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Abstract. Privacy-preserving payment systems face the difficult task of balancing privacy and ac-
countability: on one hand, users should be able to transact privately and anonymously, on the other
hand, no illegal activities should be tolerated. The challenging question of finding the right balance lies
at the core of the research on accountable privacy that stipulates the use of cryptographic techniques
for policy enforcement. Current state-of-the-art systems are only able to enforce rather limited poli-
cies, such as spending or transaction limits, or assertions about single participants, but are unable to
enforce more complex policies that for example jointly evaluate both, the private credentials of sender
and recipient, such as admissible cross-border payments, let alone to do this without auditors in the
loop during payment. This severely limits the cases where decentralized virtual assets can be used in
accordance with regulatory compliance such as the Financial Action Task Force (FATF) travel rule,
while further retaining strong privacy features.
We present unlinkable Policy-Compliant Signatures (ul-PCS), an enhanced cryptographic primitive
extending the work of Badertscher et al. (TCC 21). We give rigorous definitions, formally proven
constructions, and benchmarks using our prototype developed using CharmCrypto. Unlinkable PCS
has the following unique combination of features:
1. It is an enhanced signature scheme where the public key encodes in a privacy-preserving way the

user’s verifiable credentials (obtained from a credential authority).
2. Signatures can be created (and later publicly verified) by additionally specifying a recipient’s public

key aside of the to-be-signed message. A valid signature can only ever be created if the attributes
xS of the signer and the attributes xR of the receiver fulfill some global policy F (xS , xR).

3. The signature can be created by the signer just knowing the recipient’s public key; there is no
further interaction needed no attributes are leaked (beyond the validity of the policy).

4. Once credentials are obtained, a user can generate fresh public keys without interacting with the
credential authority.

By merging the act of signing a transaction with the act of providing an assurance about the involved
participants being compliant with complex policies, yet retain that participants are able to change
addresses without the involvement of an authority, we show how ul-PCS constitutes a crucial step
towards achieving a technology that improves regulatory compliance of privacy coins such as Monero
or Zcash.

1

https://orcid.org/0000-0002-1353-1922
https://orcid.org/0000-0002-1507-6927
https://orcid.org/0000-0002-9083-5794
mailto:christian.badertscher@iohk.io
mailto:ssedagha@esat.kuleuven.be
mailto:hwaldner@umd.edu


1 Introduction

The inception of Bitcoin [53] and its novel approach to implement a transaction ledger via
a blockchain brought to light a new type of payment system that does not rely on trusted
parties like a central bank, but instead uses distributed ledger technology to settle direct
transactions between parties and to protect against double-spends. Besides Bitcoin, decen-
tralized anonymous payment (DAP) systems, such as Zcash [11] and Monero [3], have been
proposed to improve privacy and anonymity guarantees. In these systems, parties enjoy full
transaction privacy and anonymity, which makes it challenging to hold parties accountable
for their actions, let alone for a regulator to be assured regulatory compliance is met. This
led to the study of accountability and auditability in the context of distributed payment
systems with the main goal of understanding the necessary adoption requirements of these
systems in various jurisdictions [24].

The core meaning of auditability is to provide means to a regulator to ask for specific
pieces of information, based on a legal system defining a catalogue of admissible questions,
and be given the answer in a faithful way [24]. Clearly, an auditor only needs to (reactively)
ask for information that the system does not proactively enforce by itself. This policy enforce-
ment is precisely how accountability for private payment systems, or accountable privacy for
short, has been defined in [24,40]. However, in many of the currently proposed systems, the
granularity of accountable privacy is not very high, and the focus lies on (functions about)
the monetary value of transactions or spending limits on accounts [23,40,54,63], where more
centralized designs typically allow for a richer set of provable statements. To make matters
worse, auditability is often equated explicitly or implicitly with the ability of an auditor to
revoke the privacy and anonymity of transactions of any individual user (or given a key to
supervise or view the transaction log) [4,8,21,26,28,50]. While this trivially avoids the need
for more sophisticated policy enforcement techniques, it goes without saying that such a
powerful revocation capability is problematic as it could be subject to abuse.

In light of this, an important question arises: how precisely can we enforce policies on
the transaction level? A blueprint followed by several works [33,59,64] to obtain accountable
privacy in DAP systems is to consider transaction types for specific use cases where each use
case is governed by a policy whose compliance can be enforced. In exchange for a potentially
limited scope, users get back full and unrevocable anonymity for these transactions. For
example the UTT system [59] defines a digital analogon of cash: the so-called budget coins
are issued in a limited fashion to certified users. As soon as the user has obtained the coins,
they can transact in a cryptographically secure way that, among other things, ensures full,
unrevocable privacy.

Central to the success of such systems is the level of granularity for which one can enforce
policy compliance. The richer the class of cryptographically enforceable policies, the easier
it is to define different transaction types. In view of the developing ecosystem on digital
credential systems [18, 25, 62], more legal policies can be translated to the digital world,
such as predicates about which two individuals are allowed to transact based on age or
residency, or on accredited attributes like financial reliability, credit worthiness, or other
real-word certifications. More concretely, this leads to more fine-grained transaction types
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for which full privacy can be guaranteed. An example could be to lift certain limits for, e.g.,
residents spending coins in shops that are certified to only sell goods for everyday life. If
such policies are enforceable by cryptographic means in a DAP system, this would heavily
boost the privacy of users while satisfying regulatory needs. Unfortunately, there is no DAP
system that supports this functionality and integrates smoothly with a credential issuance
infrastructure. One reason is the strong, at first sight contradictory, set of requirements,
which are that (1) all credentials of a user must remain private, even during payment; (2) it
must be possible to perform policy evaluation jointly on both, sender and receiver, attributes
(such as whether they have the same residence, or whether they belong to jurisdictions across
which money transfers are permitted); and (3) compatibility with DAP systems must be
guaranteed, which means that evaluation must be possible whenever the sender knows just
the recipient’s public key (and no further interaction is required to submit the transaction)
and that compliance is publicly verifiable. We note in passing that even centralized designs
such as Platypus [64] do currently not support this stronger type of joint policy evaluation
(but admit individual attestations of users about their own attributes toward the central
bank).

In this work, we give a generically applicable cryptographic policy-enforcement mecha-
nism that is suitable to be integrated with DAP systems, i.e., it satisfies properties (1)-(3)
above. The mechanism is generic—it has the interface of a signature scheme—and can be
modularly composed with larger systems to complement existing solutions to achieve fine-
grained accountable privacy. However, our solution is not limited to decentralized ledgers,
and can also be applied to centralized designs to reduce the information leakage about a
transaction towards the auditor.

1.1 Contributions

Definitions. We introduce the enhanced cryptographic primitive called unlinkable policy-
compliant signatures, a stronger version of policy-compliant signatures introduced by
Badertscher, Matt, and Waldner [6]. We give precise definitions of unforgeability, attribute-
hiding, and unlinkability. Since privacy (resp. anonymity) and unforgeability are intertwined
in this definition, special care must be taken to arrive at a reasonable definition.

Generic solution. We provide a generic solution to the problem that realizes ul-PCS for
arbitrary policies F (x, y) defined for sender and receiver attributes x and y, respectively,
and formally prove its security. Despite its seemingly theoretical focus, the main practical
challenges in instantiating this primitive are the predicate encryption (PE) scheme and the
non-interactive zero-knowledge (NIZK) proof systems. We present an implementation of
our generic construction for the inner-product (IP) predicate, i.e., for vectors x and y of
attributes (encoded as field elements) such that F (x, y) = 1 iff the inner product of x and y
is zero. This predicate is known to be sufficient to realize many real-world policies including
set membership (e.g., used in identity-based revocation systems), CNF formulas and exact
threshold clauses (with conjunctive or disjunctive clauses) as well as hidden-vector encryption
enabling various sorts of comparisons as well as conjunctions of the above statements [6].
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More efficient constructions and implementations. We provide two additional, specific con-
structions for certain policy classes that are more lightweight in terms of required crypto-
graphic tools and have the additional features of constant-sized public keys and signatures, as
well as constant verification time. We provide prototype implementations in Python and uti-
lize the Charm-crypto framework [2] for all constructions we present in this work, including
the generic solution (instantiated with an IP-PE scheme).

For the experiments, we use a PC (laptop) with Intel Core i7-9850H CPU @ 2.60 GHz
and 16 GB memory over the BN-254 curves. Our benchmarks demonstrate that the signing
execution time for the specific schemes is less than 2 seconds for reasonably complex policy
sizes. The verification procedure of signatures takes around 1.6 seconds, with public keys in
the order of 28 kbytes, and signature sizes of about 16 kbytes (all independent of the number
of attributes). Our prototypes for the specific policy classes thus suggest that, although ul-
PCS may at first sight appear like a heavy cryptographic tool, they are able to enforce
policies with reasonable practical efficiency.

Finally, our prototype for the generic solution gives a first estimate about the real-world
complexity of general-purpose PCS designs. Due to its relationship with predicate-encryption
(which we explain in Section 2 below), the performance is largely influenced by the choice
of PE scheme. We run our benchmarks in the range of n = 5 up to 50 attributes. Signing
takes 3 seconds for n = 5 and each additional attribute incurs, on average in that range, an
estimated cost of 340 ms. For verification, we obtain around 4.5 seconds for n = 5 with an
average cost per additional attribute of around 420 ms. Public key sizes on the other hand
grow linearly, starting at 79 kbytes for n = 5, and incurring a cost of roughly 9.9 kbytes
per additional attribute (which means that even for 50 attributes, we have key sizes similar
to McEliece cryptosystems). Signatures are about 42 kbytes for n = 5 and grow by 5.14
kbytes per additional attribute. We compare these characteristics with the suggested PCS
construction from [6], for which we provide the first prototype (with the same underlying
PE scheme), which enables us to directly observe the overhead that our generic anonymity
enhancement techniques impose.

Application to payment systems. We show how to integrate ul-PCS with UTxO ledgers,
as well as with DAP systems like Zcash or Monero to ensure fine-grained policies on the
transaction level without the involvement of an auditor. To this aim, we build on a recent
abstract framework by Engelmann et al. [31] to modularly compose ul-PCS with so-called
one-time accounts, effectively coupling addresses with private credentials. We point out that
this integration does not introduce any additional trust assumptions beyond what a credential
issuance infrastructure would need. We further show that credential issuance, more formally,
setup and key-generation, can be distributed across a set of servers to avoid a single point
of failure. This is an important consideration, since corrupting the credential issuer usually
enables an adversary to generate keys by itself, which it can then use to brute force the
attributes of every participant in the system by checking to which participants it is able
to send based on its self-issued attributes. Finally, in the centralized settings of CBDC
constructions [50, 64], we showcase how an integration of ul-PCS extends the set of policies
that could be automatically enforced.
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Fig. 1: Usage of an unlinkable policy-compliant signature scheme: 1.) Alice with credentials
x and Bob with credentials y, run through a registration process with a credential authority.
2.) At any point, they can decide to re-randomize their keys in order to break any link to
their previous actions. 3.) Alice generates a signature, e.g., on a private transaction, with
Bob’s public key as the destination address. The fact that a valid signature emerges proves
that F (x, y) = 1.

2 Technical Overview and Related Work

In this section, we give an in-depth overview of the technical contributions of this work. We
describe the security goal of ul-PCS and the inherent complications to realize such a strong
notion. Afterwards, we outline the constructions we present in this work and the different
types of policies that we support. Finally, we provide an overview how DAPs can be enhanced
with ul-PCS in the context of FATF regulations [34], finding a good balance between privacy
and regulatory-friendliness, as outlined in the previous section. We conclude by an overview
of related work.

2.1 Realizing ul-PCS for Various Types of Policies

We begin by recalling the model behind PCS, put forth in [6]. The model involves three main
roles as depicted in Figure 1: the Credential Issuing Authority (CA), Signers and Verifiers.
The policy can be defined for a set of senders’ attributes S and receivers’ attributes R such
that a predicate function F : S × R → {0, 1} determines which senders, with a given set
of attributes, are allowed to create a signature for which receivers, that possess a subset of
attributes. If x and y are the (private) attributes of sender and receiver, respectively, then
creating a valid signature is allowed iff F (x, y) = 1. Existential unforgeability demands that
a signer cannot generate a valid signature for a recipient, identified by its public key (again
with attributes y), unless it has obtained the secret key associated with x (issued by the
CA) such that F (x, y) = 1. Attribute hiding guarantees that nobody learns any meaningful
information about the attributes of the signer and targeted verifier except, of course, the
bit that they jointly fulfill the policy when a valid signature emerges. We identify and in-
troduce a missing feature: unlinkability. A user must be able to change the representation
(i.e., its public key) without interacting with the authority, to break the link between its
actions—while retaining all security features above. Since ul-PCS combines anonymity with,

5



for example, unforgeability requirements, the existing security games must be adapted. A
resulting challenge is that winning conditions must remain well-defined, even if keys are
re-randomized (possibly done by the adversary) and attributes are hidden.

Design challenges. At first sight, the problem might appear not too difficult as it (superfi-
cially) resembles anonymous credential (AC) systems [19,25], which are well-studied and play
a key role in privacy-preserving applications by enabling users to authenticate themselves
while ensuring the unlinkability of their actions. A credential in this context is typically a
signature on the attributes. During the authentication process, users can demonstrate their
possession of a credential that satisfies a specific access policy without revealing any details
about the real identity of the user, except that they meet the criteria of the access pol-
icy. While one can notice some similarities with our goal set out above, ul-PCS possesses
distinctive properties that deviate crucially from the intuition about how AC systems are
used.

The first difference is in the representation of the credentials. In ul-PCS the credential
is an inherent part of the public information as its intended use case is as an address in a
payment system, cf. Section 2.2. In contrast, credential systems typically assume that all
attributes remain private unless shown in a credential-show operation. In most implemen-
tations, a credential is simply a set of attributes signed by an authority. As a consequence,
re-randomization in our context means that we have to find a privacy-preserving represen-
tation of users’ credentials that is fully re-randomizable without contacting the authority
again. This departs from the usual requirements that AC systems must fulfill.

Furthermore, generic credential-show algorithms are not necessarily privacy-preserving,
unless they involve assertions proved in zero-knowledge. In this context, these are properties
that a user proves about its private attributes. In contrast, in order to fulfill the desired goals
of ul-PCS the signer/sender needs to assert a policy that involves the private attributes of
itself and the receiver—without having the receiver disclose the information to the sender.
Any ul-PCS system must thus satisfy a set of seemingly incompatible requirements which
makes the problem highly non-trivial to solve.

Scheme for generic policies. We first consider the case for generic policies that achieve the
goal of an arbitrary joint check of the sender’s and receiver’s attributes encoded (in a privacy-
preserving manner) in their public keys. The standard PCS construction in [6] relies on three
main cryptographic primitives: (Predicate-Only) Predicate Encryption, Digital Signatures
and Non-Interactive Zero-Knowledge (NIZK) proofs which can all be instantiated in the
standard model. The high-level idea of this construction is that public keys of parties, acting
as receivers, contain a PE-ciphertext decryptable by the signer/sender, only upon policy
satisfaction. The signature and NIZK are needed to achieve unforgeability and to prove
multiple relations during the signing process. Following this paradigm, we present the first
unlinkable PCS scheme supporting any policy in Section 5. We build our scheme using the
primitives mentioned above, and embed a method that allows a party to evolve its public
key, according to a pseudo-random sequence tied to their attributes. A critical hurdle to
overcome in this setting is that, during the process of refreshing the key, a party cannot add
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new attributes that have not been issued to that party. We present more details on this in
the technical sections.

Schemes for more specific policy classes. Despite the fact that PE is the most elegant
conceptual fit for general PCS, it impacts efficiency and public-key sizes since there is a
direct implication between PCS and PE. In more detail, the reduction presented in [6] shows
that PCS gives rise to PE encryption (for a related predicate), and, furthermore, that a
PCS public key can be turned into a PE ciphertext. This implication becomes even more
dominant in the ul-PCS case since, in this case, it is required, as part of the construction,
to prove the well-formedness of the public key. To improve this situation, we show how, for
specialized policies, it is possible to avoid PE in order to obtain more practically performing
schemes. We consider two specific policy classes:

Scheme for role-based policies. We consider role-based access-control matrices. Such a matrix
can be seen as a function F : [nR]× [nR]→ {0, 1} (for a given, presumably relatively small,
set of nR number of roles) and captures which roles i can transact towards which role j,
namely iff F (i, j) = 1. Depending on the structure of such a matrix, one can implement a
wide range of access control policies, where “access control” here rather means which role is
allowed to send a signed message (or transaction) to which other role akin to information
flow in [20]. Of particular interest is the special case of equality, i.e., the identity matrix
F (i, j) = 1 iff i = j [5] as we recall below. We present an approach based on accumulators
(which are realizable based on pairing-based signatures of a specific type) instead of PE. For
general RBAC matrices, the scheme satisfies what we call outsider-secure attribute hiding,
sometimes referred to as transaction-graph obfuscation or confidentiality [21, 24] (aside of
unforgeability and unlinkability). This security notion captures the inability of an attacker to
infer any useful information by just analyzing the transaction graph of a blockchain. For the
special case of the equality policy, where users are grouped into categories, the scheme satisfies
all security properties (in particular full attribute-hiding). The equality policy is particularly
useful in contexts where users and/or services are clustered into groups or categories based
on their real-world credentials, and to ensure that transactions are conducted within those
groups.

Scheme for separable policies. Separable policies are policies that admit the simple rep-
resentation F (x, y) = S(x) ∧ R(y), and thus belong to the important class of predicates
w.r.t. individual assertions about an entity’s attributes, e.g., the ones supported by central-
ized solutions like Platypus [64]. We show that those policies can be realized by unlinkable
PCS schemes in an efficient way, where the PE part can be replaced by standard public-key
encryption. We point out some of the applications of these policies: on one hand, S(x) could
be the predicate that a sender has undergone KYC regulations, while a priori anyone can
be a receiver (R(y) = 1). Translated to our scheme, and its associated usage in a DAP sys-
tem, this means that anyone can immediately start off and receive coins, while only being
able to spend them later, once KYC regulations have been met. The second, more technical
use-case, appears in Zcash-like DAP systems: the three transaction types in Zcash, namely
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Mint, Burn, and Pour transactions can directly be lifted to user roles: Mint is an action
from a sender-only role (S(x) = 1, R(y) = 0), Burn is a transaction toward a receiver-only
role (S(x) = 0, R(y) = 1), and the normal use-case is a user that can send and receive
(S(x) = R(y) = 1). Combining this observation with the results of Section 7, gives a generic
way to let the monetary policy be governed by accredited users while preserving their privacy
and anonymity. In addition, when integrating Zcash with other ledger-based currencies, one
can steer which users are allowed to convert base currency in exchange for newly minted
zerocoins.

2.2 FATF, DAPs, and ul-PCS

Virtual assets is the technical and legal term referring to decentralized digital tokens that are
considered cryptocurrencies. Such virtual assets can either be stored in self-hosted wallets, or
stored in a hosted (or custodial) wallet on a virtual-asset exchange, more generally referred
to as virtual-asset service provider (VASP) [34]. While digital assets serve real financial
and investment needs, to protect the ecosystem from fraudulent and criminal activities, the
Financial Action Task Force (FATF) demands that VASPs comply with the so-called travel
rule. The travel rule mandates that VASPs maintain identifying information behind any
address they store, as well as to collect and exchange information about sender and receiver
when funds move from one hosted wallet to another, and further verify that certain (legal)
policies are satisfied, such as restrictions on capital flow between jurisdictions of the involved
legal entities.

The travel rule puts a lot of burden on VASPs.5 Identifying the financial beneficiary
behind any address is similar to solving the lookup problem in PKI infrastructures: it must
be efficiently possible for any VASP, when given an address addr, to obtain the identifying
information behind addr, and most importantly, the VASP that is hosting addr (if any). Since
these checks are the precursor for sensitive information exchanges about financial individuals,
the accuracy of such an association is of utmost importance: a (curious) VASP should not be
able to learn such information if it cannot present a proof that it is the custodian of either
the sending or receiving wallet, however, it should be efficiently possible to verify whether a
wallet is hosted. Realizing such a lookup service as an overlay over decentralized tokens is a
difficult endeavor, as personal information is stored, maintained, transferred, and replicated
on various VASPs, which is not just a concern related to privacy, but also mandates that
information about an individual must be consistent. Even if these issues were resolved, it
appears that the FATF travel rule does not align well with anonymous payment systems.
This is due to the strong anonymity guarantees that these assets offer, which deems them
suspicious, mainly due to a lack of technological capabilities of reconciling accountability
and privacy efficiently for decentralized assets.

In this paper, we put forth a mechanism, which we formalize later in Section 7, enabling
the reconciliation of the above views, the silver lining being that an address addr already
provides an encoding of credentials with it—encoded in a privacy-preserving way via the
help of a credential authority issuing any sort of attributes to participants. This achieves

5 https://sanctionscanner.com/blog/financial-action-task-force-fatf-travel-rule-140
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a separation of duties: the identifying information is carried by the address itself, and its
privacy features, such as recoverability or privacy revocation features, is up to the credential
system, not the VASPs. While the idea of connecting addresses with credentials is not really
novel, what ul-PCS adds to the system is the combination of two new features:

– It enables that an address carries anonymous credentials, but also has the look-and-feel
of common cryptocurrencies: a user can create fresh addresses by itself that carry the
same information, without the need to contact the credential authority.

– Asset transfers can be automatically governed by a policy F (x, y), where x are the at-
tributes of the sender and y are the attributes of the receiver. That is, a transaction
transferring a token from addrx to addry can never be accompanied by a valid signature
unless F (x, y) = 1. Furthermore, nothing more is leaked by such signatures other than
the validity of the policy.

These two features combined can improve the complex situation faced by VASPs con-
siderably, while maintaining user privacy. As we define formally in Section 7.2, compliance
checks based on ul-PCS and spending rights in a DAP system can be seen as two separate
steps, similar to multi-signatures. A VASP can formally host an address by controlling just
the DAP private key, while the ul-PCS private key always remains with the user. To conduct
an asset transfer, the user and the VASP must both provide the signature. Still, a user can
have many different unlinkable addresses with various VASPs thanks to the re-randomization
property that allows it to create fresh addresses. Finally, while the above solution works best
if the underlying blockchain allows native support of such addresses and multi-signatures,
we point out that blockchains with smart-contract capabilities can support these types of
operations by defining a custom token controlled by two keys.

Asset transfers implemented this way are guaranteed to follow the policy—without ever
requiring from the involved parties to disclose any information about their attributes–and
reliefs the VASPs from collecting (or transmitting) information that are made for the sole
purpose of checking compliance of the mentioned policy (of course, there might still be a
need to collect information that is not formalized by a digital policy in which case ul-PCS
helps reducing the amount of collected information). Furthermore, the asset transfer is non-
interactive in the same sense as common cryptocurrencies are: the sender does not need more
information to transfer the asset than the knowledge of the recipient’s address.

It further allows the VASP to outsource the task of KYC to accredited authorities. Here,
the authorities issue attributes to reflect a user’s KYC status which are then in charge of
delivering the associated information, if requested by legal enforcement. We discuss such
possibilities in Section 7.4. Furthermore, a VASP itself (such as a mixing service) can carry
a ul-PCS key representing attributes accredited to it. This way, a policy can specify what
types of users are allowed to use which specific services. Only those users would be able to
transfer assets into an account of a VASP that satisfies the rules. We discuss this example
in more detail in Section 7.1.

In summary, the proposed approach is a paradigm change in handling accountability in
transaction systems. Instead of enforcing an overlay-structure where every VASP collects the
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same type of information, which arguably is rather intrusive, we put forth a cryptographic
mechanism that turns this view upside down. More precisely, we intimately connect the
addresses to the credentials with automated compliance checks, while allowing a user to be
represented by fresh addresses with different services.

2.3 Prototypes and Benchmarks

We provide a full prototype implementation for all the schemes we present in this work. These
are the first working prototypes for policy-compliant signatures in general, for which we pro-
vide the results in Section 6. Our prototype should be seen as an academic prototype that
contains a first faithful implementation of all building blocks including the zero-knowledge
proof systems, however, without production-grade optimizations (we mention a few as open
directions). Yet, even without these modifications, the main benefit of the prototypes, besides
of obtaining concrete runtime estimates, is the required dovetailing of the zero-knowledge
system with other cryptographic primitives. It is highly non-trivial how a concrete instan-
tiation of our generic scheme would actually look like (and to what extent it follows from
standard tools). For that instantiation, we pick a predicate-encryption scheme for the class of
inner-product (IP) policies [55]. Those schemes are theoretically efficient and inner-product
predicates are known to realize various complex policies [49] such as DNF/CNF formulas,
threshold clauses, or polynomial evaluations, which directly translate to the PCS setting [6].
Furthermore, since hidden-vector encryption can be realized from IP, it follows that IP is
sufficient to implement all policies from [16].

The main challenge to overcome from a practical perspective is to achieve that a user
is able to provably re-encrypts the particular PE ciphertexts without introducing new at-
tributes. While this is easy on paper, we must implement this securely by using a combination
of structure-preserving signatures on equivalence classes and the observation that the partic-
ular PE ciphertexts are closely related to generalized Pedersen commitments for which we can
achieve re-randomization via its homomorphic property. We thereby are able to show that
we can couple the particular PE scheme, which is based on dual pairing vector spaces, with
standard NIZK systems (such as Groth-Sahai and Sigma protocols). The full specification
of all our prototypes are given in Appendices C and D.

2.4 Related Work

Since ul-PCS are signatures, they can be composed with any transaction system to capture
more fine-grained policies. We already contrasted this paper with [6], which serves as the
basis we extend. Therefore, we now focus on an overview of how ul-PCS can improve the
expressiveness of existing payment systems. We present the technical details on this later
in Section 7. In the context of distributed payment systems, the focus of prior works that
support accountable privacy is on using NIZKs to prove statements about the content of
a transaction such as, e.g., a sequence of transactions are below a spending limit in total
or below a receiving limit in total [40, 59, 63]. These policies are extremely useful and the
involved NIZKs are practical. The systems are therefore able to publicly convince an auditor
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that certain actions are within limits but do not give assertions about the credentials of
the involved parties and it seems hard to obtain unrevocable privacy for more than cash-like
transactions [59]. Enriched with digital credentials, however, more classes of transactions can
be defined. Parties involved in a payment could be accredited (trusted) institutions or shops,
for which a sending or receiving limit is lifted. A PCS signature signing the transaction can
assure money flow only between two such institutions. Furthermore, certain coins can be
issued for a specific purpose to individuals, or capital flow control can be ensured based on
the credentials tied to a person’s public key, and the PCS signature can attest compliance.

In the context of recent CBDC proposals [50, 64], Platypus [64] is a very elaborate and
nuanced system. During payments, where interaction with a central bank is required, it is
proposed to carefully distinguish types of transactions and, depending on this, the bank
might request further information, in plain or via zero-knowledge proofs. Although being
centralized, the system does not admit to prove statements about sender and receiver of
a transaction simultaneously, e.g., to control whether cash flow between two individuals is
compliant with capital control. In such a scenario, information needs to be revealed to the
central bank. However, the approach we take to make this possible in ul-PCS can be directly
applied to such centralized designs and enrich them with even more fine-grained policies. The
same holds for Peredi [50], which, compared to Platypus, does not put forth a fine-grained
transaction model and presents a revocation-based auditability solution.

3 Preliminaries

Notation. We denote the security parameter by λ and use 1λ as its unary representation.
We call a randomized algorithm A probabilistic polynomial time (PPT) if there exists a
polynomial p(·) such that for every input x the running time of A(x) is bounded by p(|x|).
A function negl(λ) is called negligible if for every positive polynomial p(λ), there exists λ0
such that for all λ > λ0 : negl(λ) < 1/p(λ). If clear from the context, we sometimes omit λ
for improved readability. The set {1, . . . , n} is denoted as [n] for a positive integer n. For
the equality check of two elements, we use “=”. The assign operator is denoted with “:=”,
whereas randomized assignment is denoted with a← A, with a randomized algorithm A and
where the randomness is not explicit. If the randomness is explicit, we write a := A(x; r)
where x is the input and r is the randomness. For algorithms A and B, we write AB(·)(x) to
denote that A gets x as an input and has black-box oracle access to B, that is, the response
for an oracle query q is B(q).

3.1 Bilinear Group Setup

Some of our schemes require a bilinear group setup. We use multiplicative notation to refer
to group operations.

Definition 1 (Bilinear Groups [14]). An asymmetric bilinear group generator BG(1λ)
returns a tuple pp := (G1,G2,GT , p, e,G1,G2), such that G1, G2 and GT are cyclic groups of
the same prime order p, G1 ∈ G1 and G2 ∈ G2 are the generators, and e : G1 ×G2 → GT is
an efficiently computable bilinear pairing with the following properties;
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– non-degeneracy: e(G1,G2) ̸= 1GT
,

– bilinearity: ∀ a, b ∈ Zp : e(G
a
1,G

b
2) = e(G1,G2)

ab = e(Gb
1,G

a
2) .

Throughout this work, we rely on Type-III bilinear groups for the distinct cyclic groups
G1 ̸= G2, where there is no efficient algorithm to compute a nontrivial homomorphism in
both directions [39]. This type is known as the most efficient choice.

3.2 Pseudorandom Functions

We recall the definition of a pseudorandom function (PRF) as it has been defined in [41].

Definition 2 (Pseudorandom Function). A pseudo-random function is a keyed function
PRF : {0, 1}λ × X → Y, where evaluation is done via an efficient algorithm PRF.Eval(k, x).
For β ∈ {0, 1}, we define the experiment INDPRF

β in Figure 2, where the oracle O is defined
as:

O(x) =

{
PRF.Eval(k, x) if β = 0

RF(x) if β = 1
.

with RF(x) denoting a random function. We define the advantage of an adversary A in
the following way:

AdvIND
PRF,A(λ) = |Pr[INDPRF

0 (λ,A)]− Pr[INDPRF
1 (λ,A)]| .

A pseudorandom function PRF is secure, if for any polynomial-time adversary A, there exists
a negligible function negl such that: AdvIND

PRF,A(λ) ≤ negl(λ).

INDPRF
β (λ,A)

k← {0, 1}λ

α← AO(·)(1λ)

Output: α

Fig. 2: Security Game for PRF

3.3 Digital Signatures

We recap the definition of digital signatures as well as existential unforgeability [43].

Definition 3 (Digital Signatures). A digital signature scheme (DS) is a triple of PPT
algorithms DS = (Setup, Sign,Verify), defined as follows:

– Setup(1λ): Takes as input a unary representation of the security parameter λ and outputs
a verification key vk and a signing key sk.

12



– Sign(sk,m): Takes as input the signing key sk, a message m ∈M and outputs a signature
σ.

– Verify(vk,m, σ): Takes as input the verification key vk, a message m and a signature σ,
and outputs 0 or 1.

A scheme DS is correct if (for all λ ∈ N), for all vk in the support of Setup(1λ) and all
m ∈M, we have

Pr[Verify(vk,m, Sign(sk,m)) = 1] = 1.

Definition 4 (Existential Unforgeability). Let DS = (Setup, Sign,Verify) be a DS
scheme. We define the experiment EUF-CMAsig in Figure 3 with Q being the set contain-
ing the queries of A to the signing oracle Sign(sk, ·). The advantage of an adversary A is
defined by

AdvEUF-CMA
DS,A (λ) = Pr[EUF-CMADS(1λ,A) = 1].

A Digital Signature scheme DS is called existentially unforgeable under adaptive chosen-
message attacks (EUF-CMA secure) if for any polynomial-time adversary A it holds that
AdvEUF-CMA

DS,A (λ) ≤ negl(λ) for a negligible function negl(·).

EUF-CMADS(1λ,A)
(vk, sk)← Setup(1λ)

(m,σ)← ASign(sk,·)(vk)

Output: Verify(vk,m, σ) = 1 ∧m /∈ Q

Fig. 3: Existentially Unforgeability for signatures.

3.4 Structure-Preserving Signatures on Equivalence Classes.

Structure-Preserving Signatures (SPS) [1] are a special type of digital signatures defined over
bilinear groups that fulfill certain extra properties. More precisely, the verification key, mes-
sage and signature are only source group elements and, to verify the validity of a signature,
only group membership checks and pairing product equations are allowed. SPS have the
same algorithm as digital signatures as defined in Definition 3 and guarantee unforgeability
as defined in Definition 4.

SPS on Equivalence classes (SPS-EQ) proposed by Hanser and Slamanig [46] are special
type of SPS that enable joint re-randomization of signatures and the signed messages. SPS-
EQ provide a controlled form of malleability such that one can change the representation of
the message and the corresponding signature. More precisely, for a given prime-order group
G we can define a projective vector (G∗)ℓ based on the following relation, where ℓ > 1 and
G∗ denotes the set of all group elements without the identity element of the group.

R :=
{
(M⃗, M⃗∗) ∈ (G∗)ℓ × (G∗)ℓ | ∃ µ ∈ Z∗

p s.t. M⃗∗ = M⃗µ
}
. (1)
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This is an equivalence relation for prime order groups.
The equivalence class of a vector M⃗ ∈ (G∗)ℓ for some ℓ > 1 is defined by:

[M⃗ ]R := {M⃗∗ ∈ (G∗)ℓ | (M⃗, M⃗∗) ∈ R} .
The Class-hiding property of equivalence classes guarantees that it is computationally

hard to distinguish elements of the same equivalence class from randomly sampled group
elements.

Definition 5 (Class-Hiding [46]). A relation R is called class-hiding if for all PPT
adversaries, A, and ℓ > 1 we have:∣∣∣∣∣∣Pr

M⃗ $← (G∗)ℓ, M⃗0
$← (G∗)ℓ, M⃗1

$← [M⃗ ]R,

b
$← {0, 1}, b′ ← A(M⃗, M⃗b) | b = b′

− 1

2

∣∣∣∣∣∣ ≤ negl(λ)

Hanser and Slamanig [46] formally prove that, as long as DDH is hard, the relation
described in equation 1 is class-hiding. We only consider this relation in this work. In our
bilinear setting, the message is based on the second group G2, but we present the scheme in
its general form:

Definition 6 (Structure-Preserving Signatures on Equivalence classes [46]). In
an asymmetric bilinear group, a structure preserving signature over (message space) (G∗

i )
ℓ

consists of the following PPT algorithms:

– SetupR(1
λ): The setup algorithm is a probabilistic algorithm that takes the security pa-

rameter λ in its unary representation as input. It outputs public parameters pp as well
as an asymmetric bilinear group.

– KeyGenR(pp, ℓ): The key generation algorithm is a probabilistic algorithm that takes the
public parameters pp and a vector length ℓ > 1 as inputs. It outputs the key-pair (sk, vk).

– SignR(pp, sk, M⃗): The signing algorithm is a probabilistic algorithm that takes public pa-

rameters pp, secret key sk and a representative message M⃗ ∈ (G∗
i )

ℓ for class [M⃗ ]R as

inputs. It outputs the signature σ on message M⃗ .
– VerifyR(pp, vk, M⃗ , σ): The verification algorithm is a deterministic algorithm that takes

public parameters pp, a representative message M⃗ ∈ (G∗
i )

ℓ, a signature σ and a verifica-

tion key vk as inputs. It then outputs 1 if σ is a valid signature on M⃗ and 0 otherwise.
– ChgRepR(pp, M⃗ , σ, µ, vk): The change representation algorithm is a probabilistic algorithm

and takes public parameters pp, a representative message M⃗ ∈ (G∗
i )

ℓ, a signature σ, a
scalar µ ∈ Z∗

p and the verification key vk as inputs. It outputs a randomized signature σ′

on a new representative message M⃗ ′ = M⃗µ.

Since in our work all keys are honestly generated we omit the specification of the function
that checks whether a private key is consistent with a given public key (since this holds for
honestly generated key pairs).

The primary security requirements for a SPS-EQ scheme are correctness and existential
unforgeability against chosen message attack, which are defined as follows:
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Definition 7 (Correctness). A SPS-EQ scheme over (G∗
i )

ℓ is called correct, if the fol-

lowing holds with overwhelming probability for a valid setup pp, any message M⃗ ∈ (G∗
i )

ℓ,
any (valid) key pair (sk, pk) in the support of KeyGenR(pp, ℓ), and any scalar µ ∈ Z∗

p:

Pr

VerifyR (
pp, vk, M⃗ , SignR(pp, sk, M⃗)

)
= 1∧

VerifyR(pp, vk, M⃗
µ,ChgRepR(M⃗, SignR(pp, sk, M⃗), µ, vk)) = 1

 .

Definition 8 (Existential Unforgeability). A SPS-EQ over (G∗
i )

ℓ is called adaptively
EUF-CMA-secure if for all PPT adversaries A with access to the signing oracle OSign we
have:

Pr

pp← SetupR(1
λ), (sk, vk)← KeyGenR(pp, ℓ),

(
M⃗∗, σ∗

)
← AOSign(pp, vk) :

∀ M⃗ ∈ QSign : [M⃗∗]R ̸= [M⃗ ]R ∧ VerifyR

(
pp, vk, M⃗ , σ∗

)
= 1

 ≤ negl(λ) ,

where the signing oracle OSign takes a message M⃗ ∈ (G∗
i )

ℓ as input, outpus SignR(pp, sk, M⃗)
and adds the message to the query set QSign.

Finally, we require signature adaptation which shows that signature strings can be per-
fectly randomized (and thus made unlinkable).

Definition 9 (Signature Adaptation). An SPS-EQ scheme over (G∗
i )

ℓ perfectly adapts

signatures if for all tuples (sk, pk, M⃗ , σ, µ), where (sk, pk) ← KeyGen(pp, ℓ), M⃗ ∈ (G∗
i )

ℓ and

Verify
(
pp, vk, M⃗ , σ

)
= 1, the two distributions Sign(pp, sk, M⃗µ) and ChgRepR(pp, M⃗ , σ, vk, µ)

are identical.

3.5 A Weak Positive Accumulator

We recall an accumulator construction proposed by Karantaidou and Baldimtsi [48] and con-
sider it in the asymmetric bilinear group setting. The construction is derived from Boneh-
Boyen signatures [13] and is based on the q-SDH assumption. We only need to consider the
positive accumulator, and thus the accumulator value remains constant. In fact, in our ap-
plication, we only need to guarantee soundness of the accumulator against a weak adversary.
As we show below, the soundness requirement of the accumulator corresponds to what is
defined as weakly-unforgeable in [13] for the signature scheme. The witnesses are of constant
size, independent of the number of elements in the accumulator set and, additionally, the
membership witnesses, after adding new elements, do not need to be updated. In fact, the
public accumulator will be set to be the “public key” of the signature scheme and hence does
not leak any information about the added elements. The simple accumulator we need can
be defined by the following PPT algorithms for the bilinear group setting, where G1 = ⟨G1⟩,
G2 = ⟨G2⟩. The public parameters are pp = (G1,G2,GT , p,G1,G2, e).

– ACC.Create(pp): Sample α
$← Z∗

p and define A ← Gα
2 and msk ← α and return (A,msk).

The accumulator domain is D = Zp \ {α}.
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– ACC.Add(pp,A,msk, x): To add a new element x ∈ D to the accumulator, parse msk =
α ∈ Z∗

p and check that A = Gα
2 . If the check succeeds compute and return the witness

wx = G
1/(x+α)
1 .

– ACC.MemVrf(pp,A, x, wx): If the equation e(G1,G2) = e(wx,AG
x
2) holds, return 1 to ap-

prove the membership of x in the accumulator with value A; otherwise output 0 to reject
it.

It is straightforward to see that the accumulator is correct. For our purposes, the accu-
mulator has to satisfy the weak soundness notion w.r.t. public parameters pp as we define it
in Figure 4. Note that this is a definition tailored to our problem which simplifies the proof
of the overall scheme.

W-SND(pp,ACC,A)
(x1, . . . , xq, st)← A(pp)
(A,msk)← Setup(pp)

Compute for all i ∈ [q] : πi ← ACC.Add(pp,A,msk, xi)

(x∗, π∗)← A(st,A, (π1, . . . , πq))
return

(
∀i : x∗ ̸= xi

)
∧
(
e(G1,G2) = e(π∗,AGx

2)
)

Fig. 4: A weak soundness notion for the accumulator.

We state the following lemma relating the concrete security of q-SDH to the (concrete)
winning probability of the above game.

Lemma 1. Let pp = (p,G1,G2, e) be the public parameters. For any PPT adversary A,
asking at most q queries, that wins the game W-SND(pp,ACC,A) with probability ε, there
is a PPT adversary A′ that on input the q-SDH instance (G1, yG1, . . . , y

q′G1,G2, yG2), where
y ∈ Z∗

p is sampled uniformly at random, returns a valid solution (c, (y + c)−1G1) for some
c ∈ Zp \ {−y}, with probability ε as long as q ≤ q′ (where the probability is taken over the
random choice of y and the internal randomness of A′).

Proof. The proof follows directly from the security proof of the weakly-secure short signature
scheme in [13] (version 2014) by observing that ACC is just the weakly-secure signature
scheme in disguise, and that our soundness notion perfectly matches the notion of weak
unforgeability of [13].

Note that, since the statement holds for any concrete set of parameters, it also holds
over any distribution of parameters and thus we obtain the asymptotic statement that the
accumulator is sound, except with negligible probability in λ under the q-SDH assumption,
relative to the bilinear group generation algorithm BG(1λ) generating the parameters pp.
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3.6 Public-Key Encryption

Now, we introduce public-key encryption, together with the notion of IND-CPA security.

Definition 10 (Public-Key Encryption). A public-key encryption (PKE) scheme is a
tuple of three algorithms PKE = (Setup,Enc,Dec):

– Setup(1λ): Takes as input a unary representation of the security parameter λ and outputs
a public key pk and a secret key sk.

– Enc(pk,m): Takes as input the public key pk and a message m ∈ M, and outputs a
ciphertext ct.

– Dec(sk, ct): Takes as input the secret key sk and a ciphertext ct and outputs a message
m′ or ⊥.

A public-key encryption scheme PKE is correct if for all λ ∈ N, and for all key-pairs (pk, sk)
in the support of Setup(1λ), we have

Pr[Dec(sk,Enc(pk,m)) = m] = 1.

In this work, we give the adversary access to an encryption challenge oracle that can be
queried using multiple challenge message pairs (m0,m1). This security definition follows from
the standard security definition for a single challenge query using a simple hybrid argument.

Definition 11 (Indistinguishability-Based Chosen-Plaintext Security). Let PKE =
(Setup,Enc,Dec) be a PKE scheme as defined above. For β ∈ {0, 1}, we define the experiment
IND-CPAPKE

β in Figure 5, where the left-or-right oracle is defined as:

QEncLRβ(·, ·): On input two messages m0 and m1, output ct← Enc(msk,mβ).

The advantage of an adversary A is defined as:

AdvIND-CPA
PKE,A (λ) = |Pr[IND-CPAPKE

0 (1λ,A) = 1]− Pr[IND-CPAPKE
1 (1λ,A) = 1]|.

A predicate-only predicate encryption scheme PKE is called IND-CPA secure if for
any valid polynomial-time adversary A, there exists a negligible function negl such that
AdvIND-CPA

PKE,A (λ) ≤ negl(λ).

IND-CPAPKE
β (1λ,A)

(pk, sk)← Setup(1λ)

α← AQEncLRβ(·,·)(pk)

Output: α

Fig. 5: IND-CPA security game of PKE.
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3.7 Predicate Encryption

To allow for oblivious policy evaluations, we also recap the notion of predicate-only predicate
encryption as it has been introduced in Katz et al. [49].

Definition 12 (Predicate-Only Predicate Encryption). Let F = {Fλ}λ∈N be a family
of sets Fλ of predicates f : Xλ → {0, 1}. A predicate-only predicate encryption (PE) scheme
for the functionality class Fλ is a tuple of four algorithms PE = (Setup,KeyGen,Enc,Dec):

– Setup(1λ): Takes as input a unary representation of the security parameter λ and outputs
the master public key mpk and the master secret key msk.

– KeyGen(msk, f): Takes as input the master secret key msk and a function f ∈ F , and
outputs a functional key skf .

– Enc(mpk, x): Takes as input the master public key mpk and an attribute x ∈ Xλ, and
outputs a ciphertext ct.

– Dec(skf , ct): Takes as input a functional key skf and a ciphertext ct and outputs 0 or 1.

A predicate-only predicate encryption scheme PE is correct if for all λ ∈ N, for all (mpk,msk)
in the support of Setup(1λ), all functions f ∈ Fλ, all secret keys skf in the support of
KeyGen(msk, f), and for all attributes x ∈ Xλ, we have

Pr
[
Dec(skf ,Enc(mpk, x)) = f(x)

]
= 1.

In the initial work of Katz et al. [49], the authors only introduce the notion of selective
security. The corresponding indistinguishability based adaptive security notion for predicate
encryption has been introduced in [55]. We present a modification of this definition where the
adversary has access to a challenge oracle to which it can submit multiple challenges instead
of being able to only submit a single challenge. This security definition directly follows from
the standard security definition using a simple hybrid argument.

Definition 13 (Indistinguishability-Based Attribute Hiding). Let PE = (Setup,
KeyGen,Enc,Dec) be a PE scheme for a function family F = {Fλ}λ∈N as defined above.
For β ∈ {0, 1}, we define the experiment AHPE

β in Figure 6, where the left-or-right oracle is
defined as:

QEncLRβ(·, ·): On input two attribute sets x0 and x1, output ct← Enc(msk, xβ).

The advantage of an adversary A is defined as:

AdvAHPE,A(λ) = |Pr[AHPE
0 (1λ,A) = 1]− Pr[AHPE

1 (1λ,A) = 1]|.

We call an adversary valid if for all queries (x0, x1) to the oracle QEncLRβ(·, ·) and for any
function f queried to the key generation oracle KeyGen(msk, ·), we have f(x0) = f(x1) (with
probability 1 over the randomness of the adversary and the involved algorithms).

A predicate-only predicate encryption scheme PE is called attribute hiding if for any valid
polynomial-time adversary A, there exists a negligible function negl such that AdvAHPE,A(λ) ≤
negl(λ).
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AHPE
β (1λ,A)

(mpk,msk)← Setup(1λ)

α← AKeyGen(msk,·),QEncLRβ(·,·)(mpk)

Output: α

Fig. 6: Attribute-Hiding game of PE.

3.8 Non-interactive Zero-Knowledge Proofs

In this section, we introduce the notion of non-interactive zero knowledge (NIZK) proofs [10,
36,42].

Definition 14 (Non-Interactive Zero-Knowledge Proofs). Let R be an NP Relation
and consider the language L = {x | ∃ w with (x,w) ∈ R} (where x is called a statement or
instance). A non-interactive zero-knowledge proof (NIZK) for the relation R is a triple of
PPT algorithms NIZK = (Setup,Prove,Verify):

– Setup(1λ): Takes as input the unary representation of the security parameter λ and outputs
a common reference string CRS.

– Prove(CRS, x, w): Takes as input the common reference string CRS, a statement x and a
witness w, and outputs a proof π.

– Verify(CRS, x, π): Takes as input the common reference string CRS, a statement x and a
proof π, and outputs 0 or 1.

A system NIZK is complete, if (for all λ ∈ N), for all CRS in the support of Setup(1λ) and
all statement-witness pairs in the relation (x,w) ∈ R,

Pr[Verify(CRS, x,Prove(CRS, x, w)) = 1] = 1.

Besides completeness, a NIZK system should also fulfill the notions of soundness and
zero-knowledge, which we introduce in the following two definitions:

ZKNIZK
0 (1λ,A,S)

CRS← Setup(1λ)

α← AProve(CRS,·,·)(CRS)

Output: α

ZKNIZK
1 (1λ,A,S)

(CRS, τ)← S1(1λ)
α← AS′(CRS,τ,·,·)(CRS)

Output: α

Fig. 7: Zero-knowledge property of NIZK.

Definition 15 (Zero-Knowledge). Let NIZK = (Setup,Prove,Verify) be a NIZK proof
system for a relation R and the corresponding language L, S = (S1,S2) a pair of algorithms
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(the simulator), with S ′(CRS, τ, x, w) = S2(CRS, τ, x) for (x,w) ∈ R, and S ′(CRS, τ, x, w) =
failure for (x,w) /∈ R. For β ∈ {0, 1}, we define the experiment ZKNIZK

β (1λ,A) in Figure 7.
The associated advantage of an adversary A is defined as

AdvZKNIZK,A,S(λ) := |Pr[ZKNIZK
0 (1λ,A,S) = 1]− Pr[ZKNIZK

1 (1λ,A,S) = 1]| .

A NIZK proof system NIZK is called perfect zero-knowledge, with respect to a simulator
S = (S1,S2), if AdvZKNIZK,A,S(λ) = 0 for all algorithms A, and computationally zero-knowledge,

if AdvZKNIZK,A,S(λ) ≤ negl(λ) for all PPT algorithms A.

Besides zero-knowledge and soundness, we rely on the notion of extractability [22].

Definition 16 (Extractability). Let NIZK = (Setup,Prove,Verify) be a NIZK proof sys-
tem for a relation R and the corresponding language L, let Ext = (Ext1,Ext2) be a pair of
algorithms (the extractor). We define the extraction advantages of an adversary A as

AdvCRS
NIZK,A := |Pr[CRS← Setup(1λ); 1← A(CRS)]− Pr[(CRS, st)← Ext1(1

λ); 1← A(CRS)]|,

and

AdvExtractNIZK,A(λ) := Pr

[
(CRSExt, stExt)← Ext1(1

λ)

(x, π)← A(CRSExt)
;
Verify(CRSExt, x, π) = 1∧
R(x,Ext2(CRSExt, stExt, x, π)) = 0

]
A NIZK proof system NIZK is called extractable, with respect to an extractor Ext =
(Ext1,Ext2), if AdvCRS

NIZK,A ≤ negl(λ) and AdvExtractNIZK,A(λ) ≤ negl(λ). Additionally, we call an
extractable non-interactive zero-knowledge proof a non-interactive zero-knowledge proof of
knowledge (NIZKPoK).

4 Unlinkable PCS: Model and Security Requirements

Now, we present the syntax of unlinkable policy-compliant signatures (ul-PCS). ul-PCS
are basically defined as PCS [6] with the only difference that they contain an additional
rerandomization algorithm that allows for the rerandomization of key pairs.

Definition 17 (Unlinkable Policy-Compliant Signatures). Let {Xλ}λ∈N be a family
of attribute sets and denote by Xλ the powerset of Xλ. Further let F = {Fλ}λ∈N be a family
of sets Fλ of predicates F : Xλ×Xλ → {0, 1}. Then an unlinkable policy-compliant signature
(ul-PCS) scheme for the functionality class Fλ is a tuple of four PPT algorithms ULPCS =
(Setup,KeyGen,RandKey, Sign,Verify):

Setup(1λ, F ): On input a unary representation of the security parameter λ and a policy
F ∈ Fλ, output a master public and secret key pair (mpk,msk).

KeyGen(msk, x): On input the master secret key msk and a set of attributes x ∈ Xλ, output
a public and secret key pair (pk, sk).

RandKey(mpk, sk): On input the master public key mpk and a secret key sk, output a new
public-secret-key pair (pk′, sk′).
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Sign(mpk, skS, pkR,m): On input the master public key mpk, a sender secret key skS, a re-
ceiver public key pkR and a message m, output either a signature σ or ⊥.

Verify(mpk, pkS, pkR,m, σ): On input the master public key mpk, a sender public key pkS, a
receiver public key pkR, a message m and a signature σ, output either 0 or 1.

Remark 1 (On distributing Setup and KeyGen for the DAP use case). The described al-
gorithms correspond to the intended use-case sketched in Figure 1. The signature scheme,
in fact, can be used to sign any message towards some recipient’s public key. Note that the
registration process of a party with attributes x is abstracted as a simple key-generation pro-
cedure to be able to focus on the core technical challenges of the construction and does not
indicate that a single entity necessarily stands behind that. In fact, in a typical application,
we do not need the credential authority in the operational phase (after user enrollment) and
it does not need to know users’ keys, which makes Setup and KeyGen suitable for distributed
implementations without impacting the operational efficiency. In this setting, msk would
be shared among n servers at the price of a more expensive enrollment. All our concrete
schemes in later sections admit distributed implementations of Setup and KeyGen based on
standard techniques (cf. Section 7.3.). This is important because if, for example, the whole
master secret key is leaked there is no hope to achieve a reasonable notion of privacy for
the attributes: the adversary can, with knowledge of the master secret key, generate keys
by itself and consequently use them to check w.r.t. any public key in the system whether
or not valid signatures can be generated. This shows that credential issuance must not be
corrupted in order to achieve a reasonable notion of privacy.

Remark 2 (On public vs. private re-randomization). The interface of RandKey is such that
every party is in charge of its own re-randomizations. Alternatively, one could imagine a pub-
lic re-randomization, that allows to randomize any given valid public key, yielding a new valid
public key. We observe that the immediate benefit of such a public re-randomization does
not appear to be substantial—given that the additional constraints have serious implications
on the practical feasibility of PCS (as we explain further below).

Note that in the anticipated use-cases in payment systems, it is typical that cautious
users maintain new keys across payment sessions or go even as far as using an address
only once by default or for increased security (cf. Section 7). In addition, the sender in a
payment session must determine the receiving address (i.e., public key) by some “off-chain”
mechanism, at which point a receiver can present its (re-randomized) key. The benefit of
public re-randomization appears to be in saving some bandwidth if the sender casts multiple
transactions in one session, compared to the straightforward solution where a receiver—
having precomputed in an offline phase a bunch of ranodomized keys—presents multiple
receiving addresses to the sender at the beginning of a payment session. Furthermore, across
payment sessions, a similar improvement is only achieved, if at all, if the recipient is willing
to link its payment session to the current one in the offchain communication phase, and only
if this is more efficient than just presenting a new key, in which case one can simply present
a randomized version.

For this seemingly slight improvement, one would pay a rather hight price in terms of
practical feasibility for PCS: it follows from the relationship between predicate encryption
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CORRULPCS(1λ,A)
(F, st)← A1(1

λ)

(msk,mpk)← Setup(1λ, F ); c← 0

((i, j), (k, ℓ),m)← AOGen(·),OReRand(·)
2 (st,mpk)

(skS, pkS, xS)← Qi[j]

(skR, pkR, xR)← Qk[ℓ]

b← Verify(mpk, pkS, pkR,m,

Sign(mpk, skS, pkR,m))

Return b ̸= F (xS, xR)

OGen(x):

c← c+ 1

(sk, pk)← KeyGen(msk, x)

Qc ← [(sk, pk, x)]

Return (sk, pk)

OReRand(j):

If j > c return ⊥
(sk, pk, x)← Qj[|Qj|]
(sk′, pk′)← RandKey(mpk, sk)

Qj ← Qj||(sk′, pk′, x)
Return (sk′, pk′)

Fig. 8: Correctness Experiment of a ul-PCS scheme.

and PCS (cf. Section 2) that such a public re-randomization feature is much more difficult
to achieve, as it does not only imply re-randomizable predicate-encryption. Furthermore,
we also require that such a PE scheme comes with enough structural properties to enable
transferability of the validity assurance (such as achieved by SPS-EQ). It is an interesting
open question whether such PE schemes can be constructed efficiently based on standard
assumptions. The same reasoning applies to the more specialized policies, where the above
considerations put additional constraints on practical realizability. In contrast, we are able
to construct and implement PCS as defined above using standard tools and are able to give
a concrete prototype for all proposed schemes.

4.1 Correctness and Detectability Relation

Correctness. A ul-PCS scheme is correct if in any execution, honestly generated signa-
tures computed using honestly generated private and public keys, potentially re-randomized
multiple times, reflect the policy. Compared to standard PCS, it is easier to capture
this as a correctness experiment, since the interaction introduced with re-randomization
leads to more complex scenarios. A ul-PCS scheme is called correct if for all efficient
adversaries A = (A1,A2) in experiment CORR, specified in Figure 8, the probability
Pr[CORRULPCS(1λ,A) = 1] is negligible in the security parameter.

Detectability Relation. Compared to the requirements of a standard PCS scheme, the
requirements for an unlinkable PCS scheme pose a definitional challenge: we need to capture
unforgeability and policy-compliance in a security game but, at the same time, keys are ran-
domized (potentially by the adversary) and no efficient algorithm could detect whether this
is in fact a valid forgery—since all attributes are private and parties are not traceable. We
solve this definitional issue by introducing what appears to be a quite natural requirement:
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DetULPCS(1λ,A)
(F, st)← A1(1

λ)

(msk,mpk)← Setup(1λ, F )

c := 0

(i, j)← AOGen,OReRand
2 (st,mpk)

(sk∗, pk∗)← Qi[j]

i∗ ← Detect(mpk, pk∗, (Q1, . . . , Qc))

Return i∗ ̸= i

OGen(x):

c← c+ 1

(sk, pk)← KeyGen(msk, x)

Qc ← [(sk, pk)]

Return (sk, pk)

OReRand(j):

If j > c, return ⊥
(sk, pk)← Qj[|Qj|]
(sk′, pk′)← RandKey(mpk, sk)

Qj ← Qj||(sk′, pk′)
Return (sk′, pk′)

Fig. 9: Detectability Experiment of a ul-PCS scheme.

any ul-PCS scheme must satisfy a detectability relation which intuitively captures the prop-
erty that a party, knowing its own initial secret key, can detect whether a valid public key is
in fact derived from it (that is, a party can detect its own public keys in a ledger). Using this
detection property, the challenger in the security game can determine which keys belong to
which oracle queries. The algorithm is called Detect, and takes as input a target public key,
and the keys generated by the challenger for different parties. The algorithm must return
the index of the party that the target key belongs to. Looking ahead, this must hold even
if the adversary is in charge of re-randomizations. Clearly, such an algorithm must satisfy a
non-triviality condition: when keys are honestly generated and re-randomized, the algorithm
detects only correct relations and never confuses parties.6

Let Detect be an algorithm that takes as input the master public key mpk, a candidate key
pk∗, and a list consisting of sequences of key pairs (Q1, . . . , Qc), and outputs an index or ⊥. A
ULPCS scheme is said to have the detectability property if there is an efficiently computable
algorithm Detect such that for all efficient adversaries A = (A1,A2) in experiment DTCT,
specified in Figure 9, the probability Pr[DTCTULPCS(1λ,A) = 1] is negligible in the security
parameter.

We point out that this form of detectability is very different from tracing—the property
or feature that an additional entity, the auditor, is able to trace parties by means of a special
viewing or revocation key. This property is not entirely new and has already been introduced
in the context of, e.g., Monero [3]. In Section 7, we give more details on how to embed ul-
PCS in larger contexts and discuss the traceability requirement appearing in the literature
on CBDCs.

6 It is instructive to observe that such (private-key) detectability relations are also studied in the context of RCCA
variants [7].
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4.2 Adversarial Capabilities in the Security Games

Before presenting the notions of unforgeability, attribute-hiding and unlinkability, we describe
the adversarial capabilities in the different security games.

To keep track of all honestly generated keys, corrupted keys and generated signatures,
we define the initially empty sets QK, QC and QS, respectively.

Key-Generation Oracle QKeyGen(·): On the i-th input of an attribute set xi, generate
(pk0i , sk

0
i )← KeyGen(msk, xi), and add ((i, 0), pk0i , sk

0
i , xi) to QK. Return pk0i .

Left-or-Right Key-Generation Oracle QKeyGenLRβ(·, ·): On the i-th input of a pair
of attribute sets xi,0 and xi,1, generate (pk0i , sk

0
i ) ← KeyGen(msk, xi,β), add

((i, 0), pk0i , sk
0
i , xi,0, xi,1) to QK, and return pk0i .

Key-Randomization Oracle QRandKey(·): On input an index i, if QK contains en-
tries ((i, 0), pk0i , sk

0
i , . . . ), . . . , ((i, ci), pk

ci
i , sk

ci
i , . . . ), then compute (pkci+1

i , skci+1
i ) ←

RandKey(mpk, skcii ) and add ((i, ci + 1), pkci+1
i , skci+1

i , . . . ) to QK and return pkci+1
i .

Corruption Oracle QCor(·): On input an index i, if QK contains entries
((i, j), pkji , sk

j
i , . . . ) for 0 ≤ j ≤ ci for some ci ≥ 0, then copy these entries from

QK to QC and return the list (sk0i , . . . , sk
ci
i ).

Signing Oracle QSign(·, ·, ·): On input an index pair (i, j), a public key pk′ and a message
m, if QK contains an entry ((i, j), pkji , sk

j
i , . . . ), then compute σ ← Sign(mpk, skji , pk

′,m),
add ((i, j), pkji , pk

′,m, σ) to QS and return the signature.
Randomization-Challenge Oracle QRandKeyβ(·): On receiving a query i, do the follow-

ing: if β = 0 then set (pk′, sk′)← RandKey(mpk, sk), and if β = 1 set (pk′, sk′)← KeyGen(
msk, x), where x is taken from the entry ((i, 0), pk, sk, x) of QK, and sk is taken from the
entry ((i, j), pk, sk, x) of QK with highest j for the given i. Add ((i, j+1), pk′, sk′) to QK
and return pk′.

Notice that the randomization-challenge oracle is one way of formalizing key evolution. Follow
our application story, we assume a party updates its most recent key (similar to key-evolving
signatures). Other equivalent options are possible as well. For notational convenience, if the
set QK contains the sequence ((i, 0), pk0i , sk

0
i , . . . ), . . . , ((i, ci), pk

ci
i , sk

ci
i , . . . ) we denote by

QKi the sequence of keys [(pk0i , sk
0
i ), . . . , (pk

ci
i , sk

ci
i )] of party i.

4.3 Security of ul-PCS

Unforgeability. Unforgeability captures the property that signatures by honest parties
cannot be forged and that it is not possible to create valid signatures that are not policy-
compliant. In more detail, an adversary A creates a valid forgery if: (a) it is able to generate
a valid signature for a public key belonging to an honest/uncorrupted party, or (b) it is able
to generate a valid signature for a key that has never been issued for an attribute set, or
(c) it is able to generate a valid signature for a key pair pkS, pkR where the corresponding
attributes do not fulfill the policy F . We capture all these conditions in the security game
in Figure 10, which is based on the unforgeability game of [6], incorporating the modifica-
tions mentioned above. To efficiently evaluate condition (c), we make use of the mentioned
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EUF-CMAULPCS(1λ,A)
(F, st)← A1(1

λ)

(mpk,msk)← Setup(1λ, F )

(pk, pk∗,m∗, σ∗)← AQKeyGen(·),QRandKey(·)QCor(·),QSign(·,·,·)
2 (st,mpk)

Let imax be the number of queries made to QKeyGen(·)
S ← Detect(mpk, pk, (QK1, . . . ,QKimax))

R← Detect(mpk, pk∗, (QK1, . . . ,QKimax))

Let xS and xR denote the attributes in case S,R ̸= ⊥
Output: Verify(mpk, pk, pk∗,m∗, σ∗) = 1 ∧[[
∃(i, j), sk, x ∀(i′, j′), σ : ((i, j), pk, sk, x) ∈ QK \ QC∧

((i′, j′), pk, pk∗,m∗, σ) ̸∈ QS
]
∨
[
(S ̸= ⊥) ∧ (R ̸= ⊥)⇒ F (xS, xR) = 0

]]
Fig. 10: Unforgeability Game of ULPCS.

detection algorithm. In more detail, to check if the attributes associated with pk and pk∗ of
a potential forgery output (pk, pk∗,m∗, σ∗) do not fulfill the policy, the attributes associated
with pk and pk∗ first need to be determined. This is not necessarily straightforward since
the keys pk and pk∗ might not be generated by the authority but by the adversary through
rerandomization. The detection algorithm is used by the challenger to map these keys back
to the key-generation event to determine their associated attribute sets.

Definition 18 (Existential Unforgeability of a PCS Scheme). Let ULPCS =
(Setup,KeyGen, Sign,Verify) be a ul-PCS scheme that satisfies the detectability property. We
define the experiment EUF-CMAULPCS in Figure 10, where all oracles are defined as in Sec-
tion 4.2. The advantage of an adversary A = (A1,A2) is defined by

AdvEUF-CMA
ULPCS,A (λ) = Pr[EUF-CMAULPCS(1λ,A) = 1].

Such a ul-PCS scheme ULPCS is called existential unforgeable under adaptive chosen
message attacks or existential unforgeable for short if for any polynomial-time adversary
A = (A1,A2), there exists a negligible function negl such that: AdvEUF-CMA

ULPCS,A (λ) ≤ negl(λ). We
further call a ul-PCS scheme TRand-unforgeable if the number of key rerandomization queries
q is less than TRand, i.e. q < TRand.

Attribute-Hiding. Attribute hiding captures the strong property that the system does not
leak anything about honest parties’ attributes except, of course, what can be inferred from
legitimate signatures that, published in the system. To capture this, we define a security
experiment based on [6], where we, again, have to include an additional oracle and, to make
the definition well-defined, need to rely on the detect relation.

The adversary has access to different oracles: (1) a challenge oracle, to which it can
submit an attribute pair (x0, x1) and receives as a reply the public key pk corresponding
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to xβ, for β chosen by the challenger; (2) a rerandomization oracle, to which it can submit
indices i and then receives as a reply the rerandomization of the public key that corresponds
to this index; (3) a corruption oracle, to which it can submit an index and then receives as
a reply the secret key that corresponds to the public key associated with the index; and (4)
a signing oracle, to which the adversary can submit an index pair (i, j) as well as a public
key pk and a message m and then receives as a reply a signature generated using the j’th
rerandomization of the i’th secret key for the public key pk over the message m. The goal of
the adversary in this game is to determine the bit β, and thus to observe a difference between
the two settings. If the success probability of any adversary for both cases, i.e. β = 0 and
β = 1, is approximately the same then we say that the scheme is secure.

To prevent the adversary from trivially winning the game, we need to specify validity
requirements that exclude those distinguishing strategies that are simply based on how the
system is supposed to operate (i.e., correctness) [57] (see also Remark 1). First, the adversary
is only allowed to ask for the corruption of an index i, if the challenge query for this index
consists of the same attribute sets, i.e. x0 = x1. Second, the adversary is only allowed to ask
signing queries for an index (i, j) and receiver key pk such that it holds that F (x0, y0) =
F (x1, y1) where (x0, x1) is the i’th key challenge query and (y0, y1) are the possible attributes
associated with pk. To determine the attributes (y0, y1) of pk, we make, again, use of the
detectability of the scheme and execute the detection algorithm using pk as an input. The
game is formally described in Figure 11.

Definition 19 (IND-Based Attribute Hiding). Let ULPCS = (Setup,KeyGen, Sign,
Verify) be a ul-PCS scheme that satisfies the detectability property. For β ∈ {0, 1}, we define
the experiment AHULPCS

β in Figure 11, where all oracles are defined as in Section 4.2. The
advantage of an adversary A = (A1,A2) is defined by

AdvAHULPCS,A(λ) = |Pr[AHULPCS
0 (1λ,A) = 1]− Pr[AHULPCS

1 (1λ,A) = 1]|.

We call an adversary valid if all of the following hold with probability 1 over the randomness
of the adversary and all involved algorithms, where imax denotes an upper bound on the
number of queries to QKeyGenLRβ:

– for every ((i, j), pkji , sk
j
i , xi,0, xi,1) ∈ QC and for all ((k, ℓ), pkℓk, sk

ℓ
k, xk,0, xk,1) ∈ QK we

have xi,0 = xi,1 =: xi and F (xi, xk,0) = F (xi, xk,1),
– and for all ((i, j), pkji , pk,m, σ) ∈ QS, R ← Detect(mpk, pk, (QK1, . . . ,QKimax)), and

((i, j), pki, ski, xi,0, xi,1) ∈ QK, we either have R = ⊥ or otherwise F (xi,0, xR,0) =
F (xi,1, xR,1) holds.

Such a ul-PCS scheme ULPCS is called attribute hiding if for any valid polynomial-time
adversary A = (A1,A2), there exists a negligible function negl such that: AdvAHULPCS,A(λ) ≤
negl(λ). We call a ul-PCS scheme TRand-attribute-hiding if the number of key rerandomization
queries q is less than TRand, i.e. q < TRand. Finally, we call a ul-PCS scheme outsider-
attribute-hiding (outsider-AH) if the adversary does not have access to the corruption oracle.

Outsider security models an attacker who is just analyzing a transaction graph [21,24].
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AHULPCS
β (1λ,A)

(F, st)← A1(1
λ)

(mpk,msk)← ULPCS.Setup(1λ, F )

α← AQKeyGenLRβ(·,·),QRandKey(·),QCor(·),QSign(·,·,·)
2 (st,mpk)

Output: α

Fig. 11: The Attribute-Hiding game for ULPCS.

Unlinkability. Unlinkability captures the property that a party can re-randomize its key
such that it is not possible to tell afterwards whether this party is acting again or whether it
is another party that freshly joined the system. Coupled with attribute-hiding, this leads to
strong privacy guarantees: observing a signature between two freshly re-randomized public
keys does not reveal anything beyond the assertion that the attributes behind the keys satisfy
the policy without any link to a party’s other actions in the system.

The simple single user unlinkability security game (for the case |QK| = 1) in Figure 12
is parameterized by the challenge bit β. It formalizes that an adversary is not able tell apart
a user that evolves its key from fresh keys with the same attribute, while all “versions” of
the original key are in use to sign off arbitrary messages towards arbitrary recipients (the
adversary can create arbitrary users and know their secrets). We show in Appendix A that
this intuitive game is sufficient to imply security for the multi-user setting.

Definition 20. Let ULPCS = (Setup,KeyGen, Sign,Verify) be a ul-PCS scheme that satisfies
the detectability property. For β ∈ {0, 1}, we define the experiment LinkULPCSβ in Figure 12,
where all oracles are defined as in Section 4.2. The advantage of an adversary A = (A1,A2)
is defined by

AdvLinkULPCS,A(λ) = |Pr[LinkULPCS0 (1λ,A) = 1]− Pr[LinkULPCS1 (1λ,A) = 1]|.

We call such an ul-PCS scheme ULPCS unlinkable if for any polynomial-time adversary
A = (A1,A2,A3), there exists a negligible function negl such that: AdvLinkULPCS,A(λ) ≤ negl(λ).

We call a ul-PCS scheme TRand-unlinkable if the number of key rerandomization queries
q is less than TRand, i.e. q < TRand.

On first sight, one might think that this is not the strongest notion for unlinkability since it
only captures the unlinkability of a single user. In Appendix A, we show that an unlinkability
notion for multiple users is directly implied by the presented single key unlinkability notion.
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LinkULPCSβ (1λ,A)
(F, st1)← A1(λ)

(mpk,msk)← Setup(1λ, F )

(x, st2)← AKeyGen(msk,·)
2 (mpk, st1)

(pk, sk)← KeyGen(msk, x); QK ← ((1, 0), pk, sk, x)

α← AKeyGen(msk,·),QRandKeyβ(·),QSign(·,·,·)
3 (pk, st2)

Output: α

Fig. 12: Single-Challenge Unlinkability game of ULPCS.

Looking ahead, our concrete schemes achieve TRand bounded security and in the instan-
tiations we set TRand = 216 − 1.

5 Unlinkable Policy-Compliant Signature Schemes

In this section, we present our unlinkable policy-compliant signature schemes. We start by
presenting the scheme for general policies.

5.1 ul-PCS for Generic Policies

The main idea of the generic scheme in Figure 14 is best motivated by looking at the structure
of public and private keys. We equip the public key with an encryption of the user’s attributes
that can be re-encrypted by the user. For this we use a predicate-encryption scheme that
supports the predicate class fx(y) := F (x, y), where F is the policy (intuitively, a party must
be able to evaluate whether it can send to someone else, which is what fx represents). There
must be, however, a link to the issuance of attribute x towards a user by the certification
authority (CA). This link is established via pseudorandom identifiers that are developed over
sequences of different public-key versions based on a PRF key signed by the CA. This PRF
key is part of the private key (a similar technique has been presented in [28] but targets a
slightly different goal). It is not only bound to the attributes, but also to the functional key
of the PE scheme, and to a signature public key—a master public key that grants the user
the right to re-issue fresh signature public keys, akin to an identity-based signature scheme,
for itself. Those fresh keys can be published as part of the public key, and signed with the
master signature private key Figure 13. Note that due to the unlinkability requirement, the
master signature keys as well as the generated signatures must remain private. The NIZK
proof in the public key assures the well-formedness of the key. Therefore, the described public
key becomes re-randomizable in an unlinkable way. Since we are using a standard PRF, we
must further limit the evaluation range (which is the parameter TRand of the scheme) since,
otherwise, we cannot bound the collision probability sufficiently (which is needed to ensure
a safe link between attributes and keys).
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Fig. 13: Key formats of the ul-PCS scheme for the generic construction.

For signing and verification, things are a bit simpler. In order to sign a message towards
a recipient, the sender first checks that the recipient’s public key is valid and, second, proves
that it is eligible to sign towards that recipient by proving that that it has a functional
key skfx of the PE scheme (signed by the CA) that is able to decrypt the ciphertext in the
recipient’s public key. By definition of the PE scheme, the ability to decrypt with such a key
implies fx(y) := F (x, y) = 1 which matches the signing requirement. Finally, the user signs
the message and the proof using the fresh signing key. Note that the proofs require public
parameters that we refer to as mpk in the formal description, which, for instance, contain
the CRSs for the NIZKs and the public key of the PE scheme. We require two languages for
the NIZK systems, each for a specific purpose:

– L1: Used to prove the correct formation of the public key, based on the attributes issued
by the authority. We depict this language formally below, which is used during the re-
randomization of keys.

– L2: Used to prove eligibility for signing a value towards an intended recipient by deriving
joint policy fulfillment. This language is used during signing and is depicted below. In
the generic scheme, this amounts to proving the ability to decrypt the PE ciphertext in
the public key of the recipient.

Theorem 1. The ul-PCS scheme for generic policies is based on pseudo-random functions,
predicate encryption, unforgeable signatures and extractable NIZK systems for languages L1

and L2, as defined below. The scheme is TRand unforgeable, attribute-hiding, and unlinkable,
where TRand is polynomial in the security parameter.

Formal treatment. The ul-PCS schemes is formally described in Figure 14 using pseudo-code.
Furthermore, we introduce a small and obvious helper function for improved readability: the
function ValidPK(mpk, pk) checks the public-key’s well-formedness by verifying the NIZKL1

proof of pk and outputs 1 if it verifies, and 0 otherwise. The languages L1, which guarantees
the correctness of the public keys, and the language L2, which ensures the validity of the
signature are defined as follows:

Language L1: A statement xst := (TRand, IDctr, vk
ctr
sig, ctctr, vk

A
sig,mpkPE) is in the language L1

if it holds for a witness wst := (k, ctr, vksig, sksig, x, σ
1
sig, σ

2
sig, σctr) that:

– ctr < TRand
– ctctr = PE.Enc(mpkPE, x)
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– IDctr = PRF.Eval(k, ctr)
– DS.Verify(vkAsig, (k, x), σ

1
sig) = 1 and DS.Verify(vkAsig, (k, vksig), σ

2
sig) = 1

– DS.Verify(vksig, (vk
ctr
sig, IDctr), σctr) = 1

Language L2: A statement xst := (IDS, ctR, vk
A
sig) is in the language L2 if it holds for a

witness wst := (k, ctr, skfx , σ
3
sig) that:

– PE.Dec(skfx , ctR) = 1
– IDS = PRF.Eval(k, ctr)
– DS.Verify(vkAsig, (k, skfx), σ

3
sig) = 1

The formal theorem and its proof are given in Appendix B.

5.2 ul-PCS for Separable Policies

Identifying predicate encryption as the most heavy tool in this construction, we observe
that, for separable policies (cf. Section 2), we can apply a few tricks to remove PE in ex-
change of ordinary public-key encryption. Towards understanding this section, there are four
conceptual items that we are going to replace, which leads to the scheme in Figure 15.

– The functional key skfx based on attributes x used to decrypt part of the recipient’s public
key will be replaced by an ordinary decryption key sk. The reason for that is that we can
precompute the matching: the recipient’s public key (for, say, attributes y) contains an
encryption of R(y) and the sender is given the decryption key if S(x). This mimics the
use of a functional key in this case, but at a much lower cost.

– Since the public encryption key can be defined as part of the public parameters, there is
no need to sign the corresponding private key sk.

– Signatures on attributes x can be replaced by a signatures on a bit R(x).
– The re-encryption of the PE part of the ciphertext can be replaced by ordinary re-

encryptions that admit efficient proofs.

Correspondingly, we also have to change the languages L1 and L2 of the scheme, which we
modify below. The helper function ValidPK(mpk, pk) is defined as in the previous scheme, i.e.
it checks the public-key’s well-formedness by verifying the NIZKL1 proof of pk and outputs 1
if it verifies, and 0 otherwise. Intuitively, this scheme is secure by a reduction to the generic
one. In fact, the four replacements above mimic the generic scheme for separable policies.
We have:

Theorem 2. The ul-PCS scheme for separable policies is based on pseudo-random func-
tions, IND-CPA-secure encryption, unforgeable signatures and extractable NIZK systems for
languages L1 and L2, as defined below. The scheme is TRand unforgeable, attribute-hiding,
and unlinkable, where TRand is polynomial in the security parameter.

Formal treatment. The proof of this scheme proceeds analogous to the proof of Theorem 1
since the scheme is a concrete version of the generic scheme. We point out the few minor
differences in the proof at the end of Appendices B.2 to B.4. The language L1, that guarantees
the correctness of the public keys, and the language L2, that ensures the validity of the
signature, can be simplified as follows:
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Setup(1λ, F ):

CRSRand ← NIZKL1 .Setup(1
λ)

CRSSign ← NIZKL2 .Setup(1
λ)

(skAsig, vk
A
sig)← DS.Setup(1λ)

(mpkPE,mskPE)← PE.Setup(1λ)

mpk := (TRand, F,CRSRand,CRSSign, vk
A
sig,mpkPE)

msk := (F, skAsig,mskPE)

Return (mpk,msk)

KeyGen(msk, x):

Parse msk as defined above

k← {0, 1}λ

(sksig, vksig)← DS.Setup(1λ)

skfx ← PE.KeyGen(mskPE, fx)

σ1
sig ← DS.Sign(skAsig, (k, x)), σ

2
sig ← DS.Sign(skAsig, (k, vksig))

σ3
sig ← DS.Sign(skAsig, (k, skfx))

usk := (k, vksig, sksig, σ
1
sig, σ

2
sig, σ

3
sig, x, skfx)

Return (pk0, sk0)← RandKey(mpk, (usk,−1,⊥))

RandKey(mpk, sk):

Parse mpk, usk as defined above and sk = (usk, ctr, ·)
ctr := ctr + 1

If ctr ≥ TRand: return ⊥
IDctr := PRF.Eval(k, ctr)

(vkctrsig, sk
ctr
sig)← DS.Setup(1λ)

σctr ← DS.Sign(sksig, (vk
ctr
sig, IDctr))

ctctr ← PE.Enc(mpkPE, x)

πctr ← NIZKL1 .Prove(CRSRand, (TRand, IDctr, vk
ctr
sig, ctctr, vk

A
sig,mpkPE), (usk, σctr))

pkctr := (IDctr, vk
ctr
sig, ctctr, πctr)

Return (pkctr, skctr := (usk, ctr, skctrsig))

Fig. 14a: The setup, key generation and randomization algorithms of the unlinkable PCS
scheme for generic policies.
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Sign(mpk, sk, pkR,m):

Parse mpk, sk := (usk, ctr, skctr) and usk as above

If ValidPK(mpk, pkR) = 0 : return ⊥
IDS := PRF.Eval(k, ctr)

If PE.Dec(skfx , ctR) = 0 : return ⊥
πs ← NIZKL2 .Prove(CRSSign, (IDS, ctR, vk

A
sig), sk)

σ ← DS.Sign(skctr, (m, pkR, πs))

Return (πs, σ)

Verify(mpk, pkS, pkR,m, σ):

Parse mpk as defined above and σ = (π, σ′)

If ValidPK(mpk, pkS) = 0 or ValidPK(mpk, pkR) = 0, return ⊥
Return (NIZKL2 .Verify(CRSSign, (pkS, pkR), π) ∧ DS.Verify(vkS, (m, pkR, π), σ

′))

Fig. 14b: The signing and verification algorithms of the unlinkable PCS scheme for generic
policies.

Language L1: A statement xst := (TRand, IDctr, vk
ctr
sig, ctctr, vk

A,R
sig , pk

A
PKE) is in the language L1

if it holds for a witness wst := (k, ctr, vksig, sksig,mx, σ
1
sig, σctr) that:

– ctr < TRand
– ctctr = PKE.Enc(pkAPKE,mx)
– IDctr = PRF.Eval(k, ctr)
– DS.Verify(vkA,R

sig , (k, vksig,mx), σ
1
sig) = 1

– DS.Verify(vksig, (vk
ctr
sig, IDctr), σctr) = 1

Language L2: A statement xst := (IDS, ctR, vk
A,S
sig , pk

A
PKE) is in the language L2 if it holds

for a witness wst := (k, ctr, skAPKE, σ
2
sig) that:

– PKE.Dec(skAPKE, ctR) = 1
– IDS = PRF.Eval(k, ctr)
– DS.Verify(vkA,S

sig , (k, sk
A
PKE), σ

2
sig) = 1

5.3 ul-PCS for Role-based Policies

To obtain the scheme for RBAC policies (cf. Section 2) of Figure 16, we are going to “replace”
the same four items from the generic scheme, similar to the scheme for separable policies:

– The functional key skfx based on attributes x used to decrypt part of the recipient’s public
key will be replaced by the witness for the accumulator for the roles to which the party
can send. This is in general more than one witness, which is more leakage than in the case
of PE. This is the reason why we only achieve outsider-security for attribute-hiding in
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Setup(1λ, F ):

CRSRand ← NIZKL1 .Setup(1
λ)

CRSSign ← NIZKL2 .Setup(1
λ)

(vkA,S
sig , sk

A,S
sig )← DS.Setup(1λ)

(vkA,R
sig , sk

A,R
sig )← DS.Setup(1λ)

(pkAPKE, sk
A
PKE)← PKE.Setup(1λ)

mpk := (TRand, F,CRSRand,CRSSign, vk
A,S
sig , vk

A,R
sig , pk

A
Enc)

msk := (F, skA,S
sig , sk

A,R
sig , sk

A
PKE)

Return (mpk,msk)

KeyGen(msk, x):

Parse msk as defined above

k← {0, 1}λ

(sksig, vksig)← DS.Setup(1λ)

mx := R(x)

σ1
sig ← DS.Sign(skA,R

sig , (k, vksig,mx))

If S(x) = 1 :

σ2
sig ← DS.Sign(skA,S

sig , (k, sk
A
PKE))

usk := (k, vksig, sksig, σ
1
sig, σ

2
sig,mx, sk

A
PKE)

Else (S(x) = 0):

usk := (k, vksig, sksig, σ
1
sig, σ

2
sig := ε,mx, sk

A
PKE := ε)

(pk0, sk0)← RandKey(mpk, (usk,−1,⊥))
Return (pk0, sk0)

Fig. 15a: The setup and key generation algorithm of our unlinkable PCS scheme for separable
policies.
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RandKey(mpk, sk):

Parse mpk, usk as defined above and sk = (usk, ctr, ·)
ctr := ctr + 1

If ctr ≥ TRand: return ⊥
IDctr := PRF.Eval(k, ctr)

(vkctrsig, sk
ctr
sig)← DS.Setup(1λ)

σctr ← DS.Sign(sksig, (vk
ctr
sig, IDctr))

ctctr ← PKE.Enc(pkAPKE,mx)

πctr ← NIZKL1 .Prove(CRSRand, (TRand, IDctr, vk
ctr
sig, ctctr, vk

A,R
sig , pk

A
PKE), (usk, σctr))

pkctr := (IDctr, vk
ctr
sig, ctctr, πctr)

Return (pkctr, skctr := (usk, ctr, skctrsig))

Sign(mpk, sk, pkR,m):

Parse mpk, sk := (usk, ctr, skctr) and usk as above

If ValidPK(mpk, pkR) = 0 : return ⊥
IDS := PRF.Eval(k, ctr)

If skAPKE = ε: return ⊥
If PKE.Dec(skAPKE, ctR) = 0: return ⊥
πs ← NIZKL2 .Prove(CRSSign, (IDS, ctR, vk

A,S
sig , pk

A
PKE), sk)

σ ← DS.Sign(skctr, (m, pkR, πs))

Return (πs, σ)

Verify(mpk, pkS, pkR,m, σ):

Parse mpk as defined above and σ = (π, σ′)

If ValidPK(mpk, pkS) = 0 or ValidPK(mpk, pkR) = 0

Return ⊥
Return (NIZKL2 .Verify(CRSSign, (pkS, pkR), π) ∧ DS.Verify(vkS, (m, pkR, π), σ

′))

Fig. 15b: The randomization, signing and verification algorithms of our unlinkable PCS
scheme for separable policies.
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the case of general matrices. If a party only gets one witness (e.g., in the equality policy),
then we achieve full attribute hiding. We further note that the accumulator we need is
realized by a weakly-secure short signature scheme [13].

– Accordingly, in this scheme, we sign the witness(es) as opposed to the functional key in
the generic scheme.

– Signatures on attributes x needed in the generic scheme do not have a counterpart
here. They are not needed by virtue of employing a structure-preserving signature on
equivalence-classes (SPS-EQ) that is able to re-randomize public accumulator values while
keeping the witnesses intact.

– Re-encryptions can be completely replaced by the re-randomization of SPS-EQ signatures
and by relying on the fact that the weakly-sound positive accumulators (constructed from
Boneh-Boyen signatures [13]) hide the elements in it.

Correspondingly, we also have to change the languages L1 and L2 of this scheme, which we
describe below. The helper function for this scheme, ValidPK(mpk, pk), is defined differently
to the helper function of the previous schemes. In more detail, it verifies the NIZKL1 proof
as well as the SPS-EQ signature and outputs 1 only if both verifications are successful.

Theorem 3. The ul-PCS scheme for role-based policies described is based on pseudo-random
functions, structure-preserving signatures on equivalence classes, ordinary (unforgeable) sig-
natures, a weakly-sound accumulator, and extractable NIZK systems for languages L1 and
L2, as defined below. The scheme is TRand unforgeable, outsider-secure attribute-hiding, and
unlinkable, where TRand is polynomial in the security parameter. It is furthermore TRand-
attribute-hiding for the equality-policy.

Formal treatment. The proof of this scheme proceeds analogous to the proof of Theorem 1
since the scheme is an optimized version of the generic scheme. We point out the few mi-
nor differences at the end of Appendices B.2 to B.4. The corresponding ul-PCS scheme is
described in Figure 16. The language L1 that guarantees the correctness of the public keys,
and the language L2, ensuring the validity of the signature, are defined as follows:

Language L1: A statement xst := (TRand, IDctr, vk
ctr
sig, M⃗

′ := (A′
1,A

′
2,G

′
2), vk

A
sig) is in the lan-

guage L1 if it holds for a witness wst := (k, ctr, vksig, sksig, wk, σ
1
sig, σctr) that:

– ctr < TRand
– ACC.MemVrf(A′

1, k, wk) = 1 where pp′ is defined as (p,G1,G
′
2, e) (that is, the same as

pp but with the generator G′
2 instead.)

– IDctr = PRF.Eval(k, ctr)
– DS.Verify(vkAsig, (k, vksig), σ

1
sig) = 1

– DS.Verify(vksig, (vk
ctr
sig, IDctr), σctr) = 1

Language L2: A statement xst := (IDS, ctR, vk
A
sig, pp

′,A′) is in the language L2 if it holds for
a witness wst := (k, ctr, x, w, σ2

sig) that:
– ACC.MemVrf(A′, x, w) = 1
– IDS = PRF.Eval(k, ctr)
– DS.Verify(vkAsig, (k, w), σ

2
sig) = 1
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Setup(1λ, F ):

Let pp be a bilinear setup

CRSRand ← NIZKL1 .Setup(1
λ)

CRSSign ← NIZKL2 .Setup(1
λ)

(skAsig, vk
A
sig)← DS.Setup(1λ)

(vkASEQ, sk
A
SEQ)← SEQ.KeyGenR(pp)

Parse F as an RBAC matrix with

nR roles denoted by 1, . . . , nR

For all y ∈ [nR] :

(Ay, αy)← ACC.Create(pp)

Sy ← {i ∈ [nR] : F (i, y) = 1};Wy ← ()

For all i ∈ Sy :

wi ← ACC.Add(pp,Ay, αy, i)

Wy ← Wy||(i, wi)

CRS := (CRSRand,CRSSign)

mpk := (pp, TRand, F,CRS, vk
A
sig, vk

A
SEQ)

msk := (pp, F, skASEQ, (Aj,Wj)
nR
j=1)

Return (mpk,msk)

KeyGen(msk, x):

Parse msk as defined above

k← {0, 1}λ

(sksig, vksig)← DS.Setup(1λ)

(Ak, αk)← ACC.Create(pp)

wk ← ACC.Add(Ak, αk, k)

M⃗ := (Ak,Ax,G2)

σSEQ ← SEQ.SignR(sk
A
SEQ, M⃗)

σsig ← DS.Sign(skAsig, (k, vksig))

W := ()

For each y ∈ [nR] : F (x, y) = 1 do:

Retrieve (x,w) ∈ Wy

W ← W ||(w,DS.Sign(skAsig, (k, w)))
usk = (M⃗, σSEQ,W,wk, k, vksig, sksig, σsig, x)

(pk0, sk0)← RandKey(mpk, (usk,−1,⊥))
Return (pk0, sk0)

Fig. 16a: The setup and key generation algorithm of our unlinkable PCS scheme for RBAC
policies.
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RandKey(mpk, sk):

Parse mpk, usk as defined above and sk = (usk, ctr, ·)
ctr := ctr + 1

If ctr ≥ TRand: return ⊥
IDctr := PRF.Eval(k, ctr)

(vkctrsig, sk
ctr
sig)← DS.Setup(1λ)

σctr ← DS.Sign(sksig, (vk
ctr
sig, IDctr))

µctr ← Z∗
p

(M⃗ ′, σ′
SEQ)← SEQ.ChgRepR(vk

A
SEQ, M⃗ , σSEQ, µctr)

πctr ← NIZKL1 .Prove(CRSRand, (TRand, IDctr, vk
ctr
sig, M⃗

′, vkAsig, ), (usk, σctr))

pkctr := (IDctr, vk
ctr
sig, M⃗

′, σ′
SEQ, πctr)

Return (pkctr, skctr := (usk, ctr, skctrsig))

Sign(mpk, sk, pkR,m):

Parse mpk, sk := (usk, ctr, skctr) and usk as above

If ValidPK(mpk, pkR) = 0 : return ⊥
IDS := PRF.Eval(k, ctr)

Parse pkR = (. . . , (A,A′,G′
2), . . . )

Let pp′ ← (p,G1,G
′
2, e)

If ̸ ∃ w∗ ∈ W | ACC.MemVrf(pp′,A′, x, w∗) : return ⊥
Find w∗ ∈ W | ACC.MemVrf(pp′,A′, x, w∗) = 1

πs ← NIZKL2 .Prove(CRSSign, (IDS, vk
A
sig, pp

′,A′), sk)

σ ← DS.Sign(skctr, (m, pkR, πs))

Return (πs, σ)

Verify(mpk, pkS, pkR,m, σ):

Parse mpk as defined above and σ = (π, σ′)

If ValidPK(mpk, pkS) = 0 or ValidPK(mpk, pkR) = 0

Return ⊥
Return (NIZKL2 .Verify(CRSSign, (pkS, pkR), π) ∧ DS.Verify(vkS, (m, pkR, π), σ

′))

Fig. 16b: The rerandomization, signing and verification algorithm of our unlinkable PCS
scheme for RBAC policies.
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6 Instantiation and Performance Analysis

Before discussing the performance of our proposed schemes, we give a brief overview of the
concrete instantiations of the cryptographic primitives. The full documentation on how the
different primitives are used to realize our schemes for the various policies can be found
in Appendices C and D.

6.1 Overview of Cryptographic Algorithms and Proof Systems

Digital Signatures. We require three different types of signature schemes to instantiate the
proposed constructions. We use BLS signatures [15] wherever appropriate. For SPS-EQ we
use the construction proposed in [37]. Additionally, if we need a Groth-Sahai (GS) friendly
relation (see below), we use the structure-preserving signatures (SPS)—for example when
users need to prove the knowledge of hidden messages and signatures that successfully verify
under the verification key of the CA. For simplicity, we utilize a slightly modified variant of
FHS’s SPS-EQ [37], without the change representation algorithm, as our implementation of
standard SPS.

Predicate Encryption. The proposed generic ul-PCS scheme in Figure 14 relies on PE. We
use the Okamoto-Takashima (OT12) [55] scheme based on dual pairing vector spaces that
realizes the inner-product predicate functionality.

Public-Key Encryption. The proposed ul-PCS scheme with separable policies relies on public
key encryptions for which we use ElGamal encryption [30] as an instantiation.

Pseudorandom Functions. We utilize the Dodis-Yampolskiy PRF [29] as a well-known and
efficient PRF that operates over a cyclic group G of prime order p.

Non-Interactive Zero-Knowledge. Combining all of these concrete instantiations allows us to
formalize the NP-relations described in the proposed constructions. We rely on three well-
known proof systems: Sigma protocols, Groth-Sahai proofs, and range-proofs. We give a brief
overview and defer the details to Appendix C.

We use the standard sigma protocols [58] as well as some recent techniques described
in [28, 51]. To make the schemes non-interactive, we use the Fiat-Shamir paradigm [35]
w.r.t. a hash functions H : {0, 1}∗ → Zp. In essence, whenever the prover has the knowledge
of scalar witnesses, we use sigma protocols to obtain an efficient zero-knowledge proof. Ad-
ditionally, we use Groth-Sahai (GS) proof systems [45] when the witness is a group element
with hidden discrete logarithms. Over an asymmetric bilinear group (G1,G2,GT , p, e,G1,G2),
this construction can prove the satisfiability of any pairing-product equation (PPE) of
the form

∏n
i=1 e(Ai,Yi)

∏m
i=1 e(Xi, Bi)

∏m
j=1

∏n
i=1 e(Xj,Yi)

γi,j = T , where X1, . . . ,Xm ∈ G1,
Y1, . . . ,Yn ∈ G2 are the witnesses given as a commitment and T ∈ GT , A1, . . . , An ∈ G1,
B1, . . . , Bm ∈ G2 and {γi,j}i∈[1,m],j∈[1,n] ∈ Zp are constant values which are a part of the
instance or publicly known. Another advantage of using GS proofs is the ability to use
verification batching techniques, such as the one described in this paper [47]. Finally, the
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ul-PCS with
separable policies

Role-based
ul-PCS

Generic ul-PCS

Language Language

Fig. 17: NP-relations and witnesses for our ul-PCS constructions and the used proof systems:
Sigma protocols , range-proofs and Groth-Sahai proofs . For the sake of concreteness, we
use the notation SPS to indicate where we need structure-preserving signatures.

range-proof allows a user to prove that a hidden value lies within a certain range. In the
proposed constructions, the number of re-randomizations is upper bounded by a maximum
number TRand that is fixed in the setup. In order to prove that this condition is fulfilled, our
instantiation relies on range-proofs proposed by Bünz et al. [17], known as Bulletproofs. We
summarize in Figure 17 all the relations and proof systems used in our constructions. The
concrete realizations of the NIZK relations are detailed in Appendix D.

6.2 Performance Analysis

Benchmark & Environment. We implement the proposed ul-PCS schemes and evaluate their
performance based on BN-254 elliptic curve groups [9], y2 = x3 + b, with embedding curve
degree 12, where the first group G1 is a standard curve defined over Zp. The second group
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Table 1: Cost of basic operations. Mi and Ei denote multiplication and exponentiation costs
in Gi for i ∈ {1, 2, T}, respectively. P denotes pairing cost. ms stands for millisecond and µs
for microsecond.

Elliptic-Curve Library
M1

time (µs)

E1

time (ms)

M2

time (µs)

E2

time (ms)

MT

time (µs)

ET

time (ms)

P

time (ms)

BN-254 Charm-Crypto 3.3 0.9 7.1 1.6 21.4 4.8 18.5

BN-256 bplib 3.8 0.3 6 1 3 2.3 2.74

G2 and target group GT are defined over the extension fields Zp2 and Zp12 , respectively.
We use the Charm-crypto framework [2] written in Python as the main framework and our
open-source implementation is available at [61]. In our experiments, we used a machine that
we believe represents typical workloads for ul-PCS. We used an HP Zbook 15 G6 with 16 GB
of RAM, an Intel Core i7-9850H CPU @ 2.60GHz, and an SSD for storage, running Ubuntu
22.04 LTS.

Remark 3. It is essential to emphasize that the provided evaluation should be viewed as an
academic prototype. Its primary purpose is to establish an initial estimate of complexity
and is not intended to meet production-grade standards. This is primarily due to the sig-
nificant impact that the choice of an elliptic curve and the underlying library has on the
security and performance of our proposed constructions. Table 1 lists the average runtime
based on 1000 independent measurements for the basic operations in the BN-254 curve using
the Charm-Crypto framework. For the purpose of comparison, we have included the running
time obtained from the bplib7 library over BN-256 pairing-friendly curves. Bplib relies on
OpenPairing8 which utilizes OpenSSL as the underlying arithmetic framework for imple-
menting an efficient bilinear pairing over the BN curve. It offers promising indications that a
production-ready implementation could achieve significantly faster performance, possibly by
an order of magnitude. It’s worth noting that even a simple switch from the EC library from
PBC to OpenPairing results in a minimum of 6 times faster pairing operations and, since our
schemes heavily rely on such operations, this improvement is particularly noteworthy. How-
ever, due to the broader adoption and smoother code integration offered by Charm-Crypto,
our primary intention to use it was for the implementation of our proof of concept.

Optimized constructions for special policies. All computations are performed on the same
machine and we achieve practical results, even for large attribute sets and policies. We report
the execution times on an average of 100 executions without preprocessing. The maximum
number of re-randomizations is assumed to be TRand = 216 − 1. The length of secret key

7 https://github.com/gdanezis/bplib.
8 https://github.com/dfaranha/OpenPairing.
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Table 2: Running time of constant operations and size of constant parameters.

Scheme
KeyGen

time (ms)
RandKey
time (ms)

Verify
time (ms)

pk size
(kbytes)

σ size
(kbytes)

ul-PCS, role-based 750 550 1 630 28 16
ul-PCS, separable policies 490 480 1 020 28 14.5
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Fig. 18: Secret-key size and Signing time of our RBAC ul-PCS and ul-PCS for separable
policies. Left: secret-key size versus the number of attributes/roles; Right: signing time versus
the number of attributes/roles.

and signing time are shown in Figure 18. Table 2 depicts the constant execution times and
parameter sizes. A summary of our analysis is as follows:

In the role-based ul-PCS described in Figure 16, it takes around 1.2 seconds (resp. 2
seconds) to sign a message using a secret key with 5 roles (resp. 50 roles). The average cost
per additional attribute is around 19 ms. It takes around 1.6 seconds for a verifier to verify
the validity of a signature independent of the number of roles. The required memory for a
user to store a secret key representing 5 roles (resp. 50 roles) is not larger than 2 kbytes
(resp. 10 kbytes) and we pay 270 bytes per additional attribute. The corresponding public
key has a constant size of 28 kbytes, again, independent of the number of roles. A signature
in this scheme has a constant size of 16 kbytes.

The proposed ul-PCS scheme for separable policies described in Figure 15, achieves a
slightly better performance in most operations. More precisely, a secret key can be generated
in less than 490 ms independent of the number of attributes. The key re-randomization
phase also benefits from this constant running time and requires 480 ms to be executed.
Unsurprisingly, as illustrated in Figure 18, the signing time is also constant and it takes
around 750 ms to sign a message. Signature verification takes around 1 second. The secret
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Fig. 19: Performance of the generic ul-PCS and standard PCS schemes. The x-axis denotes
the number of attributes. Top left: public-key sizes; Top-Right: signature sizes; Bottom left:
signing times; Bottom right: verifying times.

keys are also constant and require only 1 kbyte of storage while the corresponding public key
is 28 kbytes large. A signature has a constant size of 14.5 kbytes, which is slightly shorter
than for the role-based ul-PCS.

Generic ul-PCS/PCS with IP-PE. In Figure 19, we compare the overhead of the proposed
generic ul-PCS scheme with the standard PCS scheme proposed by Badertscher et al. [6].
Here, we use the same inner-product predicate encryption scheme for both prototypes. We
are furthermore interested in the dependency on the number of attributes, where attributes
are encoded as length-n vectors (over a base field). Due to space constraints, we focus our
attention on the “online operations” that are part of both schemes (signing and verification
times; signature and public key sizes). We explore the range between 5 and 50 attributes.
We observe that standard PCS generally has better performance characteristics, which can
be attributed to the cost of unlinkability/anonymity.

A public key for 5 attributes in the generic ul-PCS scheme has a size of around 79 kbytes
and we pay 9.9 kbytes per additional attribute. In the generic standard PCS scheme we start
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Fig. 20: A simplified illustration of the main idea behind a mixer: parties generate new
addresses which they communicate to the mixer in a secure way. The mixer accumulates
coins at the deposit address and redistributes them when the number of participants is
exceeding a threshold (which defines the anonymity set).

at 2.3 kbytes and pay 390 bytes per additional attribute. Signature sizes are almost identical
in both schemes, a signature generated in the case of 5 attributes is around 40 kbytes and
each additional attribute incurs a cost of about 5.14 kbytes. In terms of signing times, in the
generic ul-PCS a message can be signed in around 3 seconds (resp. 18.5 seconds) in case of 5
attributes (resp. 50 attributes). The average cost per additional attribute in this range from
5 to 50 attributes can be estimated with 340 ms. For standard PCS, we are require about
800 ms (resp. up to 6.9 seconds) to generate a signature for 5 attributes (resp. 50 attributes).
The average cost per additional attribute here is 130 ms. Finally, verification of a signature
in the context of 5 attributes (resp. 50 attributes) takes about 4.59 seconds (resp. 23 seconds)
for the generic ul-PCS scheme. For the standard PCS scheme the verification time is around
1.74 seconds (resp. 12.5 seconds) for 5 (resp. 50) attributes. In this range, the price per
additional attribute can be estimated at 420 ms for the generic ul-PCS scheme and 230 ms
for the standard PCS scheme.

7 Application to Payment Systems

We discuss the application of ul-PCS to pseudonymous UTxO-based transaction systems
like Bitcoin, and to privacy-preserving transaction systems like Zcash [11] and Monero [3].
Furthermore, we also discuss how the enrollment process can be implemented in a distributed
manner to avoid a single point of failure. In the last step, we explain how ul-PCS can enrich
centralized currencies such as CBDCs.

7.1 Integration with UTxO-based Systems and Compliant Mixing

In UTxO-based systems like Bitcoin [53], a data structure of unspent transaction outputs
is maintained by the ledger, where an unspent transaction output can be thought of as an
address-value pair. In principle, every address corresponds to a public key (in Bitcoin it is
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the hash of a public key), and the value sitting at the address can be spent if a signature can
be generated (signing a particular transaction spending the value) that verifies with respect
to that public key. With respect to privacy, this system is pseudonymous: anyone can link
transactions, but the real-world entity behind a key is not deducible from the ledger. To
obfuscate the transaction graph, several techniques have been proposed for Bitcoin [38,52,60],
all of them requiring the ability that a party can generate fresh public keys (i.e., addresses) at
will. For example, in a mixer solution like Obscuro [60], parties would communicate privately
a new return address to the mixer, send coins, and the mixer sends back the coins to the
shuffled return addresses of many users.

Following [6], a ul-PCS scheme can naturally be coupled with such transaction systems to
achieve policy-compliance with strong privacy guarantees (hiding the attributes of parties)
and without the need for privacy revocation, due to the cryptographic enforcement of the
policy. However, the original PCS scheme did not allow a real-world entity to generate new
public keys on their own, which makes them incompatible with the privacy-enhancing tech-
niques above. Unlinkable PCS on the other hand enables all obfuscation techniques based on
freshly generated addresses while delivering all guarantees of a PCS scheme which makes it
an attractive solution for policy enforcement at the transaction level. Unlinkable PCS cryp-
tographically enforces a policy and enables a party to generate unlinkable public keys (i.e.,
addresses) that are all connected to its attributes. This opens the door for mixing services
for UTxO based ledgers (such as Obscuro) to be provably compliant without revoking the
privacy at any time: by equipping accredited users and mixers with appropriate credentials
(connected to their jurisdiction), one can enforce on a transaction level that the service only
serves admissible customers.

7.2 Integration with DAP Systems

Overview. We now show how unlinkable policy-compliant signatures can be formally in-
tegrated with decentralized anonymous payment (DAP) systems such as Monero [3] or
Zcash [11]. In a recent work, Engelmann et al. [31] introduced a new abstraction model for
protocols like Zcash and Monero to reason about their confidentiality, privacy, and soundness
properties. Recall that in such UTxO-like privacy-preserving transaction systems, confiden-
tiality and anonymity of transacted amounts and involved addresses must be ensured. For
example, the amount, or more generally speaking the output of a transaction, could be
encrypted using the public key of the recipient and, by using key-private encryption [11],
outputs transactions which are unlinkable when posted on a public ledger. To enable the
UTxO functionality, such privacy-preserving UTxO like schemes must allow the generation
of what is often called a “nullifier” value that anonymously marks a transaction output as
spent.

To abstract the concrete mechanisms used in different systems, Engelmann et
al. [31] define the notion of a one-time account (OTA) scheme. We recall the def-
inition of an OTA scheme in Appendix F, which is a tuple of algorithms OTA =
(Setup,KeyGen,NoteGen,Enc,Receive,NulEval). An OTA scheme is the privacy-preserving
analogue and generalization of a plain UTxO based transaction system described above: in-
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stead of connecting a transaction output to a long-term cryptographic key (e.g. by including
a hash of the recipient’s public key as part of the output), an OTA scheme allows to generate
(knowing the intended recipients’ public keys), for each transaction output, a unique and
anonymous one-time account which is called a “note”. The contents of a note can only be
accessed using the recipient’s public key, which can be further used to claim it by computing
a unique nullifier value that anonymously marks it as spent. If the intended recipient requires
auxiliary information to create the nullifier, an OTA scheme has an explicit function to en-
crypt such values towards the recipient (this ciphertext is formally part of the transaction
output and accompanies the note).

Based on an OTA scheme, the main task of a higher-level transaction system (such as
Zcash or Monero) is to maintain a ledger, recording notes in its state, whether they have been
spent or not, and to implement a certain monetary policy (such as conservation of money
during a standard transaction, or how to mint coins in special transactions). This is highly
application dependent, and the OTA scheme provides the core infrastructure underneath.
The high-level transaction mechanic is as follows: in a transaction, one declares knowledge
of (input) notes contained in the ledger state and presents their nullifiers plus a NIZK proof
that they are constructed correctly based on the input notes. Importantly, the transaction
reveals no link to the input notes other than their containment in the ledger state (the
nullifiers ensure that no note can be spent more than once). Finally, a transaction specifies
a new set of output notes, and an application-dependent proof that the output notes stand
in a particular relation with the input notes (such as that the sum of all inputs equals the
sum of all outputs minus a given fee). We refer to [11] and [31] on how these systems can be
constructed based on an OTA scheme.

We now present two constructions how to combine PCS with OTA to achieve accounts
that are bundled with private attributes about which policy compliance can be proved. The
first construction is the generic composition of PCS and OTA, while the second construction
constitutes an efficiency improvement in case the PCS is unlinkable.

Construction I. The idea is to use the PCS scheme to sign the note but hide the involved
public keys and signatures inside the OTA ciphertext. The owner of a note can then use the
relevant values in a zero-knowledge proof of knowledge when claiming, as described above,
a note as part of a transaction.

This generic composition is simple and obviously preserves all underlying OTA guarantees
(cf. Appendix F), but pushes a lot of complexity into the NIZK. In order to show that the
nullifier nul spends a note note (which contains a vector of type-value pairs a⃗ and is generated
with randomness r see Appendix F) that is contained in the ledger state st, at least the
following language must be supported for the construction:

L ={(mpk, st, nul) | ∃(note, skota, a⃗, r, pkSpcs, pkRpcs, skRpcs, σpcs) :
note ∈ st ∧ note = NoteGen(P (skota), a⃗, r) ∧ nul = NulEval(skota, r)∧
Verify(mpk, pkSpcs, pk

R
pcs, note, σpcs) ∧ pkRpcs = P (skRpcs)},

where P (sk) is an assumed mapping that computes the public key from the secret key (e.g.,
to prove knowledge of the secret key).
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Construction II. Now, we present a much more efficient way to compose the two schemes
while retaining essentially the same privacy guarantees as the first construction above. We
obtain the mentioned efficiency gains by leveraging the unlinkability feature of the ul-PCS
scheme. First, we describe the scheme and argue about its security below. The scheme works
as follows: the sender creates a note according to the OTA scheme and PCS-signs a commit-
ment to the note such that it verifies with the sender’s and recipient’s current PCS public
keys respectively. We leave the format of the note unchanged and transmit the additional
information as well as the commitment opening as part of the ciphertext of the OTA scheme.
The nullifier on the other hand will be the OTA nullifier, both PCS public keys, the PCS sig-
nature on the commitment, plus another PCS signature created by the recipient on the OTA
nullifier, and a NIZK that proves knowledge of the opening information of the commitment.
(Recall that PCS-Signing requires specifying a target public key which is not relevant at this
step. For simplicity, we assume that a party can “sign towards itself”, in which case standard
signatures are a special case of PCS.) In summary, a party can only claim ownership of a
note (by constructing the nullifier) if it possesses the underlying OTA private key (to de-
crypt the output and to generate the OTA nullifier) and possesses the PCS private key that
corresponds to the PCS public key towards which the note was created, i.e., for which the
signature on the note successfully verifies. We observe that this construction avoids a NIZK
about PCS signatures and gets away with just a simple commitment proof. The scheme is
formally given below.

We note that the only change to the interface is that KeyGen can have black-box access
to a PCS key-gen oracle and that it is parameterized by an attribute x. Thanks to this
modularity, the OTA security requirements remain well-defined.

Setup: Run (mpk,msk) ← ul-PCS.Setup and pp ← OTA.Setup and define the public param-
eter p ← (mpk, pp). For simplicity, p is implicitly provided to all algorithms below and
not explicitly mentioned.

KeyGenKeyGenPCS(msk,·)
x : Run (pkota, skota) ← OTA.KeyGen and obtain (pkpcs, skpcs) for at-

tribute x via an oralce call. Define pk = (pkota, pkpcs) and sk = (skota, skpcs).

NoteGen((pkRota, pk
R
pcs), a⃗, (r1, r2)): Create note← OTA.NoteGen(pkota, a⃗, r1).

Enc((pkRota, pk
R
pcs), a⃗, (r1, r2), (skota, skpcs), ξ): Re-create the note note using r1 as above and

compute Com ← Commit(note; r2). Run (sk′pcs, pk
′
pcs) ← ul-PCS.RandKey(skpcs) and

store the new PCS keys. Run σnote ← ul-PCS.Sign(sk′pcs, pk
R
pcs,Com). Compute C ←

Enc
(
pkRota, (⃗a, (r1, r2), pk

′
pcs, pk

R
pcs, σnote), ξ

)
.

Receive(note, C, (skota, skpcs)): Compute OTA.Receive(note, C, skota).

NulEval((skRota, sk
R
pcs), a⃗, (r1, r2), pk

S
pcs, pk

R
pcs, σnote): Verify that pkRpcs is the public key corre-

sponding to skRpcs (otherwise, abort). Generate nul′ ← OTA.NulEval(sk, r1), compute

σnul ← ul-PCS.Sign(skR, pkR, nul′), and recreate the commitment Com (using a⃗, r1, and
r2). Check that ul-PCS.Verify(pkSpcs, pk

R
pcs,Com, σnote) = 1 (otherwise abort). Finally, out-

put nul← (nul′,Com, pkSpcs, pk
R
pcs, σnote, σnul).
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For this scheme, we require a NIZK for the following language, which is known to admit
efficient proof systems [31, Section 5]:

L′ = {(st,Com, nul′) | ∃(note, skota, a⃗, r1, r2) : note ∈ st ∧ Com = Commit(note, r2)

∧ note = NoteGen(P (skota), a⃗, r1) ∧ nul′ = NulEval(skota, r1)}.

Security analysis. We now elaborate on the guarantees provided by our construction.
While it is easy to see that the strawman approach is as secure as OTA, for the more
efficient construction above, we trade some security for efficiency. Next, we elaborate on the
security provided by that construction following the OTA security goals.

Soundness and binding. An OTA ciphertext should decrypt to values that would correctly
reconstruct the note that was given to it. On the other hand, binding ensures that a note is
essentially a binding commitment to the vector a⃗. Both of these properties are satisfied by
the above construction since we do not interfere with the generation of the OTA note.

Note and Ciphertext Privacy. Privacy mandates note and ciphertext hiding as well as note
and encryption anonymity. If the underlying OTA scheme satisfies this, then the above
construction trivially achieves it too. This is due to the fact that we do not interfere with
note generation and that all the additional values are hidden by encrypting them using the
underlying OTA encryption procedure.

Note Uniqueness. Note uniqueness captures that honestly generated notes (aka addresses) do
not collide, except with negligible probability. This is obviously fulfilled by our construction.

Nullifier Uniqueness and collision resistance. Nullifier uniqueness demands that for the same
note, no two nullifiers can be constructed and that the probability of two nullifiers colliding
is negligible. As above, this is retained by the construction if the underlying OTA scheme
satisfies it.

Nullifier security. The most crucial change of our construction is the nullifier. We gain
efficiency by including signatures and (re-randomized) keys as part of the nullifier, but we
trade the strong pseudo-random property, which has some security implications (compared
to the strawman approach).

If the creator of a note is honest, the corresponding owner is able to spend the note in a
private and anonymous way. In particular, if the PCS recipient key is re-randomized accord-
ingly, no linking within the transaction log is possible thanks to the hiding and unlinkability
property of PCS and the security of the underlying OTA scheme. The transaction log only
reveals that parties are transacting which are allowed to transact by the policy. On the other
hand, if different notes are created for the same PCS receiver key, then the only information
that leaks from this, is the fact that the same party must, again, be transacting—but no link
exists to the actual note or other transactions that use a re-randomized receiver key of this
party, thanks to the privacy of the commitment scheme, the unlinkability of the sender PCS
key (which by default gets re-randomized), and the security of the underlying OTA scheme.
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However, if the creator of a note is malicious, then this creator (and only this creator)
has enough information to determine that the owner of the note has been spending the note
in a transaction. This is due to the presence of the additional PCS-related values that are
revealed (as part of the nullifier). It is however possible to remedy this situation proactively,
namely by spending the note to itself using a freshly randomized PCS key as soon as the
transaction appears in the log. This is incidentally one of the recommended measures by
Zcash to achieve everlasting anonymity [11].

Finally, we observe that spending a note is only possible if a party has access to the
OTA private key and the PCS private key (which follows from the security provided by the
underlying OTA nullifier and the unforgeability of the PCS signature on this nullifier).

7.3 Distributed Setup and User Enrollment

In credential systems, issuance is often distributed across a set of servers to avoid a single
point of failure. Such failures may for example include the leakage or malicious revelation of
the master secret key. Hence, the security of the system is improved if the system’s setup
values and user enrollment are implemented by distributed processes with the property that
only a large collusion of servers would be able to recreate crucial secret values. This is
important in our context, because the revelation of the master secret key would (necessarily)
limit the achievable level of attribute hiding in practice, as it allows an attacker to self-issue
credentials and determine w.r.t. which participants it can generates valid signatures. This
results in potentially arbitrary loss in privacy.

In Appendix E, we showcase how our constructions can be implemented in the distributed
setting. In general, the idea is to have the master secret-key shared among the servers (plus
additional shared randomness), and have a client obtain partial results ri ← KeyGen(mski, x),
and perform client-side aggregation to reconstruct the full output of KeyGen. Such a process
ensures that, unless a certain threshold of servers collude (e.g. up to n− 1 in an honest-but-
curious scenario), the CA’s have no advantage over any other party in the system.

7.4 Application to Larger Systems and CBDCs

Zcash is a decentralized anonymous payment system and, while the considerations above
capture the technical aspects of how to integrate PCS with private transaction systems,
it is important to note that PCS can significantly improve the privacy for users in more
complex, compliance-seeking systems, be it centralized or decentralized. Central-bank digital
currencies have received a lot of attention in recent years. A core requirement [50] in these
systems is the so-called comprehensive regulatory compliance which puts restrictions and
requirements on (1) the number of coins in circulation, (2) sending and receiving limits, (3)
transaction value limits, (4) privacy, (5) accountability and (6) auditability.

A critical feature is accountability and auditability [24]—how can a regulator be assured
everything is complying with the jurisdiction? A somewhat standard technique to achieve
auditability is by privacy revocation techniques [50]: in case of suspicious activities, a user can
be traced and its privacy can be revoked completely. Whether a user is considered suspicious
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is decided outside of the technical system, whereas the technical system enables, for example,
an auditor to view keys and unmask any transaction of any user. For improved resilience, the
revocation capability is supposed to be shared by a group of anonymity revokers such that
a quorum is needed to unlock the feature. It goes without saying that, while this approach
trivially ensures that an auditor can learn anything it needs to know to perform its task,
this immense power comes with a huge risk for users. Not only is there the danger of false
accusation and the revelation of an individual’s activities even if they were legal, but this
also opens the door for pro-active surveillance. This puts the users into a weak position and
undermines the right for privacy in a rather extreme way.

Acknowledging that the other extreme, unconditional anonymity, is problematic as well,
the research on accountable privacy has been picking up steam that tries to balance privacy,
accountability, and auditability, such that users enjoy much stronger guarantees. Considering
the UTT system as an example of such an approach in the DAP domain [59], that implements
so-called budget coins which can be spent (unconditionally) private, yet accountable. This
is due to the fact that the budget coin is governed by a spending limit, thus representing
a digital analogue of cash. Auditiability is achieved by having a user fill up its budget
in regular intervals by presenting credentials to the auditor. All remaining transaction are
potentially subject to privacy revocation. As described in Section 1, the general approach is
to define several types of assets, a strategy taken in [33], or different types of transactions for
which different rules apply. In the CBDC domain, Platypus [64] also proposes such a path.
Therefore, if there is a cryptographic way to ensure that a certain policy for a given asset is
fulfilled, there is no need for revocation, and transactions can be made untraceable without
harming anyone. For all other cases, traceable/revocable transactions are still a good fit. This
design gives a user much stronger privacy guarantees for all policies that can be enforced on
a technical level.

The compliance requirements (1)-(3) have received a lot of attention for automatic en-
forcement, since they affect the transaction content and are thus comparably simpler to han-
dle. However, a lot of the need for identity revocation stems form the lack of cryptographic
policy enforcement that involves relevant properties of sender and receiver, including age,
citizenship, place of residency, more technical attributes like governing (tax) jurisdiction or
financial score, and more generally certified attributes by external auditors (cf. the chosen
policy classes for separable policies or RBAC, and of course the richer set computable by
inner-product predicates). A PCS public key is the digital, private-preserving representation
of a user’s relevant credentials while signatures between two users prove compliance. A user is
furthermore free to change its representation to ensure unlinkability. We obtain the following:
coupling ul-PCS with any system such as UTT or Platypus allows for a transaction system
that (1) limits the number of coins (2) enforces sending and receiving limits and transaction
value limits, and (3) achieves strong accountable privacy for a rich class of policies without
the need for revocation. The capability to revoke is thus pushed to the boundary, i.e., to the
edge cases which are not clearly governed by a reasonable (digital) policy.

Due to its low-level nature of being a signature scheme tied to digital credentials, there
is a lot of flexibility in the usage of a PCS scheme. For example, if an application requires
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traceability or revocation, the user is still free to follow standard procedures to register its
public key with a PKI to bind it to a real-world identity, or to secret share its private key
with revocation servers that would enable traceability. Having a PKI in place can assist in
disincentivizing users from sharing private keys, if that is deemed a concern, as well as any
standard technique, such as PKI-assured non-transferability, can be used for this purpose [18]
just like with ordinary credential or signature systems.
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47. Herold, G., Hoffmann, M., Klooß, M., Ràfols, C., Rupp, A.: New techniques for structural batch verification in
bilinear groups with applications to groth-sahai proofs. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D.
(eds.) ACM CCS 2017. pp. 1547–1564. ACM Press (Oct / Nov 2017). https://doi.org/10.1145/3133956.3134068

48. Karantaidou, I., Baldimtsi, F.: Efficient constructions of pairing based accumulators. In: Küsters, R., Naumann,
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A Note on Multi-Challenge Unlinkability

The definition of multi-challenge unlinkability is almost the same as the definition of unlink-
ability with the only difference that, instead of submitting a single challenge query x, the
adversary has access to a key generation oracle QKeyGen that it can query using multiple
attributes to obtain multiple challenge public keys. Additionally, the adversary can query
the rerandomization oracle using an index i to obtain a rerandomized key for the public key
associated with the index i. If the adversary wants to obtain the corresponding secret key
for a public key, it can query the corruption oracle QCor using the corresponding index i.
The signing oracle in this case QSign takes the same inputs as in the unforgeability and the
attribute-hiding game. More formally:

Definition 21. Let ULPCS = (Setup,KeyGen, Sign,Verify) be a ul-PCS scheme that satisfies
the detectability property. For β ∈ {0, 1}, we define the experiment MC-LinkULPCSβ in Fig-
ure 21. The advantage of an adversary A = (A1,A2) is defined by

AdvMC-Link
ULPCS,A(λ) = |Pr[MC-LinkULPCS0 (1λ,A) = 1]− Pr[MC-LinkULPCS1 (1λ,A) = 1]|.

An adversary A = (A1,A2,A3) is called valid, if no index i is queried to both oracles
QRandKeyβ(i) and QCor(i).

We call such a ul-PCS scheme ULPCS unlinkable if for any polynomial-time adversary
A = (A1,A2,A3), there exists a negligible function negl such that: AdvMC-Link

ULPCS,A(λ) ≤ negl(λ).
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MC-LinkULPCSβ (1λ,A)
(F, st1)← A1(λ)

(mpk,msk)← Setup(1λ, F )

α← AQKeyGen(·),QRandKeyβ(·),QCor(·),QSign(·,·,·)
2 (mpk, st1)

Output: α

Fig. 21: Many-Challenges Unlinkability game of ULPCS.

It is straightforward to verify that the single-challenge implies the multi-challenge exten-
sion. Formally, this extension is formalized by introducing the oracles QKeyGenC and QSignβ
and defining the multi-challenge version in Figure 21. In the game, we maintain an additional
set QCK (initially empty):

Theorem 4 (Link implies MC-Link). Let ULPCS be Link secure, then ULPCS is also
MC-Link secure.

Proof (Sketch). This proof proceeds using a simple hybrid argument using the following
game:

Game Gk: For the first k keys that are being queried to the rerandomization oracle
QRandKeyβ, fresh keys are generated, whereas for the remaining keys all queries asked to
QRandKeyβ are answered using rerandomized keys.

Let Q be the number of overall key queries, then it holds that

MC-Link0 = G0 ≈ · · · ≈ GQ = MC-Link1

To conclude the proof, it needs to be shown that Gk−1 ≈ Gk for all k ∈ [Q]. This can be
done using a reduction to the Link security game by forwarding the k’th challenge query
to the underlying challenger of the Link game and then reply using the obtained key. The
remaining keys are generated using key generation queries to the underlying challenger. The
obtained secret keys can then be used to answer potential corruption queries of the adversary.
To answer signing queries, they are also directly forwarded to the underlying challenger or
generated using the known secret keys.

Therefore it follows that Gk−1 ≈ Gk for all k ∈ [Q], which proves the theorem.

B Security Analysis

Here, we present the formal proof of the ul-PCS scheme for generic policies (Theorem 1).
We prove three theorems in this supplement where each theorem covers one aspect, i.e.,
unforgeability, attribute-hiding, and unlinkability, respectively. Furthermore, we also argue
the detactability of the schemes. For the sake of notation, we denote the unlinkable PCS
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scheme for generic policies F (x, y) by ULPCS. The concrete specification as pseudo-code can
be found in the submission.

The proofs of Theorems 2 and 3 for separable and role-based policies, respectively, are
given by describing which arguments need to be adjusted to accommodate the replacement
of the PE scheme in these constructions. We describe these adjustments for unforgeability,
attribute-hiding, and unlinkability right after the proofs of the generic scheme.

B.1 Detectability

The detect algorithm Detect behaves the same in all of the three different schemes. It takes
as an input the master public key mpk, the challenge public key pk∗ as well as the lists
(Q1, . . . , Qc). It then behaves as follows: for all i ∈ [c], it generates the maximal amount of
rerandomizations. In more detail, for all i ∈ [c], it executes as many rerandomizations of the
keys contained in Qi[] until Qi[] contains TRand keys. Afterwards, it searches all the lists Qi[]
and if it finds an index pair (i, i′) for which it holds that Qi[i

′] = (pk∗, sk∗), then it adds i
to its final list Q. After Det has iterated over all lists (Q1, . . . , Qc), we distinguish between
three cases: first, Q only contains a single i, second, Q contains multiple i’s and, third, Q is
empty. In the first case, Det simply outputs the single i, in the second case, Det outputs the
lower of the two indices contained in Q and, in the third case, Det outputs ⊥. To argue the
correctness of Det, we need to analyze the three different cases. We start by analyzing the
third case. The third case can never occur because the key pk∗ is generated by checking Qi[j]
and therefore the detect algorithm Det will also find this index pair. In the first case, Det
behaves correct since there is only a single index pair which explains the key pk∗ and this is
output by Det. The second case, can only occur if a key collision has happened as defined
in the event KeyCollA below, which is negligible due to the security of the PRF (see below
for the argument). Therefore, it follows that the algorithm Det is correct with probability
1− negl(λ), which concludes the detectability argument.

B.2 Unforgeability

Theorem 5. Let TRand = poly(λ). If DS = (Setup, Sign,Verify) is an EUF-CMA-secure signa-
ture scheme, PRF a secure pseudorandom function, NIZKL1 = (Setup,Prove,Verify) a knowl-
edge sound proof system for language L1 and NIZKL2 = (Setup,Prove,Verify) is a knowledge
sound proof system for language L2, then ULPCS described in Figures 14 and 14 is TRand
EUF-CMA secure, i.e. it holds that AdvEUF-CMA

ULPCS,A = negl(λ).

Proof. Consider the random experiment EUF-CMAULPCS(1λ,A) for which we define the fol-
lowing two events:

– Event KeyCollA: The adversary A terminates and it holds that there are indices i, i′, j, j′

with i ̸= j or i′ ̸= j′ such that ((i, i′), pki, ·, ·), ((j, j′), pkj, ·, ·) ∈ QK, where pki =
(IDi, . . . ), pkj = (IDj, . . . ), for which IDi = IDj.

– Event KeyForgeA: The adversary A terminates with output (pkS, pkR,m, σ) and there
exists an entry (·, pk∗S, pk∗R,m∗, σ∗) ∈ QS ∪ {(pkS, pkR,m, σ)} for which the following
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condition holds: Verify(mpk, pk∗S, pk
∗
R,m

∗, σ∗) = 1 ∧ (S = ⊥ ∨ R = ⊥) where S ←
Detect(mpk, pk∗S, (QK1, . . . ,QKimax)) and R← Detect(mpk, pk∗R, (QK1, . . . ,QKimax)).

We denote the winning condition of the experiment by the event WINA and split it into two
parts:

– Event WIN1A: The adversary generates the output (pk, pk∗,m∗, σ∗) for which it holds
that Verify(mpk, pk, pk∗,m∗, σ∗) = 1 ∧ ∃(i, j), sk, x ∀(i′, j′), σ : ((i, j), pk, sk, x) ∈ QK \
QC ∧ ((i′, j′), pk, pk∗,m∗, σ) ̸∈ QS.

– Event WIN2A: The adversary A generates the output (pk, pk∗,m∗, σ∗) for which it holds
that Verify(mpk, pk, pk∗,m∗, σ∗) = 1 ∧

[
(S ̸= ⊥) ∧ (R ̸= ⊥) ⇒ F (xS, xR) = 0

]
where

S ← Detect(mpk, pk, (QK1, . . . ,QKimax)), R ← Detect(mpk, pk∗, (QK1, . . . ,QKimax)) and
xS and xR denote the respective attributes.

By Lemma 2 and Lemma 3, we obtain

Pr[KeyForgeA] = negl(λ) and Pr[KeyCollA] = negl(λ)

for adversaries B1 and B′
2 which are constructed based on A and have roughly the same

efficiency as A.
Finally, we obtain by Lemma 4 and by Lemma 5 that

Pr[WIN1A] = negl(λ) and

Pr[WIN2A ∩ KeyCollA ∪ KeyForgeA] = negl(λ).

By definition of the events, we have

Pr[WINA] ≤Pr[KeyCollA ∪ KeyForgeA] + Pr[WINA ∩ KeyCollA ∪ KeyForgeA]

≤Pr[KeyCollA] + Pr[KeyForgeA] + Pr[WIN1A ∩ KeyCollA ∪ KeyForgeA]

+ Pr[WIN2A ∩ KeyCollA ∪ KeyForgeA].

This concludes the proof of the theorem.

Lemma 2. It holds that Pr[KeyCollA] = negl(λ).

Proof. To bound the probability for the occurrence of KeyCollA, we need to bound the
probability that there exist two honestly generated/rerandomized keys pk := (ID, . . . ) and
pk′ := (ID′, . . . ) with ID = ID′. The ID of an honestly generated key is generated using a PRF
evaluation as well as an attached zero-knowledge proof that proves that the resulting string
is indeed an honest PRF evaluation. By relying on the soundness of the zero-knowledge
proof, it is ensured that the resulting ID is indeed a valid PRF evaluation, which, by the
n-instance/parallel composable security of the PRF, allows us to consider the ID’s in this
analysis as randomly sampled. Therefore, to conclude the proof of the lemma, it suffices to
bound the collision probability for randomly sampled identities.
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In our setting, we have n different keys that are being generated, where each of those keys
can be randomized T times. This means that overall n·T different ID’s are being sampled. The
probability that all of these ID’s are different is (1− 1

2λ
)·(1− 2

2λ
)·· · ··(1− n·T−1

2λ
)
∏nT−1

k=1 (1− k
2λ
).

For this probability it holds that
∏nT−1

k=1 (1 − k
2λ
) ≥ (1 − nT−1

2λ
)nT−1, which, in turn, can be

bounded using Bernoulli’s inequality (1 − nT−1
2λ

)nT−1 ≥ 1 − (nT − 1) · nT−1
2λ

= 1 − (nT−1)2

2λ
.

Considering now the complementary event that at least one collision of ID’s occurs, then the

resulting probability for this event is equal to 1− (1− (nT−1)2

2λ
) = (nT−1)2

2λ
, which is negligible

in λ. This concludes the proof of the lemma.

Lemma 3. Let DS = (Setup, Sign,Verify) be an EUF-CMA-secure signature scheme
and NIZKL1 = (Setup,Prove,Verify) is a knowledge sound proof system for L1, then
Pr[KeyForgeA] = negl(λ).

Proof. On a high-level, the adversary needs to prove a wrong claim which can either be done
by attacking the NIZK directly, or if the NIZK is extractable, then the attacker must attack
the underlying signature scheme in order to possess a valid witness.

We first make a first transition to a hybrid world EUF-CMAULPCS
Hyb , which is identical to

EUF-CMAULPCS except that we replace NIZKL1 .Setup(1
λ) by the CRS simulation algorithm

Ext1 associated to the NIZK scheme which also outputs the state stRand for the second
extraction algorithm Ext2. All above defined events are still defined in this hybrid experiment.
It follows directly from the knowledge soundness property of the NIZK, using a standard
reduction, that

Pr[KeyForgeA] ≤ PrHyb [KeyForgeA ] + negl(λ),

where PrHyb[.] makes explicit that this probability is taken w.r.t. experiment EUF-CMAULPCS
Hyb .

Now, to bound the probability of the occurrence of KeyForge, we need to bound three
different subcases:

1. The adversary is not able to forge a signature σ1
sig or σ

2
sig that would suffice as a proof for

the relation RL1 .
2. The adversary is not able to forge a signature σk+1 that would suffice as a proof for the

relation RL1 .
3. The adversary is not able to break the soundness of the underlying NIZKL1 to generate a

valid proof without being in possession of a witness.

To bound the first case above, we now build an adversary B that simulates EUF-CMAULPCS
Hyb

towards A when interacting with the underlying EUF-CMADS experiment. We show that if
A outputs (pk, pk∗,m∗, σ∗) as defined in event KeyForge, then it can be used as a forgeability
attack in the EUF-CMADS experiment unless a certain failure event Failext occurs in the
reduction, which we then relate to the extraction advantage.

The adversary B behaves using the algorithms described in the protocol with the only
difference that it does not generate the key pair (vkAsig, sk

A
sig) on its own but obtains it from

an underlying challenger. Also the corresponding signatures σ1
sig, σ

2
sig and σ3

sig , that are the
outputs of key generation queries, are not generated by B directly but through signing oracle
queries of B to its underlying challenger.
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When A terminates with (pk∗S := (ID∗
S, vk

∗
S, ct

∗
S, π

∗
S), pk

∗
R := (ID∗

R, vk
∗
R, ct

∗
R, π

∗
R),m

∗, σ∗ :=
(π∗, σ′)), B1 first checks whether the conditions of event KeyForgeA holds, using the detect
procedure which will output S ′ and R′. If the conditions of KeyForgeA do not hold, then
abort. For the remainder of the proof we assume that, WLOG the condition is fulfilled w.r.t.
S ′. The R′ case follows accordingly.

If the conditions of event KeyForgeA are fulfilled, then B calls (usk∗, σ∗) ←
Ext2(CRSRand, stRand, (TRand, ID

∗
S, vk

∗
S, ct

∗
S, vk

A
sig,mpkPE), π

∗
S)) and checks whether (x :=

(TRand, ID
∗
S, vk

∗
S, ct

∗
S, vk

A
sig,mpkPE), w := (usk∗, σ∗)) ∈ RL1 (which is efficiently check-

able). Afterwards, B parses usk∗ := (k∗, vk∗sig, sk
∗
sig, σ

∗,1
sig , σ

∗,2
sig , σ

∗,3
sig , x

∗, sk∗fx) it checks if

DS.Verify(vkAsig, (k
∗, x∗), σ∗,1

sig ) = 1 or DS.Verify(vkAsig, (k
∗, vk∗sig), σ

∗,2
sig ) = 1 and submits the cor-

responding message-signature-pair that verifies, i.e. either ((k∗, x∗), σ∗,1
sig ) or ((k

∗, vk∗sig), σ
∗,2
sig ),

to its challenger if it has not been previously output by the signing oracle. Otherwise, it
aborts.

Before we analyze what happens in the case that (x,w) ̸∈ RL1 , we need to bound the
case where the adversary A outputs a forgery for the signature σk+1. This part of the
proof, i.e. the adversary B in this case, almost behaves as before, with the only differ-
ence that the adversary B randomly samples a value i ← [q], where q is the number of
key generation queries asked by the adversary A, receives vksig from the underlying chal-
lenger and uses vksig from the challenger to answer the i’th key generation query asked by
A. To finish the key generation and for further rerandomization queries that are asked for
the i’th key, the adversary B uses the signing oracle of its underlying challenger. When
A terminates with (pk∗S := (ID∗

S, vk
∗
S, ct

∗
S, π

∗
S), pk

∗
R := (ID∗

R, vk
∗
R, ct

∗
R, π

∗
R),m

∗, σ∗ := (π∗, σ′)),
B1 first checks whether the conditions of event KeyForgeA holds, using the detect proce-
dure which will output S ′ and R′. If the conditions of KeyForgeA do not hold, then it
aborts. Also, as described above, we assume that, WLOG the condition is fulfilled w.r.t.
S ′. The R′ case follows accordingly. If the conditions of event KeyForgeA are fulfilled, then B
calls (usk∗, σ∗)← Ext2(CRSRand, stRand, (TRand, ID

∗
S, vk

∗
S, ct

∗
S, vk

A
sig,mpkPE), π

∗
S), checks whether

(x := (TRand, ID
∗
S, vk

∗
S, ct

∗
S, vk

A
sig,mpkPE), w := (usk∗, σ∗)) ∈ RL1 (which is efficiently checkable)

and if S ′ identified by Detect corresponds to the key that has been generated as the answer
to the i’th query. Afterwards, B checks if DS.Verify(vksig, (pk

∗
S∥ID∗

S), σ
∗) = 1 and submits the

signature σ∗, if it passes the test and has not been previously output by the signing oracle of
the underlying challenger, as a forgery. Otherwise, it aborts. To conclude the analysis we ar-
gue that the above described case occurs with probability 1

q
, which is exactly the probability

that the adversary B guesses the index for the rerandomized key correctly.
If (x,w) ̸∈ RL1 then abort with failure event Failext. Therefore, taking into account

the two reductions described above, it holds that the advantage can be reduced to the un-
forgeability of the underlying signature scheme with probability PrHyb

[
KeyForgeA ∩ Failext

]
.

This, in turn, results in the fact that PrHyb [KeyForgeA ] = PrHyb

[
KeyForgeA ∩ Failext

]
+

PrHyb [Failext ] + negl(λ).
Since a forgery for the underlying EUF-CMADS experiment only occurs with negligi-

ble probability, it follows that PrHyb

[
KeyForgeA ∩ Failext

]
= negl(λ) + 1

q
negl(λ) = negl(λ)

(after the two analysis above) and, to conclude the proof, it only remains to show that
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PrHyb [Failext ] = negl(λ). This can be done by relying on the soundness property of the
underlying NIZKL1 as mentioned in the second of the two cases above.

To conclude the proof, it remains to show that Pr[FailExt] = negl(λ). Also here, we assume
that, WLOG the condition is fulfilled w.r.t. S ′. The R′ case follows accordingly. Our adversary
B′ for this case receives as an input the CRSRand and executes the same instructions as
B, with the exceptions that it generates (vkAsig, sk

A
sig) by itself and uses it to generate the

corresponding signatures by itself. Additionally, when A terminates with output (pk∗S :=
(ID∗

S, vk
∗
S, ct

∗
S, π

∗
S), pk

∗
R := (ID∗

R, vk
∗
R, ct

∗
R, π

∗
R),m

∗, σ∗ := (π∗, σ′)), B′ behaves as B without
running the extractor. Instead, it just outputs (x := (TRand, ID

∗
S, vk

∗
S, ct

∗
S, vk

A
sig,mpkPE), π

∗
S) in

case the conditions of KeyForgeA are satisfied (note that the extractor is run as part of the
knowledge soundness experiment). As above, the emulation towards A is perfect until the
point where B′ would abort. This results in the claimed advantage since the event of interest
is that the extractor Ext2 is called precisely on the accepting proof string π∗

S output by A
which produces a witness w but for which (x,w) ̸∈ RL1 . This concludes the proof of the
lemma.

Lemma 4. Let DS = (Setup, Sign,Verify) be an EUF-CMA-secure signature scheme, then
Pr[WIN1A] = negl(λ).

Proof. To prove this lemma, we construct an adversary B that simulates EUF-CMAULPCS

towards A. We show that if A outputs (pk, pk∗,m∗, σ∗) as defined in event WIN1, then it can
be used in a forgeability attack in the EUF-CMADS experiment.

Let q denote the number of queries to QRandKey. The adversary B behaves exactly
as described in the experiment, with the only difference that it randomly samples values
i ← [q], j ← [ℓ], where q denotes the number of queries to QKeyGen and ℓ denotes the
number of queries to QRandKey, and, to reply to the j’th QRandKey query of the i’th key, it
uses the key vk obtained from its underlying challenger. If later a signature query is being
asked for the j’th rerandomization of the i’th key, then the adversary B relies on the signing
oracle of its underlying challenger to generate the final signature. In case that the i’th key
is being corrupted, the adversary B aborts.

Finally, when A terminates with output (pk∗S := (ID∗
S, vk

∗
S, ct

∗
S, π

∗
S), pk

∗
R := (ID∗

R, vk
∗
R, ct

∗
R,

π∗
R),m

∗, σ∗ := (π∗, σ′)) check the conditions of WIN1 and check furthermore that the forgery
output by A corresponds to the j’th rerandomization of the i’th key. If this is not the case,
B aborts. If both of the conditions are satisfied, the adversary B outputs ((m∗, pk∗R, π

∗), σ′)
as its forgery to the underlying EUF-CMADS experiment.

To analyze the above reduction, we need to calculate the probability with which the
adversary B succeeds with the advantage of A. This happens with probability 1

qℓ
, since the

adversary B needs to guess the correct key i that is used by the adversary A in the forgery,
as well as the correct rerandomization j. Since qℓ is polynomial in the security parameter,
the lemma follows.

Lemma 5. Let DS = (Setup, Sign,Verify) be an EUF-CMA-secure signature scheme and
NIZKL2 = (Setup,Prove,Verify) is a knowledge sound proof system for L2, then Pr[WIN2A ∩
KeyCollA ∪ KeyForgeA] = negl(λ).
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Proof. On a high-level, in this setting, the adversary needs to prove a wrong claim which
can either be done by attacking the NIZK directly, or if the NIZK is extractable, then the
attacker must attack the underlying signature scheme in order to possess a valid witness.

We first make a first transition to a hybrid world EUF-CMAULPCS
Hyb , which is identical to

EUF-CMAULPCS except that we replace NIZKL2 .Setup(1
λ) by the CRS simulation algorithm

Ext1 associated to the NIZK scheme which also outputs the state stSign for the second extrac-
tion algorithm Ext2. It follows directly from the knowledge soundness property of the NIZK,
using a standard reduction, that

Pr[WIN2A ∩ KeyCollA ∪ KeyForgeA]

≤ PrHyb

[
WIN2A ∩ KeyCollA ∪ KeyForgeA

]
+ negl(λ),

where PrHyb[.] makes explicit that this probability is taken w.r.t. the experiment
EUF-CMAULPCS

Hyb .

Now, to bound the probability of the occurrence of KeyForge, we need to bound two
different subcases:

1. The adversary is not able to forge a signature σ3
sig that would suffice as a proof for the

relation RL2 .

2. The adversary is not able to break the soundness of the underlying NIZKL2 to generate a
valid proof without being in possession of a witness.

To bound the first case above, we build an adversary B that simulates EUF-CMAULPCS
Hyb

towards A when interacting with the underlying EUF-CMADS experiment. We show that if A
outputs (pk, pk∗,m∗, σ∗) as defined in event WIN2, then it can be used as a forgeability attack
in the EUF-CMADS experiment unless a certain failure event Failext occurs in the reduction,
which we can then relate to the extraction advantage.

The adversary B behaves using as described in the protocol with the only difference that
it does not generate the key pair (vkAsig, sk

A
sig) on its own but obtains it from an underlying

challenger. Also the corresponding signatures σ1
sig, σ

2
sig and σ3

sig, that are the outputs of key
generation queries, are not generated by B directly but through signing oracle queries of B
to its underlying challenger.

When A terminates with (pk∗S := (ID∗
S, vk

∗
S, ct

∗
S, π

∗
S), pk

∗
R := (ID∗

R, vk
∗
R, ct

∗
R, π

∗
R),m

∗, σ∗ :=
(π∗, σ′)), B1 first checks whether the conditions of event WIN2 are fulfilled (and KeyForgeA
and KeyCollA did not occur), using the detect procedure which will output S ′ and R′. If the
conditions of WIN2 are not fulfilled, then B aborts.

If the conditions of eventWIN2, and not KeyForgeA and KeyCollA, are fulfilled, then B calls
sk∗ ← Ext2(CRSSign, stSign, (ID

∗
S, vk

A
sig, ct

∗
R), π

∗) and checks whether (x := (ID∗
S, ct

∗
R, vk

A
sig), w :=

sk∗) ∈ RL2 (which is efficiently checkable). Afterwards, B parses sk∗ := (usk∗, ctr∗, sk∗,ctrsig )

and usk∗ := (k∗, vk∗sig, sk
∗
sig, σ

∗,1
sig , σ

∗,2
sig , σ

∗,3
sig , x

∗, sk∗fx), checks if DS.Verify(vk
A
sig, (k

∗, sk∗fx), σ
∗,2
sig ) = 1

and submits the message-signature-pair ((k∗, sk∗fx), σ
∗,3
sig ) to its challenger if it has not been

previously output by the signing oracle. Otherwise, it aborts.
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If (x,w) ̸∈ RL2 then abort with failure event Failext. Therefore, since the described reduc-
tion is perfect, it holds that the advantage can be reduced to the unforgeability of the under-
lying signature scheme with probability PrHyb

[
KeyForgeA ∩ Failext

]
. This, in turn, results in

the fact that PrHyb [KeyForgeA ] = PrHyb

[
KeyForgeA ∩ Failext

]
+ PrHyb [Failext ] + negl(λ).

Since a forgery for the underlying EUF-CMADS experiment only occurs with negligible
probability, it follows that PrHyb

[
KeyForgeA ∩ Failext

]
= negl(λ) and, to conclude the proof,

it only remains to show that PrHyb [Failext ] = negl(λ). This can be done by relying on the
soundness property of the underlying NIZKL2 as mentioned in the second of the two cases
above.

Our adversary B′ in the case that FailExt occurs receives as an input the CRSSign and
executes the same instructions as B, with the exceptions that it generates (vkAsig, sk

A
sig) by

itself and can use it to generate signatures by itself. In addition, when A terminates with
output (pk∗S := (ID∗

S, vk
∗
S, ct

∗
S, π

∗
S), pk

∗
R := (ID∗

R, vk
∗
R, ct

∗
R, π

∗
R),m

∗, σ∗ := (π∗, σ′)), B′ behaves
as B but does not execute the final steps running the extractor, but instead just outputs
(x := (ID∗

S, ct
∗
R, vk

A
sig), π

∗) in case the conditions of WIN2, and not KeyForgeA and KeyCollA,
are satisfied (note that the extractor is run as part of the knowledge soundness experiment).
As above, the emulation towards A is perfect until the point where B′ would abort. This
results in the claimed advantage since the event of interest is that the extractor Ext2 is called
precisely on the accepting proof string π∗ output by A which produces a witness w such
that (x,w) ̸∈ RL2 . This concludes the proof of the lemma.

Analysis in the case of Separable & RBAC Policies

Separable Policies. The security proofs for the scheme covering separable policies proceeds
exactly in the same way as the proof described above, i.e. in the proof of Lemmas 3 and 5,
where the occurence of exactly the same subevents are being bounded. The reason is that
we still have the same components, signatures and encryptions, but thanks to the pre-
computation of S(x) and R(x) we can mimic the PE part of the generic scheme accurately
and securely.

RBAC Policies. The proof for the scheme covering RBAC policies has a few differences
when bounding the event KeyForgeA (Lemma 3). Instead of bounding the unforgeability of
the signatures σ1

sig and σ2
sig for the PE-based scheme, in the RBAC scheme it is necessary to

bound the unforgeability of σ1
sig and invoke the unforgeability of the SEQ scheme to make

sure that none of the parties can obtain a different role (akin to re-encryptions of attributes
of the generic scheme). This was previously captured within the NIZK, and now, thanks to
SEQ, can be verified outside the NIZK. To argue unforgeability now, we first rely on the
secure adaptation property of SEQ to argue that the signature generated using ChgRepR
is indistinguishable from a signature generated using Sign. Afterwards, we can conclude the
proof by relying on the unforgeability of the SEQ scheme and the fact that with overwhelming
probability, every party is its own equivalence class, which stems from the fact that for each
party, the first component of the vector M⃗ is a randomly sampled group element. For the
proof of event WIN2 (Lemma 5), we also need to rely on the weak soundness property of
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the accumulator to argue that an adversary cannot forge a signature by forging a valid
accumulator. To rely on the accumulator soundness, we observe that a party cannot claim
to own different roles than the ones it got issued (akin to the signature on the attribute x
in the generic scheme).

B.3 Attribute Hiding

In this section, we prove the attribute hiding of our scheme.

Theorem 6. Let TRand = poly(λ). If PE = (PE.Setup,PE.KeyGen,PE.Enc,PE.Dec) is a
predicate encryption scheme, NIZKL1 = (NIZK.Setup,NIZK.Prove,NIZK.Verify) is a NIZK
proof system for language L1, NIZKL2 = (NIZK.Setup,NIZK.Prove,NIZK.Verify) is a NIZK
proof system for language L2 and DS = (DS.Setup,DS.Sign,DS.Verify) an unforgeable sig-
nature scheme, then the construction ULPCS = (Setup,KeyGen,Enc,Dec), defined in Fig-
ures 12 and 13, is attribute hiding. Namely, for any valid PPT adversary A, it holds that
AdvAHULPCS,A(λ) = negl(λ).

Proof. To prove this statement, we use a hybrid argument where the games are defined as
follows:

Game G0: This game is defined as AHULPCS
0 (1λ,A).

Game G1: In this game, we change the behavior of the sign oracle QSign and define a
modified sign oracle QSign′. The oracle QSign′ is defined as QSign with the difference that
it only answers queries for receiver keys that have been honestly generated (keys that have
been output by the key generation oracle QKeyGenLR0 or are an honest rerandomization
of these keys, which can be determined using the Detect procedure), for a query (i, pk′,m)
with (i, ·, ·, ·, ·) /∈ QK or (j, ·, ·, ·, ·) /∈ QK, where j ← Detect(mpk, pk′,QK) the sign oracle
QSign′ outputs ⊥. The transition from G0 to G1 is justified by the bounds on the key
forgery event as described in the proof of Theorem 5. We show this transition more
formally in Lemma 6.

Game G2: In this game, we change from an honestly generated CRSRand and honestly gener-
ated proofs to a simulated CRSRand and simulated proofs. That is, for the randomization
of challenge keys that can never be corrupted, i.e. for the challenge query (x0, x1) it holds
that x0 ̸= x1, the proof in the randomization for RL1 is simulated and therefore does not
require the attributes used in the witness. Furthermore, we also remove the signatures
σ1
sig and σ2

sig from the scheme in this transition. The transition from G1 to G2 is justi-
fied by the zero-knowledge property of NIZKL1 . We show this transition more formally
in Lemma 7.

Game G3: In this game, we change from an honestly generated CRSSign and honestly gen-
erated proofs to a simulated CRSSign and simulated proofs. That is, upon a signing query
we check, from the transcript of the generated keys and using the detect function, if the
requested key pair in the signing query fulfills the policy. If this is the case, the proof
πs is simulated using CRSSign. Here, we furthermore also remove the key skfx as well as
the signature σ3

sig from the key generation procedure. As in the previous transition, this
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also only happens for explicitly honest keys, i.e. keys where x0 ̸= x1. The transition from
G2 to G3 is justified by the zero-knowledge property of NIZKL2 . We show this transition
more formally in Lemma 8.

Game G4: In this game, we change the attributes used in the rerandomization for the
explicitly honest challenge keys from x0 to x1 for all i by changing the encryption that
is being generated in the randomization procedure. The transition from G3 to G4 is
justified by the attribute-hiding property of PE. We show this transition more formally
in Lemma 9.

Game G5: In this game, we change back from a simulated CRSSign and simulated proofs to
an honestly generated CRSSign and honestly generated proofs. Here, we also reintroduce
the signature σ3

sig but this time w.r.t. the challenge messages x1. Similar to the transition
from G2 to G3, this transition is justified by the zero-knowledge property of NIZKL2 .

Game G6: In this game, we change back from a simulated CRSSign and simulated proofs to
an honestly generated CRSSign and honestly generated proofs. Here, we also reintroduce
the signatures σ1

sig and σ2
sig but this time w.r.t. the challenge messages x1. Similar to the

transition from G1 to G2, this transition is justified by the zero-knowledge property of
NIZKL1 .

Game G7: This game is the AHULPCS
1 (1λ,A) game. In this game, we change the behavior of

the signing oracle back from QSign′ to QSign. Similar to the transition from G0 to G1,
this transition is justified by the event KeyForgeA.

From the definition of the games it is clear that

AHULPCS
0 = G0 ≈ G1 ≈ · · · ≈ G7 = AHULPCS

1

and hence the theorem follows.

Lemma 6 (Transition from G0 to G1). The games G0 and G1 are computationally
indistinguishable.

Proof (Sketch). As described above, the difference between the games G0 and G1 is that in
the game G0 the adversary A has access to the sign oracle QSign and in the game G1 the
adversary A has access to the sign oracle QSign′, which we informally described above and
which is formally defined as:

QSign′(i, pk′,m): On input a (sender) index i, a (receiver) public key pk′, and a message m,
if QK contains an entry (i, pk, sk, x0, x1) ∈ QK and an entry (j, pk′, sk′, x′0, x

′
1) ∈ QK

with j ← Detect(mpk, pk′,QK), then return σ ← ULPCS.Sign(mpk, sk, pk′,m) and add
(i, pk, pk′,m, σ) to QS. Otherwise, return ⊥.

Compared to the oracle QSign′, the signing oracle QSign does not require the receiver key
pk′ to have been previously output by the challenger or being a rerandomization of a key
output by the challenger, i.e. (j, ·, ·, ·, ·) /∈ QK with j ← Detect(mpk, pk′,QK), to obtain as
a reply a valid signature σ ̸= ⊥. This is not possible for the oracle QSign′ where every query
using a receiver key pk′ that has not been generated by the challenger or rereandomized from
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a challenger key, i.e. (j, ·, ·, ·, ·) /∈ QK with j ← Detect(mpk, pk′,QK), results in an invalid
signature σ = ⊥.

Therefore, to show that the games G0 and G1 are indistinguishable, it suffices to show
that the probability that the adversary queries the signing oracle QSign using a receiver
key pk′ that has not been previously generated by the challenger or rerandomized from a
challenger key, i.e. (j, ·, ·, ·, ·) /∈ QK with j ← Detect(mpk, pk′,QK), and that leads to a valid
signature σ ̸= ⊥ is negligible. We denote this as the event SignForgeA.

For the event SignForgeA to occur, the adversary A needs to generate a receiver key
that has a valid zero-knowledge proof π, or where the underlying witness is forged, a valid
signature sig1sig the signature scheme DS, i.e., it needs to generate a key pk′ := (ID′, vk′, c′, π)

such that NIZKL1 .Verify(CRSRand, (ID
′, vk′, c′, vkAsig), π) = 1 where π is generated using usk′ :=

(k, vksig, sksig, skPE, σ
1
sig, σ

2
sig, σ

3
sig, x) and it must holds that DS.Verify(vkAsig, (k, x), σ

1
sig) = 1 and

DS.Verify(vkAsig, (k, vksig), σ
2
sig) = 1. This means that adversary A must either break the sound-

ness of NIZK or generate a key forgery for DS as captured by the event KeyForgeA in the
proof of Theorem 5, and which can be defined and analyzed analogously here.

Therefore, the event SignForgeA is bounded by KeyForge, i.e. Pr[SignForgeA] ≤
Pr[KeyForgeA], and the analysis of event KeyForgeA follows the same reasoning as in Lemma 3.
This results in the fact that Pr[SignForgeA] = negl(λ), which proves the lemma.

Lemma 7 (Transition from G1 to G2). The games G1 and G2 are computationally
indistinguishable.

Proof. We build an adversary B that simulates G1+β towards A when interacting with the
underlying ZKNIZK

β experiment.
The adversary B behaves in the same way as described in G1 with the difference that

it does not generate CRSRand by itself but receives it from the underlying challenger. Ad-
ditionally, whenever the adversary A asks a rerandomization query to QRandKey for a key
that cannot be corrupted, i.e. where the key generation query is for x0 ̸= x1, the adversary
B behaves as described in the protocol but uses the proof oracle of the challenger for the
generation of the proof πk+1. Furthermore, the signature σ1

sig and σ2
sig are not generated.

Finally, the adversary B outputs the same bit β′ returned by A.
To conclude the proof, we argue that our emulation is perfect. The fact that the simulation

is perfect follows since B generates all components of the statement for which the proof oracle
is queried honestly.

In the case that the challenger outputs an honestly generated CRSRand and honestly gen-
erated proofs, the adversary B is simulating the game G1 and in the case that the challenger
simulates the CRSRand and the proofs, the adversary B is simulating the game G2.

This concludes the simulation of the game G1+β and the lemma follows.

Lemma 8 (Transition from G2 to G3). The games G2 and G3 are computationally
indistinguishable.

Proof. We build an adversary B that simulates G2+β towards A when interacting with the
underlying ZKNIZK

β experiment.
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The adversary B behaves in the same way as described in G2 with the difference that it
does not generate CRSSign by itself but receives it from the underlying challenger. Addition-
ally, whenever the adversary A asks a signing query (i, pk′,m) to QSign′, the adversary B
computes j ← Detect(mpk, pk′,QK) and checks that F (x0, y0) = 1 where (i, ·, ·, x0, x1) ∈ QK
and (j, ·, ·, y0, y1) ∈ QK. If the check succeeds, then B queries its underlying proof oracle to
obtain πs and finishes the signature generation. Furthermore, for all keys that cannot be cor-
rupted, i.e. where the key generation query is for x0 ̸= x1, the signature σ

3
sig is not generated

and the key skfx is not generated. This makes the secret key completely independent of the
attributes x0/x1.

Finally, the adversary B outputs the same bit β′ returned by A.
To conclude the proof, we argue that our emulation is perfect. The fact that the simulation

is perfect follows since B only submits proof queries to the underlying challenger for which
the statement fulfills the relation RL2 , which B checks as described above as well as from
the perfect correctness of the predicate encryption scheme. In more detail, by the perfect
correctness of the predicate encryption scheme, we know that the challenger always replies,
i.e., we have that PE.Dec(skfx , ctR) = F (x, y). Therefore, whenever a proof is simulated this
matches the correct generation of a proof πs.

In the case that the challenger outputs an honestly generated CRSSign and honestly gen-
erated proofs, the adversary B is simulating the game G2 and in the case that the challenger
simulates the CRSSign and the proofs, the adversary B is simulating the game G3.

This concludes the simulation of the game G2+β and the lemma follows.

Lemma 9 (Transition from G3 to G4). The games G3 and G4 are computationally
indistinguishable.

Proof. We build an adversary B that simulates G3+β towards A when interacting with the
underlying AHPE

β experiment.
The adversary B behaves in the same way as described in G3 with the difference that

whenever the adversary A asks a key generation query for a key that can be corrupted, i.e.
x := x0 = x1, the adversary B asks its underlying key generation oracle using x to obtain
skfx .

Additionally, when A asks a rerandomization query to QRandKey for a key that cannot
be corrupted, i.e. where the key generation query is for x0 ̸= x1, the adversary B behaves
as described in the protocol but uses its underlying left-or-right oracle for the generation of
the ciphertext, i.e. for every rerandomization query for a key i, B retrieves (i, ·, ·, x0, x1) ∈
QK and submits (x0, x1) to its underlying challenger to obtain ct which it uses for the
rerandomization.

Furthermore, for every sign query (j, pkR,m) to QSign′ asked by A, B computes j ←
Detect(mpk, pk′,QK) checks the list QK to find (i, ·, ·, x0, x1) and (j, ·, ·, y0, y1). If no such
entries exists, B outputs ⊥. Otherwise, B checks that that the attributes associated with the
public keys pkS and pkR fulfill the policy, i.e. it checks that F (x0, y0) = 1 and F (x1, y1) = 1,
and if this is the case simulates the proof and generates the signature.

Finally, the adversary B outputs the same bit β′ returned by A.

65



In the next step, we need to argue that the adversary B is a valid adversary with respect
to the AHPE

β experiment if the adversary A fulfills all the checks described above, i.e. is a

valid adversary in the G3+β (AHULPCS
β ) game. One of the validity requirements above (and in

the attribute hiding game) that A needs to fulfill is that for every x where x := x0 = x1 with
(·, ·, ·, x0, x1) ∈ QS it needs to hold that F (x, x0) = F (x, x1) for all the challenge queries
(x0, x1). This results in the fact that fx(x0) = fx(x1) for all (·, ·, ·, x, x) ∈ QC and for all
challenge queries (x0, x1). This matches exactly the validity requirements asked for B2 in
the AHPE

β experiment. Therefore, it follows that the adversary B2 is a valid adversary with

respect to the AHPE
β experiment and does not abort if the adversary A is a valid adversary

in the game G2+β (AHULPCS
β ).

To conclude the proof, we observe that the difference in the two games is the generation
of the challenge rerandomization keys, which either consists of a ciphertext encrypting the
attribute set x0 or the attribute set x1. The computation of the ciphertexts is done by
the underlying challenger of the attribute-hiding game. Together with the analysis above,
it follows that, for a valid adversary A, the game G3+β is simulated towards A when the
challenger encrypts the attribute set xβ for β ∈ {0, 1}.

This concludes the simulation of the game G3+β and the lemma follows.

Analysis in the case of Separable & RBAC Policies

Separable Policies. The security proof for the scheme covering separable policies proceeds in
almost the same way as the proof for general policies. The only difference is the transition
from G3 to G4 (Lemma 9), where in the proof for separable policies we need to rely on
the IND-CPA security of the underlying public-key encryption scheme PKE instead of the
attribute-hiding security of a PKE scheme.

RBAC Policies. For the security proof of the scheme covering RBAC policies, we also need
to adjust the transition from game G3 to G4 (Lemma 9). In this case, we need to rely on
the class-hiding property as well as the secure adaptation property. In more detail, the class-
hiding property guarantees that a switch from attributes x0 to x1 (in the case of outsider
attribute-hiding or in the case of the equality policy) is possible and the secure adaptation

property of SEQ ensures that the ChgRepR algorithm is as good as re-generating M⃗ , which
fulfills the same purpose as the re-encryption for the schemes covering general and separable
policies.

B.4 Unlinkability

This section, covers the unlinkability proof of our schemes.

Theorem 7. Let TRand = poly(λ). If PRF is a pseudorandom function, NIZKL1 =
(NIZK.Setup,NIZK.Prove,NIZK.Verify) a NIZK proof system for L1, NIZKL1 = (NIZK.Setup,
NIZK.Prove,NIZK.Verify) a NIZK proof system for L1 and DS = (DS.Setup,DS.Sign,
DS.Verify) an unforgeable signature scheme, then the construction ULPCS = (Setup,
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KeyGen,Enc,Dec), defined in Figures 12 and 13, is unlinkable. Namely, for any valid PPT
adversary A, it holds that AdvLinkULPCS,A(λ) = negl(λ).

Proof. To prove this statement, we use a hybrid argument where the games are defined as
follows:

Game G0: This game is the same as the experiment LinkULPCS0 (1λ,A).
Game G1: In this game, we change the behavior of the key generation oracle QKeyGen

and define a modified key generation oracle QKeyGen′. The oracle QKeyGen′ is defined
as QKeyGen with the difference that it does not output a key collision, i.e. it does not
output the same public key twice, and therefore does also not output the same public
key as the challenge key. More formally, if for a query x′, the output is pk′ := (ID′, . . . )
where QK already contains (. . . , pk∗ := (ID∗, . . . ), . . . ) with ID′ = ID∗ or ID′ = ID′ with
pk := (ID, . . . ) being the challenge public key, then the key-generation oracle QKeyGen′

outptus ⊥, otherwise it returns pk′. The transition from G0 to G1 is justified by the
bounds on the key collision event as described in the proof of Theorem 5. We show this
transition more formally in Lemma 10.

Game G2: In this game, we change the behavior of the sign oracle QSign and define a
modified sign oracle QSign′. As in the proof of Theorem 6, the oracle QSign′ is defined as
QSign with the difference that it only answers queries for receiver keys that it can detect
to have come out of the key-gen oracle. For further details on QSign′, we refer to the
proof of Theorem 6. The transition from G1 to G2 is justified by the bounds on the key
forgery event as described in the proof of Theorem 5 and because the detect property is
fulfilled by the scheme. This transition has been shown in Lemma 6.

Game G3: In this game, we change from an honestly generated CRSRand and honestly gener-
ated proofs w.r.t. rerandomizations of the challenge public key pk to a simulated CRSRand

and simulated proofs for the rerandomizations of pk. Due to the fact that the proofs for
the rerandomizations are now simulated, the PRF key k is not needed as part of the wit-
ness anymore. The transition from G2 to G3 is justified by the zero-knowledge property
of NIZKL1 . We show this transition more formally in Lemma 11.

Game G4: In this game, we change from an honestly generated CRSSign and honestly gen-
erated proofs for signing queries w.r.t. the challenge public key pk acting as the sender
to a simulated CRSSign and simulated proofs. That is, upon a signing query for pk, acting
as the sender, we check, from the transcript of the generated keys and using the detect
function, if the requested key pair in the signing query fulfills the policy. If this is the
case, the proof πs is simulated using CRSSign. Since the proof πs is now simulated, the PRF
key k is not needed as part of the witness anymore. The transition from G3 to G4 is jus-
tified by the zero-knowledge property of NIZKL2 . We show this transition more formally
in Lemma 12.

Game G5: In this game, we change from PRF evaluations for the updated ID’s in the reran-
domization of the challenge key pk to randomly sampled ID’s. The transition from G4

to G5 is justified by the security of the PRF. We show this transition more formally
in Lemma 13.
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Game G6 : In this game, we change from randomly sampled updated ID’s in the rerandom-
ization of the challenge key pk to PRF evaluations w.r.t. different keys. In more detail,
whenever a new rerandomization for the challenge key pk is generated a new PRF key
ki is sampled and the ID is generated by evaluation PRF using ki on 0. The transition
from G5 to G6 is justified by relying on the security of the PRF q-times where q is the
number of rereandomization queries. Since it holds that q < TRand, we can upper bound it
by relying on the security of the PRF TRand times. We show this transition more formally
in Lemma 14.

Game G7: In this game, we change back from a simulated CRSSign and simulated proofs to
an honestly generated CRSSign and honestly generated proofs. Here, we also reintroduce
the usage of the PRF key k, which is different for every rerandomization, into the gener-
ation of the proof. Similar to the transition from G3 to G4, this transition is justified by
the zero-knowledge property of NIZKL2 .

Game G8: In this game, we change back from a simulated CRSSign and simulated proofs to
an honestly generated CRSSign and honestly generated proofs. Here, we also reintroduce
the usage of the PRF key k, which is different for every ID, into the generation of the proof.
Similar to the transition from G2 to G3, this transition is justified by the zero-knowledge
property of NIZKL1 .

Game G9: In this game, we change the behavior of the signing oracle back from QSign′ to
QSign. Similar to the transition from G1 to G2, this transition is justified by the event
KeyForgeA.

Game G10: This game is the LinkULPCS1 (1λ,A) game. In this game, we change the behavior
of the key generation oracle back from QKeyGen′ to QKeyGen. Similar to the transition
from G0 to G1, this transition is justified by the event KeyCollA.

From the definition of the games it is clear that

LinkULPCS0 = G0 ≈ G1 ≈ · · · ≈ G10 = LinkULPCS1

and hence the theorem follows.

Lemma 10 (Transition from G0 to G1). The games G0 and G1 are computationally
indistinguishable.

Proof (Sketch). As described above, the difference between the games G0 and G1 is that
in the game G0 the adversar A has access to the key generation oracle QKeyGen and in
the game G1 the adversary A has access to the key generation oracle QKeyGen′, which we
informally described above and which is formally defined as:

QKeyGen′(x′): On input an attribute set x′, generate pk′ := (ID′, . . . ) and if QK already
contains an entry (. . . , pk∗ := (ID∗, . . . ), . . . ) with ID′ = ID∗ or if ID′ = ID where pk :=
(ID, . . . ) is the challenge public key, then output ⊥. Otherwise, return pk′.

Compared to the oracle QKeyGen′, the key generation oracle QKeyGen does not require a
generated public pk′ to be entirely new, i.e. (. . . , pk∗ := (ID∗, . . . ), . . . ) /∈ QK with ID ̸= ID∗
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and ID′ ̸= ID where pk := (ID, . . . ) is the challenge public key. To show that the games G0 and
G1 are indistinguishable, it suffices to show that the probability that two honestly generated
IDs do not collide is negligible. This directly matches the description of the event KeyCollA
defined in the proof of Theorem 5 and, since the it holds that Pr[KeyCollA] = negl(λ), the
lemma follows.

Lemma 11 (Transition from G2 to G3). The games G2 and G3 are computationally
indistinguishable.

Proof. This proof is very similar to the proof of Lemma 7.
We build an adversary B that simulates G2+β towards A when interacting with the

underlying ZKNIZK
β experiment.

The adversary B behaves in the same way as described in G2 with the difference that
it does not generate CRSRand by itself but receives it from the underlying challenger. Ad-
ditionally, whenever the adversary A asks a rerandomization query to QRandKey for the
challenge public key pk, or a rerandomization of it, the adversary B behaves as described in
the protocol but uses the proof oracle of the challenger for the generation of the proof πk+1.
Furthermore, the PRF key k is not used as a witness for the proof generation anymore.

Finally, the adversary B outputs the same bit β′ returned by A.
To conclude the proof, we argue that our emulation is perfect. The fact that the simulation

is perfect follows since B generates all components of the statement for which the proof oracle
is queried honestly.

In the case that the challenger outputs an honestly generated CRSRand and honestly gen-
erated proofs, the adversary B is simulating the game G2 and in the case that the challenger
simulates the CRSRand and the proofs, the adversary B is simulating the game G3.

This covers the simulation of the game G2+β and leads to the advantage mentioned in
the lemma.

Lemma 12 (Transition from G3 to G4). The games G3 and G4 are computationally
indistinguishable.

Proof. This proof is very similar to the proof of Lemma 8.
We build an adversary B that simulates G3+β towards A when interacting with the

underlying ZKNIZK
β experiment.

The adversary B behaves in the same way as described in G3 with the difference that
it does not generate CRSSign by itself but receives it from the underlying challenger. Addi-
tionally, whenever the adversary A asks a signing query (pk′,m) to QSign′, the adversary B
computes j ← Detect(mpk, pk′,QK) and checks that F (x, y) = 1 where x is the challenge
attribute and (j, ·, ·, y) ∈ QK. If the check succeeds, then B queries its underlying proof
oracle to obtain πs and finishes the signature generation. Furthermore, the PRF key k is not
needed for the generation of the proof πs.

Finally, the adversary B outputs the same bit β′ returned by A.
To conclude the proof, we argue that our emulation is perfect. The fact that the simulation

is perfect follows since B only submits proof queries to the underlying challenger for which
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the statement fulfills the relation RL2 , which B checks as described above as well as from
the perfect correctness of the predicate encryption scheme. In more detail, by the perfect
correctness of the predicate encryption scheme, we know that the challenger always replies,
i.e., we have that PE.Dec(skfx , ctR) = F (x, y). Therefore, whenever a proof is simulated this
matches the correct generation of a proof πs.

In the case that the challenger outputs an honestly generated CRSSign and honestly gen-
erated proofs, the adversary B is simulating the game G3 and in the case that the challenger
simulates the CRSSign and the proofs, the adversary B is simulating the game G4.

This covers the simulation of the game G3+β and leads to the advantage mentioned in
the lemma.

Lemma 13 (Transition from G4 to G5). The games G4 and G5 are computationally
indistinguishable.

Proof. We build an adversary B that simulates G4+β towards A when interacting with the
underlying security experiment for PRF.

The adversary B behaves in the same way as described in G4 with the difference that
whenever the adversary A asks the challenge key generation query or a rereandomization
query, the adversary B submits the corresponding index, i.e. i := 0 for a key generation query
and i := i+ 1 for a rerandomizaton query, to the underlying PRF challenger and receives as
a reply the ID that it uses to answer the queries.

Finally, the adversary B outputs the same bit β′ returned by A.
To conclude the proof, we observe that the difference in the two games is the generation

of the ID’s, which is either PRF evaluation, in which case the simulation corresponds to game
G4, or a random value, in which case the simulation corresponds to game G5.

This concludes the simulation of the game G4+β and the lemma follows.

Lemma 14 (Transition from G5 to G6). The games G5 and G6 are computationally
indistinguishable.

Proof. We build an adversary B that simulates G5+β towards A when interacting with T
instances9 of the security experiment for PRF.

The adversary B behaves in the same way as described in G5 with the difference that
whenever the adversary A asks the challenge key generation query or a rereandomization
query, the adversary B submits the 0 query to the i’th PRF instance. In more detail, for
the challenge key generation query, the adversary B queries the first instance of the PRF
experiment on 0 ot obtain the ID, for the first rerandomization query, the adversary B
queries the second instance of the PRF experiment on 0 to obtain the ID and so on.

Finally, the adversary B outputs the same bit β′ returned by A.
To conclude the proof, we observe that the difference in the two games is the generation

of the ID’s, which is either a random value, in which case the simulation corresponds to game
G4, or a fresh PRF evaluation on zero, in which case the simulation corresponds to game G5.

This concludes the simulation of the game G4+β and the lemma follows.
9 where T instances means multiple PRF experiments that either all output random values or all PRF evaluations
on a fresh key
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Analysis in the case of Separable & RBAC Policies

Separable Policies. The security proof for the scheme covering separable policies proceeds
in the same way as the proof for general policies. In both of these cases, general policies
and separable policies, it is not necessary to rely on any of the properties of the predicate
encryption scheme or the public-key encryption scheme since, in both cases, rerandomization
and key generation, a fresh ciphertext is being generated. Therefore no indistinguishability
needs to be argued.

RBAC Policies. In the RBAC case, there is a difference between the rerandomization and
the key generation w.r.t. the SEQ scheme. In the case of a fresh key generation, a signature
is generated on which ChgRepR is applied once. In the case of an actual rerandomization,
the ChgRepR is applied multiple times on a single signature. To argue that these two cases
are indistinguishable, we need to rely on the secure adaptation property of SEQ which can
be understood as an additional game transition between G5 and G6 (Lemma 14).

C Details on the Instantiations

C.1 Cryptographic Algorithms

Given the formal definitions from Section 3, this section provides a detailed overview on the
underlying cryptographic tools that we implement to realize ul-PCS.

Dodis-Yampolskiy PRF. This PRF is defined over a cyclic group G of prime order p with
generator G and can be described as follows:

– PRF.Eval(k, x): It takes a key k ∈ Zp and input x as inputs. It then computes y = G1/(k+x)

and returns y as output.

In this scheme, pseudo-randomness is achieved through decisional Diffie-Hellman inver-
sion assumption, which only holds for small domains, i.e. input x should be super-logarithmic
in the security parameters.

BLS Signatures. For a given assymetric bilinear pairing group (G1,G2,GT , e,G1,G2) and
a hash-to-curve function H : {0, 1}∗ → G2, as denoted by public parameters pp, we recall
the BLS signatures [15] as follows:

– DS.Setup(1λ): Take pp as input. Sample x
$← Z∗

p. Return (sk, vk) = (x,Gx
1).

– DS.Sign(sk,m): Take secret key sk and messagem ∈ {0, 1}∗ as inputs. Return σ := H(m)sk

as output.

– DS.Verify(vk, σ,m): Take the verification key vk, a signature σ and message m as inputs.
If the equation e(G1, σ) = e(vk, H(m)) holds, return 1 and 0 otherwise.
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FHS SPS-EQ. We recall the SPS-EQ construction proposed by Fuchsbauer et al. in [37]
as follows:

– SEQ.SetupR(1
λ): Run BG← BG(1λ) and return pp := BG as output.

– SEQ.KeyGenR(pp, ℓ): Take pp and vector size ℓ > 1 as inputs. Sample the secret key sk

as a set of random integers sk := {xi}i∈[1,ℓ]
$← (Z∗

p)
ℓ. Compute vk := {X̂i = Gxi

1 }i∈[1,ℓ].
Return (sk, vk) as output.

– SEQ.SignR(pp, sk, M⃗): Parse M⃗ := (Mi)i∈[1,ℓ] ∈ (G2)
ℓ and sk : {xi}i∈[1,ℓ]. Sample a

$← Z∗
p

and return σ := (R, S, T ) :=
((∏

i∈[1,ℓ]M
xi
i

)a

,G
1/a
2 ,G

1/a
1

)
∈ G2

2 ×G1 as output.

– SEQ.VerifyR(pp, vk, M⃗ , σ): Parse vk := {X̂i}i∈[1,ℓ], M⃗ := (Mi)i∈[1,ℓ] and σ := (R, S, T ). If

the equations
∏

i∈[1,ℓ] e(X̂i,Mi) = e(T,R) and e(G1, S) = e(T,G2) hold and Mi ̸= 1G2 for

i ∈ [1, ℓ] return 1 and 0 otherwise.

– SEQ.ChgRepR(pp, M⃗ , σ, µ, vk): Parse σ := (R, S, T ), M⃗ := (Mi)i∈[1,ℓ] ∈ (G2)
ℓ and vk :=

{X̂i}i∈[1,ℓ] along with an integer µ ∈ Z∗
p as input. If the signature be valid it samples

ζ
$← Z∗

p and then returns σ′ := (R′, S ′, T ′)← (Rζµ, S1/ζ , T 1/ζ) on a re-randomized message

M⃗ ′ = M⃗µ as output.

For simplicity we take a slightly modified variant of the described SPS-EQ as a stan-
dard SPS. Consider pairing group of the form (G1,G2,GT , p, e,G1,G2), this scheme can be
summarized as follows:

– SPS.KeyGen(pp, ℓ): Take pp and vector size ℓ > 1 as inputs. Sample the secret key sk as a

set of random integers sk := {xi}i∈[1,ℓ]
$← (Z∗

p)
ℓ. Compute vk := {X̂i = Gxi

2 }i∈[1,ℓ]. Return
(sk, vk) as output.

– SPS.Sign(pp, sk, M⃗): Parse M⃗ := (Mi)i∈[1,ℓ] ∈ Gℓ
1 and sk := {xi}i∈[1,ℓ]. Sample a

$← Z∗
p

and output σ := (R, S, T ) :=
((∏

i∈[1,ℓ]M
xi
i

)a

,G
1/a
1 ,G

1/a
2

)
∈ G2

1 ×G2.

– SPS.Verify(pp, vk, σ, M⃗): Parse vk := {X̂i}i∈[1,ℓ] ∈ Gℓ
2, M⃗ := (Mi)i∈[1,ℓ] ∈ (G1)

ℓ and σ :=

(R, S, T ). If both equations
∏

i∈[1,ℓ] e(Mi, X̂i) = e(R, T ) and e(S,G2) = e(G1, T ) hold and

Mi ̸= 1G1 for i ∈ [1, ℓ] return 1 and 0 otherwise.

ElGamal Encryption. Consider a group description (G,G, p), the ElGamal encryption [30]
can be formalized as follows:

– PKE.Setup(1λ): It takes security parameter λ as input and then samples random integer
sk← Z∗

p and computes pk = Gsk. It then returns the key-pair (sk, pk) as output.
– PKE.Enc(pp, pk,m): It takes pp, public key pk and message m ∈ G as inputs. It samples

a random integer r
$← Z∗

p and returns the ciphertext ct = (ct1, ct2) = (Gr,m · pkr) as
output.

– PKE.Dec(pp, sk, ct): It takes pp, the secret key sk and ciphertext ct as inputs. It then
returns m′ = ct2/(ct1)

sk as output.
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The security of this construction relies on the hardness of DDH assumption over group
G. Over a bilinear group, if SXDH holds (DDH is hard in G1 and G2), like Type-III bi-
linear groups, then ElGamal encryption remains secure over source groups (G1,G1, p) and
(G2,G2, p).

Pedersen Commitment. Commitment schemes enable a committer to commit to a hid-
den value by ensuring two main security properties: (perfectly) hiding and (computationally)
binding. The hiding of the commitment ensures that no information about the hidden com-
mitted value is revealed and binding guarantees no committer can open the same commitment
under two distinct messages. The Pedersen commitment [56] can be described as follows:

– COM.Setup(1λ): Take security parameter, λ, as input. Sample G
$← G and H

$← G. Return
the public parameters pp = (G, p,G,H) as output.

– COM.Com(pp,m; τ): Take public parameters pp, a message m ∈ Zp and random opening
τ as inputs. Output cm = GmHτ .

– COM.Verify(pp, cm,m′, τ ′): Compute cm′ = Gm′
Hτ ′ . Return 1, if cm = cm′; otherwise

return 0.

Generalized Pedersen Commitments. The Pedersen commitment can be extended to
the Generalized Pedersen commitment that enables to commit to more than one message.
To be more precise, the message space can be defined as M = Zn

p , where n is an upper
bound for the number of committed messages.

– COM.Setup(1λ, n): Take security parameter, λ and an integer n as inputs. Sample n +

1 random generators G,H1,H2, . . . ,Hn
$← G(n+1). Return the public parameters pp =

(G, p,G,H1, . . . ,Hn) as output.
– COM.Com(pp, m⃗, τ): Take the public parameters pp, a message vector m⃗ := (m1, . . . ,mn)

and random opening τ ∈ Zp as inputs. Output cm = Gτ
∏

j=1 H
mi
i .

– COM.Verify(pp, cm, m⃗′, τ ′): Compute cm′ = Gτ ′
∏n

j=1 H
m′

i
i . Return 1 if cm = cm′ and 0

otherwise.

Inner-product predicate encryption by Okamoto-Takashima We give a brief
overview of what we briefly refer to as OT12 scheme [55]. While describing the full scheme is
outside the scope of this overview section, we briefly describe the basics behind public-
key generation, encryption and decryption. Assume we are in a bilinear group setting
pp := (G1,G2,GT , p, e,G1,G2) as before. We describe there the predicate-only version al-
ready adapted to the asymmetric pairing case that we use in our implementation.

Public key and master secret. We first sample an invertible matrixX of dimensionN = 4n+2
(where n is the number of attributes) with elements in F∗

p and consider the matrix ψ ·X−1 for
a random, non-zero field element ψ. For syntactical purposes only, the transpose is actually
considered, i.e., we define Y = ψ · (X−1)

T
.
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For notational purposes, we define basis vectors a⃗i = (1G2 , . . . , 1G2︸ ︷︷ ︸
i−1

,G2, 1G2 , . . . , 1G2︸ ︷︷ ︸
N−i

) and

a⃗∗i = (1G1 , . . . , 1G1︸ ︷︷ ︸
i−1

,G1, 1G1 , . . . , 1G1︸ ︷︷ ︸
N−i

). For a an element c ∈ Fp the notation c⃗ai is short-

hand for (1G2 , . . . , 1G2 ,G
c
2, 1G2 , . . . , 1G2). And for two vectors b⃗ = (B1, . . . , BN) ∈ Gi and

b⃗′ = (B′
1, . . . , B

′
N) ∈ Gi, we write b⃗ ⊙ b⃗′ := (B1B

′
1, . . . , BNB

′
N). Finally, a pairing operation

continued for vectors is defined: let c⃗ = (C1, . . . , CN) ∈ GN
1 and c⃗′ = (C ′

1, . . . , C
′
N) ∈ GN

2 ,
then ê(c⃗, c⃗′) :=

∏N
i=1 e(Ci, C

′
i).

Armed with these tools and in particular the matrices X = (xi,j) and Y = (yi,j), we now

define the public key and the master secret key: the public key B = (⃗b1, . . . , b⃗N) consists of

N vectors b⃗i :=
⊙N

j=1 xi,j a⃗j. The master secret key B∗ = (⃗b∗1, . . . , b⃗
∗
N) consists of N vectors

b⃗∗i :=
⊙N

j=1 yi,j a⃗
∗
j .

We observe that there is the following relationship between B and B∗ that follows from
the definition of matrices X and Y :

ê(⃗b∗i , b⃗j) = e(G1,G2)
xi,1yj,1+xi,2yj,2+...+xi,Nyj,N =

{
e(G1,G2) =: GT , if i = j,

1GT
, if i ̸= j.

Key generation. For an attribute vector v⃗ ∈ Fn
p \ {⃗0}, one first samples σ ← Fp and n⃗← Fn

p

at random. We then form the vector z⃗∗ = (1, σv⃗, 0, . . . , 0︸ ︷︷ ︸
2n

, n⃗, 0). The key for attribute v⃗ is

defined as k⃗∗ :=
⊙N

i=1 z
∗
i b⃗

∗
i .

Encryption. For encryption, which is done relative to attribute vector x⃗ ∈ Fn
p \ {⃗0}, one

samples random values ω, ϕ← Fp and defines the helper vector z⃗ := (1, ωx⃗, 0, . . . , 0︸ ︷︷ ︸
3n

, ϕ). The

ciphertext is defined as c⃗ :=
⊙N

i=1 zi⃗bi.

Decryption. In the predicate-only case, a key k⃗∗ decrypts a ciphertext c⃗ iff ê(k⃗∗, c⃗) = GT .

We observe, for correctness, that due to the above relation between B∗ and B, the opera-
tion ê in fact computes the inner product of the vectors z⃗∗ and z⃗ in the exponent of GT . That
is, ê(k⃗∗, c⃗) = e(G1,G2)

1+ωσ⟨v⃗,x⃗⟩, and therefore ê(k⃗∗, c⃗) = GT when the inner product ⟨v⃗, x⃗⟩ is
zero.

We refer to [55] for the proof that this scheme is attribute hiding in the sense defined
in Section 3.7.

C.2 Proof Systems

In this section, we give some background on the proof systems we use in our implementation
with a selection of useful basic protocols.
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Sigma protocols. We first summarize the utilized sigma protocols (that is, the non-
interactive versions via the Fiat-Shamir heuristic) in our efficient instantiation and give an
overview on the techniques implied in their implementations. All the protocols are assumed
a bilinear group setting (G1,G2,GT , p, e,G1,G2) and the Pedersen commitment.

Proving the Knowledge of Discrete Logarithm. Figure 22 describes a non-interactive sigma
protocol that enables a prover to prove the knowledge of a scalar witness a ∈ Zp under the
public instance of A = Ga, where G is a generator of a group G of prime order p. Note that
the hash function H : {0, 1}∗ → Zp is modeled in the random oracle model.

Σ-Dlog{(a) | A = Ga}
•Prove(CRS, x, w): Takes the instance x = (A) and the witness w = (a) as inputs. It then

samples r
$← Z∗

p and computes R = Gr and challenge c = H(A,R,G) and forms z = r − ca
mod p. It then returns the proof π = (c, z, R) as output.

•Verify(CRS, x, π): Takes the instance x = (A) and proof π = (c, z, R) as inputs. It then

computes c′ = H(A,R,G) and checks the equality of c′ = c and R = AcGz. It returns 1 if

they hold and 0 otherwise.

Fig. 22: Non-interactive proof of knowledge of Dlog.

Proving the Knowledge of a Committed value and its ElGamal encryption. Figure 23 de-
scribes a sigma protocol proving the knowledge of a palintext m encrypted based on El-
Gamal encryption and committed via Pedersen commitment. In other words, proving the
knowledge of scalar message m ∈ Zp such that cm = GmHe and simultanously we have,
ct = (ct1, ct2) = (Gr

1,G
m
1 pk

r). The hash function H : {0, 1}∗ → Zp is modeled in the random
oracle model.
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Σ-ElGamal{(m, r, e) | ct1 = Gr
1 ∧ ct2 = Gm

1 pk
r ∧ cm = GmHe}

•Prove(CRS, x, w): Takes the instance x = (ct1, ct2, cm) and the witness w = (m, r, e) as

inputs. It then samples r1, r2, r3
$← Z∗

p and computes R1 = Gr1
1 , R2 = Gr2

1 pkr1 and R3 =

COM.Com(pp, r2; r3) = Gr2Hr3 , the challenge c = H(ct1, ct2, cm, R1, R2, R3,G,H) and forms

z1 = r1− cr mod p, z2 = r2− cm mod p and z3 = r3− ce mod p. It then returns the proof

π = (c, z1, z2, z3, R1, R2, R3) as output.

•Verify(CRS, x, π): Takes the instance x = (ct1, ct2, cm) and proof π = (c, z1, z2, z3, R1, R2, R3)

as inputs. It then computes c′ = H(ct1, ct2, cm, R1, R2, R3,G,H) and checks the equality of

equations c′ = c, R1 = ctc1G
z1
1 , R2 = Gz2

1 pkz1ctc2 and R3 = Gz2Hz3cmc. It returns 1 if all the

equations hold; 0 otherwise.

Fig. 23: Non-interactive proof of knowledge of ElGamal encrypted value.

Proving the Equality of Committed Values in different groups. We extend the protocol pro-
posed in [28] s.t. for a given cyclic groups G1 and G2 of prime order p, Figure 24 describes
a sigma protocol enabling a prover to prove that two commitments cm1 = Gm

1 H
e1
1 Ku1

1 and
cm2 = Gm

2 H
e2
2 Ku2

2 are committing to the same message m. Note that G1,H1,K1 ∈ G1 and
G2,H2,K2 ∈ G2 s.t. the discrete logarithms logG1

(H1), logG1
(K1) and logG2

(H2), logG2
(K2)

are unknown to the prover. The hash function H ′ : {0, 1}∗ → Z2k , where k is a fixed integer
and 2k < p is modeled in the random oracle model.

Σ-Bridging{(m, e1, e2, u1, u2) | cm1 = Gm
1 H

e1
1 Ku1

1 ∧ cm2 = Gm
2 H

e2
2 Ku2

2 }
•Prove(CRS, x, w): Takes the instance x = (cm1, cm2) and the witness w = (m, e1, e2, u1, u2)

as inputs. It then samples r1, r2, r3, r4, r5
$← Z∗

p and computes R1 = Gr1
1 Hr2

1 Kr3
1 , R2 =

Gr1
2 Hr4

2 Kr5
2 and the challenge c = H ′(cm1, cm2, R1, R2,G1,H1,K1,G2,H2,K2) and forms z1 =

r1 − cm mod p, z2 = r2 − ce1 mod p, z3 = r3 − cu1 mod p, z4 = r4 − ce2 mod p and

z5 = r5 − cu2 mod p. It then returns the proof π = (c, z1, z2, z3, z4, z5, R1, R2) as output.

•Verify(CRS, x, π): Takes the instance x = (cm1, cm2) and proof

π = (c, z1, z2, z3, z4, z5, R1, R2) as inputs. It then computes c′ =

H ′(cm1, cm2, R1, R2,G1,H1,K1,G2,H2,K2) and checks the equality of c′ = c,

R1 = cmc
1G

z1
1 Hz2

1 Kz3
1 and R2 = cmc

2G
z1
2 Hz4

2 Kz5
2 . It returns 1 if the checks hold and 0

otherwise.

Fig. 24: Non-Interactive proof of Equality of Two Commitments.
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Proving a Multiplicative Relation on Committed Values. Figure 25 describes a sigma protocol
to prove the knowledge of committed values and also a multiplicative relation between them.
More precisely, this protocol enables to prove the knowledge of integers x1 and x2 s.t. x3 =
x1x2 mod p by issuing the commitments cmi = GxiHei for i = 1, 2, 3. Note that the hash
function H ′ : {0, 1}∗ → Z2k , where k is a fixed integer and 2k < p is modeled in the random
oracle model.

Σ-MultCom{{(xj, ej)}3j=1 | cmi = GxiHei for i = 1, 2, 3 ∧ x3 = x1x2 mod p}
•Prove(CRS, x, w): Takes the instance x = (cm1, cm2, cm3) and the witness w =

(x1, x2, x3, e1, e2, e3) as inputs. It then samples r1, r2, r3
$← Z∗

p and s, s1, s2, s3
$← Z∗

p and com-

putes Ri = GriHsi and R = cmr2
1 Hs, the challenge c = H ′(cm1, cm2, cm3, R,R1, R2, R3,G,H)

and forms zi = ri − cxi mod p, ti = si − cei mod p for i = 1, 2, 3 and t = s − ce mod p,

where e = e3− e1x2 mod p. It then returns the proof π = (c, z1, z1, z3, t1, t2, t3, t) as output.

•Verify(CRS, x, π): Takes the instance x = (cm1, cm2, cm3) and proof π =

(c, z1, z1, z3, t1, t2, t3, t) as inputs. It then computes c′ = H ′(cm1, cm2, cm3, R,R1, R2, R3,G,H)

and checks the equality of equations c′ = c, Ri = GziHticmc
i for i = 1, 2, 3 and R = cmc

3cm
z2
1 Ht.

It returns 1 if they hold and 0 otherwise.

Fig. 25: Non-Interactive proof of multiplicative relation on committed values.

Proving the Knowledge of a DY PRF key and its Well-Formedness. Figure 26 recalls the
DY PRF well-formedness protocol described in [28]. As part of this protocol, a prover using
DY PRF key k shows that the PRF output is formed correctly under a given input ctr, i.e.
ID = PRF.Eval(k, ctr) = G

1/(k+ctr)
1 .

Σ-PRF{(k, ctr) | ID = G
1/(k+ctr)
1 }

•Prove(CRS, x, w): Takes the instance x = (ID) and the witness w = (k, ctr) as inputs. Note

that ID can be seen as a commitment of the form COM.Com(pp, (1/k+ctr); 0) = G
1/(k+ctr)
1 H0.

It samples e1, e2, e3
$← Z∗

p and computes the commitments cm1 = COM.Com(pp, ctr; e1) =

GctrHe1 , cm2 = COM.Com(pp, k; e2) = GkHe2 , cm3 = COM.Com(pp, (k+ctr); e3) = G(k+ctr)He3 .

It then runs π ← Σ-MultCom.Prove(CRS, x1, w1) with input commitments x1 = (cm1 ·
cm2, ID,G) and w1 = (k+ ctr, 1/(k+ ctr), 1). It returns the proof π as output.

•Verify(CRS, x, π): Takes the instance x = (cm1 · cm2, ID,G) and proof π as inputs. It then

checks the validity of the proof by running Σ-MultCom.Verify(CRS, x, π).

Fig. 26: Non-interactive proof of knowledge of DY’s PRF key and its well-formedness.

77



Proving the Knowledge of opening of Generalized Pedersen Commitment. Figure 27 recalls
the proving knowledge of opening in a Generalized Pedersen commitment protocol described
in [44]. As part of this protocol, a prover using a vector of messages m⃗ shows that the
commitment cm is computated correctly and it has the knowledge of opening τ under a
given public parameter pp, i.e. cm = COM.Com(pp, m⃗, τ) = Gτ

∏n
i=1 H

mi
i .

Σ-GPedCom{(m1, . . . ,mn, τ) | cm = Gτ
∏n

i=1 H
mi
i }

•Prove(CRS, x, w): Takes the instance x = (cm,G,H1, . . . ,Hn) and the witness w =

(m1, . . . ,mn, τ) as inputs. It samples x⃗ = (x1, . . . , xn)
$← Zn

p and τx ← Zp and computes

cmx = Gτx
∏n

i=1 H
xi
i . It then computes the challenge c = H ′(cm, cmx,G,H1, . . . ,Hn) and

forms zi = xi + c ·mi mod p for i ∈ [1, n] and t = τx + c · τ mod p. It returns the proof

π = (cm0, z1, . . . , zn, t) as output.

•Verify(CRS, x, π): Takes the instance x = (cm,G,H1, . . . ,Hn) and proof π =

(cm0, z1, . . . , zn, t) as inputs. It then computes c′ = H ′(cm, cmx,G,H1, . . . ,Hn) and checks

the equality of equations c′ = c, cmx · cmc = COM.Com(z⃗, t) = Gt
∏n

i=1 H
zi
i . It returns 1 if

they hold and 0 otherwise.

Fig. 27: Non-Interactive proof of knowledge of opening of Generalized Pedersen commitments.

Groth-Sahai proofs. GS proofs [45] are able to prove the satisfiability of some quadratic
equations in bilinear setting. However, in this paper, we only use GS proofs to demonstrate
pairing product equations satisfiability of the following form,

n∏
i=1

e(Ai,Yi)
m∏
i=1

e(Xi, Bi)
m∏
j=1

n∏
i=1

e(Xj,Yi)
γi,j = T ,

where X1, . . . ,Xm ∈ G1, Y1, . . . ,Yn ∈ G2 are the witnesses given as a commitment and
T ∈ GT , A1, . . . , An ∈ G1, B1, . . . , Bm ∈ G2 and Γ := {γi,j}i∈[1,m],j∈[1,n] ∈ Zm×n

p .

GS proofs are essentially commit-and-prove systems, in which the prover proves that
a quadratic equation satisfies using the committed assignments. Therefore, there are two
steps: first, the prover commits to the values, and then it proves their validity through some
relation. This scheme can be instantiate in two possible settings: non-interactive witness-
indistinguishable (NIWI) and non-interactive zero-knowledge (NIZK). If in the described
PPE, the constant value T = 1GT

this construction can guarantee Zero-Knowledge prop-
erty10. Thus in the rest of this section we take this condition into account. In the following,
we briefly summarize the most efficient instantiation of GS proofs based on SXDH assump-

10 According to Escala and Groth [32], the proof system remains zero-knowledge if the base element for the group
and public constant are paired to each other.
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tion (i.e. DDH holds in both source groups G1 and G2), both in terms of proof size and
number of basic pairings required in the verification phase.11

Extended bilinear maps, E : G2
1×G2

2 → G4
T , are a generalization for the standard bilinear

pairings, defined in Definition 1. For any given group elements a1, a2 ∈ G1 and b1, b2 ∈ G2,
an extended bilinear map (tensor product) is defined as follows:

E

((
a1
a2

)
,
(
b1 b2

))
=

(
e(a1, b1) e(a1, b2)
e(a2, b1) e(a2, b2)

)
.

GS proofs additionally rely on a variation of the Pedersen commitments, which are dis-
cussed in Appendix C.1, where the commitments are generated based on two generators
rather than a single one. Loosely speacking, this special commitment scheme enables proof
simulation. The double generator Pedersen commitment over a cyclic group G = ⟨G⟩ with a
prime order p consists of the following PPT algorithms:

– pp ← COM.Setup(1λ): Take security parameter, λ in its unary representation as input.

Sample H1,H2
$← G. Return the public parameters pp = (G, p,G,H1,H2) as output.

– cm← COM.Com(pp,M ; τ1, τ2): Take public parameters pp, a messageM ∈ G and random
openings τ1, τ2 as inputs. Output cm =MHτ1

1 H
τ2
2 .

– 0/1 ← COM.Verify(pp, cm,M ′, τ ′1, τ
′
2): Compute cm′ = M ′H

τ ′1
1 H

τ ′2
2 . Return 1, if cm = cm′;

otherwise return 0.

Next we outline GS proofs for a simple case based on SXDH assumption that the prover aims
to prove the knowledge of group elements X ,Y ∈ G1 × G2 as witnesses s.t. e(X ,Y)γ = T ,
where T ∈ GT is a known constant value.

– CRS ← GS.Setup(1λ): Take the security parameter λ as input. Sample eight group ele-

ments CRS := (H1,H2,K1,K2,U1,U2,V1,V2)
$← G4

1 ×G4
2. It then returns CRS as output.

– π ← GS.Prove(CRS, x, w). It takes CRS, witness w = (X ,Y) ∈ G1×G2 and instance x =

(T ) as inputs. It samples the random integers r1, r2, s1, s2
$← Z∗

p and commits to witness by
computing (a1, a2) = (Hr1

1 Hr2
2 ,XKr1

1 Kr2
2 ) and (b1, b2) = (Us1

1 Us2
2 ,YVs1

1 Vs2
2 ). It samples the

random integers α, β, ζ, δ
$← Zp and then generates the proofs ϕ1 = (bγr11 Uα

1V
β
1 bγr22 Uα

2V
β
2 ),

ϕ2 = (bγs11 Uζ
1V

δ
1 bγs22 Uζ

2V
δ
2), θ1 = (H−α

1 K−ζ
1 X r2H−α

2 K−ζ
2 ) and θ2 = (H−β

1 K−δ
1 X γs2H−β

2 K−δ
2 ),

and return the proof π = (a1, a2, b1, b2, ϕ1, ϕ2, θ1, θ2) as output.
– 0/1 ← GS.Verify(CRS, x, π): It takes CRS, the instance x and proof π as inputs. It then

checks the validity of the following pairing product equation:

E

((
a1
a2

)
,
(
b1 b2

)γ)
=

E

((
H1

H2

)
, ϕ1

)
E

((
K1

K2

)
, ϕ2

)
E
(
θ1,

(
U1 U2

))
E
(
θ2,

(
V1 V2

))( T 1GT

1GT
1GT

)
.

If the equation holds it returns 1 and accepts the proof; 0 otherwise.

11 To implement the Groth-Sahai proofs, we modified the GS implementation provided in this repository.
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This simple example results in a single γ ∈ {−1, 0, 1} value because m = n = 1. In
general, however, Γ is a matrix of dimension m×n. Throughout the next section, we discuss
how this matrix can be defined for different PPEs.

Herold et al.’s batching technique [47]. To check the validity of a GS proof for any PPE
consisting of n first-group elements and m second-group elements, a verifier must compute
4(n + m + 4) pairings. However, Herold et al. described a batching technique in [47] that
reduces the number of pairings by a factor of 4. This means that a verifier checking the
same proof needs to compute only n +m + 4 pairings, which is a significant improvement,
especially in real-world use cases. The authors replace an extended pairing product equation
to a basic pairing product equation using linear algebra. As a simple example, for a given
group vectors a⃗ ∈ G2

1 and b⃗ ∈ G2
2 the extended bilinear equation can be written as follows:

E
(
a⃗, b⃗

)
=

(
e(a1, b1) e(a1, b2)
e(a2, b1) e(a2, b2)

)
=

(
t1 t2
t3 t4

)
,

where ti ∈ GT for i ∈ [1, 4]. A verifier computes A = ar11 a
r2
2 and B = bs21 b

s2
2 using the

randomnesses r1, r2, s1, s2 ∈ Z∗
p. In this case, the above extended pairing product equation

can be rewritten as follows:

e(A,B) = tr1s11 tr1s22 tr2s13 tr2s24 ·

It is easy to see that the above technique is correct. However, the soundness error is at
most 2/p. More interestingly, it reduces the number of pairings by 75% compared to the
naive approach. Specifically, it only requires a single pairing instead of 4 pairings.

Range-proofs. Range-proofs enable a prover to prove a committed value x computed as
cm = COM.Com(pp, x, r) is in the range of [0, 2n).12

D Realization of NIZK relations

Next, we give a detailed description of the languages in the proposed ul-PCS constructions
and the used techniques for their implementation. Note that for the ease of following we use
the gray background to highlight the hidden values that should be considered as witnesses
in each relation. Additionally, the described relations are given solely on their own, while
the prover is expected to make a bridge between them. As the underlying proof systems rely
on the commit-and-prove principle, and a commitment to a witness is issued by the prover,
we can bridge the relations by applying the sigma protocol described in Figure 24 whenever
a hidden parameter is used in more than one relation. In what follows, a bridging proof is
indicated by ♦ . As it is illustrated in Figure 17, the realtions are proved with three main
proof systems, including sigma protocols , range-proofs and Groth-Sahai (GS) proofs

12 To implement the range-proof, we use the open-source bulletproof Python implementation available in this repos-
itory.
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D.1 Generic ul-PCS instantiated with Inner-Product Predicate Encryption

Language L1. The first language in the generic ul-PCS takes the instances xst =
(TRand, IDctr, vk

ctr
sig, ctctr, vk

A
sig,mpkPE) and the witness wst := (k, ctr, vksig, sksig, x, σ

1
sig, σ

2
sig, σctr)

as inputs and the prover proves the satisfiability of the following relations:

L1.1. IDctr = PRF.Eval(k, ctr) : As discussed on Appendix C.1, we use the DY PRF schemes.
Thus we use the sigma protocol described in Figure 26 to prove its well-formedness, i.e.
Σ-PRF{(k, ctr) | IDctr = G

1/(k+ctr)
1 }.

L1.2. ctr < TRand : Additionally, the prover utilizes the range-proof techniques to prove
ctr ∈ [0, TRand).
♦ To show that the used ctr in the above proofs are the same, the prover
use the bridging sigma protocols described in Figure 24. More precisely, it runs
Σ-Bridging{(ctr, e1, e2 , 0, 0) | cm1 = Gctr

1 He1
1 ∧ cm2 = Gctr

2 He2
2 }, where cm1 is obtained

via Σ-PRF protocol while cm2 is computed by the range-proof protocol. Note that the
generators G1,H1,G2,H2 are random elements of any cyclic group.
L1.3. DS.Verify(vkAsig, (k, x), σ

1
sig) = 1: We instantiate this signature with the recalled SPS

scheme in Appendix C.1. To prove the knowledge of a valid SPS signature σ1
sig on

hidden message M⃗ = (Gk
1,G

x
1) that is signed by the CA can be written as a PPE of

the form, e
(
Gk
1 , X̂

A
1

)
e
(
Gx
1 , X̂

A
2

)
= e

(
R1

sig , T
1
sig

)
∧ e(S1

sig ,G2) = e(G1, T
1
sig ), where

vkAsig := (X̂A
1 , X̂

A
2 ) and σ1

sig := (R1
sig, S

1
sig, T

1
sig). We use GS proof systems to show the

satisfiability of this equation.
♦ To demonstrate that the used k in the first relation and the obove relation are the
same, the prover use the bridging sigma protocols described in Figure 24. More precisely,
it runs Σ-Bridging{(k, e1, e2, 0, u2) | cm1 = Gk

1H
e1
1 ∧ cm2 = Gk

2H
e2
2 Ku2

2 }, where cm1 is
obtained via Σ-PRF protocol while cm2 is computed by the GS proof systems.
L1.4. ctctr = PE.Enc(mpkPE, x) : To prove the well-formedness of the ciphertext ctctr ob-
tained from PE.Enc(mpkPE, x) algorithm in the key re-randomization phase and demon-
strate the fact that the attributes x are certified by the CA and folded with the PRF
seed k , i.e. SPS.Verify(vkAsig, (G

k
1,G

x
1) , σ

1
sig ) = 1, we must make a few observations. Recall

that the statements together should assure that the ciphertext is a correct encryption of
some attribute x , and that this attribute is linked to the particular party’s actual seed k
(which it uses to provable derive its public pseudo-random identifier). The trick to obtain
an implementation of this is fourfold:
(a) We employ OT12 as our POPE scheme described in Appendix C.1 and observe that

the computation of the ciphertext c⃗ :=
⊙N

i=1 zi⃗bi, which means in a component-wise

notation that ci = b⃗1[i]
z
1 · b⃗2[i] · · · · · b⃗N [i]zN , for z⃗ := (1, x1, . . . , xn, 0, . . . , 0︸ ︷︷ ︸

3n

, ϕ). This

computation is very close to a generalized Pedersen commitment w.r.t. the vector of
generators (⃗b1[i], . . . , b⃗N [i]).

(b) Generalized Pedersen Commitments have a homomorphic property, and thus it is
easy to, for a commitment cm to some vector x⃗ , a commitment to ωx⃗ by raising the
commitment to the power of ω .
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(c) The next step is to connect it to SPS-EQ in order to transfer the issuance of attributes
by the authority to re-randomizations following the idea of Section 5.3 (cf. also Ap-
pendix D.3). This means that if the authority issues an initial OT12 ciphertext, in
the form of an N generalized Pedersen commitments cmx⃗,i that are blindings of the ci
values above for the vector z⃗ := (1, x1, . . . , xn, 0, . . . , 0︸ ︷︷ ︸

3n

, 0), together with an SPS-EQ

signature on that vector, then a party is able to generate, using the homomorphic
property, a commitment to a scaled vector on its attributes cmωx⃗,i (as required by
OT12), and by the signature adaptation and unforgeability property of the SPS-EQ
scheme it can indeed be verified that this is done correctly. By using the same trick as
in Section 5.3, we can further bind this vector specifically to a party (see next point).

To randomize the ciphertext correctly according to OT12, we further compute a

commitment to a vector ϕ⃗i = (1, 0, . . . , 0︸ ︷︷ ︸
n

, ϕi, 0, . . . , 0︸ ︷︷ ︸
3n−1

, ϕ′), where ϕi, ϕ2
$← Z∗

p and

n = [N−2
4

], and prove knowledge of the opening (cf. Figure 27), in particular, this
includes that we verify that the zero-positions are indeed zero (or alternatively, that
is indeed a vector of length 3) [44]. The Generalized Pedersen commitments of this
vector under the same basis denoted by c⃗mϕ = (cmϕ1 , . . . , cmϕN

) and can be homomor-
phically combined with the N commitments cmωx⃗,i to yield N commitments cmOT12

i to
the OT12 ciphertext components cti, where each component is now encoding the vec-
tor z⃗i := (1, x1, . . . , xn, ϕi, 0, . . . , 0︸ ︷︷ ︸

3n−1

, ϕ′). We reveal cti by revealing the final randomness

of the Pedersen commitment. We further need to prove knowledge of the committed
vector (using Figure 27 where the verifier can use the revealed ri directly) in order
to be formally extractable.13 Note that some care must be taken when revealing the
ri, which is why we enocde vectors z⃗i := (1, x1, . . . , xn, ϕi, 0, . . . , 0︸ ︷︷ ︸

3n−1

, ϕ′) and not just

(1, x1, . . . , xn, 0, . . . , 0︸ ︷︷ ︸
3n

, ϕ′). The additional randomness contribution, ϕi injected at a

position that does not affect the inner-product computation of OT12 ensures that
we can reveal ri (masking the ith component) without leaking information about the
intermediate computations relevant for OT12 in the commitments cmϕi

and cmωx⃗,i, in
particular, this can be thought of as masking ϕ′ .

Now, all ingredients are in place: a verifier is able to retrace the computation (where
we put all elements required to do so in the proof string), and verify the SPS-EQ
signature to be sure the OT12 ciphertext is correctly formed and connected to the
attribute that was issued to the party.

(d) Finally, in order to link the party’s seed k to this vector, we apply the same trick
as in Section 5.3 (cf. also Appendix D.3) and create an accumulator Ak to which we

13 This step could be omitted in an implementation to improve efficiency while trading provable for heuristic security.
This appears acceptable in environments where a CRS is established using a ceremony to ensure that no trapdoor
does exist in the system.
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add k (cf. Section 3.5). We add the pair (Ak ,G2, . . . ) to the above vector. As shown
in Section 5.3 and Appendix D.3, re-randomizing both elements (Ak ,G2) preserves
the relationship to prove that an element, in this case k , is in the accumulator. Thus,
the party cannot only present a randomized vector (which is a commitment to the
scaled attributes x⃗ as required by OT12), but also that this vector has been issued
in connection with the seed k (which it uses to develop the PRF as described below)
by proving that it has the corresponding accumulator witness. This completes the
high-level realization of the two assertions above.
♦ To demonstrate that the used Ak in the vector (Ak , . . .) is a valid accumulator
value under the same PRF seed k in the first relation we first run a GS proof to
prove the accumulator verification holds under k . Additionally we use the bridg-
ing sigma protocols described in Figure 24 to show this seed is the same as the
one in the first relation on the well-formedness of PRF. More precisely, it runs
Σ-Bridging{(k, e1, e2, 0, u2) | cm1 = Gk

1H
e1
1 ∧ cm2 = Gk

2H
e2
2 Ku2

2 }, where cm1 is ob-
tained via Σ-PRF protocol while cm2 is computed by the GS proof systems on the
validity of the accumulator verification.

L1.5. DS.Verify(vkAsig, (k, vksig), σ
2
sig) = 1: As we discuss in Appendix C.1, this signature

scheme is instantiated by a SPS. The knowledge of a SPS signature σ2
sig on hidden

message M⃗ = (Gk
1, vksig) that is signed by the CA can be written as a PPE of the

form, e
(
Gk
1 , X̂

A
1

)
e
(
vksig , X̂

A
2

)
= e

(
R2

sig , T
2
sig

)
∧ e(S2

sig ,G2) = e(G1, T
2
sig ), where

vkAsig := (X̂A
1 , X̂

A
2 ) and σ2

sig := (R2
sig, S

2
sig, T

2
sig). We use GS proof systems to show the

satisfiability of this equation.

♦ The prover additionally runs Σ-Bridging{(k, e1, e2, 0, u2) | cm1 = Gk
1H

e1
1 ∧ cm2 =

Gk
2H

e2
2 Ku2

2 }, where cm1 is obtained via Σ-PRF protocol while cm2 is computed by the GS
proof systems on the knowledge of SPS signature σ2

sig .

L1.6. DS.Verify(vksig, (vk
ctr
sig, IDctr), σctr) = 1: This signature is instantiated by the BLS sig-

nature, discussed in Appendix C.1. The prover should prove the satisfiability of the PPE
relation described below in order to validate a newly generated verification key, vkctrsig, and

to bind it with the new identifier IDctr, e
(
vksig , H(vkctrsig||IDctr)

)
= e(G1, σctr ) that repre-

sents the validity of BLS signature. We use GS proof systems to instantiate this relation
in zero-knowledge.

♦ To show that the vksig element in the relations discussed in L1.5 and L1.6 are identical
we need to make a bridge between them. Due to the fact that both of these relations are
proven via GS proof systems, we can instead combine them as follows [45]:

e
(
Gk
1 , X̂

A
1

)1

e
(
vksig , X̂

A
2

)1

e
(
R2

sig , T
2
sig

)−1

= 1GT
∧

e(S2
sig ,G2)

1e(G1, T
2
sig )

−1 = 1GT
∧

e
(
vksig , H(vkctrsig||IDctr)

)1
e(G1, σctr )

−1 = 1GT
·
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This PPE involves both relations in L1.5 and L1.6 and we make sure to use the same
commitment to the group element vksig [45].

Language L2. In the second relation of the proposed generic ul-PCS scheme, the prover
takes the statement xst := (IDS, ctR, vk

A
sig) and the witness wst := (k, ctr, skfx , σ

2
sig) as inputs

and acts as follows:

L2.1. IDS = PRF.Eval(k, ctr) : We use the sigma protocols to demonstrate the well-

formedness of DY PRF, by running Σ-PRF{(k, ctr) | IDS = G
1/(k+ctr)
1 }, as described

in Figure 26.
L2.2. PE.Dec(skfx , ctR) = 1: To prove the knowledge of an PE secret key

skfx := (sk1, . . . , skN) and proving the fact that it correctly decrypts the receiver’s
PE ciphertext ctR := (ct1, . . . , ctN) to the identity value 1GT

, we utilize the GS proof
systems. As we already discussed in Appendix C.1 the OT12’s decryption algorithm can
be formalized with a PPE equation of the form,

∏N
j=1 e

(
skj , ctj

)
= e(G1,G2).

L2.3. DS.Verify(vkAsig, (k, skfx), σ
3
sig) = 1: This signature is also instantiated by a SPS

and similar to the previous languages, to prove the knowledge of a SPS signature

σ3
sig on hidden message M⃗ = (Gk

1, skfx) that is signed by the CA we can use the
GS proof systems. Towards the arithmetization of this relation we can write the

verification equation with a PPE of the form, e
(
Gk
1 , X̂

A
0

)(∏N
j=1 e

(
skj , X̂

A
j

))
=

e
(
R3

sig , T
3
sig

)
∧ e(S3

sig ,G2) = e(G1, T
3
sig ), where skfx := (sk1, . . . , skN), vkAsig :=

(X̂A
0 , X̂

A
1 , . . . , X̂

A
N) and σ3

sig := (R3
sig, S

3
sig, T

3
sig).

♦ Additionally, the prover runs Σ-Bridging{(k, e1, e2, 0, u2) | cm1 = Gk
1H

e1
1 ∧ cm2 =

Gk
2H

e2
2 Ku2

2 }, where cm1 is obtained via Σ-PRF protocol while the commitment cm2 is
computed by the GS proof systems on the knowledge of SPS signature σ3

sig .

♦ To demonstrate the fact that the used PE’s secret key skfx in the relations discussed
in L2.2 and L2.3 are the same, the prover makes a bridge between them. Due to the fact
that both of these relations are proven via GS proof systems, we can instead combine
them and prove the following PPE.

e(G1,G2)
−1

N∏
j=1

e
(
skj , ctj

)1
= 1GT

∧

e
(
Gk
1 , X̂

A
0

)1
N∏
j=1

e
(
skj , X̂

A
j

)1

e
(
R3

sig , T
3
sig

)−1

= 1GT
∧

e(S3
sig ,G2)

1e(G1, T
3
sig )

−1 = 1GT
·

This PPE involves both relations in L2.2 and L2.3 using the same commitment to group
element skfx .
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D.2 ul-PCS for Separable Policies

Language L1. The first language in the ul-PCS with separable policies

takes the instance xst :=
(
TRand, IDctr, vk

ctr
sig, ctctr, vk

A,R
sig , pk

A
PKE

)
and witness

wst :=
(
k, ctr, vksig, sksig,mx, σ

1
sig, σctr

)
as inputs and then the prover proves the satisfi-

ability of the following relations:

L1.1. IDctr = PRF.Eval(k, ctr) : To prove the well-formedness of the DY PRF,
we use the sigma protocol described in Figure 26 and the prover runs

Σ-PRF
{
(k, ctr) | IDctr = G

1/(k+ctr)
1

}
.

L1.2. ctr < TRand : Additionally to prove ctr ∈ [0, TRand), the prover uses the range-proofs.

♦ To demonstrate the fact that the used ctr in the above proofs are identical, the
prover utilizes the bridging sigma protocol described in Figure 24. More precisely, it
runs Σ-Bridging{(ctr, e1, e2 , 0, 0) | cm1 = Gctr

1 He1
1 ∧ cm2 = Gctr

2 He2
2 }, where cm1 is ob-

tained via Σ-PRF protocol while the commtiment cm2 is computed by the range-proof
protocol.

L1.3. DS.Verify(vkA,R
sig , (k, vksig,mx), σ

1
sig) = 1: To prove the knowledge of a valid SPS

signature σ1
sig on message M⃗ = (Gk

1, vksig,G
mx
1 ) signed by the CA we can prove the

satisfiability of the PPE of the form, e
(
Gk
1 , X̂

A,R
1

)
e
(
vksig , X̂

A,R
2

)
e
(
Gmx
1 , X̂A,R

3

)
=

e
(
R1

sig , T
1
sig

)
∧ e(S1

sig ,G2) = e(G1, T
1
sig ), where vkA,R

sig := (X̂A,R
1 , X̂A,R

2 , X̂A,R
3 ) and

σ1
sig := (R1

sig, S
1
sig, T

1
sig). Thus we use the GS proofs to instantiate this relation in zero-

knowledge.

♦ To prove that the used k in the first relation and the obove relation are the same, the
prover use the bridging sigma protocols described in Figure 24. More precisely, it runs
Σ-Bridging{(k, e1, e2) | cm1 = Gk

1H
e1
1 ∧ cm2 = Gk

2H
e2
2 }, where cm1 is obtained via Σ-PRF

protocol while cm2 is computed by the GS proof systems.

L1.4. ctctr = PKE.Enc(mpkAPKE,mx) : To prove the knowledge of a valid ciphertext encrypt-
ing the hidden message mx , we utilize the sigma protocol described in Figure 23 and the
prover runs Σ-ElGamal{(mx, r, e) | ct1 = Gr

1 ∧ ct2 = Gmx
1 (pkAPKE)

r ∧ cm = Gmx
1 He

1}.

♦ To prove the message mx in the SPS relation and the obove relation are the same, the
prover runs Σ-Bridging{(mx, e1, e2, u1, 0) | cm1 = Gk

1H
e1
1 Ku1

1 ∧ cm2 = Gk
2H

e2
2 }. In which

the commitment cm1 is obtained via the GS proof of SPS signature σ1
sig , while cm2 is

computed by the sigma protocol Σ-ElGamal.

L1.5. DS.Verify(vksig, (vk
ctr
sig, IDctr), σctr) = 1: The knowledge of a BLS signature on public

message m = (vkctrsig||IDctr) signed under the hidden signing key sksig can be written as

a PPE of the form, e
(
vksig , H(vkctrsig||IDctr)

)
= e(G1, σctr ), where H(·) is a hash-to-curve

function as a part of public parameters. We use the GS proofs to instantiate this relation
in zero-knowledge.
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♦ To show the fact that the verification key, vksig , used in the above GS proof is already

certified by the CA and is identical to the one in the GS of the SPS signature σ1
sig , the

prover makes a bridge between the relations discussed in L1.3 and L1.5 via proving the
following PPE instead with shared commitments [45].

e
(
Gk
1 , X̂

A,R
1

)1

e
(
vksig , X̂

A,R
2

)1

e
(
Gmx
1 , X̂A,R

3

)1

e
(
R1

sig , T
1
sig

)−1

= 1GT
∧

e(S1
sig ,G2)

1e(G1, T
1
sig )

−1 = 1GT
∧

e
(
vksig , H(vkctrsig||IDctr)

)1
e(G1, σctr )

−1 = 1GT
·

This PPE involves both relations in L1.3 and L1.5 and we use the same commitment to
the group element vksig in all relations.

Language L2. The second language in the ul-PCS with separable policies takes the instance

xst =
(
IDS, ctR, vk

A,S
sig , pk

A
PKE

)
and witness wst =

(
k, ctr, skAPKE, σ

2
sig

)
as inputs and then the

prover proves the satisfiability of the following relations:

L2.1. IDS = PRF.Eval(k, ctr) : The prover runs Σ-PRF
{
(k, ctr) | IDS = G

1/(k+ctr)
1

}
, depict-

ing the well-formedness of IDS.

L2.2. DS.Verify(vkA,R
sig , (k , sk

A
PKE ), σ

2
sig) = 1: The possession of a SPS signature on mes-

sage M⃗ = (Gk
1 , sk

A
PKE ), signed by the CA can be written as a PPE of the form,

e
(
Gk
1 , X̂

A,S
1

)
e
(
G
skAPKE
1 , X̂A,S

2

)
= e

(
R2

sig , T
2
sig

)
∧ e(S2

sig ,G2) = e(G1, T
2
sig ), where vk

A,S
sig :=

(X̂A,S
1 , X̂A,S

2 ) and σ2
sig := (R2

sig, S
2
sig, T

2
sig). We use the GS proof systems to represent the

satisfiability of this PPE.

♦ To demonstrate the fact that the PRF key k used in Σ.PRF and in the above GS
proof is indeed the same, the prover runs Σ-Bridging{(k, e1, e2, 0, u2) | cm1 = Gk

1H
e1
1 ∧

cm2 = Gk
2H

e2
2 Ku2

2 }. The commitment cm1 is obtained via the sigma protocol described
in Figure 26 while the commitment cm2 is computed by the GS proof of knowledge σ2

sig

on the satisfiability of the SPS.

L2.3. PKE.Dec(skAPKE, ctR) = 1: The knowledge of a valid secret key skAPKE such that it
can decrypt the receiver’s ciphertext ctR to m = 1. To prove this relation in zero-
knowledge we use the Dlog sigma protocol described in Figure 22 and the prover runs,

Σ-Dlog
{
(skAPKE ) | ctR,2/G1 = (ctR,1)

skAPKE

}
.

♦ To show the used secret key skAPKE in the above sigma pro-
tocol is the same as the one signed in σ2

sig , the prover runs

Σ-Bridging
{
(skAPKE, e1, e2, 0, u2) | cm1 = G

skAPKE
1 He1

1 ∧ cm2 = G
skAPKE
2 He2

2 Ku2
2

}
, where cm1 is

obtained via Σ-Dlog protocol while the commitment cm2 is computed by the GS proof
systems on the knowledge of SPS signature σ2

sig .
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L2.4. skAPKE ≈ vkAPKE : The prover to show the knowledge of the secret key skAPKE and the

fact that it corresponds to the public encryption key pkAPKE, uses the sigma protocol

described in Figure 22 and runs Σ-Dlog
{
(skAPKE ) | pkAPKE = G

skAPKE
1

}
.

♦ The prover runs the bridging sigma protocol Σ-Bridging{(skAPKE, e1, e2 , 0, 0) | cm1 =

G
skAPKE
1 He1

1 ∧ cm2 = G
skAPKE
2 He2

2 } to prove the used secret key skAPKE in the above relations
are the same. The commitment cm1 is obtained by the sigma protocol Σ-Dlog of the
PKE’s decryption correctness while the commitment cm2 is computed by sigma protocol
Σ-Dlog to show the relation of PKE’s public and secret keys.

D.3 ul-PCS for RBAC Policies

Language L1. The first language in the RBAC ul-PCS takes the instance xst =(
TRand, IDctr, vk

ctr
sig, M⃗ := (A′

1,A
′
2,G

′
2), vk

A
sig

)
and witness wst =

(
k, ctr, vksig, sksig, wk, σ

1
sig, σsig

)
as inputs and the prover proves the satisfiability of the following relations:

L1.1. ACC.MemVrf(A′
1, k, wk) = 1: To prove the possession of a hidden membership witness

wk that verifies the accumulator value A′
1 the prover uses the GS proof systems. The

satisfiability of the verification of the given accumulator scheme can be written as a PPE
of the form, e (wk ,A

′
1) e

(
wk , (G

′
2)

k
)
= e (G1,G

′
2). We use the GS proofs to prove the

satisfiability of this equation in zero-knowledge.

L1.2. IDctr = PRF.Eval(k, ctr) : We use the sigma protocol described in Figure 26 to prove

the well-formedness of DY PRF, i.e. Σ-PRF{(k, ctr) | IDctr = G
1/(k+ctr)
1 } over cyclic group

G1.

♦ The prover to make a bridging between the above relations and showing the fact
that the used PRF key k in the both of them is the same secret witnees runs
Σ-Bridging{(ctr, e1, e2, 0, u2) | cm1 = Gctr

1 He1
1 ∧ cm2 = Gctr

2 He2
2 Ku2

2 }. In which the commit-
ment cm1 is obtained via Σ-PRF protocol while the commtiment cm2 is computed in the
GS proof on the satisfiability of the accumulator verification algorithm.

L1.3. ctr < TRand : Additionally, the prover utilizes the range-proof techniques to prove
ctr ∈ [0, TRand).

♦ The prover runs Σ-Bridging{(ctr, e1, e2 , 0, 0) | cm1 = Gctr
1 He1

1 ∧ cm2 = Gctr
2 He2

2 } to prove
the used hidden counter ctr in the above relations is the same. In which the commitment
cm1 is obtained via Σ-PRF protocol while the commtiment cm2 is computed in the range-
proof protocol.

L1.4. DS.Verify(vkAsig, (k, vksig), σ
1
sig) = 1: To prove the verification phase of the SPS sig-

nature σ1
sig satisfies under message M⃗ = (Gk

1, vksig) and the fact that it is signed

by the CA, we can show it via a PPE of the form, e
(
Gk
1 , X̂

A
1

)
e
(
vksig , X̂

A
2

)
=

e
(
R1

sig , T
1
sig

)
∧ e(S1

sig ,G2) = e(G1, T
1
sig ), where vkAsig := (X̂A

1 , X̂
A
2 ) and σ1

sig :=

(R1
sig, S

1
sig, T

1
sig). We use GS proof systems to show the satisfiability of this equation.
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♦ To demonstrate that the same k in the first relation and the above relation is used,
the prover makes a bridge between them by running Σ-Bridging{(k, e1, e2, 0, u2) | cm1 =
Gk
1H

e1
1 ∧ cm2 = Gk

2H
e2
2 Ku2

2 }, where the commitment cm1 is obtained via Σ-PRF protocol
while the commitment cm2 is computed by the GS proof system on the validity of σ1

sig .

L1.5. DS.Verify(vksig, (vk
ctr
sig, IDctr), σctr) = 1: To validate a newly generated verification key

and to bind it with the new identifier IDctr, the prover needs to prove the satisfiability
of a PPE relation described as, e

(
vksig , H(vkctrsig||IDctr)

)
= e(G1, σctr ) that represents the

validity of BLS signature. We use GS proof systems to instantiate this relation in zero-
knowledge.

♦ To show the fact that the verification key, vksig , used in the above GS proof is already

certified by the CA and is identical to the one in the GS of the SPS signature σ1
sig , the

prover makes a bridge between the relations discussed in L1.4 and L1.5 via proving the
following PPE instead.

e
(
Gk
1 , X̂

A
1

)1

e
(
vksig , X̂

A
2

)1

e
(
R1

sig , T
1
sig

)−1

= 1GT
∧

e(S1
sig ,G2)

1e(G1, T
1
sig )

−1 = 1GT
∧

e
(
vksig , H(vkctrsig||IDctr)

)1
e(G1, σctr )

−1 = 1GT
·

This PPE involves both relations in L1.4 and L1.5 with a single commitment to vksig .

Language L2. In the second relation, the prover takes the instance xst =
(IDS, ctR, vk

A
sig, pp

′,A′) and the witness wst = (k, ctr, x, w, σ2
sig) as input and acts as follows:

L2.1. IDS = PRF.Eval(k, ctr) : To prove the well-formedness of the PRF evaluation the

prover runs the sigma protocol Σ-PRF{(k, ctr) | IDS = G
1/(k+ctr)
1 } over the cyclic group

G1.
L2.2. DS.Verify(vkAsig, (k, w), σ

2
sig) = 1: This relation can be formulated by a PPE of the

form, e
(
Gk
1 , X̂

A
1

)
e
(
w, X̂A

2

)
= e

(
R2

sig , T
2
sig

)
∧ e(S2

sig ,G2) = e(G1, T
2
sig ), where vkAsig :=

(X̂A
1 , X̂

A
2 ) and σ2

sig := (R2
sig, S

2
sig, T

2
sig) and the prover can prove the satisfiability of the

relation by GS proof systems.

♦ The prover runs Σ-Bridging{(k, e1, e2, 0, u2) | cm1 = Gk
1H

e1
1 ∧ cm2 = Gk

2H
e2
2 Ku2

2 } to
prove the fact that the PRF key k used in Σ.PRF and is already signed by the CA. The
commitment cm1 is obtained via the sigma protocol described in Figure 26 while the
commitment cm2 is computed by the GS proof of knowledge σ2

sig .

L2.3. ACC.MemVrf(A′, x, w) = 1: Similar to the previous languages, the prover can de-
scribe the membership verification of the accumulator scheme by the satisfiability of a
PPE of the form, e (w,A′) e

(
w, (G′

2)
x
)
= e (G1,G

′
2). Thus it runs the GS proof to show

the possession of hidden parameters.
♦ The prover bridges the relations describe in L2.2 and L2.3 to show the fact that the
membership witness w which passes the accumulator verification is already certifies and
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is signed in SPS signature σ2
sig . For this aim the prover proves the following PPE instead:

e
(
Gk
1 , X̂

A
1

)1

e
(
w, X̂A

2

)1

e
(
R2

sig , T
2
sig

)−1

= 1GT
∧

e(S2
sig ,G2)

1e(G1, T
2
sig )

−1 = 1GT
∧

e (w,A′)
1
e
(
w, (G′

2)
x
)1
e (G1,G

′
2)

−1
= 1GT

·

E Distributed Setup and KeyGen Algorithms

In the following, we showcase that using standard techniques we can achieve distributed
implementations of the algorithms Setup and KeyGen for our three constructions. We assume
an honest-but-curious model for the sake of the argument, however a lifting to malicious
security would again follow standard techniques.

E.1 The Generic ul-PCS Scheme

First, we look at how the generic ul-PCS, proposed in Figure 14, and its concrete instantiation
based on the OT12’s inner product predicate encryption [55] can be distributed. Recall that
the CA holds the predicate encryption’s master secret key, mskPE, along with a signature key
skAsig. On the other hand, a user keeps will obtain the PRF seed k and a predicate encryption
secret key skf along with its root signature key-pair (sksig, vksig). To generate these secret
elements in a distributed manner, we can follow the following steps:

1. CA-side setup:
(a) Given the description of the OT12 IP-PE scheme in Appendix C, we can generate the

keys in a distributed way, where each server holds a share B∗
i of the matrix B∗ =

∏
iB

∗
i

(component-wise product). This could be done with a standard MPC, and essentially,
we need a sum-sharing of a matrix X and its inverse Y . In particular, this means each
entry Yij is shared among n distinct certificate authorities. While this is a heavier
computation, implementations of such an operation based on the methods by Blom
et al. are possible [12].

(b) Each CA possesses its own signature key-pair.
2. Registration of a client for attributes x:
(a) Each CA samples random seed ki and a public key share vki.
(b) The CAs create additional shared randomness in anticipation of the creation of the

secret functional key. They compute a sum-sharing of n+ 1 random elements rk.
(c) Then they run a multiplication protocol to obtain a sharing of selected matrix ele-

ments: r1Yi,2, . . . , r1Yi,n+1 (those are the positions for generating a scaled vector of
attributes) and rjYi,3n+j(1 < j ≤ n+ 1) (those are the positions where random expo-
nents are needed).

(d) Recalling from Appendix C.1 that in OT12 the functional key skf is a vector whose ith

component is
∏N

j=1 G
Yijzj
1 , we observe that each CA can compute a meaningful share

skif by doing this computation based on the attribute x and the sharing of elements
Yij resp. rkYij (for those indices where additional randomness is needed).
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(e) The CA signs the pairs (ki, x), (k, sk
i
f ), and (k, vki).

(f) Aggregation step:
i. Functional key shares are aggregated by component-wise multiplication of the vec-

tors skif —The addition in the exponent leads to the expression in (d) as everything
has been computed as a sum-sharing.

ii. Seed shares are summed up k =
∑

i ki.
iii. Root key pairs are summed up as well (e.g. assuming a simple DL-based signature

scheme).
3. Finally, the aggregated pairs (k, skf ), (k, x) and (k, vksig) are certifiable, because in any of

the languages L1 and L2, instead of proving the knowledge of a signature from the CA,
one would have to prove the aggregation is done correctly based on the signed shares
by each CA. While conceptually possible, by an additional round of interaction, one can
even shift more computational overhead to the registration phase as outlined below:

3’. Alternatively to the above certification, one can add one round of interaction, where the
client commits to each aggregated pair, proves the well-formedness using a NIZK and
obtains a threshold signature on the commitments. In this case, each pair is certifiable
in the first and second NIZK languages by having one additional commitment plus a
signature on it. In this case, for further efficiency, the utilized SPS scheme can be replaced
with the recent Threshold SPS-scheme of Crites et al. [27]. In this case, each CA has its
own SPS signature key-pair and a sufficiently large number of issuers is needed to obtain
a valid signature (with respect to the aggregated public key). This strategy pushes most
of the computational overhead into the registration phase.

Furthermore, simplifications can be made depending on the adversarial model. We observe
that the root key pair (sksig, vksig) for the party is never revealed by the party in any operation,
and thus we can simply let one of the servers decide for that one if we are in an honest-but-
curious setting.

E.2 The ul-PCS with Separable Policies

Similarly, we can distribute the generation of the secret keys in the ul-PCS scheme with
separable policies. In this scheme, the PE scheme is “realized” using ordinary PKE with
keys (pkPKE, skPKE). Furthermore, we have signature keys to authorize sender and receiver
predicates. Compared to the generic scheme discussed above, it is much simpler and we can
run a distributed-key generation in advance and each CA has its own signature key-pair. We
briefly discuss how the user’s registration works concretely.

1. CA-side setup: Each CA samples random PRF seed ki
$← Z∗

p and a public key share vki.
2. Registration of a client for attributes x: Each CA issues a signature on the value

(ki, vki,m), where m ∈ {0, 1} is a bit. If m = 1, the client also gets a signature on
(ki, ski).
The client performs standard aggregation to compute all relevant values (sksig from all
ski’s, k from all ki’s).

3. Certification is again possible via a NIZK, or via one more round of interaction as above.
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E.3 The Role-based ul-PCS Construction

The signing process in the role-based ul-PCS is as above, but the relevant values that could
break privacy are the accumulator witnesses (because they would allow to test which at-
tributes can send to a target public key), and the seed values. Hence, here one has to do the
following:

1. CA setup: As the accumulator witnesses in this case are just signatures on roles that
belong to an accumulator value, we just set up a threshold signature scheme. Each CA
then holds a signature share on a role i for accumulator A (identified by the signature
public key).

2. Registration of a client for attributes x:
(a) Each CA samples random PRF seed ki and a public key share vki.
(b) The user can simply obtain the partial signature shares and a combination of them

and finally is in possession of the full witness for its role x.
(c) The remaining steps are as above: the client can reconstruct the full seed ki, the full

root signature keypair (vksig, sksig), and has all witnesses.
3. Certification can be done via a NIZK or via another round of interaction as above.

F Preliminaries on One-Time Accounts (OTA)

An OTA scheme [31] is defined as a tuple of algorithms OTA =
(Setup,KeyGen,NoteGen,Enc,Receive,NulEval) with the following syntax and intended
semantics:

– Setup: Generates the public parameters that is given implicitly to any algorithm below
as input.

– KeyGen: Generates an asymmetric key-pair (pk, sk).
– NoteGen(pk, a⃗; r): Takes a public key and a vector of type-value pairs and generates the

note, i.e. the account.
– Enc(pk, (⃗a, r)): Encrypts the information toward the recipient such that the recipient will

be able to reconstruct the note’s content and to spend it (see below) .
– Receive(note, C, sk): If the note and ciphertext are created for the public key belonging

to sk, then the algorithm returns the values (⃗a, r), and otherwise returns ⊥.
– NulEval(sk, r): Returns the nullifier value that is tied to a particular note (generated with

randomness r). The nullifier is needed to spend the tokens contained in a note.

OTA’s must be accompanied by some efficient NIZK languages, including the ones we
need in our construction in Section 7, which are shown to be efficiently realizable [31] using
for example Groth-Sahai proof systems. The security requirements from an OTA scheme
include: (1) Nullifiers should appear pseudo-random and be unique, such that they can
be presented as evidence of spending a coin, and double spends would directly visible by
repeated nullifiers, (2) the note is binding to the key and values, unique, as well as private
in that it hides its content. We discuss these requirements in the security analysis of our
extended scheme.
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