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Abstract. Most succinct arguments (SNARKs) are initially only proven knowledge sound
(KS). We show that the commonly employed compilation strategy from polynomial interac-
tive oracle proofs (PIOP) via polynomial commitments to knowledge sound SNARKS actually
also achieves other desirable properties: weak unique response (WUR) and trapdoorless zero-
knowledge (TLZK); and that together they imply simulation extractability (SIM-EXT).
The factoring of SIM-EXT into KS + WUR + TLZK is becoming a cornerstone of the analysis
of non-malleable SNARK systems. We show how to prove WUR and TLZK for PIOP compiled
SNARKs under mild falsifiable assumptions on the polynomial commitment scheme. This means
that the analysis of knowledge soundness from PIOP properties that inherently relies on non-
falsifiable or idealized assumption such as the algebraic group model (AGM) or generic group
model (GGM) need not be repeated.
While the proof of WUR requires only mild assumptions on the PIOP, TLZK is a different mat-
ter. As perfectly hiding polynomial commitments sometimes come at a substantial performance
premium, SNARK designers prefer to employ deterministic commitments with some leakage.
This results in the need for a stronger zero-knowledge property for the PIOP.
The modularity of our approach implies that any analysis improvements, e.g. in terms of tight-
ness, credibility of the knowledge assumption and model of the KS analysis, or the precision of
capturing real-world optimizations for TLZK also benefits the SIM-EXT guarantees.

1 Introduction

Succinct arguments and zero-knowledge proofs are being implemented and deployed. This
is both due to their improved practicality and the popularity of use-cases that require effi-
cient and private verification of statements. As it becomes harder to discern real information
from automatically generated fakes, we have to increasingly rely on cryptographic chains
of evidence [NT16,FFG+16]. Efficient zero-knowledge proofs help institutions become more
transparent [BCGW22], help scale blockchains [BBHR19,BMRS20,Sta21], and make appli-
cations more private [BCG+14,GGM14,KMS+16,BAZB20].

As SNARKs become more prevalent, we must demand them to have optimal security
and not just optimal speed. Recently, a number of new SNARK constructions have been
proposed in the literature. They are typically proved to satisfy stand-alone security properties
in isolation, namely zero-knowledge and (knowledge) soundness. These basic properties are
often unsatisfactory both in theory and practice, due to the fact that NIZK proofs are
inherently transferable, i.e., whoever observed an existing valid proof can prove a statement
by reusing/modifying the proof, even without the knowledge of the corresponding witness. To
prevent such malleability attacks, the seminal work of Sahai [Sah99] introduced a stronger
notion called simulation-soundness, which was later extended to simulation-extractability
(SIM-EXT) [DDO+01]. Essentially, these notions state that no cheating prover can break
(knowledge) soundness even after asking a ZK simulator to produce proofs on adaptively
chosen statements. There is a long line of research that strengthens NIZK in a generic
manner such that the proof system achieves simulation-soundness/extractability [DDO+01,



PR05,CL06,GMY06,JP14,FKMV12,KZM+15,ARS20,BS21,LR22b,LR22a,AGRS23]. These
generic lifting techniques often apply additional cryptographic primitives, such as (one-time)
signature [DDO+01,GMY06] and pseudo-random function [KZM+15], and then produce an
extended proof for OR-statement derived from the target statement to be proven, without
looking into inner workings of the base NIZK construction. In contrast, several recent works
analyze particular exiting SNARK constructions without modification and successfully prove
that some of the already deployed schemes satisfy simulation-extractability [GM17,BKSV21,
GKK+22, GOP+22, GOP+23, DG23]. The downside of this approach is that analysis must
be carried out in an ad-hoc way and tailored to each specific scheme.

Given this state of affairs, our question is whether it’s possible to prove simulation-
extractability for a large class of exiting SNARKs in an abstract manner. To this end, we
turn to the popular paradigms of constructing highly efficient SNARKs from Polynomial
Interactive Oracle Proofs (PIOP) [BCS16,CHM+20,BFS20,CFF+21]. This paradigm allows
for a modular design of zkSNARK, starting from an information theoretic object, compiling
it into an interactive argument system via cryptographic polynomial commitments. It is then
made non-interactive in the random oracle model via Fiat-Shamir transform [FS87].

1.1 Our Contribution

Framework for proving SIM-EXT for PIOP-based SNARKs In this work, we provide
a modular framework to prove SIM-EXT for a class of NIZK arguments constructed from
PIOP in the random oracle model. We isolate sufficient and minimal properties required
from the PIOP and the polynomial commitment schemes (PCOM) to conclude simulation-
extractability (SIM-EXT) for the compiled zkSNARK, while relying on the existing knowledge
soundness analysis in a black-box manner. An additional goal here is to minimize modifi-
cations to the exiting knowledge sound SNARK constructed via the compiler of [CHM+20,
BFS20].

Along the way, we generalize a theorem by [GOP+23] for proving SIM-EXT of Fiat-
Shamir arguments in a modular fashion by adapting the notion of canonical simulator. Our
canonical simulators supports access to a SRS and an internal PIOP simulator. Finally,
we generalize the theorem of [GOP+23] to hold for both straight-line and rewinding-based
extractors (assuming knowledge soundness, trapdoor-less zero knowledge (TLZK), and weak
unique response (WUR) hold). Our analysis can now focus on proving TLZK and WUR and
these properties do not even involve any extractor in the definition; our result holds for any
extractor.
Generic strategy for proving weak unique response Since the SNARKs we study are
obtained by applying Fiat-Shamir to multi-round interactive arguments, it is often required to
show the so-called (weak) unique response (WUR) property to conclude SIM-EXT [GOP+23].
As indicated in the very recent works [GOP+23, DG23], proofs of unique response can be
quite involved especially if the underlying interactive protocols have many rounds. We show
that only a few mild properties of PCOM are sufficient to show that the PIOP-compiler
generically outputs a NIZK argument satisfying WUR. Interestingly, this implies that exiting
polynomial commitments already have a built-in mechanism to retain SIM-EXT.
Generic strategy for trapdoor-less zero-knowledge simulation Another technical
hurdle in proving SIM-EXT in a modular way is that, the zero knowledge simulation must
be done in a trapdoor-less manner, i.e., the only additional power available to the zero-
knowledge simulation is programming the random oracle. While this was trivial in previous
work [GOP+23,GOP+22,DG23] that focus only on NIZK in the random oracle model, PIOP-
based zkSNARKs often involve both a RO and structured reference string (SRS) generated
by trusted setup. Consequently, the majority of existing ZK simulators for such systems take
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advantage of the SRS’s trapdoor. In this work, we provide generic strategies for achieving
trapdoorless simulation for all PIOP schemes satisfying the standard property of honest
verifier zero-knowledge (HVZK). Additionally, we introduce a stronger version of HVZK and
refine our simulation strategy for PIOP schemes that satisfy this stronger notion.
Case studies for concrete schemes To show applicability of our framework, we study
a few concrete schemes. For PCOM schemes, we study KZG commitments, which is one of
the most common commitment scheme used for compiling PIOPs. We also briefly sketch a
simple PCOM scheme built using compressed sigma protocols of [AC20]. For PIOP schemes,
we study trapdoorless zero-knowledge for Marlin, Lunar, and Plonk. As a consequence of
our framework, we conclude that a slight modification of Marlin and Lunar when compiled
with the deterministic KZG commitment scheme are SIM-EXT. On the other hand, we show
that Plonk needs a hiding version of KZG to be SIM-EXT.

1.2 Technical Overview

We provide a high-level overview of our modular approach towards simulation-extractability.
PIOP and zkSNARK Compiler Let us recap one of the popular paradigms of construct-
ing efficient zkSNARKs [CHM+20, BFS20, CFF+21]. The compiler we study in this paper
mostly follows the formalization of Marlin [CHM+20]. Our starting point is a polynomial
interactive oracle proof (PIOP) system. This is a public-coin interactive protocol between
prover P(x,w) and verifier V(x), where x is a statement and w is a witness, respectively. For
each round i = 1, . . . , r, P sends a polynomial oracle pi ∈ F[X] and the verifier V responds
with uniformly sampled challenge ρi.4 The challenge strings ρ1, . . . , ρr are then used by V
to derive evaluation points z1, . . . , zr, which are queried to the polynomial oracles. Upon
receiving yi = pi(zi) for i = 1, . . . , r from the oracles, V outputs a decision bit to accept or
reject.

It is well known that the above information-theoretic object can be compiled into a non-
interactive argument in the random oracle model, using a cryptographic primitive called
polynomial commitment (PCOM). The compilation is two fold. First, one constructs an in-
teractive argument, where for each round i, prover P internally runs a PIOP prover P to
obtain a polynomial pi, generates a commitment ci to pi, and sends ci to V, and V responds
with ρi generated by the PIOP verifier V. At the end of interaction, P outputs yi with eval-
uation proofs πi guaranteeing that pi(zi) = yi w.r.t. committed polynomials pi. V accepts if
and only if V accepts and all evaluation proofs are valid. Notice that this protocol follows
the typical format of public-coin interactive argument. Therefore, assuming access to ran-
dom oracle H, one can construct a corresponding non-interactive argument Π by applying a
Fiat-Shamir transform.
From Knowledge Soundness to Simulation-Extractability in the PIOP Paradigm
Plain knowledge soundness of compiled protocol Π is already analyzed in the literature under
various assumptions on PCOM and PIOP [CHM+20,BFS20,CFF+21,MBKM19,GWC19]. To
benefit from existing knowledge soundness analyses in a black-box manner, our goal is to lift
knowledge soundness to simulation-extractability (SIM-EXT) while being agnostic of concrete
behaviors of knowledge extractor. Fortunately, Ganesh et al. [GOP+23] recently proved that
a property called weak unique response (WUR) is sufficient for Fiat-Shamir non-interactive
arguments to have SIM-EXT in the ROM. Essentially, the WUR property of [GOP+23]
requires the following: given a transcript π = (a1, ρ1, . . . , ar, ρr, ar+1) output by simulator

4 To sketch the core ideas, we provide a simplified version of PIOP where each round involves a single
polynomial. Here, we also ignore the role of preprocessing for now. In the detailed proof, we deal with a
more general case with multiple polynomials in every round, and the preprocessing phase, and multiple
evaluation points for each polynomial.
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S for Fiat-Shamir non-interactive argument (constructed from (2r + 1)-move multi-round
public-coin interactive argument), for any i ≥ 2, it is computationally hard to come up with
another transcript π′ with shared prefix, i.e., π′ = (a1, ρ1, . . . , a

′
i, ρ

′
i, . . . , a

′
r, ρ

′
r, a

′
r+1) such that

a′
i ̸= ai.

However, their general theorem only covers a transparent case, while many recent PIOP-
based zk-SNARKs require trusted generation of SRS in addition to the random oracle (e.g.,
if PCOM is instantiated with the well-known KZG scheme). It turns out that dependency on
both SRS and RO introduces additional challenges in proving SIM-EXT in a modular fashion.
In more detail, to invoke the general theorem similar to [GOP+23], one must show the
existence of trapdoor-less ZK (TLZK) simulator, which only makes use of programmability of
RO but without the knowledge of simulation trapdoor for SRS. We formalize this observation
in Lemma 2.16. As the existing compiler theorems (such as Marlin and Lunar) do show
zero-knowledge with trapdoor, we need an alternative way to prove zero-knowledge. In this
work, we show two strategies of TLZK simulation, depending on the power of underlying
PIOP simulator. The first path is straightforward: it requires honest verifier zero-knowledge
(HVZK) of PIOP and hiding of PCOM similar to the Marlin compiler. As an alternative
approach, if PIOP tolerates Ψ additional evaluations on polynomials which are not asked by
honest PIOP verifier (Ψ -HVZK), then we show only a weak variant of hiding from PCOM is
sufficient for Π to be TLZK. This is an observation implicit in several practical constructions,
but to the best of our knowledge, no previous compiler theorem explicitly formalized it.
Proving Weak Unique Response for the Compiled Protocol Given a TLZK simulator,
our goal is to identify a set of properties allowing us to prove WUR. Recall that a transcript
of Π is comprised of

(c1, ρ1, . . . , cr, ρr, (y1, . . . , yr), (π1, . . . , πr))

where ρi = H(srs, i, x, c1, ρ1, . . . , ci). Focusing on the last round response, one can immediately
see the need for unique proofs (i.e., for a fixed (ci, zi, yi), there exists a unique proof πi

that verifies) and evaluation binding (i.e., for a fixed (ci, zi), there exists unique evaluation
outcome yi that verifies); otherwise, a cheating prover can maul either πi or yi of an existing
transcript to create a valid transcript without knowing witness for x. We show that these
mild properties are already satisfied by KZG which is the most common commitment scheme
used for compilation. The hardest part is to prove that an adversary cannot maul a response
in the middle of the transcript. Our crucial observation is that the compiler has a built-in
mechanism similar to one-time signature, making it difficult for the prover to forge any part
of the transcript. In more detail, if any prefix of the transcript is modified, then it inevitably
triggers re-sampling of the final Fiat-Shamir challenge, leading to ρ′

r ̸= ρr with overwhelming
probability. Since ρ′

r is used as a random coin to derive evaluation points z′
1, . . . , z

′
r, without

loss of generality, a cheating prover is forced to create a valid evaluation proof for c1 w.r.t.
an evaluation point z′

1 ̸= z1.5 However, if p1 is randomized enough and the commitment c1
together with an evaluation proof πi leaks no more information than p1(z1), then it must be
hard for an adversary to extrapolate valid evaluation proof for p1(z′

1) w.r.t. c1. We formalize
this intuition assuming the same evaluation binding and weak hiding assumptions.

1.3 Related Work

Broadly, there are currently three approaches to obtain simulation extractable SNARK:
5 As we discuss in Section 5, some PIOP protocols do not use the last round challenge ρr to derive z1.

However, one can cheaply patch them by introducing a random dummy polynomial p′ in the first round
and having the verifier query p′ with a fresh evaluation point derived from ρr. Note that this can also be
seen as a generic method to add weak unique response to any Fiat-Shamir NIZKAoK in the ROM.

4



Generic Lifting Techniques for SIM-EXT NIZK Classically, it is well-known that any
sound NIZK proof can be lifted to SIM-EXT NIZK in a general manner. For example, De
Santis et al. [DDO+01] combine NIZK for a language L with one-time signature and PRF to
realize SIM-EXT by having prover generate a proof for an extended OR-language L′ related
to the original language L. More recent lifting compilers [KZM+15, ARS20, AGRS23] opti-
mize the approach along these lines and further add black-box and straight-line knowledge
extraction in order to achieve universally composable [Can01] zkSNARKs, but still introduce
performance overhead in the size of SRS, proof size, and proving/verification time. Some-
what related, [GKO+23] introduced a straight-line extraction compiler to lift zkSNARKs
which already satisfies SIM-EXT to UC-secure zkSNARKs in the random oracle model, while
preserving the asymptotic succinctness of the output proof size.
Scheme Specific Techniques The second is to prove directly that an existing SNARK
scheme is simulation extractable [GM17,BKSV21,GKK+22,GOP+23,DG23]. This approach
is taken by [GKK+22] for Plonk, Marlin, and Sonic, by [GOP+22,GOP+23] for Bulletproofs,
and by [DG23] for Bulletproofs and Spartan, respectively. As these two works share close
resemblance with ours, we investigate their strategy for proving specific schemes in some
more detail.

All of [GKK+22,GOP+23,DG23] provide very similar frameworks for showing SIM-EXT
for zkSNARKs obtained as Fiat-Shamir compiled multi-round protocols (in the updatable
SRS setting for [GKK+22] and in the transparent setting for [GOP+23, DG23]). They ob-
serve that it suffices to prove that the schemes in question satisfy additional properties that
together with existing properties, typically knowledge soundness, imply SIM-EXT. These
properties are TLZK, and their specific variants of unique responses (UR). However, each
of these properties is directly tied to the compiled zkSNARKs, and as such they have to be
analyzed for each scheme separately, e.g., they provide three TLZK simulator and prove that
they achieve zero-knowledge for Plonk, Marlin, and Sonic (in [GKK+22]), and prove the
unique response property for each scheme (in all works). Moreover, [GKK+22] only considers
zkSNARKs whose knowledge soundness proof is based on rewinding in the random oracle.

Our framework simplifies and generalizes the SIM-EXT analysis. We show that the PIOP
to zkSNARK compiler [CHM+20] already achieves the additional TLZK and WUR under
milder assumptions on the polynomial commitment. TLZK and WUR together with knowl-
edge soundness then imply simulation-extractability.

Another difference from the work of [GKK+22] is in the simulation strategies for TLZK.
We observe that the simulation for Plonk as presented in [GKK+22] is flawed as it only works
for perfectly hiding commitments, and we explain more in Section 5.
SE-SNARKS from PIOP and polynomial commitments Our result thus falls into
a third category which proves SIM-EXT for a PIOP to zkSNARK compiler rather than for
individual schemes. As does the following concurrent work.
Concurrent work Faonio et al. [FFK+23] study simulation-extractability (SE) of zk-
SNARKs constructed from polynomial IOP and polynomial commitment. Their main goal
is to identify properties of polynomial commitment such that a compiled zkSNARK satisfies
simulation-extractability. Along the way, they define SE tailored to a polynomial commit-
ment parameterized by a policy predicate Φ. The policy specifies additional conditions, on
top of requiring a valid non-extractable proof, to determine the success of the adversary and
is based on the following properties and variables in the SE game: (1) public parameters
and honestly sampled commitments, (2) an adversarially created forgery (x, π), (3) the ad-
versary’s view, including the set of statement-proof pairs recorded by the simulation oracle,
and the set of query-response pairs recorded by the random oracle, (4) auxiliary information
which comes along with the forged instance. As a concrete example, they prove the KZG
commitment is SE in the AGM w.r.t. a specific class of Φ and this implies SE of several
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existing zkSNARKs including Plonk and Marlin. In contrast, our approach to SE analysis
of zkSNARKs only requires simpler, easy-to-state properties of polynomial commitment,
namely, evaluation binding, unique proof and hiding. We expect that such properties are
satisfied by other polynomial commitment than KZG such as inner-product based (IPA)
polynomial commitments. Our analysis is also agnostic of the type of extractor for polyno-
mial commitment thanks to the modularity of the generic result proved in [GOP+23].
Intuition from proofs We note that these two works take different routes to the same des-
tination.6 It is natural, that complex theorems can have multiple, conceptually very different
proofs that yield different insights. Our intuition for where the proofs depart—early on, is
that their work strengthens the extraction property of the polynomial commitment scheme
to also work in the presence of a simulator using the secret trapdoor. In contrast, our work
strengthens the zero-knowledge property and requires a simulator that does not have access
to the trapdoor. Note that both works resort to random oracle programming for simulation.

More superficially, their polynomial IOP model stems from Lunar’s PHP model [CFF+21]
from where they also take the inspiration of treating polynomial commitments as commit-
and-prove SNARKs, while our PIOP are inspired by Marlin’s AHP model [CHM+20].

2 Preliminaries

We assume [ℓ] to denote integers {1, . . . , ℓ} and [k, ℓ] to denote {k, . . . , ℓ} for k < ℓ. The
security parameter is denoted by λ. A function f(λ) is negligible in λ if for any polynomial
poly(λ), f(λ) ≤ 1/poly(λ) for sufficiently large λ. We denote f(λ) ≤ negl(λ) to indicate f
is negligible. By y

ρ←− A(x), we mean that a randomized algorithm A outputs y on input
x using a random coin ρ sampled uniformly from a randomness space. For a finite field F,
Fd[X] denotes a set of polynomials over F of degree at most d.

2.1 Relations

An indexed relation R̂ is a set of triples (i, x,w) where i is the index, x is the instance, and
w is the witness. We assume R̂ can be partitioned using the security parameter λ ∈ N (e.g.,
by including the description of field F such that |F| is determined by a function of λ). Given
a security parameter λ ∈ N, we denote by R̂λ the restriction of R̂ to triples (i, x,w) ∈ R̂
with appropriate length in λ. Given a fixed index i, we denote by R̂i the restriction of R̂ to{

(x,w) : (i, x,w) ∈ R̂
}

. Given an indexed relation R̂, the corresponding binary relation can

be defined as R =
{

((i, x),w) : (i, x,w) ∈ R̂
}

.
Typically, i describes an arithmetic circuit over a finite field, x denotes public inputs, and

w denotes private inputs, respectively. In the rest of this paper, we assume i and x to include
the description of finite field F for the sake of simplicity, but our result holds even if the
circuit is over a ring or module.

2.2 Polynomial Interactive Oracle Proofs

We define polynomial interactive oracle proofs (PIOP) with preprocessing. The formulation
below is highly inspired by algebraic holographic proofs (AHP) [CHM+20]. We apply the
following minor modifications: (1) Interaction starts with prover’s message, instead of veri-
fier’s public coin. (2) We introduce an additional parameter t to allow multiple queries to a
single polynomial. (3) We assume a single maximum degree bound d rather than a distinct
bound for each polynomial oracle (following the PIOP formulation of [BFS20]), since the

6 As fellow travelers we have open lines of communications which even resulted in an author overlap.
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degree bound check can be incorporated into PIOP by having prover output an oracle with
shifted polynomial.

Definition 2.1 (Polynomial IOP). A polynomial interactive oracle proof (PIOP) for
an indexed relation R̂ is specified by a tuple PIOP = (r, s, t, d, I,P,V), where r, s, t, d : {0,
1}∗ → N are polynomial-time computable functions and I,P,V are three algorithms known as
the indexer, prover, and verifier. The parameter r specifies the number of interaction rounds,
s specifies the number of polynomials in each round, t specifies the number of queries made to
each polynomial, and d specifies a maximum degree bound on these polynomials. An execution
of PIOP (i, x,w) ∈ R̂ involves interaction between P and V, where b← ⟨P(i, x,w) , VI(i)(x)⟩
denotes the output decision bit, and (view; p)← JP(i, x,w) , VI(i)(x)K denotes the view (view)
of V generated during the interaction and the responses of I(i), and the polynomial oracles
(p) output by P. The view consists of challenges ρ1, . . . , ρr that V sends to P and vector y
of oracle responses defined below. The vector p consists of the polynomial oracles generated
by P during the interaction. An execution of PIOP proceeds as follows:
– Offline phase The indexer I receives as input index i for R̂, and outputs s(0) polynomials
p0,1, . . . , p0,s(0) ∈ F[X] of degrees at most d(|i|). Note that the offline phase does not depend
on any particular instance or witness, and merely considers the task of encoding the given
index i.

– Online phase Given an instance x and witness w such that (i, x,w) ∈ R̂, the prover P
receives (i, x,w) and the verifier V receives x and oracle access to the polynomials output
by I(i). The prover P and the verifier V interact over (2r+1) rounds where r = r(|i|). For
i ∈ [r], in the i-th round of interaction, first the prover P sends s(i) oracle polynomials
pi,1, . . . , pi,s(i) ∈ F[X] to the verifier V; and V replies with a challenge ρi ∈ Ch, where
Ch is the challenge space determined by i. The last round challenge ρr ∈ Ch serves as
auxiliary input to V in subsequent phases. We assume the protocol to be public-coin,
meaning that ρi’s are public and uniformly sampled from Ch. Moreover, observe that P
can be interpreted as a series of next message functions such that polynomial oracles
for round i are obtained by running (stP , pi,1, . . . , pi,s(i))← P(st′

P , ρi−1), where st′
P is the

internal state of P after sending polynomials for round i−1 and before receiving challenge
ρi−1, and stP is the updated state. Here, ρ0 is assumed to be ⊥.

– Query phase Let p = (pi,j)i∈[0,r],j∈[s(i)] be a vector consisting of all polynomials sent by
the prover P. The verifier may query any of the polynomials it has received any number of
times. Concretely, V executes a subroutine QV that receives (x; ρ1, . . . , ρr) and outputs
a query vector z = (zi,j)i∈[0,r],j∈[s(i)], where each zi,j is to be interpreted as a vector
(zi,j,k)k∈[t(i,j)] ∈ Dt(i,j) and D ⊆ F is an evaluation domain determined by i. We write
“yi,j = pi,j(zi,j)” to define an evaluation vector yi,j = (yi,j,k)k∈[t(i,j)] where yi,j,k =
pi,j(zi,j,k). Likewise, we write “y = p(z)” to define y = (yi,j)i∈[0,r],j∈[s(i)] where yi,j =
pi,j(zi,j).

– Decision phase The verifier outputs “accept” or “reject” based on the answers to the
queries (and the verifier’s randomness). Concretely, V executes a subroutine DV that
receives (x,p(z); ρ1, . . . , ρr) as input, and outputs the decision bit b.
The function d determines which provers to consider for the completeness and soundness
properties of the proof system. In more detail, we say that a (possibly malicious) prover P̃
is admissible for PIOP if, on every interaction with the verifier V, it holds that for every
round i ∈ [r] and oracle index j ∈ [s(i)] we have deg(pi,j) ≤ d(|i|). The honest prover P
is required to be admissible under this definition.

Typically PIOP should satisfy completeness, (knowledge) soundness and zero-knowledge
as defined below.
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Definition 2.2 (Completeness). A PIOP is complete if for any (i, x,w) ∈ R̂,

Pr
[
b← ⟨P(i, x,w) , VI(i)(x)⟩ : b = 1

]
= 1

Definition 2.3 (Knowledge Soundness). A PIOP for R̂ is knowledge sound, if there
exists a PPT extractor E such that for all admissible A, every index i, statement x,

AdvKS
A (λ) := Pr

[
b← ⟨A(i, x) , VI(i)(x)⟩; w∗ ← EA(i, x) : b = 1 ∧ (i, x,w∗) /∈ R̂λ

]
≤ negl(λ)

where EA denotes that E has black-box access to the next-message function of A.

Remark 2.4. Although in this work we do not discuss how the compiler preserves knowl-
edge soundness, we provide a definition of knowledge soundness for completeness. If r is
non-constant, the compiler typically requires a stronger property called state-restoration
knowledge soundness [BCS16] for the resulting non-interactive argument to satisfy knowl-
edge soundness in the random oracle model.

Now we define a stronger notion of honest verifier zero knowledge (HVZK) for PIOP.
First, a straightforward HVZK asks for simulatability of the view of honest verifier V which
comprises of all public coins ρ1, . . . , ρr and the outcome of evaluations y. It turns out that, if
compiled with a non-hiding commitment scheme, the committing function leaks additional
evaluations of polynomials which are not queried by an honest PIOP verifier V (modeled
as p(χ) below). In order to tolerate such additional leakages, we consider the existence of
a more powerful simulator that, along with the proof string, is also able to output some
polynomials, such that even after providing additional evaluations w.r.t. these polynomials,
the view remains indistinguishable from the real execution.

Note that Lunar [CFF+21] also models a similar notion where zero-knowledge should
hold even when the proof might leak some additional evaluation points. However, since their
simulation strategy crucially uses the trapdoor information in order to satisfy this notion,
our definition is stronger and harder to achieve. One interesting motivation that suggests
that we need our stronger formulation is that Plonk [GWC19] (as presented in [GKK+22])
happens to satisfy Lunar’s definition but not ours. However, the trapdoorless simulation
based on deterministic commitments, as suggested in [GKK+22], is flawed (as we expand
more in Section 5). This suggests that Lunar’s formulation of leakage is not enough in the
context of trapdoorless zero-knowledge; we require something stronger.

We also require the PIOP to satisfy a second condition called non-extrapolatable first
polynomial. Roughly, it says that there is enough randomness in the first online polynomial p
so that, given a certain number of evaluations, the next evaluation remains unpredictable. In
this intuition, we implicitly assume that the first online polynomial of the PIOP encodes the
witness somehow. Note that this requirement is very easily satisfied by most PIOPs already,
since they do encode the witness in the first round polynomials with enough randomness
used in the encoding to achieve zero-knowledge.

Definition 2.5 (Ψ-Honest Verifier Zero Knowledge (HVZK)). Let PIOP be a poly-
nomial IOP for relation R̂. Let D denote the domain of honest polynomial oracle queries.
Let χ = (χi,j)i∈[r],j∈[s(i)] denote an auxiliary query vector which is said to be valid if for each
i ∈ [r], j ∈ [s(i)], |χi,j | ≤ Ψ and each query in χi,j comes from D. PIOP is statistical Ψ -honest
verifier zero knowledge, if there exists a PPT simulator S such that for any distinguisher A,
and for all valid auxiliary query vectors χ, it holds that

AdvΨ -HVZK
A (λ, χ) :=

∣∣∣Pr
[
HVZK-0A(1λ, χ) = 0

]
− Pr

[
HVZK-1A(1λ, χ) = 0

]∣∣∣ ≤ negl(λ)

8



Game 1: HVZK for Polynomial IOP

HVZK-0A(1λ, χ)
1: b← AO0(1λ)
2: return b

NEXP-1A(1λ, χ)
1: (i, x)← A1(1λ)
2: (view,p(χ),p(z))← O′

1(i, x)
3: (z∗, y∗)← A2(view,p(χ),p(z))
4: b := (z∗ /∈ (z, χ)) ∧ (y∗ = p(z∗))
5: return b

O0(i, x,w)
1: if (i, x,w) /∈ R̂ then return ⊥
2: (view; p)← JP(i, x,w) , VI(i)(x)K
3: (ρ1, . . . , ρr,y) := view
4: z← QV(x; ρ1, . . . , ρr)
5: return (view,p(χ),p(z))

HVZK-1A(1λ, χ)
1: b← AO1(1λ)
2: return b

O1(i, x,w)
1: if (i, x,w) /∈ R̂ then return ⊥
2: (view; p)← S(i, x)
3: (ρ1, . . . , ρr,y) := view
4: z← QV(x; ρ1, . . . , ρr)
5: if ∃pi,j ∈ p,deg(pi,j) > d(|i|) then re-

turn ⊥
6: return (view,p(χ),p(z))

O′
1(i, x)

1: (view; p)← S(i, x)
2: (ρ1, . . . , ρr,y) := view
3: z← QV(x; ρ1, . . . , ρr)
4: if ∃pi,j ∈ p,deg(pi,j) > d(|i|) then re-

turn ⊥
5: return (view,p(χ),p(z))

where HVZK-0 and HVZK-1 are defined in Game 1. If the operations highlighted in orange
are not executed, then we simply say PIOP satisfies HVZK.

Definition 2.6 (Ψ-Non-Extrapolation for the First Polynomial). Let PIOP,D, and
χ be as defined in Definition 2.5. Let S be the statistical Ψ -honest verifier zero knowledge
simulator for the PIOP, and t be the number of distinct evaluations revealed for each poly-
nomial in a PIOP proof. Let p be the vector of polynomials output by S, and p denotes the
first polynomial for the online phase in p. p is said to be Ψ -Non-Extrapolatable if for any
adversary A := (A1,A2) (where A1,A2 share internal state), and for all valid auxiliary
query vectors χ (as defined in Definition 2.5), it holds that,

AdvΨ -NEXP
A (λ, χ) := Pr

[
NEXP-1A(1λ, χ) = 1

]
≤ negl(λ)

where NEXP-1 is define in Game 1.

Min-entropy of QV. Recall, the sub-routine QV takes input (x; ρ1, . . . , ρr) and outputs a
query vector z = (zi,j)i∈[0,r,j∈[s(i)] where each zi,j can be parsed as a vector (zi,j,k)k∈[t(i,j)].
We isolate one evaluation point z1,1,1 for p1,1 and require that z1,1,1 is equal to some fixed
value only with negligible probability. This is captured by assessing min-entropy of the QV
algorithm.

Definition 2.7 (Min-entropy of QV). Let PIOP = (r, s, t, d, I,P,V) be a PIOP for in-
dexed relation R̂. (QV,DV) denote the subroutines run by V. Let Ch be the challenge space
from which V samples ρi. For any fixed λ ∈ N and for any (i, x,w) ∈ R̂λ, consider the
maximum probability that z1,1,1 is equal to a particular value:

µ(λ, x) = max
ρ1,...,ρr−1∈Ch,a∈F

Pr
[
ρr

$←− Ch; z← QV(x; ρ1, . . . , ρr) : z1,1,1 = a
]
.
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The min-entropy α of sub-routine QV is

α(λ) = min
(i,x,w)∈R̂λ

(− log2(µ(λ, x))).

We say the min-entropy of QV is high if α ∈ ω(log(λ)).

Remark 2.8. As we discuss in Section 5, if the PIOP of interest does not have high min-
entropy of QV and/or Ψ -non-extrapolatable first polynomial, one can easily patch in the
following manner: a modified prover P additionally sends a dummy random polynomial
p∗ ∈ FΨ+1[X] in the first round and the verifier V queries p∗ with a fresh evaluation point
z∗ ∈ D derived from ρr.

2.3 Non-Interactive Argument and Simulation-Extractability in ROM

Below we write AH to denote that an algorithm A has black-box access to the random oracle
H : {0, 1}∗ → {0, 1}l.

Definition 2.9 (Non-Interactive Argument (NARG)). A Non-Interactive Argument
with Universal SRS (henceforth NARG) in the random oracle model for binary relation R is
a tuple ΠH = (G,P,V) of three algorithms:
– srs← G(1λ) is a setup algorithm that samples a structured reference string srs.
– π ← PH(srs, x,w) is a prover that outputs a proof π asserting (x,w) ∈ R. If (x,w) /∈ R,
P outputs ⊥.

– b← VH(srs, x, π) is a verifier that outputs a decision bit b ∈ {0, 1}.

To explicitly model preprocessed SRS in later sections, we also introduce indexed NARG
(henceforth iNARG) Π̂ for indexed relation R̂.

Definition 2.10 (Indexed Non-Interactive Argument (iNARG)). An Indexed Non-
Interactive Argument with Universal SRS in the random oracle model for indexed relation R̂
is a tuple Π̂H = (G, I, P̂, V̂) of three algorithms:
– srs← G(1λ) works as G of NARG.
– (ipk, ivk) ← I(i, srs) is a deterministic indexer7 that takes index i and srs as input, and

produces a proving index key (ipk) and a verifier index key (ivk), used respectively by P̂
and V̂.

– π ← P̂H(ipk, x,w) is a prover that outputs a proof π asserting (i, x,w) ∈ R̂.
– b← V̂H(ivk, x, π) is a verifier that outputs a decision bit b.

It is easy to convert Π̂ for R̂ into the correspondingΠ for binary relationR =
{

((i, x),w) : (i, x,w) ∈ R̂
}

by defining PH(srs, (i, x),w) to be an algorithm outputting π after running (ipk, ivk)← I(srs,
i) and π ← P̂H(ipk, x,w), and VH(srs, (i, x), π) to be an algorithm outputting b after running
(ipk, ivk) ← I(srs, i) and b ← V̂H(ivk, x, π), respectively. Therefore, we only state security
properties for NARG without loss of generality.

Definition 2.11 (Completeness). A NARG ΠH = (G,P,V) for relation R satisfies per-
fect completeness if for all λ, all N ∈ N, and for all PPT adversaries A it holds that

Pr
[
srs← G(1λ); (x,w)← AH(srs);π ← PH(srs, x,w) : VH(srs, x, π) = 1 ∧ (x,w) ∈ R

]
= 1.

7 In the literature, indexer is also referred to as Derive algorithm.
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Game 2: NIZK

NIZK-0A(1λ)
1: srs← G(1λ)
2: b← AH,PH(srs,·,·)(srs)
3: return b

NIZK-1A(1λ)
1: (srs, td)← S0(1λ)
2: st := td
3: b← AS1,S2(srs)
4: return b

H(t)
1: if QH(t) = ⊥ then
2: QH(t) $←− {0, 1}l

3: return QH(t)

S1(t)
1: (h, st)← S(1, st, t)
2: return h

S2(x,w)
1: if (x,w) /∈ R then
2: return ⊥
3: (π, st)← S(2, st, (srs, x))
4: return π

We define zero-knowledge for NARGs relying on both SRS and programmable RO. Note
that in the general definition below, a simulator may take advantage of both the trapdoor
of srs and programmability of the random oracle. Concretely, a simulated SRS generator S0
may potentially output a simulation trapdoor td. The zero-knowledge simulator S is defined
as a stateful algorithm that operates in two modes. In the first mode, (h, st′) ← S(1, st, t)
responds to a random oracle query on input t. In the second mode, (π, st′)← S(2, st, (srs, x))
simulates a proof string generated by an honest prover P.

Definition 2.12 (Non-Interactive Zero Knowledge in the SRS and Programmable
Random Oracle Model). Let ΠH = (G,P,V) be a NARG for relation R. ΠH is unbounded
non-interactive zero knowledge (NIZK) in the programmable random oracle model, if there
exist a tuple of PPT algorithms (S0,S) such that for all PPT distinguisher A, it holds that

AdvNIZK
A (λ) :=

∣∣∣Pr
[
NIZK-0A(1λ) = 0

]
− Pr

[
NIZK-1A(1λ) = 0

]∣∣∣ ≤ negl(λ)

where NIZK-0 and NIZK-1 are defined in Game 2. As a special case, if ΠH is NIZK w.r.t.
S0 = G (and therefore it outputs td = ⊥), then it is said to be trapdoor-less NIZK (TLZK).

Now we define our final goal: an adaptive version of simulation-extractability for NARG
in the ROM. On a high-level, the simulation-extractability (SIM-EXT) property ensures that
extractability holds even if the cheating adversary is able to observe simulated proofs. With-
out the texts highlighted in orange (i.e., without access to the simulation oracle S ′

2), the
property degrades to the standard extraction property (EXT). This is also known as knowl-
edge soundness.

Definition 2.13 (Simulation-Extractability (SIM-EXT)). Consider a NARG ΠH =
(G,P,V) for relation R with a NIZK simulator (S0,S). ΠH is simulation-extractable (SIM-EXT)
with respect to (S0,S), if for any PPT adversary A, there exists a PPT extractor EA such
that, it holds that

AdvSIM-EXT
A (λ) := Pr

[
SIM-EXTA(1λ) = 1

]
≤ negl(λ)

where SIM-EXT is defined in Game 3.
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Game 3: SIM-EXT and WUR

WURA(1λ)
1: Q1 := ∅; Q2 := ∅;QH := ∅
2: (srs, td)← S0(1λ)
3: st := (QH, td)
4: (x, stA)← AS1

1 (srs)
5: π̃ ← S ′

2(x)
6: π ← AS1

2 (stA, π̃)
7: b← VS1(srs, x, π)
8: b′ := (∃i ∈ [1, r] : π|i = π̃|i ∧ ai+1 ̸= ãi+1)
9: return b ∧ b′

S1(t)
1: (h, st)← S(1, st, t)
2: Q1(t) := h
3: return h

S(1, st, t)
1: Retrieve QH from st
2: if QH(t) = ⊥ then
3: QH(t) $←− {0, 1}l

4: st := QH
5: return (QH(t), st)

SIM-EXTA(1λ)
1: Q1 := ∅; Q2 := ∅;QH := ∅
2: (srs, td)← S0(1λ)
3: st := (QH, td)
4: (x∗, π∗) ρ←− AS1,S′

2(srs)
5: b← VS1(srs, x∗, π∗)
6: w∗ ← EA(srs, ρ,Q1,Q2)
7: return b = 1 ∧ (x∗,w∗) /∈
R∧(x∗, π∗) /∈ Q2

S ′
2(x)
1: (π, st)← S(2, st, (srs, x))
2: Q2 := Q2 ∪ {(x, π)}
3: return π

S(2, st, (srs, x))
1: Retrieve QH from st
2: π = (a1, ρ1, . . . , ar+1)← S̄(srs, x)
3: for i ∈ [1, r] do
4: if QH(srs, x, π|i) ̸= ⊥ then
5: return abort
6: else
7: QH(srs, x, π|i) := ρi

8: return (π,QH)

Depending on whether EA(srs, ρ,Q1,Q2) depends on A and uses ρ, or there exists an E
that is independent of A and uses only Q1 we get either white-box extraction, or “Fischlin’s”
straightline extraction, respectively. 8

2.4 Simulation-Extractability of Fiat-Shamir Non-Interactive Arguments

In this paper, we consider a special class of NARG characterized as Fiat-Shamir NARG (FS-
NARG). ΠH = (G,P,V) is said to be FS-NARG, if P and V satisfy the following conditions:
– PH(srs, x,w) outputs a proof string that can be parsed as π = (a1, ρ1, . . . , ar, ρr, ar+1).

We denote by π|i the i-th prefix (a1, ρ1, . . . , ai) of π for i ∈ [r].
– There exists a PPT verdict algorithm Ver such that VH(srs, x, π) outputs 1 if and only if

(1) Ver(srs, x, π) = 1, and (2) ρi = H(srs, x, π|i) for i ∈ [r].
In [GOP+22, GOP+23], the authors define the weak unique response property tailored

to FS-NARGs but without SRS. In particular, this notion is useful for showing SIM-EXT of
FS-NARGs constructed from multi-round public-coin protocols.

Definition 2.14 (WUR). Consider a FS-NARG ΠH = (G,P,V) for R with a NIZK sim-
ulator (S0,S). ΠH is said to have weak unique responses (WUR) with respect to (S0,S), if
given a proof string π̃ = (ã1, ρ̃1, . . . , ãr, ρ̃r, ãr+1) simulated by S, it is hard to find another

8 Dependence or independence from A can be formalized by requiring that there exists a function f such
that for any PPT adversary A, there exists a PPT extractor EA = f(A). If f is a constant function we
have independence otherwise dependence.
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accepting transcript π = (a1, ρ1, . . . , ar, ρr, ar+1) that both have a common prefix up to the ith
challenge for an instance x. That is, for all PPT adversaries A = (A1,A2) (where A1 and
A2 share the internal states), it holds that

AdvWUR
A (λ) = Pr

[
WURA(1λ) = 1

]
≤ negl(λ)

where WUR is defined in Game 3.

To capture typical behaviors of TLZK simulator in an abstract manner, we define the
notion of canonical simulation.

Definition 2.15 (Canonical Simulator). Let ΠH be a FS-NARG with TLZK simulator
S. S is said to be canonical, if S in mode 1 answers random oracle queries as defined in
Game 3, and S in mode 2 follows the procedures defined in Game 3 by invoking some stateless
algorithm S̄.

To enhance modularity of our security proof, we provide the following lemma updating
extractability to simulation-extractability assuming weak unique response and a trapdoor-
less canonical simulator. We note it can be seen as adaptation of [GOP+23, Lemma 3.2]
which only covers NARGs without srs. In [DG23, Theorem 3.4], the authors prove a similar
result in the transparent setting, although it relies on different assumptions, i.e., k-unique
response (k-UR) and k-zero knowledge. In [GKK+22, Theorem 1], the authors deal with
FS-NARG with (updatable) srs also assuming k-UR, but their analysis only covers the case
where knowledge soundness is rewinding-based.

Lemma 2.16. Consider FS-NARG ΠH = (G,P,V) for relation R in the ROM. If ΠH sat-
isfies EXT and additionally satisfies WUR w.r.t. a canonical TLZK simulator S, then ΠH
satisfies SIM-EXT w.r.t. S.

Proof. The proof is almost identical to that of [GOP+23, Lemma 3.2], thereby we often refer
to their proof to avoid redundancy. Let Â be a SIM-EXT adversary. Consider the following
hybrids:
– Hyb0(1λ): Identical to SIM-EXT except that there is no extractor in the experiment and

it outputs 1 as long as b = 1 ∧ (x∗, π∗) /∈ Q2.
– Hyb1(1λ): Identical to the previous, except that it aborts if there exists (x∗, π) ∈ Q2 such

that ∃i ∈ [1, r] : π∗|i = π|i ∧ π∗ ̸= π. Assuming that Â makes at most q2(λ) ∈ poly(λ)
queries to S ′

2, the probability that Hyb1 aborts can be bounded by q2 ·AdvWUR
B (λ) for

some reduction B [GOP+23, Lemma 3.2]. Therefore, the experiment only aborts with
negligible probability.

Given Â causing Hyb1 to output 1, we construct a EXT adversaryA that only has access to the
random oracle H. A proceeds as in [GOP+23, Alg.4]: (1) Upon receiving srs (corresponding
to pp in [GOP+23]), A internally runs Â. (2) Upon receiving a simulation query from Â, A
runs the algorithm of S in mode 2. (3) Upon receiving a random oracle query from Â, A
relays a query to H unless the input is already programmed by S. (4) Upon receiving (x∗, π∗)
from Â, A outputs it unless the aforementioned abort conditions are met. Thanks to the
hash prefix (srs, x), if x∗ ̸= x for every previously queried x, then the random oracle entry
prefixed by (srs, x∗) has never been programmed by the canonical simulator S. Moreover,
if x∗ = x for some previously queried (x, π) ∈ Q2, then the random oracle entry prefixed
by (srs, x, π∗|i) has never been programmed by the canonical simulator S due to the abort
condition of Hyb1. Therefore, (x∗, π∗) output by A always gets accepted by VH.

Overall, if Â outputs a valid proof in Hyb0, then A also succeeds in outputting a valid
proof w.r.t. H except with negligible probability. Since ΠH satisfies EXT, there exists a PPT
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extractor EA such that it can extract a valid witness from successful A except with negligible
probability. Therefore, one can construct a SIM-EXT extractor ÊÂ that internally runs the
procedures of A and extracts a witness by invoking EA. Overall such Ê succeeds in extracting
a valid witness from successful Â except with negligible probability. ⊓⊔

Remark 2.17. Note that trapdoor-less simulation is crucial for replicating the modular ar-
gument of [GOP+23]. In the above proof, an outer prover A only receives srs from an honest
setup algorithm G while having to simulate the view of SIM-EXT adversary Â. Therefore, A
cannot use the trapdoor and must perform simulation by programming the random oracle
responses only.

2.5 Polynomial Commitment Scheme

We define a polynomial commitment scheme [KZG10].

Definition 2.18 (Polynomial Commitment Scheme). A polynomial commitment scheme
denoted by PCOM is a tuple of algorithms (KGen,Com,Eval,Check):
1. ck ← KGen(1λ, D): Takes as input the security parameter λ and the maximum degree

bound D and generates commitment key ck as output. We assume ck to include descrip-
tion of the finite field F.

2. c ρ←− Com(ck, f): Takes as input ck, the polynomial f ∈ FD[X], and outputs a commitment
c. In case the commitment scheme is deterministic, ρ = ⊥. We also denote c := Com(ck,
f ; ρ) if the committing function deterministically generates c from fixed randomness ρ.
If the input is a vector of polynomials f with dimension n, we assume Com to output a
vector of commitments c with dimension n by invoking Com n times.

3. π ← Eval(ck, c, z, f, ρ): Takes as input ck, the commitment c, evaluation point z ∈ F,
the polynomial f , and outputs a non-interactive proof of evaluation π. The randomness
ρ must equal the one previously used in Com. If the input is vectors (c, z, f ,ρ) with
dimension n, we assume Eval to output a vector of proofs π with dimension n by invoking
Eval n times.

4. b ← Check(ck, c, z, y, π): Takes as input statement (ck, c, z, y), where y ∈ F is a claimed
polynomial evaluation, and the proof of evaluation π and outputs a bit b. If the input
is vectors (c, z,y,π) with dimension n, we assume Check to invoke Check n times and
output 1 if and only if all of them output 1.

We define security properties for PCOM. All of the experiments are described in Game 4.

Definition 2.19 (Completeness). A PCOM is said to be complete, if for any λ ∈ N,
D ∈ N, polynomial f ∈ FD[X], evaluation point z ∈ F

Pr
[
ck← KGen(1λ, D); c← Com(ck, f);π ← Eval(ck, c, z, f, ρ) : Check(ck, c, z, f(z), π) = 1

]
= 1.

The evaluation binding property essentially guarantees that, it is infeasible to open the
same commitment c to two distinct outcomes of evaluation y and y′ for the fixed evaluation
point z.

Definition 2.20 ((Weak) Evaluation Binding). PCOM is said to be evaluation binding
if, for any λ ∈ N, D ∈ N, for all PPT adversaries A,

AdvPC-EBIND
A (λ) := Pr

[
PC-EBINDA(1λ) = 1

]
≤ negl(λ).
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If instead

AdvPC-wEBIND
A (λ) := Pr

[
PC-wEBINDA(1λ) = 1

]
≤ negl(λ)

then PCOM is weak evaluating binding.

The unique proof states that, it is infeasible to create two distinct valid proofs π and π′

for fixed c, z, y.

Definition 2.21 ((Weak) Unique Proof). PCOM is said to be unique proof if, for any
λ ∈ N, D ∈ N, for all PPT adversaries A,

AdvPC-UNIQ
A (λ) := Pr

[
PC-UNIQA(1λ) = 1

]
≤ negl(λ).

If instead

AdvPC-wUNIQ
A (λ) := Pr

[
PC-wUNIQA(1λ) = 1

]
≤ negl(λ)

then PCOM is weak unique proof.

Unlike the usual hiding definition for a commitment scheme, Com inevitably leaks eval-
uations of the committed polynomials. As we shall see later, some schemes such as KZG
further leak evaluation at an additional point χ ∈ F. To capture this, we consider a weak
variant of hiding.

Definition 2.22 ((Weak) Hiding). PCOM is said to be weak hiding if, for any λ ∈ N,
D ∈ N, there exists a PPT simulator (SKGen,SCom) such that for all PPT adversaries A,

AdvPC-wHIDE
A (λ) := |Pr

[
PC-wHIDEA(1λ) = 1

]
− 1/2| ≤ negl(λ).

As a special case, if SKGen outputs χ = ⊥ (and thus f(χ) = ⊥), then PCOM is said to be
hiding.

For our results, we require the probability that a commitment is equal to a fixed value
is low. This requirement is captured by assessing min-entropy of the PCOM commitment
scheme.

Definition 2.23 (Min-entropy of commitments). Let PCOM be a polynomial commit-
ment scheme over F. For any fixed λ ∈ N,D ∈ N, ck ∈ KGen(1λ, D), and f ∈ FD[X], consider
the maximum probability that a commitment to f is equal to a particular value:

µ(λ, ck, f) = max
c

Pr
[
Com(ck, f) = c

]
.

The min-entropy α of scheme PCOM is

α(λ) = min
ck∈KGen(1λ,D) ∧ f∈FD[X]

(− log2(µ(λ, ck, f))).

We say that PCOM has high min-entropy if α ∈ ω(log(λ)).
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Game 4: PCOM Security Games

PC-EBINDA(1λ),PC-wEBINDA(1λ)
1: ctr := 0;QCom = ε;QEval := ε
2: ck← KGen(1λ, D)
3: (i, c, z, y, y′, π, π′)← AOCom,OEval(ck)
4: if QEval(i) ̸= (∗, ∗, c, z, y, π) then
5: return 0
6: b← Check(ck, c, z, y, π)
7: b′ ← Check(ck, c, z, y′, π′)
8: return (y ̸= y′) ∧ b ∧ b′

PC-UNIQA(1λ),PC-wUNIQA(1λ)
1: ctr := 0;QCom = ε;QEval := ε
2: ck← KGen(1λ, D)
3: (i, c, z, y, π, π′)← AOCom,OEval(ck)
4: if QEval(i) ̸= (∗, ∗, c, z, y, π) then
5: return 0
6: b← Check(ck, c, z, y, π)
7: b′ ← Check(ck, c, z, y, π′)
8: return (π ̸= π′) ∧ b ∧ b′

PC-wHIDEA(1λ)

1: b $←− {0, 1}
2: if b = 0 then
3: ck← KGen(1λ, D)
4: else
5: (ck, χ)← SKGen(1λ, D)
6: b′ ← AOComEval-b(ck)
7: return (b = b′)

OCom(f)
1: if deg(f) > D then return ⊥
2: c

ρ←− Com(ck, f)
3: ctr := ctr + 1
4: QCom(ctr) := (f, ρ, c)
5: return c

OEval(i, z)
1: if QCom(i) = ε then return ⊥
2: (f, ρ, c) := QCom(i)
3: π ← Eval(ck, c, z, f, ρ)
4: QEval(i) := (f, ρ, c, z, f(z), π)
5: return (y, π)

OComEval-0(f, (z1, . . . , zn))
1: if deg(f) > D then return ⊥
2: c

ρ←− Com(ck, f)
3: for i = 1, . . . , n do
4: πi ← Eval(ck, c, zi, f, ρ)
5: return (c, (π1, . . . , πn))

OComEval-1(f, (z1, . . . , zn))
1: if deg(f) > D then return ⊥
2: (c,π)← SCom(ck, χ, f(χ), z, f(z1), . . . , f(zn))
3: return (c,π)

3 Analysis of PIOP Compiled into Non-interactive Argument

In this section, we analyze a standard compiler that outputs iNARG (Definition 2.10) in the
random oracle model. The compiler takes following building blocks as input:
– Polynomial IOP PIOP = (r, s, t, d, I,P,V) (Definition 2.1) for an indexed relation R̂.
– Polynomial commitment PCOM = (KGen,Com,Eval,Check) (Definition 2.18)

It then outputs iNARG Π̂H = (G, I, P̂, V̂) described in Protocol 1. On a high-level, the
outer prover P̂ internally runs a PIOP prover P in order to obtain polynomials and then
commit to them using the polynomial commitment scheme. Then by hashing the transcript
obtained until i-th round, P̂ obtains PIOP challenge ρi, which is fed to P to advance to the
next round. When the PIOP prover terminates, P̂ runs a PIOP query algorithm to sample
query points z and evaluates polynomial oracles on z. Finally, P̂ produces evaluation proofs
to guarantee that polynomial evaluations are done correctly with respect to commitments
produced in earlier rounds.

Remark 3.1. The iNARG Π̂H detailed in Protocol 1 is almost identical to the compiled
protocol in [CHM+20], except that we are explicit about strings hashed to derive Fiat-
Shamir challenge (the Marlin compiler does not specify what needs to be hashed when
applying Fiat-Shamir). We stress it is crucial to hash index i (i.e., the circuit description) on
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top of statement x and transcript; otherwise, the proof system is susceptible to the following
malleability attack. Suppose the adversary receives an honestly generated proof π for (i, x).
Then the adversary constructs a modified i∗ such that for any w, it holds that (i∗, x,w) ∈ R̂ iff
(i, x,w) ∈ R̂, e.g. by introducing redundancy in the circuit. In this way, π is a valid proof for
(i∗, x) which allows the adversary to trivially win the SIM-EXT game. Although syntactically
ivk now contains (srs, i), this does not penalize verification performance in practice because
hashing of the prefix srs, i can be preprocessed.

As mentioned in Section 2.3, iNARG can be converted into NARG ΠH = (G,P,V)
(Definition 2.10) for the corresponding binary relation R, which is amenable to analysis of
simulation-extractability. In the rest of this section we will show ΠH satisfies the following
security properties under certain assumptions on PIOP and PCOM.
– Section 3.1 Trapdoor-less zero knowledge (TLZK) with canonical simulation (Defini-

tion 2.15),
– Section 3.2 Weak unique response (WUR) with respect to simulators provided in Sec-

tion 3.1.
Knowledge soundness of ΠH is already proved in the literature from knowledge soundness
of PIOP and extractability of PCOM under various assumptions [CHM+20,BFS20,CFF+21,
MBKM19,GWC19]. Put together with Lemma 2.16 we conclude SIM-EXT for the compiled
ΠH.

Corollary 3.2. Let ΠH be the FS-NARG protocol derived from Π̂H.
1. Suppose the PIOP satisfies Ψ -HVZK and Ψ -NEXP with Ψ = 1, and QV has high min-

entropy. PCOM satisfies PC-wHIDE, PC-wEBIND, PC-wUNIQ. If ΠH is non-trivial and
knowledge sound, then it is SIM-EXT.

2. Suppose the PIOP satisfies HVZK, high min-entropy of QV, and t(1, 1) ≤ d(|i|). PCOM
has high min-entropy (Definition 2.23), and satisfies PC-HIDE, PC-wEBIND, PC-wUNIQ.
If ΠH is knowledge sound, then it is SIM-EXT.

3.1 Trapdoor-Less Non-Interactive Zero Knowledge of Compiled NARG

Our analysis for showing TLZK will be split in two directions, which will exploit the type
of properties satisfied by the two core building blocks, PIOP and PCOM schemes. First, we
consider a class of PIOPs satisfying the stronger property of Ψ -HVZK, which in turn, requires
only a weaker hiding property from the PCOM scheme. Namely, it suffices to use a determin-
istic PCOM scheme for the compilation. This characterization allows us to reuse randomness
already introduced by the PIOP while committing to the polynomials. Note that the pre-
vious generic PIOP-to-iNARG compilers do not give us a clear picture of scenarios when
using a deterministic commitment suffices for trapdoorless NIZK: Marlin [CHM+20, Thorem
8.4] and Dark [BFS20, Theorem 4] require a hiding commitment scheme as well as trapdoor
to perform simulation; and Lunar [CFF+21, Theorem 5] requires a weaker “somewhat hid-
ing” commitment scheme, which, however, crucially relies on the knowledge of commitment
trapdoor.

In the second direction, we consider all other PIOPs that satisfy the weaker property of
HVZK, and require the PCOM scheme to be hiding. This is similar to Marlin, however, unlike
Marlin, we cannot use the trapdoor information in order to simulate. Hence, we present a
more direct trapdoorless simulation strategy similar to Dark.9

9 They assume PIOP is HVZK, a committing function Com is hiding, and Eval satisfies HVZK. The latter
two roughly correspond to our combined notion of hiding for PCOM.

17



Protocol 1: iNARG Π̂H for R̂

G(1λ)
1. Let D = max(i,·,·)∈R̂λ

d(|i|).

2. Run ck← PCOM.KGen(1λ, D) and output srs := ck.

I(i, srs)
1. Compute (p0,1, . . . , p0,s(0)) ← PIOP.I(i) where each polynomial p0,j , for j ∈ [s(0)]

is of degree at most d(|i|).
2. For j ∈ [s(i)]: Compute c0,j ← PCOM.Com(ck, p0,j ;⊥) with empty randomness.
3. Set ipk := (i, srs, (c0,1, . . . , c0,s(0)), (p0,1, . . . , p0,s(0))), and ivk := (i, srs, (c0,1, . . . ,
c0,s(0))).

P̂H(ipk, x,w)
1. Initialize round i := 1, transcript π := ∅, polynomials p := ∅, evaluation proofs

πPCOM := ∅, initial state stP := (i, x,w), ρ0 := ⊥.
2. Online phase: While i ≤ r,

(a) Compute (pi,1, . . . , pi,s(i), stP )← PIOP.P(stP , ρi−1).

(b) For j ∈ [s(i)]: Compute ci,j
ri,j←−− PCOM.Com(ck, pi,j) .

(c) Update π := π||(ci,1, . . . , ci,s(i)) and p := p||(pi,1, . . . , pi,s(i))
(d) Derive challenge ρi ← H(srs, i, x, π).
(e) Update π := π||ρi, and i := i+ 1.

3. Query phase: If i > r,
(a) Compute z← PIOP.QV(x; ρ1, . . . , ρr).
(b) For each i ∈ [0, r], j ∈ [s(i)], k ∈ [t(i, j)]: Compute πi,j,k ← PCOM.Eval(ck, ci,j ,

zi,j,k, pi,j , ri,j) and πPCOM := πPCOM||πi,j,k

(c) y := p(z).
(d) Update π := π||(y,πPCOM).

4. Output π.

V̂H(ivk, x, π)
1. Initialize round i := 1.
2. Parse π := (c1,1, . . . , ρr,y,πPCOM).
3. Online phase: While i ≤ r,

(a) Define π|i := (c1,1, . . . , ci,s(i)).
(b) Derive challenge ρ′

i ← H(srs, i, x, π|i). If ρ′
i ̸= ρi, abort by outputting 0.

(c) Update round i := i+ 1.
4. Query phase: Compute z← QV(x; ρ1, . . . , ρr).
5. Decision phase: Output 1 if PCOM.Check(ck, c, z,y,πPCOM) = 1 and DV(x,

y; ρ1, . . . , ρr) = 1.
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Simulator 1: S

The simulator internally runs an 1-HVZK simulator S for PIOP.
SRS generation. On input 1λ with mode 0, S behaves exactly like G and sets st = ⊥.
Random oracle queries. S maintains an initially empty look-up table QH. On input
query t with mode 1, do: check whether QH(t) is already defined. If this is the case,
return the previously assigned value; otherwise, sample ρi from Ch, set QH(t) := ρi, and
return ρi.
Simulation queries. On input (srs, (i, x)) with mode 2, do:
1. Run I(i, srs) to generate (ipk, ivk).
2. Run (view; p̃)← S(i, x).
3. Parse view as (ρ1, . . . , ρr,y), and p̃ as (p̃i,j)i∈[r],j∈[s(i)].
4. Run z← QV(x; ρ1, . . . , ρr).
5. Parse ipk to obtain (p0,1, . . . , p0,s(0)).

6. For each i ∈ [r], j ∈ [s(i)]: compute ci,j
ri,j←−− PCOM.Com(ck, p̃i,j), and for each i ∈ [0,

r], j ∈ [s(i)], k ∈ [t(i, j)] πi,j,k ← PCOM.Eval(ck, ci,j , zi,j,k, p̃i,j , ri,j), where p̃0,j := p0,j .
Let πPCOM := (πi,j,k)i,j,k.

7. Set π := (c1,1, . . . , cr,s(r), ρr,y,πPCOM).
8. Program the table as follows: for i ∈ [r], set π|i := (c1,1, . . . , ci,s(i)), and QH(srs, i, x,
π|i) := ρi. If QH(srs, i, x, π|i) is already set, then output ⊥1.

9. Output π.

Compilation with Weak Hiding Polynomial Commitments We first handle the case
where PCOM only satisfies a weak variant of hiding, which means that commitment and
evaluation are potentially deterministic. In this case, the committing function itself does not
have high min-entropy as in Definition 2.23. Combined with a “sufficiently randomized first
polynomial” of PIOP, we can still retain high min-entropy of the compiled protocol, which
we formalize below. Non-triviality is often required for Fiat-Shamir to retain zero knowledge
(cf. [AABN02]), and existing PIOP-based zkSNARKs are already non-trivial.

Definition 3.3 (Min-entropy of the first commitment). Let CoinP (λ) be the set of
random coins used by the PIOP prover P on any input (i, x,w) ∈ R̂λ. For any fixed λ ∈ N,
ck ∈ KGen(1λ), and (i, x,w) ∈ R̂λ, consider the maximum probability that a commitment to
the first polynomial hits a particular value:

µ(ck, i, x,w) = max
c

Pr
[
r

$←− CoinP (λ); (p1,1, . . .)← P((i, x,w); r) : Com(ck, p1,1) = c
]

The min-entropy αΠ̂ of protocol Π̂ is

αΠ̂(λ) := min
ck∈KGen(1λ)∧(i,x,w)∈R̂λ

(− log2 µ(ck, i, x,w))

We say that Π̂ is non-trivial if αΠ̂ ∈ ω(log(λ)).

Lemma 3.4. If PIOP is Ψ -HVZK with ψ = 1, PCOM is weak hiding (PC-wHIDE), and the
corresponding iNARG Π̂H (Protocol 1) is non-trivial. Then FS-NARG protocol ΠH derived
from Π̂H is TLZK with canonical simulator.
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Proof. We show the existence of canonical simulator S for ΠH, detailed in Simulator 1. By
inspection S is trapdoor-less. Moreover, it is indeed canonical, because all of the operation
except Step 8 do not depend on the RO query table and can be turned into a stateless
algorithm S̄ that takes (srs, (i, x)) as input. Then programming of RO entries at Step 8
follows the format of canonical simulation.

With respect to S, our goal is to prove

AdvNIZK
A (λ) :=

∣∣∣Pr
[
NIZK-0A(1λ) = 0

]
− Pr

[
NIZK-1A(1λ) = 0

]∣∣∣ ≤ negl(λ)

where the two experiments are described in Game 2. Let Hyb0(1λ) be an experiment identical
to NIZK-0A(1λ). Consider the following hybrids.
– Hyb1(1λ) is identical to the previous hybrid, except at derivation of challenge ρi for

each i (Step 2d of the online phase): once the input (srs, i, x, π|i) is obtained, sample ρi

uniformly from the challenge domain Ch, program the QH(srs, i, x, π|i) := ρi if QH(srs, i, x,
π|i) is undefined, and abort otherwise. Assuming that A making at most poly(λ) queries,
the probability that Hyb1(1λ) aborts is negligible due to non-triviality. Thus, we obtain∣∣∣Pr

[
Hyb0(1λ) = 0

]
− Pr

[
Hyb1(1λ) = 0

]∣∣∣ ≤ negl(λ).

– Hyb2(1λ) is identical to the previous hybrid, except at the SRS generation and the com-
mitting phase: the G is modified such that it invokes (ck, χ) ← SKGen(1λ) and outputs
ck, and during the online phase P̂ runs simulated algorithm (ci,j ,πi,j) ← SCom(ck, χ,
pi,j(χ), zi,j , pi,j(zi,j)), instead of invoking Com and Eval. Note that ρ1, . . . , ρr are picked
in advance thanks to the previous hybrid, and therefore a simulated prover can indeed
derive the whole p via P and z via QV, respectively, before generating any commitments.
To argue Hyb2 is indistinguishable from Hyb1, we construct reduction B against weak
hiding of PCOM. Upon receiving ck, B runs the procedures of Hyb1 until the PIOP
prover P outputs polynomials. As B obtains p and z, it forwards (pi,j , zi,j) to the oracle
OComEval-b of PC-wHIDE for all i, j. Upon receiving (ci,j ,πi,j) from the oracle, B completes
the remaining operations of the simulated prover in Hyb1, to obtain a simulated proof π,
and hands over π to A. B repeats the above procedures whenever A requests a proof on
((i, x),w).
Upon receiving a bit b′ from A, B forwards b′ to PC-wHIDE. If b = 0 is chosen in
PC-wHIDE, the view of A is identically distributed to that of Hyb1; if b = 1, the view of
A is identically distributed to that of Hyb2. Thus, we have∣∣∣Pr

[
Hyb1(1λ) = 0

]
− Pr

[
Hyb2(1λ) = 0

]∣∣∣ ≤ AdvPC-wHIDE
B (λ).

– Hyb3(1λ) is identical to the previous hybrid, except at generation of polynomials p: run
the Ψ -HVZK simulator S(i, x) to obtain view = (ρ1, . . . , ρr,y) and p̃ = (p̃i,j)i∈[0,r],j∈[s(i)],
instead of invoking the PIOP prover P. Then derive z ← QV(x; ρ1, . . . , ρr), generate
simulated commitments and proofs (ci,j ,πi,j) ← SCom(ck, χ, p̃i,j(χ), zi,j , p̃i,j(zi,j)), and
proceeds as in Hyb2.
Since PIOP is Ψ -HVZK with ψ = 1 and both Hyb2 and Hyb3 only require evaluations of
p at z and χ, we have∣∣∣Pr

[
Hyb2(1λ) = 0

]
− Pr

[
Hyb3(1λ) = 0

]∣∣∣ ≤ AdvΨ -HVZK
C (λ).

– Hyb4(1λ) is identical to the previous hybrid, except at the SRS generation and the com-
mitting phase: the G is modified back to the original algorithm invoking KGen, and during
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Simulator 2: S ′

The simulator internally runs an HVZK simulator S for PIOP.
SRS generation. Same as Simulator 1.
Random oracle queries. Same as Simulator 1.
Simulation queries. On input (srs,QH, (i, x)) with mode 2, do:
1. Run I(i, srs) to generate (ipk, ivk).
2. Run view← S(i, x).
3. Parse view as (ρ1, . . . , ρr,y).
4. Parse ipk to obtain (c0,1, . . . , c0,s(0), p0,1, . . . , p0,s(0)).
5. Run z ← QV(x; ρ1, . . . , ρr). Let z0 be the vector of evaluation points w.r.t. (c0,1,
. . . , c0,s(0)), and z1 be for (c1,1, . . . , cr,s(r)). Similarly, y0 (y1) be evaluations w.r.t z0
(resp, z1).

6. Compute (c,πPCOM)← SCom(ck,⊥,⊥, z1,y1).
7. For each j ∈ [s(0)], k ∈ [t(0, j)], compute π0,j,k ← PCOM.Eval(ck, c0,j , z0,j,k, p0,j ,⊥).

Let πPCOM := (π0,j,k)j,k||πPCOM.
8. Set π := (c1,1, . . . , cr,s(r), ρr,y,πPCOM).
9. Program random oracle as follows: for i ∈ [r], set π|i := (c1,1, . . . , ci,s(i)), and QH(srs,

i, x, π|i) := ρi. If QH(srs, i, x, π|i) is already set, then output ⊥1.
10. Output π.

the online phase (resp. query phase) P̂ runs Com (resp. Eval) instead of SCom. Analogous
to Hyb2, one can construct reduction D against weak hiding of PCOM, hence:∣∣∣Pr

[
Hyb3(1λ) = 0

]
− Pr

[
Hyb4(1λ) = 0

]∣∣∣ ≤ AdvPC-wHIDE
D (λ).

Notice that in Hyb4 the prover’s behavior is identical to S described in the box. This concludes
the proof. ⊓⊔

Compilation with Hiding Polynomial Commitments For completeness, we provide
an alternative simulation strategy.
Lemma 3.5. If PIOP is HVZK and PCOM is hiding (PC-HIDE) and has high min-entropy
(Definition 2.23), then the FS-NARG protocol ΠH derived from Π̂H (Protocol 1) is TLZK
with canonical simulator.

Proof. We show the existence of canonical simulator S ′ for ΠH, detailed in Simulator 2.
By inspection S ′ is canonical and trapdoor-less. The proof follows outline of the previous
theorem. Let Hyb0(1λ) be an experiment identical to NIZK-0A(1λ). Consider the following
hybrids.
– Hyb1(1λ) is identical to the previous hybrid, except at derivation of challenge ρi for each
i: once the input (srs, i, x, π|i) is obtained, sample ρi uniformly from the challenge domain,
program the QH(srs, i, x, π|i) := ρi if QH(srs, i, x, π|i) is undefined, and abort otherwise. By
high min-entropy of the commitment, the probability that Hyb1(1λ) aborts is negligible.
Thus, we obtain ∣∣∣Pr

[
Hyb0(1λ) = 0

]
− Pr

[
Hyb1(1λ) = 0

]∣∣∣ ≤ negl(λ).
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– Hyb2(1λ) is identical to the previous hybrid, except at the SRS generation and the com-
mitting phase: the G is modified such that it invokes (ck,⊥) ← SKGen(1λ) and outputs
ck, and during the online phase P̂ runs SCom(ck,⊥,⊥, z,p(z)) to obtain simulated (c,
πPCOM), instead of invoking Com and Eval. Note that ρ1, . . . , ρr are picked in advance
thanks to the previous hybrid, and therefore a simulated prover can indeed derive the
whole p and z before generating any commitments.
To argue Hyb2 is indistinguishable from Hyb1, we construct reduction B against hiding
of PCOM analogously to the previous theorem. Thus, we have∣∣∣Pr

[
Hyb1(1λ) = 0

]
− Pr

[
Hyb2(1λ) = 0

]∣∣∣ ≤ AdvPC-HIDE
B (λ).

– Hyb3(1λ) is identical to the previous hybrid, except at generation of polynomials p:
run the HVZK simulator for PIOP S(i, x) to obtain view = (ρ1, . . . , ρr,y), instead of
invoking the PIOP prover P. Note that SCom now takes as input (ck,⊥,⊥, z,y), where
z← QV(x; ρ1, . . . , ρr). Since PIOP is HVZK, we have∣∣∣Pr

[
Hyb2(1λ) = 0

]
− Pr

[
Hyb3(1λ) = 0

]∣∣∣ ≤ AdvHVZK
C (λ).

Notice that in Hyb3 the prover’s behavior is identical to S ′ described in the box. This con-
cludes the proof. ⊓⊔

3.2 Weak Unique Response of Compiled NARG

For a PIOP satisfying stronger Ψ -HVZK along with Ψ -NEXP and high min-entropy for the QV
algorithm, we only need weaker hiding property for PCOM. For a PIOP satisfying just HVZK
along with high min-entropy for the QV algorithm, and the constraint that t(1, 1) ≤ d(|i|),
we require PCOM to be hiding in a stronger sense. In both cases, we require the assumption
that QV has high min-entropy. This condition is met by PIOPs such as Plonk, but is not
met by other PIOPs such as Marlin and Lunar. The latter can be modified slightly to meet
the condition: add a dummy polynomial in the first round and evaluate it on a random point
chosen in the last round (see Section 5 for details). In the first case, we require the PIOP
to also satisfy Ψ -NEXP, which as remarked in Section 2.2, just captures the intuition that
many PIOPs encode the witness in the first polynomial and thus generate it with enough
randomness in order to achieve zero-knowledge. Finally, in the second case, we require that
the PIOP does not reveal the entire first polynomial as a part of the proof. When the first
polynomial encodes the witness, this constraint again is easily satisfied by most PIOPs in
order to achieve zero-knowledge.

We state our main theorem now.

Theorem 3.6. Let S (Simulator 1) and S ′ (Simulator 2) be canonical TLZK simulators for
FS-NARG ΠH derived from Π̂H (Protocol 1).
1. If PIOP satisfies Ψ -NEXP, high min-entropy of QV, and if PCOM is weak evaluation

binding (PC-wEBIND), weak unique proof (PC-wUNIQ), and weak hiding (PC-wHIDE),
then ΠH satisfies weak unique responses (WUR) with respect to S. Concretely, for every
PPT adversary A against WUR of ΠH that makes q queries to S1, there exist adversaries
B, C,D such that,

AdvWUR
A,S (λ) ≤ AdvPC-wUNIQ

B (λ)+2 ·AdvPC-wEBIND
C (λ)+2 ·AdvPC-wHIDE

D (λ)+ qℓ

2α
+negl(λ)

where ℓ :=
∑i=r

i=0
( ∑s(i)

j=1 t(i, j)
)
, and α is the min-entropy of QV (Definition 2.7).
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2. If PIOP satisfies high min-entropy of QV, t(1, 1) ≤ d(|i|), and if PCOM is hiding (PC-HIDE)
and satisfies all the other properties above, then ΠH satisfies weak unique responses
(WUR) with respect to S ′. Concretely,

AdvWUR
A,S′ (λ) ≤ AdvPC-wUNIQ

B (λ)+2 ·AdvPC-wEBIND
C (λ)+5 ·AdvPC-HIDE

D (λ)+ qℓ

2α
+negl(λ)

Proof. Given an adversary A := {A1,A2} against WUR with respect to the simulator S :=
{S1,S ′

2}, we will construct another adversary who violates some PCOM property. In the
following let π̃ denote the simulated transcript and π denote the transcript output by the
adversary. We define a sequence of hybrids.
– Hyb0: Let this be the same as WUR game.
– Hyb1: This is the same as the Hyb0 except that the challenger aborts if π and π̃ differ for

the first time for some evaluation proof πi,j,k and otherwise have identical prefix.
– Hyb2: This is the same as the Hyb1 game except an additional abort condition. The

challenger additionally aborts if π and π̃ differ for the first time for some evaluation yi,j,k

and otherwise have the same prefix.
– Hyb3: This is the same as the Hyb2 game except for additional abort conditions: The

challenger additionally aborts in the following scenario. On receiving an RO query from
A2 for a new input of the form (srs, i, x, π|r), i.e., a query with respect to round index r, it
samples uniform ρr ∈ Ch, and z1,1,1 ← QV(x, ρ1, . . . , ρr), where x, ρ1, . . . , ρr−1 are derived
from the RO query. Abort if z1,1,1 ∈ z̃, where z̃ is from the simulated transcript.

Claim 1. Let A be an adversary succeeding in the WUR game. Then, if the PCOM satisfies
PC-wHIDE, then there exists another adversary B such that

|Pr
[
Hyb0(1λ) = 1

]
− Pr

[
Hyb1(1λ) = 1

]
| ≤ AdvPC-wUNIQ

B (λ).

And if PCOM satisfies strong PC-HIDE, then there exists adversaries B,B1 such that

|Pr
[
Hyb0(1λ) = 1

]
− Pr

[
Hyb1(1λ) = 1

]
| ≤ AdvPC-wUNIQ

B (λ) + 2 ·AdvPC-HIDE
B1 (λ).

We will bound the probability that A = {A1,A2} succeeds in the WUR game, but fails in
Hyb1. First observe that the only difference between the two hybrids is the additional abort
probability in Hyb1. This happens only if π and π̃ share the same prefix and differ for the
first time for some evaluation proof, i.e., for some (i, j, k), πi,j,k ̸= π̃i,j,k, where πi,j,k ∈ πPCOM
and π̃i,j,k ∈ π̃PCOM. If this holds, then we construct an adversary B who breaks the weak
unique evaluation proof property for the PCOM scheme. We separate the analysis according
to the type of PCOM scheme used in compilation. The Non Hiding case covers the case
when PCOM satisfies only weak PC-wHIDE, and the Hiding case covers the strong version.
Non Hiding Case. B starts a weak unique proof game with respect to PCOM. It receives ck
from the challenger. It then starts the WUR experiment with A by invoking A1 on crs := ck.
All random oracle queries by A1 are answered by B by running S1 locally. A1 finally outputs
x and its internal state stA. B runs steps in S ′

2 explicitly on input (i, x), i.e., it runs step 2
in Simulator 1 to receive (view, p̃). B queries p̃ to the oracle OCom to receive commitments,
and then queries OEval on z̃ to receive evaluation proofs. Here, z̃ is derived from view. B
computes π̃ given view, commitments and evaluation proofs (received from OCom and OEval),
and sends π̃ to A2. On running A2 on π̃ and stA, it receives π as output. Let (i, j, k) be the
first tuple for which πi,j,k ̸= π̃i,j,k. B submits (ci,j , zi,j,k, yi,j,k, πi,j,k, π̃i,j,k) to the challenger.
Note that the view generated by B is exactly as the one that would be generated by running
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S ′
2. Thus, difference in the winning probability of A when participating in Hyb0 vs Hyb1 is

bounded by the advantage of B in weak unique evaluation proofs game. Thus,

|Pr
[
Hyb0(1λ) = 1

]
− Pr

[
Hyb1(1λ) = 1

]
| ≤ AdvPC-wUNIQ

B (λ).

Hiding Case. Consider the following sub-hybrid,
– Hyb0,1: Same as the Hyb0 except the following changes. On receiving x from A1, run steps

for S ′
2 in Simulator 2 explicitly, i.e., run step 2 to receive view. Now, for i ∈ [r], j ∈ s(i),

randomly sample p̂i,j ← Fd(|i|)[X] such that p̂i,j(z̃i,j) := ỹi,j . Instead of executing SCom,
compute Com honestly on polynomials p̂i,j . Continue with the rest of the steps as in
Simulator 2. Notice that this is indistinguishable from the view in Hyb0 because of hiding
of the PCOM scheme, i.e., there exists an adversary B1 such that,

|Pr
[
Hyb0(λ) = 1

]
− Pr

[
Hyb0,1(λ) = 1

]
| ≤ AdvPC-HIDE

B1 (λ).

– Hyb0,2: Same as the previous hybrid, except that it aborts when adversary submits π
containing an evaluation proof πi,j,k that differs from π̃i,j,k of the simulated π̃. Using
such an adversary A, one can break the weak unique proof property. The reduction B
playing the weak unique proof game receives ck as input and emulates the procedures of
Hyb1,2, but instead of computing Com locally, on polynomials p̂i,j , it queries these to OCom
to receive the commitments, and queries OEval to receive evaluation proofs. It constructs
π̃ given these values. Similar to the non-hiding case, here too the winning probability of
A is bounded by the advantage of B in weak unique evaluation proofs game.

|Pr
[
Hyb0,1(1λ) = 1

]
− Pr

[
Hyb0,2(1λ) = 1

]
| ≤ AdvPC-wUNIQ

B (λ).

– Hyb1: Same as the Hyb0,2 except that commitments and proofs are generated by SCom
as in S ′. Again, due to the hiding property we get

|Pr
[
Hyb0,2(1λ) = 1

]
− Pr

[
Hyb1(1λ) = 1

]
| ≤ AdvPC-HIDE

B1 (λ).

This gives,

|Pr
[
Hyb0(1λ) = 1

]
− Pr

[
Hyb1(1λ) = 1

]
| ≤ AdvPC-wUNIQ

B (λ) + 2 ·AdvPC-HIDE
B1 (λ).

Claim 2. Let A be an adversary succeeding in the Hyb1 game. Then, if PCOM satisfies
PC-wHIDE, then there exists another adversary C such that

|Pr
[
Hyb1(1λ) = 1

]
− Pr

[
Hyb2(1λ) = 1

]
| ≤ AdvPC-wEBIND

C (λ).

And if PCOM satisfies strong PC-HIDE, then there exist adversaries C, C1 such that

|Pr
[
Hyb1(1λ) = 1

]
− Pr

[
Hyb2(1λ) = 1

]
| ≤ AdvPC-wEBIND

C (λ) + 2 ·AdvPC-HIDE
C1 (λ).

We will bound the probability that A = {A1,A2} succeeds in the Hyb1 game, but fails in
Hyb2. This happens only if π and π̃ share the same prefix and differ for the first time for
some evaluation yi,j,k, i.e., for some (i, j, k), yi,j,k ̸= ỹi,j,k. Here, we construct an adversary C
who breaks weak evaluation binding for PCOM. As in the previous case, this analysis is also
separated into the Non Hiding and the Hiding case.
Non Hiding Case. C starts the weak evaluation binding game with respect to PCOM
scheme. C’s execution is very similar to the previous case. It receives ck from the challenger,
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and starts the Hyb1 experiment with A by invoking A1 on crs := ck. All random oracle
queries are answered by running S1. When A1 outputs x and state stA, C runs step 2 in
S ′

2 explicitly, queries OCom and OEval as before to construct π̃. It then invokes A2 with
inputs (π̃, stA) to receive π. Since the prefix is the same for both transcripts, ρ1, . . . , ρr is the
same as well, which means that they have the same query vector zi,j . Since A fails in Hyb2
game but not in Hyb1, there exists an (i, j, k) and valid πi,j,k, π̃i,j,k such that yi,j,k ̸= ỹi,j,k

for the same commitment c̃i,j and evaluation point z̃i,j,k. C simply outputs (c̃i,j , z̃i,j,k, ỹi,j,k,
yi,j,k, π̃i,j,k, πi,j,k) to the weak evaluation binding challenger and wins the game. Thus, the
difference in the winning probability of A when participating in Hyb1 vs Hyb2 is bounded by
the advantage of C in the weak evaluation binding game, i.e.,

|Pr
[
Hyb1(1λ) = 1

]
− Pr

[
Hyb2(1λ) = 1

]
| ≤ AdvPC-wEBIND

C (λ).

Hiding Case. Here too, as in the hiding case of Claim 1, we consider two sub hybrids with
the same behaviour except that, instead of invoking PC-wUNIQ challenger in Hyb1,2, we will
invoke the challenger of PC-wEBIND game. As before, we can conclude that,

|Pr
[
Hyb1(1λ) = 1

]
− Pr

[
Hyb2(1λ) = 1

]
| ≤ AdvPC-wEBIND

C (λ) + 2 ·AdvPC-HIDE
C1 (λ).

Claim 3. Let A be an adversary who makes up to q random oracle queries and succeeds in
the Hyb2 game. Then,

|Pr
[
Hyb2(1λ) = 1

]
− Pr

[
Hyb3(1λ) = 1

]
| ≤ (qℓ)/2α.

where ℓ :=
∑r

i=0
( ∑s(i)

j=1 t(i, j)
)
, and α is the min-entropy of QV.

An adversary wins in Hyb2 but fails to win in Hyb3 when it makes an unrecorded RO query
(srs, i, x, π|r) such that z1,1,1 ∈ z̃, where z̃ ← QV(x; ρ1, . . . , ρr), and ρ1, . . . , ρr−1 are derived
from the query. For a given random oracle query, and any given value of z ∈ z̃, z1,1,1 = z only
with probability 2−α, which is negligible assuming high min-entropy of QV. Let q be the
total number of random oracle queries made, and let ℓ := |z̃|, the additional abort probability
introduced by this hybrid is qℓ/2α.

Claim 4. Let A be an adversary succeeding in the Hyb3 game. Then, if PCOM satisfies
PC-wHIDE, underlying PIOP satisfies Ψ -NEXP, and high min-entropy of QV, then there
exist adversaries D1,D2 such that

Pr
[
Hyb3(1λ) = 1

]
≤ 2AdvPC-wHIDE

D1 (λ) + AdvPC-wEBIND
D2 (λ) + negl(λ)

And if PCOM satisfies PC-HIDE, the underlying PIOP satisfies high min-entropy of QV, and
t(1, 1) ≤ d(|i|), then there exist adversaries D1,D2 such that

Pr
[
Hyb3(1λ) = 1

]
≤ AdvPC-HIDE

D1 (λ) + AdvPC-wEBIND
D2 (λ) + negl(λ)

We will bound the probability that A = {A1,A2} succeeds in the Hyb3 game. This happens
only if π and π̃ differ for the first time for some polynomial commitment ci,j , i.e., for some
1 < i ≤ r and j ∈ [s(i)], ci,j ̸= c̃i,j . As before, we consider two cases: (1) when the PIOP
satisfies Ψ -HVZK, Ψ -NEXP and PCOM scheme satisfies the weak hiding property, and (2)
when the PCOM scheme satisfies the strong hiding property while the PIOP satisfies plain
HVZK. For both cases we will construct an adversary who breaks hiding (weak or strong
depending on the case).
Non Hiding Case. Consider the following sub-hybrids.
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– Hyb3,1 : This is the same as Hyb3 except that ck is generated as (ck, χ) ← SKGen(1λ)
and p̃ is committed to using SCom. As was argued in Hyb2 of Lemma 3.4, this switch is
indistinguishable from Hyb3 because of weak hiding of PCOM, i.e.,

|Pr
[
Hyb3(1λ) = 1

]
− Pr

[
Hyb3,1(1λ) = 1

]
| ≤ AdvPC-wHIDE

D1 (λ).

– Hyb3,2: This is the same as Hyb3,1 except the following abort conditions. As before, let
π be the transcript submitted by A2, and z1,1,1, y1,1,1, π1,1,1 be the first evaluation and
proof for commitment c1,1 in π. Let p̃1,1 be the corresponding polynomial in p̃ output by
S. The experiment aborts by outputting ⊥ if z1,1,1 = χ or p̃1,1(z1,1,1) = y1,1,1.
First note that, assuming that the prefix π|i′ was queried to the RO, ρr ̸= ρ̃r and z1,1,1 /∈ z̃
(because of the argument in Claim 3). Moreover, z1,1,1 ̸= χ because of high min-entropy
of QV. Finally, since p̃1,1 satisfies the non-extrapolatable property for the first polynomial
(in Definition 2.6), p̃1,1(z1,1,1) = y1,1,1 only with negligible probability, for a new z1,1,1 /∈
(z̃, χ). Thus, p1,1(z1,1,1) ̸= y1,1,1, except with negl(λ) probability. Hence, we obtain

|Pr
[
Hyb3,1(1λ) = 1

]
− Pr

[
Hyb3,2(1λ) = 1

]
| ≤ negl(λ).

– Hyb3,3 : This is the same as Hyb3 again, i.e., we switch back to using KGen and Com. Once
again, because of weak hiding, this switch should be indistinguishable to any adversary,
i.e.,

|Pr
[
Hyb3,2(1λ) = 1

]
− Pr

[
Hyb3,3(1λ) = 1

]
| ≤ AdvPC-wHIDE

D1 (λ).

This implies that, here too, p̃1,1(z1,1,1) ̸= y1,1,1 except with negl(λ) probability. However,
when this happens, we can build an adversary D2 against PC-wEBIND game. D2 receives ck,
invokes A1 internally on ck, and receives x in response. D2 generates a view for A that is
identical to Hyb3,3 by generating commitments and evaluation proofs by querying OCom and
OEval oracles on p̃. Now, if A returns a transcript such that y∗ := p̃1,1(z1,1,1), y∗ ̸= y1,1,1,
then D2 can query OEval to generate an honest evaluation proof π∗ for (y∗, z1,1,1), and output
tuple (c̃1,1, z1,1,1, y1,1,1, y

∗, π1,1,1, π
∗) to the weak evaluation binding challenger, and win the

game. Thus, we get,
Pr

[
Hyb3,3(1λ) = 1

]
≤ AdvPC-wEBIND

D2 (λ)

Overall, in the non hiding case we obtain,

Pr
[
Hyb3(1λ) = 1

]
≤ 2AdvPC-wHIDE

D1 (λ) + AdvPC-wEBIND
D2 (λ) + negl(λ)

Hiding Case. Consider the following sub-hybrid.
– Hyb3,1: This is the same as Hyb3 except the following changes. For i ∈ [r], j ∈ [s(i)],

random polynomials p̂i,j ∈ Fd(|i|)[X] are sampled and stored locally by the simulator,
with the constraint that p̂i,j(z̃i,j) := ỹi,j . Once again commitments c̃ are obtained by
calling SCom as in Hyb3. When A submits π, let z1,1,1, y1,1,1, π1,1,1 be the first evaluation
and proof for commitment c1,1 in π. If p̂1,1(z1,1,1) = y1,1,1 then Hyb3,1 aborts by outputting
⊥.
The adversary’s view is identical in Hyb3,1 and Hyb3 since the inputs to SCom remain
identical, and the all of the steps executed in Hyb3 are executed with identical inputs
here as well. The only difference is that, here, the simulator stores local polynomials p̂i,j

and the experiment aborts if an evaluation of the secret polynomial p̂1,1 is guessed by
the adversary. We argue that the probability of abort is negligible.
Assume that the number of evaluations revealed for the first polynomial in the PIOP is at
most equal to the highest allowed degree, i.e., t(1, 1) ≤ d(|i|). Given this assumption, we
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can conclude that the inputs to SCom, which consists of evaluation points and evaluations
with respect to the first polynomial, are not sufficient to define a degree d(|i|) polynomial.
This also means that the commitment c̃1,1 output by SCom leaks nothing to A about the
additional evaluation needed to interpolate the polynomial. Since, we pick a degree d(|i|)
polynomial p̂1,1 at random, it has at least one extra degree of freedom. Finally, because
of Claim 3, we know that z1,1,1 /∈ z̃1. Thus, for a new point z1,1,1, the probability that
p̂1,1(z1,1,1) = y1,1,1 is 1/|F|.

|Pr
[
Hyb3(1λ) = 1

]
− Pr

[
Hyb3,1(1λ) = 1

]
| ≤ 1/|F|.

– Hyb3,2: Same as Hyb3,1 except that all the polynomials are committed to using Com. This
is indistinguishable from Hyb3,1 because of hiding of PCOM:

|Pr
[
Hyb3,1(1λ) = 1

]
− Pr

[
Hyb3,2(1λ) = 1

]
| ≤ AdvPC-HIDE

D1 (λ).

Finally, we bound the probability of an adversary winning in Hyb3,2. Here, the transcript
π̃ is constructed according to Hyb3,2, and thus, the commitment c̃1,1 is for polynomial p̂1,1.
A outputs π such that ci,j , 1 < i ≤ r, j ∈ [s(r)], ci,j ̸= c̃i,j . Because of the abort condition in
Hyb3,1, here, p̂1,1(z1,1,1) ̸= y1,1,1 which violates PC-wEBIND. We can construct a reduction
towards breaking PC-wEBIND in a similar manner to the hybrids in the non-hiding case.

Pr
[
Hyb3,2(1λ) = 1

]
≤ AdvPC-wEBIND

D2 (λ)

And overall, we get,

Pr
[
Hyb3(1λ) = 1

]
≤ AdvPC-HIDE

D1 (λ) + AdvPC-wEBIND
D2 (λ) + 1/|F|

Putting the three claims together we get the probability bound stated in the theorem. ⊓⊔

4 Case Studies: Polynomial Commitment Schemes

4.1 KZG commitment scheme

We show that the polynomial commitment scheme KZG = (KGen,Com,Eval,Check) satisfies
all the necessary properties. If the operations highlighted in orange are executed, then we
obtain the randomized variant, rKZG.
– KGen(1λ, D): Generate the parameters of a bilinear group G = (G1,G2,GT , q, g, h, e)

where |G1| = |G2| = |GT | = q is prime, ⟨g⟩ = G1, ⟨h⟩ = G2, and e : G1 ×G2 → GT is an
efficiently computable, non-degenerate bilinear map. The group order p also determines
F := Fp and a set of supported polynomials FD[X]. The algorithm samples α, β ∈ F
uniformly, and compute σ = (g, gα, . . . , gαD

, gβα, . . . , gβαD
, h, hα). Output ck = (G, σ).

– Com(ck, f): On input ck, a polynomial f ∈ FD[X], sample f̂ $←− FD[X], and generate a
commitment as c = gf(α)+βf̂(α) and output c.

– Eval(ck, c, z, f(z), f , f̂): Compute ω(X) = (f(X) − f(z))/(X − z) and ω̂(X) = (f̂(X) −
f̂(z))/(X − z). Output π = (gω(α)+βω̂(α), f̂(z)).

– Check(ck, c, z, y, π): Parse π = (π, ŷ). Accept if and only if e(c/(gygβŷ), h) = e(π, hα/hz).
We recall the SDH assumption [BB04].

Definition 4.1 (SDH Assumption). The strong Diffie-Hellman assumption (SDH) holds
with respect to a bilinear group generator BGen if for all PPT adversaries A and degree bound
D > 0,

Pr
[
t = g

1
α+c : G ← BGen(1λ);α $←− F;σ := ({gαi}Di=0, h

α); (t, c)← A(G, σ)
]
≤ negl(λ)
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Evaluation binding of both schemes is known under the SDH assumption [KZG10].

Lemma 4.2. KZG is perfectly unique and perfectly weak hiding. rKZG is computationally
unique under the SDH assumption and perfectly hiding.

Proof. Unique Proof. Unique proof for KZG is proven in [GKO+23]. Unique proof for
rKZG requires the SDH assumption. Suppose the adversary outputs (c, z, y, (π, ŷ), (π′, ŷ′))
such that (π, ŷ) ̸= (π′, ŷ′) and e(c/(gygβŷ), h) = e(π, hα/hz) and e(c/(gygβŷ′), h) = e(π′,
hα/hz). If ŷ = ŷ′ or π = π′, then the verification condition uniquely determines the other
part of valid proof string. Therefore, we only need to rule out the case ŷ ̸= ŷ′ and π ̸= π′.
To this end, we construct reduction B, given G and σ = ({gαi}Di=0, h

α) as input, breaks
the SDH assumption. B first samples uniform β ∈ F and hands over a commitment key
ck = (G, ({gαi}Di=0, {gβαi}Di=0, h

α)) to a unique response adversary A. Upon receiving (c, z,
y, (π, ŷ), (π′, ŷ′)) from A, B outputs t = (π/π′)1/(β(ŷ′−ŷ)) and −z as a solution to the SDH
problem. Note that we indeed have that (π/π′)1/(β(ŷ′−ŷ)) = g1/(α−z) thanks to the verification
condition and therefore B outputs a valid solution as long as A outputs a non-unique proof
such that ŷ ̸= ŷ′ and π ̸= π′.
(Weak) Hiding. For KZG, SKGen is identical to KGen except that it additionally outputs
the trapdoor χ = α. SCom(ck, χ, yχ, z,y) outputs (c, π) = (gyχ , g(yχ−yi)/(χ−zi)). Note that
SCom can simulate these without knowing f , thanks to the knowledge of χ and yχ = f(χ).

For rKZG, SKGen is identical to KGen and SCom(ck,⊥,⊥, z,y) proceeds as follows: (1)

uniformly sample f ′ ∈ FD[X] such that f ′(z) = y, (2) c f̂←− Com(ck, f ′), (3) π ← Eval(ck, c,
z,y, f ′, f̂), and (4) output (c, π).

Remark 4.3. The extractability of (r)KZG holds under the algebraic group model. All of the
above properties also hold for a version of (r)KZG where the commitment c consists of two
group elements. Since this variant is known to be extractable under the (d)PKE assumption
[CHM+20, B.2], one can obtain simulation-extractable iNARG both in the standard model
and in the AGM.

4.2 Commitment schemes based on the hardness of Discrete Log assumption

To show application towards commitment schemes in a different setting, we consider polyno-
mial commitment schemes with transparent setup build on hardness of discrete log assump-
tion. We consider a simple PCOM scheme built from compressed sigma protocols in [AC20].
In the following we will only provide proof sketches for showing weak unique proofs, weak
evaluation binding, and strong hiding properties for it. The intuition for proving these prop-
erties are generic enough to be applicable to other similar schemes such as [BBB+18,BG18].

Definition 4.4 (DL-REL). Given an adversary A and n ≥ 2, the advantage of finding a
non-trivial discrete logarithm relation between random n generators is

AdvDL-REL
G (A) = Pr

gx = 1G ∧ x ̸= 0 : G← G(1λ); g := (g1, . . . , gn) $← Gn;
x := (x1, . . . , xn)← A(G,g)

 .
PCOM scheme from Compressed Sigma Protocols [AC20] The work of [AC20] gives
an interactive protocol for proving evaluations of a public linear function to a committed
vector with communication that is logarithmic in the length of the vector. They give a
protocol Π := (P,V) (Protocol 5 in [AC20], and denoted below by Π) for linear form
evaluations, which proves statements from the following relation:

RL = {(P ∈ G, L ∈ L(Zn
p ), y ∈ Zp); (x ∈ Zn

p , ρc ∈ Zp) : P = gxhρc , y = L(x)}
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Π is proven to be complete, special-HVZK, and a special sound protocol in [AC20]. These
properties are summarized in Theorem 4.5.

Theorem 4.5 (Theorem 3 in [AC20]). Π is a (2ℓ+ 3)-round protocol for relation RL,
where ℓ = ⌈log2(n + 1)⌉. It is perfectly complete, special honest-verifier zero-knowledge and
computationally (2, 2, 3, . . . , 3)-special sound, under the discrete logarithm assumption.

Π is a public coin interactive protocol that can be compiled into a non-interactive one
using Fiat-Shamir transform in the random oracle model. Since Π satisfies special soundness,
from [AFK21], we know that the Fiat-Shamir compiled non-interactive ΠH satisfies EXT.
Moreover, an HVZK simulation of interactive argument (without trapdoor) implies canonical
NIZK simulator for the Fiat-Shamir compiled protocol [GOP+23,FKMV12].

Theorem 4.6 (Informal). ΠH derived from Fiat-Shamir transformation of Π satisfies
black-box EXT, and NIZK.

Given ΠH, one can construct a PCOM scheme (CSP) to commit to polynomials of degree
at most n, as:
1. (G,g, h) ← KGen(1λ): Set pp as group elements g, h ∈ G where discrete-log is hard.

Output pp.
2. c ρc←− Com(pp, f): Compute Pedersen commitment of the coefficients as c = gxhρc , where

x denotes the coefficients of polynomial f .
3. π ← Eval(pp, c, z, f, ρc): Compute a linear form L with coefficients (1, z, . . . , zd), and eval-

uation proof π = ΠH.P(pp, c, L, y; x, ρc), where x denotes the coefficients of polynomial
f . Output π.

4. b ← Check(pp, π, c, z, y): Compute L as the coefficients (1, z, . . . , zd) and output b ←
ΠH.V(pp, c, L, y, π).

Now we provide intuition for why ΠH satisfies properties required by our framework.

Lemma 4.7. CSP satisfies PC-HIDE, and assuming solving DL-REL is hard, it satisfies
PC-wEBIND and PC-wUNIQ.

Proof sketch.
Strong Hiding. Existence of SCom algorithm is implied by the NIZK property. Given (ck,
⊥,⊥, z, f(z1), . . . , f(zm)), SCom computes a random P ← G and, for each zi, f(zi), executes
the NIZK simulator for ΠH on (P,L, f(zi)), where L := (1, zi, . . . , z

d
i ), and d is the degree of

f . SCom outputs P and the proofs generated by the underlying simulator.
Weak Unique Proofs. One can split the analysis here into two cases: first, when the proof
submitted by the adversary π, shares no common prefix with the simulated one π̃; and second,
when they share a common prefix. In the first, we can invoke the extractor of ΠH (which
is guaranteed by Theorem 4.6) and obtain a witness which corresponds to the polynomial
coefficients and randomness in the polynomial commitment P . This extraction is guaranteed
as otherwise one can show a reduction contradicting EXT similar to Lemma 2.16. This would
imply that given such an adversary, there is a way to extract the randomness used for the
commitment. This also means that this strategy can be used to break the hiding property
of this scheme:
– Hyb0: Let this be the same as PC-wHIDE game.
– Hyb1: The change here is that instead of using Com in the challenge responses, run SCom

instead. The two hybrids remain indistinguishable because of strong hiding property.
Note that this is true only if the oracles in PC-wUNIQ game are accessed once in the
beginning in a non-adaptive way, i.e., similar to oracle accesses in PC-HIDE game. This
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requirement can be met by weakening the PC-wHIDE definition even more and adjusting
the proofs where PC-wHIDE is used in a minor way.

– Hyb2: Here, on receiving a polynomial f and evaluation points z from the adversary, sam-
ple a random polynomial f̂ that agrees with f on z and is random otherwise. Commit to
this using Com and generate proofs using Eval. This hybrid should remain indistinguish-
able since the amount of information seen by SCom remains the same in both hybrids.

The above argument tells us that hybrids Hyb0 and Hyb2 are indistinguishable. However,
if there exists an adversary A against PC-wHIDE (satisfying the first case above), then we
can construct a distinguisher D or Hyb0 and Hyb2. D receives f, z from A and relays all
the messages between the adversary and the hybrids (either Hyb0 or Hyb2). Observe that
if D sees a view with respect to Hyb0 then the commitment P and proofs π̃ received by it
correspond to f . Otherwise, it corresponds to a random f̂ . On receiving π from the adversary,
extract the randomness, and the polynomial from the commitment. Using these, D checks if
the extracted polynomial matches f . If it does then this is the case with Hyb0, otherwise it
is Hyb2.

For proving the other case, the ideas here are very similar to the ones used in [GOP+23]
to prove weak unique proofs for Bulletproofs. Here, we are restricted by the common prefix,
and cannot rewind the adversary all the way in order to obtain a witness. Instead, we only
rewind up until the point where the two transcripts deviate. Using just this partial rewinding,
we can now derive the coefficients in the exponent for the last matching message, and derive
a deterministic relation between this message, the next round challenge, and the next round
message. This would mean that, unless the adversary breaks DL-REL, since the matching
message and the next round challenge are the same (because of the shared prefix), the next
round message has to be the same. This argument can be repeated for each round to conclude
that the entire proof string has to be the same.
Weak Evaluation Binding. Changing the evaluation changes the statement and we can
directly extract from the adversary’s proof transcript. The extracted witness includes the
polynomial and commitment randomness. Again, this gives a strategy for breaking the hiding
property of this scheme.

5 Case Studies: Polynomial Interactive Oracle Proofs

Marlin. We present a slightly modified PIOP for Marlin in Protocol 2. Notations fol-
low [CHM+20]. The b denotes the query bound which determines the degree of masking
polynomials for ŵ, ẑA, ẑB, ẑC . Here, the bound is incremented by Ψ in order to tolerate one
additional query at χ.

Note that the original Marlin protocol does not have high min-entropy of QV in terms of
2.7, because an evaluation query to all the first-round polynomials is fixed by the challenge
β1.10 This is why we introduce a dummy polynomial r(X) of degree Ψ+1 and have the verifier
query r with the last-round challenge β3. Clearly, this variant of PIOPMarlin has log(|F|)-
bit min-entropy for QV. We then show that PIOPMarlin retains Ψ -HVZK and Ψ -NEXP. We
also highlight an evaluation proof for a dummy polynomial as a generic method that can
generically add the weak unique response property to any Fiat-Shamir NIZKAoK.

Theorem 5.1. PIOPMarlin with b = Ψ + 2 is perfectly Ψ -HVZK and Ψ -NEXP.

Proof. We give a Ψ -HVZK simulator SMarlin for Marlin in Simulator 3. First consider the
public polynomials g2, . . . , h3. These are computed honestly both in the real and the simu-
lated world, and so their evaluations are identically distributed. In the real world, up to b
10 This also implies that the unique response analysis for Marlin presented in [GKK+22] does not hold. We

thank the authors of [FFK+23] for bringing the issue to our attention.
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Protocol 2: Protocol PIOPMarlin

Modifications with respect to the original protocol of [CHM+20] are written in orange.
Offline phase. The indexer I is given as input subsets H,K of F, and matrices A,B,C ∈ Fn×n

representing the R1CS instance, and outputs three univariate polynomial oracles { ˆrowM , ĉolM ,
v̂alM} of degree less than |K| for each matrix M ∈ A,B,C, such that the following polynomial
is a low-degree extension of M .

M̂(X,Y ) :=
∑
k∈K

uH(X, ˆrowM (k))uH(Y, ĉolM (k))v̂alM (k)

Input. P receives (H,K,A,B,C, i, x, w), and V receives (H,K, x) and oracle access to the nine
polynomials output by I(i).
Online phase: first round. P sends the masked oracle polynomials ŵ(X) ∈ F<|w|+b[X], ẑA(X),
ẑB(X), ẑC(X) ∈ F<|H|+b[X], h0(X) ∈ F<|H|+2b−1[X] as defined in [CHM+20, 5.3.2] and uniformly
random r(X) ∈ FΨ+1[X]. It samples a random s(X) ∈ F<2|H|+b−1[X] and sends polynomial oracle
s(X) together with σ1 ∈ F where σ1 :=

∑
a∈H

s(a), and ẑA(X)ẑB(X)− ẑC(X) = h0(X)vH(X).

Online phase: second round. Upon receiving challenges α, ηA, ηB, ηC ∈ F from V, P sends
oracle polynomials g1(X) ∈ F<|H|−1[X], h1(X) ∈ F<|H|+b−1[X] to V, where

s(X) + uH(α,X)
( ∑

M∈{A,B,C}
ηM ẑM (X)

)
−

( ∑
M∈{A,B,C}

ηMrM (α,X)
)
ẑ(X)

=h1(X)vH(X) +Xg1(X) + σ1/|H|

Online phase: third round. Upon receiving challenge β1 ∈ F \H from the V, P sends oracle
polynomials g2(X), h2(X) ∈ F<|H|−1[X] and σ2 ∈ F to V, where

σ2 =
∑
k∈H

uH(α, k)
∑

M∈{A,B,C}
ηMM̂(k, β1)

uH(α,X)
∑

M∈{A,B,C}
ηMM̂(X,β1) = h2(X)vH(X) +Xg2(X) + σ2/|H|

Online phase: fourth round. Upon receiving challenge β2 ∈ F \H from the V, P sends oracle
polynomials g3(X) ∈ F<|K|−1[X], h3(X) ∈ F<6|K|−6[X] and σ3 ∈ F to V, where,

σ3 =
∑
k∈K

∑
M∈{A,B,C}

ηM
vH(β2)vH(β1)v̂alM (k)

(β2 − ˆrowM (k))(β1 − ĉolM (k))

h3(X)vK(X) = a(X)− b(X)(Xg3(X) + σ3/|K|)
a(X) =

∑
M∈{A,B,C}

ηMvH(β2)vH(β1)v̂alM (X)
∏

L∈{A,B,C}\{M}
(β2 − ˆrowL(X))(β1 − ĉolL(X))

b(X) =
∏

M∈{A,B,C}
(β2 − ˆrowM (X))(β1 − ĉolM (X))

Query phase. V queries the oracles ŵ(X), ẑA(X), ẑB(X), ẑC(X), h0(X), s(X), h1(X), g1(X) at
β1; h2(X), g2(X) at β2; h3(X), g3(X),r(X) and all offline oracles { ˆrowM , ĉolM , v̂alM} for each
M ∈ A,B,C at a random query point β3 ∈ F.
Decision phase. V accepts if the following tests pass:
– h3(β3)vK(β3) = a(β3)− b(β3)(β3g3(β3) + σ3/|K|)
– h2(β2)vH(β2) + β2g2(β2) + σ2/|H| = uH(α, β2)σ3

– s(β1) + uH(α, β1)(
∑

M ηM ẑM (β1))− σ2ẑ(β1) = h1(β1)vH(β1) + β1g1(β1) + σ1/|H|
– ẑA(β1)ẑB(β1)− ẑC(β1) = h0(β1)vH(β1)
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Simulator 3: SMarlin

On input (i, x) do:
Offline Phase: Compute polynomials ( ˆrowA, . . . , v̂alC) honestly. Set p := { ˆrowA, . . . ,

v̂alC}.
Online Phase:
1. Sample polynomials ẑA, ẑB, ŵ, h0, r uniformly at random from the appropriate do-

main.
2. Set ẑC(X) := ẑA(X)ẑB(X)− h0(X)vH(X).
3. Sample challenges α, ηA, ηB, ηC ← F .
4. Sample polynomials h1, g1 uniformly at random from the appropriate domain, and
σ1 ← F.

5. Derive ẑ from ŵ and x, and set s(X) := h1(X)vH(X) + Xg1(X) + σ1/|H| − uH(α,
X)

( ∑
M∈{A,B,C} ηM ẑM (X)

)
+

( ∑
M∈{A,B,C} ηMrM (α,X)

)
ẑ(X).

6. Sample challenges β1, β2 ← F \H .
7. Compute third and fourth round messages (g2, h2, g3, h3, σ2, σ3) honestly.
8. Set view := {σ1, α, ηA, ηB, ηC , β1, σ2, β2, σ3}.
9. Update p := p||{r, ŵ, ẑA, ẑB, ẑC , h0, s, g1, h1, g2, h2, g3, h3}.
Query Phase: Honestly evaluate polynomials (ẑA, ẑB, ẑC , ŵ, h0, s, h1, g1) at β1, (h2, g2)
at β2, and (h3, g3, r), and all offline polynomials at β3 ← F. Update view with these
evaluations.
Output: (view; p).

evaluations of polynomials ẑA, ẑB,ẑC at points in F \H, are distributed uniformly random
in F. h0 is set such that ẑA(X)ẑB(X) − ẑC(X) = h0(X)vH(X), for some evaluation point
γ ∈ F \ H, h0(γ) := (ẑA(γ)ẑB(γ) − ẑC(γ))/vH(γ). Since, ẑA(γ), ẑB(γ), ẑC(γ) are uniformly
distributed in F, and vH(γ) is a deterministic value given γ, h0(γ) is also uniformly random
in F. Since up to b evaluations of ẑA, ẑB,ẑC are uniformly distributed in F, h0 evaluated on
the same points is also uniformly distributed in the real world. In the ideal world, ẑA, ẑB, h0
are sampled uniformly at random, and thus their evaluation (up to b) are uniformly random
here too. Moreover, since ẑC(X) is set to satisfy the same constraint, its evaluations are
uniform in the ideal world.

Now, we argue that the evaluations of s, g1, h1 and the value σ1 are also distributed
identically. First notice that σ1 is a random field element in the real world since s(X) is a
random polynomial. In the ideal world, it is picked at random (before picking s(X)). This
however, still remains identical to the real world.

In the real world, s(X) is sampled at random and then g1, h1 are set such that s(X) +

p(X) = h1(X)vH(X)+Xg1(X)+σ1/|H|, where p(X) := uH(α,X)
( ∑

M∈{A,B,C}
ηM ẑM (X)

)
−( ∑

M∈{A,B,C}
ηMrM (α,X)

)
ẑ(X). Polynomial s(X) can be rewritten as hs(X)vH(X)+Xgs(X)+

σ1/|H|. We can conclude that the constant terms is σ/|H| because of the guarantees from
sub-check protocol (i.e., the sum over H is σ1 iff the constant term is σ1/|H|. Because
hs ∈ F<|H|+b−1 and gs ∈ F<|H|−1, both hs and gs have to be uniform polynomials as well.
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Moreover, σ1 will be a random field element. Similarly, p(X) can be written as hp(X)vH(X)+
Xgp(X) + cp, for some hp, gp and a constant cp. This implies, hs(X) + hp(X) = h1(X),
gs(X) + gp(X) = g1(X), and cp = 0. This means that, in the real world, up to b evalua-
tions of h1(X) and g1(X) look random because of hs and gs. Since in the ideal world, these
polynomials are picked completely at random, their evaluations are going to be identically
distributed.

Finally, we argue for evaluations of s(X). Observe that, both in the real and ideal world,
s(X) is determined once all other polynomials are fixed. Hence, its evaluation is fixed after
fixing all other polynomials. As long as s(X) is evaluated at the same points that g1, h1 have
already been evaluated at, its evaluations are going to be identically distributed.

Proving Ψ -NEXP is straightforward: since the dummy polynomial r is of degree Ψ + 1, a
Ψ -NEXP adversary cannot guess r(z∗) for z∗ /∈ (χ, β3) except with probability 1/|F|.

Remark 5.2. Lunar PIOP for RICS-lite also follows a very similar structure as Marlin. We
observe that the same simulation strategy as for Marlin will also work for this PIOP. Since
the simulation is almost the same, we skip the details here.

PLONK. We recall PIOP for PLONK [GWC19] in Protocol 3. Unlike Marlin, PIOPPLONK
already has high min-entropy of QV since the evaluation point z is only sampled at the very
end. It also satisfies the condition that t(1, 1) ≤ d(|i|) since the witness carrying polynomial
f̂L is only queried at one point. [GKK+22, Lemma 7] claims that PIOPPLONK compiled with
deterministic KZG satisfies perfect trapdoor-less ZK. We first explain why the simulator
provided there is not perfect. Essentially, the simulator of [GKK+22, Lemma 7] works as
follows:
1. Sample uniform challenge β, γ, α ∈ F and z ∈ D.
2. Let w = 0 be a dummy witness. Compute and commit to all polynomial oracles until the

second round as an honest prover would do.
3. Compute T (X) of the third round as an honest prover would do, except that T (X) is

now a rational function instead of polynomial, because a dummy witness may not satisfy
the constraint. Define a polynomial T̃ (X) such that T̃ (z) = T (z) and create a KZG
commitment cT = gT̃ (χ).

4. Using the simulated polynomial T̃ (X) and other polynomials, compute KZG evaluation
proofs with an evaluation point z as input.

Although this is trapdoor-less simulation, we observe that perfect simulation is achieved
due to the third step. In the real protocol, T (X) is computed and committed honestly and
the equation (5) is satisfied even if evaluated at the KZG trapdoor χ. However, the above
simulator commits to T̃ (X) via deterministic KZG, which does not equal the righthand side
of (5) when evaluated at χ. Therefore, an unbounded adversary that can compute exponents
of KZG commitments can trivially distinguish simulated from real transcripts by checking
whether these exponents satisfy the equation or not. Note that one might be able to justify
computational ZK of the above strategy by assuming a variant of Uber assumption [Boy08],
which is an interesting future direction.

Instead, we provide a more straightforward simulation strategy for PIOPPLONK leading
to perfect TLZK if compiled via rKZG.

Theorem 5.3. PLONK PIOP is perfectly HVZK.

Proof. We give an HVZK simulator SPLONK in Simulator 4. The only difference with an
honest prover is that, SPLONK encodes a dummy witness in polynomials fL, fR, fO. In a real
protocol, since f̂L = fL(X) + rL(X) · ZH(X) where rL(X) is a degree-1 uniformly random
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Protocol 3: PIOPPLONK

Offline phase. The indexer I receives as input i = (F, n,m, l,qL,qR,qO,qM ,qC , σ,
TC), and computes the following polynomial oracles as described in the text: selector
polynomials (qL, qR, qO, qM , qC); preprocessed polynomials for permutation argument
(SL,ID, SR,ID, SO,ID, SL,σ, SR,σ, SO,σ); vanishing polynomial of H, ZH(X) = Xn − 1.

Input. P receives (i, (wi)i∈[l], (wi)i∈[l+1,3n]) and V receives x = (wi)i∈[l] and oracle
access to the polynomials output by I(i).

Online phase: first round. P computes fpub(X) =
∑

i∈[l] wi · Li(X), and witness-
carrying polynomials fL(X) =

∑
i∈[n] wi·Li(X), fR(X) =

∑
i∈[n] wi+n·Li(X), fO(X) =∑

i∈[n] wi+2n ·Li(X). Define f̂L = fL +(a0 +a1X)ZH(X), f̂R = fR +(b0 +b1X)ZH(X),
f̂O = fO + (c0 + c1X)ZH(X), where ai, bi, ci

$←− F. Send (f̂L(X), f̂R(X), f̂O(X)) to
V.

Online phase: second round. Upon receiving challenges β, γ ∈ F from the
V, P computes hID(X), hσ(X) and a permutation polynomial s(X) as described
in [GWC19]. Then P sends a masked oracle polynomial ŝ(X) = s + (d0 + d1X +
d2X

2)ZH(X) to V, where di
$←− F.

Online phase: third round. Upon receiving challenge α ∈ F from the V, P
computes

FC(X) = qL(X)f̂L(X) + qR(X)f̂R(X) + qO(X)f̂O(X) (1)
+ qM (X)f̂L(X)fR(X) + qC(X) + fpub(X) (2)

F1(X) = hID(X)ŝ(X)− hσ(X)ŝ(ζX) (3)
F2(X) = L1(X)(ŝ(X)− 1) (4)

T (X) = FC(X) + F1(X) · α+ F2(X) · α2

ZH(X) (5)

and sends an oracle polynomial T (X) to V.

Query phase. V queries online oracles (f̂L(X), f̂R(X), f̂O(X), fpub(X), T (X)) and
all offline oracles with a random query point z ∈ D. Moreover, it makes an additional
query to the permutation polynomial ŝ(X) with ζz.

Decision phase. V first computes fpub(X) from the statement. Then V constructs
FC(z), F1(z) and F2(z) based on the outputs of polynomial oracles. It then checks
that (FC(z) + F1(z) · α+ F2(z) · α2) = T (z) · ZH(z).
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Simulator 4: SPLONK

On input (i, x) do:
Offline Phase: Compute preprocessed polynomials as in the real I.
Online & Query Phase: Let w = 0 be a dummy witness.
1. Construct witness-carrying polynomials fL, fR, fO encoding dummy witness w. Con-

struct masked polynomials f̂L, f̂R, f̂O as an honest prover would.
2. Uniformly sample permutation argument challenges β, γ ∈ F, and construct polyno-

mials hID, hσ, ŝ as an honest prover would.
3. Uniformly sample amortization challenge α ∈ F and define

FC = qL · f̂L + qR · f̂R + qO · f̂O + qM · fL · f̂R + qC + fpub

F1 = hID · ŝ− hσ · ŝ(ζX)
F2 = L1 · (ŝ− 1)

T (X) = FC(X) + α · F1(X) + α2 · F2(X)
ZH(X)

where T (X) is a rational function since the dummy witness may not satisfy the
relation.

4. Uniformly sample z ∈ D and define yL = f̂L(z), yR = f̂R(z), yO = f̂O(z), ys = ŝ(z),
y′

s = ŝ(ζz), yT = T (z).
Output: view = ((β, γ), α, z, (yL, yR, yO, ys, y

′
s, yT )).

polynomial, a single evaluation of f̂L at z ∈ D is independent of fL. The same argument
applies to fR and fO, and thus we have that the joint distribution of simulated (z, (yL, yR,
yO)) is identical to that of a real protocol. Analogously, since the permutation polynomial
is ŝ = s(X) + rs(X) · ZH(X) where rs(X) is a degree-2 uniformly random polynomial, two
evaluations of ŝ at z, zζ ∈ D are independent of s. Finally, once ((β, γ), α, (yL, yR, yO, ys, y

′
s))

are fixed, a valid yT is uniquely determined. This concludes that the distribution of simulated
((β, γ), α, (yL, yR, yO, ys, y

′
s, yT )) is identical to that of real transcript.
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