception = 1,
samples = 1

),
com_size = HASH_SIZE ,
opening_overhead = 0

)

Merkle scheme
Take a merkle tree and the identity code
def makeMerkleScheme (datasize , chunksize =1024) :

k = math.ceil(datasize / chunksize)
return Scheme (

code = makeTrivialCode (chunksize , k),
com_size = HASH_SIZE ,
opening_overhead = math.ceil(math.log(k, 2))* HASH_SIZE

)

KZG Commitment , interpreted as an erasure code commitment for the RS code
The RS Code is set to have parameters k,n with n = invrate * k
def makeKZGScheme (datasize , invrate =4):

k = math.ceil(datasize / BLS_FE_SIZE)
return Scheme (

code = makeRSCode (
BLS_FE_SIZE ,
k,
k * invrate

),
com_size = BLS_GE_SIZE ,
opening_overhead = BLS_GE_SIZE ,

)

Tensor Code Commitment , where each dimension is expanded with inverse rate invrate .
That is , data is a k x k matrix , and the codeword is a n x n matrix , with n = invrate * k
Both column and row code are RS codes .
def makeTensorScheme (datasize , invrate =2):

m = math.ceil(datasize / BLS_FE_SIZE)
k = math.ceil(math.sqrt(m))
n = invrate * k

rs = makeRSCode (BLS_FE_SIZE , k, n)

return Scheme (
code = rs. tensor (rs),
com_size = BLS_GE_SIZE * k,
opening_overhead = BLS_GE_SIZE ,

)

Hash - Based Code Commitment , over field with elements of size fsize ,
parallel repetition parameters P and L. Data is treated as a k x k matrix ,
and codewords are k x n matrices , where n = k* invrate .
def makeHashBasedScheme (datasize , fsize =32 , P=8, L=64 , invrate =4):

m = math.ceil(datasize / fsize)
k = math.ceil(math.sqrt(m))
n = invrate * k
rs = makeRSCode (fsize , k, n)

return Scheme (
code = rs. interleave (k),
com_size = n * HASH_SIZE + P * n * fsize + L * k * fsize ,
opening_overhead = 0,

)

Homomorphic Hash - Based Code Commitment

68

instantiated with Pedersen Hash
parallel repetition parameters P and L. Data is treated as a k x k matrix ,
and codewords are k x n matrices , where n = k* invrate .
def makeHomHashBasedScheme (datasize , P=2, L=2, invrate =4):

m = math.ceil(datasize / PEDERSEN_FE_SIZE)
k = math.ceil(math.sqrt(m))
n = invrate * k
rs = makeRSCode (PEDERSEN_FE_SIZE , k, n)

return Scheme (
code = rs. interleave (k),
com_size = n * PEDERSEN_GE_SIZE + P * n * PEDERSEN_FE_SIZE + L * k * PEDERSEN_FE_SIZE ,
opening_overhead = 0,

)

Listing 3: Python script to compute the tables in Section 10.
#!/ usr/bin/env python

import math
import sys
from tabulate import tabulate

from schemes import *

def makeRow (name ,scheme ,tex):
comsize = ’{:.2f}’. format (round (scheme . com_size /8000.0 ,2))
encodingsize = ’{:.2f}’. format (round (scheme . encoding_size () / 8000000.0 ,2))
commpqsize = ’{:.2f}’. format (round (scheme . comm_per_query () / 8000.0 ,2))
reception = scheme . reception ()
encodinglength = scheme . encoding_length ()
samples = scheme . samples ()
commsize = ’{:.2f}’. format (round (scheme . total_comm () / 8000000.0 ,2))
if tex:

row = ["\Inst"+name ,comsize , encodingsize , commpqsize ,samples , commsize]
else:

row = [name ,comsize , encodingsize , commpqsize ,(reception , encodinglength),samples , commsize]
return row

##

opts = [opt for opt in sys.argv [1:] if opt. startswith ("-")]
args = [arg for arg in sys.argv [1:] if not arg. startswith ("-")]

if len(args) == 0:
print (" Missing Argument : Datasize in Megabytes .")
print ("Hint: To print the table in LaTeX code , add the option -l.")
sys.exit (-1)

datasize = int(args [0]) *8000000

Print to LaTeX
tex = "-l" in opts

if tex:
table = [["Name","|com|","| Encoding |","Comm. p. Q."," Samples ","Comm Total "]]

else:
table = [["Name","|com| [KB]","| Encoding | [MB]","Comm. p. Q. [KB]"," Reception "," Samples ","Comm Total [MB]"]]

scheme = makeNaiveScheme (datasize)
table . append (makeRow (" Naive ",scheme ,tex))

scheme = makeMerkleScheme (datasize)
table . append (makeRow (" Merkle ",scheme ,tex))

scheme = makeKZGScheme (datasize)
table . append (makeRow ("RS",scheme ,tex))

scheme = makeTensorScheme (datasize)
table . append (makeRow (" Tensor ",scheme ,tex))

scheme = makeHashBasedScheme (datasize)
table . append (makeRow ("Hash",scheme ,tex))

scheme = makeHomHashBasedScheme (datasize)
table . append (makeRow (" HomHash ",scheme ,tex))

if tex:
print (tabulate (table , headers =’firstrow ’,tablefmt =’latex_raw ’,disable_numparse =True))

else:
print (tabulate (table , headers =’firstrow ’,tablefmt =’fancy_grid ’))

Listing 4: Python script to compute the graphs in Section 10.
#!/ usr/bin/env python

import math
import sys
import csv
import os

from schemes import *

DATASIZEUNIT = 8000*1000 # Megabytes
DATASIZERANGE = range (1 ,156 ,15)

def writeCSV (path ,d):
with open(path , mode="w") as outfile :

writer = csv. writer (outfile , delimiter =’,’)
for x in d:

writer . writerow ([x,d[x]])

Writes the graphs for a given scheme

69

into a csv file
def writeScheme (name , makeScheme):

commitment = {}
commpq = {}
commtotal = {}
encoding = {}

for s in DATASIZERANGE :
datasize = s* DATASIZEUNIT
scheme = makeScheme (datasize)
commitment [s] = scheme . com_size / 8000000 # MB
commpq [s] = scheme . comm_per_query () /8000 # KB
commtotal [s] = scheme . total_comm () /8000000000 # GB
encoding [s] = scheme . encoding_size () /8000000000 # GB

if not os.path. exists ("./ csvdata /"):
os. makedirs ("./ csvdata ")

writeCSV ("./ csvdata /"+name+"_com.csv",commitment)
writeCSV ("./ csvdata /"+name+" _comm_pq .csv",commpq)
writeCSV ("./ csvdata /"+name+" _comm_total .csv",commtotal)
writeCSV ("./ csvdata /"+name+" _encoding .csv",encoding)

###
writeScheme ("rs",makeKZGScheme)
writeScheme (" tensor ",makeTensorScheme)
writeScheme ("hash",makeHashBasedScheme)
writeScheme (" homhash ",makeHomHashBasedScheme)

70

	I Main Content
	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Definition of Data Availability Sampling
	Basic Definition
	Extensions

	Overview of Constructions
	From Codes and Commitments to Data Availability
	Constructions of Erasure Code Commitments

	Background on Coding Theory
	Codes and Distance
	Special Families of Codes

	From Codes and Commitments to Data Availability Sampling
	Erasure Code Commitments
	Index Samplers
	Construction of Data Availability Sampling Schemes

	Commitments for Arbitrary Codes
	Commitments for Tensor Codes
	Commitments for Interleaved Codes
	Construction from Hash Functions
	Construction from Homomorphic Hash Functions

	Evaluation and Comparison
	Setting the Stage
	Results

	Appendix

	II Appendix
	Definition of Cryptographic Building Blocks
	Some Useful Bounds
	Omitted Details from sec:dasdefinition
	Omitted Details from sec:dasdefinition:basic
	Extension: Repairability
	Extension: Local Accessibility

	Omitted Details from sec:das:codingtheory
	Additional Notions for Erasure Code Commitments
	Message-Bound Openings
	Computational Uniqueness
	Extractability

	Omitted Details from sec:codesandcommitmentstodas
	Omitted Details from sec:codesandcommitmentstodas:codecomdef
	Omitted Details from sec:das:comtodas:indexsamplers
	Omitted Details from sec:codestodas:construction

	Omitted Details from sec:das:commitments:generic
	Omitted Details from sec:das:commitments:tensorconstruction
	Omitted Details from sec:das:commitments:interleaved
	Omitted Details from sec:erasurecodecommitment:ligerolike
	Omitted Details from sec:erasurecodecommitment:homligerolike

	Simulation of Index Samplers
	Script for Parameter Computation

