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ABSTRACT

Although power LEDs have been integrated in various
devices that perform cryptographic operations for decades, the
cryptanalysis risk they pose has not yet been investigated.
In this paper, we present optical cryptanalysis, a new form
of cryptanalytic side-channel attack, in which secret keys are
extracted by using a photodiode to measure the light emitted
by a device’s power LED and analyzing subtle fluctuations in
the light intensity during cryptographic operations. We analyze
the optical leakage of power LEDs of various consumer
devices and the factors that affect the optical SNR. We then
demonstrate end-to-end optical cryptanalytic attacks against
a range of consumer devices (smartphone, smartcard, and
Raspberry Pi, along with their USB peripherals) and recover
secret keys (RSA, ECDSA, SIKE) from prior and recent
versions of popular cryptographic libraries (GnuPG, Libgcrypt,
PQCrypto-SIDH) from a maximum distance of 25 meters.

I. INTRODUCTION

Cryptanalytic side-channel attacks, which are aimed at re-
covering secret keys from devices, are considered a great threat
to information confidentiality. Recent studies have demon-
strated novel methods for performing such attacks against
various devices by exploiting the correlation between the cryp-
tographic operations executed by a device and its power con-
sumption, electromagnetic radiation (EMR) leakage, acoustic
leakage, cache access behavior, etc. [1–10]. These methods
have increased understanding regarding the design of resilient
devices and cryptographic algorithms, using hardware and
software primitives secured cryptanalytic side-channel attacks.

While many papers have been published on cryptanalysis
using the aforementioned leakage, little is known about crypt-
analysis using optical leakage. This is surprising given that:
(1) various components (e.g., integrated power LEDs, charger
LEDs, monitors) that emit visible and non-visible light are
integrated in and connected to devices that perform crypto-
graphic operations, and (2) optical leakage can be observed
from a distance, making the threat model more attractive to
attackers than other threat models that require the attacker to
obtain physical access to the target device (e.g., in order to

TABLE I
THE TABLE MAPS THE DEVICES, CRYPTOGRAPHIC LIBRARIES,

CRYPTANALYTIC ATTACKS, AND SECRET KEYS EXTRACTED IN THIS
PAPER.

Minerva
Attack [11]

Acoustic
Cryptanalysis [12]

Hertz-
bleed [13]

Raspberry
Pi 3B+

Connected
headphones*

Connected
USB hub*

Smartcard
reader**

Raspberry
Pi 4

Samsung
Galaxy S8

Libgcrypt
1.8.4

265-bit
ECDSA key

265-bit
ECDSA key

265-bit
ECDSA key

Unknown
library***

265-bit
ECDSA key

GnuPG
1.4.13

4096-bit
RSA Key

PQCrypto-
SIDH 3.4

378-bit
SIKE key

*The power LED of the headphones and USB hub (that were connected
to a Raspberry Pi3B+) was used to extract the keys.
**The power LED of the smartcard reader was used to extract the secret
key from the smartcard.
**We do not know which cryptographic library is installed on the
smartcard.

attach probes) or compromise a target device to collect traces
(e.g., in order to measure its cache behavior).

A few studies [14–16] performed cryptanalysis by capturing
near-infrared photon emissions from switching transistors lo-
cated on the back of exposed FPGAs during the execution of a
proof of concept implementation of cryptographic algorithms.
However, the suggested attacks are limited to devices with
exposed chips/PCBs, and therefore they cannot be applied
against commercial devices where chips are encapsulated in
opaque materials (e.g., smartphones, card readers). Moreover,
these attacks were not demonstrated on popular cryptographic
libraries. To the best of our knowledge, an end-to-end crypt-
analytic attack using optical leakage against a commercial
consumer device running a popular cryptographic library has
not yet been demonstrated.

In this paper, we present optical cryptanalysis, a new attack
vector for the recovery of secret keys using cryptanalytic side-
channel attacks. In optical cryptanalysis, a photodiode is used
to measure fluctuations in a device’s power LED intensity
(during cryptographic computations), and the measurements
(optical traces) are analyzed to recover the device’s secret key.
First, we show that optical traces obtained by a photodiode
directed at a device’s power LED can provide an accurate
indication of the power consumption (within a wide spectrum)
of the target device directly (using optical traces obtained from
the device’s power LED) and indirectly (using optical traces
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obtained from a connected peripheral’s power LED). Then,
we analyze the influence of various factors on the optical
traces (e.g., the distance between the photodiode and the power
LED, ambient light, ripple of the power supply, and target
cryptographic library and device under attack).

Finally, we demonstrate the end-to-end application of op-
tical cryptanalysis to recover secret keys (4096-bit RSA key,
256-bit ECDSA key, and 378-bit SIKE key) from commercial
consumer devices (smartcard, Raspberry Pi 3 B+ and 4, and
Samsung Galaxy S8) that run commonly used cryptographic
libraries (GnuPG, Libgcrypt, and PQCryptoSIDH) and con-
nected peripherals (smartcard reader, USB hub, and USB
headphones) by obtaining optical traces from the power LEDs
of the devices/peripherals and exploiting the vulnerabilities
presented in [11–13] (see Table I).

Contributions. (1) We raise awareness about a new type
of TEMPEST attack that exploits optical leakage to perform
cryptanalytic side-channel attacks using equipment that can be
purchased online for a few thousand dollars and demonstrate
its end-to-end application (see Table I). (2) In comparison
to previously investigated cryptanalytic attack vectors that
rely on electromagnetic-radiation (EMR) traces (e.g., [4]),
acoustic traces (e.g., [12]), power traces (e.g., [1, 2]), and
digital traces (e.g., [8, 9]), optical traces can be obtained
unobtrusively (power traces require connecting the device to a
scope), without compromising the target device with malware
(digital traces can only be obtained by compromising the target
device), while providing a higher bandwidth than acoustic
traces (which are limited to a few hundred kHz using ultra-
sonic microphones). (3) We demonstrate key recovery from a
distance of 25 meters which, to the best of our knowledge,
is a greater distance than state-of-the-art cryptanalytic side-
channel attacks that recovered keys from a maximum distance
of 4-10 meters [4, 5, 12]).

Structure. In Section II, we review related work. In Section
III, we present the threat model, and in Section IV, we present
the default experimental setup. The influence of various factors
on the optical SNR is analyzed in Section V. In Sections VI-
VIII, we describe how we performed optical cryptanalysis
to recover ECDSA (Section VI), RSA (Section VII), and
SIKE (Section VIII) keys from various devices. We discuss
countermeasures in Section IX and limitations in Section X.
In Section XI, we discuss the findings of the study.

II. RELATED WORK

Physical cryptanalytic side-channel attacks, which exploit
the correlation between the cryptographic computations per-
formed by a device and its physical emanations, have been
demonstrated in many prior studies. These studies exploited
variations in a device’s power consumption to recover secret
keys directly, by measuring a device’s power consumption
(e.g., [1, 2]), or indirectly, by measuring the power consump-
tion’s side-effects, including EMR leakage (e.g., [3–5]) and
acoustic noise (e.g., [7, 12]).

Some research [14–16] performed cryptanalysis by captur-
ing near-infrared photons emitted from switching transistors
located on the back of FPGAs during the execution of a proof

of concept implementation of cryptographic algorithms. How-
ever, the suggested attacks are ineffective against commercial
devices, because their chips are encapsulated in light-blocking
covers (e.g., in smartphones). Moreover, these attacks were
not demonstrated on a commercial consumer device running
a common cryptographic library.

The risks power LEDs pose to devices’ information con-
fidentiality have been discussed since 2002 [17]. However,
prior research mainly focused on covert channels that were
established using preinstalled malware that actively controlled
the power LEDs of various devices (a keyboard [18], router
[19], and hard drive [20]) and exploited them to exfiltrate
data. Two recent studies presented optical side-channel attacks
and recovered speech played by speakers [21, 22] using
optical measurements obtained from the speakers’ power LED.
While some research investigating the risks that power LEDs
pose to confidentiality has been performed, no prior studies
examined the risk of cryptanalysis posed by power LEDs.
This is surprising due to the fact that power LEDs have been
integrated in a variety of devices that perform cryptographic
operations for decades.

III. THREAT MODEL

Optical cryptanalysis aims to recover secret keys (e.g.,
private and symmetric keys) from a device by obtaining
optical traces, which are time-dependent measurements of the
intensity of the device’s power LED.

We assume that the target device is performing crypto-
graphic operations and contains a power/status LED that is
always on. The cryptographic operations can be initiated by:
(1) the user of the device, e.g., by opening a TLS session
to access an HTTPS website or by using a VPN, or (2) an
attacker, e.g., by sending the device an encrypted message
via an encrypted messaging application (WhatsApp, Telegram,
Signal, encrypted email, etc.) in order to trigger automatic
decryption or by sending the device messages aimed at trig-
gering automatic digital signing. We consider an attacker that
is a malicious entity interested in recovering a secret key from
the target device in order to: (1) decrypt previous and future
cryptograms delivered to the target device and intercepted by
the attacker, or (2) sign on a message on behalf of a target
device.

We consider two types of optical data acquisition models,
which are based on the physical proximity the attacker has
to the target device: (1) Close data acquisition. We assume
that the attacker has physical access to the device (i.e., the
attacker is located in the same room as the target device). In
close data acquisition, the attacker places the photodiode near
the power LED of the device (e.g., 2 cm away) and obtains
optical traces. (2) Remote data acquisition. We assume that
the attacker does not have physical access to the target device.
In remote data acquisition, we assume that the attacker has an
optical line of sight to the target device’s power LED, and the
optical traces are obtained by directing the photodiode at the
device’s power LED via a telescope (the two data acquisition
models are visualized in Fig. 1).

We consider two types of attacks: (1) a direct attack,
where the optical traces are obtained from the power LED
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Fig. 1. Left: A LabView script run on a laptop that is connected to an ADC
that is connected to an amplifier. Middle: Remote data acquisition in which the
amplifier is connected to a photodiode that is mounted to a telescope. Right:
Close data acquisition in which the amplifier is connected to a photodiode
that is placed 2 cm from the device’s power LED.

of the target device, and (2) an indirect attack, where the
optical traces are obtained from the power LED of a connected
peripheral device (that does not perform the cryptographic
computations), such as a power supply, card reader, connected
USB hub, keyboard, or headphones.

The significance of the threat model with respect to related
work is as follows: (1) Non-invasive - The attack can be
applied remotely, from a distance. The attacker does not
need to have physical access to the victim device to obtain
the measurements (in contrast to attacks relying on power
traces). (2) Easy to purchase equipment - The equipment
needed to apply the attack can be purchased online for a
few thousand dollars (within the budget of non-nation-state
attackers). (3) Indirect - The attack can be applied indirectly
by obtaining optical traces from devices that do not perform
cryptographic operations (e.g., from the power LEDs of USB
hub splitters, USB headphones). (4) High bandwidth - LEDs
are highly responsive and can provide a high bandwidth of a
few gigabits per second [23]. This is extremely risky in terms
of cryptanalysis, because many devices have CPU clock rates
under 1 GHz, including various Raspberry Pi models (Zero,
1, 2) and smartcards, and other devices have a CPU clock rate
of 1-2 GHz, including newer Raspberry Pi models (3, 4) and
various smartphones. This fact can be exploited by attackers
to obtain optical traces at a sampling rate higher than or equal
to the target device’s CPU clock rate by using a high-end
photodiode.

IV. EXPERIMENTAL SETUP

In this section, we describe the experimental setup used to
conduct the experiments described in Sections V-VIII.

Sampling Equipment. We used the Thorlabs PDA100A2
photodiode [24], which is an amplified switchable-gain light
sensor that converts light (photons) to electrical current and
thus to voltage. We connected the photodiode to a custom-
built operational/analog amplifier (with a gain of 50 dB, a
1 kHz high-pass filter, and a bandwidth of 2 MHz). The
same photodiode and amplifier were used in all of experi-
ments described in Sections V-VIII. The internal gain of the
photodiode was set to the highest level before saturation for
each experiment. The amplified voltage was sampled using an
NI-9223 ADC card (1M samples per second and 16 bits per

Fig. 2. Some of the devices (card reader, Raspberry Pi 3B+, Samsung Galaxy
S8, RUNMUS K8 headset, Gold Touch 8 Ports USB3.0 Slim HUB) and their
power LEDs (boxed in yellow).

sample) in the experiments described in Sections V-VII, while
in the experiments described in Section VIII we used an NI
PCI-6115 ADC card (5M samples per second and 12 bits per
sample), because the frequencies in the spectrum affected by
the attack are around 1.21 MHz. We connected the ADC to a
laptop; the digital optical traces were visualized in real time
on LabView and processed on MATLAB.

Default Setup. The photodiode was placed 2 cm away
from the victim power LED. The optical traces were obtained
from both dark and sunlit rooms (later, in Section V-E, we
show that the spectral behavior is the same in both cases),
i.e., we did not turn on the lights in the room. The optical
measurements were obtained when there was a direct line of
sight between the photodiode and the device’s power LED
and there were no physical objects between the two. Both for
readability and to save space, we consider this setup the default
for the experiments described in Sections V-VIII.

In some experiments, we changed the default experimental
setup in order to examine the influence of various factors. In
cases in which changes were made to the default experimental
setup (e.g., a distance greater than 2 cm, a room in which
fluorescent lights are on), the differences to the default setup
are noted.

Devices. We analyzed several types of devices: an embedded
device (card reader), microcontrollers (Raspberry Pi 3B+ and
4B), a smartphone (Samsung Galaxy S8), and a TV streamer
(GOtv Streamer). We also analyzed the indirect leakage from
connected peripherals (RUNMUS K8 gaming headset, Gold
Touch 8 Ports USB3.0 Slim HUB, TP-Link UE300) that do
not contain CPUs. Fig. 2 presents some of the devices.

The experimental setup, devices, and results for the ex-
periments described in Sections VI-VIII are summarized in
Table V to enable the reader to reproduce the experiments
and understand the relationship between the equipment used,
the SNR obtained, and the target devices and libraries.

V. LEAKAGE FROM POWER LEDS

In this section, we describe the analysis performed to better
understand the potential of power LEDs in the context of
cryptanalysis and the influence of various factors on the SNR
of the optical traces.
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Fig. 3. Spectrograms of power LED optical traces when injecting a 0–500 kHz
chirp into the device’s power supply. Top: Raspberry Pi 3B+ (left) and 4
(right). Bottom: USB hub splitter models Gold Touch 8 Ports USB3.0 Slim
HUB (left) and TP-Link UE300 (right).

Fig. 4. Spectrograms extracted from optical traces of a Raspberry Pi during
the execution of repetitions of: six different CPU operations (left) and big
integer multiplication of operands with various operands (right).

A. Bandwidth of a Device’s Power LED

First, we examine the response of power LEDs to changes in
the device’s supply voltage at various frequencies. The follow-
ing devices were used in these experiments: two Raspberry Pi
models (3B+ and 4B) and two USB hub splitters (Gold Touch
8 Ports USB3.0 Slim HUB and TP-Link UE300).

Experimental Setup. In each of the four experiments
performed, we connected one of the devices to a function
generator that was used to modulate a 0–500 kHz chirp (using
a 20 mV peak-to-peak sinusoidal signal) over the 5V power
supplied by the function generator to each device. Four optical
traces were obtained using the photodiode, which was directed
at the power LED of the device during the chirp.

Results. Fig. 3 presents the four spectrograms we extracted
from the traces. As can be seen in Fig. 3, although intended
to provide a binary indication regarding the state of the device
(on/off), the intensity of the power LEDs of the tested devices
provides information on the device’s power supply voltage
(with excellent frequency response, reaching 500 kHz).

One might question the cause of the correlation between
the device’s power supply and the optical leakage from the
device’s power LED. We note that various studies have already
investigated this topic and found that the intensity of LEDs
is greatly affected by the power supply level [25]. We note
that in some electrical circuits, the integrated power LED is
connected directly to the power line, and dedicated means
aimed at decoupling the optical and power correlation are
either not integrated or are integrated into the circuits but
ineffective (this is illustrated in Fig. 13 in Section IX). As
a result, the power LED provides an accurate indication of
the power supply.

B. Influence of the CPU Activity

Next, we examine the influence of repeated operations
executed by the CPU on the optical traces.

Experimental Setup. We wrote a program that executes
repetitions of the following six ARM instructions: WFI (CPU
sleep), MUL (integer multiplication), ADD (integer addition),
FMUL (floating point multiplication), main memory access
(forcing cache misses), and NOP (short-term idle). The rep-
etitions of each CPU operation lasted around 300 ms. We
installed the program and executed it on a Raspberry Pi 3B+
while obtaining optical traces.

Results. The spectrogram that we extracted from the optical
trace is presented in Fig. 4. As can be seen, the repeated
operations affect different frequencies (e.g., the repetition of
the FMUL ARM instruction affects 46 kHz, and the repetition
of the MEM ARM instruction affects 50 kHz). Based on
this experiment, we concluded that repetitions of different
operations create unique optical fingerprints in the spectrum
of the optical trace. This is due to the fact that different CPU
operations consume different amounts of power (see Fig. 14 in
Appendix A). The unique and variable power consumption of
a CPU operation, combined with the fact that the power LEDs
of various devices are connected to the power line creates a
unique optical fingerprint.

Next, we examine the influence of repetitions of operands
executed by the CPU on the optical traces.

Experimental Setup. We executed a function that imple-
ments big integer multiplication (see fproduct implementation
[26]) on a Raspberry Pi 3B+ while obtaining an optical trace.
The code executed repetitions of the function as follows: 0×0
, r×r, (where r is a random number), −1×−1, 0×r, −1×r,
and 1 × r (where r is representative of half of a normalized
Hamming weight, and −1 has a maximal Hamming weight).

Results. As can be seen in Fig. 4 which presents the
spectrogram extracted from the optical trace, the repetitions
of the execution of the big integer multiplication of different
operands create unique optical fingerprints in the spectrum of
the optical trace (e.g., there is a difference of 0.6 kHz between
0× 0 and −1× rand).

C. Influence of the Device’s Power LED

Next, we compare the optical SNR obtained from the power
LED of various devices. The experiments were performed by
installing a program that we wrote which alternates between
300 ms repetitions of integer multiplications (MUL) and 300
ms sleep operations (WFI). We will refer to this code as the
Prober code in this section. The Prober code was installed on
a Raspberry Pi 3B+, Samsung Galaxy S8, and GOtv Streamer.

Experimental Setup. We executed the Prober code on the
three devices while obtaining one optical trace directly from
the power LED of each of the three devices. In addition, three
additional optical traces were obtained from the power LED
of a USB hub (Gold Touch 8 Ports USB3.0 Slim HUB) that
was connected to each device (separately) while the devices
executed the Prober code. Finally, two additional optical traces
were obtained from the power LED of USB headphones
(RUNMUS K8 headset) that were connected to Raspberry
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Fig. 5. Optical SNR vs. distance. Fig. 6. The influence of the ambient light conditions: darkness (left), sunlight (middle), and fluorescent light (right).

TABLE II
THE OPTICAL SNR OBTAINED FROM THE VARIOUS DEVICES DIRECTLY

(FROM THEIR POWER LED) AND INDIRECTLY (FROM THE POWER LED OF
CONNECTED DEVICES).

Direct/Indirect Data Acquisition
Directly Indirectly
From the
Device’s
Power LED

From the
USB Hub’s
Power LED

From the USB
Headphones’
Power LED

Raspberry Pi 3B+ 34.8 dB 38.0 dB 30.0 dB
Samsung Galaxy S8 20.1 dB 25.5 dB -
GOtv Streamer 30.3 dB 33.97 dB 29.1 dB

Pi 3B+ and GOtv Streamer. The Samsung Galaxy does not
contain a female USB port, so we were unable to connect the
USB headphones to the smartphone.

Results. The spectrograms of the eight optical traces (and
the affected frequencies) can be seen in Fig. 15 in Appendix
A. We calculated the optical SNR obtained from the eight
optical traces by dividing the magnitude around the frequency
affected when the multiplications were executed (signal) by the
magnitude around the same frequency during sleep (noise); the
results are presented in Table II. Based on this experiment, we
concluded that: (1) The power LED of the device under attack
affects the optical SNR, since there is a difference of ∼14.7
dB in the SNR of the devices in the direct attack and ∼12.5
dB in the SNR of the devices in the indirect attack. (2) The
optical leakage is present in the optical traces obtained both
directly from the three devices examined and indirectly from
a connected peripheral (that does not perform cryptographic
operations). (3) The power LED of a connected peripheral
may amplify or reduce the optical SNR (depending on the
peripheral); in our case, the USB hub increases the optical
SNR by ∼3.2-5.4 dB, while the USB headphones decrease the
SNR by ∼0.4-4.8 dB (compared to the SNR obtained directly
from the target device).

D. Influence of Distance and Telescopes

Next, we examine how the optical SNR is affected by
the distance between the target device’s power LED and the
photodiode.

Experimental Setup. We note that the light emitted from
the power LEDs of the devices examined is too weak to
be captured from a distance using remote data acquisition
by mounting the photodiode to the telescope. However, as
was shown in the previous experiment, the connected USB
hub (Gold Touch 8 Ports USB3.0 Slim HUB) amplifies the

optical SNR, so we connected each of the two devices used
in this experiment (the GOtv Streamer and Raspberry Pi 3B+)
separately to the USB hub. We executed the Prober code on
the devices and obtained optical traces from the power LED
of the USB hub from various distances (75 cm-35 meters)
using two telescopes: Sky-Watcher Flextube 350P with a lens
diameter of 35 cm (T1) and Explore Scientific ED102 with a
lens diameter of 10.2 cm (T2).

Results. We calculated the SNR from the optical traces;
the results are presented in Fig. 5. In this experiment, we
concluded that: (1) With a connected peripheral, the optical
leakage from a device can be captured from a distance. In our
case, the optical leakage can be captured from the power LED
of the USB hub from a distance of 15-35 meters (depending
on the connected device). (2) A telescope with a greater lens
diameter yields a higher SNR due to the fact that it can capture
more light from the device’s power LED.

E. Influence of Ambient Light

Next, we examine how the optical SNR is affected by
ambient light in two types of optical data acquisition: (1) close
data acquisition in which the photodiode is placed 2 cm away
from the power LED, and (2) remote data acquisition in which
the photodiode is mounted to a telescope.

Experimental Setup. We connected a USB hub (Gold
Touch 8 Ports USB3.0 Slim HUB) to a Raspberry Pi 3B+.
Note that we obtained optical traces from the USB hub and
not from the Raspberry Pi, because the Raspberry Pi’s power
LED is too weak to be captured from a distance greater than 5
meters, whereas the USB hub provides a higher optical SNR.
We executed the Prober code on the Raspberry Pi and obtained
optical traces from the power LED of the connected USB hub
in three environmental settings: a dark room (0 lux), a room
lit by fluorescent tubes (365 lux), and a sunlit room (2500
lux). In each of the three settings, two optical traces were
collected, by directing the photodiode at the power LED from
2 cm away and by mounting the photodiode to a telescope
(Explore Scientific ED102) located 10 meters away from the
USB hub.

Results. The FFT graphs of the optical traces obtained in
the three ambient light conditions (darkness, sunlight, and
fluorescent light) via a telescope placed 10 meters away from
the power LEDs are presented in Fig. 6. As can be seen from
the FFT graphs, the spectral behavior of the traces obtained in
darkness and sunlight is similar and contains one significant
peak around 51 kHz (the result of the optical leakage, which is



vi

TABLE III
THE INFLUENCE OF AMBIENT LIGHT AND DATA ACQUISITION ON THE

OPTICAL SNR.

Ambient Light

Darkness Room Lightning
(Fluorescent) Sunlight

Data Acquisition 0 Lux 365 Lux 2500 Lux
Close (2 cm) 37.1 dB 37.6 dB 37.2 dB
Remote via a
telescope (10 meters) 21.67 dB 22.19 dB 21.69 dB

associated with the activity triggered by the Prober code). The
spectral behavior of the optical trace obtained in fluorescent
light differs from the other two traces and contains additional
noise (unrelated to the CPU activity) around 87 kHz and
174 kHz, which is associated with the subtle changes in the
intensity of the light emitted from the fluorescent tubes. In
this experiment, we concluded that artificial ambient light
(e.g., produced by fluorescent tubes) that affects the spectral
behavior of the optical trace may influence an attacker’s
ability to perform cryptanalysis. This can happen in cases in
which the activity triggered by the cryptographic computations
affects the same frequencies as those affected by the optical
noise added to the spectrum by the artificial ambient light.

Next, we analyzed the optical traces and calculated the SNR
around 51 kHz (the frequency that was affected by the activity
triggered by the Prober code). Table III presents the results.
Here, we concluded that when the frequencies in the optical
spectrum that are affected by the CPU activity (in our case,
51 kHz) do not intersect with the noise added to the optical
spectrum by the artificial light produced by light bulbs (in our
case 87 kHz and 174 kHz), the level of the ambient light does
not affect the optical SNR in close data acquisition (in this
case, there is a change of up to 0.5 dB in the SNR, which is
a reasonable sampling error) or remote data acquisition (there
is a change of up to 0.48 dB in the SNR, which again is a
reasonable sampling error).

F. Influence of Glass Placed Between the Photodiode and the
Power LED

Next, we examine how the optical SNR is affected by
the presence of glass (i.e., a window) placed between the
photodiode and a device’s power LED.

Experimental Setup. We connected the Raspberry Pi 3B+
to the USB hub and mounted the photodiode to a telescope
(Explore Scientific ED102) and placed the telescope in three
locations (30 cm, 3.5 meters, and 7 meters away from the
USB hub). We compare the SNR obtained in three settings:
(1) the baseline setting where there is no window between
the photodiode and the power LED, (2) when there is a
window consisting of single-layer transparent glass between
the photodiode and the power LED, and (3) when there is a
window consisting of double-layer transparent glass between
the photodiode and the power LED. We executed the Prober
code on the Raspberry Pi while obtaining optical traces from
the power LED of the connected USB hub from the three
distances in the three settings via a telescope.

Results. We calculated the SNR around the affected fre-
quencies of the optical traces; the results are presented in Fig.

Fig. 7. The influence of a window placed between the photodiode and power
LED on the optical SNR (left) and the influence of the ripple of the power
supply on the SNR of the optical and power traces (right).

7). For the distances examined, the SNR in the setting with a
window consisting of single-layer transparent glass decreases
by ∼1.5-5.5 dB (compared to the baseline setting), while
the SNR in the setting with a window consisting of double-
layer transparent glass decreases by ∼4-9 dB (compared to
the baseline setting). Based on this experiment, we concluded
that the presence of a window consisting of double-layer
transparent glass between the photodiode and the power LED
(when obtaining optical traces remotely) decreases the optical
SNR of the optical traces by one order of magnitude due to the
double scattering of the light that is caused by the double-layer
glass.

G. Influence of the Power Supply’s Ripple

Next, we examine how the optical SNR is affected by the
ripple (peak-to-peak variations) of the power provided by the
power supply.

Experimental Setup. We conducted four experiments, each
using a different type of power supply: the original power
supply of the Raspberry Pi: DSA-13PFC-05 (5.1V, 2.5A); two
additional types of 5V power supplies: HNT-S520 (5V,2A) and
TC09iG (5V,1A); and a professional dual DC power supply:
DHR-3652 (40V,3A). The power supplies are presented in
Fig. 16 in Appendix A. In each experiment, we connected
a different power supply to the same Raspberry Pi 3B+ and
executed the Prober code. We obtained power traces from the
power supply by connecting pin 2 (the input voltage) of the
Raspberry Pi to the ADC (to avoid causing an affect on the
Raspberry Pi’s power consumption). In parallel, we obtained
optical traces from the photodiode that was directed at the
Raspberry Pi’s power LED.

Results. The four power traces were used to compute the
ripple of the associated power supplies by calculating the peak-
to-peak voltage. For the four calculated peak-to-peak values,
we computed the associated optical SNR from the associated
optical trace; the results are presented in Fig. 7). As can be
seen from the results, the SNR calculated from the power
traces is similar to the SNR calculated from the optical traces.
We concluded that the ripple of the power supply greatly
affects the optical SNR, as higher peak-to-peak variation in
the voltage of the power supply yields a higher SNR in the
power traces, which in turn results in a higher SNR in the
optical traces.
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TABLE IV
COMPARISON OF THE OPTICAL SNR OBTAINED FROM VARIOUS DEVICES
RUNNING THE VULNERABLE CRYPTOGRAPHIC LIBRARIES TARGETED BY

[11–13].

Devices
Raspberry

Pi 3B+
Samsung

Galaxy S8
Libgcrypt 1.8.4 30.7 24.8
PQCrypto-SIDH 3.4 32.5 26.6
GnuPG 1.4.13 23.5 -

H. Influence of the Cryptographic Library

Next, we examine how the optical SNR is affected by the
cryptographic library installed on the target device.

Experimental Setup. We compare the optical SNR ob-
tained from the cryptographic computations performed by
three cryptographic libraries installed on a Samsung Galaxy
S8 and Raspberry Pi 3B+: (1) Libgcrypt, (2) GnuPG, and
(3) PQCrypto-SIDH. We obtained optical traces by directing
the photodiode toward the two devices’ power LEDs while
replicating three cryptanalytic side-channel attacks, aiming to
recover a 256-bit ECDSA key from Libgcrypt 1.8.4 (replicat-
ing the attack in [11]), a 378-bit SIKE key from PQCrypto-
SIDH 3.4 (replicating the attack in [13]), and a 4096-bit RSA
key from GnuPG 1.4.13 (replicating the attack in [12]).

Results. We calculated the optical SNR for the six optical
traces; the results are presented in Table IV. As can be seen in
the results presented in Table IV, the target library under attack
greatly affects the optical SNR, due to the fact that: (1) there
is a difference in the SNR obtained from the Raspberry Pi,
depending on the library used (there is up to ∼7.2 dB variation
in the SNR), and (2) in the case of the Samsung Galaxy
and GnuPG, the optical traces do not contain any leakage
associated with the attack (i.e., the attack in [12] cannot be
applied optically against GnuPG 1.4.13); we note, however,
that leakage associated with the attack does not appear in the
power trace we collected for this experiment, and therefore
this is not a limitation of the optical channel.

VI. RECOVERING ECDSA KEYS

In this section, we recover a 256-bit ECDSA private key
from various devices.

As observed in the original papers on the Minerva attack
[11] and TPM-FAIL [27], many cryptographic libraries op-
timize the ECDSA signing computation time by running a
variable number of loop iterations (which is determined by
the number of leading zeros in the nonce) instead of a fixed
number of iterations. As a result, the signing times of a set of
ECDSA signatures can be used to extract the target’s private
key by using lattice techniques (the signatures whose nonces
have many leading zeros are used to construct a hidden number
problem, which is reduced to a shortest vector problem and
solved using lattice reduction; see [11] for details).

A. Identifying ECDSA Operations

First, we show that optical traces obtained from the power
LED of various devices can be used to distinguish between dif-
ferent ECDSA signatures using spectral analysis. We targeted

Fig. 8. Recovering the ECDSA keys. Experimental setup (top): A photodiode
is directed at the power LED of a card reader (from 2 cm away) and a view
of the Gold Touch 8 Ports USB3.0 Slim HUB (which is connected to the
Raspberry Pi) through the telescope placed 25 meters away. Optical leakage
(middle): The associated spectrograms extracted from optical traces during
ECDSA sign operations followed by sleep. Results (bottom): The associated
heat maps of the estimated execution times of ECDSA signatures as a function
of the number of leading zero bits in the nonce.

two devices: (1) a Raspberry Pi 3B+ (with the Libgcrypt 1.8.4
library installed), powered by a USB hub splitter (Gold Touch
8 Ports USB3.0 Slim HUB), and (2) an Athena IDProtect
smartcard inserted into a card reader which was connected
to a laptop via a USB cable. We note that the ECDSA imple-
mentation that we targeted in Libgcrypt 1.8.4 is the secp256r1
curve (with random ECDSA nonces and hash function SHA-
256). We do not know which cryptographic library is installed
on the smartcard.

The experimental setups for the two experiments described
in this section, which were performed in order to obtain optical
traces from the power LED of each device, are summarized
in Table V and can be seen in Fig. 8 (top). We note that
the primary difference between the two experimental setups
was the distance: We obtained the optical traces from the
power LED of the USB hub from a distance of 25 meters
(by mounting the photodiode to a telescope), and we obtained
the optical traces from the power LED of the smartcard reader
from 2 cm away.

We conducted two experiments, one for each device. In
each experiment we obtained optical traces during five sign
operations that were performed on random messages and were
separated by sleep operations of 40 ms.

Results. Fig. 8 (middle) presents the spectrograms extracted
from the two optical traces. The optical leakage associated
with the sign operations appears at around 49.6 kHz for
the Raspberry Pi and around 266.6 kHz for the smartcard
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TABLE V
EXPERIMENTAL SETUP FOR THE EXPERIMENTS DESCRIBED IN SECTIONS VI-VIII

Recovered Key 256-bit ECDSA Key 4096-bit RSA Key 378-bit SIKE Key
Section Appendix Section VI Section VII Section VIII

Exp.
Setup -
Victim’s

Side

Library Libgcrypt 1.8.4 Unknown GnuPG 1.4.13 PQCryptoSIDH 3.4
Victim Device

(that contains the key) Raspberry
Pi 3B+

Raspberry
Pi 3B+

Raspberry
Pi 3B+

Athena ID
Protect smartcard Raspberry

Pi 4B
Samsung

Galaxy S8
Victim

Power LED

A connected Gold
Touch 8 Ports

USB3.0 Slim HUB

A connected
RUNMUS K8

gaming headset
card reader

Exp.
Setup -

Attacker’s
Side

ADC (model) NI-9223 NI-9223 NI-9223 NI-9223 NI-9223 NI PCI-6115
Photodiode (model) PDA100A2

Photodiode
Internal Gain 40 dB 10 dB

Amplifier
External Gain Operational/Analog Amplifier 50 dB

Sampling Rate 1 MHz 1 MHz 1 MHz 1 MHz 200 kHz 5 MHz
Distance 2 cm 25 meters 2 cm 2 cm 2 cm 2 cm

Telescope - Sky-Watcher
Flextube 350P - - - -

Properties
of the
Attack

Cryptanalytic
Attack Minerva Acoustic

Cryptanalysis Hertzbleed

Number of
Traces

Collected

7,000
(used: 5,325

filtered: 1,675)

22,000
(used: 6,051

filtered: 15,949)

11,000
(used: 5,743

filtered: 5,257)

7,000
(used: 6,862
filtered:138)

1,024
(20 additional traces
for error detection)

378
(each consists of

400 SIKE operations)
Affected

Frequencies
Sign: 99.5 kHz
Sleep: 87.5 kHz

Sign: 49.6 kHz
Sleep: 47.8 kHz

Sign: 49.6 kHz
Sleep: 47.8 kHz Sign: 266.6 kHz 22-26.5 kHz Decapsulate: 1.21 MHz

Sleep: 1.17 MHz
Optical SNR [dB] 24 dB 24.9 dB 25.6 dB 30 dB 26.4 dB 28.5 dB

reader. Interestingly, while the optical leakage associated with
the sleep operations affected the 47.8 kHz frequency in the
optical trace obtained from the USB hub, the optical leakage
associated with the sleep operations did not affect any specific
frequency in the optical trace obtained from the smartcard
reader. In both cases, the sign operations can be distinguished
using spectral analysis.

B. ECDSA Key Recovery

We now demonstrate the recovery of a 256-bit ECDSA key
by applying the Minerva attack against the two devices. We
wrote code that triggers ECDSA sign operations followed by
a 40 ms sleep operation. In the first experiment, we obtained
optical traces of 22,000 different ECDSA sign operations per-
formed by the Raspberry Pi from a distance of 25 meters from
the power LED of the USB hub. In the second experiment,
we obtained optical traces of 7,000 different ECDSA sign
operations performed by the smartcard from a distance of 2
cm from the power LED of the smartcard reader.

Signal Processing. First, we describe the technique we used
to process the optical traces obtained from the USB hub; later
in this section we describe the modifications we made to the
technique for its use on the optical traces obtained from the
smartcard reader. We performed short-time Fourier transform
(STFT) with a window of 7.5 ms and an overlap of 50%
on each trace. We divided the optical trace, which consisted
of 22,000 sign operations, into short traces (each associated
with one sign operation), by identifying the sections in which
the magnitude of the frequency bin associated with the sleep
operation (∼47.8 kHz) is greater than the magnitude of the bin
associated with the sign operation (∼49.6 kHz) for at least 30
ms (the sleep operations were 40 ms long). Each of the 22,000
short traces consisted of a sign operation followed by 5-10 ms
of sleep, since we added an extra window at the beginning and
end of each trace.

Next, for each trace we performed the following steps to
estimate the execution time: (1) We applied STFT with a
window of 0.75 ms and an overlap of 90% on the traces.
(2) We located the sign operation in the trace, by detecting
the sections in the trace in which the magnitude of the bin
associated with the sign operation (∼49.6 kHz) is greater than
the magnitude of the bin associated with the sleep operation
(∼47.8 kHz). (3) Because of errors, more than one section
can satisfy the abovementioned condition (i.e., two or more
different sections that are separated by some windows are
located in the same trace). In order to correct such errors,
we used an error tolerance threshold of two windows (i.e., if
two consecutive sections were separated by only two windows,
we merged them into a single section). (4) Traces that yielded
more than one sign section that satisfied the abovementioned
condition were filtered out after the second step. (5) The
estimated execution time of the sign operation was calculated
based on traces with a single section associated with an
ECDSA operation. After filtering, 6,051 signatures remained,
along with the estimates of their ECDSA execution time from
the optical traces obtained from the USB hub.

We used the same technique described above to process the
optical traces obtained from the 7,000 sign operations from the
smartcard reader’s power LED, with one minor modification.
Since the sleep operations of the optical traces were not
mapped to a specific frequency in the spectrum (as opposed
to the case of the USB hub), we detected the sleep operations
based on the magnitude associated with the frequency of the
sign operations (266.6 kHz); a low magnitude is indicative of
the sleep operations, and a high magnitude is indicative of
the sign operations. After filtering, 6,862 signatures remained,
along with the estimates of their ECDSA execution time from
the optical traces.

Results. The heat maps in Fig. 8 (bottom) show the esti-
mated execution time of the ECDSA signatures (based on the
optical traces) vs. the number of leading zeros in the nonces of
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the signatures for each device. As can be seen, the signatures
that were estimated to have the shortest ECDSA operation
execution time (based on the optical traces) have nonces with
many leading zeroes (as expected).

We used Minerva’s cryptanalysis script [28] to perform
lattice-based key extraction on each device by creating two
datasets (one for the Raspberry Pi and one for the smartcard).
Each dataset consists of the associated ECDSA public key,
messages, signatures, and corresponding ECDSA execution
times, as estimated from the optical traces obtained in the
associated experiment. We executed Minerva’s cryptanalysis
script twice on a laptop computer (once for each dataset asso-
ciated with a device), and recovered the two 256-bit ECDSA
secret keys (in approximately two minutes per execution).

In Section XIII (the appendix), we demonstrate the direct
application of the Minerva attack, targeting a Raspberry Pi
3B+, by obtaining optical traces from its power LED, and an
indirect application of the attack, by obtaining optical traces
from the power LED of USB headphones that were connected
to the Raspberry Pi 3B+.

VII. RECOVERING RSA KEYS

In this section, we describe the recovery of a 4096-bit RSA
signing key from a Raspberry Pi.

In [7, 12], the authors demonstrated a 4096-bit RSA key
extraction attack from GnuPG 1.4.13, by decrypting a series
of adaptively chosen ciphertexts, where each cipher is used to
recover a single bit of the RSA secret prime q (or p), starting
with the most significant bit (MSB). For each bit qi of q,
the attacker crafts a cipher that will reveal the i-th bit (qi)
when decrypted by the target. The acoustic fingerprint was
then used by the attacker to determine the value of the bit by
using spectral analysis (see [7, 12] for more details).

A. Identifying RSA Operations

First, we show that optical traces obtained from the power
LED of a Raspberry Pi 4B (with the GnuPG 1.4.13 library
installed) can be used to distinguish between different RSA
decryptions by using spectral analysis. We drew a private
and public key (n = 4096) and executed code that triggers
three RSA decryptions with three different ciphers followed
by sleep operations of 300 ms and obtained an optical trace
from the power LED of the Raspberry Pi 4B during the code’s
execution. Table V summarizes the experimental setup used to
obtain the optical trace/s in the experiments described in this
section; the setup can also be seen in Fig. 9.

Results. Fig. 9 presents the spectrogram extracted from
the optical trace. The optical leakage associated with the
decryptions of the three ciphers appears around 23 kHz and
is separated from the optical leakage associated with the sleep
operations which appears around 47 kHz. Clearly, the three
RSA decryptions can be distinguished from sleep operations
by using spectral analysis of the optical trace.

B. Distinguishing Bits of the Secret Prime

We now show that the two cases of qi = 0 and qi = 1 yield
different optical fingerprints which can be used to distinguish

Fig. 9. Recovering RSA keys. Left: A photodiode directed at the power
LED of a Raspberry Pi 4B. Right: A spectrogram with three RSA decryption
operations.

Fig. 10. Spectrograms extracted from optical traces obtained from the power
LED of a Raspberry Pi 4B when the zero bit (qi = 0) is under attack (left)
and when the one bit (qi = 1) is under attack (right).

between 0/1 bits of q. An index of the prime number q
containing a zero bit and another index containing one bit were
selected. We created a shell script which executes decryption
operations on the two ciphers needed to attack the two indexes
of the prime number q (the ciphers were created according to
the details provided in [12]). The two optical traces from the
Raspberry Pi’s power LED were obtained while we executed
the code and triggered decryptions.

Results. Fig. 10 presents the spectrograms extracted from
the optical traces obtained. Clearly, the optical fingerprints
when the attacked bit is qi = 0 vs. qi = 1 can be distinguished
based on their spectral behavior.

C. RSA Key Recovery

We now recover a 4096-bit RSA key by recovering the bits
of q using an adaptively chosen cipher attack.

Experimental Protocol and Signal Analysis. The recovery
of bits of prime number q was performed based on qi (the
index under attack):
q2047 For the MSB, we created the profiles for a zero bit and

one bit under attack. The profiles for qi = 0 and qi = 1 were
created by obtaining the optical traces of the decryptions of
the ciphers 0xfff..fff and 0x7ff...fff , respectively (the
same ciphers used in the original paper [12]). The value of
q2047 was determined to be one, since we know that the MSB
of prime number q is set to one in order to ensure a high prime
number
q2046 - q2027 The ciphers were created by placing the i− 1

MSB bits recovered in the MSB indexes of the cipher Ci,
setting the ith bit of Ci to zero, and setting the remaining
LSB (least significant bit) indexes of Ci to one. For each qi,
we triggered the decryption of Ci and obtained the optical
trace. We extracted the signal that was associated with the
decryption operation from the trace and appeared between
the two sleep operations, by identifying the section between
the optical leakage associated with the sleep operations (47
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kHz). We divided this signal into two halves. The analysis
was performed on the second half of the signal, which is
associated with the modulo q exponentiation. We extracted
argmax22−26.5KHz(FFTCi

), which is the frequency with
the highest magnitude in the second half of the signal in
the spectrum of 22-26.5 kHz (the spectrum associated with
leakage of q). We also extracted argmax22−26.5KHz(FFTP0

)
and argmax22−26.5KHz(FFTP1), the frequencies with the
highest magnitude in the zero (P0) and one profile (P1)
associated with the last index that was classified respectively as
zero/one. We determined the value of qi by finding the profile
(among P0 and P1) closest to argmax22−26.5KHz(FFTCi

)
using the Euclidean distance.

q2026 - q1911 We created the ciphers and extracted the
signals associated with the modulo q exponentiation us-
ing the process described above for the case of q2046
- q2027. We calculated argmax22−26.5KHz(FFTP0

) and
argmax22−26.5KHz(FFTP1

) by averaging the argmax val-
ues of the signals of the last five bits associated with the
corresponding zero/one bit. The value of qi was determined
as described above for the case of q2046 - q2027. Note that we
stopped this operation after determining the value of q1911,
because the Euclidean distance between the two profiles in
index 1911 decreased to 250 Hz which we consider a low
margin for the decision.

q1910 − q1789 The ciphers were created by placing the i−1
MSB bits recovered in the MSB indexes of the cipher Ci,
setting the ith bit of Ci to one and setting the remaining LSB
indexes of Ci to zero. We extracted the signals associated with
the modulo q exponentiation as described above for the case
of q2046 - q2027. Note that in this case, we created the zero/one
profiles by decrypting the bits in indexes 1911−1931 with 20
new ciphers that we created as described in this case (the bits
of those indexes were already extracted, as described above
for the case of q2026 - q1911). We determined the value of
qi as described for q2046 - q2027. Note that we stopped this
operation after determining the value of q1789, because the
Euclidean distance between the two profiles (P0 and P1) in
index 1789 decreased to 250 Hz which we consider a low
margin for the decision.
q1788 − q1024 We created the ciphers and extracted the sig-

nals associated with the modulo q exponentiation as described
above for the case of q2046 - q2027. Note that we created
the zero/one profiles (P0 and P1) by decrypting the bits in
indexes 1809 − 1789 with 20 new ciphers that we created
as described for q2046 - q2027 (the bits of those indexes
were already extracted as described above for the case of
q1910 − q1789). We calculated argmax22−26.5KHz(FFTP0)
and argmax22−26.5KHz(FFTP1

) by averaging the argmax
values of the signals of the last five bits associated with the
corresponding zero/one bits. We determined the value of qi as
described above for the case of q2046 - q2027.

Results. We recovered the 1,024 most significant bits of
the secret q (with just one error that we detected and corrected
using a dedicated error detection algorithm) which is sufficient
for recovering the entire RSA private key via Coppersmith’s
attack [29, 30].

VIII. RECOVERING SIKE KEYS

In this section, we recover a 378-bit Supersingular Isogeny
Key Encapsulation (SIKE) key from a Samsung Galaxy S8.

As seen in the Hertzbleed attack [13], the SIKE implementa-
tion in PQCrypto-SIDH leaks information regarding the bits of
the SIKE key due to an Intel mechanism, dynamic voltage and
frequency scaling (DVFS), which under certain circumstances
can be exploited by an attacker to induce variations in the
CPU frequency by overloading the CPU with computations.
This results in differences in the execution times associated
with the data processed; these differences can be amplified
to a distinguishable level (at a granularity of milliseconds)
by overloading the CPU using a large number of operations
executed in parallel (see [13] for details).

The Hertzbleed key extraction attack targets the static secret
key, an integer m with bit expansion m = (ml−1, ...,m0)2,
where l = 378 (for SIKE-751). During the decapsulation
operation, the code computes P+[m]Q for elliptic curve points
P and Q included in the ciphertext, using the Montgomery
three-point ladder. Based on m0,...,mi−1 (the i-th LSBs of
m), an attacker can construct points P and Q such that if
mi ̸= mi−1, then the (i+1)st round of the Montgomery three-
point ladder produces an anomalous zero value. Once that
anomalous zero value appears, the decapsulation algorithm
gets stuck, and every intermediate value produced for the
remainder of the ladder is zero. If mi = mi−1, or if the
attacker was wrong about the i-th LSB of m when constructing
the challenge ciphertext, then the (i+1) round generates a non-
zero value. Heuristically, the remainder of the computation
proceeds without producing an anomalous zero value (except
with negligible probability).

When mi ̸= mi−1 and the decapsulation algorithm gets
stuck, repeatedly producing and operating on zero values, the
processor consumes less power and runs at a higher steady-
state frequency (and therefore decapsulation takes a shorter
amount of time). Hertzbleed exploits this observation and
amplifies the effect of the time difference to recover bits by
triggering a large fixed number of encapsulation operations
for the secret key’s bit under attack and determining whether
mi = mi−1 or not, based on a timing threshold.

A. Identifying SIKE Operations

First, we show that the optical leakage from the power LED
of a Samsung Galaxy S8 (with the PQCrypto-SIDH 3.4 [31]
library installed) can be used to distinguish between different
SIKE decapsulation operations by analyzing optical traces in
the frequency domain. The experimental setup is summarized
in Table V and can be seen in Fig. 11. We ran 800 SIKE
operations, which were divided into eight iterations; in each
iteration, 100 SIKE operations were executed with the same
private key on 100 threads spawned concurrently (as done
in the case of Hertzbleed [13]). Every four iterations were
followed by a one second sleep operation.

Results. Fig. 11 presents the spectrogram extracted from
the optical trace. The optical leakage associated with the 800
SIKE operations executed over eight iterations appears around
1.21 MHz and is separated from optical leakage associated
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Fig. 11. Recovering SIKE keys. Left: Experimental setup. A photodiode is
directed at a Samsung Galaxy S8’s power LED. Right: Spectrogram extracted
from an optical trace during eight consecutive iterations (each with 100 SIKE
operations).

Fig. 12. Left: A histogram of the execution time of each iteration calculated
based on 912 iterations (each iteration consists of 100 encapsulation opera-
tions). Right: A histogram of the 304 median values of the same execution
times (the median value of the three iterations is presented).

with the sleep operations which appears around 1.187 MHz.
Clearly, the SIKE iterations can be distinguished from sleep
operations.

B. Distingushing mi ̸= mi−1 and mi = mi−1

We now examine whether the behavior (the time difference)
on the x86 architecture reported in the original paper on
Hertzbleed [13] is also seen on the ARM architecture of the
Samsung Galaxy S8. We downloaded the code published in the
Hertzbleed repository [32], installed the code on the Samsung
Galaxy S8, and used it to examine whether the time difference
is observable on the smartphone. We analyzed the Samsung
Galaxy S8’s CPU’s execution time for each decapsulation
operation. In our experiments, we used the same eight SIKE-
751 keys used by the authors of the Hertzbleed paper. For
each key m = (ml−1, ...,m0)2, we uniformly targeted 38
bit positions: 7, 17, 27,...,377. For each of the bit positions,
we executed a series of 400 SIKE operations, divided into
four iterations, where in each iteration 100 SIKE operations
were executed on 100 threads spawned concurrently. Overall,
we executed 121,600 SIKE operations that consisted of 1,216
iterations (each of which consists of 100 SIKE operations).

Results. For each bit, we only used the last three iterations
(which consist of 300 SIKE decapsulation operations) and
disregarded the first iteration (which consists of 100 SIKE de-
capsulation operations), since we found that the first iteration
is unstable and is mainly used to overload the CPU in order
to trigger stable execution differences associated with the data
processed in the next three iterations. As a result, 25% of the
measurements were filtered out; then, the execution time for
each of the 912 iterations was calculated. The distribution of

the 912 iterations’ execution times calculated from the CPU
measurements is presented in Fig. 12. The execution times in
red represent cases of a switch (mi ̸= mi−1), with a mean
= 3.405 and STD = 0.0111, and the execution times in blue
represent cases of a non-switch (mi = mi−1), with a mean =
3.417 and STD = 0.0106.

Clearly, the behavior (the time difference) reported in the
Hertzbleed paper [13] on the x86 architecture is also ob-
servable on the ARM architecture at the granularity of a
series of 100 consecutive operations, with a threshold of 3.41
seconds that differentiates the switch cases from the non-
switch cases. However, as can also be seen in Fig. 12, a
negligible number of 35 SIKE iterations (which corresponds
to 3.8% of the iterations) crossed the threshold (3.14 seconds),
meaning that an algorithm used to distinguish between the two
cases based on this threshold will misclassify some bits. In
order to handle the expected errors, we calculated the median
execution iteration time of the three iterations associated with
each bit. The histogram created from the 304 median values
of the iterations is presented in Fig. 12 and differentiates the
switch cases from the non-switch cases without any errors.

C. SIKE Key Recovery

Finally, we demonstrate the recovery of a 378-bit private
key from the SIKE-751 implementation, using optical traces
obtained from a Samsung Galaxy S8’s power LED, in a series
of adaptively chosen ciphertext attacks. The experimental
setup is summarized in Table V and can be seen in Fig. 11.

Experimental Protocol. For each index i of the private
key we wanted to recover, we created a dedicated input Mi

(as described in the paper presenting Hertzbleed [13] using the
i−1 bits already recovered). We used Mi to trigger 400 SIKE
operations, which were divided into four iterations, where in
each iteration 100 consecutive SIKE operations were triggered
with Mi and executed using 100 threads. This process was
repeated iteratively for all 377 indexes; first we calculated the
value of the ith bit, and then we created Mi+1.

Processing the Signal. We divided the optical trace that
consists of the four iterations (which were used to recover the
i-th bit) into four traces based on the leakage, which is asso-
ciated with the transitions from a higher to lower frequency
between each iteration (this appears around 1.21 MHz, as seen
in Fig. 11). Based on the observation we made earlier, we
only used the last three traces associated with the last three
iterations (consisting of 300 SIKE decapsulation operations)
and disregarded the first trace associated with the first iteration
(consisting of 100 SIKE decapsulation operations). For each of
the three traces, we applied STFT and estimated the execution
time of the associated iteration by analyzing the STFT bin
associated with the SIKE optical leakage around 1.21 MHz
(see Fig. 11).

Results. First, we note that we guessed that the value of the
first index of the key (where j = 0) would be zero. According
to the Hertzbleed paper, an incorrect guess/prediction of the
value of the key in any index n (where 0 ≤ n ≤ 377)
will create 377 − n consecutive non-switch cases (i.e., no
anomalous zero will appear from this point on). In our case,



xii

Fig. 13. Circuits that leak information via their power LED (a). Counter-
measures using a capacitor (b), an additional OPAMP (c), and an existing
OPAMP (d).

we verified that our guess for the first index was correct by
using the next bit index (where j = 1) which was predicted
as a switch case. For each index j (where 1 ≤ j ≤ 377), we
calculated the median value from the three estimated execution
times. A threshold of 3.41 seconds was used to distinguish
between the switch and non-switch cases (determined based on
the median values). We note that the median values estimated
for two of the predicted indexes (indexes 274 and 276) were
within the range of 3.409-3.411. Since we considered those
median values as vulnerable to errors (due to their proximity to
the threshold), we resampled those indexes again by repeating
the process described above for the corresponding bits, i.e.,
we triggered an additional 400 SIKE operations for each bit
(as described above) and used the new measurements instead
of the previous measurements. The 378 bits of the key were
recovered without any errors.

IX. COUNTERMEASURES

Manufacturer-Side Methods. In many devices, the power
LED is connected directly to the power line of the PCB
(see Fig. 13a). As a result, the device’s power LED is
affected by the power consumption fluctuations that occur
when cryptographic operations are performed. To counter
this phenomenon, a few approaches should be considered by
hardware manufacturers: (1) Using a capacitor: A capacitor
can be integrated parallel to the power LED indicator; in
this case, the capacitor would behave as a low-pass filter
(see Fig. 13b). This is an inexpensive solution for reducing
the fluctuations. (2) Using an operational amplifier (OPAMP):
This can be implemented by integrating an OPAMP between
the power line and the power LED (see Fig. 13c) or by using
an existing GPIO port of an integrated microcontroller as a
power supply for the power LED (see Fig. 13d). In both cases,
this will eliminate power line AC fluctuations by a factor of
the OPAMP amplifier’s common mode rejection ratio.

Consumer-Side Methods. The attack can also be prevented
by placing black tape over a device’s power LED. While this
solution decreases a device’s UX, it prevents attackers from
obtaining traces from vulnerable devices.

X. LIMITATIONS

Line of Sight. Attackers must establish a line of sight to a
power LED in order to obtain optical traces.

Variable SNR. Various factors may contribute to the deteri-
oration of the SNR of the optical traces: the distance between

the photodiode and the power LED (light deteriorates with
distance), the power LED of the device under attack (see Table
II), the target library under attack (see Table IV), and the type
of power supply used (see Fig. 7). We note, however, that
attackers can improve the SNR by increasing the sensitivity
of the equipment used to obtain the optical traces by adding
external amplifiers or using a more sensitive photodiode, a
higher resolution ADC, or a telescope and zooming lens to
capture more light (see Fig. 5).

Sampling Rate. While LEDs are highly responsive and
can provide a high bandwidth [23], in our experiments we
found that the photodiode chosen could limit the sampling
rate. For example, the $300 photodiode we used (the Thorlabs
PDA100A2) supports a maximum sampling rate of just 11
MHz. With this limited sampling rate, we were able to recover
keys from devices with CPU rates of up to a few GHz (e.g.,
Samsung Galaxy S8). A more advanced photodiode is required
to recover cryptographic keys from devices with higher CPU
rates (e.g., servers and laptops).

Distance. In this study we recovered a secret key from a
Raspberry Pi using optical traces obtained from a connected
peripheral (i.e., a USB hub) from a distance of 25 meters.
However, the optical leakage from the power LEDs of the
devices examined in this paper is too weak to be captured
from a distance greater than 5 meters. This limits the ability
of attackers to recover a secret key from a distance in cases
in which a peripheral is not connected to the target device.

XI. DISCUSSION & FUTURE WORK

We note that the contribution of our paper relates to the
attack vector and not to the discovery of a new cryptographic
vulnerability. While demonstrated on known cryptanalytic
side-channel attacks, the new attack vector can be used to
facilitate new cryptanalytic side-channel attacks.

We disclosed our findings to the manufacturers of the
devices used in our study via their bug bounty programs
and contact us email addresses. Raspberry Pi and Samsung
responded to our email and asked us for more details which we
shared with them. We recommend that other hardware manu-
facturers empirically test whether their devices are vulnerable
to optical cryptanalysis and if needed, redesign their electrical
circuits (according to the suggestions provided in Section
IX) in order to prevent attackers from performing optical
cryptanalysis against their devices. We are, however, uncertain
whether they will choose to do so, as some solutions may
increase the manufacturer’s overall cost, decreasing revenue
or requiring the manufacturer to increase the product’s price.
While the cost of our countermeasures might seem negligible,
the addition of a component to prevent the attack could cost a
manufacturer millions of dollars, since such devices are often
mass-produced. Given the cost-driven nature of consumers and
the profit-driven nature of manufacturers, mitigations are not
always applied. This fact may leave many devices vulnerable
to optical cryptanalysis.

In this study, we used the Thorlabs PDA100A2 photodiode
which supports a maximum sampling rate of 11 MHz. In future
work, we suggest using a high-end photodiode that supports
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a sampling rate of a few GHz to examine whether optical
leakage can be used to (1) detect a single CPU operation, and
(2) detect the Hamming weight of an operand based on a single
CPU operation. Future work could also focus on examining
the effectiveness of the countermeasures suggested in Section
IX on the SNR of the optical traces.
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XII. APPENDIX A: ADDITIONAL MATERIAL

Fig. 14. A power trace obtained from a Raspberry Pi during the execution of
six repeated CPU operations visualized in the time domain (top) and in the
spectrum (bottom).

Fig. 15. Spectrograms obtained from various devices while running the Prober
code that alternates between sleep operations (boxed in purple) and repeated
MUL operations (boxed in red).

Fig. 16. Top: The four power supplies used. Bottom: The power traces
obtained from them.

XIII. APPENDIX B: ECDSA KEY RECOVERY FROM
RASPBERRY PI 3B+ AND RUNMUS K8 GAMING

HEADSET

In this section, we demonstrate the application of the Min-
erva attack [11] to recover a 256-bit ECDSA private key from
the implementation of secp256r1 curve (with non-deterministic
ECDSA nonces and hash function SHA-256) by obtaining
optical measurements from the power LED of a Raspberry
Pi 3B+. We also demonstrate this attack by obtaining optical
measurements from the power LED of USB headphones
(RUNMUS K8 gaming headset) that were connected to the
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Raspberry Pi.

Fig. 17. Recovering the ECDSA key from a Raspberry Pi 3B+. Left:
Experimental setup. Right: The estimated execution time of 5,325 ECDSA
sign operations (calculated from the optical measurements obtained from the
power LED of a Raspberry Pi 3B+) as a function of the number of leading
zero bits in the nonce.

Fig. 18. Recovering the ECDSA key from a RUNMUS K8 gaming headset.
Left: Experimental setup. Right: The estimated execution time of 5,743
ECDSA sign operations (calculated from the optical measurements obtained
from the power LED of the USB headphones) as a function of the number
of leading zero bits in the nonce.

Experimental Setup. The exact experimental setups for
the experiments conducted in this section are described in
Table V. The photodiode was directed at the power LED
of the Raspberry Pi from a range of a few centimeters; the
experimental setup can be seen in Fig. 17. We used the
same code as in Section VI to obtain optical measurements
from 7,000 different ECDSA sign operations performed by
the Raspberry Pi 3B+. Then we connected USB headphones
(RUNMUS K8 gaming headset) to the Raspberry Pi 3B+ and
repeated the same experiment; this time we obtained 11,000
optical measurements from the power LED of the headphones
(see Fig. 18).

Processing the Signal. We processed the optical measure-
ments for the Raspberry Pi according to the process described
in Section VI , which was applied to process the optical traces
that were obtained from the power LED of the USB Hub. After
we applied the same process for the optical measurements
obtained from the power LED of the Raspberry Pi, we had
5,325 signals. The same process was applied to the optical
measurements obtained from the USB headphones. At the end
of this process, we had 5,743 signals.

Results. We produced the heat maps presented in Figs. 17
and 18, which show the estimated ECDSA operation time
(based on the optical measurements) vs. the number of leading
zeros in the signature’s nonce for the optical signals obtained
respectively from the Raspberry Pi and headphones. As can be
seen, the signatures that were estimated to have the shortest
ECDSA operation execution time (based on the optical traces)
have nonces with many leading zeroes (as expected).

Given these findings, we used Minerva’s cryptanalysis script
to perform lattice-based key extraction on each device. We
used the script provided in the official Minerva GitHub
[28] which implements the lattice reduction attack mentioned
above. First, we created two datasets (one for the Raspberry
Pi and one for the headphones). Each dataset consists of
the associated ECDSA public key, messages, signatures, and
corresponding ECDSA execution times, as estimated from
the optical traces obtained in the associated experiment. We
executed Minerva’s cryptanalysis script twice on a laptop
computer (once for each dataset associated with a device),
and recovered the two 256-bit ECDSA secret keys (in ap-
proximately two minutes per execution).
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