
Efficient Arguments and Proofs for Batch
Arithmetic Circuit Satisfiability

Jieyi Long

Theta Labs, Inc.
jieyi@thetalabs.org

Abstract. In this paper, we provide a systematic treatment for the
batch arithmetic circuit satisfiability and evaluation problem. Building
on the core idea which treats circuit inputs/outputs as a low-degree poly-
nomials, we explore various interactive argument and proof schemes that
can produce succinct proofs with short verification time. In particular,
for the batch satisfiability problem, we provide a construction of succinct
interactive argument of knowledge for generic log-space uniform circuits
based on the bilinear pairing and common reference string assumption.
Our argument has size in O(poly(λ) · (|w| + d log |C|)), where λ is the
security parameter, |w| is the size of the witness, and d and |C| are the
depth and size of the circuit, respectively. Note that the argument size is
independent of the batch size. To the best of our knowledge, asymptot-
ically it is the smallest among all known batch argument schemes that
allow public verification. The batch satisfiablity problem simplifies to a
batch evaluation problem when the circuit only takes in public inputs
(i.e., no witness). For the evaluation problem, we construct statistically
sound interactive proofs for various special yet highly important types of
circuits, including linear circuits, and circuits representing sum of poly-
nomials. Our proposed protocols are able to achieve proof sizes indepen-
dent of the batch size. We also describe protocols optimized specifically
for batch FFT and batch matrix multiplication which achieve desirable
properties, including lower prover time and better composability. We be-
lieve these protocols are of interest in their own right and can be used
as primitives in more complex applications.

Keywords: arithmetic circuit satisfiability, batch arguments, batch proofs

1 Introduction

As cutting-edge technologies such as blockchain, cloud computing, and deep
learning continue to advance, verifiable computation is becoming increasingly
vital in today’s technology landscape. Verifiable computation enables a weak
verifier to delegate complex computing tasks to a powerful, yet untrusted prover.
Along with the computation results, the prover also provides a proof for the
verifier to validate that the computation was performed correctly.

In many verifiable computation scenarios, the prover is required to generate
a single proof for multiple computation tasks that use the same circuit, but

mailto:jieyi@thetalabs.org

2 Jieyi Long

with different public input data, as well as witnesses that are not known to the
verifier. This is commonly referred to as the batch circuit satisfiability problem.
A specific case of this scenario, where the witness is absent, is referred to as the
batch circuit evaluation problem.

Batch proof has many potential applications. Many outsourced computations
are data parallel, meaning the same computation are applied independently to
many pieces of data [61]. Amazon Elastic MapReduce is a prominent example.
Another useful application of batch proof is deep learning model inference ser-
vices. These services often want to assure their users that the inferences made
were done using the appropriate machine learning models [49]. To accomplish
this, the inference service provider can periodically post a proof which guar-
antees that all inferences made in a specific period were conducted correctly.
The intersection of verifiable computation and blockchain systems is driving in-
creasing demand for batch proof. For example, blockchain scaling solutions such
as zkRollup [18] has recently been garnering significant attention both from
academia and industry. These solutions could benefit tremendously from soft-
ware systems that can produce a batch proof for all the transactions inside a
block. A highly desirable property of batch proofs is that the length of the proof
does not increase with the size of the batch. This is particularly crucial for
storage-sensitive verification environments, such as on-chain verification using
smart contracts, as it allows for more efficient use of the costly storage space.

1.1 Summary of Contributions

In this paper, we provide a systematic treatment for both the batch circuit
satisfiability and evaluation problem. Building on the core idea which treats the
circuit inputs and outputs as low-degree polynomials interpolating the inputs
and outputs across the instances, we explore various efficient argument and proof
schemes that can produce succinct proofs. We list our main contributions below:

• Succinct argument of knowledge for batch circuit satisfiability. For
the batch satisfiability problem, we provide a construction of computation-
ally sound succinct interactive argument of knowledge for generic log-space
uniform circuits under the bilinear pairing and common reference string
assumption. To the best of our knowledge, among all the known schemes
that allow public verification, asymptotically our work achieves the small-
est argument length in the literature, which is O(poly(λ) · (|w|+ d log |C|)),
independent of the batch size. Here λ is the security parameter, d is the
depth of the circuit, and |C| and |w| are the size of the circuit and witness,
respectively. If all the instances in the batch share the same witness (but
have different public inputs), the argument size can be further reduced to
O(poly(λ) · (d log |C|+ log |w|)). Using the Fiat-Shamir transformation, the
interactive argument can be made non-interactive under the random oracle
model.

• Succinct proofs for batch circuit evaluation. The batch satisfiablity
problem degenerates to a batch evaluation problem when the circuit only
takes in public inputs (i.e., no witness). For the evaluation problem, we

Efficient Batch Arguments and Proofs 3

construct statistically sound interactive proofs for various special yet highly
import types of circuits, including linear circuits, and circuits representing
sum of polynomials. Our protocols are able to achieve a proof size indepen-
dent of the batch size. As far as we are aware of, this is the first batch proof
proposal in the literature that achieves this for these special types of circuits.

• New primitives. Our third contribution is to describe optimized interactive
protocols for batch FFT and batch matrix multiplication which have certain
desirable properties, including lower prover time, better composability, etc.
We believe these protocols are of interest in their own right and can be used
as primitives in more complex applications.

In Table 1, we compare various aspects of our batch argument protocol with
the prior art. Please refer to Section 1.2 for more details.

Table 1. A comparison of different batch argument schemes, where m is the batch
size, λ is the security parameter, d is the depth of the circuit, and |C| and |w| are the
size of the circuit and witness, respectively.

Argument Size Verifier Time Computation Model Assumptions

Bootle et al. [13] O(
√
m) O(m|C|) Low-degree circuit Discrete log

Brakerski et al. [15] O(poly(λ) · |w|) O(poly(λ) · (m|io| + |w|)) 3SAT Private verification

Choudhuri et al. [23] Õ(λ(|C| +
√

m|C|)) O(poly(λ) · (m|io| + |C|)) C-SAT SE-LHC, CIH, CRS

Devadas et al. [26] O(|w| + poly(λ, logm)) O(poly(λ, |io|, |w|,m)) Boolean circuit LWE

Garg et al. [33] O(poly(λ, logm, log |C|)) O(poly(λ,m, |io|) + poly(λ, logm, log|C|)) Boolean circuit IO, OWF, CRS

Waters et al. [65] O(poly(λ, |C|)) O(poly(λ,m, |io|) + poly(λ, |C|)) Boolean circuit Bilinear group, CRS

Our Work O(poly(λ) · (|w| + d log |C|)) O(poly(λ) · (m|io| + |w| + d log |C|)) Uniform circuit Pairing, RO, CRS

1.2 Related Work

Argument and proof systems have a long and rich history in cryptography re-
search [35,45,52]. In recent years, driven by real world use cases like smart con-
tract and blockchain applications [18], the so-called succinct non-interactive ar-
guments of knowledge (SNARK) systems received particular attention. Tremen-
dous progress have been made over the years on various aspects of the SNARK
systems [5, 6, 8, 14, 22, 30, 36, 37, 44, 51, 55, 59, 64, 67, 70]. With such an arsenal
of SNARK protocols, batch arguments can be trivially constructed by applying
any of them to individual instances in the batch and then concatenate the proofs
together. However, with this method, the overall proof size would grow linearly
with the batch size.

As an alternative approach, one may consider treating the entire batch as
a giant “super circuit” and apply the known proof or argument constructions
to it. Along this line, Thaler [61] proposed an interactive protocol for proving
the results of data parallel computation, in which the same computation are
applied independently to many pieces of data. The technique can be adapted for

4 Jieyi Long

proving batch circuit evaluation. The communication complexity of the protocol
is O(d · log(m|C|)) field elements, where d and |C| are the depth and size of
the circuit, and m is the batch size. While this approach is highly promising,
the proof size still increases with batch size. Williams [66] explored another
approach to fold multiple instances into a single instance, and came up with an
non-interactive proof protocol for batch evaluation. However, its communication
cost is O(m|io|D), which scales linearly with the batch size. Moreover, both
Thaler’s and Williams techniques only apply to circuit evaluations, not circuit
satisfiability problems.

A closely related field of research is SNARK aggregation. Different from
batch proof, where the proof is generated by processing the instances directly,
SNARK aggregation works by first generating the SNARK proof for each in-
dividual instances, and then aggregate the proofs together. SnarkPack [31] is a
recent proposal for aggregating Groth16 zkSNARKs [36], which is able to aggre-
gate m Groth16 zkSNARKs into a single proof with O(logm) length and verifier
time. The size of the aggregated proof is sublinear in the batch size, but still
grows as the batch size becomes larger.

Incremental verifiable computation (IVC) [46,53,62] and proof-carrying data
(PCD) [17] are two research directions relevant to batch proof. These techniques
aim to prove the correctness of an ongoing computation in a way that a verifier
can efficiently verify the correct execution of any prefix of the computation. While
this technique is relevant to batch verification, it requires that the output of an
instance is identical to the input of the next instance. Thus, the existing schemes
cannot be applied for batch verification directly. Potentially, we can modify
these schemes to tree-like recursions where the leaves are the batch instances
and the internal nodes recursively aggregates their children nodes. However,
the computational and communication complexity of this approach need to be
further analyzed.

On a separate track, Reingold et al. investigated the settings where a prover
wants to convince a verifier the correctness of m NP statements [56,57]. A later
work extends the techniques to achieve zero-knowledge [42]. One of their main
result is that for a special complexity class UP (i.e., NP statements that have a
unique witness), there exists a statistically sound interactive proof protocol that
uses a constant number of rounds with communication cost O(mδ · poly(|w|)),
where δ > 0 is an arbitrarily small constant, and |w| is the size of the witness
of a single instance. Note that even though δ can be made arbitrarily small, the
communication cost still depends on the batch size.

Instead of focusing on statistically sound prove systems, there is a line of work
considering computationally sound argument systems for batch NP statements,
which is also known as “BARGs” [13,15,23,26,33,65]. A BARG is an argument
system for a batch of m NP statements where the size of the proof and the
verification time grow sublinearly with the batch size. Brakerski et al. achieved
2-message non-adaptive delegation protocols for batch NP verification that re-
quires O(|w| · poly(λ)) bits of communication, and O(poly(λ) · (m|io| + |w|))
verifier time [15]. The communication cost is independent of the batch size.

Efficient Batch Arguments and Proofs 5

However, the verification requires a secret key, which limits its applications [15].
Bootle et al. [13] proposed a polynomial commitment protocol. Based on that,
they constructed an efficient zero-knowledge BARG scheme for arithmetic cir-
cuits representing low degree polynomials. The communication cost of this pro-
tocol is proportional to O(

√
m), the square root of the batch size. Choudhuri et

al. consider BARGs from standard cryptographic assumptions such as SE-LHC
and CIH for TC0 circuits [23]. Assuming these standard assumptions, they con-
structed a BARG for C-SAT in the CRS mode with non-adaptive soundness. The
argument size is Õ(λ(|C|+

√
m|C|)), where λ is the security parameter. Waters et

al. investigated the same problem but under the bilinear group assumptions [65].
Their construction follows he “commit-and-prove” strategy, and produces argu-
ments with O(poly(λ, |C|)) size, and O(poly(λ,m, |io|)+poly(λ, |C|)) verification
complexity. Devadas et al. proposed rate-1 BARGs built on top of the LWE as-
sumption which achieves argument size of O(|w| + poly(λ, logm)) [26]. Garg
et al. discussed fully succinct zero-knowledge BARGs from indistinguishability
obfuscation under the CRS model where the argument size can be made to be
O(poly(λ, logm, log |C|)) which scales sublinearly with both m and C [33].

All of these BARGs constructions aside from Brakerski et al.’s and Waters
et al.’s construction produce arguments whose size grows along with the batch
size. Compared to these prior works, our proposed protocol focuses on the batch
evaluation and satisfiability problem of log-space uniform circuits, which is a
subset of class NP, but still captures a large set of computation problems which
are highly important both in theory and practice. By leveraging the structure of
the log-space uniform circuits, our protocol achieves O(poly(λ) · (d log |C|+ |w|))
argument size, which does not depend on the batch size, and is asymptotically
better than O(poly(λ, |C|)) achieved by Waters et al.’s construction. Our scheme
also allows public verification, unlike Brakerski et al.’s approach which relies on
a secret verification key. For a special case where all the instances in the batch
shares the same witness, the argument size of our protocol can be further reduced
to O(poly(λ)·(d log |C|+log |w|)). Hence, our argument scheme achieves the best
known asymptotic argument size for the batch satisfiability problem for log-space
uniform circuits.

1.3 Roadmap

The remainder of this paper is organized as follows. Section 2 lays down the
technical foundation necessary for constructing the proposed protocols. Then, we
formally define the batch circuit satisfiability and evaluation problem in Section
3, and provide an example to motivate the proposed protocols. In Section 4, we
present a computationally sound argument scheme for generic log-space uniform
circuits which can produce highly compact arguments even for large batches.
For the batch evaluation problem, Section 5 presents our statistically sound
interactive proofs for special circuits. In particular, we discuss special versions
of protocols optimized for batch FFT evaluation and batch matrix production
verification.

6 Jieyi Long

2 Preliminaries

2.1 Arithmetic Circuits

An arithmetic circuit C over field F is a directed acyclic graph whose nodes
are labelled by + or ∗, computing field element addition and multiplication
respectively, for the values on the incoming wires. In this paper, we focus on
the so-called log-space uniform circuit which has a succinct implicit description
that can be efficiently represented in logarithmic space [60,67]. This means that
there is a logarithmic-space algorithm that takes as input the label of a gate
g in C, and is capable of determining all relevant information about that gate,
including the labels of g’s neighboring gates, as well as the type of gate (e.g.,
addition or multiplication) [60]. Various proofs and argument schemes in the
literature, including libSTARK [4], zkVSQL [70], Hyrax [64], and Libra [67] also
focus on this type of circuits. Throughout the rest of this paper, the term “circuit”
refers to a log-space uniform circuit unless stated otherwise. Most computations
can be mapped to low-depth log-space uniform circuits [67]. Examples include
matrix multiplication, image scaling and Merkle hash tree. Moreover, as shown
in [4, 60], asymptotically all random memory access (RAM) programs can be
validated using log-space uniform circuits with log-depth in program running
time through RAM-to-circuit reduction, which illustrates the expressive power
of such circuits.

It can be proved that any log-space uniform arithmetic circuit can be trans-
formed into a layered circuit, while increasing the circuit size by a factor of at
most the circuit depth [64]. A circuit is layered if it can be partitioned into sub-
sets called layers, such that every wire in the circuit is between adjacent layers.
We call the number of layers the depth of the circuit, which is denoted by d. We
also assume all the gates in the circuit have two inputs. Following the literature
convention, we label the input layer as the dth layer and the output layer as the
0th layer. Correspondingly, we denote the input vector as vd, and the output
vector as v0. In addition to the public inputs, the circuit may also take in a
witness vector that is only known to the prover. We use w to denote the witness
vector. Fig. 1 depicts two small layered circuits where the left one only has public
inputs, while the right one takes in both the public inputs and the witness.

Fig. 1. Two layered circuit examples, where the left one only takes in public input
vector v2, while the right one takes in both the public input vector v2 and witness w.

Efficient Batch Arguments and Proofs 7

Based on the above definition, for the example circuit on the left, the input
and output vector are denoted as v2 and v0, respectively. Correspondingly the
two input variables are labeled as v2,1 and v2,2. The first subscript indicates they
are on the 2nd layer. The second subscript is the index of the input variable in
the input vector. Similarly the two output variables are labeled as v0,1 and v0,2.

Note that since the circuit only contains addition and multiplication gates,
each output can be expressed as a multivariate polynomial in terms of the input
variables. For example, for the left circuit in Fig. 1, the two outputs can be
expressed v0,1 = v2,1v2,2 + v2,1 + v2,2 and v0,2 = v22,1v2,2 + v2,1v

2
2,2, respectively.

We use letter D to denote the total degree of the circuit, which is the maximum
total degree across all the outputs expressed as polynomial in terms of input
variables. In this circuit the degree of output v0,1 is 2, and that of v0,2 is 3.
Hence, the total degree of the circuit is 3.

2.2 Succinct Noninteractive Argument Systems

Argument systems assume computationally bounded provers [16,60]. In more de-
tail, an argument system for a function f is an interactive proof for f in which
the soundness condition is only required to hold against prover strategies that
run in polynomial time. This notion of soundness is called computational sound-
ness. Arguments are allowed to use cryptographic primitives, as we assume that
a polynomial time prover is unable to break the primitives. Incorporating cryp-
tography achieves additional useful properties that are otherwise unattainable,
such as public verifiablity, succinctness, and non-interactivity.

In particular, succinctness means that the argument is short, at least sub-
linear of the size of the witness. Non-interactivity means that the argument
is static, consisting of a single message from the prover to the verifier. An in-
teractive proof or argument can be turned into a non-interactive argument by
appliying the Fiat-Shamir transformation [7, 21, 27, 49, 67]. There are other de-
sirable properties of an argument, for example, argument of knowledge which
roughly means that not only that a statement is valid, but also that the prover
knows a witness to the veracity of the statement. To be more precise, if the prover
can convince the verifier to accept the statement with non-negligible probability,
then it is possible to efficiently extract the witness from the prover. Argument
systems that satisfy all of or even a subset of these properties have a myriad of
applications in various fields both in theory and practice.

2.3 Interactive Proof Protocols

Different than argument systems, proof systems assume a stronger computation-
ally unbounded prover. An interactive proof is an interactive protocol where a
prover tries to convince a verifier a statement by communicating with the verifier
through a series of rounds. In each round, the verifier is allowed to ask questions
based on the prover’s previous answers [60]. Interactive protocols have two key
properties, namely completeness and soundness. Roughly speaking, complete-
ness means that for a valid instance, the verifier is convinced with probability 1.

8 Jieyi Long

Soundness means that there exists a constant ϵ, such that the prover can con-
vince the verifier to accept an invalid instance with probability at most ϵ. The
constant ϵ is called the soundness error. Note that in this definition, the sound-
ness should hold even against computationally unbounded provers that could
allocate enormous computational resources in attempt to to trick a verifier into
accepting an incorrect answer. This soundness notion is referred to as statistical
soundness or information-theoretic soundness. Please refer to [49, 60] for more
formal definitions.

Sumcheck Protocol. The Sumcheck protocol plays a crucial role in the interac-
tive proof literature. The Sumcheck problem computes the sum of a multivariate
polynomial f : Fn → F over all binary inputs, i.e.,

∑
b1,b2,..,bn∈{0,1} f(b1, b2, .., bn).

Since there are N = 2n possible input combinations, computing the sum directly
takes O(N) time. Lund et al. [50] devised an ingenious Sumcheck protocol which
allows a verifier to delegate the computation to a powerful prover, who can com-
pute the sum and convince the verifier through an interactive protocol that the
summation was computed correctly. It can be proved that the Sumcheck proto-
col runs in O(logN) rounds with proof size O(logN), and is complete and sound
with soundness error ϵ = O(logN/|F|) [49, 50,60].

GKR Protocol. The GKR protocol was proposed in the seminal work by
Goldwasser et al. [34] as an interactive protocol for proving the correctness of
layered circuit evaluation. The GKR protocol uses the Sumcheck protocol as
a core building block. In the very beginning, the prover and verifier agree on a
layered circuit C composed of addition and multiplication gates with two inputs.
In the first message, the prover sends the claimed output of the circuit to the
verifier. The verifer cannot verify this claim by herself. However, she can work
with the prover to reduce this claim to the a claim about the previous layer. Then,
the protocol processes the circuit layer by layer until the input layer where the
verify has sufficient information to verify the final claim. In more detail, in the
ith iteration, the GKR protocol invokes the Sumcheck protocol to reduce a claim
about the multilinear extension (see Section 2.4) of the gate values at layer i to
that of the gate values at layer i+ 1. Finally, at the input layer, the verifier has
all the data needed to derive the multilinear extension of the input vector on
her own. Therefore, the verifer can check the final claim herself, which in turn
proves or disproves the correctness of the circuit evaluation.

2.4 Polynomial Interpolation

Lagrange interpolation. Given a set of m distinct field elements {t1, t2, ..., tm},
the Lagrange basis for polynomials with degree ≤ m− 1 is a set of polynomials
{δt1(t), δt2(t), ..., δtm(t)} each of degree m− 1, such that

δti(t) =

{
1, t = ti
0, ∀ t ̸= ti, 1 ≤ i ≤ m

We can express δti(t) explicitly as follows:

Efficient Batch Arguments and Proofs 9

δti(t) =
∏

1≤j≤m, j ̸=i

t− tj
ti − tj

, for i = 1, 2, ...m (1)

Then, given m points {(t1, y1)(t2, y2), ..., (tm, ym)}, the unique single variable
polynomial with degree ≤ m−1 passing through these points can be written as:

L(t) =

m∑
i=1

yiδi(t) (2)

In many applications, the evaluations points {ti} are simply integers, for
example, t1 = 1, t2 = 2, .., tm = m. Another popular choice is to let ti = ωi−1

where ω is the mth root of the unity of field F. This choice can sometimes simplify
calculations.

Multilinear extension. A multilinear function is a function of multiple vari-
ables that is linear separately in each variable. Given a function f : Fn → F and
its evaluations over Boolean hypercube {0, 1}n, its multilinear extension f̃(t) is
a multilinear function which agrees with f(t) for any t ∈ {0, 1}n [60]. We can
derive the explicit expression of the multilinear expression for f(·) using the
identity function define below.

Denote the bth bit of the binary representation of t ∈ {0, 1, 2, .., 2n − 1} by
tb, the identity function is defined as below:

ẽq(x, t) =

n∏
b=1

(tb · xb + (1− tb) · (1− xb)) (3)

A key property of the identity function is that ẽq(x, t) = 1 if x = t, and
ẽq(x, t) = 0 otherwise. Using the property, we can derive the explicit expression
of f̃(·) as f̃(x1, x2, .., xn) =

∑
t∈{0,1}n ẽq(x, t) · f(t), where xb are the bth bits of

the binary representation of x.

2.5 Polynomial Evaluation

Single variable polynomials have two equivalent forms of representation, the
coefficient form which uses the monomial basis, and the point-value form which
uses the Lagrange basis.

Single point evaluation. Given a single variable polynomial L(t), and a eval-
uation point r ∈ F, our goal is to calculate L(r).

• Coefficient form. Horner’s method applies to the coefficient form L(t) =
a0+a1t+a2t

2+ ...+amtm. The trick is to rewrite the polynomial as L(t) =
a0 + t(a1 + t(a2 + t(a3 + ...+ t(am−1 + tam)...))). This allows us to compute
L(r) from the innermost parenthesis with O(m) field multiplications and
additions.

10 Jieyi Long

• Point-value form. The Barycentric evaluation method [9] applies to the
point-value form L(t) =

∑m
i=1 yiδi(t). Let us use M(t) to denote the prod-

uct
∏

1≤j≤m (t− tj). Let di =
∏

1≤j≤m,j ̸=i (ti − tj). We can rewrite L(t) as
L(t) = M(t)

∑m
i=1

yi

di(t−ti)
. In particular, if we let ti = ωi−1 where ω is the

mth root of unity, the expression simplifies to L(t) = tm−1
m

∑m
i=1

yiω
i

x−ωi . Thus,
given the point-value form {(1, y1), (ω, y2), .., (ωi−1, yi), .., (ω

m−1, ym)}, we
can calculate L(t) with O(m) field multiplication and additions.

Multi-point evaluations. Given a single variable polynomial L(t), the multi-
point evaluation problem ask for the values of the polynomial at a batch of points
{ri ∈ F | i = 1, 2, ..,m}. Similar to single point evaluation, here we look at both
the coefficient and point-value form.

• Coefficient form. Given L(t) = a0 + a1t+ a2t
2 + ...+ amtm, our goal is to

evaluate it at N different points t1, t2, ..., tN where N could be much larger
than m. It is well-known that this can be solved using the FFT algorithm
if the evaluation points are {1, ω, .., ωi, .., ωN−1}. The time complexity is
O(N logN).
• Point-value form. Given the point-value form of the polynomial, we can use

IFFT to transform it to the coefficient form, and then apply FFT to evaluate
it on {1, ω, .., ωi, .., ωN−1}. The overall time complexity is O(N logN).

2.6 Bilinear Groups

Given security parameter 1λ, there exists bilinear group generators that can pro-
duce bilinear parameters BP = (p,G1,G2,GT , e, g, h) [32, 51]. Here G1,G2,GT

are groups of prime order p with generators g ∈ G1, h ∈ G2, and e : G1 ×G2 →
GT is a non-degenerative bilinear map. That is, e(ga, hb) = e(g, h)ab ∀a, b ∈ Fp

and e(g, h) generates GT .

2.7 Polynomial Commitment Schemes

At a high level, a polynomial commitment scheme allows a prover to compute
a commitment to a polynomial. The commitment can later be “opened” at any
evaluation point. To be more specific, to prove the committed polynomial L(t)
evaluates to yr at point r, the prover can present the claimed value of L(r) and
an associated opening proof πr to the verifer. The verifier can then checks the
claimed value and proof against the commitment c, and decide if the claimed
value is correct. More formally, a polynomial commitment scheme can be defined
as [22,43,51,59,64,69]:

Definition 1. A polynomial commitment scheme is a tuple of three protocols
PC = (Commit,Open, V erify), such that

• c ← Commit(BP, crs,N, L(x)) takes as input the bilinear parameters BP ,
a common reference string crs, and a polynomial L(x) whose degree is at
most N , and produces a commitment c.

Efficient Batch Arguments and Proofs 11

• (L(r), πr)← Open(BP, crs,N, c, r, L(x)) takes as input the same parameters
as the commit algorithm, as well as a commitment c and a point in the field
r. It returns the evaluation L(r) and a proof of its correctness πr.

• accept ← V erify(BP, crs,N, c, r, yr, πr) takes as input the bilinear param-
eters, the common reference string, the maximum degree, a commitment, a
field element r, and the claimed yr = L(r), and the corresponding proof πr.
It outputs a Boolean bit indicating acceptance or rejection.

Kate et al. [43] introduced the concept of polynomial commitment and pro-
vided the first construction for univariable polynomials based on pairing assump-
tions. This constructions is later extended to multivariate polynomials [54,69–71]
and/or based on different assumptions [12,13,29,48]. Note that the Kate commit-
ment requires a trusted setup to produce a common reference string crs induced
by a secret trapdoor τ . The trusted setup can be conducted through a multi-
party computation process to minimize the security risks. Such a process allows
multiple parties to collectively generate the crs and yet no single party knows τ
as long as there is an honest party participated in the process [25].

3 Batch Circuit Satisfiability and Evaluation Problems

This section defines the main problems we will address in this paper, namely,
the batch arithmetic circuit satisfiability and evaluation problems. We first for-
mally define these two problems. Next, we use an example to motivate the main
techniques for the argument and proof systems proposed later in the paper.

Common Notations. In the remainder of this paper, we will use m to denote
the batch size. A batch of size m consists of m “instances”, i.e., m pieces of data.
| · | means the size/length of an object. For example, |C| refers to the size of
the circuit, i.e. the total number of gates in the circuit. |io| represents the total
length of the input and output vector. |w| denotes the length of the witness
vector. d represents the depth of the circuit. We number the output layer as
the 0th layer and the input layer as the dth layer. Correspondingly, the output
vector of the circuit is denoted as v0, and the input vector as vd. D represents
the maximum total degree of the circuit. For a function defined over the instance
indices (e.g., the input/output polynomials in Section 3.3), we will use the “hat”
symbol over the function to represent its low-degree polynomial extension, e.g.
v̂d,i(t). For a function defined over a Boolean hypercube, we will use the “tilde”
symbol over the function to represents its multilinear extension, e.g. w̃(r).

3.1 Batch Circuit Satisfiability Problem

Definition 2. Consider a probabilistic polynomial time (PPT) prover P and a
verifer V with a generation phase G(1λ) which produces public parameters pp
given security parameter λ. Both P and V are given an arithmetic circuit C

and a batch of input/output vectors B = {(v(t)
d ,v

(t)
0) | t = 1, 2, ..,m}. In addi-

tion, the prover also has access to a batch of witness vectors W = {w(t) | t =

12 Jieyi Long

1, 2, ..,m}. They exchange a sequence of messages π, and then V outputs a
Boolean bit accept(P(W),V, B, π, pp). We call π an interactive batch argu-
ment of knowledge for C if the following holds:

• Completeness. For every pp← G(1λ) and every batch with C(v
(t)
d ,w(t)) =

v
(t)
0 for t = 1, 2, ...m, it holds that Pr[accept(P(W),V, B, π, pp) = true] = 1.

• Knowledge-Soundness. For any PPT prover P∗, there exists a PPT ex-
tractor E such that given the access to the entire executing process and ran-
domness of P∗, E can extract a batch of witness vectors W = {w(t) | t =
1, 2, ..,m}. With pp ← G(1λ), π∗ ← P∗(B, pp) and W ← EP∗

(pp,B, π∗),
it holds that Pr[accept(P∗,V, B, π∗, pp) = true] < negl(λ) if there exists an
instance 1 ≤ t ≤ m such that C(v

(t)
d ,w(t)) ̸= v

(t)
0 .

Definition 3. Efficient Interactive Batch Argument. We say that an in-
teractive batch argument scheme is prover-efficient if the prover online running
time is in O(poly(λ, |C|,m)). It is verifier-efficient if the verifier time is in
O(m · |io|+ poly(λ, |w|, log |C|, logm)). It is said to have a succinct argument if
the argument size is in O(poly(λ, |w|, log |C|, logm)).

Remark 4. We note that in the efficient verifier time definition O(m · |io| +
poly(|w|, log |C|, logm)), the term O(m · |io|) is inevitable since the verifiable
at least needs to read the input and output vectors of all the instances in the
batch. This definition essentially requires that the additional verifier time is in
O(poly(λ, |w|, log |C|, logm)).

3.2 Batch Circuit Evaluation Problem

The batch circuit evaluation problem is similar to satisfiability, but it is for
circuits without witness and assumes a computationally unbounded prover.

Definition 5. Consider a computationally unbounded prover P and a verifer
V. Both P and V are given an arithmetic circuit C and a batch of input/output
vectors B = {(v(t)

d ,v
(t)
0); | t = 1, 2, ..,m}. They exchange a sequence of messages

π, and then V outputs a single bit accept(P,V, B). We call π an interactive
batch proof for C with soundness error ϵ if the following holds:

• Completeness. For every batch such that C(v
(t)
d) = v

(t)
0 for t = 1, 2, ...m,

it holds that Pr[accept(P,V, B) = true] = 1.
• ϵ-Soundness. There exists a constant ϵ < 1/2, such that for any batch

B where there is one t such that C(v
(t)
d) ̸= v

(t)
0 and any P ∗, it holds that

Pr[accept(P∗,V, B) = true] < ϵ.

Definition 6. Efficient Interactive Batch Proof. We say that an interac-
tive batch proof scheme is prover-efficient if the prover online running time is
in O(poly(|C|,m)). It is verifier-efficient if the verifier time is in O(m · |io| +
poly(log |C|, logm)). It is said to have a succinct proof if the proof size is in
O(poly(log |C|, logm)).

Efficient Batch Arguments and Proofs 13

3.3 A Motivating Example

Our goal is to design efficient interactive argument and proof protocols for batch
circuit satisfiability and evaluation. As a motivating example, we use a simple
arithmetic circuit on the left side of Fig. 1 to illustrate the basic ideas. The small
circuit has two layers, each with an addition and a multiplication gate for prime
field F = Z/pZ where p is a large prime. Fig. 2 shows the evaluation of this
circuit for a batch with four input vectors {(2, 4), (5, 7), (10, 10), (17, 13)}.

Fig. 2. An example circuit and its batch evaluation.

Let us use t = 1, 2, ..,m to denote the “instance index,” i.e., the index of the
instance in the batch, where m is the size of the batch. For instance, in the above
example m = 4, and input vector (10, 10) has instance index t = 3.

We can view v2,1(t) and v2,2(t) as mappings from instance index t to the input
values, i.e, v2,1(1) = 2, v2,1(2) = 5, v2,1(3) = 10, v2,1(4) = 17 and v2,2(1) = 4,
v2,2(2) = 7, v2,2(3) = 10, v2,2(4) = 13. Using Lagrange interpolation, the prover
can derive the input polynomials, i.e. the low degree extensions of these mappings,
v̂2,1(t) = t2 + 1 and v̂2,2(t) = 3t + 1. The prover can feed these polynomials as
inputs into the circuit, compute the polynomials for all the intermediate gates,
and eventually obtain the output polynomials v̂0,1(t) = 3t3 + 2t2 + 6t + 3 and
v̂0,2(t) = 3t5 +10t4 +12t3 +12t2 +9t+2. Please refer to Fig. 3 for more details.

Fig. 3. Derive the output polynomials from the input polynomials.

Next, the prover sends these two output polynomials v̂0,1(t) and v̂0,2(t) to
the verifier. The verifer first needs to evaluate these polynomials at t = 1, 2, ..,m
to see if all the evaluation results match with the claimed outputs of the tth

circuit instance. if any inconsistency is found, the verifier should reject the batch.

14 Jieyi Long

Otherwise, the verifier samples a random field element r, and send it back to the
prover. After that, the prover evaluates the output polynomials at r to obtain
outputs (v̂0,1(r), v̂0,2(r)). The verifier calculates inputs (v̂2,1(r), v̂2,2(r)) on her
own. Here we note that since the verifier has access to the input vectors, she
can derive the input polynomials by herself. After these preparation steps, the
prover and verifier can execute the GKR protocol to verify whether the circuit
indeed outputs (v̂0,1(r), v̂0,2(r)) for inputs (v̂2,1(r), v̂2,2(r)).

To get a sense why this protocol works, we argue that for completeness, it
is straightforward to see that evaluating the circuit with inputs (v̂2,1(r), v̂2,2(r))
must result in outputs (v̂0,1(r), v̂0,2(r)) for any r ∈ F if the output polynomi-
als sent from the prover are correct. For soundness, the intuition is that due to
the Schwartz-Zippel Lemma [58, 72], if any output of the claimed batch eval-
uation is incorrect, only with a negligible probability that the circuit outputs
(v̂0,1(r), v̂0,2(r)) for inputs (v̂2,1(r), v̂2,2(r)) for a random r.

This protocol essentially “reduces” the entire batch to a single circuit induced
by random value r. The verifier only needs to engage with the prover to verify the
evaluation of this circuit instead of the entire batch, which significantly decreases
the verifer time complexity. Fig. 4 illustrates the intuition behind the batch to
single circuit reduction.

Fig. 4. Intuition of the batch to single circuit reduction. In this example, both
the output polynomials v̂0(t) = (v̂0,1(t), v̂0,2(t)) and input polynomials v̂d(t) =
(v̂d,1(t), v̂d,2(t)) are vectors of polynomials of size 2. v̂d(t) can be obtained through
Lagrange interpolation. To derive v̂0(t), the prover feeds v̂d(t) into the circuit C, and
conducts polynomial addition and multiplication layer by layer until reaching the out-
puts. To check if the batch evaluation is correct, the verifier picks a random field
element r, and engages with the prover to check whether v̂0(r) = C(v̂d(r)) via the
GKR protocol.

However, to turn these ideas into efficient interactive argument or proof sys-
tems, there are several issues to be addressed:

• Argument size: The degree of the output polynomials grows quickly with
the batch size. Sending these polynomials directly to the verifier could lead
to high communication cost and argument/proof size.

Efficient Batch Arguments and Proofs 15

• Prover efficiency: For the prover, directly calculating the polynomial form
of all the intermediate gates could be costly even with optimized polynomial
multiplication algorithm utilizing FFT.

• Circuit satisfiability: The above protocol only applies to the batch circuit
evaluation problem. How to handle circuits with witnesses?

In the remainder of this paper, we will discuss how we can address these
hurdles. The next couple sections will dive into the details.

4 Succinct Arguments for Generic Circuit Satisfiability

In this section, we will present an argument system for generic log-space uni-
form circuits. At a high level, the construction of our argument system follows
the “commit-and-prove” strategy [38,39,65]. Extending the core ideas in our mo-
tivating example, we first designed an efficient compiler which can reduce the
entire batch to a single instance via an interactive argument protocol. The sev-
eral shortcomings mentioned above in motivating example are addressed using
polynomial commitments. Next, we can apply the GKR protocol to prove the
correctness of this reduced instance. Finally, using the Fiat-Shiamir transforma-
tion, we can render the entire argument system non-interactive.

4.1 Batch to Single Instance Compiler

The compiler works by first transforming the circuit under consideration into
one that has a single output. Then, the prover derives the low degree output
polynomial for this output. However, instead of sending the output polynomial
directly to the verifier, the prover sends its polynomial commitment. This ad-
dresses the communication cost bottleneck. The witnesses are handled similarly
with polynomial commitments. Next, the verifier samples a random value r ∈ F
and send it to the prover. The prover sends back the evaluations of the output
polynomial and witness polynomials at r, which effectively reduces the batch to
a single instance derived from r. Below we first describe the key building blocks,
and then present the construction of the compiler.

Circuit Transformation. Given circuit evaluation C(vd,w) = v0, we can
rewrite it as C(vd,w) − v0 = 0, where 0 is a zero vector of size |v0|. We can
construct a circuit C ′(vd,w,v0, s) which represents the following formula:

b = (C(vd,w)− v0) · s (4)

Here vector s = (1, s, s2, .., s|v0|−1), where s ∈ F is a randomly sampled field
element. This transformed circuit C ′ has a single output b ∈ F. We claim that
C(vd,w) = v0 holds with high probability if b = 0:

Lemma 7. If s ∈ F is uniform-randomly sampled and b = 0, then C(vd,w) =
v0 holds with probability at least 1− |v0|/|F|.

16 Jieyi Long

Algorithm 1 Deriving the output polynomial of the transformed circuit C ′

Participant: Prover P

Step 1. Input processing
• Evaluate the input polynomials at {1, ω, .., ωi, .., ωmD−1} to obtain the point-

value form of the each input polynomial of the transformed circuit C′

• Let us denote the point-value form of the jth input polynomial of circuit C′ by
{(ωi, v̂d,j(ω

i) | i = 0, ..,mD − 1}
Step 2. Derive the output polynomial b̂(t)
for layer k in {d− 1, ...0} do

for each gate g in layer k do
denote the index of the output wire of g in layer k by outg
denote the indices of the two input wires of g in layer k + 1 by in1 and in2
if g is a multiplication gate then

outg = {(ωi, v̂k+1,in1(ω
i) · v̂k+1,in2(ω

i) | i = 0, ..,mD − 1}
else ▷ gate g is an addition gate in this case

outg = {(ωi, v̂k+1,in1(ω
i) + v̂k+1,in2(ω

i) | i = 0, ..,mD − 1}
end if

end for
end for ▷ the output layer (i.e., when k = 0) has a single gate, and outg is b̂(t)

Moreover, the transformation only increases the size and depth of circuit C
by a constant factor:

Lemma 8. The size and the depth of transformed circuit C ′ is in the same order
as C, i.e. O(|C ′|) = O(|C|), and O(d′) = O(d). Moreover, the total degree of C ′

remains to be D.

The proofs for the above two lemmas are provided in Appendix A. The trans-
formation benefits both prover time and argument size. Since the original circuit
has multiple outputs, without the transformation, the prover needs to generate
the polynomial commitment of all the outputs, which leads to higher prover
time and communication overhead. The transformation turns the original out-
puts into inputs. This way, the verifer can conduct the interpolation by herself,
and evaluate the interpolated input polynomials at point r on her own.

Deriving the Output Polynomial. As in the motivating example, the prover
needs to derive the output polynomial b̂(t) for the transformed circuit C ′. To to
that, the prover can first perform the Lagrange interpolation for all the inputs of
C ′ across all instances (see Section 2.4). Then the prover works its way towards
the output layer by layer to calculate the polynomials for each intermediate
gate’s output as described in Algorithm 1. Note that to reduce the prover’s time
complexity, the algorithm conducts the derivation using the point-value form for
the polynomials. To accomplish this, the prover first evaluates each of the input
polynomials at {1, ω, .., ωi, .., ωmD−1} using the multi-point evaluation technique
described in Section 2.5. Then, she can compute the point-value polynomials of

Efficient Batch Arguments and Proofs 17

the intermediate gates layer by layer until reaching the output gate and obtaining
b̂(t) in the end. The time complexity of Algorithm 1 is given by Lemma 9, whose
proof is provided in the Appendix A:

Lemma 9. The overall time complexity for derivingt the output polynomial b̂(t)
is O(poly(λ) ·mD(|C|+ log(mD) · (|io|+ |w|))).

In a typical case where log(mD) · (|io| + |w|) < |C|, the time complexity
simplifies to O(poly(λ) ·D ·m|C|), which is just a factor D away from O(poly(λ) ·
m|C|), the time required for the prover to evaluate the batch. Also, it is worth
noting that the above described process is easy to parallelize. This is because
aside from the initial multi-point evaluations, the prover essentially just needs
to evaluate the circuit on a larger batch consisting of mD instances. These
evaluations can trivially be conducted in parallel on multiple machines.

Commitment and Multiproof for the Output Polynomial. The Kate
polynomial commitment has a nice feature that it can produce a proof with
constant size for evaluations at multiple points. Let us use b̂(t) to denote the
output polynomial of C ′ obtained using the algorithm described in the previous
subsection. The commitment for multi-point evaluation is still a single elliptic
curve point c = gb̂(τ), where g is a group generator and τ is a trapdoor [11,43].

In the context of our batch satisfiability problem, recall that with overwhelm-
ing probability, the entire batch is satisfiable if the output polynomial b̂(t) = 0
for all t = 1, ω, .., ωm−1. Suppose in addition to this, we also would like to prove
that b̂(t) evaluates to zr at point r /∈ {1, ω, .., ωm−1}. Such a claim is equivalent
to b̂(t)− zr = (t− r) ·

∏m
i=1 (t− ωi) · q(t). Thus, the opening proof πr sent to the

verifier is just a single elliptic curve point, i.e., πr = gq(τ). Upon receiving the
proof, the verifier just need to check if the following equation holds [11,43]:

e(c− gzr , h) = e(πr, h
(τ−r)·

∏m
i=1 (τ−ωi)) (5)

Notice that h(τ−r)·
∏m

i=1 (τ−ωi) = hτ
∏m

i=1 (τ−ωi) · (h
∏m

i=1 (τ−ωi))−r, where both
hτ

∏m
i=1 (τ−ωi) and h

∏m
i=1 (τ−ωi) can be pre-computed during the preprocessing

phase. Therefore, the online time complexity of the verifier is O(log |F|) group
multiplication and two pairing computation, which is independent of m.

In summary, we can design an interactive protocol which proves b̂(t) = 0

for t = 1, 2, ..,m, and b̂(r) = zr with high probability: The prover sends the
commitment c = gb̂(τ) to the verifier, and the verifier sends back a random
r ∈ F. Then, the prover sends back opening proof gq(τ). Finally, the verifier
checks if Equation 5 holds. The communication cost is O(λ) and the verifier
time complexity is O(poly(log |F|)) = O(poly(λ)).

Commitments and Proofs for the Witness Polynomials. Denoting the
kth element of the witness vector w by wk, this element has different values across
the m instances in the batch. Thus we can treat it as the evaluation of a func-
tion at {ωt | t = 1, 2, ..,m}. Denoting its low-degree polynomial extension of this

18 Jieyi Long

Algorithm 2 Compiler Preprocessing

Participants: Prover P and Verifier V

Preprocessing (run once per circuit)
• P and V both transform v0 = C(vd,w) to b = C′(vd,w,v0, s)

• V computes hτ
∏m

i=1 (τ−ωi) and h
∏m

i=1 (τ−ωi)

function by ŵk(t), the low-degree extensions of the entire witness vector can be
written as ŵ(t) = (ŵ1(t), ŵ2(t).., ŵ|w|(t)). The prover can use the Kate commit-
ment scheme to commit to ŵ(t) and create the commitments k = (k1, k2, .., k|w|).
Given r ∈ F, the prover can generate proof ρr = (ρ1,r, ρ2,r, .., ρ|w|,r) for the vec-
tor evaluation ŵ(r).

The Compiler Protocol. The batch to single instance compiler protocol is
outlined in Algorithm 2 and Algorithm 3 using the above building blocks.

Algorithm 2 describes the preprocessing step, which only needs to be run
once per circuit, and the running time cost can be amortized later as we generate
proofs for multiple batches. It performs the circuit transformation without setting
the values of vector s, i.e., it only transforms the circuit topology but does not
set the values for inputs s.

Algorithm 3 details the interactive argument protocol which reduces a given
batch to a single instance on the transformed circuit C ′. The prover first commits
to the witness polynomials and sends the commitments k = (k1, k2, .., k|w|) to
the verifier.

Next, the verifier sends a random field element s ∈ F to the prover, so that
both parties can set vector s to (1, s, s2, .., s|v0|−1). With s, the prover can derive
the output polynomial b̂(t), generate commitment c, and send c to the verifer.

Then, the verifier sends the prover another random challenge r ∈ F. Then,
the prover opens the commitments at the prescribed random point and send the
polynomial evaluations and the corresponding proofs to the verifier. The verifier
checks the evaluation results against the commitment and the proof. For the
output polynomial, the verifier needs to check if b̂(t) = 0 for all t = 1, 2, ..,m, in
addition to whether b̂(r) = br. This is accomplished via checking the multiproof
through Equation 5. If any of the checks fails, the verifier simply terminates and
outputs false.

Finally, as the original input and output vectors of the instance are available
to both the prover and verifier, they separately use the Barycentric evaluation
method to evaluate v̂d(t), v̂0(t) at r. Note that both v̂d(t) and v̂0(t) are vectors of
polynomials. Their evaluations at r give vd,r and v0,r, both of which are vectors
of field elements. This evaluation yields a single instance C ′(vd,r,wr,v0,r, s)
induced by random field elements s and r, which is expected to evaluate to br.

Efficient Batch Arguments and Proofs 19

Algorithm 3 Batch to Single Instance Compiler

Participants: Prover P and Verifier V

Step 1. Commit to the witness polynomials
• P derives the witness polynomials ŵ(t) = (ŵ1(t), ŵ2(t).., ŵ|w|(t)) and generates

Kate commitments k = (k1, k2, .., k|w|)
• P sends k to V ▷ sending |w| elliptic curve points

Step 2. Commit to the output polynomials
• V chooses a random element s ∈ F, and send s to P ▷ sending one field element
• Both P and V set vector s to (1, s, s2, .., s|v0|−1)
• P derives the output polynomial b̂(t) and generates commitment c
• P sends c to V ▷ sending 1 elliptic curve points

Step 3. Evaluate the output and witness polynomials at r
• V chooses a random element r ∈ F, and send r to P ▷ sending 1 field element
• P opens (br = b̂(r), πr = gq(τ)) where q(t) = b̂(t)−br

(t−r)·
∏m

i=1 (t−ωi)

• P sends (br, πr) to V ▷ sending 1 field element and 1 elliptic curve point
• V checks br against the commitment and proof (c, πr) by verifying whether this

pairing equation holds e(c− gbr , h) = e(πr, h
(τ−r)·

∏m
i=1 (τ−ωi))

• V terminates with False if the above verification fails
• P opens (wi,r = ŵi(r), ρi,r) for i = 1, 2, .., |w|, where ρi,r is the Kate opening

proof for ŵi(t) at r
• P sends the evaluations wr = (w1,r, w2,r, .., w|w|,r) and the corresponding proofs

ρr = (ρ1,r, ρ2,r, .., ρ|w|,r) to V ▷ sending |w| field elements and |w| elliptic curve
points

• V checks wi,r against the commitment and proof (ki, ρi,r) for i = 1, 2, .., |w|
• V terminates with False if any of the above verifications fails

Step 4. Evaluate the input polynomials of C′ at r
• Both P and V use the Barycentric evaluation method to evaluate the input

polynomials v̂d(t) and v̂0(t) at r to obtain vd,r = v̂d(r) and v0,r = v̂0(r)
• Now P and V have jointly created a single instance C′(vd,r,wr,v0,r, s) induced

by random field elements r and s, which is expected to evaluate to br

4.2 Interactive Argument Protocol for Circuit Satisfiability

With the batch to single instance compiler, the overall batch interactive argu-
ment protocol is straightforward to construct. Since both the prover and verifier
have the inputs and the claimed output of C ′ available locally, they can just run
the GKR protocol to check whether the reduced instance is evaluated correctly
or not. The overall protocol is outlined in Algorithm 4.

Batch with Shared Witness In the above we describe a compiler for the
generic case where each instance in the batch can have a unique witness. For a
batch with a shared witness vector w across all the instances, we can optimize
the communication cost even further. This is an important use case, e.g. to prove

20 Jieyi Long

Algorithm 4 Interactive Argument for Batch Circuit Satisfiability

Participants: Prover P and Verifier V

Preprocessing (run once per circuit)
• P and V run Algorithm 2 to transform circuit C to C′

• V pre-process C′ in preparation for running the GKR protocol [60, 61]

Upon receiving a batch B
• P and V run Algorithm 3 to reduce the batch to a single instance. If V terminates

with False, V rejects the batch B
• P and V run the GKR protocol on the reduced single instance. If the single

instance is invalid, V rejects the batch B. Otherwise, V accepts the Batch B

that the prover knows a secret machine learning model that can generate certain
prediction accuracy across a set of inputs.

For this special case, instead of deriving the witness polynomials and sending
their commitments, the prover can just send the commitment of w̃(·) (i.e. the
multilinear extension of w) to the verifier. This reduces the communication cost
of this step from O(|w|) to O(log |w|).

The last step of the GKR protocol requires the verifier to evaluate the mul-
tilinear extension of the input of the reduced single instance at a random point
r′. Without loss of generality, let us assume |vd| = |v0| = |w|. Denoting the
multilinear extension of vd,r, v0,r by ṽd,r and ṽ0,r, we can write the multilinear
extension of v′

d, the inputs of C ′ as [59,60]

ṽ′
d = α0α1 · s̃+ α0(1− α1) · ṽd,r + (1− α0)α1 · ṽ0,r + (1− α0)(1− α1) · w̃ (6)

Since both the prover and verifier have access to s, v0,r, and vd,r, they can
derive s̃, ṽ0,r, and ṽd,r on their own. In addition, the prover sends w̃(r′) and the
corresponding opening proof to the verifier, with which the verifier can evaluate
Formula 6 at r′.

Non-Interactivity. It it well-known that we can turn interactive public-coin
arguments into non-interactive arguments using the Fiat-Shamir transform [27].
The transform works by replacing the verifier challenges with hashes of the tran-
script up to that point. We note that the GKR protocol employed by Algorithm
4 is not a constant-round protocol. However, recent results [7,20,21,49,67] show
that applying Fiat-Shamir only incurs a polynomial soundness loss in the number
of rounds in GKR.

4.3 Correctness and Complexity of the Protocol

The theorem below demonstrates the completeness, knowledge-soundness, and
the efficiency of the proposed interactive argument for batch circuit satisfiability
protocol. The proof is provided in Appendix A.

Efficient Batch Arguments and Proofs 21

Theorem 10. There exists an interactive argument of knowledge protocol for
the batch circuit satisfiability problem which achieves the following properties,
assuming bilinear paring and the common reference string model:

• Completeness. For every batch B such that C(v
(t)
d ,w(t)) = v

(t)
0 for t =

1, 2, ...m, it holds that Pr[accept(P,V, B) = true] = 1.
• Knowledge-Soundness. The interactive argument protocol is knowledge-

sound with soundness error O(m(|io|+|w|+D)+d log |C|
2λ

) which is in O(negl(λ)).
• Efficiency. The pre-processing time for both the prover and verifier are
O(poly(λ)·|C|). The prover and verifier online time complexity are O(poly(λ)·
m(D|C|+D log(mD)·(|io|+|w|)+|w| logm)), and O(poly(λ)·(m|io|+|w|+
d log |C|)), respectively. The argument size is O(poly(λ) · (|w| + d log |C|)).
This meets our definition of efficient interactive batch argument.

Remark 11. Regarding the efficiency of the protocol, there are several interesting
facts worth noting:

First, it is worth pointing out that the argument size not just meets our
definition of succinctness in Definition 3, but it achieves an even more desirable
property that the argument size is independent of the batch size. Moreover, for
the special case where the same witness is shared among all instances, the prover
just needs to send the multilinear commitment, evaluation result, and opening
proof of w̃ to the verifier. This can reduce the argument size to O(poly(λ) ·
(d log |C|+ log |w|)) without increasing the soundness error.

Second, since the witness size is at most the size of circuit, we have |w| ≤ |C|.
Thus, in a typical case where log(mD) < |C|, the prover time complexity can
be bounded by O(poly(λ) ·m|C| · (D + logm)) which is a factor of (D + logm)
away from O(poly(λ) ·m|C|), the time needed for pure computation (i.e. evalu-
ating the circuit on the batch without generating the proof). In many potential
applications, the batch size m is at most a few thousand. Thus, in practice, the
prover time is just a constant factor larger than the computation time.

Third, we note that the verifier time complexity we achieve is only O(poly(λ)·
(|w|+d log |C|)) more than the lower bound O(poly(λ) ·m · |io|). This additional
verifier time remains a constant as the batch size increases.

Finally, compared to BARG schemes that commits to the values of all in-
termediate gates across all instances [65], our protocol only requires the prover
to commit to the witnesses and the single output of the transformed circuit C ′.
This significantly reduces the prover run time and the argument size.

5 Proof Systems for Special Circuit Batch Evaluation

While the previous section handles the batch satisfiability problem for generic
circuits, the argument protocols discussed there rely on certain cryptographic as-
sumptions such as bilinear pairing and common reference string. In this section,
we instead focus on the batch evaluation problem which is a simplified version
of the batch satisfiability problem. In particular, we delve into the batch eval-
uation problem for two important special types of circuits: linear circuits, and

22 Jieyi Long

circuits representing sum of high degree polynomials. For both of these two types
of circuits, we propose statistically sound interactive proof protocols where the
communication cost is independent of the batch size. Moreover, these interactive
proofs are all public-coin protocols. Thus, we can apply the Fiat-Shamir trans-
formation [7, 21, 27, 49, 67] to turn them into non-interactive arguments under
the random oracle model [3].

In addition, we adapt our interactive proof protocols to address two prob-
lems with significant practical relevance, namely, batch FFT and batch matrix
multiplication verification. Utilizing the special structure of these two problems,
the protocols can be further optimized to exhibit desirable properties such as
reduced prover time complexity and enhanced composability. We believe that
these protocols have their own importance and have the potential to be used as
subroutines in more complex applications.

5.1 Batch Evaluation Proof for Linear Circuits

Intuitively speaking, a linear arithmetic circuit performs a linear transformation
for the input vector. Below we give the formal definition.

Definition 12. Given input vector vd ∈ Fn, an arithmetic circuit L(vd) is
called a linear arithmetic circuit if the following two properties hold:

1. For any field element α ∈ F, L(αvd) = αL(vd), and
2. For any ud ∈ Fn and vd ∈ Fn, L(ud + vd) = L(ud) + L(vd).

We would omit the proof here, but it is straightforward to see that the total
degree D of a linear arithmetic circuit is 1. Another way to characterize linear
circuits is that for any multiplication gate in the circuit, at most one of the
inputs can be non-constant values across the batch.

At the first sight, the power of linear arithmetic circuits seems limited. How-
ever, linear arithmetic circuits are quite common and important in practice. For
example, the circuit for Fast Fourier Transform (FFT) is a linear circuit. In the
context of batch evaluations, linear arithmetic circuits plays even bigger roles.
For example, in many of the cutting edge deep learning models (e.g. ResNet [40],
Transformer [63], Diffusion models [41]), between the non-linear transformation
layers, there are many linear layers which essentially perform multiplication be-
tween a parameter matrix and an variable vector or matrix. Note that after the
deep learning model is trained, for model inference the parameter matrices can
be considered as constant matrices (when the model is also available to the veri-
fier). Hence, for batch model inference with different inputs, these layers can be
viewed as linear arithmetic circuits.

Interactive Proof. The interactive proof exploits the linear property of the
computation. Following the ideas in the motivating example, first we derives
the low degree extension of the input vectors using the Lagrange interpola-
tion method. Treating the inputs of the instances {v(1)

d ,v
(2)
d , ..,v

(m)
d } as a (m−

Efficient Batch Arguments and Proofs 23

Algorithm 5 Interactive Proof Protocol for Batch Linear Circuit Evaluation

Participants: Prover P and Verifier V

Interative proof
• P and V calculate v̂d(r) and v̂0(r) separately using Barycentric evaluation
• P and V run the GKR protocol to prove that v̂0(r) = L(v̂d(r))

1)-degree vector-valued polynomial function evaluated at the instance indices
{1, 2, ...,m}, this polynomial can be written explicitly as vd(t) =

∑m
i=1 δi(t)v

(i)
d ,

where δi(t) is the Lagrange basis as defined in Section 2.4. Note that for a fixed
value of t, δi(t) is simply a constant. Using the two properties in Definition 12,
it is straightforward to derive v̂0(t), the single variable polynomial extension of
the output vector:

v̂0(t) = L(v̂d(t)) = L(

m∑
i=1

δi(t)v
(i)
d) =

m∑
i=1

δi(t)L(v
(i)
d) =

m∑
i=1

δi(t)v
(i)
0 (7)

The last step is because that v(i)
0 is simply the output vector of the ith instance

in the batch, and so L(v
(i)
d) = v

(i)
0 for i = 1, 2, ..,m. This above equality holds

for any t. Thus, the verifier can sample a public random value r, and calculate a
“random input vector” v̂d(r) using the Barycentric evaluation method described
in Section 2.5. The verifier also can computes the expected output vector v̂0(r)

using the Barycentric evaluation formula from {v(i)
0 | i = 1, 2, ..,m}. Hence, the

prover and the verifier can invoke the GKR protocol to check whether input
vector v̂d(r) evaluates to v̂0(r). The entire protocol is outlined in Algorithm 5.

Correctness and Complexity of the Protocol. The correctness and com-
plexity of the above protocol are formally stated in the following theorem, as-
suming addition and multiplication of two field elements both take O(1) time.
The proof for this theorem can be found in Appendix B.

Theorem 13. The protocol in Algorithm 5 is complete and sound with sound-
ness error ϵ = O((m|io|+d log |C|

|F|). The prover and verifier time complexity are
O(m|io|+|C|) and O(m|io|+d log |C|), respectively. The proof size is O(d log |C|).

Applications in Batch FFT Verification. The Fast Fourier Transformation
is a widely-used algorithm with numerous practical applications, including in
digital recording, sampling, additive synthesis, and pitch correction software. As
a result, batch verification of FFT calculations is of significant importance in
these fields.

The FFT algorithm can be viewed as an optimized implementation for ma-
trix vector multiplication FFT (v) = Flv, where Fl is a so-called Vandermonde
matrix as shown below:

24 Jieyi Long

Fl =

1 1 1 . . . 1
1 ω1 ω2 . . . ωl−1

1 ω2 ω4 . . . ω2(l−1)

...
...

...
...

1 ωl−1 ω2(l−1) . . . ω(l−1)2

 (8)

In the matrix above, ω is the lth root of the unity of finite field F. Thus, for all
l-sized vectors v, Fl is a constant matrix. As a consequence, FFT (v) = Flv is
a linear arithmetic circuit. This means we can apply either the non-interactive
or interactive proof we developed to prove the correctness of FFT computation
for a batch of l-sized vectors.

Theorem 14. There exists an interactive batch FFT verification protocol that
achieves the optimal prover and verifier running time, both of which are O(ml).

The proof for the above theorem can be found in Appendix B. It is worth
pointing out that computing the FFT transformation for the entire batch takes
O(ml log l) time. Hence, the time to generate the batch proof is actually lower
than the computation itself.

5.2 Batch Proof for Sums of Higher Degree Polynomials

The techniques presented in the previous section only apply to linear circuits.
For batch verification of non-linear circuits (i.e. total degree D ≥ 2), the non-
interactive and interactive protocols proposed in [61] and [66] work in general.
However, we note that for circuits with special structures, the batch verification
can be made more efficient and has other useful properties.

In this subsection, we consider a form of circuits which computes the sum of
multiple multivariate polynomials, where the polynomials can have total degrees
D ≥ 2. Such a circuit has the characteristic that there is an output gate(s) sum-
ming up the outputs of all gates in the previous layer. The matrix multiplication
circuit is an example which we will discuss in detail in the subsection. Another
important category of application is the widely used MapReduce paradigm for
distributed computing. The map step applies the same logic to many different
pieces of data. And then in the reduce step, the results of the map step with the
same key are aggregated. In many use cases, for example, the canonical “word
counting” example, the reduce step simply adds up the map outputs. Such a
map-reduce operation can be modeled using a circuit computing sum of multi-
ple multivariate polynomials. We formulate the sum of polynomials verification
problem as follows:

Definition 15. Suppose g(z) is a polynomial with total degree D, where z ∈ Fn.
Formula

∑l
k=1 g(zk) calculates the sum of this polynomial over a set of input

vectors Z = {zk ∈ Fn | k = 1, 2, .., l}. Given y ∈ F, the sum of polynomials
verification problem checks whether y =

∑l
k=1 g(zk) holds.

Efficient Batch Arguments and Proofs 25

More concretely, in the MapReduce “word counting” example, g(·) imple-
ments the map operation with zk being the kth part of a document Z. The
summation

∑l
k=1 g(zk) corresponds to the reduce operation, which sums up the

counts of each part to obtain the total word count of the document. Below we
define the sum of polynomials batch verification problem, which captures the
problem of verifying the correctness of invoking MapReduce on a batch of doc-
uments:

Definition 16. Given a batch of inputs {Z(1), Z(2), .., Z(t), .., Z(m)}, where Z(t) =

{z(t)k ∈ Fn | k = 1, 2, .., l}, and a batch of outputs {y(1), y(2), .., y(t), .., y(m)}, the
sum of polynomials batch verification problem checks if the following holds for
all t = 1, 2, ..,m:

y(t) =

l∑
k=1

g(z
(t)
k) =

∑
k∈{0,1}log l

g(z(t)(k)) (9)

Note that Equation 9 redefines the index k so the summation is over a Boolean
hypercube {0, 1}log l, which makes it “Sumcheck-friendly”. It also views z(t)(k)
as a function of k. Equation 9 is valid if the following holds, where z̃(t)(k) is the
multilinear extension of z(t)(k).

yt −
∑

k∈{0,1}log l

g(z̃(t)(k)) = 0 (10)

This is because the summation is over Boolean hypercube k ∈ {0, 1}log l. As
long as z̃(t)(k) agrees with z(t)(k) everywhere over the Boolean hypercube, the
Summation result does not change.

Now, to verify Equality 10 for the entire batch in one shot, we need merge the
entire batch into a single instance. To do this, we leverage a prior idea [2,10,19].
Consider:

Q(x) = l ·
m∑
t=1

(y(t) −
∑

k∈{0,1}log l

g(z̃(t)(k))) · ẽq(x, t) (11)

where ẽq(x, t) is defined in Equation 3. We can claim that Equation 9 holds
for all t = 1, 2, ..,m with high probabiliy if Q(x) is a zero-polynomial, i.e. it
evaluates to 0 for any x ∈ F. Next, we rearrange the right hand side of Formula
11 as follows:

Q(x) =

m∑
t=1

∑
k∈{0,1}log l

(y(t) − l · g(z̃(t)(k))) · ẽq(x, t)

=
∑

k∈{0,1}log l

m∑
t=1

(y(t) − l · g(z̃(t)(k))) · ẽq(x, t)

=
∑

k∈{0,1}log l

fx(k)

26 Jieyi Long

where fx(k) =
∑m

t=1 (y
(t) − l · g(z̃(t)(k))). Note that the second to the last step

swaps the two summation signs. This can be derived using elementary algebra
and we omit the details here. Now to prove that Q(x) is a zero-polynomial, the
verifier can just sample a random value xr ∈ F, send it to the prover, and run the
Sumcheck protocol to prove that Q(xr) = 0. In the last round of the Sumcheck
protocol, the verifier has to compute fxr

(·) at a random point kr. To do this, the
verifier needs to first evaluate z̃(t)(kr), the multilinear extension of the input at
kr. Since the verifier has all the input data locally, she can derive the multilinear
extension and perform the evaluation.

Remark 17. Since Equation 11 has a summation form, one might attempt to run
the Sumcheck protocol on Boolean hypercube t ∈ {0, 1}logm. However, to do this
the verifier need to derive the low-degree extension (instead of the multiliear
extension) for the outputs y(t). This is because to execute the Sumcheck on
t ∈ {0, 1}logm, we need to view g(z(t)(k)) as a function of t. Since g(·) has degree
D > 1, y(t) as a function of t must also have total degree D. Then, to derive
the low-degree extension of y(t), at least D ·m output values are needed. As the
verifier has access to only m output values {y(1), y(2), .., y(m)}, she cannot derive
the low-degree extension herself, unless the prover send those to the verifier.
However this increases the communication cost significantly. The “summation
sign swap” trick eliminates t, and thus avoids this problem.

Theorem 18. There exists an interactive protocol for the sum of polynomials
batch verification problem which is complete and sound with soundness error ϵ =
O(logml/|F|). Moreover, the prover and verifier time complexity and O(lmT)
and O(D log l+mT), respectively, where T denotes the cost of one evaluation of
g(·). The proof size is O(D log l).

Remark 19. Please refer to Appendix B for the proof of the theorem. The above
protocol for the sum of polynomial batch verification problem achieves a proof
length independent of the batch size m. However, the verifier time increases
linearly with m, although it is still smaller than executing the batch computation
itself. In the next subsection, we will see that for an important special case,
namely the batch matrix multiplication problem, the verifier time can be further
optimized and reach its lower bound.

Applications in Batch Matrix Multiplication. As an application of the
above framework, this subsection delves into a highly important and frequently
employed special circuit, namely matrix multiplications whose total degree D =
2. The problem we consider in this sections is defined as follows.

Definition 20. Given m triples of l × l matrices {At,Bt,Ct | t = 1, 2, ...,m},
the batch matrix multiplication verification problem checks if AtBt = Ct holds
for all t = 1, 2, ...,m.

Different than batch FFT verification where the FFT matrix is constant
for all instances, here the two matrices At and Bt could both vary across the

Efficient Batch Arguments and Proofs 27

batch. This makes the batch verification protocol more challenging to construct.
Inspired by the fast single-instance matrix product verification protocol in [61],
we let At(i, j) denote functions from {0, 1}log l × {0, 1}log l → F that map input
(i, j) to the element at the ith row and jth column of matrix At. We similarly
define functions Bt(i, j), and Ct(i, j). Also, let Ãt, B̃t, and C̃t denote their
multilinear extensions. We have the following lemma. The proof is provided in
Appendix B.

Lemma 21. For any (i, j) ∈ Flog l × Flog l and t ∈ {1, 2, ..,m}, it holds that

F̃t(i, j) =
∑

k∈{0,1}log l

(C̃t(i, j)− l · Ãt(i, k)B̃t(k, j)) = 0 (12)

Equation 12 indicates that we can apply the Sumcheck protocol to prove
the correctness for any given instance. However, our goal is to verify the entire
batch in a single shot. Similar to the linear circuits, to achieve this, we need to
somehow reduce the batch into a single instance. To do this, we instead leverage
the multilinear extension [2, 10,19]. Consider:

Q(x, i, j) =
∑

t∈{0,1}log m

ẽq(x, t) · F̃t(i, j) (13)

Observe that Q(x, i, j) is a multilinear polynomial such that Q(x, i, j) = F̃x(i, j)
for any x ∈ {0, 1}logm. Thus, Q(x, i, j) is a zero-polynomial if and only if F̃t(i, j)
evaluates to 0 at all points in the 2l-dimensional Boolean hypercube (and hence
if and only if all the m matrix multiplications are computed correctly). There-
fore, to check if matrix multiplication results are correct for all instances in the
batch, it is suffice to randomly sample (xr, ir, jr) ∈ Flogm × Flog l × Flog l and
check if Q(xr, ir, jr) = 0. This introduces a small soundness error, which can be
quantified by the following lemma. The proof can be found in Appendix B:

Lemma 22. Pr[Q(xr, ir, jr) = 0 | ∃i, j ∈ {0, 1}log l s.t. F̃t(i, j) ̸= 0] ≤ logm+2 log l
|F|

Next, to develop an interactive proof for Q(xr, ir, jr) = 0, we expand Equa-
tion 13 and rearrange its terms using the “summation sign swap” trick like we
did in the previous section:

Q(x, i, j) =
∑

t∈{0,1}log m

ẽq(x, t) ·
∑

k∈{0,1}log l

(C̃t(i, j)− l · Ãt(i, k)B̃t(k, j))

=
∑

t∈{0,1}log m

∑
k∈{0,1}log l

ẽq(x, t) · (C̃t(i, j)− l · Ãt(i, k)B̃t(k, j))

=
∑

k∈{0,1}log l

∑
t∈{0,1}log m

ẽq(x, t) · (C̃t(i, j)− l · Ãt(i, k)B̃t(k, j))

=
∑

k∈{0,1}log l

fx,i,j(k)

(14)

28 Jieyi Long

where fx,i,j(k) =
∑

t∈{0,1}log m ẽq(x, t) · (C̃t(i, j)− l · Ãt(i, k)B̃t(k, j)).
Now that we have expressed Q(xr, ir, jr) =

∑
k∈{0,1}log l fxr,ir,jr (k) which

is a sum over a Boolean hypercube, we can employ the Sumcheck protocol on
polynomial fxr,ir,jr (k) to prove that Q(xr, ir, jr) = 0. In the final round of the
Sumcheck protocol, the verifier is required to compute fxr,ir,jr (kr) for a random
point kr ∈ Flog l. The verifier can do this by evaluating ẽq(xr, t), C̃t(ir, jr),
Ãt(ir, kr), and B̃t(kr, jr) with a single streaming pass over the input [61] for
t = 1, 2, ...,m, and sum up the results.

Correctness and complexity of the protocol. We have the following results
regarding the batch matrix multiplication problem. Please refer to Appendix B
for the proof to the theorem.

Theorem 23. There exists an interactive protocol for the batch matrix multi-
plication verification problem which is both complete and sound with soundness
error ϵ = (logm+3 log l)/|F|. Moreover, the prover and verifier time complexity
are both O(m(l2+logm)) with proof size being O(log l). For the typical case where
logm < l2, the prover time and verifer time become O(ml2), both achieving their
lower bound.

Remark 24. We would like to point out that generating the proof has a lower
time complexity than that of computing the products of m pairs of l×l matrices.
Asymptotically, the fastest known algorithm to multiply two l× l matrices runs
in time roughly O(l2.37286) [1, 47]. Repeating this algorithm for m matrix pairs
takes O(m · l2.37286) time, which is more expensive than the prover time. Thus,
for large matrices, generating the batch proof only adds a small overhead.

Comparison with other batch verification approaches. We consider a few
alternative approaches for batch matrix product verification:

The first approach is to repeat fast single-instance matrix product verification
protocol [61] separately for all instances in the batch. This yields time complexity
O(ml2) for both the prover and verifier, which is the same as ours for practical
cases. However, the communication cost of this approach is O(m log l), which is
worse than O(log l) in our protocol.

The second approach is to express multiplication of two matrices as a circuit,
and apply the data parallel computation verification in [61] to process the batch.
The time complexity of the prover is O(m · S + S logS), where S is the size of
the circuit for multiplying two matrices. As pointed out in Section 5.5.1 in [61],
such a circuit could have O(l3) gates, which renders the prover complexity to be
O(m · l3 + l3 log l3) = O((m+ log l) · l3), which is worse than our approach.

As a third approach, the verifier can directly apply Freivalds’ algorithm [28]
to check whether Ct = AtBt for the m instances one-by-one. And advantage
for this approach is that it is fully non-interactive, and hence the proof size
is zero and no extra work from the prover is required. One downside is that
Freivalds’ algorithm requires O(l + logm) verifier memory, while our approach
only needs O(log l + logm) space by using single streaming pass over the input

Efficient Batch Arguments and Proofs 29

when evaluating fxr,ir,jr (kr) [61]. Another major benefit of our protocol is that
it has a variant which can be used as a primitive for verifying more complex
computation. We will provide more details below.

Protocol variant as a subroutine for complex computations. Below we
describe a variation of the protocol which inherits the advantage of the MAT-
MULT protocol proposed in [61]. It adds slightly more communication cost com-
pared to the above, but render the protocol more utilities, such as being used as
a proving subroutine for more complex computations. A use case is for verifying
batch matrix powerings Dt = A2c

t for t = 1, 2, ..,m. Matrix powerings have many
important applications, such as calculating the diameter of graphs in batches.

Dt = A2c

t can be computed by repeated squaring matrix At c times. Apply-
ing Freivalds’ algorithm to this problem would require O(cl2) communication for
each instance in the batch, as analyzed in [61]. This is because after each squar-
ing, the prover must send the intermediate matrix to the verifier. Otherwise,
the verifier would not have the data necessary to apply Freivalds’ algorithm.
Therefore for the entire batch, the verification communication cost is O(cml2).

To reduce the communication cost, we note that for the matrix powering
problem, fxr,ir,jr (k) can be written as:

fxr,ir,jr (k) =
∑

t∈{0,1}log m

ẽq(xr, t) · (Ã2s

t (ir, jr)− l · Ã2s−1

t (ir, k)Ã
2s−1

t (k, jr))

We can invoke the Sumcheck protocol for s = c first. Notice that the verifier has
Ã2c

t (ir, jr) available to her locally, since it is the result of matrix powering. If the
prover sends her {Ã2c−1

t (ir, kr), Ã
2c−1

t (kr, jr) | t = 1, 2, ..,m}. The verifier can
calculate fxr,ir,jr (k) on her own for the last step in the Sumcheck protocol. Next,
the verifier can the random linear combination trick to generate {Ã2c−1

t (ir′ , jr′)}
from {Ã2c−1

t (ir, kr), Ã
2c−1

t (kr, jr)}. To complete the verification for matrix pow-
ering, we repeat this process until s = 1. Note that this protocol does not change
the prover complexity. It increases the communication complexity to O(m log l)
for each Sumcheck. Thus, the overall communication complexity is O(cm log l),
which is much better than that of the approach with Freivalds’ algorithm.

6 Conclusions

In this paper, we systematically study the batch arithmetic circuit satisfiabil-
ity and evaluation problem. We start with the observation that the circuit in-
puts/outputs can be represented as low-degree polynomials in terms of the in-
stance index. Built on this idea, we construct various argument and proof proto-
cols that can produce succinct proofs with short verification time for log-space
uniform circuits. Future work includes turning the proposed argument schemes
into zero-knowledge protocols, and further reducing the prover running time.

30 Jieyi Long

References

1. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication.
In: Marx, D. (ed.) 32nd SODA. pp. 522–539. ACM-SIAM (Jan 2021)

2. Babai, L., Fortnow, L., Lund, C.: Nondeterministic exponential time has two-prover
interactive protocols. In: Proceedings [1990] 31st Annual Symposium on Founda-
tions of Computer Science. pp. 16–25 vol.1 (1990)

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93. pp. 62–73. ACM Press (Nov 1993)

4. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018), https://eprint.iacr.org/2018/046

5. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III.
LNCS, vol. 11694, pp. 701–732. Springer, Heidelberg (Aug 2019)

6. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer,
Heidelberg (Aug 2013)

7. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A.D. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 31–60. Springer,
Heidelberg (Oct / Nov 2016)

8. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II.
LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (Aug 2014)

9. Berrut, J.P., Trefethen, L.N.: Barycentric lagrange interpolation. SIAM Review
46(3), 501–517 (2004), https://doi.org/10.1137/S0036144502417715

10. Blumberg, A.J., Thaler, J., Vu, V., Walfish, M.: Verifiable computation using
multiple provers. Cryptology ePrint Archive, Paper 2014/846 (2014), https:
//eprint.iacr.org/2014/846, https://eprint.iacr.org/2014/846

11. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo infinite: Proof-carrying
data from additive polynomial commitments. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021, Part I. LNCS, vol. 12825, pp. 649–680. Springer, Heidelberg, Vir-
tual Event (Aug 2021)

12. Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.:
Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 336–365.
Springer, Heidelberg (Dec 2017)

13. Bootle, J., Groth, J.: Efficient batch zero-knowledge arguments for low degree
polynomials. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol.
10770, pp. 561–588. Springer, Heidelberg (Mar 2018)

14. Bootle, J., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: A non-PCP approach to
succinct quantum-safe zero-knowledge. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 441–469. Springer, Heidelberg (Aug
2020)

15. Brakerski, Z., Holmgren, J., Kalai, Y.T.: Non-interactive delegation and batch NP
verification from standard computational assumptions. In: Hatami, H., McKenzie,
P., King, V. (eds.) 49th ACM STOC. pp. 474–482. ACM Press (Jun 2017)

https://eprint.iacr.org/2018/046
https://doi.org/10.1137/S0036144502417715
https://eprint.iacr.org/2014/846
https://eprint.iacr.org/2014/846
https://eprint.iacr.org/2014/846

Efficient Batch Arguments and Proofs 31

16. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowl-
edge. J. Comput. Syst. Sci. 37(2), 156–189 (oct 1988), https://doi.org/10.1016/
0022-0000(88)90005-0

17. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Recursive proof composition from
accumulation schemes. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS,
vol. 12551, pp. 1–18. Springer, Heidelberg (Nov 2020)

18. Buterin, V.: An incomplete guide to rollups https://vitalik.ca/general/2021/
01/05/rollup.html

19. Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: Modular design and compo-
sition of succinct zero-knowledge proofs. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J. (eds.) ACM CCS 2019. pp. 2075–2092. ACM Press (Nov 2019)

20. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum,
R.D.: Fiat-Shamir from simpler assumptions. Cryptology ePrint Archive, Report
2018/1004 (2018), https://eprint.iacr.org/2018/1004

21. Chen, B., Bünz, B., Boneh, D., Zhang, Z.: Hyperplonk: Plonk with linear-time
prover and high-degree custom gates. Cryptology ePrint Archive, Paper 2022/1355
(2022), https://eprint.iacr.org/2022/1355, https://eprint.iacr.org/2022/
1355

22. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.P.: Marlin: Pre-
processing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai,
Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738–768. Springer,
Heidelberg (May 2020)

23. Choudhuri, A.R., Jain, A., Jin, Z.: Non-interactive batch arguments for NP from
standard assumptions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV.
LNCS, vol. 12828, pp. 394–423. Springer, Heidelberg, Virtual Event (Aug 2021)

24. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with
streaming interactive proofs. In: Goldwasser, S. (ed.) ITCS 2012. pp. 90–112. ACM
(Jan 2012)

25. Cramer, R., Damgård, I., Maurer, U.M.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (May 2000)

26. Devadas, L., Goyal, R., Kalai, Y., Vaikuntanathan, V.: Rate-1 non-interactive ar-
guments for batch-np and applications. In: 2022 IEEE 63rd Annual Symposium on
Foundations of Computer Science (FOCS). pp. 1057–1068 (2022)

27. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (Aug 1987)

28. Freivalds, R.: Fast probabilistic algorithms. In: Bečvář, J. (ed.) Mathematical Foun-
dations of Computer Science 1979. pp. 57–69. Springer Berlin Heidelberg, Berlin,
Heidelberg (1979)

29. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp.
16–30. Springer, Heidelberg (Aug 1997)

30. Gabizon, A., Williamson, Z.J., Ciobotaru, O.M.: Plonk: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. IACR
Cryptol. ePrint Arch. 2019, 953 (2019)

31. Gailly, N., Maller, M., Nitulescu, A.: Snarkpack: Practical snark aggregation. In:
Eyal, I., Garay, J. (eds.) Financial Cryptography and Data Security. pp. 203–229.
Springer International Publishing, Cham (2022)

https://doi.org/10.1016/0022-0000(88)90005-0
https://doi.org/10.1016/0022-0000(88)90005-0
https://vitalik.ca/general/2021/01/05/rollup.html
https://vitalik.ca/general/2021/01/05/rollup.html
https://eprint.iacr.org/2018/1004
https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2022/1355

32 Jieyi Long

32. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Applied Mathematics 156(16), 3113–3121 (2008), https://www.sciencedirect.
com/science/article/pii/S0166218X08000449, applications of Algebra to Cryp-
tography

33. Garg, R., Sheridan, K., Waters, B., Wu, D.J.: Fully succinct batch arguments for
np from indistinguishability obfuscation. In: Kiltz, E., Vaikuntanathan, V. (eds.)
Theory of Cryptography. pp. 526–555. Springer Nature Switzerland, Cham (2022)

34. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: Interactive
proofs for muggles. J. ACM 62(4) (sep 2015), https://doi.org/10.1145/2699436

35. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC. pp. 291–304. ACM Press
(May 1985)

36. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin,
M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (May 2016)

37. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 698–728.
Springer, Heidelberg (Aug 2018)

38. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (May / Jun 2006)

39. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (Apr 2008)

40. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 770–778 (2016)

41. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Pro-
ceedings of the 34th International Conference on Neural Information Processing
Systems. NIPS’20, Curran Associates Inc., Red Hook, NY, USA (2020)

42. Kaslasi, I., Rothblum, G.N., Rothblum, R.D., Sealfon, A., Vasudevan, P.N.: Batch
verification for statistical zero knowledge proofs. In: Pass, R., Pietrzak, K. (eds.)
TCC 2020, Part II. LNCS, vol. 12551, pp. 139–167. Springer, Heidelberg (Nov
2020)

43. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomi-
als and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 177–194. Springer, Heidelberg (Dec 2010)

44. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) ACM CCS 2018. pp. 525–537. ACM Press (Oct 2018)

45. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th ACM STOC. pp. 723–732. ACM Press (May 1992)

46. Kothapalli, A., Setty, S., Tzialla, I.: Nova: Recursive zero-knowledge arguments
from folding schemes. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV.
LNCS, vol. 13510, pp. 359–388. Springer, Heidelberg (Aug 2022)

47. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of
the 39th International Symposium on Symbolic and Algebraic Computation. p.
296–303. ISSAC ’14, Association for Computing Machinery, New York, NY, USA
(2014), https://doi.org/10.1145/2608628.2608664

https://www.sciencedirect.com/science/article/pii/S0166218X08000449
https://www.sciencedirect.com/science/article/pii/S0166218X08000449
https://doi.org/10.1145/2699436
https://doi.org/10.1145/2608628.2608664

Efficient Batch Arguments and Proofs 33

48. Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: From poly-
nomial commitments to pairing-based accumulators from simple assumptions. In:
Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) ICALP
2016. LIPIcs, vol. 55, pp. 30:1–30:14. Schloss Dagstuhl (Jul 2016)

49. Liu, T., Xie, X., Zhang, Y.: zkCNN: Zero knowledge proofs for convolutional neural
network predictions and accuracy. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021.
pp. 2968–2985. ACM Press (Nov 2021)

50. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM 39(4), 859–868 (oct 1992), https://doi.org/10.1145/
146585.146605

51. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In:
Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 2111–2128.
ACM Press (Nov 2019)

52. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298 (oct
2000), https://doi.org/10.1137/S0097539795284959

53. Naor, M., Paneth, O., Rothblum, G.N.: Incrementally verifiable computation via
incremental PCPs. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS,
vol. 11892, pp. 552–576. Springer, Heidelberg (Dec 2019)

54. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg
(Mar 2013)

55. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy. pp. 238–252.
IEEE Computer Society Press (May 2013)

56. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC.
pp. 49–62. ACM Press (Jun 2016)

57. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Efficient batch verification for
up. In: Proceedings of the 33rd Computational Complexity Conference. CCC ’18,
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, DEU (2018)

58. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial iden-
tities. J. ACM 27(4), 701–717 (oct 1980), https://doi.org/10.1145/322217.
322225

59. Setty, S.: Spartan: Efficient and general-purpose zkSNARKs without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172,
pp. 704–737. Springer, Heidelberg (Aug 2020)

60. Thaler, J.: Proofs, arguments, and zero-knowledge https://people.cs.
georgetown.edu/jthaler/ProofsArgsAndZK.html

61. Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 71–89. Springer,
Heidelberg (Aug 2013)

62. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18.
Springer, Heidelberg (Mar 2008)

63. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L., Polosukhin, I.: Attention is all you need. In: Proceedings of the 31st
International Conference on Neural Information Processing Systems. p. 6000–6010.
NIPS’17, Curran Associates Inc., Red Hook, NY, USA (2017)

https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://doi.org/10.1137/S0097539795284959
https://doi.org/10.1145/322217.322225
https://doi.org/10.1145/322217.322225
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html

34 Jieyi Long

64. Wahby, R.S., Tzialla, I., shelat, a., Thaler, J., Walfish, M.: Doubly-efficient zk-
SNARKs without trusted setup. In: 2018 IEEE Symposium on Security and Pri-
vacy. pp. 926–943. IEEE Computer Society Press (May 2018)

65. Waters, B., Wu, D.J.: Batch arguments for sfNP and more from standard bilinear
group assumptions. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part II.
LNCS, vol. 13508, pp. 433–463. Springer, Heidelberg (Aug 2022)

66. Williams, R.R.: Strong eth breaks with merlin and arthur: Short non-interactive
proofs of batch evaluation. CCC ’16, Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, Dagstuhl, DEU (2016)

67. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: Succinct zero-
knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 733–764. Springer, Hei-
delberg (Aug 2019)

68. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its
applications to zero knowledge proof. In: 2020 IEEE Symposium on Security and
Privacy. pp. 859–876. IEEE Computer Society Press (May 2020)

69. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: Ver-
ifying arbitrary SQL queries over dynamic outsourced databases. In: 2017 IEEE
Symposium on Security and Privacy. pp. 863–880. IEEE Computer Society Press
(May 2017)

70. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A zero-
knowledge version of vsql. Cryptology ePrint Archive, Paper 2017/1146 (2017),
https://eprint.iacr.org/2017/1146, https://eprint.iacr.org/2017/1146

71. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vRAM:
Faster verifiable RAM with program-independent preprocessing. In: 2018 IEEE
Symposium on Security and Privacy. pp. 908–925. IEEE Computer Society Press
(May 2018)

72. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.)
Symbolic and Algebraic Computation. pp. 216–226. Springer Berlin Heidelberg,
Berlin, Heidelberg (1979)

A Proofs for Batch Circuit Satisfiability

In this section, we prove the proofs for several lemmas and theorem presented
in Section 4.

Below we prove Lemma 7:

Proof. This follows directly from the Schwartz-Zippel Lemma [58,72]. Note that
(C(vd,w)−v0) · s is a degree-|v0| polynomial in terms of s defined over F. Since
s is uniform-randomly sampled, the probability that (C(vd,w)− v0) · s is not a
zero-polynomial and yet b = 0 is |v0|/|F|.

Below we prove Lemma 8:

Proof. We prove that the circuit transformation increases the size and depth
of the circuit, but only up to a constant factor. First, the transformation adds
the ith output of C with −v0,i and them multiply the sum with si−1. Next, the
products are summed together. The first step essentially increases the circuit

https://eprint.iacr.org/2017/1146
https://eprint.iacr.org/2017/1146

Efficient Batch Arguments and Proofs 35

size by 2|v0| and the depth by 2. For the second step, as discussed in [24, 61],
the summation of |v0| terms can be modeled with a single addition gate with
multiple inputs. This adds one more gate and increases the depth by one.

Hence, |C ′| = |C|+2|v0|+1. Since |v0| ≤ |C|, we have O(|C ′|) = O(|C|). As
for the circuit depth, according to the above analysis, overall the depth increases
by just a constant after the transformation. Hence, O(d′) = O(d). Moreover, we
note that vector s remains a constant across all the instances. Hence, the newly
added multiplication gates do not change the total degree. Therefore, the total
degree of C ′ is still D.

Before proving Lemma 9, we need the following two lemmas:

Lemma 25. v̂d(t), v̂0(t), and ŵ(t) are vectors of polynomials. The degree of
any element of these vectors (i.e. a polynomial) is at most m− 1.

Proof. This is because each element of these vectors (i.e. a polynomial) is ob-
tained by interpolation across m instances. Note that in the transformed circuit
C ′, the original circuit’s output vector v̂0 has been converted into inputs. Hence,
we can use Lagrange interpolation to determine v̂0(t) for C ′.

Lemma 26. The degree of polynomial b̂(t) is at most mD.

Proof. This is because for a multiplication gate, the degree of its output polyno-
mial is the sum of the degrees of its two input polynomials. Moreover, Lemma 25
states that the degree of each input polynomial of the circuit C ′ is at most m−1.
Thus, the degree of the output polynomial of the entire circuit is the bounded
by the total degree of the circuit multiplied by m− 1, which is (m− 1)D ≤ mD.

Below we prove Lemma 9:

Proof. Based on Lemma 26, the degree of the output polynomial for circuit C ′

is bounded by mD. Thus, we need to evaluate each input polynomial at at most
mD points. To accomplish this, the prover first evaluates each of the input poly-
nomials at {1, ω, .., ωi, .., ωmD−1} using the multi-point evaluation technique de-
scribed in Section 2.5. This process has time complexity O(poly(λ)·mD log(mD))
for each input. Thus, the overall time complexity for deriving the point-value
form for the inputs of C ′ is bounded by O(poly(λ) ·mD log(mD) · (|io|+ |w|)).

Next, to derive the polynomial for the output b̂(t), we perform either point-
value form multiplication or addition for each intermediate gate, which takes at
most O(poly(λ) ·mD) time for each gate. Hence, the complexity for deriving the
polynomials layer by layer is O(poly(λ) ·mD|C|). The overall time complexity,
is therefore O(poly(λ) ·mD(|C|+ log(mD) · (|io|+ |w|))).

Below we prove Theorem 10:

Proof. We provide the proof sketch which shows that the protocol for batch
circuit satisfiability outlined in Algorithm 4 meets the above requirements.

36 Jieyi Long

Completeness. We will omit the details here, but it is straightforward to see
that following the protocols described in Algorithm 2, 3, and 4, given the com-
pleteness of the Kate commitment and GKR protocol, for any batch B such that
C(v

(t)
d ,w(t)) = v

(t)
0 for t = 1, 2, ...m, the verifier accepts it with probability 1.

Knowledge-Soundness. Here we prove that assuming the knowledge-soundness
of the Kate polynomial commitment scheme, the protocol outlined in Algorithm
4 is knowledge-sound. Suppose a (potentially malicious) PPT prover P∗ is able
to convince the verifier to accept an invalid batch B∗, i.e. there exists an in-
stance 1 ≤ t ≤ m such that C(v

(t)
d ,w(t)) ̸= v

(t)
0 . We just need to show that this

happens with a negligible probability negl(λ).
To prove this, we note that the extractability of the polynomial commitment

scheme implies that E can efficiently extract a pre-image b(t) of the commitment
c sent by P∗. Similarly, E can efficiently extract the pre-images w1(t), w2(t),
.., w|w|(t) of commitments k1, k2, .., k|w| sent by P∗. E then evaluates these
polynomials b(t), w1(t), w2(t), .., w|w|(t) at t = 1, 2, ..,m to construct the witness
vector w(t) for each of the m instances for circuit C ′.

Now, suppose at least one of the witness vectors are not correct, but the
verifier still accepts the batch. This can happen either because of 1) degree-
m polynomials w1(t), w2(t), .., w|w|(t) are incorrect but happens to evaluate
correctly at t = r, or 2) the circuit transformation from C to C ′ turns an unsat-
isfiable instance into a satisfiable one, or 3) the degree-mD output polynomial
b(t) is incorrect but evaluates correctly at t = 1, 2, ..,m, r, or 4) due to the
soundness error introduced by the GKR protocol.

By the Schwartz-Zippel Lemma, case 1) has a probability of O(m|w|/|F|).
Here it is worth pointing out that the protocol requires the prover to commit
to the witness polynomials before the verifier sending the random challenge s
to the prover. This is critical otherwise the prover can potentially come up with
witnesses which are invalid for C but satisfy C ′. By Lemma 7, the probabil-
ity that case 2) happens is O(m|v0|/|F|) = O(m|io|/|F|). By the Schwartz-
Zippel Lemma, case 3) has a probability of O(mD/|F|). Finally, the sound-
ness error of the GKR protocol is O(d log |C|/|F|) [67]. Hence, by the union
bound, the probability that the verifier accepts the invalid batch B∗ is at most
O(m(|io|+|w|+D)+d log |C|

|F|) = O(m(|io|+|w|+D)+d log |C|
2λ

), which is in O(negl(λ)).
Efficiency. We analyze the prover and verifier time complexity, as well as the
argument size below.

Prover time complexity : In the pre-processing phase, the prover only needs to
transform C to C ′. By Lemma 8, the circuit transformation increases the circuit
size and depth by at most a constant factor. Hence the transformation has time
complexity O(poly(λ) · |C|). For online processing, in Step 1 of Algorithm 3, the
prover needs to derive the witness polynomials of C ′ and commit to them, which
has a time complexity of O(poly(λ) · m logm|w|). In Step 2, the prover needs
to sets vector |s|, which takes O(|io|) time. In addition, the prover derives b̂(t),
the output polynomial of C ′ and commit to it. Deriving b̂(t) takes O(poly(λ) ·
mD(|C| + log(mD) · (|io| + |w|))) time as shown by Lemma 9. Generating the
polynomial commitment for b̂(t) takes O(poly(λ)·mD log(mD)), since the degree

Efficient Batch Arguments and Proofs 37

of b̂(t) is bounded by mD as shown by Lemma 26. In Step 3, the prover opens
the output and witness polynomial commitments at r, which takes O(poly(λ) ·
mD log(mD)) and O(poly(λ) · m logm|w|) time, respectively. In Step 4, the
prover evaluates the input polynomials, which takes O(poly(λ) · m|io|) time.
Finally, in Algorithm 4 the prover and verifier runs the GKR protocol, which
takes O(poly(λ) · |C|) time on the prover side [67]. Note that |io| ≤ |C| and
|w| ≤ |C|. Summing up the run time of each step yield overall prover time
complexity of O(poly(λ) ·m(D|C|+D log(mD) · (|io|+ |w|) + |w| logm)).

Verifier time complexity : In the pre-processing phase, the verifier needs to
transform C to C ′, and process C ′ in preparation for running the GKR pro-
tocol later. Both steps take O(poly(λ) · |C|) time [61], and hence the overall
pre-processing time complexity for the verifier is O(poly(λ) · |C|). For online pro-
cessing, in Step 1 of Algorithm 3, the verifier receives and process commitments
k in O(poly(λ) · |w|) time. Step 2 takes the verifier O(poly(λ) · |io|) time. In
Step 3, the verifier needs to verify the opening proofs for both the output poly-
nomial and the witness polynomials, which takes O(poly(log |F|)) = O(poly(λ))
and O(poly(λ) · |w|) time, respectively. In Step 4, the verifier evaluates the in-
put polynomials, which takes O(poly(λ) · m|io|) time. Finally, in Algorithm 4
the prover and verifier runs the GKR protocol, which takes O(poly(λ) ·d log |C|)
time on the verifier side [61,67]. Summing up the run time of all steps, the overall
verifier time complexity is O(poly(λ) · (m|io|+ |w|+ d log |C|)).

Argument size: The communication costs for each step of Algorithm 3 are
summarized in the inline comments. Summing those up, the total communication
cost of Algorithm 3 is O(poly(λ) · |w|). The communication cost of the GKR
protocol on the reduced instance is O(poly(λ)·d log |C|). Therefore, the argument
size, i.e. the overall communication cost is O(poly(λ) · (|w|+ d log |C|)).

B Proofs for Batch Circuit Evaluation

In this section, we prove the proofs for several lemmas and theorem presented
in Section 5.

Below we prove Theorem 13:

Proof. The proof for completeness is straightforward so we omit the details here.
For soundness, by the Schwartz-Zippel Lemma, reducing the input and out-
put polynomials to a single point evaluation introduces a soundness error of
O(m|io|/|F|), since all the input and output polynomials have degree m − 1.
The soundness error of the GKR protocol is O(d log |C|/|F|) [67]. Hence, by the
union bound, the overall soundness error is at most ϵ = O((m|io|+d log |C|

|F|).
For protocol efficiency analysis, we note that calculating v̂d(r) and v̂0(r)

takes O(m|io|) using the Barycentric evaluation method without communication.
For the GKR protocol, the prover complexity can be made to be O(|C|) , and
the verifier complexity is O(d log |C|), while the proof size is O(d log |C|) [60,67].
Hence the overall prover time, verifier time, and proof size are O(m|io| + |C|),
O(m|io|+ d log |C|), and O(d log |C|), respectively.

38 Jieyi Long

Below we prove Theorem 14:

Proof. The FFT computation can be implemented with an arithmetic circuit
with O(l log l) gates with O(l) inputs/outputs [68]. Hence, directly applying the
protocol in Algorithm 5 to batch FFT evaluation results in O(ml+ l log l) prover
time complexity. In a recent work [49], Liu et al. proposed a new Sumcheck
protocol which achieves O(l) prover time complexity for a single FFT instance
verification. Since the last step of our batch interactive proof is proving the cor-
rectness of a single instance derived from random value r, We can simply borrow
this technique, which reduces the overall prover time complexity to O(ml). Note
that the lower bound for the prover time is O(ml), since the prover has to at
least read all the m input vectors each having length l. Using a similar line of
reasoning, we can show that the verifer time is achieve its lower bound O(ml).
Thus, this version of the protocol is optimal in terms of both prover and verifier
time complexity.

Below we prove Theorem 18:

Proof. The completeness proof is straightforward and omitted here. For sound-
ness, the Sumcheck protocol introduces soundness error O(log l/|F|). Moreover
since Q(x) is a multilinear function of the bits of x with total degree logm,
Q(xr) = 0 guarantees that Q(x) is a zero-polynomial up to soundness error
O(logm/|F|). Hence, by union bound the overall soundness error is O(logml/|F|).

For efficiency analysis, first note that fx(k) =
∑m

t=1 (y
(t) − l · g(z̃(t)(k))) is a

multivariable polynomial has degree at most D for the bits of k. This is because
z̃(t)(k) is multilinear with log l variables and g(·) has degree D. Hence, in each
round of the Sumcheck protocol, the communication cost is O(D). The Sumcheck
protocol runs in O(log l) rounds. Hence, the total proof size is O(D log l). The
verifier time is O(D log l +mT), and the prover time is O(lmT) [60].

Below we prove Lemma 21:

Proof. From Lemma 5 in [61], for any t ∈ {1, 2, ..,m}, we have

C̃t(i, j)−
∑

k∈{0,1}log l

Ãt(i, k)B̃t(k, j) = 0

Simply multiplying the equation by l ∈ F, and separating l · C̃t(i, j) into l terms
and then putting them into the summation, we would arrive at Equation 12.

Below we prove Lemma 22:

Proof. If there exists i, j ∈ {0, 1}log l such that F̃t(i, j) ̸= 0, then Q(x, i, j) is not
a zero polynomial. Since the total degree of Q(x, i, j) is at most logm + 2 log l
in terms of the bits of x, i, and j, by the Schwartz-Zippel Lemma, Q(x, i, j) = 0
for at most (logm+ 2 log l)/|F| fraction of (x, i, j) points in the domain of Q(·).

Below we prove Theorem 23:

Efficient Batch Arguments and Proofs 39

Proof. Again the proof for completeness is trivial and omitted here. For sound-
ness, Lemma 22 states that Q(xr, ir, jr) = 0 guarantees Q(x, i, j) is a zero-
polynomial with soundness error at most (logm + 2 log l)/|F|. The Sumcheck
protocol also introduces a soundness error of O(log l/|F|). Hence, by the union
bound the overall soundness error can be bounded by ϵ = (logm+ 3 log l)/|F|.

Below we analyze the proof size and the time complexity.
First, notice that fxr,ir,jr (k) is a multivariate quadratic polynomial (i.e. D =

2) in terms {kb}, the bits of the binary representation of k. This means that in
each round of the Sumcheck protocol, a constant number of field elements are
sent between the prover and the verifier. Hence, the overall proof size is O(log l),
which is independent of the batch size.

Second, the prover time can be made into O(ml2) across all rounds of the
Sumcheck protocol adopting the techniques in [61] to quickly evaluate Ãt(ir, kr)
and B̃t(kr, jr) at all the necessary points. Moreover, note that ẽq(xr, t) and
C̃t(ir, jr) are independent of kr. Thus, the prover can simply calculate their
values before executing the Sumcheck protocol, which takes O(m logm) and
O(ml2), respectively. Therefore, the overall prover time complexity is O(m(l2 +
logm)). This simplifies to O(ml2) when l2 > logm, which is usually the case.

Third, the verifier needs to compute fxr,ir,jr (kr) in the final round of the
Sumcheck protocol. Similar to the above, this can be done in O(m(l2 + logm))
time,The verifier also needs to process O(log l) constant size messages during
the Sumcheck protocol as discussed above, which takes O(log l) time. Hence, the
overall verifier time complexity is O(m(l2 + logm) + log l) = O(m(l2 + logm)),
which degenerates to O(ml2) for the majority of the cases.

Finally, we note that O(ml2) is the lower bound for both the prover and
verifier time, since they both at least have to read the matrices themselves,
which takes O(ml2) time. Thus, both the prover and verifier time complexy
reaches their lower bound for the typical case where logm < l2.

	Efficient Arguments and Proofs for Batch Arithmetic Circuit Satisfiability

