
Taming Adaptivity in YOSO Protocols:
The Modular Way

Ran Canetti1, Sebastian Kolby2, Divya Ravi2, Eduardo Soria-Vazquez3,
and Sophia Yakoubov2

1 Boston University, USA; canetti@bu.edu
2 Aarhus University, Denmark; {sk, divya, sophia.yakoubov}@cs.au.dk
3 Technology Innovation Institute, UAE; eduardo.soria-vazquez@tii.ae

Abstract. YOSO-style MPC protocols (Gentry et al., Crypto’21), are
a promising framework where the overall computation is partitioned into
small, short-lived pieces, delegated to subsets of one-time stateless par-
ties. Such protocols enable gaining from the security benefits provided
by using a large community of participants where “mass corruption”
of a large fraction of participants is considered unlikely, while keeping
the computational and communication costs manageable. However, fully
realizing and analyzing YOSO-style protocols has proven to be challeng-
ing: While different components have been defined and realized in various
works, there is a dearth of protocols that have reasonable efficiency and
enjoy full end to end security against adaptive adversaries.
The YOSO model separates the protocol design, specifying the short-
lived responsibilities, from the mechanisms assigning these responsibili-
ties to machines participating in the computation. These protocol designs
must then be translated to run directly on the machines, while preserv-
ing security guarantees. We provide a versatile and modular framework
for analyzing the security of YOSO-style protocols, and show how to use
it to compile any protocol design that is secure against static corruptions
of t out of c parties, into protocols that withstand adaptive corruption
of T out of N machines (where T/N is closely related to t/c, specifically
when t/c < 0.5, we tolerate T/N ≤ 0.29) at overall communication cost
that is comparable to that of the traditional protocol even when c << N .
Furthermore, we demonstrate how to minimize the use of costly non-
committing encryption, thereby keeping the computational and commu-
nication overhead manageable even in practical terms, while still provid-
ing end to end security analysis. Combined with existing approaches for
transforming stateful protocols into stateless ones while preserving static
security (e.g. Gentry et al. 21, Kolby et al. 22), we obtain end to end
security.

1 Introduction

Secure multiparty computation (MPC) allows data owners to outsource
the processing of their sensitive data to a set of machines, with the guar-
antee that as long as fewer than a threshold t of those machines are
corrupt, no-one will learn more about the data than revealed by the com-
putation output. YOSO MPC [GHK+21] is an emerging new style of
MPC where participating machines have very short term roles: they re-
ceive messages, performing an internal computation, and send messages
in a single communication round to the next set of participating machines.
Before sending those messages, the machine erases all other state relevant
to the protocol execution.

The advantage of YOSO MPC is that the communication complexity
of the protocol can be sublinear in N (the number of available machines),
even if the corruption threshold T is linear in N . This might appear im-
possible, since if the communication complexity is sublinear in N , the set
of all machines ever to send a message fits within the adversary’s corrup-
tion budget; however, the crucial insight is that as long as an adversary
cannot predict which machines will “speak”, she is unable to target them.
One of the challenges of YOSO MPC is choosing participating machines
in an unpredictable way, making it harder to locate and adaptively attack
those machines while they are active and relevant to the protocol.

YOSO MPC protocols naturally decompose into two tasks. The first
of these is role assignment, which entails determining which machines will
have a role to play and handing them the secret keys they will need in or-
der to do so, while keeping their identities hidden from the adversary. The
second task is actually running the MPC by having the chosen machines
play their assigned roles.

One can view YOSO MPC protocols through two lenses: In the nat-
ural world, a protocol must specify instructions for physical machines,
including instructions for role assignment; i.e., how the machines should
go about determining whether they have a role to play, and if so, which
one. In the abstract world, a YOSO MPC protocol can be described in
terms of the roles alone, without consideration for the machines running
them.

Some previous YOSO protocols (e.g. the protocol of Benhamouda et
al. [BGG+20]) are described in the natural world, running both role as-
signment and computation in an entwined way. Others (e.g. the protocols
of Gentry et al. [GHK+21] and Acharya et al. [AHKP22]) are described in

1

the abstract world, relying on behind-the-scenes machinery to take care
of role assignment.

The second is a more modular approach, resulting in simpler protocol
descriptions. However, these descriptions do not suffice for use in the
real, natural world. We need a compiler to translate them into something
machines can run; such a compiler might access an ideal role assignment
functionality.

One such role assignment functionality and compiler were introduced
by Gentry et al. [GHK+21]. However, the role assignment functionality
presented by Gentry et al. was perhaps too strong, in that it did not
allow the adversary to influence the role assignment, instead choosing
all machines in an ideal, random way. This makes it impossible for the
most efficient known role assignment mechanism (that of Benhamouda et
al. [BGG+20]) to realize this functionality. Furthermore, the compiler of
Gentry et al. [GHK+21] has two drawbacks: (a) it is inefficient, and (b) it
is incompatible with some abstract protocols (e.g. the protocol of Braun
et al. [BDO22] and Kolby et al. [KRY22]).

1.1 Our Contributions

In this paper, we fill the above gaps: we introduce a more realistic role as-
signment ideal functionality FRA, give a realization of FRA, and present a
more efficient, more general compiler that relies on this new functionality.
In particular, we use non-committing encryption only for implementing
FRA. All the messages of the underlying (statically secure) protocol are
encrypted using standard (CCA secure) encryption.

1.1.1 Ideal Role Assignment Functionality In Section 3, we intro-
duce our role assignment ideal functionality FRA. Our goal is to capture
a more general and broad class of potential and existing role assignment
protocols. Towards this, we give a comprehensive design of FRA that sup-
ports modeling various assignment approaches.

At a very high-level FRA supports two kinds of elections: assignment
of a role to an honest machine, and assignment influenced by the adver-
sary, to a chosen, possibly corrupt machine. The machines are allowed to
probe the FRA to read the public keys of the roles assigned so far, deduce
if they themselves have been assigned a role, and retrieve the secret keys
in such a case. Furthermore, our design of FRA supports modeling various
scenarios that can occur during its execution, such as (a) when the adap-
tive adversary manages to corrupt a role that was assigned when it was

2

uncorrupted (before the election of the committee was completed), (b)
when a machine finishes preparing her one-time message corresponding
to a role and wishes to delete her state, and (c) when a machine who was
previously engaged in executing a role is now ready to be assigned a new
role. The formal details appear in Section 3.

1.1.2 Compiling Abstract Protocols In Section 4, we describe how
to leverage FRA to compile an MPC protocol in the abstract world into one
that can be run in the natural world. Unlike the compiler of Gentry et al.
[GHK+21], we only use non-committing encryption within the realization
of FRA (and not within the compiler itself). This has a two-fold advantage:
(a) it yields a significant efficiency gain, and (b) it gives compatibility with
a broader class of abstract YOSO protocols (e.g. the protocol of Braun
et al. [BDO22] and Kolby et al. [KRY22]).

At a high-level, in our compiled protocol in the natural world, each
machine deduces if it has been selected for a role by invoking the FRA.
If this is the case, it reads the bulletin board (in the natural world) to
obtain ciphertexts encrypted using that role’s public key. It can decrypt
these ciphertexts using the secret keys provided by FRA and proceed to
compute the outgoing messages of the role to other roles. These outgoing
messages can be encrypted using the other roles’ public keys (provided
by FRA) and posted on the bulletin board.

The main challenge is proving adaptive security of the compiled pro-
tocol, assuming that the underlying abstract protocol is only statically
secure. The crux of our proof is that the set of corrupt roles can be cho-
sen statically, and then the FRA can be suitably re-programmed so that
adaptive corruption of machines can be appropriately matched to the al-
ready chosen static corrupt roles. We refer to Section 5 for details on the
technicalities in our proof.

Compiling Abstract Protocols that Require Message Verification. The above
compiler supports abstract protocols using only ideal point-to-point and
broadcast channels. We note that this does not cover a large class of ex-
isting YOSO protocols that assume explicit access to keys for the roles to
allow zero-knowledge proofs or any other types of public verifiability for
point-to-point messages. In Section 6, we show how our compiler can be
extended to abstract protocols that require such verification. More specif-
ically, we modify the above compiler to accommodate abstract protocols
that leverage the functionality FVeSPa [KRY22], which is used to enable

3

parties to prove to others that the broadcast and peer-to-peer messages
they send within a protocol were derived honestly.

In order to extend our compiler to abstract protocols using FVeSPa,
we need to be able to emulate the verifiability of messages in the natu-
ral world. For this, we simply rely on augmenting the messages posted
on the bulletin board in the compiled protocol with corresponding non-
interactive zero-knowledge proofs proving that these messages were com-
puted correctly.

1.1.3 Realizing the role assignment functionality In Section 7,
we modify the role assignment protocol of Benhamouda et al. [BGG+20]
to realize FRA. As shown in [HLH+22], their protocol had problems in
addressing the adaptivity of the adversary when it came to realizing the
necessary anonymity property. As in [BGG+20], our modified protocol
ΠRA uses a cryptographic sortition algorithm in order to ensure that
an adversary is not able to increase the likelihood of corrupting a role
of his choice. Furthermore, ΠRA uses Key and Message Non-Commiting
Encryption (KM-NCE). This enables the simulator to deal with the dif-
ferent problematic scenarios described above. That is, by creating “fake”
ciphertexts, the simulator can deal with the case of honest parties sending
messages to recipients who were a priori expected to be honest, but then
become corrupted by the adversary.

Crucially, our protocol instructs nominated machines to erase their
private decryption key before making themselves known. As soon as the
machine completes its role as a committee member, it chooses a new key
pair and registers the new public encryption key with the PKI server.
The machine will keep a (truly) long-term signature key in order to au-
thenticate itself to the PKI server.

The much less efficient role assignment protocol of Gentry et al. [GHM+21]
(which uses any MPC protocol to run random-index PIR) may be modi-
fied to trivially realize FRA, by a similar application of KM-NCE.

2 Preliminaries

2.1 Key and Message Non-Commiting Encryption

We recall the notion of a Key and Message Non-Commiting Encryp-
tion (KM-NCE) from [HLH+22], which is an extension of receiver non-
commiting encryption. Informally, a KM-NCE is a public-key encryption
scheme that allows to generate fake ciphertexts without any public key

4

in such a way that those fake ciphertexts can later be decrypted to any
plaintext by generating an appropriate secret key on the fly.

ExpKM-NCE-CCA-real
KM-NCE,A,k (λ):

pp ←$ Setup(1λ)
(pk, sk, tk) ←$ Gen(pp)
((m∗γ)γ∈[k], state1)←$AODec

1 (pp, pk)
(c∗γ ←$ Enc(pp, pk,m∗γ))γ∈[k]
state2 ←$ AODec

2 ((c∗γ)γ∈[k], state1)
state3 ←$ A3(sk, state2)
Return b′

ODec(c):
If c ∈ {c∗γ : γ ∈ [k]}: Return ⊥
m = Dec(pp, sk, c)
Return m

ExpKM-NCE-CCA-ideal
KM-NCE,A,k (λ)

pp ←$ Setup(1λ)
(pk, sk, tk) ←$ Gen(pp)
((m∗γ)γ∈[k], state1)←$AODec

1 (pp, pk)
((c∗γ , τ

∗
γ) ←$ Fake(pp))γ∈[k]

state2 ←$ AODec
2 ((c∗γ)γ∈[k], state1)

sk′ ←$ Openk(pp, tk, pk, sk, (c
∗
γ ,

τ∗γ ,m
∗
γ)γ∈[k])

state3 ←$ A3(sk
′, state2)

Return b′

Fig. 1: The experiments for KM-NCE-CCA security of a KM-NCE scheme.

Definition 1 (Security). A KM-NCE scheme KM-NCE = (Setup,Gen,Enc,
Dec,Fake,Openk) in the k-challenge setting is (CCA-)secure if for any

PPT adversary A = (A1,A2,A3), the advantage Adv
AC-RSOk,Dist&C-CPA
PKE,A,S,D,n,t,k (λ) :=

|Pr[ExpKM-NCE-CCA-real
KM-NCE,A,k (λ) = 1]− Pr[ExpKM-NCE-CCA-ideal

KM-NCE,A,k (λ) = 1]|

is negligible, where ExpKM-NCE-CCA-real
KM-NCE,A,k and ExpKM-NCE-CCA-ideal

KM-NCE,A,k are de-
fined in Figure 1.

KM-NCE schemes can be constructed from hash proof systems, as
shown in [HLH+22].

2.1.1 KM-NCE with a unique recipient We need to define an ad-
ditional property for KM-NCE, which ensures that the adversary cannot
produce (something that looks like) a ciphertext which decrypts under
two different honest secret keys.

5

ExpKM-NCE-UR
KM-NCE,A (λ):

pp ←$ Setup(1λ)
((pki, ski, tki) ←$ Gen(pp))i∈[h]
c ←$ AODec,RO(pp, {pki}i∈[h])
If ∃i1, i2 ∈ [h] : i1 6= i2 ∧
Dec(pp, ski1 , c) 6= ⊥ ∧
Dec(pp, ski2 , c) 6= ⊥, return 1.
Otherwise, return 0.

ODec(c):
If c ∈ {c∗γ : γ ∈ [k]}: Return ⊥
m/⊥ ← Dec(pp, sk, c)
Return m/⊥

RO(s):
S returns a uniformly random-
looking t.

Fig. 2: The unique recipient experiment.

Definition 2 (Unique recipient). A KM-NCE scheme KM-NCE =
(Setup,Gen,Enc,Dec,Fake,Openk) is unique recipients if for any PPT
adversary A, Pr[ExpKM-NCE-UR

KM-NCE,A (λ) = 1] is negligible, where ExpKM-NCE-UR
KM-NCE,A

is defined in Figure 2.

2.1.2 A unique recipient KM-NCE construction We show how to
build a unique recipient KM-NCE encryption scheme in the programmable
random oracle model. Since this implies the notion of receiver non-committing
encryption, we know that random oracles are necessary in order to avoid
secret keys that are as long as the messages to be encrypted [Nie02].

Our construction is based on a simple variant of ElGamal, which
makes it more efficient than the KM-NCE construction based on hash
proof systems (HPS) from [HLH+22, Section 5.3], which relies on a ma-
trix variant of DDH [EHK+13]. Furthermore, that construction does not
have the unique recipient property that we need. The reason behind this
is that, since the projected and unprojected hash need to coincide for
elements x of the language, the adversary can use the unprojected hash
(in their specific notation, P̃ub) together with the public keys of honest
parties in order to try and find a suitable witness that leads to a colli-
sion (in their notation, the same π̃) with several secret keys. Once he has
that, it is easy for him to come up with the rest of the elements of the
ciphertext (given x, any d can be fixed by varying the message m. Hence,
a whole range of values τ = H(x, d) can be explored by the adversary).
It is very easy for the adversary to come up with elements of the lan-
guage x and their witnesses w, since this is a necessary feature for the
practical efficiency of the encryption algorithm. Thus, we cannot rule out

6

maliciously created ciphertexts that decrypt to several recipients. In more
detail, for the HPSs from [HLH+22, Section 6], each public key defines
a hyperplane, and collisions happen at the intersection of any two such
hyperplanes. This gives plenty of candidates for collisions.

Whereas the prior attack to the unique recipient property is specific
to the instantiation of construction of [HLH+22, Section 5.3] with the
HPSs from [HLH+22, Section 6], it is likely that similar attacks could be
mounted for other natural constructions based on HPSs. The necessary
relation between the public and private hash functions, together with any
nice algebraic description of the public hashing algorithm (e.g. defining
hyperplanes as in the attack above) would potentially lead to the same
problem.

We define below our candidate construction based on a modification
of ElGamal. The algorithms of our scheme are oracle algorithms with
query access to the oracle RO : {0, 1}∗ → {0, 1}2κ, we let this be implicit
in our notation.

– pp ←$ Setup(1κ): Pick a cyclic group G of order q, where q is a κ-bit
prime, and let g be a generator of G. Let the message space of the
encryption scheme be {0, 1}κ. Set pp = (G, g, q) public parameters.

– (pk, sk, ∅) ←$ Gen(pp): Sample a ←$ Zq, let sk = a. Compute the
public key pk ← ga and output (pk, sk, ∅).

– c ←$ Enc(pp, pk,m): Sample r ←$ Zq and compute β ← gr. Query
the oracle for a mask k ← RO(pkr) and a MAC d ← RO(r,m). Let
e← k ⊕ (r,m), and output c = (β, e, d).

– m← Dec(pp, sk, c): Parse c = (β, e, d). Query the oracle k′ ← RO(βsk),
compute (r′,m′)← e⊕k′. Check if gr

′
= β and d = RO(r′,m′), output

m′ if both conditions are satisfied, otherwise output ⊥.

– (c, τ) ←$ Fake(pp): Sample r ←$ Zq and compute β ← gr. Let τ =
r. Sample uniformly random strings e, d ∈ {0, 1}2κ and let the fake
ciphertext be c = (β, e, d). Output (c, τ).

– sk′ ← Openk(pp, pk, sk, (c
∗
γ , τ
∗
γ ,m

∗
γ)γ∈[k]): To open a fake ciphertext

c∗γ = (β, e, d) as an encryption a message m∗γ to a chosen pk. Let
r = τ∗γ , program the random oracle such that RO(r,m∗γ) = d and
RO(pkr) = e⊕ (r,m∗γ). Output sk′ = sk.

Intuitively it is possible to replace ciphertexts by fakes as long as the
adversary is unable to query either pkr or (r,m) to the random oracle, if
the adversary does query this values it may be used to solve the Diffie-
Hellman problem. Including d = RO(r,m) allows the decryption oracle

7

to extract the plaintext and verify the integrity of the ciphertext without
use of the secret key. We now formally prove the security of our KM-NCE
scheme.

Theorem 1. The construction above is KM-NCEk-CCA and unique re-
cipient secure, in the pROM under the CDH assumption in group G.

Proof. First, we consider unique recipient security. Assume for contradic-
tion there have been no collisions in random oracle, for a sufficiently large
range and bounded adversary this holds with overwhelming probability.
A winning adversary outputs a ciphertext c = (β, e, d) such that for some
ski, skj : Dec(pp, ski, c) 6= ⊥ and Dec(pp, skj , c) 6= ⊥. We subscript inter-
mediate values in each decryption with the index of the secret key. For
honestly generated keys ski 6= skj with overwhelming probability, imply-
ing βski 6= βskj . As a result, k′i 6= k′j if there have been no collisions in
the random oracle. This in turn implies that (r′i, n

′
i) 6= (r′j , n

′
j). For both

outputs to be different from ⊥, it must be the case that d = RO(r′i, n
′
i) =

RO(r′j , n
′
j) raising a contradiction.

Now consider KM-NCEk-CCA security. Through a series of hybrids we
will replace c∗γ = (β, e, d) with a fake ciphertext for each γ ∈ [k]. Faking
a ciphertext is only different in how c and d are chosen. These two cases
are only different in the oracle output on inputs pkr and (r,m) prior to
A3 receiving the secret key sk.

In the real and ideal worlds the adversary receives the same secret
key sk and has access to an identically distributed random oracle. The
only input which may differ is state2, produced by A2. The views of
Adversaries A1 and A2 only differ between the real and ideal game when
querying pkr or (r,m) to the random oracle. Thus, if A3 distinguishes the
real and ideal worlds with non-negligible advantage then one of A1,A2

must query pkr or (r,m) with probability equal to the advantage. We will
argue that such a pair (A1,A2) may be reduced to an adversary solving
the computational Diffie-Hellman problem.

Consider an adversary which queries either pkr or (r,m) with proba-
bility ε, while making at most t random oracle queries. Given a compu-
tational Diffie-Hellman instance (g, x = ga, y = gr), we set pk = x and
β = y. Note, the solution to this instance is pkr = βa. We will address
how to provide a decryption oracle without knowing the secret key a later.
The reduction chooses a query index i←$ [t]. When the adversary makes
the ith query, if the input is of the form (r,m), the reduction outputs pkr,
if the input only consists of a single element z the reduction outputs this

8

directly. The reduction aborts before providing A3 the secret key. Note,
the reduction needs τ = r, which it does not have, to open the ciphertexts
to A3, preventing the use of A3 in the reduction. The reduction yields an
adversary solving the Diffie-Hellman problem with probability ε/t.

We now return to the issue of providing a suitable decryption oracle
during our hybrids. Consider a ciphertext c∗ = (β∗, e∗, d∗) queried to the
decryption oracle, which is not equal to any of the challenge ciphertexts.
If d∗ is not a random oracle output on an input of the form (r,m) output
⊥, this includes any d for faked ciphertexts. A ciphertext using d from a
challenge with β∗ 6= β or e∗ 6= e, real decryption would result in ⊥ with
overwhelming probability.

For a given ciphertext, e and k′ = RO(βsk) uniquely determine (r,m); if
this has not yet been queried the probability RO(r,m) = d is 2−2κ, and we
may safely return ⊥. If d is an output of the random oracle the reduction
may retrieve the corresponding input (r,m). We check if β = gr, returning
⊥ if this is not the case. Given r the oracle then computes k′ ← RO(pkr);
(r′,m′)← e⊕ k′. If (r′,m′) = (r,m) output m, otherwise output ⊥.

2.2 Cryptographic sortition

A cryptographic sortition protocol [CM19] allows to provably select a
random subset of parties according to some timely and truthful ran-
domness source such as Verifiable Random Functions (VRF) [MRV99].
Importantly, a party can find out whether it was selected through local
computation, once it has received the output from the VRF. We will use
the syntax (draw, π)← Sortition(skVRF, (r, pid, cid, ρ)), where skVRF is the
secret key for a Verifiable Random Function, ρ is randomness drawn from
a beacon and r, pid and cid will act as a separation tag among the different
times the sortition algorithm will be necessary.

2.3 The You-Only-Speak-Once model

The YOSO model introduced by Gentry et al. [GHK+21] formalised a
variant of the UC framework enabling the design of protocols focusing
only on role execution, and not the mechanisms for role assignment or
receiver anonymous communication. We will refer to protocols in this
model as abstract YOSO protocols.

The YOSO model deviates from standard UC in the following ways:

– Parties are entirely replaced by roles, these roles are executed in the
same way as UC parties, but are conceptually distinct in that they

9

do not map to any physical machine. Rather, roles represent abstract
responsibilities which in a natural execution of a protocol would be
carried out by the machine to which they were assigned to on the
fly. Protocol design is indifferent to which actual machines would be
executing the role.

– Idealised communication functionalities are provided to the roles ex-
ecuting a protocol, allowing point-to-point messages between roles.
This corresponds to the availability of receiver anonymous communi-
cation channels, but ignores their realisation.

– Security is proven for “yosoified” versions of the protocol, where all
roles are placed within a YOSO wrapper. This wrapper enforces that
roles only speak once by killing them once they use a communication
functionality. This is modelled by a Spoke token which the ideal
communication functionalities return upon the sending of messages.
When receiving Spoke the wrapper additionally forwards this to any
sub-routines and its environment. Killing a role represents the machine
running a role erasing any associated state, preventing the adversary
from later corrupting the role.

– While we want natural YOSO protocols to be secure against an adap-
tive adversary, allowing the adversary this power in the abstract world
would make protocol design significantly more difficult. Gentry et al.
[GHK+21] make the observation that an adversary does not know
which roles are assigned to a machine before it is corrupted. As a re-
sult the adversary may be restricted in the abstract world, while still
being able to achieve adaptive security when translated to the natural
world. This is enforced through a new “corruption controller” entity
which dictates the types of corruptions the environment is allowed to
make.

We recall the ideal functionality allowing point-to-point and broadcast
communication as in [GHK+21]. Note, when a role S inputs the Send it
finally receives the Spoke token, which will cause its wrapper to kill it.

Functionality FBC&SPP

This ideal functionality has the following behaviour:

– Initially create point-to-point and broadcast maps:
y : N× Role× Role→ Msg⊥ where y(r,R,R′) = ⊥ for all r,R,R′

m : N× Role→ Msg⊥ where m(r,R) = ⊥ for all r,R.
– On input (Send, S, ((R1, x1), . . . , (Rk, xk)), x) in round r proceed

as follows:

10

• For i ∈ [n] update y(r, S,Ri) = xi. Store point to point mes-
sages from the role.
• Update m(r, S) = x. Store the broadcast message from the

role.
• Output (S, ((R1, |x1|), . . . , (Rk, |xk|)), x) to S.
• For corrupt roles Ri output xi to S. Leak messages lengths and

the broadcast message to the simulator in a rushing fashion.
• If S is honest give Spoke to S.

– On input (Read,R,S, r′) in round r where r′ < r for x =
y(r′,S,R) output x to R.

– On input (Read,S, r′) in round r where r′ < r output x =
m(r′, S) to R.

The central paradigm of synchronous abstract YOSO protocols is that
executions proceeds by a sequence of committees, each permitting a cer-
tain corruption threshold. These committees may potentially receive mes-
sages concurrently, or even speak in the same round.

2.4 Compiling abstract YOSO protocols

By their nature, protocols designed in the abstract YOSO model cannot
be run directly on machines, they first have to undergo translation, or
compilation, to the natural world.

This compilation reraises the issues of role assignment and receiver
anonymous communication. Any compiler must provide equivalent guar-
antees of secure communication between roles in the protocol.

In their presentation of the YOSO model Gentry et al. [GHK+21] pro-
vide an example of compilation from the abstract to natural world. Their
approach used a simplified toy timed ledger with role assignment func-
tionality as a building block. This functionality provided the necessary
keys for roles, which were then used to wrap messages in the underlying
protocol in encryption. The compiler allowed the compilation of an ab-
stract protocol secure against random adaptive point corruptions (i.e. an
adversary only allowed to corrupt random roles), to a natural protocol
secure against chosen adaptive point corruptions.

The focus of the compiler of Gentry et al. [GHK+21] was demon-
strating the feasibility of compilation. As a result the compiler has a
number of limitations, such as the role assignment functionality not be-
ing realised. Additionally, to achieve adaptive security the compiler uses

11

non-committing encryption for all messages in the underlying protocol,
incurring a significant overhead.

3 Role assignment

In this section we present the ideal functionality FRA
4, which assigns ma-

chines to computation roles while keeping this assignment hidden. (Note
that which machines provide input to the computation — and receive
output from the computation — could be determined in some fixed, ex-
ternal way, depending on the application; therefore we consider only the
assignment of machines to computation roles, and not input and output
roles.)

At a high-level, let us consider committee C consisting of c roles.
There are two possible ways in which FRA chooses a machine for a role
in C: (a) choosing a machine at random from among the set of honest
machines (i.e. among the machines not corrupted so far), or (b) allowing
the adversary to choose the machine, as long as the number of machines
chosen by the adversary in C so far is within the allowed corruption bound
(which is detemined as a function T on the fraction of corrupt machines).
In the former case, FRA samples fresh keys, gives the (public) encryption
and verification keys to everyone, and gives the corresponding (secret)
decryption and signing keys only to the chosen machine. In the latter
case, all keys are chosen by the adversary. The commands Nom-Honest
and Nom-Corrupt capture the above kinds of nominations.

We need to ensure that the fraction of corruptions in a committee
remains within the allowed bound until the nomination is completed.
Looking ahead, to capture adaptive corruptions after the adversary has
seen public keys generated via Nom-Honest but before Finish (which
finalises the keys for a committee), we introduce an additional command
Corrupt-Nominee.

Once a set of c machines are chosen for the committee C, FRA picks
a random permutation on [c] to determine which machine plays which
role in C. Allowing FRA to map nominated machines to roles, instead
of having machines assigned to specific roles in C a priori, prevents the
adversary from targeting a specific role for corruption.

Further, there is a provision for each machine to

1. ‘Read’ : this allows her to retrieve public keys corresponding to the
roles that have been assigned, as well as to obtain secret keys if she
has been assigned a role.

4 Note this is not the same role assignment functionality as presented in [GHK+21]

12

2. ‘Delete’ : this allows her to delete the secret keys corresponding to a
role that she had been assigned. Looking ahead, this is used once she
has finished preparing her one-time message but before she speaks.

3. ‘Ready’ : this allows her to signal that she is available to be assigned
a new role. This is typically used after she has finished executing her
current role. We maintain both a global set of ready machines (“ready
set”), as well as a committee-specific ready set. The latter keeps track
of machines that have been ready throughout the nomination process
for that committee.

If a machine that has been assigned a role gets corrupted after she
has retrieved her secret keys (which she learns when she inputs ‘read’)
but before she inputs ‘delete’, her secret keys are leaked to the adversary.
However, if she gets corrupted after she inputs ‘delete’, her secret keys
remain hidden. As we will see later, this is crucial for adaptive security.

The formal description of this ideal functionality FRA appears below.
We assume FRA to be synchronous, with round switches occurring at the
same time as the protocols using it.

We divide our role assignment functionality into two parts. The first
describes the general setup and commands provided by parties for estab-
lishing new committees and reading generated keys. The second describes
the powers allowed to the simulator, when populating committees under
nomination with keys and the leakage in the case of corruption.

Functionality FRA(P, c, T ,D, delay):

This functionality is synchronous. Following the synchronous model of Katz et
al. [KMTZ13], and proceeding in lock-step with the protocols that use it. It has
the following parameters:

– P: the set of machines.
– c: the size of a committee.
– T : the function determining the number of allowed corruptions in a committee

(based on the fraction of corrupt machines).
– D denoting a sampling algorithm, and
– delay denoting the upper bound on the number of rounds required to com-

plete nomination.

Init: The functionality maintains a partition of P into sets H and I of all
honest and corrupt party identifiers, respectively. It also maintains a global set
Ready initially equal to P.

New committee: After receiving (New, cid, C) from all honest parties in round
r, store (r, cid, C,PKeys = ∅, SKeys = ∅, cor = 0, nom = 0, fin = ⊥). Ignore the
command if any value is already stored for cid.

13

– The lists PKeys and SKeys are initially empty. The list PKeys would be up-
dated with tuples (ek, vk,R) where (ek, vk) refer to the public keys established
for a role R. The list SKeys would be updated with tuples (pid, dk, sk,R) where
(dk, sk) refer to the secret keys corresponding to the role R, which has been
assigned to machine with identifier pid.

– The corruption and nomination counters, cor and nom, start at zero.
– A committee-specific ready set Readycid is initialized the same as the global

ready set: Readycid = Ready.
– Finally, the flag signaling whether nomination is completed or not is initially

false: fin = ⊥.
Each time an honest party inputs (New, cid, C), forward this to S.
The functionality only proceeds to the next round if fin = > for all stored
committees with round number r′ ≤ r − delay.

Read: On input (Read, cid, r) from M with identifier pid in round r, retrieve
the value (r∗, cid∗, C,PKeys, SKeys, cor, nom, fin) where cid = cid∗, r∗ ≤ r−delay
and fin = >. If no such value exists, do nothing.
– Collect all values (pid∗, dk, sk,R) in SKeys where pid∗ = pid into a list SKeys′.

If these exist, remove pid from Ready.
– Output (PKeys,SKeys′) to M .

Delete: On input (Delete) from M with identifier pid, do the following:
– Overwrite all elements of SKeys of the form (pid∗, dk, sk,R), where pid∗ = pid,

with (pid∗,⊥,⊥,R).
– Set Ready← Ready \ {pid}.
– Set Readycid ← Readycid \ {pid} for cid with fin = ⊥.

Ready: On input (Ready) from M with identifier pid, update the global ready
set Ready ← Ready ∪ {pid} in the beginning of the subsequent round. Output
(Ready, pid) to S.

The simulator must perform nominations for each committee, but is
restricted by the number of nominations it may bias relative to the current
fraction of corrupt machines.

Functionality FRA (continued):

Nominate honest: On input (Nom-Honest, cid) from S in round r, retrieve
the value (r, cid, C,PKeys, SKeys, cor, nom, fin). If no such value exists do nothing.
If nom < c, do the following:
– Update nom← nom + 1.
– Generate fresh encryption and signing keys for the chosen machine:

(ek, dk)← PKE.Gen(), (vk, sk)← SIG.Gen().
– Append (ek, vk,⊥) to PKeys.
– Add (⊥, dk, sk,⊥) to SKeys.
– If nom = c, go to procedure Finish(cid).

14

– Output (Nom-Honest, cid, ek, vk) to S.

Nominate corrupt: On input (Nom-Corrupt, cid, pid, (ek, vk), (dk, sk)) from
S in round r, retrieve the value (r, cid, C,PKeys, SKeys, cor, nom, fin). If no such
value exists, do nothing. If nom < c and cor + 1 < T (|I|/|P|), do the following:
– Update the nominated and corrupt counters nom← nom + 1, cor← cor + 1.
– Append (ek, vk,⊥) to PKeys and (pid, dk, sk,⊥) to SKeys.
– If nom = c, go to procedure Finish(cid).

Corrupt nominee: On input (Corrupt-Nominee, cid, pid) from S in round r,
retrieve the value (r′, cid′, C,PKeys, SKeys, cor, nom, fin) where cid = cid′ and
r = r′. If no such value exists, do nothing. If cor+1 < T (|I|/|P|) and cor < nom,
do the following:
– cor← cor + 1
– Choose an element (pid′, dk, sk,⊥) uniformly at random between the values

of SKeys where pid′ = ⊥.
– Update this value to be (pid, dk, sk,⊥)
– Output (Corrupt-Nominee, cid, pid, dk, sk) to S.

Finish (cid): When the procedure Finish(cid) is called, retrieve the value
(r′, cid′, C,PKeys, SKeys, cor, nom, fin) where cid′ = cid and do the following:
– Sample a random permutation φ on [c].
– For the ith element of PKeys update (ek, vk,⊥) to (ek, vk, Cφ(i)).
– For the ith element of SKeys update (pid, dk, sk,⊥) as follows:
• If pid = ⊥, choose an honest machine uniformly at random as

pid′ ←$ D(H,P). If pid′ ∈ Readycid, update to (pid′, dk, sk, Cφ(i)).
• Else, update to (pid, dk, sk, Cφ(i)).

– Set fin = > for cid.
Output (Finish, cid, φ,PKeys) to S when finished.

Corrupt: Upon receiving (Corrupt, pid) from E , output all elements
(pid∗, dk, sk,R) of any stored SKeys, where pid∗ = pid to S.

4 Compiling abstract to natural YOSO

Consider an abstract YOSO-protocol in the FBC&SPP-hybrid model which
is maliciously secure against a static adversary. This protocol is run by
a set of committees, where each committee is associated with a set of
roles. We may assume the execution of any honest role is completed by
inputting at most one Send command to an instance of FBC&SPP, this is
enforced by the Spoke token which kills the role.

The goal of our compiler is to transform such a statically-secure YOSO
abstract protocol in the FBC&SPP-hybrid model into an adaptively-secure
natural-world protocol in the FRA-hybrid model, where FRA denotes the

15

ideal functionality for role assignment defined in Section 3. We also as-
sume that the natural protocol has access to a bulletin board (formalized
as an ideal functionality below) which can be used by anyone to broadcast
a message.

Functionality FBB

– Initially create broadcast maps:
m : N×Machine→ Msg⊥ where m(r,M) = ⊥ for all r,M .

– On input (Send, sid,msg) from machine M in round r:
• Update m(r, S) = msg. Store the broadcast message from the

role.
• Output (Send, sid,msg) to S.

– On input (Read, sid, r′) from machine M in round r where
r′ < r output a set of all elements (M ′, r′,msg) where msg =
m(r′,M ′) 6= ⊥ to M .

Overview of the compiler. Suppose we wish to compile an abstract proto-
col Π. At a high-level, the compiled protocol in the natural world involves
the following stages: First, the machines initiate role assignment for com-
mittees that need to be nominated, which is determined based on the
current round and the public state. Once the nomination process is com-
pleted, the machines can retrieve public keys corresponding to all roles
in these committees and secret keys for the roles they were chosen for (if
any). This can be done by machines inputting read to FRA.

Consider a machine M who has been assigned a role for some round
of the abstract protocol. Recall that in this case, FRA provides M with
a decryption key and a signing key. M obtains from FRA the signature
verification keys of all the roles that are supposed to send messages to
the role that’s assigned to M , as well as the public encryption keys of
the roles that its assigned role is supposed to send messages to. (Note
that the latter key may not be available yet.) In this case M keeps asking
FRA for these keys in each round. As soon as FRA provides these keys,
the M is ready to execute the role R based on the specifications of the
abstract protocol Π. Suppose this role R invokes FBC&SPP in Π with a
set of point-to-point and broadcast messages, then the machine does the
following to emulate this step on behalf of the role:

– Read the bulletin board to retrieve messages posted by machines emu-
lating sender roles. This includes broadcast messages and ciphertexts

16

encrypting point-to-point messages intended for R as a receiver, ac-
companied by signatures. Accept the messages only if the signatures
are valid (note that the verification key of all roles are made public
by FRA).

– To retrieve the point-to-point message, uses the decryption key to
decrypt the relevant ciphertexts.

– Proceed to compute the outgoing broadcast and point-to-point mes-
sages on behalf of the role R (Note that at this point, the machine
has all the information a role holds in Π). Prepare a one-shot message
comprising of the following (a) Broadcast messages (b) Ciphertexts
encrypting the point-to-point messages using the encryption key of
the relevant receiver roles in future committees (made public by FRA)
(c) Signature on these messages, computed using the signing key of
R received from FRA.

– Once the above one-shot message is computed, invoke FRA with input
delete and delete its own entire state, except the one-shot message
to be posted. In particular, delete the secret keys, received messages
and randomness used on behalf of the role R.

– Post this message to the bulletin board (as an atomic action).

Once the machine M has finished executing the role R, it notifies FRA

that she is ready i.e. available to be assigned a new role.
We point out that in the above informal description, we focused on

machines that were assigned computation roles. The compiler easily ac-
commodates actions by input and output roles in Π as well – the only
difference is that these roles are carried out by fixed machines and their
identity is not secret. Therefore, the public keys of these roles can be
established via a PKI and need not be handled by FRA. Further, the mes-
sages posted on the bulletin board by machines executing these roles need
not be signed.

Protocol Compile(Π)

Notation: The algorithm Nominate(r, {Broadcastsid}sid∈SID) denotes a publicly
computable function which when given the current round and public state
outputs the set of committees to be nominated.

Init: Initialise sets of messages and keys for each role:
– For each R ∈ Role and sid ∈ SID define a set R.Recsid ← ∅ of ciphertexts sent

to the role. R.ek ← ⊥, R.vk ← ⊥, R.dk ← ⊥ and R.sk ← ⊥.
– If R ∈ RoleIn ∪ RoleOut, set R.ek and R.vk to relevant public keys established

by PKI.
– For each sid ∈ SID: Broadcastsid = ∅.

17

Nominate: In the beginning of round r, compute the (computation) committees
to be nominated, {cidi, Ci}i∈[k] ← Nominate(r, {Broadcastsid}sid∈SID).
For each committee input (New, cidi, Ci) to FRA.

Role Keys: Once the machine finishes nominating committees in a round r, it
proceeds to read the keys for the committees nominated in the previous round.
For each committee, the machine inputs (Read, cid, r) to FRA receiving lists PKeys
and SKeys.
– For each element (ek, vk,R′) in PKeys the machine stores the role keys as

R′.ek ← ek and R′.vk ← vk.
– For each element (pid, dk, sk,R) in SKeys (where pid corresponds to the ma-

chine’s identifier) store the keys R.dk ← dk,R.sk ← sk. We now consider the
machine to have been assigned role R.

Read: After storing new role keys each machine reads the bulletin board to
process the next round of messages in the protocol. In round r the machine
inputs (Read, sid, r−1) to FBB, for each output element (M ′, r′,msg′) it receives
the machine does the following:
– Parse msg′ as ((S, sid, (R1, x1), . . . , (Rk, xk), x), σ)
– Verifies the signature b← SIG.Verify(S.vk, (S, sid, (R1, x1), . . . , (Rk, xk), x), σ),

ignoring the message if verification does not succeed a.
– Add (S, x) to Broadcastsid.
– For i ∈ [k] add (S, xi) to Ri.Recsid.

If any role has more than one message with a valid signature, both should be
ignored.

Role Execution: When a machine has been assigned a role R, it should run
the role in its head and emulate the interaction between the role and its ideal
functionality FBC&SPP. In a given round a machine should activate each role it
has been assigned, until the role signals that it has completed the round.
– If R ∈ RoleIn, then this machine (belongs to MachineIn) must have received

command (Input, x) which it passes on to R.
– If R inputs (Read,R, S, r′) to F sid

BC&SPP, the machine should retrieve the tuple
of the form (S, x) in R.Recsid, if no such tuple exists ⊥ should be output
directly to the role. The ciphertext should then be decrypted to obtain x←
PKE.Dec(sid,S)(R.dk, x) which may be returned to R.

– If R inputs (Read, S, r′) to F sid
BC&SPP, the machine should retrieve the tuple

of the form (R, x) in Broadcastsid, and return x to R, returning ⊥ if no such
value exists.

– If R ∈ RoleOut outputs (Output, y), output the same.

Send FBC&SPP: When the role R ∈ RoleIn ∪ RoleComp assigned to M outputs
(Send,R, ((R1, x1), . . . , (Rk, xk)), x) to FBC&SPP with session identifier sid do the
following:
1. For j ∈ [k]: xj ← PKE.Enc(sid,R)(Rj .ek, xj ; ρj).
2. Let msg = (R, r, sid, (R1, x1), . . . , (Rk, xk), x).
3. Compute σ ← SIG.Sign(R.sk,msg) and set msg′ = (msg, σ) b.
4. If R ∈ RoleComp

– Input (Delete) to FRA.

18

– Erase all private local state associated with the role R, excluding
(R,msg, σ). In particular this includes R.dk,R.sk and the entire state
of the copy of R the machine has been running in its head.

5. Post msg′ to the bulletin board.
6. Input (Ready) to FRA if R ∈ RoleComp.

If a machine has been assigned multiple roles it should activate them until they
have all sent a message or completed the round, collecting all their messages at
Step 6.2 and posting them together.

a this verification is not needed if S ∈ RoleIn ∪ RoleOut

b Here, signatures can be avoided if R ∈ RoleIn.

5 Security of the compiler

In this section, we prove the security of the compiler presented in Sec-
tion 4 which transforms a static, abstract YOSO protocol to an adaptively-
secure natural protocol. The security of our compiled natural protocol
fundamentally relies on the security of the original abstract protocol. The
primary challenge arises due to the difference in the adversary’s corrup-
tion powers between the abstract and natural world. In order to rely on
the static security of abstract protocol, we must be able to translate the
adaptive adversary in the natural world to an appropriate static adver-
sary in the abstract world (against which a simulator must exist, due to
security of the abstract protocol).

Theorem 2. Consider an abstract protocol Π which YOSO securely im-
plements the ideal functionality F in the presence of c/w static corrup-
tions (where c = Ω(κ) denotes the committee size) in the FBC&SPP-
hybrid model. Let Rmax ≥ κ denote the upper bound on the concur-
rently active roles at any point (which refers to roles that are able to
receive messages, or currently being nominated). Let FRA be shorthand for
FRA(P, c, T ,U , 2) where U samples the uniform distribution and T (f) =
c
(
1− (1− ε)(1− f)2

)
, for ε > 0. Suppose Π is secure against an arbi-

trary number of static corruptions in the input and output roles and has
the following properties 5:

– All honest roles in the same committee speak in the same round.
– It is publicly computable which committees need to be nominated at

least delay round(s) in advance.

5 Note that all existing abstract YOSO protocols (such as the protocols in [GHK+21],
[KRY22]) satisfy these properties.

19

Then the protocol Compile(Π) UC implements the ideal functionality F
in the (FBB,FRA)-hybrid model, under the presence of T < Nft adaptive
corruptions of the computation machines and any number of static cor-
ruptions in the input and output roles, where N = R2+δ

max for a constant
1 ≤ δ and 0 < 1− 2wft + wf2t . 6

Proof. We begin with the description of our simulator Snat for the com-
piled protocol in the natural world.

Fig. 3: Our high level proof strategy for exploiting the abstract simulator

At a very high-level, Snat chooses a random set of roles to corrupt
statically, with respect to which Sabs (the simulator of underlying abstract
protocol Π) is run. Towards the adaptive adversary in the natural world
(which is in the FRA hybrid), Snat emulates this functionality of FRA with
the following major difference: Instead of choosing the roles corresponding
to corrupt nominations at random, these are appropriately matched to
the above pre-determined set of static corrupt roles. Further, Snat acts
as a proxy between the adversary Anat in the natural world and Sabs.
More specifically, the messages sent by Sabs on behalf of honest roles are
encrypted with suitable encryption keys (determined as part of FRA) and
posted on the bulletin board in the natural world. Similarly, the messages
posted byAnat in the natural world are decrypted to emulate corrupt roles
towards Sabs. This completes a high-level description of the simulator.

Simulator Snat

We define a simulator Snat which proceeds as follows:

– The simulator chooses a random subset IC of the roles in each
committee C to corrupt, where |IC | = τ . Here τ < c/2. Let
HC = C \ IC .

6 For w = 2 this allows ft ≤ (1−
√

1/2) ≈ 0.29

20

– The environment has the ability to corrupt and activate ma-
chines. For corruptions the adversary expects to see a role with
some probability. For activations, it expects to see messages
posted to the bulletin board, if machine was assigned a role which
has produced output. To account for these cases the simulator
then defines a list RC = σ(IC)||σ′(HC) where σ and σ′ are ran-
dom permutations on the sets of corrupt and honest roles respec-
tively. The roles we revealed to the adversary as corruptions will
be taken from the front of this list, while roles which finish are
taken from the back. This ensures the roles in our corruption bud-
get are not forced to finish before the roles which must remain
honest.

The simulator runs the adversary Anat. When Anat invokes the ideal
functionality FRA, the simulator runs the following modified version
of FRA(P, c, T ,U , 2) which it presents to the adversary:

– When the committee is finished being nominated, remove the first
cor elements of RC , assigning them to the corrupt nominations.

– The functionality does not fix the mapping from roles to ma-
chines, rather for every adaptive corruption after the nomination
of the committee is finished, over |RC | trials remove the role at
the front of RC and assign to the corrupted machine with prob-
ability 1/|H|. Any role assigned to the newly corrupted machine
should be activated, so it reaches the state it would be in, given
the number of activations to the newly corrupted machine in the
current round. Once t elements have been removed from the front
of RC , never assign any new role to an adaptively corrupted ma-
chine.

– When machines finish their computation for a round they have a
chance to be assigned a role which they will output for. On the
last activation before they are ready to proceed to the next round.
The environment fixes the order in which machines are activated
in a round. For the ith honest machine which the environment
activates, in the round in which committee C is ready to speak,
over |RC | trials, with probability 1/(|H| − i + 1), remove the
element R at the back of RC and post the output of R to the
bulletin board on behalf of M . Removing the role from the list
corresponds to FRA assigning the role to the machine. If M was
not ready at any point during the nomination of this role it should
not post the message.

21

If the adversary ever provides a valid signature for an honest role,
which differs from the signature produced during output from that
role, simply ignore the associated message.
The simulator Snat computes messages for the honest parties by run-
ning the abstract simulator Sabs and acting as its environment. In
particular, Sabs is the simulator for the adversary which simply for-
wards all messages to and from the environment.
In the beginning of the abstract simulation for each committee C,
our simulator statically corrupts the parties in IC . The simulator
Snat interacts with Sabs by:

– When Sabs passes on messages from F sid
BC&SPP, Snat encrypts each

point-to-point message to its intended recipient, using the keys
from FRA. For messages between honest roles, Sabs will only out-
put their length `. In this case Snat encrypts 0`. These encryptions
are then posted on the bulletin board.

– When the adversary posts a message on FBB from a corrupt role,
the simulator decrypts all messages to honest parties and passes
the plaintexts on to Sabs to post on F sid

BC&SPP.
– When Sabs invokes its ideal functionality, forward the messages

to the ideal functionality F in the natural world to obtain the
response, which can be subsequently forwarded to Sabs.

Next, we proceed through a series of hybrids which will enable us to
construct our desired abstract adversary, for which we know there exists
a simulator. This will allow us to rely on the security of the abstract
protocol which we are compiling.

Hybrid H0: Run the real experiment REALΠnat,Anat,Enat(1
κ)

Hybrid H1: In this series of hybrids we will reprogram FRA, so the sim-
ulator may sample which roles will be revealed at the beginning. We
reprogram FRA to behave as described in the simulator.

Hybrid H2: Same as previous, except ignore the message on FBB if the
adversary ever provides a valid signature for an honest role, which differs
from the signature produced during output from that role. We may now
be sure that the messages received from honest roles do in fact correspond
to their real output.

22

Hybrid H3: We now wish to move the roles in HC which the simulator
is running using virtual versions of F sid

BC&SPP to be honest roles in the
abstract world.

We observe that the honest roles in HC all have consistent views of
the messages in their virtual versions FBC&SPP due to the properties of
FBB, and the guarantee that messages from honest roles seen in F sid

BC&SPP

actually come from those honest machines. Therefore, the honest roles
will exhibit the same behaviour if allowed to interact through an actual
F sid
BC&SPP.

We let our simulator act as the environment toward an abstract ad-
versary Aabs of our design. The simulator specifies the static corruptions
in each committee to be IC as sampled previously. Our abstract adver-
sary Aabs simply takes the messages provided to it by its environment
and sends them on behalf of the corrupted roles. Whenever a message is
encrypted to an honest role and posted on FBB the simulator decrypts
this message and provides it to Aabs. When Aabs receives information
from F sid

BC&SPP it relays this to the simulator. When the natural adversary
reads from FBB, the simulator in turn requests that Aabs read all broad-
cast messages from the last round. The simulator may then encrypt the
real messages for corrupt receivers, and use the leaked message length `
to encrypt 0` for messages between honest roles.

Hybrid H4: In the previous hybrid we had defined an abstract real world
adversary Aabs used to produce messages for each of the honest roles.
Now we replace said adversary, by its ideal world counterpart Sabs. This
is possible as the ideal functionalities in the natural and abstract worlds
permit the same leakage, allowing the simulator to forward any messages
between Sabs and F . The simulator no longer needs any information on
the honest inputs beyond what is provided by F , and is therefore in the
ideal world.

We briefly summarise the fraction of allowable corruptions through
our hybrids. During the nomination of a committee up to T (f) of the
roles were allowed to be corrupted. After nomination was finished, we
at most allow τ − T (f), further adaptive corruptions. We require τ >
(1 + ε)cf∗ + T (f), where f is the fraction of corruptions when nomina-
tions finished, and f∗ = ft−f is the remaining corruption budget at that
point. This accounts for any adaptive corruptions caused by the adver-
sary expending f∗ corruption budget after nomination was complete For
T (f) = c

(
1− (1− ε′)(1− f)2

)
this gives,

τ > c(1 + (1 + ε)f∗ − (1− ε′)(1− f)2).

23

We note that as N = R2+δ
max for δ ≥ 1, if Rmax is at least κ roles

the probability of a collision will be negligible. This leaves us with the
requirement,

c/w > c(1 + (1 + ε)f∗ − (1− ε′)(1− f)2),

to achieve our desired honest fraction. By a similar analysis to that of
Benhamouda et al. [BGG+20] the above equation is possible to satisfy
when 0 < 1 − wft − wf + wf2, where the right-hand side is minimized
when f = ft. Therefore, we only tolerate a corruption threshold 0 <
1− 2wft + wf2, which for w = 2 allows ft < 1−

√
1/2 ≈ 0.29.

To complete our proof we need to argue the indistinguishability of each
pair of hybrids. We note that the most challenging aspect of the proof is
to show that reprogramming the FRA maintains indistinguishability. Due
to the involved nature of this argument, we first discuss this in a separate
section below and then move on to argue the indistinguishability of each
pair of hybrids.

5.1 Re-programming role assignment

We wish to model how the role assignment mechanism distributes roles
among machines. We then model the adversaries ability to corrupt ma-
chines seeing assigned roles as well as its control of the activation of honest
machines. Our final goal is to ensure that we always have sufficient cor-
ruption budget regardless of how the adversary interleaves corruptions
and activations.

Let us consider the following game played by an unbounded adversary.

Game. The challenger places R balls, labeled 1, . . . , R, uniformly at ran-
dom into H bins. The adversary is then allowed to check up to T of these
bins one-by-one and corrupting the labels of balls in the opened bin in
a random order. The adversary may additionally remove an unlimited
number of bins from the game, receiving any labels they contain, we con-
sider these labels to be removed and not corrupted by the adversary. We
may describe the assignment of the balls to bins by random variables
B1, . . . BR, which are i.i.d. uniformly across [H].

Additionally, let L1, . . . , LR be the random variables where each Li
takes the value of the ith label corrupted by the adversary, with distri-
butions taken over the random coins of the challenger and adversary. If
the adversary never finds at least i labels, we let Li = 0. We make the
following observations:

24

– Consider an adversary which has checked or removed j bins, the in-
dices of which are in the set C. For any choice of (j + 1)th bin the
probability the adversary will see ball i which it has not yet corrupted
or removed is

Pr[Bi = k|∀` ∈ C : Bi 6= ` ∧ k 6= `, |C| = j] =
1

H − j
.

– No label is observed twice, Pr[Li = Lj |i 6= j, Li 6= 0] = 0, and the
next label corrupted by the adversary is always uniform across the
uncorrupted and not removed labels,

Pr[Li = k|k 6= 0 ∧ ∀j ∈ [i− 1] : Lj 6= k] =
1

R− i
.

Following our observations we will make a number of modifications to the
game, which are indistinguishable even for a computationally unbounded
adversary.

Decouple. The first modification we make to this game is placing balls
into bins lazily. For a ball labeled i ∈ [R], rather than placing the ball
into any bin at the beginning of the game we may instead add the ball
to the (j + 1)th opened or removed bin with probability 1

H−j , until the
ball is found. This produces an identical distribution to that previously
observed by the adversary. By independence of the balls, the same may
be extended to every ball.

Relabel. For our second modification we wish to sample the order in which
labels are revealed to the adversary at the beginning of the game. We
still sample the ball placement lazily as previously, simply relabelling the
revealed balls to match a random permutation `1, . . . `R of the elements
in [R] which is picked at the beginning of the game. Labels which are
corrupted by the adversary are taken from the beginning of this list, while
labels which are removed are taken from the end. As the next corrupted or
removed by the adversary is always uniform among the remaining labels,
sampling this beforehand will lead to the same distribution; the list is
always a uniformly random permutation on the remaining elements.

Bound. For our final modification the after the adversary corrupts B
labels the challenger returns the empty set for any additional bins the
adversary opens. Note, balls are still added to removed buckets as previ-
ously.

25

This game is statistically indistinguishable from the previous game, if
R = Ω(κ) and B

R = (1 + ε) TH for positive ε and sufficiently large H. First
we restrict our adversary to one which chooses all bins it will open in the
beginning of the game.

Consider the scenario where balls are placed into bins with replace-
ment, i.e. each ball is independently added to each bin with probability
1/H. In this case the contents of the bins are entirely independent of
one another. By a union bound, the probability that such an adversary
corrupt any balls in a given opened bin is at most R/H. We may then
bound the number of non-empty bins this adversary corrupts by consid-
ering S ∼ Bin(T, RH). By a Chernoff bound,

Pr

[
S > (1 + ε1)

TR

H

]
< exp

(
−R(T/H)ε21

2 + ε1

)
,

which is negligible for R = Ω(κ). In the above scenario the adversary
clearly gains no additional advantage by choosing bins adaptively, as an
opened bin provides no information on the unopened bins.

Restricting balls to only be placed into a single bin strictly reduces
the probabilities that any given bin, at any given point, is non-empty,
causing the same bound to apply.

To bound the number of balls the adversary sees we must additionally
bound the number of collisions among the balls. For this we consider
C ∼ Bin(R(R−1)

2 , 1
H). Let H = R2+c for c > 0, note the number of

collisions will be a less than one in expectation, can be tail bounded as a
small constant k. Let ε2 = kRc − 1, then

Pr[C > k] < Pr[C > (1 + ε2)R
−c] < Pr

[
C > (1 + ε2)

R(R− 1)

2H

]
< exp

(
−(R(R− 1)/(2H))ε22

2 + ε2

)
,

which is negligible for k = Ω(1) and R = Ω(κ). The total number of
balls corrupted may then be bounded by B = (1 + ε1)

TR
H + k, where

B
R = (1 + ε′) TH for ε′ > 0.

The final game. In summary, we have arrived at a new game which is
indistinguishable from the original. There are R balls and H bins, let
B = (1 + ε)TRH for ε > 0. In this game the challenger randomly permutes
all the labels to obtain `1, . . . , `B, . . . , `R.

The adversary may then open bins one-by-one. When the adversary
opens or removes the jth bin, for each ball which has not been corrupted

26

or removed the challenger will add a ball to the bin with probability
1/(H − j + 1). When the ball is added it is given the next label in the
sequence sampled at the beginning of the game, with labels for corrupted
balls being taken from the beginning of the list and removed balls the end.
Once B balls have been corrupted, the adversary is always shown empty
for every bin it opens up to the threshold T . When bins are removed each
remaining ball is added to the bin with probability 1/(H − j + 1), with
labels taken from the back of the list.

5.2 Indistinguishability of hybrids

H0 ≈ H1: When the assignment of committee C is finished, i.e. the func-
tionality executes (Finish, cid), at most T (f) of the roles in the committee
have been assigned to corrupt parties. As the roles given to corrupt ma-
chines are defined by a random permutation this will be indistinguishable
to receiving the first T (f) roles of RC . For the remainder of the roles
in RC we must show that fixing the roles which we will allow to be cor-
rupted, and assigning them to machines on the fly, is indistinguishable to
the adversary.

Recall the first game described in Section 5.1, this corresponds to the
case where the mapping from roles to machines is fixed statically. For our
purposes the labels correspond to identifiers for the remaining roles inRC ,
while the honest machines correspond to the bins. When the adversary
corrupts a machine it sees the state associated with corrupting the bucket
with the same index. If a machine is allowed to finish executing a role,
producing output, this is equivalent to removing the bucket of the same
index.

The final game in Section 5.1, in turn corresponds to the setting where
the roles mapped to a machine are chosen at the time of corruption, or
final activation in a round. As these two games are statistically indis-
tinguishable for an unbounded adversary, changing the behaviour of FRA

according to the challenger in the final game will also be indistinguishable.

H1 ≈ H2: Due to the previous hybrids we may now be sure that any role
in HC will never be revealed by the adaptive corruption of a machine.
Therefore, for any honest role R ∈ HC , we may reduce an adversary
causing the simulator to abort to one winning the unforgeability game of
the signature scheme with the same advantage. This leads to a series of
hybrids, with |HC | hybrids for each committee C.

27

H2 ≈ H3: We wish to replace ciphertexts between honest roles through a
reduction to the security properties of our encryption scheme. However, to
provide the necessary inputs to provide the necessary inputs to F sid

BC&SPP

we must maintain the ability to decrypt messages sent to honest parties.
For each pair of honest roles S ∈ HC and R ∈ HC′ we may replace
any encryption of xR between S and R for a session identifier sid with
an encryption of 0|xR|. An adversary distinguishing these cases may be
reduced to an adversary winning the labeled CCA game of the encryption
scheme with the same advantage. Messages sent to R from other senders
may still be decrypted and input to F sid

BC&SPP as they have different labels.
By the properties of FBB the views each honest has of F sid

BC&SPP will be
consistent. Running the honest roles in an abstract protocol will produce
the same messages. Note, we do not receive messages between two honest
parties, however F sid

BC&SPP will leak their lengths `, allowing encrypting 0`

as before.

H3 ≈ H4: By the security of the abstract protocol, for any real world
adversary Aabs there exists an ideal world adversary Sabs such that for
all environments Eabs,

REALΠabs,Aabs,Eabs(1
κ) ≈ IDEALF ,Sabs,Eabs(1κ).

The environment we consider is a composition of the remainder of natural
simulator and the natural environment, which we call Eabs. The efficiency
of this environment is preserved under composition. The natural simu-
lator appropriately specifies static corruptions at the beginning of the
experiment, making it a permissible environment for the abstract world.
As the ideal functionalities of the two settings are identical, replacingAabs

by the simulator Sabs allowed to interact with F will be indistinguishable
to Eabs and therefore also Enat.

6 Compiling computationally secure protocols

Our compiler in Section 4 supports the class of YOSO protocols in the
FBC&SPP-hybrid model, such as the information-theoretic protocol of [GHK+21].
However, this notably excludes protocols which assume explicit access to
keys for the roles to allow zero-knowledge proofs or any other types of
public verifiability for point-to-point messages. A large part of the ex-
isting YOSO protocol literature falls under this umbrella, including the
protocols presented in [BDO22,KRY22] and the computationally secure
protocol of [GHK+21].

28

Kolby et al. [KRY22] introduced the verifiable state propagation (VeSPa)
functionality FVeSPa to capture verifiability of point-to-point messages
and designed protocols in the (FVeSPa,FBC&SPP)-hybrid model instead.
We show how our compiler may be extended to accommodate the compi-
lation of protocols in the (FVeSPa,FBC&SPP)-hybrid model. This extended
compiler would captures the verification requirements of a broad range of
existing protocols.

6.1 Verifiable state propagation

In this section, we recap the verifiable state propagation (VeSPa) func-
tionality FVeSPa introduced in Kolby et al. [KRY22]. Informally, this func-
tionality enables both point-to-point and broadcast communication, while
allowing the sender to prove that she correctly computed these messages
(based on messages she received and possibly other additional inputs).

Functionality FVeSPa

This ideal functionality has the following behaviour:

– Define a map R : Role→ Rel⊥. Specify the relations the messages
of each role must satisfy.

– Initially create point-to-point and broadcast maps:
y : N× Role× Role→ Msg⊥ where y(r,R,R′) = ⊥ for all r,R,R′

m : N× Role→ Msg⊥ where m(r,R) = ⊥ for all r,R.
– On input (Send,S, ((R1, x1), . . . , (Rk, xk)), x, w) in round r pro-

ceed as follows:
• Let φsend = ((R1, x1), . . . , (Rk, xk)) and φbroadcast = x.
• Let φpublic be the current public state, represented by a vector

of all elements (r,R,msg), where m(r,R) = msg 6= ⊥.
• Collect all yk 6= ⊥ for r′ < r,R′ ∈ Role where y(r′,R′,S) = yk

to produce a vector φreceive = ((R′1, y1), . . . , (R
′
m, ym)).

• If ((φsend||φreceive||φbroadcast||φpublic), w) 6∈ R(S) ignore the in-
put.
• Else:

∗ For i ∈ [n] update y(r, S,Ri) = xi. Store point to point
messages from the role.

∗ Update m(r, S) = x. Store the broadcast message from the
role.

∗ Output (S, ((R1, |x1|), . . . , (Rk, |xk|)), x) to S. For corrupt
roles Ri output xi to S. Leak messages lengths and the
broadcast message to the simulator in a rushing fashion.

29

If S is honest give Spoke to S.
– On input (Read,R,S, r′) in round r where r′ < r for x =
y(r′, S,R) output x to R.

– On input (Read, S, r′) in round r where r′ < r output x =
m(r′,S) to R.

6.2 Extending to verifiable state propagation

Our compiler lends itself well to extension to the FVeSPa-hybrid model,
as we have made relatively few requirements of the encryption scheme
used for underlying protocol messages. If the encryption scheme used
additionally permits efficient proofs of knowledge of plaintext, we may
use non-interactive zero-knowledge to prove that the encrypted messages
between roles satisfy the relations required by FVeSPa. In our extension of
the compiler we use the NIZK functionality FNIZK introduced by [GOS12].
Looking ahead, the ability to extract witnesses through FVeSPa means that
we no longer require CCA security for our encryption scheme and may
relax this to CPA security. We define a relation RVeSPa which describes
what we require of the messages sent by our machines. The requirements
may be divided into two categories:

– Encryption and decryptions is performed correctly.
– The incoming and outgoing plaintexts, and the public state satisfy

the relation required by FVeSPa in the underlying protocol.

For a message msg = (R, sid, (R1, x1), . . . , (Rk, xk), x), incoming message
set R.Recsid, with elements of the form (S, xi), and past broadcast mes-
sages Broadcastsid, with elements of the form (R, x), we define our relation,

RVeSPa =

φ =

R, sid,R.ek,
Rsid(R),
(Rj .ek)j∈[k],

R.Recsid,
msg,
Broadcastsid

w =

R.dk,
(xj , ρj)j∈[k],

w′

> = KeyMatch(R.dk,R.ek)7

For j ∈ [k] :
xj = PKE.Enc(Rj .ek, xj ; ρj)

For (S, yj) ∈ R.Recsid :

yj = PKE.Dec(R.dk, yj)
φsend = ((Rj , xj))j∈[k]
φrec = ((Rj , yj))(S,yi)∈R.Recsid
φbc = x
φpub = Broadcastsid
((φsend, φrec, φbc, φpub), w

′) ∈ Rsid(R)

.

30

The only changes we need to allow for this functionality are when deal-
ing with messages sent via FVeSPa, the role assignment process remains
unchanged.

Protocol Extended Compile(Π)

Read: After storing new role keys each machine reads the bulletin board to
process the next round of messages in the protocol. In round r the machine
inputs (Read, sid, r− 1) to FBB, for each output element (M ′, r′,msg) it receives
the machine does the following:
– Parse msg as ((S, sid′, (R1, x1), . . . , (Rk, xk), x, π), σ)
– If sid′ is the session identifier for an instance of FVeSPa proceed with these

steps, otherwise handle the message as done for FBC&SPP in the original com-
piler.

– Verifies the signature b← SIG.Verify(S.vk, (S, (S, sid′, (R1, x1), . . . , (Rk, xk), x),
π), σ), ignoring the message if verification does not succeed.

– Defines the statement φ ← (R, sid′,R.ek,Rsid′(R), (Rj .ek)j∈[k],R.Recsid′ ,msg,
Broadcastsid′).

– Inputs (Verify, , φ, π) to FNIZK and waits for a response (Verification, , b).
If b = 0 the message is ignored.

– After checks have been made for all the provided messages:
• Add (S, x) to Broadcastsid′ .
• For i ∈ [k] add (S, xi) to Ri.Recsid′ .

If any role has more than one message with a valid signature, both should be
ignored.

Execute Role: A machine M nominated for a role R should activate it for each
round of the protocol until it speaks.
– If the role inputs (Read,R,S, r′) to F sid

VeSPa the machine should retrieve the
tuple of the form (S, xi) in R.Recsid, if no such tuple exists ⊥ should be
output directly to the role. The ciphertext should then be decrypted to obtain
xi ← PKE.Dec(R.dk, xi) which may be returned to R.

– If the role inputs (Read, S, r′) to F sid
VeSPa the machine should retrieve the tuple

of the form (R, x) in Broadcastsid, and return x to R,

Send FVeSPa: When the role R assigned to M outputs
(Send,R, ((R1, x1), . . . , (Rk, xk)), x, w′) to FVeSPa with session identifier sid′

do the following:
– For j ∈ [k]: xj ← PKE.Enc(Rj .ek, xj ; ρj).
– Defines the statement φ ← (R, sid′,R.ek,Rsid′(R), (Rj .ek)j∈[k],R.Recsid′ ,msg,

Broadcastsid′) and witness w ← (R.dk, (xj , ρj)j∈[k], w
′)

– Inputs (Prove, , φ, w) to FNIZK and waits for a response (Proof, , π).
– Let msg = (R, sid′, (R1, x1), . . . , (Rk, xk), x, π).
– σ ← SIG.Sign(R.sk, (R,msg, π)).
– Input (Delete) to FRA.
– Erase all private local state associated with the role R, excluding (msg, σ). In

particular this includes R.dk,R.sk and the entire state of the copy of R the
machine has been running in its head.

7 The predicate KeyMatch is true iff there exists randomness ρ such that (dk, ek) ←
KGen(ρ).

31

– Post (msg, σ) to the bulletin board.
– Input (Ready) to FRA.

6.3 Security of the extended compiler

We prove the security of our extended compiler, stated in the formal
theorem below.

Theorem 3. Consider an abstract protocol Π which YOSO securely im-
plements the ideal functionality F in the presence of c/2 static corruptions
(where c = Ω(κ) denotes the committee size) in the (FVeSPa,FBC&SPP)-
hybrid model. Let Rmax ≥ κ denote the upper bound on the concur-
rently active roles at any point (which refers to roles that are able to
receive messages, or currently being nominated). Let FRA be shorthand for
FRA(P, c, T ,U , 2) where U samples the uniform distribution and T (f) =
c
(
1− (1− ε)(1− f)2

)
, for ε > 0. Suppose Π is secure against an arbi-

trary number of static corruptions in the input and output roles and has
the following properties 8:

– All honest roles in the same committee speak in the same round.

– It is publicly computable which committees need to be nominated at
least one round in advance.

Then, the protocol Compile(Π) UC implements the ideal functionality F
in the (FNIZK,FBB,FRA)-hybrid model, under the presence of T < 0.29N
adaptive corruptions of the computation machines and any number of
static corruptions in the input and output roles, where N = R2+δ

max for a
constant δ ≥ 1 and 0 < 1− 2wft + wf2t .

Proof. The security proof of our compiler only requires relatively light
modification for our extension. Hybrids H0 to H2 require no modification,
as they deal with modification of the role assignment and unforgeability
of honest signatures.

Hybrid H3: We again wish to transition the honest roles which the sim-
ulator is running to be honest roles in the real abstract experiment. The
bulletin board ensures the consistency of messages for honest machines.
The sets of messages with verifying proofs and signatures will be the same

8 Note that all existing abstract YOSO protocols (such as the protocols in [GHK+21],
[KRY22]) satisfy these properties.

32

across all machines, as signature verification is deterministic and FNIZK

guarantees consistent verification.
We again let our simulator act as the environment toward an ab-

stract adversary Aabs of our design. The simulator specifies the static
corruptions in each committee to be IC as sampled previously. Our ab-
stract adversary Aabs simply takes the messages provided to it by its
environment and sends them on behalf of the corrupted roles. Whenever
a message is encrypted to an honest role and posted on FBB the simulator
forwards the witness provided to FNIZK to recover the plaintext. The sim-
ulator then passes on the plaintext messages and the witness for Rsid(R)
to Aabs. When Aabs receives information from F sid

VeSPa it relays this to the
simulator.

When the natural adversary reads from FBB, the simulator in turn
requests that Aabs read all broadcast messages from the last round. The
simulator may then encrypt the real messages for corrupt receivers, and
use the leaked message lengths to encrypt 0|xR| for messages between
honest roles. Note, the simulator need not provide a valid witness for
these messages as it is playing the role of FNIZK.

Replacing ciphertexts between honest parties is indistinguishable due
to the CPA security of the encryption scheme, we do not need a decryption
oracle as the adversary provides a witness containing the plaintexts to
FNIZK when producing the required proof.

Hybrid H4 may again be the same, requiring the underlying protocol
to YOSO securely realise F , thus concluding the proof.

7 Realising role assignment

In compilation, we crucially relied on the ability to program the nomina-
tions of our role assignment functionality on the fly to mitigate the adap-
tive corruption powers of the adversary. We will now show how to realise
FRA by modifying the committee selection protocol of Benhamouda et
al. [BGG+20] to allow equivocation of the mapping betweeen roles and
machines.

We begin by recalling the high level approach of their construction.
The task of choosing committee members is delegated to a nomination
committee; nominators in this committee do not need to receive any
private input and may therefore be self-selecting through cryptographic
sortition. For a sufficiently large nomination committee the fraction of
corrupt nominators will be close to the fraction of corruptions in the en-
tire system. When a machine is chosen as a nominator it samples fresh

33

ephemeral keys for the role it is nominating, the public key may be broad-
cast along with an encryption of the secret key under a special form of
anonymous PKE. As we consider an adaptive adversary with the capacity
to corrupt all members of the nomination committee, were they identified,
each nominator must make sure to delete its secret state prior to sending
their message. All machines may then observe the broadcast channel, and
attempt to decrypt each nomination ciphertext, if the decryption succeeds
the machine has been nominated and can decrypt ciphertexts messages
sent to the role.

To satisfy our role-assignment functionality we must make some mod-
ifications. Recall, in our simulation we want to choose the static corrup-
tions in each committee ahead of time, only ever revealing those chosen
corrupt roles. If the role assignment mechanism commits to a mapping be-
tween roles and machines a simulator may be forced to corrupt machines
which have been assigned honest roles, for which it cannot equivocate.
However, if the role assignment mechanism does not commit to the map-
ping between roles and machines this could conceivably be chosen on the
fly to avoid revealing any statically honest roles. To make the approach
compatible with the approach of Benhamouda et al. [BGG+20] we replace
the encryption scheme used for nomination ciphertexts with key and mes-
sage non-committing encryption (KM-NCE) [HLH+22]. We additionally
introduce the use of a randomness beacon, which provides fresh uniform
randomness each round, which we use to ensure the mapping from roles
to nominations is uniformly random and not biased by the adversary.

Note, while KM-NCE allows equivocating for both key and message,
we will only ever change the key under which ciphertexts decrypt.

Protocol ΠRA

Each machine M has access to a PKI containing KM-NCE public keys for each
computation machine and VRF public keys. Each role stores its current long-term
KM-NCE secret key as M.sk and its VRF secret key as M.skVRF. Let c be the
predefined size of a committee.

New Committee: After receiving input (New, cid, C) in round r, machine M
with identifier pid performs the following procedure:
– If there already exists stored value with cid∗ = cid ignore this command.

Otherwise, store the value (r, cid, C,PKeys,SKeys), where PKeys and SKeys
are empty lists.

– Input (Read, r) to the randomness beacon, to receive randomness ρ.
– Evaluate draw, π ← Sortition(M.skVRF, (r, pid, cid, ρ)).
– if draw is a winning draw proceed to nominate a party, otherwise skip the

remaining steps.

34

– Sample a uniformly random machine index pid ←$ P.
– Generate fresh ephemeral encryption and signing keys for the nominated role,

(ek, dk)← PKE.Gen() (vk, sk)← SIG.Gen().
– Encrypt the decryption and signing key to the chosen machine c ←

KM-NCE.Enc(Mj .pk, (pid, dk, sk)).
– Erase the keys dk, sk and all randomness used for sampling the keys and pid,

as well as any encryption randomness.
– Post (cid, ek, vk, π) to the bulletin board.

Read: On input (Read, cid, r) in round r′ where r + 2 ≤ r′
1. Retrieve the value (r, cid, C,PKeys,SKeys), stopping if no such value exists.
2. Observe the bulletin board and collect a list of messages for committee iden-

tifier cid posted in round r, (cid, ek1, vk1, c1, π1), . . . , (cid, ekk, vkk, ck, πk).
3. Remove any elements (cid, ekj , vkj , cj , drawj , πj) posted by ma-

chine M from the list where drawj is not a winning draw, or
VerifySort(M.pkVRF, (r, pid, cid, ρ)) = ⊥

4. Sort the list lexicographically by encryption key, keeping only the c first
elements. If the list does not have exactly c elements pad it with values
(cid,⊥,⊥,⊥).

5. Input (Read, r + 1) to the randomness beacon, to receive randomness ρ.
6. Let σ a uniformly random permutation on [c] defined by the randomness ρ

and apply σ to the list.
7. Loop over the list, for the jth element (cid, ekj , vkj , cj):

– Append (ekj , vkj , Cj) to PKeys.
– Attempt to decrypt (pid, dk, sk) ← KM-NCE.Dec(Mj .sk, cj). If

(pid, dk, sk) 6= ⊥ and pid matches the machine which posted the element
to the bulletin board, append (pid, dk, sk, Cj).

8. Output PKeys and SKeys to M .

Delete: When given input Delete, for each stored value (r, cid, C,PKeys, SKeys)
delete SKeys overwriting it with the empty list. Finally, delete the long term
secret key M.sk.

Ready: When given input Ready, generate a new key pair (pk, sk, tk) ←
KM-NCE.Gen(), setting M.sk = sk and deleting tk immediately. Finally, post
(pid, pk) to the bulletin board.

We now prove the security of our role assignment mechanism. The
protocol ensures at most T (f) = c

(
1− (1− ε)(1− f)2

)
of the c roles

in a committee are assigned to corrupt machines when the committee
is finished being nominated. Here f is the fraction of corruptions at the
point where the committee finishes being nominated. Intuitively this cor-
responds to guaranteeing that the remaining (1 − f)N honest machines
have nominated other machines which have remained honest at least a
fraction (1− f) of the time.

35

Theorem 4. For threshold function T (f) = c
(
1− (1− ε)(1− f)2

)
and

the uniform distribution U . If the KM-NCE scheme used has KMNCk-CCA
(for k = poly(κ) 9) and KM-NCE-UR security and the sortition has win-
ning probability c/((1 + ε′)N) for ε′ > 0. Then, the protocol ΠRA UC
realises the functionality FRA(P, c, T ,U , 2) in the presence of t ≤ N adap-
tive corruptions in the (FBeacon,FBB)-hybrid model

Proof. We prove the role assignment protocol described in Section 7 se-
curely implements the FRA(P, c, T ,U , 2) functionality, by a sequence of
indistinguishable hybrids, arriving at a simulator SRA.

Simulator SRA
We present a simulator for a real world adversary ARA. The simulator interacts
with the ideal functionality:

– When an honest machine given (New, cid, C) wins the sortition,

• With probability |H|
|P| input (Nom-Honest, cid) to FRA. Upon receiv-

ing (Nom-Honest, cid, ek, vk) post (cid, ek, vk, c) to the bulletin board,
where c is a faked ciphertext.

• Otherwise, choose a uniformly random corrupt party pid← I, and sam-
ple fresh keys giving input (Nom-Corrupt, cid, pid, (ek, vk), (dk, sk)) to
FRA. Post (cid, ek, vk, c) to the bulletin board, where c is a real encrption
of the keys.

– When ARA posts ciphertext (cid, ek, vk, c) to the bulletin board,
the simulator attempts to decrypt c for each honest machine. If
(pid∗, dk, sk) = KM-NCE.Dec(Mj .sk, cj), where pid∗ is the identi-
fier for the corrupt machine which posted the message, then input
(Nominate-Corrupt, pid, (ek, vk), (dk, sk)) where pid is the identifier for
Mj . Abort, if the ciphertext correctly decrypts for more than one honest
party. If it only decrypts to ⊥ for honest parties, input (Nom-Corrupt, cid,
⊥, (ek, vk), (⊥,⊥)) to FRA.

– When ARA performs an adaptive corruption on the machine with identifier
pid, for each honest nomination in a committee assign the nomination to the
machine with probability 1

|H| . When a role is assigned to the machine input

(Corrupt-Nominee, cid, pid) to the functionality to receive secret keys for
the role in (Corrupt-Nominee, cid, pid, dk, sk). Use the open algorithm to
generate the KM-NCE secret keys such that the machine can decrypt the
corresponding ciphertext. If the machine is assigned more than k roles the
simulator will be unable to open the faked ciphertexts and must abort.

– When proceeding to the next round the simulator inputs
(Nom-Corrupt, cid,⊥, (⊥,⊥), (⊥,⊥)) to FRA until each committee
being nominated in the current round has exactly C roles. This causes the

9 To weaken this to k = O(1) would require a bound on the number of honest nomi-
nations a machine could receive before refreshing its key

36

functionality to finish, outputting (Finish, cid, φ,PKeys), where φ fixes the
permutation between keys and roles. In the subsequent round the simulator
should then reprogram the randomness beacon to match φ.

The simulator fails if it is forced to make too many corrupt nominations and
therefore aborts if more than T (f) corruptions are made in any committee.

Hybrid H0: Run the real experiment REALΠnat,Anat,Enat(1
κ).

Hybrid H1: The same as previous, except the simulator aborts if the
corrupt parties wins the sortition more than (1 + ε)fc times for a given
committee.

Hybrid H2: Abort if any honest machine receives more than k nomina-
tions from honest parties between receiving Ready and the subsequent
Delete.

Hybrid H3: Abort the experiment if the adversary ever broadcasts (cid, ek, vk, c, π)
where more than one honest machine can decrypt c to something different
to ⊥.

Hybrid H4: For each encryption KM-NCE encryption from an honest
machine to a currently honest machine produce the ciphertext using the
faking algorithm rather than encrypting. If the receiving machine is cor-
rupted before it is given Delete the next time, the simulator will receive
the secret keys for the role from FRA. It may use the open algorithm
to produce an appropriate secret key, which correctly decrypts the faked
ciphertexts.

Hybrid H5: Rather than choosing which honest machines have been nom-
inated when the nomination ciphertext is generated, sample this lazily
for committees where nomination is not finished. When the adversary
corrupts a new machine, for each honest nomination in a committee as-
sign the nomination to the machine with probability 1

|H| . When a role
is assigned to the machine input corrupt nominee to the functionality to
receive secret keys for the role. Use the open algorithm to generate the
secret keys such that the machine can decrypt the corresponding cipher-
text.

37

H6: When an honest machine is given (New, cid, C), with probability s
if the machine has wins the sortition do the following:

– With probability |H|
|P| input (Nom-Honest, cid) to FRA. Upon re-

ceiving (Nom-Honest, cid, ek, vk) post (cid, ek, vk, c) to the bulletin
board, where c is a faked ciphertext as previously.

– Otherwise, choose a uniformly random corrupt party pid ← I, and
sample fresh keys giving input (Nom-Corrupt, cid, pid, (ek, vk), (dk, sk))
to FRA.

Hybrid H7: We will now reintroduce the bounds on the number of honest
and corrupt nominations, bounding total number corrupt nominations
and nominee corruptions by T (|I|/|P|), and the total number of nomina-
tions c. The simulator aborts if too many nomination queries are made.
We are now in the ideal world.

We now show the indistinguishability of the hybrids above.

H0 ≈ H1: An adversary winning the sortition too often, given the random
seed from FBeacon, may be reduced to an adversary breaking the pseudo-
randomness property of the sortition, by predicting which honest parties
will win.

H1 ≈ H2: The hybrid may only abort if there are at least k collisions
between the honestly nominated role. If the number of roles R is at least κ
and N = R2+c for c ≥ 1 this will only happen with negligible probability.

H2 ≈ H3: The indistinguishability of these hybrids follows directly from
the unique recipient property of the KM-NCE scheme.

H3 ≈ H4: These hybrids are indistinguishable by a reduction to the
KMNC-CCA security of the encryption scheme. Note, we need the CCA
variant as we use the decryption oracle to recover messages sent to the
honest parties, and input these to the ideal functionality. By our previous
hybrids there are at most k honest nominations for the same set of honest
keys, allowing us to stay within the constant number of challenges toller-
ated by the scheme. An adversary distinguishing the two hybrids would
win the KMNC-CCA game with the same advantage.

H4 ≈ H5: Sampling the assignment of roles to machines lazily induces the
same probability distribution as if done beforehand.

38

H5 ≈ H6: The honest machines sample the keys identically to FRA, and
nominate an honest party with probability |H|/N

H6 ≈ H7: We wish to upper bound the number of corrupt nominations
in a committee, to do this we will lower bound the number of remaining
honest parties. First, we upper bound the number of machines winning
the sortition by considering the random variable X ∼ Bin(N, s), where
s is the winning probability for a given party. By a Chernoff bound we
know

Pr[X > (1 + ε1)Ns] < exp

(
− Nsε21

(2 + ε1)

)
.

For Ns = Ω(κ) and a fixed ε1 this probability will be negligible in the
security parameter. We let our committee size c = (1+ε1)Ns, and will now
bound the number of corrupt nominations. We have ensured that there
are never more than c total nominations, ensuring that no nominations
are ever ignored. Thus, we only need to lower bound the fraction of honest
parties in our committee.

Consider an adversary corrupting up to a fraction f of the machines.
The faked nomination ciphertexts provide no information on which parties
have been nominated. Corrupting a machine earlier does not change its
probability of being nominated by honest parties, while the adversary
gains the chance to control a nomination. Therefore, the best strategy for
an adversary would be to expend the entire budget f at the beginning of
the nomination process.

Let H ∼ Bin(|P|(1 − f), (1 − f)s) be the random variable describing
the number of honest nominations. If we can lower bound H we may
upper bound the number of corrupt roles in a committee. We wish to
ensure,

Pr
[
c−H > c

(
1− (1− ε)(1− f)2

)]
= negl(κ).

Which, for ε1, ε2 > 0 may be equivalently expressed as

Pr

[
c

(
1− ε2
1 + ε1

(1− f)2
)
> H

]
= Pr

[
(1− ε2)Ns(1− f)2 > H

]
< exp

(
−N(1− f)2sε2

2

)
Which, as previously, is negligible for Ns = Ω(κ) and a fixed ε2. It is
therefore indistinguishable if we enforce the threshold function T (f).

39

8 The versatility of our compiler

The compiler we present allows the compilation of YOSO protocols us-
ing both FBC&SPP and FVeSPa. Of the existing literature only Kolby et
al. present computationally secure protocols in the FVeSPa-hybrid model
[KRY22], having introduced the functionality. However, existing works
which make non-black-box use of the communication between roles may
be recast into the FVeSPa-hybrid model allowing for their efficient compi-
lation.

We provide one such example. Braun et al. construct a YOSO MPC
protocol from class groups, following the circuit based CDN paradigm of
[CDN01]. Their protocol proceeds by first performing a distributed key
generation to obtain a key for a threshold linearly homomorphic encryp-
tion scheme, which is then used for the circuit evaluation.

In the construction of their protocol they assume access to explicit
public keys allowing them to prove statements about the ciphertexts and
public messages with NIZK. The NIZK proofs are used in three of their
functionalities, CreateVSS,CreateTriple and YOSO− ABB. Proving the ex-
act same relations about the messages sent through FVeSPa would clearly
preserve security, giving the simulator access to the same witnesses it
could extract from explicit proofs.

Braun et al. [BDO22] specifically tailor their statements to have effi-
cient proofs for the class group encryption scheme they use [CCL+19]. As
our extended compiler is secure for any PKE scheme with CPA security,
it could in particular be instantiated with the same class group scheme
preserving their efficiency.

References

AHKP22. Anasuya Acharya, Carmit Hazay, Vladimir Kolesnikov, and Manoj Prab-
hakaran. SCALES - MPC with small clients and larger ephemeral servers.
In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022, Part II, vol-
ume 13748 of LNCS, pages 502–531. Springer, Heidelberg, November 2022.

BDO22. Lennart Braun, Ivan Damg̊ard, and Claudio Orlandi. Secure multiparty
computation from threshold encryption based on class groups. Cryptology
ePrint Archive, Report 2022/1437, 2022. https://eprint.iacr.org/2022/
1437.

BGG+20. Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo
Krawczyk, Chengyu Lin, Tal Rabin, and Leonid Reyzin. Can a public
blockchain keep a secret? In Rafael Pass and Krzysztof Pietrzak, editors,
TCC 2020, Part I, volume 12550 of LNCS, pages 260–290. Springer, Hei-
delberg, November 2020.

40

https://eprint.iacr.org/2022/1437
https://eprint.iacr.org/2022/1437

CCL+19. Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico
Savasta, and Ida Tucker. Two-party ECDSA from hash proof systems and
efficient instantiations. Cryptology ePrint Archive, Report 2019/503, 2019.
https://eprint.iacr.org/2019/503.

CDN01. Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty com-
putation from threshold homomorphic encryption. In Birgit Pfitzmann, ed-
itor, EUROCRYPT 2001, volume 2045 of LNCS, pages 280–299. Springer,
Heidelberg, May 2001.

CM19. Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed
ledger. Theoretical Computer Science, 777:155–183, 2019.

EHK+13. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar.
An algebraic framework for Diffie-Hellman assumptions. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 129–147. Springer, Heidelberg, August 2013.

GHK+21. Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus
Nielsen, Tal Rabin, and Sophia Yakoubov. YOSO: You only speak once
- secure MPC with stateless ephemeral roles. In Tal Malkin and Chris
Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages
64–93, Virtual Event, August 2021. Springer, Heidelberg.

GHM+21. Craig Gentry, Shai Halevi, Bernardo Magri, Jesper Buus Nielsen, and
Sophia Yakoubov. Random-index PIR and applications. In Kobbi Nissim
and Brent Waters, editors, TCC 2021, Part III, volume 13044 of LNCS,
pages 32–61. Springer, Heidelberg, November 2021.

GOS12. Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for nonin-
teractive zero-knowledge. Journal of the ACM (JACM), 59(3):1–35, 2012.

HLH+22. Zhengan Huang, Junzuo Lai, Shuai Han, Lin Lyu, and Jian Weng. Anony-
mous public key encryption under corruptions. In Shweta Agrawal and
Dongdai Lin, editors, ASIACRYPT 2022, Part III, volume 13793 of LNCS,
pages 423–453. Springer, Heidelberg, December 2022.

KMTZ13. Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Uni-
versally composable synchronous computation. In Amit Sahai, editor,
TCC 2013, volume 7785 of LNCS, pages 477–498. Springer, Heidelberg,
March 2013.

KRY22. Sebastian Kolby, Divya Ravi, and Sophia Yakoubov. Constant-round yoso
mpc without setup. Cryptology ePrint Archive, Paper 2022/187, 2022.
https://eprint.iacr.org/2022/187.

MRV99. Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random
functions. In 40th FOCS, pages 120–130. IEEE Computer Society Press,
October 1999.

Nie02. Jesper Buus Nielsen. Separating random oracle proofs from complexity the-
oretic proofs: The non-committing encryption case. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 111–126. Springer, Heidel-
berg, August 2002.

41

https://eprint.iacr.org/2019/503
https://eprint.iacr.org/2022/187

	Taming Adaptivity in YOSO Protocols: The Modular Way
	Introduction
	Our Contributions
	Ideal Role Assignment Functionality
	Compiling Abstract Protocols
	Compiling Abstract Protocols that Require Message Verification.

	Realizing the role assignment functionality

	Preliminaries
	Key and Message Non-Commiting Encryption
	KM-NCE with a unique recipient
	A unique recipient KM-NCE construction

	Cryptographic sortition
	The You-Only-Speak-Once model
	Compiling abstract YOSO protocols

	Role assignment
	Compiling abstract to natural YOSO
	Security of the compiler
	Re-programming role assignment
	Indistinguishability of hybrids

	Compiling computationally secure protocols
	Verifiable state propagation
	Extending to verifiable state propagation
	Security of the extended compiler

	Realising role assignment
	The versatility of our compiler

