
DiStefano: Decentralized Infrastructure for Sharing Trusted Encrypted Facts and
Nothing More

Private and Efficient Commitments for TLS-encrypted Data

Sof́ıa Celi∗, Alex Davidson†, Hamed Haddadi∗¶, Gonçalo Pestana‡ and Joe Rowell§
∗ Brave Software, cherenkov@riseup.net, hamed@brave.com

† NOVA LINCS & DI, FCT, Universidade NOVA de Lisboa, a.davidson@fct.unl.pt
‡ Hashmatter, gpestana@hashmatter.com

§Information Security Group, Royal Holloway, University of London, joe.rowell@rhul.ac.uk
¶Imperial College London, h.haddadi@imperial.ac.uk

Abstract—We design DiStefano: an efficient, maliciously-

secure framework for generating private commitments over

TLS-encrypted web traffic, for a designated third-party. DiS-
tefano provides many improvements over previous TLS com-

mitment systems, including: a modular protocol specific to

TLS 1.3, support for arbitrary verifiable claims over encrypted

data, inherent ring privacy for client browsing history, and

various optimisations to ensure fast online performance of

the TLS 1.3 session. We build a permissive open-source

implementation of DiStefano integrated into the BoringSSL

cryptographic library (used by Chromium-based Internet

browsers). We show that DiStefano is practical for committing

to facts in arbitrary TLS traffic, requiring < 1 s and ≤ 5 kB

to execute the online phase in a LAN setting.

1. Introduction

The Transport-Layer Security (TLS) protocol [51]
provides encrypted and authenticated channels between
clients and servers on the Internet. Such channels com-
monly transmit trusted information about users behind
clients such as proofs of age [70], social security sta-
tuses [54], and accepted purchase information. While
various applications would benefit from learning such
data points, doing so represents an obvious privacy
concern [9], [16], [18], [44], [57], [68]. Exporting such
information as anonymous credentials is non-trivial since
the information resides in an encrypted and authen-
ticated channel. Meanwhile, both legislation (such as
GDPR [23]) and standards bodies (such as W3C [32])
have made usage of privacy-preserving data credentials
a priority.

Designated-Commitment TLS (DCTLS) protocols1

provide modified TLS handshakes that allow export-
ing certain claims over the TLS channel to a desig-
nated verifier. The protocols perform handshakes that
secret-share private session data amongst a client and
a verifier, and compute the handshake and record-layer
phases in two-party computation (2PC). Examples of

1. Also known as three-party handshake protocols

DCTLS protocols include DECO [70], TLSNotary/Pa-
geSigner [59]2, TownCrier [69], Garble-then-Prove [64],
and Janus [43]. Similar techniques are also used to
produce zero-knowledge middleboxes [28] (for proving
that client traffic adheres to corporate browsing poli-
cies, for example), and for devising multi-party TLS
clients/servers. Prominent examples of the latter are
Oblivious TLS [1] and MPCAuth [14].

Unfortunately, while previous works claim practi-
cality, all such DCTLS protocols appear insufficient for
wide-scale usage. First, no protocol explicitly provides
secure support for TLS 1.3. Support for TLS 1.3 sur-
passed that of 1.2 around December 2020 [45] and, ac-
cording to Cloudflare Radar [15], TLS 1.3 now accounts
for 63% of secure network traffic as opposed to 8.7% for
TLS 1.2, so it is imperative that protocols support this
version. When DCTLS protocols do support TLS 1.3,
the security analysis is lacking and/or efficiency con-
cerns that surround implementing TLS 1.3 ciphersuites
and protocol steps in (maliciously-secure) 2PC are over-
looked. Existing security arguments also lack in agility,
meaning that they only apply for a static protocol, ci-
phersuite and 2PC primitives. This is a critical concern:
already primitives used by DECO have been shown to
be insecure [47], [61]. Client privacy is also neglected as
the protocols reveal the server that clients communicate
with to the verifier, revealing their browsing history.
Second, from a usability perspective, no fully-featured
open-source implementation of a DCTLS protocol exists
that achieves strong security guarantees, or much less
one that interoperates with common Internet browsing
tools.

Our work. We design DiStefano (as seen in Fig. 1), a
DCTLS protocol that securely generates private com-
mitments over TLS 1.3 data. Security is proven using
a novel standalone model that permits cryptographic
agility, by allowing for the swapping various of schemes
depending on the desired ciphersuite. DiStefano is pro-

2. We refer exclusively here to original PageSigner as TLSNotary
does not appear to have a fixed cryptographic design.

Figure 1. An overview of the DiStefano protocol. In the handshake and query phases, the TLS client performs the TLS 1.3 handshake
and record-layer protocols in conjunction with the verifier using 2PC to secret-share traffic keys and other session data, for establishing
a secure session with the server (secret-shared keys are represented with a square over the key). In the commitment phase, the client
authenticates the server to the verifier using a ring signature, and commits to some encrypted session data, before receiving the verifier’s
secret TLS session shares.

vided as a permissive open-source implementation3 in-
tegrated into the widely-used BoringSSL library,4 where
2PC functionality is provided by emp [62]. With respect
to client’s privacy, DiStefano guarantees ring privacy
by using ring signatures produced over TLS certifi-
cates. Finally, the commitments generated by DiStefano
can be used to produce any type of verifiable private
claim: non-interactively using zero-knowledge proofs and
interactively using 2PC. Note that, in this work, we
prefer to build a modular framework for solving the
core functionality, and leave the implementation of the
subsequent proving stage up to the implementer (see
Section 4.4). To ensure high performance, a number of
optimisations were made to the cryptographic function-
ality and software implementation for DiStefano. The
online portions of the handshake and record-layer phases
can be executed in 500 ms and 190 ms, and with 5 kB
and around 4 kB of bandwidth, respectively, for 2 kB of
communication.

Formal contributions. Our formal contributions follow:

• A private Delegated-Commitment TLS 1.3
(DCTLS) protocol, DiStefano (Section 4), with
a modular, standalone security framework that
proves security in the presence of malicious ad-
versaries (Section 6).

• Novel optimisations that allow running secure
2PC TLS 1.3 clients with higher efficiency (Sec-
tion 5).

• An open-source, Chromium-compliant imple-
mentation integrated into BoringSSL.

• Experimental analysis that shows that DiStefano
is practically efficient for committing to various
sizes of Internet traffic (Section 7).

2. Background

3. https://github.com/brave-experiments/DiStefano
4. This library is used by most Chromium-based Internet

browsers, that make up a dominant share of all browser usage.

2.1. General Notation

Vectors are denoted by lower-case bold letters. Given
s, len(s) denotes the length of s. The symbol [m] in-
dicates the set 1, 2, . . . ,m. We write a ← b to assign
the value of b to a, and a←$S (S is a set) to assign
a uniformly sampled element from S. λ denotes the
security parameter.

We denote a finite field of characteristic q as Fq
and the m-dimensional vector space over Fq as Fqm .
We are primarily concerned with the smallest field, F2,
where the additive operation on a, b ∈ F2 is simply
an exclusive-or operation, a ⊕ b, with multiplication
corresponding to the AND operation. We extend this
notation to refer to operations on m-dimensional vectors
a,b ∈ F2m , writing a⊕b and a·b to refer to addition and
multiplication, respectively. Note that while addition in
F2m is simply m XOR operations, multiplication over
F2m requires extra logic compared to multiplications
over F2. We write elliptic curves with a generator G over
Fq as EC(Fq).

For a security game Game used by a cryptographic
scheme ∆, we denote the advantage of an algorithm A
in ∆ by Advgame

A,∆ (λ), where:

Advgame
A,∆ (λ) = Pr[A succeeds]− Pr[A fails]. (1)

We say that ∆ is secure with respect to Game, iff
Advgame

A,∆ (λ) ≤ negl(λ), for some negligible function
negl(λ) and security parameter λ.

2.2. Background on DCTLS Protocols

Designated-Commitment (DCTLS) TLS protocols al-
low a client (C) to generate commitments to TLS session
data communicated with a server (S) that can be sent to
a designated third-party verifier (V). They consist of the
following phases (which are described in Appendix B):
a (V-assisted) handshake phase, a (V-assisted) query
execution phase, and a commitment phase. Previous

2

https://github.com/brave-experiments/DiStefano

work, such as in DECO and tools like PageSigner, pro-
vide explicit attestation functionality for proving facts
about the committed TLS session (using zero-knowledge
proofs). Note that, without such commitments, proving
statements that use TLS data as sources of truth must
assume either a trustworthy client, or C must allow V to
read their TLS traffic in the clear.

DCTLS over TLS 1.3. Previous DCTLS protocols fo-
cused on TLS 1.2, with an informal (and mostly in-
complete) extension to TLS 1.3. TLS 1.3 emerged in
response to dissatisfaction with the outdated design of
the TLS 1.2 handshake, its two-round-trip overhead, and
the increasing number of practical attacks [2]–[4], [8].
Thus, in this work, we focus on TLS 1.3, and argue that
previous protocols cannot be easily extended to handle
both TLS 1.2 and 1.3, due to substantial protocol-level
differences. We provide an overview of the standard TLS
1.3 handshake, and the standard notation defined in [22],
in Appendix J.

Description of DCTLS phases. In Fig. 1, we give an
overview of the stages of DCTLS for establishing commit-
ments to TLS 1.3 encrypted traffic between C and S to
be sent to a designated V. In the following, we describe
how the different stages of the protocol function, specif-
ically in relation to the various stages of the TLS 1.3
protocol [51]. The following is an informal description of
TLS 1.3 (1-RTT with certificate-based authentication)
when extended to support DCTLS-like protocols.

Handshake phase. In this phase, S learns the same
secret session parameters (i.e. session key information)
as in standard TLS 1.3, while C and V learn shares of
the session parameters that a regular C would normally
learn. This requires C and V to engage in the core
TLS 1.3 protocol using a series of 2PC functionalities.

We focus on the default mode for establishing a
secure TLS 1.3 session using (EC)DH ciphersuites, and
certificate-based authentication between C and S. In
this mode, the handshake starts with C sending a
ClientHello (CH) message to S. This message adver-
tises the supported (EC)DH groups and the ephemeral
(EC)DH keyshares specified in the supported_groups
and key_shares extensions, respectively. The CH mes-
sage also advertises the signature algorithms supported.
It also contains a nonce and a list of supported
symmetric-key algorithms (ciphersuites). Note that for
DCTLS protocols, the ephemeral keyshares Z ∈ EC(Fc)
are generated as a combination of additive shares
(zX ←$Fc, ZX = zX · G) for X ∈ {C,V}, where Z =
ZC + ZV ∈ EC(Fc).
S processes the CH message and chooses the cryp-

tographic parameters to be used in the session. If
(EC)DH key exchange is in use, S sends a ServerHello
(SH) message containing a key_share extension with
the server’s (EC)DH key, corresponding to one of the
key_shares advertised by C. The SH message also con-
tains a S-generated nonce and the ciphersuite chosen.
An ephemeral shared secret is then computed at both

ends, which requires C and V to engage in a 2PC
computation to derive this secret. After this action,
all subsequent handshake messages are encrypted using
keys derived from this secret. Once this derivation is
performed, V’s keys can be revealed to C to perform
local encryption/decryption of handshake messages, as
these keys are considered independent from the eventual
session secret derived at the end of the handshake [22].
S then sends a certificate chain (in the

ServerCertificate message -SCRT-), and a message
that contains a proof that they posses the private
key corresponding to the public key advertised in
the leaf certificate. This proof is a signature over
the handshake transcript and it is sent in the
ServerCertificateVerify (SCV) message. S also
sends the ServerFinished (SF) message that provides
integrity of the handshake up to this point. It contains
a message authentication code (MAC) over the entire
transcript, providing key confirmation and binding S’s
identity to any computed keys. Optionally, S can send
a CertificateRequest (CR) message, prior to sending
its SCRT message, requesting a certificate from C.

At this point, S can immediately send application
data to the unauthenticated C. Upon receiving S’s mes-
sages, C verifies the signature of the SCV message and
the MAC of SF. If requested, C responds with their
own authentication messages, ClientCertificate and
ClientCertificateVerify, to achieve mutual authen-
tication. Finally, C must confirm their view of the hand-
shake by sending a MAC over the handshake transcript
in the ClientFinished (CF) message. The MAC gener-
ation must also be computed in 2PC with V.

Now, the handshake is completed, and C and S
can derive the key material required by the subsequent
record layer to exchange authenticated and encrypted
application data. This derivation is performed in 2PC,
and C and V both hold shares of all the secret parameters
needed to encrypt traffic using the specified encryption
ciphersuite. In this work, we specifically target AES-
GCM, since over 90% of TLS 1.3 traffic uses this ci-
phersuite [35].

Record Layer (query execution) phase. C sends a query
q (in encrypted form q̂) to S with help from V. Specif-
ically, since the session keys are secret-shared, C and
V jointly compute the encryptions of these queries in
2PC. Encrypted responses, r̂, can then be decrypted
using a similar procedure to reveal S’s response r to C.
This is important for running tools in a browser, or any
multi-round protocol, where subsequent queries depend
on previous responses.

Commitment phase. After querying S and receiving a
response r, C commits to the session by forwarding the
ciphertexts to V, and receives V’s session key shares in
exchange. Hence, C can verify the integrity of r, and later
prove statements about it. The fact that C sends com-
mitments before they receive V’s shares means that V
can trust subsequent attestations over the commitments.

3

Limitations of this approach. Existing DCTLS schemes
have serious security, performance, and usability limita-
tions. They either only work with old/deprecated TLS
versions (1.2 and under) and offer no privacy from the
oracle (PageSigner [60]); or rely on trusted hardware
(Town Crier [69]), against which various attacks ex-
ist [11]. Another class of oracle schemes assumes coop-
eration from S by installing TLS extensions [52], or by
changing application-layer logic [5]. These approaches
suffer from two fundamental problems: they break legacy
compatibility, causing a significant barrier to wide adop-
tion; and only provide conditional exportability as S
has the sole discretion to determine which data can
be exported, and can censor export attempts. While
DECO [70] promises to solve these problems, its non-
modular security design makes it impossible to swap
individual pieces of functionality (without rewriting the
entire security proof). These limitations have the follow-
ing repercussions.

Security. Some primitives used by DECO have since
been shown to be insecure [47], [61], and the secu-
rity proof only targets TLS 1.2. General guidance is
offered for handling TLS 1.3, but it is not formally
specified. More worryingly, the security argument is all-
encompassing (this is common in other constructions
too [58], [69]). This significantly harms cryptographic
agility, since any change to the primitives, protocol,
or ciphersuites that are used theoretically dictates that
an entirely new proof should be written. Lack of cryp-
tographic agility has been shown to be a significant
source of cryptographic vulnerabilities in real-world sys-
tems [49].

Privacy. Explicit authentication of S to V during the
handshake is mandated, due to the non-modular security
proof, which is harmful for client browsing privacy.

Performance. Certain underlying cryptographic tools
(such as oblivious transfer protocols) have seen re-
markable improvements subsequent to DECO’s publi-
cation [55], [66]. However, certain parts of the trans-
formations needed to handle the AES-GCM ciphersuite
detailed by DECO are underspecified, and naively lead
to high costs during 2PC execution.

Usability. Recent DCTLS protocols [13], [43], [56], [64]
are either aimed entirely at TLS 1.2 [64], are entirely
theoretical [56], or use semi-honest 2PC to achieve rea-
sonable performance [13], [43] in a LAN setting. We
note that the use of semi-honest 2PC must be applied
carefully to prevent loss of security, and (to the best of
our knowledge) no TLS 1.3 attestation mechanism has
yet been proposed that provides an appropriate level of
security. We discuss this, and the fact that it may lead to
potential attacks, further in Appendix I. Moreover, even
when semi-honest 2PC is used, performance is lacking
and public implementations are rare. For example, the
recently proposed Janus protocol [43] is accompanied by
a reference implementation, with a reported handshake
time of around 0.6 s in a LAN setting with around 1.7 GB

of traffic. By contrast, our implementation achieves ma-
licious security guarantees in around the same time,
whilst exchanging much less data (around 220MB of
offline data, and 5KB of online). Thus, it does not appear
that the use of malicious 2PC is a bottleneck for current
protocols.

2.3. Overview of DiStefano

Due to the limitations of the previous DCTLS proto-
cols, we aim to build a protocol that works for TLS 1.3,
improves browser privacy guarantees for C, does not
require specific hardware or extensions, and can be easily
integrated into common applications. Overall, DiStefano
achieves the following.

• The creation of a maliciously-secure framework
that generates binding and hiding commitments
over data communicated during TLS 1.3 sessions.

• Cryptographic optimisations that ensure prac-
tical running costs, and experimental analysis
showing that DiStefano is ready for real work-
flows.

• A publicly-available implementation integrated
into the TLS library that browsers use, with no
need for specialized hardware or installing extra
extensions.

We believe that DiStefano is an essential step-forward for
showing that DCTLS can be implemented in practice.

Overview of required optimisations. Our implemen-
tation of DiStefano requires several optimisations to
achieve its performance. We reduce the number of
rounds required to derive AES-GCM secret shares
(cf. Section 5) by a factor of around 500 compared to
prior art (PageSigner), and reduce the required band-
width by around a factor of three. Moreover, we carefully
combine multiple sub-circuits used in the TLS hand-
shake to reduce the number of re-computed secrets and
circuit invocations (cf. Section 4.1). We stress that a
large amount of engineering time was spent on low-level
tweaks: we consider this a contribution in its own right
and we hope this effort allows future researchers to adapt
our code easily.

3. Secure Multi-Party Computation

Two-party secure computation (2PC) protocols al-
low parties p1 and p2 to jointly compute generic func-
tions f(s1, s2) over their private inputs s1 and s2. The
security of the protocols ensures that nothing of each
input is revealed to the other party, except for what
f naturally reveals [46]. There are two common ap-
proaches for 2PC protocols. Garbled circuits protocols
[26], [67] encode f as a boolean circuit and evaluate
an encrypted variant of the circuit across two parties.
Threshold secret-sharing protocols (e.g. SPDZ [17], [39],
or MASCOT [41]), typically operate by first produc-
ing some random multiplicative triples (referred to as

4

Beaver triples [6]) before additively sharing secret inputs
with some extra information. Garbled circuit protocols
are particularly well-suited to secure evaluation of bi-
nary circuits, such as AES or SHA-256. The cost of a gar-
bled circuit is normally evaluated in terms of the number
of AND gates due to the Free-XOR optimisation [42]. In
contrast, threshold secret-sharing schemes are typically
well-suited for computing arithmetic operations, such as
modular exponentiation. We calculate their cost in terms
of their number of rounds and bandwidth requirements.

MPC primitives. We use both types of 2PC protocols:
we use the maliciously-secure authenticated garbling im-
plementation provided by emp [63] for binary operations,
and we base our 2PC arithmetic operations on the well-
known oblivious transfer (OT) primitive.

Definition 1 (Oblivious Transfer (OT)). An oblivious
transfer scheme, OT, consists of the following algorithms:

• OT.Gen(1λ): outputs any key material.
• OT.Exec(m0,m1, b): accepts m0,m1 from P1 and

b from P2. P2 learns mb, and P1 learns nothing.

We realise the OT functionality via the actively
secure IKNP [37], [40] extension and the Ferret [66]
OT scheme. Both rely on the security of information
theoretic MACs, the learning parity with noise (LPN)
assumption, and on randomness assumptions about hash
functions, see [31].

Using OT as a building block, we realise the remain-
ing 2PC functionality needed by using multiplicative-to-
additive (MtA) secret sharing schemes.

Definition 2 (MtA). An MtA scheme, MtA, consists of
the following algorithms:

• MtA.Gen(1λ): outputs any needed key material.
• MtA.Mul(α, β): each Pi supplies ai, learning as

output bi, such that
∑
bi = Πiai.

A maliciously-secure MtA scheme expands
this definition with an additional algorithm,
MtA.Check(a1, . . . , b1, . . .), to check shares consistency.
Existing works [43], [59], [70] realise MtA with an
approach [25] based on Paillier encryption [50]. We
deviate from this approach to improve efficiency [65,
§5], and to mitigate the need for range proofs [47], [61]
(necessary for achieving malicious security). We realise
the MtA functionality using the schemes introduced
in [34] and [19], [20] for rings of characteristic > 2
and 2, respectively. The schemes require access to
OT functionality and are instantiated with 128-bit
statistical and computational security. We note that
whilst the security of [19], [20] reduces directly to an
NP-hard encoding problem [36], to the best of our
knowledge, there is no computational hardness proof
for [34].

ECtF. During the Key Exchange phase of the handshake
of DCTLS, both V and C hold additive shares Zv and Zc

of a shared ECDH key (x, y) = DHE. Given that all
key derivation operations are carried out on the x co-
ordinate of Z, we use the elliptic curve to field (ECtF)
functionality [70] to produce additive shares tv and tc of
the x coordinate, which is an element in Fq. Using these
shares as inputs to the subsequent 2PC operations to
derive the handshake secrets allows running all compu-
tation in a binary circuit, which results in a substantial
performance improvement compared with attempting to
combine arithmetic and binary approaches in a garbled
circuit. We stress that use of the ECtF functionality
improves performance: we estimate that computing just
the x co-ordinate of Zv + Zc in a garbled circuit would
be more expensive than deriving all TLS session secrets,
requiring around 1.7M AND gates for an elliptic curve
over a field with a 256-bit prime. From a security per-
spective, we remark that the security of the ECtF func-
tionality reduces the security of the underlying secure
multiplication protocol. We achieve malicious security
by instantiating the multiplication with a maliciously-
secure MtA scheme.

4. DiStefano Protocol

In this section, we fully describe each of the phases of
the DiStefano protocol (formal ideal functionalities are
given in Appendix B). A diagram of the full protocol
is found in Fig. 2. For comparison, we also provide a
diagram of TLS 1.3 and a summary of the shorthands
that are taken from [22] in Appendix J. The security
analysis is handled in Section 6 and Appendix C.

4.1. Handshake Phase: HSP

We use the similar overarching mechanism for the
handshake phase as described in Section 2.2, but focused
exclusively on TLS 1.3 with AES-GCM as the AEAD
scheme (Section A.2), using ECDH for the shared key
generation, and using ECDSA certificates. The 2PC
ideal functionalities that we use are defined in Algo-
rithms 1 to 3 (Section C.1). However, the protocol can
be adapted to work with any other TLS 1.3-compliant
ciphersuites that are compatible with 2PC.

At a high-level, we adapt the TLS 1.3 handshake
by treating C and V as a single TLS client from the
perspective of S. For this, we reverse the “traditional”
flow of the TLS 1.3 handshake by having C and V each
prepare an additively shared ephemeral key share SSK,
as seen in Fig. 2. This can be computed without 2PC.
C then sends the CH and the CKS messages, adver-

tising SSK as part of the key_shares extension. S
then processes these messages and, in turn, sends a SH
message back to C containing a freshly sampled ECDH
key_share Zs. At this stage, S computes the shared
ECDH key as E = xs · SSK and continues to derive
all traffic secrets (i.e. CHTS,SHTS, tkshs, tkchs). Once
C and V receive the SH message, they derive additive
shares of the shared ECDH key as E = xc · Ys + xv · Ys.

5

Figure 2. The DiStefano 1-RTT handshake protocol. Shorthands correspond to those defined in [22]. Purple represents messages sent or
calculated by V, orange by the client, pink by the server, and black for 2PC calculations between the client and verifier. Messages with
an asterisk (*) are optional, and those within braces ({}) are encrypted.

Verifier Client Server

static (Sig): pkS , skS
ClientHello:ClientHello:

xc←$ Zq, Xc ← gxczv←$ Zq, Zv ← gzv

+ClientKeyShare: SSK← Zv +Xc +ClientKeyShare: SSK← Zv +Xc

ServerHello:

ys←$ Zq
+ServerKeyShare: Ys←$ gys

Forward SKS to verifier

sskc ← Y xcs , tc ← ECtF(sskc)sskv ← Y zvs , tv ← ECtF(sskv)

DHE← SSKys

HSv ⊕HSc ← HKDF .Extract(∅, tv + tc) HS← HKDF .Extract(∅,DHE)

CHTSv ⊕ CHTSc ← HKDF .Expand(HSv ⊕HSc,Label1 ‖H0) CHTS← HKDF .Expand(HS,Label1 ‖H0)

SHTSv ⊕ SHTSc ← HKDF .Expand(HSv ⊕HSc,Label2 ‖H0) SHTS← HKDF .Expand(HS,Label2 ‖H0)

dHSv ⊕ dHSc ← HKDF .Expand(HSv ⊕HSc,Label3 ‖H1) dHS← HKDF .Expand(HS,Label3 ‖H1)

tkvchs ⊕ tkcchs ← DeriveTK(CHTSv ⊕ CHTSc) tkchs ← DeriveTK(CHTS)

tkvshs ⊕ tkcshs ← DeriveTK(SHTSv ⊕ SHTSc) tkshs ← DeriveTK(SHTS)

{+EncryptedExtensions }
{+CertificateRequest }*
{+ServerCertificate:}pkS

{+ServerCertificateVerify:}
Sig← Sign(skS ,Label7 ‖H3)

fkS ← HKDF .Expand(SHTSv ⊕ SHTSc,Label4 ‖Hε) fkS ← HKDF .Expand(SHTS,Label4 ‖Hε)

{+ServerFinished:} SF ← HMAC(fkS ,H4)

Forward encrypted {EE},...,{SF} to Verifier

Reveal SHTSv to Client

Derive tkchsusing SHTSv

abort if Verify(pks,Label7 ‖H3,Sig) 6= 1

abort if SF 6= HMAC(fkS ,H4)
Forward SF to verifier

Reveal fkS to verifier

Forward H4, H3 and H2 to verifier

abort if SF 6= HMAC(fkS ,H4)

MSv ⊕MSc ← HKDF .Extract(dHSv ⊕ dHSc,∅) MS← HKDF .Extract(dHS, 0)

CATSv ⊕ CATSc ← HKDF .Expand(MSv ⊕MSc,Label5 ‖H2) CATS← HKDF .Expand(MS,Label5 ‖H2)

SATSv ⊕ SATSc ← HKDF .Expand(MSv ⊕MSc,Label6 ‖H2) SATS← HKDF .Expand(MS,Label6 ‖H2)
tkvcapp ⊕ tkccapp ← DeriveTK(CATSv ⊕ CATSc) tkcapp ← DeriveTK(CATS)
tkvsapp ⊕ tkcsapp ← DeriveTK(SATSv ⊕ SATSc) tksapp ← DeriveTK(SATS)

{+ClientCertificate:}*pkC
{+ClientCertificateVerify:}*
Sig← Sign(skC ,Label8 ‖H5))

Reveal CHTSv to Client

fkC ← HKDF .Expand(CHTSv ⊕ CHTSc,Label4 ‖Hε)

fkC ← HKDF .Expand(CHTS,Label4 ‖Hε)

{+ClientFinished:} CF ← HMAC(fkC ,H6)

abort if Verify(pkc,Label8 ‖ ‖H5,Sig) 6= 1

abort if CF 6= HMAC(fkC ,H6)

6

As TLS 1.3 key derivation operates on the x co-ordinate
of the shared key, C and V convert their additive shares
of E = (Ex, Ey) into additive shares Ex = tc + tv by
running the ECtF functionality. With Ex computed, C
and V proceed to run the TLS 1.3 handshake key deriva-
tion circuit in 2PC, with each party learning shares
HSv ⊕ HSc = HKDF .Extract(∅, tv + tc). In practice,
this process is carried out inside a garbled circuit that
produces shares of CHTS,SHTS and dHS, as well as the
SF message key fkS . This key is provided to both C and
V. This circuit comprises of around 800K AND gates,
which is similar to DECO’s circuit size for TLS 1.2. We
delay the derivation of the traffic keys, as it provides
authenticity guarantees to V.

Authentication phase. S sends the CR (if wanted), SCRT,
SCV and SF messages. The SF message is computed by
first deriving a finished key fkS from SHTS and then
computing a MAC tag SF over a hash of all the previous
handshake messages. At this point, S is able to compute
the client application traffic secret, CATS, and the server
application traffic secret, SATS. S can also start send-
ing encrypted application data (encrypted under tksapp)
while waiting for the final flight of C messages.

C receives the encrypted messages from S and, in
turn, forwards them (encrypted) to V alongside a com-
mitment to their share of SHTS. This commitment is
necessary to make AES-GCM act as a committing cipher
from the perspective of V, which allows V to disclose
their shares of CHTS and SHTS to C without compro-
mising authenticity guarantees. As C now knows the
entirety of CHTS and SHTS, they are able to locally
derive the handshake keys tkchs and tkshs, allowing them
to check S’s certificate and SF messages without the
involvement of V. Moreover, as C now knows tkchs they
are also able to respond to the CR if one exists. C then
forwards an authentic copy of the hashes H2, H3, and H4

to V, allowing them to check the SF message’s authentic-
ity. Notice that C does not forward the decrypted SCRT
message to V, as this message reveals the identity of the
server. At this point, though, C can construct a ring sig-
nature (schemes such as [27]) based on the server’s cer-
tificate signature, and send it to V (it can also perform
this operation later in the session). V, then, can check
the validity of the ring signature (if present). Similarly,
C can selectively reveal the blocks containing the SF
message, allowing V to validate the SF. Finally, C and V
derive the shares of the traffic secrets MS,CATS,SATS
and the traffic keys tksapp, tkcapp in 2PC. In practice,
we instantiate this derivation as a garbled circuit that
contains around 700K AND gates. Note that this circuit
cannot cheaply be combined with the handshake secret
derivation circuit, as deriving the traffic keys requires
a hash of the unencrypted handshake transcript. This
would require decrypting and hashing large messages
inside a garbled circuit, which is expensive.

Figure 3. The DiStefano query execution protocol. Purple repre-
sents messages sent or calculated by V, orange by C, pink by S,
and black for 2PC between C and V.

Verifier Client Server

q̂ ← AEAD .Enc(tkvcapp ⊕ tkccapp, IVc, q)

q ← AEAD .Dec(tkcapp, IVc, q̂)

r̂ ← AEAD .Enc(tksapp, IVs, r)

r ← AEAD .Dec(tkvsapp ⊕ tkcsapp, IVs, r̂)

4.2. Query Execution Phase: QP

Once HSP has completed, C and V move into the
query phase (Fig. 3). For simplicity, we describe this
portion of the protocol in terms of a single round of
queries, before extending the phase to multiple rounds.

During the query phase of the protocol, C produces a
series of queries q = q1, . . . , qn and jointly encrypts these
with V, with both parties learning a vector of ciphertexts
q̂ as output. Then, C forwards q̂ to S, receiving an
encrypted response r̂ in exchange. At this stage of the
protocol, C forwards r̂ to V so that both parties may
verify the tags on r̂: both parties learn a single bit
indicating if the tag check passed or not.

In practice, we instantiate this portion of the pro-
tocol using the AES-GCM approach described in Sec-
tion 5. There is no explicit dependence on AES-GCM:
any AEAD cipher supported by TLS 1.3 will suffice. We
highlight this, and the general security formalisation of
the query phase, in Section 6.

Extending the query phase to multiple rounds is
straightforward using AES-GCM. We discuss the details
of committing to ciphertexts in Section 5.1, but the main
idea is that, as each ciphertext block qi is encrypted with
a unique key AES.Enc(k, IV +i), C and V can arbitrarily
reveal their shares of kci + kvi = AES.Enc(k, IV + i) at
any stage of the query phase, provided an appropriate
commitment has been made beforehand. As kci and kvi
are ephemeral keys, revealing them does not compromise
the shares derived during the HSP. The security of this
approach directly reduces to the difficulty of recover-
ing an AES key from many known plaintext/ciphertext
pairs. This permits many useful applications, as C and
V can now nest commitment rounds inside of the query
phase.

4.3. Commitment Phase: CP

The objectives of the commitment phase (Fig. 4) are
twofold: i) to assure V of the authenticity of S without
revealing which server C is communicating with; and ii)
to allow C to learn secret shares held by V only after

7

Figure 4. The DiStefano commitment protocol, assuming a com-
mitment scheme, Γ, and a ring signature scheme, Π, for ECDSA
signatures. Purple represents messages sent or calculated by V, and
orange by C.

Verifier Client

σ ← Π.Sign(Sig,Label7 ‖H3,R (the ring of keys))

abort if Π.Verify(R, σ,Label7 ‖H3) 6= 1

c← Γ.Commit((tkccapp, tk
c
sapp), (q̂, r̂))

Forward tkvcapp, tk
v
sapp to Client

they have produced binding commitments to a specific
portion of the TLSsession with S.

For validating the authenticity of the server, V ring-
authenticates (as mentioned previously, using a ring
signature or similar) the TLS server that they com-
municated with, as one of N servers from which V
accepts attestations.5 After ring authentication, C can
now commit to and reveal certain information about the
application traffic they witness. First, we define a com-
mitment scheme (Γ) that can be implicitly constructed
using the outputs of QP, using the following algorithms.

• (q̂i, r̂i) ← Γ.Commit(spC , (q̂, r̂, i)): For the input
i, output the ciphertexts (q̂i, r̂i) corresponding to
the ith query qi, and the response ri.

• spV ← Γ.Challenge(c): Output the secret param-
eters of V.

• b ← Γ.Open((spC , spV), (q̂i, r̂i), (qi, ri)): Check
that (q̂i, r̂i) decrypts to (qi, ri), and output b = 1
on success, and b = 0 otherwise.

In this commitment scheme, the client simply com-
mits to encrypted TLS traffic exchanged during the
query phase (using 2PC to encrypt and decrypt the traf-
fic). When it comes to opening the encrypted application
traffic, the protocol requires V to send their TLS key
secret shares, so that C can decrypt and then reveal the
plaintext values (that were previously encrypted). We
prove that Γ is a perfectly binding, and computationally
hiding commitment scheme in Appendix F.

4.4. Subsequent Phases

It is important to note that in the real DiStefano pro-
tocol, C does not send any unencrypted values to V. In-
stead, both parties should execute a protocol that proves
certain facts about the DCTLS commitments, without
revealing anything else. This could be done using zero-
knowledge proofs, selective opening strategies (as is used

5. This could be performed during the handshake phase. For per-
formance reasons, it is preferable to communicate in the commit-
ment phase, when online communication is no longer constrained
by potential handshake time-outs.

in DECO), or subsequent 2PC. The formal commitment
opening process that we described previously can be
used for this, since C can now use the combined secret
parameters (spC , spV) to prove any statement about the
commitment (q̂i, r̂i). See Appendix G for more details.

5. AES-GCM Specifics

AES-GCM is an authenticated encryption with as-
sociated data (AEAD) cipher that features prominently
inside TLS implementations, with some works report-
ing that over 90% of all TLS1.3 traffic is encrypted
using AES-GCM [35]. We use this algorithm for both
encrypting the corresponding handshake messages and
any application traffic. Here we describe how to com-
mit to ciphertexts in AES-GCM (Section 5.1), as well
as optimisations that make it more amenable to 2PC
evaluation of the encryption and decryption procedures
(Section 5.2).

5.1. Commitment to AES-GCM ciphertexts

Recall that, in DiStefano, both C and V learn all AES-
GCM ciphertext blocks Ci = Mi ⊕ AES.Enc(k, IV + i)
produced by S. As k = kc + kv is secret shared, C and
V check the integrity of the Ci’s using the approach
described in Section 5. Assuming this check is valid, C
locally generates n masks bci and commits to each mask
individually. This early commitment is necessary to cir-
cumvent the non-committing nature of AES-GCM [29].
After these commitments have been made, C and V
then call into a garbled circuit, receiving additive shares
of bci + bvi = AES.Enc(k, IV + i). In other words, V
learns AES.Enc(k, IV +i)+bci , and C learns nothing new.
Finally, C learns each kvi . As i is variable, this process
can be straightforwardly scaled to allow C to commit to
only a subset of these blocks. Moreover, committing to
shares in this way allows C to prove simple statements
about individual blocks Ci. For example, C can reveal
any block Ci by revealing their share bci to V, allowing
V to decrypt Ci. This technique is referred to as selective
opening in the DECO protocol: we provide more details
on the uses of this technique in Appendix G. We prove
the security of this commitment scheme in Appendix F.

5.2. 2PC optimisations

In this section, we discuss some optimisations that
are necessary for ensuring high performance of AES-
GCM encryption/decryption during online TLS opera-
tions. The ideal functionalities that we use to describe
AES-GCM in 2PC, along with the security proofs of
these optimisations, are given in Appendix D. We briefly
recall how standard AES-GCM operates.

Encryption. Let k and IV refer to an encryption key
and initialisation vector, respectively. Given as input
a sequence of n appropriately padded plaintext blocks

8

M = (M1, . . . ,Mn), AES-GCM applies counter-mode
encryption to produce the ciphertext blocks Ci = Mi ⊕
AES.Enc(k, IV + i). To ensure authenticity, AES-GCM
also outputs a tag τ = Tagk(IV, C,A) computed over
both C and any associated data A as follows:

• Given some vector x ∈ Fm2128 , we define the
polynomial Px =

∑m
i=1 xi · hm−i+1 over F2128 .

• Assuming that C and A are properly padded, we
compute τ as: τ(A,C, k, IV) = AES.Enc(k, IV)⊕
PA||C||len(A)||len(C)(h) where h = AES.Enc(k, 0).

Efficiency. Despite its simplicity, executing AES-GCM
encryptions in a multi-party setting can be challenging
due to the use of binary and arithmetic operations. For
example, whilst AES operations are well-suited for gar-
bled circuits, a single multiplication over F2128 typically
requires around 16K AND gates, increasing the cost by
nearly a factor of 3. To mitigate this cost, both [70]
and [59] recommend computing shares of the powers
of h (denoted as {hi}) during an offline setup stage,
amortising the cost across the entire session. In certain
settings, this cost can be reduced further by restricting
how many powers of h are used: for example, MPCAuth
employs a clever message slicing strategy to minimise
the value of i. As this approach may not be supported
by all TLS 1.3 servers, we explicitly target the largest
possible TLS ciphertext of 16KiB, which corresponds to
i = 1024.

Assuming that a sharing ({hic}, {hiv}) exists, pro-
ducing tags in 2PC is rather straightforward: tag-
ging n blocks requires two local polynomial evalua-
tions (writing τc = PA||C||len(A)||len(C)({hic}) and τv =
PA||C||len(A)||len(C)({hiv}), respectively) over F2128 and
n + 1 2PC evaluations of AES [59], [70]. The final
tag is achieved by simply computing τ = τc + τv ⊕
AES.Enc(kc + kv, IVc). In order to make this most ef-
ficient, it is necessary to initially construct a 2PC pro-
tocol that evaluates the ciphertext C and outputs to
both parties, and then have a subsequent protocol that
computes the tag for this ciphertext, based on the local
polynomials submitted by the client.

Our optimisations. DECO gives few details on how
to compute shares of the powers of h, other than that
they are computed in a 2PC session. We remark that
calculating these shares in a garbled circuit is unlikely
to be feasible: our adapted version of MPCAuth’s share
derivation circuit contained around 17M AND gates,
and required over 900MiB and 18GiB of network traffic
and memory, respectively, just for the pre-processing
stage. For comparison, our circuits for TLS 1.3 secret
derivation contain around 1.3M AND gates in total,
which is approximately a factor of 14 smaller. Thus,
using only garbled circuits is unlikely to be feasible.

Several other approaches exist for computing the
shares of {hi}. For instance, PageSigner reduces com-
puting additive shares of hi to simply computing shares
using MtA computations. Given an initial additive shar-
ing h = hc + hv, C and V iteratively compute additive

Figure 5. Ordered execution of 2PC exchange between C and the
V during the handshake phase of DiStefano.

2PC-ECtF

Compute SSK

2PC-DeriveTKHS

2PC-DeriveTKApp

V
er

ifi
er

C
li
en

t

SHTSv

CHTSv

spV spC

shares of `c + `v = hn = (hc + hv)
n−1

(hc + hv) for
1 < n ≤ 1024. This approach permits an additional
optimisation: as (x+ y)

2
= x2+y2 over F2128 , each party

can compute shares of even powers of h locally. Taking
this optimisation into account, producing shares in this
way costs a total of 1022 MtA operations. However, as
computing shares of any odd hi requires first computing
shares of hi−2, the approach seems to require around 500
rounds, which is likely too slow for a WAN setting.

We improve upon this by replacing the additive
sharing h = h1 + h2 with h = h1/h2, i.e. using a mul-
tiplicative sharing. By using multiplicative shares, we
can run each MtA computation in parallel, with each Pi
supplying hi, hi

3, . . . , hi
1023 as input. This optimisation

asymptotically halves the number of MtA operations and
reduces the round complexity to a single round. How-
ever, this tweak does require a slightly more complicated
scheme for computing the initial sharing of h, as we now
also must compute a multiplication over F2128 , taking the
size of the circuit for deriving the initial shares to around
23K AND gates in size. In practice, we reduce the size of
this circuit to around 18K AND gates by instead using
a carry-less Karatsuba [30] algorithm. Whilst this still
represents an increase of around a factor of 3 compared
to the additive circuit, the reduction in MtA operations
and rounds means that we are able to achieve an end-to-
end speed-up of around a factor of 3. We discuss these
results in more detail in Section 7.

6. Security Analysis

Previous DCTLS protocols use all-encompassing
ideal functionalities and Universally-Composable (UC)

9

security proofs [12], proving that the entire flow from
handshake to attestation is secure. This is problematic
for cryptographic agility, as it means that any modi-
fication to the TLS ciphersuite, 2PC functionality, or
protocol extensions would necessitate a complete rewrite
of the proof. Such agility is critical for building flexi-
ble secure systems, that can be modified easily if our
understanding of cryptographic primitives and systems
change [49].

We reimagine the security model for DCTLS proto-
cols in two ways. First, we move the security analysis
to the standalone model. UC security proofs are partic-
ularly useful when building atomic protocol primitives,
that may be used in arbitrary composition with other
primitives. Since DCTLS is a high-level protocol that
is likely to be used as a single application, we believe
that the standalone model captures a sufficiently nat-
ural security requirement, without the added complex-
ity needed to ensure UC security. Second, our analysis
breaks the protocol down into its three phases: the
handshake phase, the query phase, and the commitment
phase; and proves that each is secure independently.
We give a short overview of how we model security for
each phase of the protocol in the following. The full
standalone security model is covered in Appendix C.

Handshake phase. We model the handshake phase
similarly to Oblivious TLS [1]. Essentially, this model
proves that we can satisfy the original guarantees proven
about TLS 1.3 [22] (i.e. related to Match and Multi-Stage
security) even when executing certain functionalities in
2PC. One key difference is that the presence of the
verifier ensures that potential TLS 1.3 adversaries can
alter the derivation of secrets in the client, and thus
we similarly base security on a modified Shifted PRF
ODH assumption, see [1, Definition 2] for more details.
While Oblivious TLS opts for a UC-security proof, we
use a standalone depiction for simplicity reasons, since
each 2PC functionality is used in sequence. The general
protocol execution is given in Fig. 5.

Query execution phase. The query phase of DiStefano
essentially amounts to considering a 2PC realisation of
the record-layer of the TLS 1.3 protocol. We define 2PC
ideal functionalities (Algorithms 4 and 5) that abstracts
the core encryption and decryption functionality for ap-
plication traffic. We eventually show that we can prove
security of this phase based on the 2PC realisation of
the AES-GCM functionalities that we formalise in Ap-
pendix D (Algorithms 6 and 7). These functionalities
implement the functionality and optimisations described
in Section 5. To prove security of alternative cipher-
suites, it is simply a matter of implementing the 2PC
ideal functionalities using different primitives.

Commitment phase. We separate the commitment
phase from the previous two phases, and use a game-
based security model (Section C.3). These game-based
security notions (7) evaluate the capacity of the protocol
to satisfy: session privacy (SPriv), that ensures that

committed sessions are indistinguishable; ring authenti-
cation (SAuth1

n), that the client is forced to successfully
ring authenticate the TLS server amongst N possible
apriori-chosen servers; and session unforgeability (SUnf),
that ensures that the client cannot arbitrarily forge
sessions that did not occur. In the end, we show that
each of these properties is proven with respect to DiS-
tefano, by the binding and hiding commitment scheme
devised from AES-GCM (Appendix F), and a sufficient
ring signature scheme for ECDSA certificates [27] (Sec-
tion A.3).

7. Experimental Analysis

Implementation. In order to enable easy integration
with other cryptographic libraries and browsers, we im-
plemented a prototype of DiStefano in C++.6 This im-
plementation contains around 14K lines of code, tests
and documentation. We developed this implementation
using C++ best practices, and we hope that this effort is
useful for other researchers. Concretely, our implemen-
tation of DiStefano uses BoringSSL for TLS function-
ality and emp for all MPC functionality. BoringSSL is
the only cryptographic library supported by Chromium-
based Internet browsers. As far as we are aware, our
implementation contains primitives and circuits that are
not available elsewhere. Our implementation also con-
tains a modified version of MPCAuth’s circuit genera-
tion to produce the relevant garbled circuits. We further
reduce the online cost of MPCAuth’s secret sharing
scheme by using a pre-determined splitting scheme for
specific secrets.7 We provide a full listing of the changes
made to third party libraries alongside our prototype.

Results. We evaluated the performance of DiStefano in a
LAN setting. To better reflect a real-world environment,
we use a consumer-grade device (a Macbook air M1
with 8 GB of RAM) for C and a server-grade device (an
Intel Xeon Gold 6138 with 32 GB of RAM) for V. All
communication used in TLS 1.3 was carried out using a
single thread over a 1 Gbps network with a round-trip
time of around 16 ms. Timings and bandwidth measure-
ments are computed as the mean of 50 samples, and are
represented in milliseconds and mebibytes, respectively
(1 MiB is 220 bytes).

Table 1 gives results for each individual circuit used
in DiStefano. Each circuit is evaluated without amorti-
sations, i.e. these timings do not take advantage of the
amortised pre-processing available inside emp. As the
most expensive operation of these circuits will only be
used once per session, we do not expect that employing
amortisation will yield a substantial speed-up. However,
employing amortisations for common operations, e.g.
AES-GCM tagging and verification may lead to faster

6. https://github.com/brave-experiments/DiStefano
7. We stress that this approach is less flexible than MPCAuth’s

approach. For example, our approach only supports 2 parties,
whereas MPCAuth supports arbitrarily many.

10

https://github.com/brave-experiments/DiStefano

Table 1. Garbled Circuit timings and bandwidth.

Circuit OT Offline Online Bandwidth

AES-GCM share (K) LD 2340 34.92 21.04
AES-GCM share (K) FC 2683 59.48 9.009
AES-GCM share (N) LD 2678 39.09 25.63
AES-GCM share (N) FC 2853 61.36 10.35
AES-GCM Tag LD 1019 22.30 7.604
AES-GCM Tag FC 2336 22.22 5.010
AES-GCM Verify LD 1032 21.16 7.746
AES-GCM Verify FC 2277 21.24 5.130
TLS 1.3 HS (P256) LD 51470 93.16 558.7
TLS 1.3 HS (P256) FC 19847 88.90 173.4
TLS 1.3 HS (P384) LD 51610 95.38 560.1
TLS 1.3 HS (P384) FC 19940 89.88 173.8
TLS 1.3 TS LD 51450 95.21 523.2
TLS 1.3 TS FC 18820 99.25 162.6
AES Commit LD 1070 15.67 7.583
AES Commit FC 2303 15.86 5.084
2PC-GCM (256B) LD 11120 39.54 117.6
2PC-GCM (256B) FC 5495 39.42 37.17
2PC-GCM (512B) LD 21790 59.02 234.9
2PC-GCM (512B) FC 8752 58.82 71.4
2PC-GCM (1KB) LD 34180 97.93 367.7
2PC-GCM (1KB) FC 12950 97.18 114.53
2PC-GCM (2KB) LD 67750 176.57 734.9
2PC-GCM (2KB) FC 25200 170 226.8

Each garbled circuit is reported in terms of offline/online
times (ms) and bandwidth (MB) costs. “K”means Karatsuba
and “N” means Naive. “LD” refers to “LeakyDeltaOT” and
“FC” means “FerretCOT”.

running times (see [63, §7] for concrete speed-ups). We
also compare the offline time using the original im-
plementation of authenticated garbling (LeakyDeltaOT
[63]) that uses FerretCOT. Our results imply that Fer-
retCOT performs better than the original OT for large
circuit sizes in both bandwidth and running time. How-
ever, for smaller circuits it appears that the original
implementation is faster at the cost of more bandwidth.
Given that the pre-processing times are proportional
to the size of the circuits, we can see that our results
appear to be predominantly network bound. The results
also highlight that our Karatsuba-based circuit achieves
modest gains in both bandwidth and time over the naive
circuit.

Table 2 shows the results for each arithmetic prim-
itive used. Given that all running times and bandwidth
counts are rather low, we do not expect this to represent
a bottleneck even on constrained networks. We can also
see that the tweak introduced in Section 5.2 reduces
the running time by a factor of around 3, whilst also
halving the required bandwidth for the multiplication
(this ignores bandwidth used by shared setup). This
all represents an improvement of around 4 orders of
magnitude over using a garbled circuit.

Preliminary timings indicate that our implementa-
tion of DiStefano is competitive with DECO, with the
DCTLS portion taking around 500 ms to complete for a
256-bit secret. These conclusions are consistent across
both the individual and E2E timings (cf. Table 3).

Table 2. Primitive timings and bandwidth.

Primitive Time (ms) Bandwidth (MB)

ECtF (P256) 336.1 0.415
ECtF (P384) 335.5 0.648
ECtF (P521) 421.4 1.22
MtA (P256) 33.67 0.075
MtA (P384) 40.65 0.127
MtA (P521) 55.83 0.241
AES-GCM powers (mul.) 1694 0.049
AES-GCM powers (add.) 5926 0.080
AES-GCM powers (GC) — 900

Table 3. E2E timings and bandwidth for DCTLS

Process Time (ms) Bandwidth (MB)

C and S Key Share 1.3167 1.335e-04
C and V execute ECtF 0.008083 9.53674e-07
Circuit Preprocessing 6280.08 220.484
S sends cert. 0.011375 3.14713e-05
Derive traffic secrets 33.1389 0.0276108
Derive GCM shares 136.573 0.0488291

Comparisons with prior work. We would like to point
out that comparisons between our results and others
in the literature [59], [70] should be made carefully. In
the case of DECO, their implementation is not pub-
licly available, and we were unable to reproduce any of
their results. Moreover, as our implementation is single-
threaded, we are unable to take advantage of emp’s
multi-threaded pre-processing. Given that [63, §7] re-
ports an order of magnitude increase in bandwidth due
to multi-threading, it is not surprising that our offline
times are an order of magnitude higher. However, our
online timings are comparable with DECO, and paral-
lelising the pre-processing stage would likely mitigate
any discrepancies8. As pre-processing can be carried out
before, we do not consider this a major issue.

It is also difficult to compare our timings to Pa-
geSigner. Their original implementation is written en-
tirely in Javascript, preventing the usage of dedicated
hardware resources. Given that our implementation is
instead written in C++, we might expect DiStefano to
be faster. PageSigner also follows a semi-honest security
model and targets TLS 1.2: these are incompatible with
DiStefano.

8. Discussion

8.1. Related Work

As noted in Section 2, DiStefano is an instance of a
DCTLS protocol. Other alternatives exist, but all have
limitations as noted in Section 2.2. We summarise the
comparison in Table 4, and discuss further below.

8. Notably, [70] does not mention if the pre-processing used
multiple threads.

11

The DECO and PageSigner protocols, for example,
only (formally) work for TLS 1.2 and under, and pro-
vide limited privacy. TownCrier [69] has similar prob-
lems, and requires using trusted computing function-
ality. Recently, the PECO protocol [56] was proposed,
which informally extends the DECO protocol to sup-
port TLS 1.3, but provides no formal guarantees nor
implementation of it.

The MPCAuth protocol [58] allows a user to authen-
ticate to N servers independently by doing the work of
only authenticating to one. An N -for-1 authentication
system consists of many servers and users. Each user
has a number of authentication factors they can use to
authenticate. The user holds a secret s that they wish to
distribute among the N servers. The protocol consists of
two phases. In the enrollment phase, the user provides
the servers with a number of authentication factors,
which the servers verify using authentication protocols:
these protocols use a mechanism called “TLS-in-SMPC”
that allows N servers to jointly act as a TLS client
endpoint to communicate with a TLS server (which can
be, for example, a TLS email server). A single server
from the N ones cannot decrypt any TLS traffic), and,
after authenticating with these factors, the client secret-
shares s and distributes the shares across the servers. In
the authentication phase, the user runs the MPCAuth
protocols for the authentication factors and, once it is
authenticated, the N servers can perform computation
over s for the user, which is application-specific (such as
key recovery, for instance).

The Oblivious TLS protocol [1] allows for any TLS
endpoint to obviously interact with another TLS end-
point, without the knowledge that it is interacting with
a multi-party computation instance. It consists of the
following phases: i) Multi-Party Key Exchange, which is
the key exchange phase of the TLS handshake ran in an
MPC manner by performing an exponentiation between
a known public key and a secret exponent, where the
output remains secret; ii) Threshold Signing, which is
the authentication phase of the TLS handshake done by
having the TLS transcript signed with EdDSA Schnorr-
based signatures in a threshold protocol; and iii) Record
Layer which is ran by using authenticated encryption,
based on AES-GCM, inside MPC.

Recent work on developing zero-knowledge middle-
boxes for TLS 1.3 traffic [28] has many similarities with
techniques used in DCTLS protocols. However, the ver-
ifier is considered to be an on-path proxy that both re-
ceives and forwards encrypted traffic between the parties
(similar to the proxy model of DECO [70]). Furthermore,
the client is only required to produce commitments to
their own traffic, rather than the traffic that is received
from the server. Applications involve those that include
corporate oversight and enaction of Internet browsing
policies to be enforced by middleboxes, which are natu-
rally thwarted in a setting where all client traffic is sent
encrypted over TLS.

Table 4. Comparison of DCTLS-like protocols.

Protocol TLS 1.3 Attest Ring auth

DECO-like [69], [70] 7 3 7
MPCAuth [14] 3 7 7
Oblivious TLS [1] 3 7 7
ZKMiddleboxes [28] 3 C → S 7
DiStefano 3 3 3

Table 5. Results for running KeyUpdate in 2PC.

Circuit OT Offline (ms) Online (ms) Bandwidth (MB)

KeyUpdate LD-OT 10540 29.95 98.54
KeyUpdate FC-OT 7960 31.96 31.61

Concurrent work. In work concurrent to ours, Xie
et al. [64] proposed a series of optimisations to the
MPC protocols used inside DECO, targeting TLS 1.2.
Whilst most of these improvements are orthogonal to
our work, one particularly interesting optimisation is a
faster approach for deriving TLS traffic secrets inside
garbled circuits. This approach is somewhat reminiscent
of the highly optimised CBC-HMAC protocol proposed
in DECO [70, §4.2.1] for computing tags in 2PC. We
remark that incorporating this particular optimisation
into our secret derivation process seems non-trivial, and
we discuss these difficulties in Appendix H.

8.2. Applications

DiStefano can be used to commit to encrypted
TLS 1.3 data. As noted in [70], such commitments
can be used as the basis of zero-knowledge proofs (or
attestations) for showing that certain facts are present
in such traffic. However, such attestations could also
be constructed via different methods, using cooperative
decryption of certain ciphertext blocks, or more generic
2PC techniques. The DECO protocol provides examples
that they can prove certain statements for, including
proof of confidential financial information, and proof of
age. It should be noted that TLS sessions could serve as
the basis for more generic user credentials, proving arbi-
trary facts about a user. For a more complete summary,
see [70].

8.3. Limitations

Our implementation of DiStefano does not support
key rotation via KeyUpdate messages or full 0-RTT
mode, but this limitation is not major: it can be circum-
vented by simply re-running the HSP. 9 We also provide
no concrete instantiation of the zero-knowlege primitives
that can be used to create attestations, but they should
follow the guidelines stated in Section 4.4. Said proofs

9. For completeness, we benchmarked the cost of running the
KeyUpdate operation in a garbled circuit, see Table 5.

12

must also be mindful of user privacy concerns: if proof
circuits explicitly target server-specific HTML formats,
this will undo the ring authentication privacy guaran-
tees.

DCTLS protocols must assume user commitments are
meaningful, that the TLS server stores only correct data.
Suppose that Alice wishes to provide a proof of their age
from a particular Government agency website. Alice logs
in to the website, and then runs DiStefano to produce
a commitment to their age based on the data present
there. This process assumes that the account Alice logs
in to is their own, which may not be the case, e.g.
if the account is stolen or fake. V should only accept
commitments from servers that it trusts to correctly
store user data.

Finally, DCTLS protocols could become actively
harmful tools for monitoring or censoring client traffic
in certain applications, especially those without human
involvement. Thus, we would like to emphasise that de-
ployment of tools such as DiStefano must be considered
carefully. Furthermore, DCTLS can also be subject of
different legal and compliance issues in regards to being
considered as a form of webscraping.

8.4. Browser Integration

DiStefano can be integrated into a browser that uses
BoringSSL, e.g. Google Chrome/Brave, easily. As our
changes to BoringSSL itself are rather minimal, it would
be possible to simply describe our changes as a series
of deltas in a version control system, which can then
be applied during the process of building the browser
based on build flags.10 We leave the completion and
deployment as future work.

9. Conclusion

We build DiStefano, a DCTLS protocol that gener-
ates private commitments to encrypted TLS 1.3 data.
We use a modular, standalone security framework that
provides malicious security, and guarantees ring privacy
for client browsing patterns. We provide an open-source
integration in BoringSSL, and demonstrate the online
efficiency of DiStefano for believable workloads.11 The
flexibility, security, and usability of DiStefano makes it
an immediate candidate for real-world applications and
Internet browser integration.

Acknowledgement

We would like to thank Xiao Wang for his help
with the various aspects of EMP and for sharing an
initial integration of Ferret; Yashvanth Kondi and Peter
Scholl for useful conversations; Benjamin Livshits for
discussing interesting applications for this work. Large

10. Indeed, such a system is already used for the Brave Browser.
11. https://github.com/brave-experiments/DiStefano

parts of this work were completed while all of the authors
were affiliated with Brave Software. Joe Rowell was
supported by EPSRC grant EP/P009301/1.

References

[1] Damiano Abram, Ivan Damg̊ard, Peter Scholl, and Sven
Trieflinger. Oblivious TLS via multi-party computation. In
Kenneth G. Paterson, editor, CT-RSA 2021, volume 12704 of
LNCS, pages 51–74. Springer, Heidelberg, May 2021.

[2] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric,
Pierrick Gaudry, Matthew Green, J. Alex Halderman, Nadia
Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta,
Benjamin VanderSloot, Eric Wustrow, Santiago Zanella-
Béguelin, and Paul Zimmermann. Imperfect Forward Secrecy:
How Diffie-Hellman Fails in Practice. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’15, pages 5–17, New York, NY, USA,
2015. Association for Computing Machinery.

[3] Kenichi Arai and Shinrqichiro Matsuo. Formal verification
of TLS 1.3 full handshake protocol using proverif (Draft-11).
IETF TLS mailing list, 2016.

[4] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Na-
dia Heninger, Maik Dankel, Jens Steube, Luke Valenta, David
Adrian, J. Alex Halderman, Viktor Dukhovni, Emilia Käsper,
Shaanan Cohney, Susanne Engels, Christof Paar, and Yuval
Shavitt. DROWN: Breaking TLS using SSLv2. In 25th
USENIX Security Symposium (USENIX Security 16), pages
689–706, Austin, TX, August 2016. USENIX Association.

[5] A. Backman, J. Richer, and M. Sporny. Signing http mes-
sages. IETF draft. Accessed 14/11/2022.

[6] Donald Beaver. Efficient multiparty protocols using circuit
randomization. In Joan Feigenbaum, editor, CRYPTO’91,
volume 576 of LNCS, pages 420–432. Springer, Heidelberg,
August 1992.

[7] Mihir Bellare and Phillip Rogaway. Entity authentication and
key distribution. In Douglas R. Stinson, editor, CRYPTO’93,
volume 773 of LNCS, pages 232–249. Springer, Heidelberg,
August 1994.

[8] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine
Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Alfredo
Pironti, Pierre-Yves Strub, and Jean Karim Zinzindohoue.
A messy state of the union: Taming the composite state
machines of tls. In 2015 IEEE Symposium on Security and
Privacy, pages 535–552, 2015.

[9] Pandora Blake. Age verification for online porn: more harm
than good? Porn Studies, 6(2):228–237, 2019.

[10] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Chris-
tian Janson. PRF-ODH: Relations, instantiations, and im-
possibility results. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part III, volume 10403 of LNCS,
pages 651–681. Springer, Heidelberg, August 2017.

[11] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin,
Baris Kasikci, Frank Piessens, Mark Silberstein, Thomas F.
Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow:
Extracting the keys to the intel SGX kingdom with transient
Out-of-Order execution. In 27th USENIX Security Sympo-
sium (USENIX Security 18), page 991–1008, Baltimore, MD,
August 2018. USENIX Association.

[12] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In 42nd FOCS, pages
136–145. IEEE Computer Society Press, October 2001.

[13] Kwan Yin Chan, Handong Cui, and Tsz Hon Yuen. Dido:
Data provenance from restricted tls 1.3 websites. Cryptology
ePrint Archive, Paper 2023/1056, 2023. https://eprint.iacr.
org/2023/1056.

13

https://github.com/brave-experiments/DiStefano
https://eprint.iacr.org/2023/1056
https://eprint.iacr.org/2023/1056

[14] Weikeng Chen, Ryan Deng, and Raluca Ada Popa. N-for-1
auth: N-wise decentralized authentication via one authenti-
cation. Cryptology ePrint Archive, Report 2021/342, 2021.
https://eprint.iacr.org/2021/342.

[15] Cloudflare. Tls 1.2 vs. tls 1.3 vs. quic: Distribution of secure
traffic by protocol, 2023. Accessed 11/04/2023.

[16] John T Cross. Age verification in the 21st century: Swiping
away your privacy. J. Marshall J. Computer & Info. L.,
23:363, 2004.

[17] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah
Zakarias. Multiparty computation from somewhat homomor-
phic encryption. In Reihaneh Safavi-Naini and Ran Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages 643–
662. Springer, Heidelberg, August 2012.

[18] Jonathan J Darrow and Stephen D Lichtenstein. Do you re-
ally need my social security number-data collection practices
in the digital age. NCJL & Tech., 10:1, 2008.

[19] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat.
Secure two-party threshold ECDSA from ECDSA assump-
tions. In 2018 IEEE Symposium on Security and Privacy,
pages 980–997. IEEE Computer Society Press, May 2018.

[20] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat.
Threshold ECDSA from ECDSA assumptions: The multi-
party case. In 2019 IEEE Symposium on Security and Pri-
vacy, pages 1051–1066. IEEE Computer Society Press, May
2019.

[21] Benjamin Dowling, Marc Fischlin, Felix Günther, and Dou-
glas Stebila. A cryptographic analysis of the TLS 1.3 hand-
shake protocol candidates. In Indrajit Ray, Ninghui Li, and
Christopher Kruegel, editors, ACM CCS 2015, pages 1197–
1210. ACM Press, October 2015.

[22] Benjamin Dowling, Marc Fischlin, Felix Günther, and Dou-
glas Stebila. A cryptographic analysis of the TLS 1.3 hand-
shake protocol. Journal of Cryptology, 34(4):37, October
2021.

[23] European Commission. GDPR: Right to Portability, Art. 20.
https://gdpr-info.eu/art-20-gdpr/. Accessed 5th September
2023., 2014.

[24] Marc Fischlin and Felix Günther. Multi-stage key exchange
and the case of Google’s QUIC protocol. In Gail-Joon Ahn,
Moti Yung, and Ninghui Li, editors, ACM CCS 2014, pages
1193–1204. ACM Press, November 2014.

[25] Rosario Gennaro and Steven Goldfeder. Fast multiparty
threshold ECDSA with fast trustless setup. In David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018, pages 1179–1194. ACM Press, Oc-
tober 2018.

[26] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs
that yield nothing but their validity and a methodology of
cryptographic protocol design (extended abstract). In 27th
FOCS, pages 174–187. IEEE Computer Society Press, Octo-
ber 1986.

[27] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs:
Or how to leak a secret and spend a coin. In Elisabeth Oswald
and Marc Fischlin, editors, EUROCRYPT 2015, Part II,
volume 9057 of LNCS, pages 253–280. Springer, Heidelberg,
April 2015.

[28] Paul Grubbs, Arasu Arun, Ye Zhang, Joseph Bonneau, and
Michael Walfish. Zero-knowledge middleboxes. In Kevin R. B.
Butler and Kurt Thomas, editors, USENIX Security 2022,
pages 4255–4272. USENIX Association, August 2022.

[29] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Mes-
sage franking via committing authenticated encryption. In
Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part III, volume 10403 of LNCS, pages 66–97. Springer, Hei-
delberg, August 2017.

[30] Shay Gueron and Michael E. Konavis. Intel® carry-less
multiplication instruction and its usage for computing the
gcm mode, 2014. Accessed 14/03/2023.

[31] Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Efficient
and secure multiparty computation from fixed-key block ci-
phers. In 2020 IEEE Symposium on Security and Privacy,
pages 825–841. IEEE Computer Society Press, May 2020.

[32] Amy Guy, Manu Sporny, Drummond Reed, and
Markus Sabadello. Decentralized identifiers (DIDs)
v1.0. W3C recommendation, W3C, July 2022.
https://www.w3.org/TR/2022/REC-did-core-20220719/.

[33] Felix Günther. Modeling advanced security aspects of key
exchange and secure channel protocols. it - Information
Technology, 62(5-6):287–293, 2020.

[34] Iftach Haitner, Nikolaos Makriyannis, Samuel Ranellucci, and
Eliad Tsfadia. Highly efficient OT-based multiplication pro-
tocols. In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part I, volume 13275 of LNCS, pages
180–209. Springer, Heidelberg, May / June 2022.

[35] Ralph Holz, Jens Hiller, Johanna Amann, Abbas Razagh-
panah, Thomas Jost, Narseo Vallina-Rodriguez, and Oliver
Hohlfeld. Tracking the deployment of tls 1.3 on the web:
A story of experimentation and centralization. SIGCOMM
Comput. Commun. Rev., 50(3):3–15, jul 2020.

[36] Russell Impagliazzo and Moni Naor. Efficient cryptographic
schemes provably as secure as subset sum. Journal of Cryp-
tology, 9(4):199–216, September 1996.

[37] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank.
Extending oblivious transfers efficiently. In Dan Boneh, ed-
itor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161.
Springer, Heidelberg, August 2003.

[38] Tetsu Iwata, Keisuke Ohashi, and Kazuhiko Minematsu.
Breaking and repairing GCM security proofs. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, vol-
ume 7417 of LNCS, pages 31–49. Springer, Heidelberg, Au-
gust 2012.

[39] Marcel Keller. MP-SPDZ: A versatile framework for multi-
party computation. In Jay Ligatti, Xinming Ou, Jonathan
Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages
1575–1590. ACM Press, November 2020.

[40] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively
secure OT extension with optimal overhead. In Rosario Gen-
naro and Matthew J. B. Robshaw, editors, CRYPTO 2015,
Part I, volume 9215 of LNCS, pages 724–741. Springer, Hei-
delberg, August 2015.

[41] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MAS-
COT: Faster malicious arithmetic secure computation with
oblivious transfer. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM CCS 2016, pages 830–842. ACM Press, October
2016.

[42] Vladimir Kolesnikov and Thomas Schneider. Improved gar-
bled circuit: Free XOR gates and applications. In Luca Aceto,
Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson,
Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP
2008, Part II, volume 5126 of LNCS, pages 486–498. Springer,
Heidelberg, July 2008.

[43] Jan Lauinger, Jens Ernstberger, Andreas Finkenzeller, and
Sebastian Steinhorst. Janus: Fast privacy-preserving data
provenance for tls 1.3. Cryptology ePrint Archive, Paper
2023/1377, 2023. https://eprint.iacr.org/2023/1377.

[44] Rick S Lear and Jefferson D Reynolds. Your social security
number or your life: Disclosure of personal identification infor-
mation by military personnel and the compromise of privacy
and national security. BU Int’l LJ, 21:1, 2003.

14

https://eprint.iacr.org/2021/342
https://gdpr-info.eu/art-20-gdpr/
https://eprint.iacr.org/2023/1377

[45] Hyunwoo Lee, Doowon Kim, and Yonghwi Kwon. Tls 1.3 in
practice:how tls 1.3 contributes to the internet. In Proceedings
of the Web Conference 2021, WWW ’21, page 70–79, New
York, NY, USA, 2021. Association for Computing Machinery.

[46] Yehuda Lindell and Benny Pinkas. Secure multiparty com-
putation for privacy-preserving data mining. Cryptology
ePrint Archive, Report 2008/197, 2008. https://eprint.iacr.
org/2008/197.

[47] Nikolaos Makriyannis and Udi Peled. A note on the security
of gg18, 2021. https://info.fireblocks.com/hubfs/A Note on
the Security of GG.pdf.

[48] Moni Naor and Moti Yung. Public-key cryptosystems prov-
ably secure against chosen ciphertext attacks. In 22nd ACM
STOC, pages 427–437. ACM Press, May 1990.

[49] David Ott, Kenny Paterson, and Dennis Moreau. Where is
the research on cryptographic transition and agility? Com-
mun. ACM, 66(4):29–32, mar 2023.

[50] Pascal Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In Jacques Stern, editor, EURO-
CRYPT’99, volume 1592 of LNCS, pages 223–238. Springer,
Heidelberg, May 1999.

[51] E. Rescorla. The transport layer security (tls) protocol ver-
sion 1.3. RFC 8446, RFC Editor, August 2018.

[52] Hubert Ritzdorf, Karl Wüst, Arthur Gervais, Guillaume Fel-
ley, and Srdjan Capkun. TLS-N: Non-repudiation over TLS
enablign ubiquitous content signing. In NDSS 2018. The
Internet Society, February 2018.

[53] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to
leak a secret. In Colin Boyd, editor, ASIACRYPT 2001,
volume 2248 of LNCS, pages 552–565. Springer, Heidelberg,
December 2001.

[54] Michael Rosenberg, Jacob White, Christina Garman, and
Ian Miers. zk-creds: Flexible anonymous credentials from
zkSNARKs and existing identity infrastructure. Cryptology
ePrint Archive, Report 2022/878, 2022. https://eprint.iacr.
org/2022/878.

[55] Mike Rosulek and Lawrence Roy. Three halves make a whole?
Beating the half-gates lower bound for garbled circuits. In Tal
Malkin and Chris Peikert, editors, CRYPTO 2021, Part I,
volume 12825 of LNCS, pages 94–124, Virtual Event, August
2021. Springer, Heidelberg.

[56] Manuel B. Santos. Peco: methods to enhance the privacy of
deco protocol. Cryptology ePrint Archive, Paper 2022/1774,
2022. https://eprint.iacr.org/2022/1774.

[57] Berin Szoka and Adam D Thierer. Coppa 2.0: The new battle
over privacy, age verification, online safety & free speech.
Progress & Freedom Foundation Progress on Point Paper No,
16, 2009.

[58] Sijun Tan, Weikeng Chen, Ryan Deng, and Raluca Ada Popa.
Mpcauth: Multi-factor authentication for distributed-trust
systems. Cryptology ePrint Archive, Paper 2021/342, 2023.
https://eprint.iacr.org/2021/342.

[59] PageSigner team. Pagesigner: One-click website auditing.
Website. Accessed 04/04/2023.

[60] TLSNotary team. Tlsnotary: Proof of data authenticity.
Website. Accessed 04/04/2023.

[61] Dmytro Tymokhanov and Omer Shlomovits. Alpha-rays:
Key extraction attacks on threshold ecdsa implementations.
Cryptology ePrint Archive, Paper 2021/1621, 2021. https:
//eprint.iacr.org/2021/1621.

[62] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-
toolkit: Efficient MultiParty computation toolkit. https://
github.com/emp-toolkit, 2016.

[63] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authen-
ticated garbling and efficient maliciously secure two-party
computation. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages
21–37. ACM Press, October / November 2017.

[64] Xiang Xie, Kang Yang, Xiao Wang, and Yu Yu. Lightweight
authentication of web data via garble-then-prove. Cryptology
ePrint Archive, Paper 2023/964, 2023. https://eprint.iacr.
org/2023/964.

[65] Haiyang Xue, Man Ho Au, Xiang Xie, Tsz Hon Yuen, and
Handong Cui. Efficient online-friendly two-party ECDSA
signature. In Giovanni Vigna and Elaine Shi, editors, ACM
CCS 2021, pages 558–573. ACM Press, November 2021.

[66] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao
Wang. Ferret: Fast extension for correlated OT with small
communication. In Jay Ligatti, Xinming Ou, Jonathan Katz,
and Giovanni Vigna, editors, ACM CCS 2020, pages 1607–
1626. ACM Press, November 2020.

[67] Andrew C. Yao. Protocols for secure computations. In 23rd
Annual Symposium on Foundations of Computer Science
(sfcs 1982), pages 160–164, 1982.

[68] Majid Yar. Protecting children from internet pornography?
a critical assessment of statutory age verification and its
enforcement in the uk. Policing: An International Journal,
43(1):183–197, 2020.

[69] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and
Elaine Shi. Town crier: An authenticated data feed for smart
contracts. In Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’16,
page 270–282, New York, NY, USA, 2016. Association for
Computing Machinery.

[70] Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven
Goldfeder, and Ari Juels. DECO: Liberating web data us-
ing decentralized oracles for TLS. In Jay Ligatti, Xinming
Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS
2020, pages 1919–1938. ACM Press, November 2020.

Appendix A.
Additional Cryptographic Preliminaries

We provide some additional cryptographic prelimi-
naries that are required for arguing the security of our
system.

A.1. Commitment Schemes

Definition 3 (Commitment scheme). A commitment
scheme Γ is a tuple consisting of the following algorithms:

• Γ.Gen(1λ): outputs some secret parameters sp;
• Γ.Commit(sp, x): outputs a commitment c;
• Γ.Challenge(c): outputs a random challenge t;
• Γ.Open(sp, c, t, x): outputs a bit b ∈ {0, 1}.

An interactive commitment scheme, Γ̃, between a
committer, C, and a revealer, R, proceeds as follows:

• C runs sp ← Γ.Gen(1λ), and sends c ←
Γ.Commit(sp, x) to R;

• R sends t← Γ.Challenge(c) to C;
• C sends x to R;

• R outputs b
?
= 1, for b← Γ.Open(sp, c, t, x).

15

https://eprint.iacr.org/2008/197
https://eprint.iacr.org/2008/197
https://info.fireblocks.com/hubfs/A_Note_on_the_Security_of_GG.pdf
https://info.fireblocks.com/hubfs/A_Note_on_the_Security_of_GG.pdf
https://eprint.iacr.org/2022/878
https://eprint.iacr.org/2022/878
https://eprint.iacr.org/2022/1774
https://eprint.iacr.org/2021/342
https://eprint.iacr.org/2021/1621
https://eprint.iacr.org/2021/1621
https://github.com/emp-toolkit
https://github.com/emp-toolkit
https://eprint.iacr.org/2023/964
https://eprint.iacr.org/2023/964

Definition 4 (Binding property). Given sp← Γ.Gen(1λ).
We say that Γ is a computationally binding commitment
scheme if, for any PPT algorithm, the following holds:

Pr

[
0← Γ.Open(sp, c∗, t∗, x′)

∣∣∣∣ (x∗,c∗)←A(1λ)
t∗←Γ.Challenge(c∗)
x′←A(1λ);x′ 6=x∗

]
> 1−negl(λ).

We say that Γ is perfectly binding if the same holds for
unbounded algorithms, with probability 1.

Definition 5 (Hiding property). Let sp ← Γ.Gen(1λ),
{xb}b∈{0,1} ∈ {0, 1}2, and {cb ← Γ.Commit(sp, xb)}.
We say that Γ is a computationally hiding commitment
scheme if, for any PPT algorithm, the following holds:

Pr
[
d∗

?
= d

∣∣∣ d←$ {0,1}
d∗←A(1λ,cd,(x0,x1))

]
< 1/2 + negl(λ).

We say that Γ is perfectly hiding if the same holds for
unbounded algorithms, with probability 1/2.

We show in Appendix F that AES-GCM ciphertext
commitment scheme in Section 5.1 is perfectly binding
and computationally hiding for TLS 1.3 encrypted data.
A high-level overview of the commitment phase based on
this scheme is given in Section 4.3.

A.2. Authenticated Encryption

An authenticated encryption with associated data
(AEAD) scheme considers a keyspace K, a message
space M, a ciphertext space X , and a tag space T , and
is defined using the following algorithms.

• k ← AEAD .keygen(1λ): Outputs a key k←$K.
• (C, τ) ← AEAD .Enc(k,m;A): For a key k ∈ K,

message m ∈ M, and associated data A ∈
{0, 1}∗, outputs a ciphertext C ∈ X and a tag
τ ∈ T .

• m ∨ ⊥← AEAD .Dec(k,C, τ ;A): For a key k ∈ K,
ciphertext C ∈ M, tag τ ∈ T , and associated
data A ∈ {0, 1}∗, outputs a message m ∈ M or
⊥.

Any AEAD scheme must satisfy the following guarantees.

Definition 6 (Correctness). AEAD is correct if and only
if the following holds true.

Pr
[
m← AEAD .Dec(k,C, τ ;A)

∣∣∣k←AEAD .keygen(1λ)
(C,τ)←AEAD .Enc(k,m;A)

]
= 1

Definition 7 (Security). An AEAD scheme is secure if it
satisfies the IND-CCA notion of security [48].

It is widely known that the AES-GCM block cipher
mode of operation satisfies these guarantees [38], where
K = {0, 1}λ, M = {0, 1}∗, C = {0, 1}∗. In other words,
it can tolerate messages of arbitrary length and produce
ciphertexts accordingly.

Figure 6. Security games for establishing anonymity and unforge-
ability guarantees of a ring signature scheme Π.

Anon

1 : {ski, vki}i∈[n] ←$ Π.Gen(1λ)

2 : (m,R, i0, i1)← AOS,OC({vki}i∈[n])

3 : if [(i0, i1 /∈ [n]) ∨ (vki0 , vki1 /∈ R)] : abort

4 : d←$ {0, 1}
5 : σ ← Π.Sign(skid ,m,R)

6 : d′ ← A(σ)

7 : if [d′
?
= d] : return 1

8 : return 0

Unf

1 : {ski, vki}i∈[n] ←$ Π.Gen(1λ)

2 : (m∗, R∗, σ∗)← AOS,OC(R = {vki}i∈[n])

3 : if [(R∗ 6⊆ R)∨
4 : (∃ i′ ∈ QC s.t. vki′ ∈ R

∗)∨
5 : (m∗ ∈ QS)] : abort

6 : return Π.Verify(R∗, σ∗,m∗)

A.3. Ring Signature Schemes

Ring signature schemes were first defined by Rivest,
Shamir, and Taurman [53], and allow an individual that
is part of a “ring” of n possible signers to generate
a signature that is indistinguishable from a signature
generated by any of the other members. Notably, ring
signatures do not allow the signing to be revealed unless
the signer explicitly decides to reveal themselves. We
give a formal definition of ring signature schemes and
their security properties below.

Definition 8 (Ring signatures). A ring signature scheme,
Π, is a tuple of the following algorithms:

• Π.Gen(1λ): outputs keys (sk, vk);
• Π.Sign(sk,m,R = {vki}i∈[n]): outputs a signature

σ under key sk of a message m, with respect to
the ring R;

• Π.Verify(R = {vki}i∈[n], σ,m): outputs a bit b ∈
{0, 1}, where b = 1 indicates successful verifica-
tion, and b = 0 indicates failure.

First, we say that Π is complete if, for any set of
keys {(ski, vki)←$ Π.Gen(1λ)}i∈[n], j ∈ [n], message m,
the ring R = {vki}i∈[n], and σ ← Π.Sign(skj ,m,R),
then 1 ← Π.Verify(R, σ,m). Second, let Anon and Unf
be the security games defined in Fig. 6. We say that Π
is anonymous (resp. unforgeable) if the advantage of a
PPT algorithm, A, in either game is negligible. In both
games, the adversary has access to the following oracles:

• OS: takes as input an index i, a message m′, and
a ring R′, and returns σ ← Π.Sign(ski,m

′, R′);

16

• OC: takes as input an index i, and returns the
randomness used to generate vki.

Furthermore, let QS and QC be the sets of queries
sent to OS and OC, respectively.12

Instantiations. It is possible to instantiate the required
functionality with a specific ring signature scheme that
generates signatures under ECDSA private keys that
preserve anonymity amongst a “ring” of known ECDSA
verification keys (e.g. see [27]).

Appendix B.
DCTLS formal description

The three phases (HSP, QP, CP) of a generic three-
party TLS (DCTLS) protocol are formally described (in
terms of their inputs and outputs) below.

• (pp, spC , spS , spV)← DCTLS.HSP(1λ): The hand-
shake phase takes as input a security parameter,
and computes a TLS handshake between S, and
an effective client that consists of both C and V.
The public/secret parameters (pp, spS) learnt by
S are the same as in a standard TLS handshake.
The secret parameters learned by C (spC) and V
(spV) are shares of the secret parameters learnt
by a standard TLS client [22], so that neither
party can compute encrypted traffic alone.

• (r, q̂, r̂) ← DCTLS.QP(pp, spC , spS , spV , q): The
query phase takes the public and secret parame-
ters of each party as input, along with a query,
q, that is to be sent to S. This phase requires
S to construct a response, r, to q and return it
to C. The phase outputs both q and r, and also
vectors of TLS ciphertexts (q̂ and r̂) that encrypt
the client queries and the server responses. q̂
and r̂ are vectors containing blocks of the TLS
ciphertext encrypting q and r, respectively.

• b ← DCTLS.CP(pp, spC , spV , q, r, q̂, r̂, (i, j)): The
commitment phase outputs a bit b, where b = 1 if
C constructs a valid opening of q̂i and r̂j with re-
spect to the unencrypted q and r. Broadly speak-
ing, C sends to V the TLS-encrypted ciphertexts,
before V sends spV to C, and then C opens the
commitments. Note that a valid opening could
be proving in zero-knowledge that r̂j encrypts a
value in a given range, or using 2PC to decrypt
the block directly.

Appendix C.
DCTLS Standalone Security Model

C.1. Handshake Phase Security

For establishing the security of the handshake phase,
we need to show that C (in cooperation with V) and

12. Note that both oracle definitions assume the generation of a
global set of key pairs that are used during the security game, and
a correspondingly global ring, R, of all valid verification keys.

S establish a secure TLS 1.3 channel. To do this, we
use the multi-stage key exchange model of [22], which
follows the Bellare-Rogaway (BR) framework [7] for
establishing authenticated key exchange security based
on session key indistinguishability, and builds on the
multistage model of Fischlin and Günther [24], [33]. This
model considers an adversary that: interacts with several
concurrent TLS 1.3 sessions between different endpoints
(each of which has its own identifier); can intercept,
drop, and inject messages between entities; can corrupt
endpoints to learn their secret parameters; and can re-
quest specific leakage of established keys. The two core
security properties that an adversary is attempting to
break are known as Match Security13 and Multi-Stage
Security.14

To prove the above security properties, we rely on
a similar security framework to that used in Oblivious
TLS [1, Section 6], that models C as a multi-party entity
known as a TLS engine. The differences in comparison
with the original model of [22] are: (1) the handshake
traffic keys are leaked to the multi-stage adversary only
when C is corrupted; (2) the MAC keys used in CF and SF
messages are leaked to the multi-stage adversary upon
reception of the corresponding messages; (3) the IVs are
leaked to the adversary; (4) the adversary has the ability
to make the engines abort; (5) the adversary is able to
shift the computed secret by an arbitrary scalar Qε.

One crucial difference in our approach from the TLS
engine model of [1] is in criterion (1): we only reveal
handshake traffic keys when the client is corrupted, and
not when the verifier is. It’s worth recalling that criterion
(5) is permitted (as it is in [1]) since V can arbitrarily
influence the session secret by scalar multiplication. This
means that the security of DiStefano is likewise based
on the Shifted PRF ODH assumption [10]. See [1, Def-
inition 2] for more details. We also require (as in [1])
the additional property that the adversary can only test
handshake keys if both C and V of a connection are
completely honest. Finally, we only allow the adversary
to corrupt a single party within any given session.

To summarise, the DiStefano security model essen-
tially provides the adversary with a subset of the ca-
pabilities of the adversary in [1]. Note that a potential
strengthening of the security model could include the
adversary learning S’s identity when it corrupts C. How-
ever, such information only becomes pertinent during
the commitment phase, when we later consider the case
of a malicious V. Since we only allow corruption of a
single entity in a single session, we do not consider this
possibility during the handshake phase of the protocol.

Applying this model to DiStefano. To use the model
defined above, we analyse the 2PC interaction between
C and V, and show that a corrupted client/verifier can

13. That any two sessions with identical identifiers will agree on
the same key eventually.

14. That any tested key is indistinguishable from a random
string of the same length.

17

Algorithm 1 2PC-ECtF ideal functionality

Require: sskc = Y xcs , sskv = Y zvs
Ensure: Output shares tc to C, and tv to V of the x-

coordinate of Z = Y xc+zvs

Algorithm 2 2PC-DeriveTKHS ideal functionality

Require: (tc, H0, H1) from C
Require: (tv) from V
Ensure: For each w ∈ {c, v}: return

(HSw,CHTSw,SHTSw,dHSw, tkwchs, tk
w
shs) to {C,V}

only learn details linked to criteria (1)–(5) above. Fig. 5
gives a summary of the 2PC interactions between C and
V, where Algorithm 1, Algorithm 2, and Algorithm 3
give descriptions of the ideal 2PC functionalities that
are used.15 Our proof is situated in the standard model.

Before any 2PC takes place, the client and the verifier
compute a shared value SSK = gxc+zv , where xc and zc
are the secrets of the respective participants. In this por-
tion of the execution, it is possible for either participant
to shift the session key by a certain scalar value, taken
from the scalar field associated with the group that is
being used. Criterion (5) captures this capability for an
adversary, by allowing them to shift the eventual shared
secret by a scalar value once they have corrupted one of
the participants.

In each executed 2PC functionality, C and V can con-
trol their inputs to each function, and produce a value
that is used in subsequent stages of the TLS protocol.
By using maliciously-secure 2PC garbled circuit proto-
cols, we reduce the “cheat-down” ability for either party
to breaking any of the individual primitives executed
within the garbled circuits. Fortunately, each of these
primitives is already proven secure individually, and in
a non-2PC TLS setting [22]. In other words, using these
primitives does not permit any additional capabilities to
an adversary that corrupts either party.

Therefore, criteria (1)-(4) are explained in the fol-
lowing. As noted in [1], V must reveal certain values
(SHTSv and CHTSv) to allow C to decrypt handshake
traffic before the application session keys are derived.
As was shown in [22], revealing this information after
committing to server-encrypted ciphertexts is safe, since
the eventual application traffic secrets are independent
of the handshake-encryption traffic keys. This protects
against a malicious client, but means that any adversary
that corrupts C learns all of the intermediate secrets that
are used for encrypting and decrypting traffic during
the handshake. On the other hand, a malicious verifier
sending incorrect values will immediately be discovered
since C will no longer be able to decrypt any traffic.

We can now finalise the security of the handshake
into the following theorem.

15. See Fig. 2 for the full TLS derivation of each value.

Algorithm 3 2PC-DeriveTKApp ideal functionality

Require: (dHSc) from C
Require: (dHSv) from V
Ensure: For w ∈ {c, v}: return (tkwcapp, tk

w
sapp) to {C,V}

Algorithm 4 2PC-RL-Encrypt ideal functionality

Require: (tkccapp, q, AD) from C
Require: (tkvcapp, AD) from V

(q̂, τq̂)← AEAD .Enc(tkcapp, q;AD)
return Output (q̂, τq̂) to C
return Output q̂ to V

Theorem 9 (Security of handshake phase). The DiSte-
fano protocol is secure with respect to the ideal handshake
phase functionality (DCTLS.HSP), when assuming the
following:

• a maliciously-secure 2PC-ECtF protocol;
• a maliciously-secure 2PC-DeriveTKHS protocol;
• a maliciously-secure 2PC-DeriveTKApp protocol;
• the hardness of the Shifted PRF ODH problem [1,

Definition 2];
• the underlying security of the TLS 1.3 proto-

col [22].

The proof of this theorem follows a standard hybrid
argument, where at each stage the 2PC protocol is
replaced with an ideal functionality that computes the
same result. Since each 2PC protocol is executed in
sequence, this proof argument follows in the standard
model. Once the ideal functionality is used, the rest of
the security proof follows from the same properties that
guarantee security of the underlying TLS 1.3 handshake
protocol. A very similar security proof was given in [1]
in the universal composability framework.

As a consequence, the security of DiStefano is con-
firmed, based on the choices of 2PC protocols that are
used. The MPC primitives that we use and implement
satisfy malicious security, and are discussed formally in
Section 3 and Section 4. Our experimental results in
Section 7 detail how performance changes depending on
the choice of 2PC primitives.

C.2. Query Phase Security

As in the handshake phase, while the server is left
untouched, we continue to consider the client and the
verifier as one that works together to encrypt and de-
crypt packets to and from S. This is a requirement, since
the end of the handshake phase of a DCTLS protocol
leaves the client and verifier with shares of the secret
session parameters, that need to be combined in order
to construct messages.

In effect, the query execution phase considers two
ideal functionalities: 2PC-RL-Encrypt (Algorithm 4), and
2PC-RL-Decrypt (Algorithm 5). In 2PC-RL-Encrypt, the

18

Algorithm 5 2PC-RL-Decrypt ideal functionality

Require: (tkcsapp, (̂r, τ̂r), AD) from C
Require: (tkvsapp) from V

return AEAD .Dec(tksapp, r̂, τ̂r;AD) to C

client and the verifier submit their secret parameters,
and the client submits a query (e.g. an HTTP request).
The ideal functionality returns an encryption of this
query, under a TLS 1.3-compliant AEAD scheme (Sec-
tion A.2). In 2PC-RL-Decrypt, the client and the verifier
submit the same inputs, and the client submits a cipher-
text received from the server, and the ideal functionality
returns the decryption of this ciphertext under the same
AEAD scheme, or ⊥ in the event that the ciphertext does
not decrypt properly.

We can show that the query phase of DiStefano is
secure when AEAD = AES-GCM, assuming the secu-
rity of the 2PC-AES-GCM protocol (Appendix D). The
proof that the query phase of DiStefano satisfies security
with respect to the ideal DCTLS.QP functionality follows
once we have protocols that are secure with respect to
2PC-RL-Encrypt and 2PC-RL-Decrypt. The proof that
2PC-AES-GCM satisfies both follows almost immedi-
ately from Lemma 14 and Lemma 15, due to the similar-
ity between the ideal functionality for 2PC-RL-Encrypt
(2PC-RL-Decrypt) and 2PC-AES-GCM Encrypt (2PC-
AES-GCM Decrypt). We state the full theorem below
for completeness.

Theorem 10. The DiStefano protocol is secure with re-
spect to the ideal query phase functionality (DCTLS.QP),
when assuming a maliciously-secure 2PC-AES-GCM
protocol, and the underlying security of the TLS 1.3
protocol [22].

C.3. Commitment Phase Security

For the commitment phase of DiStefano, we split the
requirement into a number of sub-properties: session pri-
vacy (SPriv), ring session authentication (SAuth1

n), and
session unforgeability (SUnf). In each model, we first as-
sume that secure handshake and query phases have been
computed, using the ideal functionalities (DCTLS.HSP,
DCTLS.QP) (Appendix B). Recall that we only consider
adversarial corruption of a single party in any situation,
and, therefore, for any post-handshake security game, we
consider only handshake phase corruptions concerning
the same party.

In each of the security models (Fig. 7), we consider
a (potentially dishonest) C that starts by sending a
commitment, cq̂,̂r, to a specific session, S. In SPriv, the
honest client C constructs and sends a proof, σS,sid,L,
that cq̂,̂r is a commitment to a TLS session established
with S ∈ L (L is the set of accepted servers). The
adversarial verifier, AV , succeeds if it identifies the iden-
tity of S (it can point which server in the set L that
C is communicating with). In SAuth1

n, we consider an

adversarial client, AC , where the communication in the
security game is the same, except that AC succeeds if the
commitment cq̂,̂r corresponds to a session S established
with a server S ′ /∈ L. Finally, in SUnf, V reveals their
secret session data to AC , and AC succeeds if it can open
cq̂,̂r to a different session S’. Overall, we show that each
of the properties follows, assuming a sufficiently binding
and hiding commitment scheme, and a ring signature
scheme for ECDSA-based TLS certificates for showing
that S ∈ L, e.g. [27].

Session privacy. For protecting the privacy of sessions
during the commitment phase, i.e. that the client com-
mitment does not reveal any information about the
session to a malicious V, we show that DiStefano satisfies
security in the SPriv security game (Fig. 7).

Lemma 11. Let Γ be a computationally hiding commit-
ment scheme for a DCTLS scheme, and let Π be a ring
signature scheme that satisfies anonymity for ECDSA
TLS certificates. Then, for all PPT algorithms A, we
have that:

AdvsprivA,DCTLS,Γ(λ) < negl(λ).

Proof. We construct our proof of security as a two-step
hybrid proof. In the first step, Π is modified to always
sign using the secret key of server S0, regardless of the
bit d. In the second step, the commitment scheme is
modified to always commit to traffic exchanged with S0,
regardless of the choice of bit d. We can see that steps
above can be arbitrarily changed to always commit to
traffic exchanged with S1, therefore, we will speak only
about the S0, without loss of generality.

Note that once both hybrid steps have been exe-
cuted, the adversary AV has no advantage in guessing
the bit d, since they always receive session commitments
and ring signatures with respect to the traffic received
from a single server. Therefore, we simply have to show
that the real execution of SPriv is indistinguishable from
this case to show that DCTLS satisfies SPriv security.

The distinguishing probability between the two views
in the first hybrid step can be bounded by the anonymity
property of Π. In other words, if there is an adversary A
that distinguish between the two steps, then there is an
adversary B that can break the Anon security game of Π
(Fig. 6). This follows since, in the case when d = 1 the
only difference is the fact that σ is always computed over
the certificate of S0. Therefore, B can simply forward
the message to be signed during the TLS execution
to their challenger, and receive back the signature σ.
Then, they can send this signature back to A and output
whatever A outputs. If A has non-negligible advantage
in distinguishing between the two steps, then so will B.

The distinguishing probability between the two views
in the second hybrid step can be bounded by the fact
that the session commitment is generated only for S0. As
such, any adversary B against the computational hiding
property of Γ forward their challenge commitment to A

19

Figure 7. Security games for the commitment protocol.

SPriv

1 : L← AV(1λ, 1N)

2 : (skΠ, vkΠ)← Π.setup(1λ)

3 : (pp0, sp0
C , sp

0
S , sp

0
V)← DCTLS.HSP(1λ, C,S0,AV)

4 : (pp1, sp1
C , sp

1
S , sp

1
V)← DCTLS.HSP(1λ, C,S1,AV)

5 : if [(S0 /∈ L) ∨ (S1 /∈ L)] : return 0

6 : d←$ {0, 1}
7 : q← AV(L)

8 : (q̂, r̂)← DCTLS.QP(ppd, spdC , sp
d
S , sp

d
V , q)

9 : σ ← Π.Sign(skΠ, pp
d, spdC , L)

10 : cd ← Γ.Commit(spdC , q̂, r̂)

11 : d′ ← AV({ppd, spdV}d∈{0,1}, vkΠ, q, c
d, σ, L)

12 : if [d′
?
= d] : return 1

13 : return 0

SAuth1
n

1 : L← V(1λ, 1N)

2 : (skΠ, vkΠ)← Π.setup(1λ)

3 : (pp, spC ,⊥, spV)← DCTLS.HSP(1λ,AC ,S,V)

4 : if [S ∈ L] : return 0

5 : σ ← AC(pp, spC, skΠ, vkΠ, L)

6 : return Π.Verify(vkΠ, pp, spV , σ, L)

SUnf

1 : (pp, spC , spS , spV)← DCTLS.HSP(1λ,AC ,S,V)

2 : q← AC(1λ, pp, spC)
3 : (q̂, r̂)← DCTLS.QP(pp, spC , spS , spV , q)

4 : c← AC(spC, q̂, r̂)
5 : q′ ← AC(spC , spV , q, q̂, r̂, c)
6 : if [(Γ.Open(spV , q

′, c)) ∧ (q′ 6= q)] : return 1

7 : return 0

in the same as before, and win with the same advantage
as A. This completes the proof.

Ring authentication. We show that DiStefano ensures
that a malicious C must authenticate S to V, out of a
set L possible n accepted servers (where L is specified by
V) using the SAuth1

n security game (Fig. 7).

Lemma 12. Let Π be a ring signature scheme that sat-
isfies unforgeability for ECDSA TLS certificates. Then,
for all PPT algorithms A, we have that:

Adv
sauth1n
A,DCTLS,Π(λ) < negl(λ).

Proof. Suppose that C could win the SAuth1
n game with

non-negligible advantage. Then, an adversary B that is
attempting to forge ring signatures for Π can simply
output whatever signature AC outputs as their answer
to the Unf security game (Fig. 6). If AC creates a valid
forgery, then the unforgeability of Π is violated.

Session unforgeability. We show that a malicious C
cannot open commitments to sessions that were not
previously committed to, by showing that DiStefano
satisfies security in the SUnf security game (Fig. 7).

Lemma 13. Let Γ be a perfectly binding commitment
scheme for a DCTLS scheme. Then, for all PPT algo-
rithms A, we have that:

AdvsprivA,DCTLS,Γ(λ) < negl(λ).

Proof. It is clear to see that an adversary attempting to
break the perfect binding property of Γ can utilise the
adversary AV against SUnf to establish a valid opening
based on an uncommitted value.

Algorithm 6 2PC-AES-GCM Encrypt

Require: k = kc + kv, IVc, IVv, {hic}i∈[n], {hiv}i∈[n]

Require: C inputs a message m
Require: IVc and IVv must not have been supplied for

encryption previously.
Ensure: C learns ((C1, . . . , Cn), τ(A,C, k, IV)).
Ensure: V learns (C1, . . . , Cn).

if IVc 6= IVv then
return Error . The IVs must match.

end if
Parse m as m1‖ . . . ‖mn . mi fits AES blocksize
C = (Ci ← AES.Enc(kc + kv, IVc + i)⊕mi)i∈[n]

τc ← PA||C||len(A)||len(C)({hic})
τv ← PA||C||len(A)||len(C)({hiv})
τ ← τc ⊕ τv ⊕ AES.Enc(kc + kv, IVc)
return (C, τ) to C
return C to V

Appendix D.
Security of AES-GCM optimisation

Ideal functionalities. We consider the ideal functional-
ities for encryption and decryption in 2PC-AES-GCM
as given in Algorithm 6 and Algorithm 7, respectively.
Our ideal functionality also covers the nonce uniqueness
requirement of AES-GCM. We note that in practice
these additional checks do not seem to affect the running
time by much: for example, our prototype garbled circuit
implementation only requires around 768 extra AND
gates, representing around a 10% increase over an AES
circuit.

Security argument. We now argue the security of
computing encryptions and decryptions with respect to
the ideal functionalities described in Algorithm 6 and

20

Algorithm 7 2PC-AES-GCM Decrypt

Require: k = kc + kv, IVc, IVv, {hic}, {hiv}, A.
Require: Both C and V know A, (C1, . . . , Cn) and τ
Require: IVc and IVv must not have been supplied for

decryption previously.
Ensure: C learns the decrypted message m if

(C1, . . . , Cn) is a valid encryption wrt τ .
if IVc 6= IVv then

return Error . The IVs must match.
end if
τ ′c ← PA||C||len(A)||len(C)({hic})
τ ′v ← PA||C||len(A)||len(C)({hiv})
τ ′ = τ ′c ⊕ τ ′v ⊕ AES.Enc(kc + kv, IVc)
if τ ′ 6= τ then

return Error . Invalid tag
end if
m = (Ci ⊕ AES.Enc(kc + kv, IVc + i))i∈[n]

return m to C

Algorithm 7. We implicitly assume that 2PC evaluations
of the polynomial P and the AES functionality (using
garbled circuits) are secure with respect to malicious
adversaries. These security guarantees are assumed in
previous work [1], [14], [70], but are not made explicit.
We require them when proving that the query phase of
DiStefano is secure (Section C.2).

Lemma 14 (Malicious Client). 2PC-AES-GCM is secure
in the presence of a malicious adversary that controls C.

Proof. Let S be a PPT simulator for the encryp-
tion functionality, that simply returns samples C ′ from
the domain of AES.Enc, and τc←$ {0, 1}t, and returns
(C, τc) to C. We ultimately argue that the real-world
outputs of 2PC-AES-GCM are indistinguishable from
this.

Let SAES be a simulator for the ideal 2PC evaluation
of AES.Enc, and let SP be a simulator for the ideal
evaluation of P . It first sends m to SAES and learns
C = (C1, . . . , Cn). Then it sends C to SP (along with
A) and learns τ . It returns (C, τ) to C. To see that this
is indistinguishable from the real-world, we can trivially
construct a hybrid argument from the real-world proto-
col that relies on two steps, replacing real garbled circuit
evaluation of each functionality with ideal-world simula-
tion, and argue security based on the maliciously-secure
2PC garbled circuit approach that we use (Section 3).

Finally, based on the assumption that AES is a pseu-
dorandom permutation, we can construct a final hybrid
step, that replaces AES.Enc with a random value in the
domain.16.

The case of decryption is much simpler since the
client only learns the message if they submit valid inputs
to S (by the AEAD security guarantees of AES-GCM).
This can be established using the same simulators SAES
and SP defined above.

16. This only holds if the IV is a nonce, see [70, §B.2].

Lemma 15 (Malicious Verifier). 2PC-AES-GCM is se-
cure in the presence of a malicious adversary that con-
trols V.

Proof. The proof for a malicious V follows the same
structure as in the case of C, but note that V is strictly
less powerful, because the V does not submit a message
to be encrypted.

We briefly note that PageSigner follows a slightly
different approach than this for computing tags: we
decided not to follow their approach, as a “back-of-an-
envelope” calculation suggests that it is strictly slower
than the aforementioned approach. We discuss this in
more detail in Appendix E.

Appendix E.
PageSigner and AES-GCM

In this section, we compare our approach to com-
puting AES-GCM tags to the approach employed by
PageSigner [59]. In a 2PC setting, we assume that both
k and the powers of h = hc+hv are additively shared by
both parties, with C, IV and A acting as public inputs.

Assuming that C is a single block without any asso-
ciated data (i.e. C = C1), we have τ = (hm−2

c + hm−2
v) ·

(h1
c+h1

v)·C1 = (hm−1
c +hm−1

v +hm−2
c ·h1

v+hm−2
v ·hm−2

c)·
C1. As the first of these terms can be computed locally,
the cost of computing τ can be reduced to computing
(hm−2
v · hc + hm−2

c · hv) · C1 in 2PC. This approach can
actually be written as a variant of our approach, as
the left hand-side is fixed for a particular sharing of h.
However, PageSigner instead repeats this process each
time a tag is computed. Interestingly, it turns out that
simply computing a sharing of h2

vhc and h2
chv is sufficient

to tag blocks of arbitrary length, lowering the cost of
tagging to just two OT-based multiplications.

From a performance perspective, a “back-of-an-
envelope”calculation shows that this approach is strictly
less efficient than the one that we adopt in Section 5.
Intuitively, this is because our approach allows all poly-
nomial evaluation to be done locally, even while both
approaches require computing an initial sharing of h
and its powers, PageSigner’s approach explicitly requires
computing two OT-based multiplications per tagging.
Concretely, instantiating these multiplications using the
maliciously-secure scheme presented in [19] with 128-bits
of statistical security would require 2048 oblivious trans-
fers of 128-bits for the multiplication alone, requiring
around 32KiB of bandwidth per tag. In contrast, our
scheme only requires transferring around 64 bytes per
tagging operation. In other words, our scheme requires
around 500× less bandwidth per tagging operation than
the approach employed by PageSigner.

21

Appendix F.
Commitment scheme security

We prove that the commitment scheme Γ from Sec-
tion 5.1 is a perfectly binding and computationally hid-
ing commitment scheme.

Lemma 16 (Perfectly binding). The commitment scheme
Γ is perfectly binding.

Proof. Recall that the decryption key r = rki + rci for
each block Ci is secret-shared across both C and V. The
authenticity of Ci is assured to both parties by checking
the tag of Ci in 2PC. Then, as C commits to both Ci and
rci before learning rvi , AES-GCM acts as a committing
AEAD scheme from the perspective of V. (Ci, k

c
i) acts

as a perfectly binding commitment to Mi.

Lemma 17 (Computationally hiding). The commitment
scheme Γ is computationally hiding.

Proof. The client commitment is series of AES-GCM
encrypted ciphertexts, for which V only holds the key
shares (tkvcapp, tk

v
sapp). Note that the full keys are defined

as (tkcapp, tksapp) = (tkccapp ⊕ tkvcapp, tk
c
sapp ⊕ tkvsapp). By

the semantic security of the encryption scheme, we know
that if the client generates two separate commitments
using the same secret parameters, the encryptions of
both will be indistinguishable with anything other than
negligible probability. Therefore, the condition required
in Definition 5 follows for all bounded adversaries.

Appendix G.
Proofs over encrypted data

DiStefano can be used to provide statements in zero
knowledge about encrypted data transmitted during a
TLS 1.3 session. Specically, it can provide proofs that
an specific substring appears on said data which, in turn
means, that the confidentiality of the data remains and
only what is needed is revealed.

Revealing a substring. We briefly show how DiS-
tefano can implement two specific optimisations pre-
sented by DECO: “Selective Opening”, which allows C to
reveal that a certain substring is present in a plaintext
M , and “Selective Redacting”, which allows C to reveal
the entirety of M , other than some selection of omitted
substrings.

Using our AES-GCM protocol, both approaches are
easily achievable. Suppose that C is committing to some
set of ciphertexts C1, . . . , Cn for the purpose of proving
a statement. Since C is required to commit to their
additive shares of the decryption keys kci before learning
V ’s key shares, selectively opening Ci simply requires
revealing kci to V. Similarly, C can selectively reveal any
combination of ciphertexts by simply revealing those in-
dividual keys. In practice, revealing each block is rather
cheap, requiring only 128-bits of bandwidth. In addition,
this scheme can be adapted to deal with substrings

inside a single block C: rather than revealing kci directly,
C and V instead decrypt C in a garbled circuit with
the output masked by a mask ρ that is chosen by C.
We remark that this approach is somewhat fragile: for
any soundness to hold, we would also require that C is
only allowed to modify certain portions of the output
plaintext. We view this difficulty as orthogonal to this
work: this would require more extensive zero-knowledge
proofs.

Appendix H.
Incompatibility with Garble-then-prove

In this section we highlight why we have not in-
corporated the recent improvements presented in [64]
into our work. We stress that there are no fundamental
incompatibilities between DiStefano and the improve-
ments made by [64]; instead, the difficulties are solely
implementation driven. We consider producing a tool
that allows us to incorporate these changes to be a
pressing, but orthogonal, open problem.

An optimised 2PC-HMAC. We briefly recall the secret
derivation optimisation presented in [64]. For the pur-
poses of exposition we shall first show how to efficiently
compute the HMAC function in a 2PC setting before
incorporating this into TLS1.3 secret derivation.

Let H = SHA256 . Recall that the HMACSHA256 of a
variable length message m with a key k is

HMACH(k,m) = H((k ⊕ opad)||H((k ⊕ ipad)||m)).

From this we can see that naively computing HMACH
in 2PC is likely to be expensive, as any generic circuit
would be required to compute the hash of m in 2PC.
Given that the cost of computing such a hash is pro-
portional to the length of m, such a circuit would likely
perform poorly on long messages.

This situation was considered in the context of
CBC-HMAC by [70]. In this setting, P and V wish to
compute the CBC-HMAC of a message m that is known
entirely by P under a shared key k. In order to im-
plement this functionality efficiently, the authors of [70]
take advantage of the underlying structure of SHA256.
Namely, suppose that m1 and m2 are two correctly sized
blocks. Then

SHA256(m1,m2) = fH(fH(IV,m1),m2)

where IV is the initialisation vector and fH is the
compression function of SHA256. If we now return to
the HMAC computation, it is clear that the inner-most
call is fH(IV, k ⊕ ipad). Given that fH is assumed to be
a one way function, revealing s0 = fH(IV, k⊕ ipad) does
not reveal anything about k to either party; thus, we
can realise HMAC more efficiently by simply revealing
s0 to P, allowing them to compute the hash of m
locally i.e outside of 2PC. This means that the HMAC

22

computation of an arbitrarily long message only requires
a few SHA256 calls in 2PC, rather than potentially many
when realising HMAC generically.

This idea was recently adapted to the context
of TLS 1.2 secret derivation by the authors of [64].
Briefly, the authors propose revealing the value s0 =
fH(IV0,pms⊕ ipad) to both parties, allowing some of the
fH calls to be realised locally. In addition, the authors
of [64] also propose re-using previously garbled values
across multiple circuits, allowing even fewer fH calls to be
carried out in 2PC. Concretely, this optimisation reduces
the number of needed fH calls in 2PC from 18 to only 6.

Implementation difficulties. We now highlight why this
approach seems difficult to realise in DiStefano. At a
high-level, the main issue is that our current garbled
circuit library (emp) does not support either accepting
new input or outputting partial values as the circuit
runs. Indeed, if emp were to support this feature, then
realising the optimisation presented would be easy. How-
ever, the fact that emp does not support this feature
means that we would have to realise this optimisation by
chaining multiple circuits together. In this model, each
circuit computes a sub-portion of the secret derivation
procedure and outputs some intermediate results to each
party.

On the one hand, this approach would allow each
party to locally compute some of the calls to fH , yield-
ing the claimed speed-ups. However, this would require
each circuit to either recompute any shared input, and
to validate that the same value of s0 is used across
multiple circuits. In the case of the former, we would
need to recompute pms in each individual circuit, and
we would also need to check that the same value of s0 is
supplied by both parties. Put simply, this decomposition
would reduce some of the potential speed-ups from [64].
Moreover, decomposing secret derivation into multiple
circuits would allow a malicious party to alter their
inputs at each stage, potentially causing selective failure.
Whilst we stress that we cannot see an obvious way
to use this to expose a vulnerability in the security of
DiStefano, it would contradict elements of the security
model that we consider.

Nonetheless, none of these reasons invalidate the
approach taken in [64], and we believe that a similar idea
can be applied even with the current version of emp.
For example, notice that our secret derivation circuit
recomputes the compression function fH(HS ⊕ ipad) a
total of three times during secret derivation; re-using this
value inside the same circuit would be more efficient than
our current approach. A similar approach can also be
applied to the derivation of traffic secrets. However, we
have not implemented this approach, as we believe that
it is unlikely to be competitive with [64] in practice. Put
differently, we believe that the completion of a tool that
allows for the [64] optimisation to be realised securely
inside DiStefano should be the priority for future work.

Appendix I.
Potential attacks on Janus and DECO’s
TLS 1.3 variant

In this section we present an attack on an interpre-
tation of the TLS 1.3 variant of DECO and the recently
presented Janus [43] TLS attestation mechanism. No-
tably, this attack allows either a malicious client to pro-
duce false attestations, or for a malicious proxy to fully
decrypt all traffic. We stress that our interpretation of
DECO’s TLS 1.3 variant may be different from exactly
what the authors intended, due to lack of specificity, and
thus the attack presented may not be directly applicable.
However, the attack presented here applies to any TLS
attestation protocol that does not carefully handle the
sharing (and disclosure) of traffic secrets.

Background: the SF message. The attack pre-
sented in this section exploits a flaw in how both Janus
and DECO’s TLS 1.3 variant handle session authenti-
cation between the client and the verifier. In order to
explain this flaw, we briefly recall the TLS 1.3 server
authentication mechanism used in TLS 1.3 (see [22] for
a more thorough explanation).

First, assume that S and C are establishing a TLS 1.3
session; and that S and C have exchanged both the hello
messages (ClientHello and CH) and derived authentic
copies of the handshake secrets SHTS and CHTS. At
this stage, §authenticates itself to C as follows:

1) To ensure authenticity, S sends its certificate
SCRT to C, followed by a signature on the hash
of the session transcript (SCV). Upon receipt
of these messages, C checks the certificate and
uses the corresponding public key to verify SCV.
Notably, C is able to check SCV because C has a
full view of the transcript.

2) To ensure integrity, S uses SHTS to derive the
finished key fks. S then computes the server
finished (SF) message, by computing a HMAC
on the hash of the session transcript using fks.
S then sends SF to C, who locally validates SF
by deriving their own fks. Again, C is only able
to check the SF because they have a full and
complete view of the transcript.

In the regular (i.e two-party) variant of TLS 1.3 this
approach has been shown to provide very high security
guarantees: the pioneering works of [21], [22] have shown
that the TLS 1.3 handshake protocol establishes session
keys with strong security properties under standard
cryptographic assumptions. Interestingly, the TLS 1.3
handshake protocol actually achieves a stronger level of
security than may be fully necessary in some settings.
For example, it has been argued that the SF message
alone authenticates the transcript [21], as the SF message
is an authenticated HMAC of the transcript sent so far.
Put differently, the SCV message does not provide any
additional integrity guarantees for the derived keying
material compared to just checking the SF message.

23

TLS 1.3 in DECO and potential avenues for at-
tack.. The authors of [70] initially proposed using a vari-
ant of the above idea to accelerate certificate checking
in DECO’s TLS 1.3 variant. Namely, the authors of
DECO suggest, as the traffic keys are independent of
the handshake keys, that the C and V can simply derive
all secrets in a single circuit, with C alone learning all
handshake keys for the purpose of certificate checking.
Whilst it is unclear that this approach will work17,
we note that the description given in DECO does not
specify whether V ever learns the SF or SCV message in
the TLS 1.3 version of DECO, or if C alone has access
to this information. We argue that this approach leads
to a very straightforward attack. Namely, suppose that
C is a malicious and wishes to falsely attest of data
using a server S. In this attack, C begins a three-party
handshake with V, and receives V’s keyshare for the
three-party handshake. Then, rather than contacting S
and carrying out the usual three-party handshake, C
simply replies to V with its own keyshare. Intuitively,
this step is the same as establishing a TLS 1.3 session
between C and V without the involvement of S. This
step produces the following outcomes:

1) V, upon receipt of C’s keyshare, is unable to
determine whether it belongs to S or C, as it
is unauthenticated at this stage. Thus, V must
assume that the keyshare is a legitimate value
from S.

2) On the other hand, C can now locally derive all
handshake and traffic secrets for the session, as
C knows the entirety of the shared handshake
secret. Thus, C can systematically deceive V in
an undetectable manner. Moreover, as V never
learns the SF message (or even the SCV message),
V is unable to check if the handshake transcript
was valid. As such, if C indicates that the checks
passed, then V continues as if the transcript was
authentic.

At this stage, C can forge any TLS traffic between
itself and S, without V being able to detect the forg-
eries, leading to false attestations. Moreover, this attack
persists even if V explicitly checks the SF message of
the transcript: as the transcript between V and C is a
valid TLS 1.3 transcript, the secret derivation process
will produce valid secrets, and checks on SF will pass.

Formally speaking, this attack arises from the fact
that, although V and C are treated as a singular entity
from the perspective of S, they are in fact very different
entities. Practically speaking, the main issue is that C
obtains a valid copy of the transcript, whereas V does
not. Moreover, ensuring that V receives any meaningful
authenticity guarantees in the face of a malicious ad-
versary whilst respecting privacy is somewhat difficult.

17. Given that deriving the traffic keys requires SF to be in-
corporated into the transcript hash, it seems impossible that the
application and traffic secrets could be derived in one step.

Indeed, a trivial solution to the aforementioned attack
would be to simply require that V learns the identity of
S and the SCV value, allowing V to authenticate S.

Attack vectors on the Janus protocol.. We argue
that the recently proposed Janus [43] TLS attestation
protocol is potentially vulnerable to an attack with a
similar root cause, albeit with a different mechanism.

Briefly, the Janus protocol is a hybrid between DiS-
tefano and DECO’s proxy mode. In its presented con-
figuration, Janus treats the verifier as a TLS 1.3 proxy
that forwards (and records) all traffic between C and S.
Notably, the Janus protocol differs from DiStefano by
using a set of semi-honest garbled circuits for all secret
derivation, other than AES-GCM tagging and verifica-
tion. In this model, the adversary follows an agreed-upon
protocol without deviation. Instead, the primary aim of
the adversary is to learn the secret inputs of the honest
party. Whilst this change is primarily made for efficiency,
the authors of Janus also claim that the authenticity
guarantees given by the SCV and SF messages allows for
this change to be made without any loss of security.

In order to highlight a potential attack, we now
briefly describe the differences in secret derivation be-
tween Janus and DiStefano. We note that the protocols
are essentially identical up until the secret derivation
procedure, and thus we omit these details.

1) C and V invoke a semi-honest garbled circuit
protocol, that outputs the SHTS value to C. C
uses an authentic copy of the transcript to check
the SF and SCV messages. If the checks fail, then
C aborts. Otherwise, C reveals SHTS to V, and
V repeats the same checks.

2) C and V repeat similarly for the CHTS circuit.
3) Finally, C and V derive the traffic secrets using

a series semi-honest garbled circuits. We note
that, according to Figure 4 of [43], the dHS se-
cret appears to be derived after the SHTS value
has been checked. As we shall soon explain, this
is problematic when only semi-honest garbled
circuits are used.

We now present a potential attack using a malicious
adversary that is undetectable using semi-honest garbled
circuits. First, assume that V is a malicious verifier that
wishes to compromise the confidentiality of C. In order to
achieve this, V generates a public key Kv and establishes
a TLS session with S, recording the entire transcript
T and deriving all traffic secrets. Note that from the
perspective of S, V is behaving honestly, and thus S
cannot mitigate this attack. Then, when C begins the
Janus protocol, V replays the transcript T to C and
maliciously garbles the SHTS derivation circuit such
that the SHTS from T is revealed. We stress that this
step requires V to be a malicious actor, as the circuit
would otherwise output a different SHTS due to the
keyshare input by C. At this stage, C will check the SF
and SCV messages and conclude that they are valid. V,
hence, has succeeded in their attack: V can simply ignore

24

the request for validation using the CHTS, and, as they
also know all other traffic secrets, V can undetectably
decrypt or modify any messages exchanged between S
and C. Moreover, even if V is unable to modify the SHTS
check, it seems clear that modifying the output of the
dHS circuit to a known value is enough to remove any
security guarantees that Janus offers; indeed, setting the
dHS to some known value affords the exact same powers
to V in a manner that is undetectable to C.

Why will these attacks work?. Intuitively, all the
aforementioned attacks rely on the mismatch between
the transcript seen by V and the transcript seen by C.
On the one hand, omitting certain information from the
view of V allows C to act in an arbitrarily powerful
fashion, providing no guarantees at all to C. Yet, we
consider the attack on Janus to be equally as serious;
here, the session guarantees expected by C simply fade
away in an undetectable manner, even though C may
have access to a full view of the transcript. In both cases,
the attacks exist simply because there is no concrete
binding between the transcript shown to C by V and the
actual, underlying session that is being carried out.

Mitigating these attacks appears fairly straightfor-
ward. DiStefano avoids the attack on DECO’s TLS 1.3
variant by simply requiring that C provides commit-
ments to session traffic as part of the authentication
process. This, coupled with a ring signature of the valid-
ity of the SCV value, is enough to ensure that C cannot
fool V without a collaborating S. Moreover, the use of
maliciously-secure garbled circuit protocols is enough
to prevent V from modifying the output of the SHTS
derivation in a predictable or useful fashion. Finally,
we mention that a potential defence against the attack
described on Janus would be to simply require that V
proves that the value it sends in the client handshake
somehow involves the share provided by C. This could
be achieved by revealing both T = Kv +Kc and Kv to
C, which would allow C to ensure that its view of the
transcript is authentic relative to the current session.
However, we caution against the belief that this safe-
guard alone is sufficient, as it is clear that any attack
against the derivation of dHS is sufficient to allow a
malicious adversary to break the security of the Janus
protocol. We leave clarifying the security properties of a
DiStefano-like protocol that uses semi-honest primitives
for future work.

Appendix J.
The TLS 1.3 handshake

An overview of the TLS 1.3 handshake is given
in Fig. 8, our notation is based on the notation defined
in [22], which we provide in Table 7 and Table 6 for
completeness.

Figure 8. TLS 1.3 handshake with certificate-based authentication.
Shorthands correspond to [22]. Purple represents messages sent
or calculated by C, pink by S. Messages with an asterisk (*) are
optional, and those within braces ({}) are encrypted.

Client Server

static (Sig): pkS , skS
ClientHello:

rc←$ {0, 1}256, xc←$ Zq
+ClientKeyShare: Xc ← gxc

ServerHello: rs←$ {0, 1}256, ys←$ Zq
+ServerKeyShare: Ys←$ gys

DHE← Y xcs DHE← Xys
c

HS← HKDF .Extract(∅,DHE)

CHTS← HKDF .Expand(HS,Label1 ‖H0)

SHTS← HKDF .Expand(HS,Label2 ‖H0)

dHS← HKDF .Expand(HS,Label3 ‖H1)

tkchs ← DeriveTK(CHTS)

tkshs ← DeriveTK(SHTS)

{+EncryptedExtensions }
{+CertificateRequest }*
{+ServerCertificate:}pkS

{+ServerCertificateVerify:}
Sig← Sign(skS ,Label7 ‖H3)

fkS ← HKDF .Expand(SHTS,Label4 ‖Hε)

{+ServerFinished:} SF ← HMAC(fkS ,H4)

MS← HKDF .Extract(dHS,∅)

CATS← HKDF .Expand(MS,Label5 ‖H2)

SATS← HKDF .Expand(MS,Label6 ‖H2)

{+ClientCertificate:}*pkC
{+ClientCertificateVerify:}*
Sig← Sign(skC ,Label8 ‖H5)

fkC ← HKDF .Expand(CHTS,Label4 ‖Hε)

{+ClientFinished:} CF ← HMAC(fkC ,H6))

tkcapp ← DeriveTK(CATS)

tksapp ← DeriveTK(SATS)

abort if Verify(pkc,Label8 ‖ ‖H5,Sig) 6= 1

abort if CF 6= HMAC(fkC ,H6)

Table 6. TLS 1.3 handshake and traffic secrets.

Secret Context Input Label

CHTS H0 = H(CH,. . . ,SH) Label1 = “c hs traffic”
SHTS H0 = H(CH,. . . ,SH) Label2 = “s hs traffic”
dHS H1 = H(“′′) Label3 = “derived”
fkS Hε = H(∅) Label4 = “finished”
fkC Hε = H(∅) Label4 = “finished”

CATS H2 = H(CH,. . . ,SF) Label5 = “c ap traffic”
SATS H2 = H(CH,. . . ,SF) Label6 = “s ap traffic”

25

Table 7. TLS 1.3 auth messages and associated hashes,
where Label7 is “TLS 1.3, server CertificateVerify” and

Label8 is “TLS 1.3, client CertificateVerify”.

Auth message Context Input Label

SCV H3 = H(CH,. . . ,SCRT) Label7
SF H4 = H(CH,. . . ,SCV)
CCV H5 = H(CH,. . . ,CCRT) Label8
CF H6 = H(CH,. . . ,CCV)

26

	Introduction
	Background
	General Notation
	Background on DCTLS Protocols
	Overview of DiStefano

	Secure Multi-Party Computation
	DiStefano Protocol
	Handshake Phase: HSP
	Query Execution Phase: QP
	Commitment Phase: CP
	Subsequent Phases

	AES-GCM Specifics
	Commitment to AES-GCM ciphertexts
	2PC optimisations

	Security Analysis
	Experimental Analysis
	Discussion
	Related Work
	Applications
	Limitations
	Browser Integration

	Conclusion
	References
	Appendix A: Additional Cryptographic Preliminaries
	Commitment Schemes
	Authenticated Encryption
	Ring Signature Schemes

	Appendix B: DCTLS formal description
	Appendix C: DCTLS Standalone Security Model
	Handshake Phase Security
	Query Phase Security
	Commitment Phase Security

	Appendix D: Security of AES-GCM optimisation
	Appendix E: PageSigner and AES-GCM
	Appendix F: Commitment scheme security
	Appendix G: Proofs over encrypted data
	Appendix H: Incompatibility with Garble-then-prove
	Appendix I: Potential attacks on Janus and DECO's TLS 1.3 variant
	Appendix J: The TLS 1.3 handshake

