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Abstract. To mitigate the negative effects of Maximal Extraction Value
(MEV), we propose and explore techniques that utilize randomized per-
mutation to shuffle the order of transactions in a committed block be-
fore they are executed. We also show that existing MEV mitigation ap-
proaches based on encrypted mempools can be extended by permutation-
based techniques to provide multi-layer protection. With a focus on BFT
style consensus we then propose BlindPerm, a framework enhancing an
encrypted mempool with permutation at essentially no overheads and
present various optimizations. Our protocol neither adds any extra la-
tency nor requires any additional services. Finally, we demonstrate how
to extend our mitigation technique to support PoW longest-chain con-
sensus protocols.

1 Introduction

Blockchain and in particular cryptocurrencies initially emerged with a focus on
presenting a robust financial ecosystem, but the lack of attention to the issue
of ordering manipulation turned out to be problematic. It became more serious
with the introduction of decentralized finance (DeFi) and in particular decentral-
ized exchange (DEX). The execution mechanism behind these platforms called
smart contract [47] has some level of transaction ordering dependence [32] that
allows ordering manipulation to cause a major impact on the traded crypto asset
by the actors [19]. So, a block proposer can take advantage of such opportunities
to achieve some benefit beyond the regular transaction fee and block reward. An
illustrative scenario on a DEX known as sandwich attack involves front-running
(i.e., placing a transaction before) and then back-running (i.e., placing a trans-
action after) a victim’s transaction to exploit the forced price fluctuations in the
traded asset at the cost of victims’ loss. Generally speaking, the profits made via
including, excluding, or re-ordering transactions within blocks are described as
Maximal Extractable Value (MEV) [19]. Not only block proposers (i.e., miner,
validator) can readily extract MEV due to their centralized role in preparing
the block, but also any vigilant actor in the system known as searcher [1] can

⋆ The main part of the work was conducted while the author was at the University of
Bern.
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do so with some knowledge of a profitable transaction. This comes from the
public nature of the blockchain that offers such knowledge, with speedy con-
nections giving a better advantage. Note that performing the sandwich attack
properly requires a correct placement of the transactions with respect to that of
victim; otherwise, it may lead to a loss for the attacker. Adoption of services like
Flashbots [1] makes the MEV extraction even easier due to the ability to offer
front-running as a service [39].

Recent years have seen substantial efforts to combat the negative effects of
MEV. Arguably the most notable ones are so-called order fairness protocols
that consider providing a notion of fairness for the transactions that appear
in a finalized block. This notion, however, is not universally agreed upon and
may have various interpretations. Timed-order fairness [13, 29, 30] and blind-
order fairness [17,35,50] are two well-known notions in the literature that aim at
providing mitigation at the consensus layer. In essence, the former determines
the final ordering of transactions according to their arrival times at the system
and the latter hides the content of transactions until their ordering is fixed,
preventing any conscious manipulation in the meantime.

Given that the existing proposals following timed-order fairness have expen-
sive configuration costs and usually demand low fault tolerance and high latency,
realizing blind ordering in various settings has received plenty of attention [28].
However, there are two principal drawbacks to this approach that might severely
affect its usefulness. First, the block proposer can easily front-run other trans-
actions regardless of their contents. Consider a scenario where a popular non-
fungible token (NFT) is dropped and the block proposer decides to buy some
NFT. They can place their transaction in an early spot, front-running others
and buying at a lower price. Second, blinding is concerned with the payload of
the transaction, and the leakage of side information (i.e., metadata such as gas
price or address) may be enough for the attacker to carry out the attack.

The main intuition behind blind ordering is to make the ordering of trans-
actions independent of their contents. We observe that a random permutation
on the committed block also renders the final ordering independent of the com-
mitted one. So, we can consider it as a solution at the execution layer where the
permutation mitigates any ordering manipulation already occurring in the com-
mitted block before it affects the state of the system. This technique is a useful
strategy in mitigating the power of the block proposer in imposing their desired
ordering. Deploying permutation is also helpful to protect against those types
of MEV that negatively affect users, particularly sandwich attacks. This is due
to the fact that a random permutation can turn a definite profit into a possible
loss simply by shuffling the front-running and the back-running transactions,
creating a dilemma for the attacker.

We take a step further and argue about the importance of a combined solu-
tion, where blind ordering and shuffling enhance each other in a complementary
manner. More precisely, an encrypted mempool – that is the core of blind order-
ing – mitigates content-related attacks such as spamming, where an attacker may
fill out the mempool in the hope of frontrunning a profitable transaction and thus
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diminishing the effectiveness of permutation. Also, permutation on a committed
block strengthens the effectiveness of an encrypted mempool by mitigating both
issues already mentioned with the blind ordering.

Contributions. The contributions of this work are as follows.

– We introduce randomized permutation as a mechanism for MEV mitigation
at the execution layer and propose an efficient construction for BFT style
consensus. This technique reduces the power of block proposers in imposing
their desired ordering and, in particular, hampers sandwich attacks.

– We introduce BlindPerm, a framework that combines encrypted mempool with
permutation to provide enhanced MEV mitigation. Particularly noteworthy is
the fact that the permutation-based enhancement can come at no additional
cost in comparison to regular blind ordering without shuffling.

– We present several optimization techniques that might be of independent in-
terest including selective encryption which enables users to only protect their
MEV-potential transactions through encryption, thereby offering efficiency
gains over a fully encrypted mempool. Also, we show how to extend the
permutation-based approach to proof-of-work (PoW) longest-chain protocols.

2 Background

2.1 Threat Model

We consider the setting of a Byzantine fault tolerance (BFT) system. In this
setting, there are n parties at most f of which are corrupted by a computationally
bounded adversary to do any arbitrary behavior. We assume the existence of
authenticated point-to-point channels between each pair of parties. The set of
BFT parties is fixed and they are known to each other prior to the protocol
execution. The network model is partially synchronous [23], meaning that it
may oscillate between periods of synchrony and asynchrony. The common way to
treat this is to consider some unknown point as global stabilization time (GST),
where it triggers the periods of synchrony that allow message delivery within a
known time bound. The optimal fault tolerance in this setting is f < n/3 [6].

2.2 Secret Sharing

A (t, n) Shamir secret sharing [44] allows a dealer to distribute a secret s among
a set of n shareholders via SS.Share(s) → s1, . . . , sn, such that it can only be
reconstructed uniquely by at least t + 1 shares SS.Combine(s′1, . . . , s

′
t+1) → s,

while no information on the secret is revealed otherwise.

Verifiable Secret Sharing (VSS). The basic (t, n) threshold secret sharing
scheme of [44] is passively secure, meaning that it works as long as the partici-
pating parties run the protocol as specified. In a Byzantine setting participants
might be malicious, so the dealer needs to convince parties about the correctness
of the sharing and parties need to convince a reconstructor about the correctness
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of their released shares. Verifiable secret sharing (VSS) does that by having the
dealer commit to the sharing and broadcast it to the parties. Starting from Feld-
man VSS [24], there have been numerous efforts in the literature to develop VSS
schemes with better efficiency in various network models. These are particularly
concerned with two aspects of VSS schemes including broadcasting a polynomial
commitment to enable share verification and having a complaint phase to deal
with any faulty/missing share.

Publicly Verifiable Secret Sharing (PVSS). To extend the scope of ver-
ifiability to the public, not only participating parties, PVSS schemes deploy
cryptographic primitives such as encryption and non-interactive zero-knowledge
proofs (NIZKs). This, in turn, enables anyone to verify the correctness of the
distribution phase by the dealer and the reconstruction phase by the set of
shareholders. The immediate consequence of public verifiability is getting rid of
the complaint phase and therefore reducing latency in VSS schemes at the cost
of incurring higher computational overhead to the protocol. A popular PVSS
scheme is SCRAPE [14] with the following abstract. To share a random secret s,
the dealer runs PVSS.Share(s, {pki}i∈[n]) and outputs encrypted shares {ŝi}i∈[n]

with a proof of correctness πs. This proof enables anyone to verify the consistency
of the shares (i.e., they are evaluations of the same polynomial) and the validity
of the ciphertexts (i.e., they contain valid shares). Each shareholder can invoke
PVTSS.Decshare(ŝi, ski) to output a decrypted share s̃i with a proof of correct-
ness πi (i.e., showing correct decryption). Upon gathering t+ 1 valid decrypted
shares, anyone can reconstruct the secret s via PVTSS.Combine(s̃1, . . . , s̃t+1).

2.3 Threshold Cryptography

Distributed Key Generation (DKG). A DKG protocol [38] shares a uni-
formly distributed secret sk among n parties such that each party receives a
partial secret key ski, a partial public key pki, and a common public key pk
while no individual party learns sk. DKGs are commonly used as a trustless
setup for threshold encryption and threshold signature schemes.

Threshold Encryption. In a (t, n) threshold encryption scheme TE, one can
run the algorithm TE.Enc(pk,m) → c to encrypt a message m under a public
key pk resulting from a DKG among a set of n parties. Each party then runs
the algorithm TE.Pardec(ski, c) using its own secret key ski to obtain a partial
decryption pdi. Finally, c can be decrypted by any threshold set of partial de-
cryptions TE.Dec(pd1, . . . , pdt+1, c). Note that it is also possible to verify partial
decryption via an additional algorithm TE.Verify(pdi, c).

Threshold Signature. In a (t, n) threshold signature scheme TS, any subset
of n parties of size t + 1 can jointly sign a message m by having each run
TS.Parsign(ski,m) to produce a partial signature psi, and then TS.Sign(ps1, . . . ,
pst+1,m) to produce the signature σ. Anyone can verify a partial signature via
TS.Parverify(pki, psi,m), and the signature via TS.Verify(pk, σ,m).
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2.4 Consensus

Consensus is a fundamental problem that aims at providing a set of n parties on
possibly different inputs with a common decision despite adversarial behavior by
at most f of them. The two core properties of a consensus protocol are safety and
liveness. The former ensures all the honest parties decide on the same value and
the latter ensures an honest party eventually decides. Byzantine broadcast is a
variant of consensus that enables a sender to send its input to the other parties
such that all the honest ones decide on the same value. The FLP impossibility
result [25] showed there is no deterministic protocol for Byzantine broadcast in
the partial synchrony (and asynchrony) tolerating even one fault. This comes
from the fact that in asynchrony it is not possible to distinguish a slow sender
from a faulty one, violating the safety in the event of making a decision or
liveness in the event of waiting to hear eventually.

State Machine Replication (SMR). Among different formulations of con-
sensus, state machine replication (SMR) [43] enables agreement on ever-growing
inputs received from external users. It can be naively instantiated by repeated
execution of a single-shot consensus protocol, enabling parties to agree on an
ordered sequence of inputs proposed by each party. Blockchain protocols imple-
ment SMR in two general forms: BFT style such as PBFT [16] or Hotstuff [49],
and longest-chain style such as Bitcoin [37] or Ethereum [47]. In the BFT style
consensus, which is the focus of this work, BFT parties (i.e., validators) get to
agree on a proposal including a batch of transactions. The protocol is typically
operated view-by-view and driven by a leader (i.e., block proposer). Although
the surge in popularity of blockchain protocols has led to considerable innova-
tions in the literature of SMR [20,45,49], the following protocol flow is a common
paradigm in almost all. First, the leader prepares a block of transactions and
sends the proposal to all the other parties. Second, each party votes on the pro-
posal if it is properly formed and sends the vote back to the leader. Third, upon
collecting n− f votes the leader creates a quorum certificate (QC) and dissemi-
nates it to the parties. This process repeats more than once in each view of the
protocol to commit. As a concrete instantiation, we deploy the recent work of
HotStuff-2 [34] that is an improvement over the original HotStuff [49] following
a two-phase commit process per view.

2.5 Memory Pool

In the context of blockchain, a memory pool or mempool refers to where the
uncommitted transactions (i.e., pending transactions) exist. The notion of en-
crypted mempool is wildly known as a countermeasure against MEV, addressing
the information asymmetry in the blockchain state between the user and the
validator via providing privacy for transactions before they are committed [42].
Among different methods in realizing an encrypted mempool, the ones with
threshold security are currently offering the most desirable qualities [28]. Low
latency, wide coverage, and reasonable performance are the main features that
have placed this approach in a promising position.



6 A. Kavousi et al.

3 MEV Mitigation with Permutation

A block proposer may take advantage of their full control over transaction or-
dering when creating a block, which can lead to unfair advantages and unin-
tended profits. For instance, they can simply place their transaction at the top
of the block to benefit from a price slippage caused by some large trade on an
exchange. When looking closely, however, even leveraging a perfect encrypted
mempool, i.e., without any metadata leakage, cannot provide enough protec-
tion. This is due to the fact that such action does not necessarily rely on the
content of existing transactions in the mempool.

A random permutation on the set of transactions in a committed block takes
away such forced ordering. Moreover, it hampers sandwich attacks by raising
the risk of loss for the attacker. A concrete scenario would be ordering the
attacker’s back-run before its front-run, causing a loss to the attacker. In another
scenario, the attacker’s front-run might execute but another searcher ends up
making a profit by having its back-run execute prior to that of the attacker.
The Permutation should occur on the committed block so that the attacker
cannot nullify the outcome in case it happens not to be in its favor. It is also
crucial to do it safely and in a secure way. To ensure the former, the honest
validators must perform the same permutation on the same block. To ensure the
latter, the randomness seeding the permutation should be unpredictable prior to
the commit, and unbiasable by an adversary controlling the block proposer and
possibly a subset of validators. In the following section, we propose a protocol
that satisfies these properties.

3.1 Protocol Description

We present our protocol in four main steps as follows. The key point is leveraging
the finality of a BFT consensus to have each honest validator safely apply a
permutation upon commit with shared randomness computed thereafter.

Step 1 – Submission. Each user broadcasts their transaction tx to the network
of n ≥ 3f + 1 validators.

Step 2 – Committing to the total ordering. The protocol operates in views.
Let r be the current view number where a designated validator acts as the leader
to propose a block Br. The block contains a set of transactions in the mempool.
Upon receiving the second QC within the view, the proposed block Br becomes
committed by each honest validator.

Step 3 – Deriving the seed. To generate secure shared randomness we assume
validators have already run a DKG protocol.4 The randomness is securely derived
by having validators jointly produce a (t, n) threshold signature on the view
number using a unique threshold signature scheme like BLS [9], where t = 2f .
Thus, when a validator observes that the block Br has become committed, they

4 This is a common assumption made in the state-of-the-art BFT consensus including
HotStuff-2 [34].
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send a partial signature of the form H(r)ski by invoking TS.Parsign(ski, r) to
others. Let I be the set of indices of 2f + 1 valid partial signatures. Anyone
can then run TS.Sign({psi}i∈I , r) to produce the signature σr = H(r)sk using
Lagrange interpolation in the exponent. Finally, the seed for permuting block
Br is computed as seedr = H(σr), where H(·) is a cryptographic hash function.
A validator enters the next view after deriving the seed.

Step 4 – Execution. Upon computing the seed,5 each validator locally per-
forms Permute(seedr, Br) to randomly shuffle the ordering of transactions in Br,
resulting in a permuted block B′

r. The permuted block is then executed. A stan-
dard permutation algorithm is given in Appendix A.

3.2 Analysis

Lemma 1. The proposed protocol satisfies safety, liveness and a secure permu-
tation.

Proof. Safety and the liveness of the protocol follow directly from the underlying
consensus as we treat it in a black-box manner. Thanks to the finality of the BFT
consensus and the uniqueness of the threshold BLS signature, the honest valida-
tors apply the same permutation on a committed block they have already agreed
on. The seed is pseudorandom and unpredictable to the validator proposing the
block before it gets committed, guaranteeing a secure permutation.

4 BlindPerm

A broad scope of MEV comes from the availability of information about transac-
tions, either those that are already submitted on the public mempool or the ones
observed early by a capable searcher [10]. Such information could directly affect
the users by facilitating the MEV for the validator or searcher through creating
dependent transactions or even censoring an undesirable transaction. Consider
the scenario where a searcher detects a victim’s transaction and submits a corre-
sponding transaction to the mempool. Any observer may subsequently see this
opportunity and do the same. This essentially leads to reducing the effective-
ness of the permutation as the chances of the victim’s transaction getting front-
runned nevertheless increases.6 Since a sole permutation-based solution cannot
offer suitable protection in these situations, we propose BlindPerm, a frame-
work that enhances an encrypted mempool with permutation. Given that an
encrypted mempool may still leak some metadata related to identity or content,
this combination is complementary and has the additional benefit of reducing
potential negative effects, offering the best of both worlds. From the attacker’s

5 A pseudorandom generator (PRG) may apply on the seed first to produce a long
random string.

6 Any relative ordering of transactions is equally probable and having more dependent
transactions from attackers increases the overall chance of frontrunning.
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perspective, transaction permutation shifts sandwich attacks from being riskless
to being risky, and transaction blinding shifts censorship from being optional to
being all-or-nothing.

Our framework includes two categories depending on the way the permu-
tation seed is generated. The first one relies on the validators and the second
one relies on the users to contribute to the seed. Interestingly, the latter allows
obtaining the seed for free by piggybacking on the encrypted mempool. One
important consideration is to ensure a guaranteed decryption for each encrypted
transaction before a commit by validators; otherwise, it may either lead to an
encrypted transaction being buffered indefinitely [35], or the user being able to
affect the ordering according to its view of the system [5].

4.1 Seed Contribution by Validators

In this section, we extend the protocol proposed in Section 3.1 to establish an
encrypted mempool. We use threshold cryptography to let users encrypt their
transactions and validators compute the seed.

Step 1 – Submission. Each user encrypts a transaction tx under the validators’
common public key TE.Enc(pk, tx) and broadcasts the ciphertext c to the network
of n ≥ 3f + 1 validators.

Step 2 – Committing to the total ordering. The protocol operates in views.
Let r be the current view number where a designated validator acts as the leader
to propose a block Br. The block contains a set of encrypted transactions in the
mempool. Upon receiving the second QC within the view, the proposed block
Br becomes committed by each honest validator.

Step 3 – Decryption and deriving the seed. When a validator observes that
the blockBr has been committed, they produce a decryption share TE.Pardec(ski, c)
for each committed tx and a partial signature TS.Parsign(ski, r) as their contri-
bution towards the seed.7 They then send the partial decryptions together with
partial signatures to others. Each validator can obtain the transaction tx and
the seed seedr by running TE.Dec and TS.Sign upon receiving 2f+1 valid partial
contributions and enter the next view afterwards.

Step 4 – Execution. Each validator locally performs Permute(seedr, Br) to ran-
domly shuffle the ordering of transactions in the committed block Br, resulting
in a permuted block B′

r which is then executed.

4.2 Seed Contribution by Users

We now build our BlindPerm protocol with each user choosing a random symmetric-
key tx-key to encrypt a transaction and secret share the key to the validators.
Our main observation here is to generate the permutation seed as a function of

7 For ease of notation, we use the same key-pairs for both threshold encryption and
signature. However, they could be different.
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the keys tx-key corresponding to the encrypted transactions in the committed
block, e.g., XOR of all. This allows computing the seed essentially at no cost
as the validators no longer produce any threshold signature and use the keys
they already retrieved for decryption. As a result, the randomness is uniformly
distributed. To implement the secret sharing, we deploy PVSS for concreteness.
However, we remark that all the other options presented in Section 7, including
secret-sharing with post-verification, can also be used.

Step 1 – Submission. Each user picks a key tx-key to encrypt a transaction tx
and broadcasts it to the network of n ≥ 3f+1 validators. Moreover, the user runs
PVSS.Share(tx-key, {pki}i∈[n]) and broadcasts the encrypted shares {ŝi}i∈[n] and
proof πs to the validators.

Step 2 – Committing to the total ordering. The protocol operates in views.
Let r be the current view number where a designated validator acts as the leader
to propose a block Br. The block contains a set of encrypted transactions in the
mempool whose sharing has been completed at the validators. Upon receiving
the second QC within the view, the proposed block Br becomes committed by
each honest validator.

Step 3 – Decryption and deriving the seed. When a validator observes the
blockBr has been committed, they produce a decrypted share PVTSS.Decshare(ŝi, ski)
for each committed transaction tx and send it to others. Upon gathering 2f + 1
valid decrypted shares, the validator obtains tx-key using Lagrange interpola-
tion and decrypts tx. Let tx-key1, . . . , tx-keyk be the set of keys corresponding
to the valid transactions in the committed block Br. Each validator computes
the permutation seed as seedr = tx-key1 ⊕ · · · ⊕ tx-keyk and enters the next view
thereafter.

Step 4 – Execution. Each validator locally performs Permute(seedr, Br) to ran-
domly shuffle the ordering of transactions in the committed block Br, resulting
in a permuted block B′

r. The permuted block is then executed.

4.3 Analysis

Lemma 2. The proposed protocols satisfies safety, liveness and a secure permu-
tation.

Proof. The safety of the protocols directly follows from that of the underlying
consensus. Due to the robustness of the underlying threshold cryptosystems,
we are guaranteed to have enough shares for decryption and to derive the seed,
ensuring liveness. When users contribute to the seed, they secret share a random
key tx-key to the validators. The key is recovered only after committing the block
by the validators, guaranteeing the security of the permutation. Moreover, the
existence of just one non-colluding user (with validators) enables the seed to be
uniformly at random.
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5 Optimizations

Selective Encryption. Several works in the literature separate the issue of
transaction censorship from the common types of MEV that suffer user experi-
ence [28,39,46]. Following this thread we can make some bandwidth optimization
in our BlindPerm constructions, particularly the one with users’ contributions to-
wards the seed (Section 4.2). That is, only those users owning an MEV-potential
transaction encrypt and let others send their transactions in plaintext. This
stems from doing the shuffling after the commit, providing protection against
possible front-running, back-running, and sandwich attack against any encrypted
transactions. Observe that this does not affect the security of the permutation
seed for the following reason. In order for the attacker to make a profit from a
victim’s transaction tx (which we assume is encrypted) via the aforementioned
strategies, they need to ensure it is indeed included in the committed block.
This consequently guarantees that the corresponding key tx-key will be consid-
ered in the computation of the seed seed, guaranteeing uniform randomness. In
fact, even if the validator only includes one encrypted transaction (i.e., victim’s
transaction) in the block it is sufficient to ensure the security of the permutation.
However, one caveat arises when there is no encrypted transaction included in
the committed block. It basically means there is no MEV-potential transaction
in the block and thus there is no permutation seed, paving the way for the block
proposer to insert their transaction at their desired spot (refer to Section 3).

Timelock Encryption. The concept of timelock encryption or timed encryp-
tion [41] allows encrypting a message that is decryptable only after passing some
determined time. In other words, it features “encrypting to the future”. To pro-
vide a guaranteed delay, traditional schemes rely on sequential computation that
is unparallizable. Recently, Gaily et al. [26] presented a construction that offers
the same functionality without requiring any sequential computation. In fact,
it relies on an existing committee (i.e., threshold network) that produces BLS
signatures on time intervals (i.e., discrete view numbers). With the use of an
identity-based encryption scheme [8], anyone can encrypt a message to the fu-
ture under the view number as the identity that can be decrypted only after
the release of the corresponding threshold signature as the private key. Given
that we already have such threshold network producing BLS signatures in our
BlindPerm construction thanks to the validators (Section 4.1), one may leverage
it to enable users encrypt their transactions tx to any future view number of
their choice. This can be thought of as an on-chain commit-reveal realization
for the encrypted mempool [28]. Unlike existing solutions such as [18, 21, 31],
this approach does not incure latency or computational overhead to the system.
Also, this can pose a considerable boost in communication overhead compared
to the typical threshold cryptography paradigm, as the permutation seed and
the decryption key for a given view number is only a single BLS signature. By
separating the role of validators from threshold network the privacy of trans-
actions last even against a dishonest majority of colluding validators. However,
an immediate issue that arises with a naive implementation is the possibility of
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decrypting a transaction tx at view r without having it included in the com-
mitted block by the block proposer, making it vulnerable to MEV extraction
afterwards. Moreover, the knowledge of the view number towards which trans-
actions are encrypted may lead to the validator censor the ones encrypted to a
certain view number. Fixing these issues without sacrificing the efficiency could
be an interesting research question.

Communication-efficient PVSS. SCRAPE [14] is a state-of-the-art PVSS
with the following sharing procedure PVSS.Share. The dealer samples a uniform

value s
$← Zq, sets the secret as a group element of form S = hs, splits s into

shares {si}i∈[n] using Shamir secret sharing, and computes the encrypted shares
under parties’ public keys {ŝi = pki

si}i∈[n]. The dealer also publishes commit-
ment to shares and O(n)-sized NIZK proofs πs with individual shares as their
witnesses, enabling anyone to check the correctness of sharing with a linear cost.
The recent work of [15] introduces efficiency optimizations over SCRAPE to re-
duce its communication and computation complexities. In particular, the dealer
needs to send just O(1)-sized proof of correctness with no public commitments,
making the overhead close to optimum [15]. They managed to achieve these
efficiencies thanks to making two modifications in the usual model of PVSS,
including assigning key pairs to the dealer and doing secret sharing in a group.
Fortunately, we can use such PVSS in our BlindPerm construction by accommo-
dating both modifications as the users are equipped with such key-pairs8 and
symmetric key tx-key to share could be a random group element. We now briefly
discuss the high-level idea behind the PVSS proposed in [15]. The authors ini-
tially observe that it is possible to check the correctness of sharing in SCRAPE
without the involvement of the shareholders’ key-pairs. To do so, each encrypted
share should be of form Ŝi = Si ·pkiskD , establishing a shared Diffie-Hellman key
between the dealer and each shareholder to communicate the share. This then
turns out to be useful in allowing the dealer to produce one NIZK proof with its
secret key skD being the witness (instead of individual shares as in SCRAPE)
to ensure the correctness of sharing as a whole. We refer the reader to [15] for
more details.

6 Discussion

Extension to Longest-chain. Permuting the committed block before execu-
tion can also be realized in the longest-chain setting. In a proof-of-work (PoW)
blockchain, the miner needs to find a solution (i.e., nonce) to a puzzle to be
eligible as the block proposer. Our idea is to use this nonce together with the
Merkle root of the transactions (and possibly some auxiliary data) as the seed
for the permutation. So, the state change occurs with regard to the permuted
block. Should a miner decide to modify the ordering of transactions in the block
after learning the seed, they face the threat of loss due to the difficulty rule

8 Such key-pairs are nevertheless needed, either ephemeral (for wallets) or registered
(for authentication).
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of the puzzle. Therefore, this method enhances the recent efforts in leveraging
trusted execution environments (TEEs), such as SGX [7], to provide privacy for
transactions up to a point where their inclusion in the block is ensured. TEEs
can be thought of as a replacement for the committee to generate a key-pair,
with the public key being used for encryption.

The above procedure cannot be directly translated to proof-of-stake (PoS)
blockchain, as the authentication is no longer based on PoW puzzle. Given that a
block proposer is chosen (pseudo) randomly, one may think of utilizing such high
entropy randomness as the seed for permutation. But, the leader already learns
this which is independent of the block content, paving the way to neutralize the
effect of permutation accordingly. Inclusion of the block content (i.e., its Merkle
root) in the leader election similar to PoW-based blockchain does not work
as the leader can simply go through many candidates to find the best fit i.e.,
grinding. In a concurrent work, Alpos et al. [3] present a construction that utilizes
permutation to prevent sandwich attacks. At a high level, a set of previous leaders
contribute towards permutation seed using a commit-reveal mechanism. They
use slashing techniques to protect against biasing and splitting the transactions
into chunks to increase the permutation space and thus protect against a possible
coalition of leaders. Consequently, the system incurs a considerable latency and
is also limited in applicability.

Pre-ordered Bundles. Private ordering refer to the process of sending the
transactions by the user directly to some trusted services known as relays, like
Flashbot [1], rather than publicly broadcasting them to the peer-to-peer network.
These services then sequence transactions in bundles and forward them to the
validators. Although these approaches can provide MEV protection for users
by hiding their transactions from public, their primary goal is to facilitate the
MEV extraction by anyone who wishes. That is, the searcher can simply use
such services to send a pre-ordered bundle of transactions (including its own
and that of the victim) to relays without taking the risk of sending over a peer-
to-peer network. It is clear that shuffling the order of transactions can be an
effective method to get rid of such bundles. On the other hand, treating them
as an object (i.e., atomic unit) while shuffling allows appreciating the interior
ordering if needed. This might protect the searcher against a front-running attack
by the validator [2]. The notion of proposer/builder separation [12] is now wildly
adopted on the Ethereum blockchain and aims at reducing the trust on relays
by decoupling the role of creating and proposing the blocks by validators.

Limitation and Future Work. Although shuffling is a powerful technique,
a block proposer may try to get around it. In an extreme scenario, they can
just put one transaction in the block to surely capture an opportunity, say an
arbitrage. They can also reduce the effect of permutation by including too many
of their own (front-running) transactions in the block. We note in both cases
one can argue that they should give up on a large portion of the transaction
fees. It is interesting to see how to sidestep such an ability, with an intuitive so-
lution would be making the block preparation decentralized. Our constructions
rely on threshold cryptosystems that are difficult to implement in the (PoS)
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longest-chain setting with a large population of parties and dynamic participa-
tion. Figuring out a design to support this setting is an exciting future work.

7 Related Work

After introducing the MEV problem in [19], a great deal of effort has appeared in
the literature to propose countermeasures in various flavors. Here we particularly
focus on the solutions at the consensus layer.

Timed-order Fairness. The consensus problem that is at the core of blockchain
protocols known as SMR, traditionally does not aim at getting parties agree
on a specific ordering, but a total ordering where all the honest parties are
guaranteed to end up with the same sequence of transactions. One way to deal
with this is to augment its requirements with an order fairness property. It
was shown by two concurrent works of [30, 33] that arguably the most natural
definition of fairness known as receive/relative order fairness is impossible to
achieve. This notion essentially states that for any two transactions tx and tx’,
if some majority of nodes receive the former sooner than the latter, tx should be
ordered before tx’. The impossibility result is due to the so-called Condorcet’s
cycle/paradox [27], preventing parties to agree on a fair ordering of transactions
even when all behave honestly [30]. 9 The impossibility result necessitates the
adoption of other variants of timed-order fairness. Kelkar et al. [30] relaxed their
definition to capture batch order fairness by making “before” to “no later”,
treating such transactions in batches with relative ordering. In fact, the batch
order fairness sidesteps the impossibility result by allowing output transactions
in batches and ignoring the possible unfairness resulting from the cycles in each
batch. Kelkar et al. [30] introduced Aequitas protocols that order a transaction
tx no later than tx’ if some fraction γ of parties receive tx before tx’, known as
γ-batch order fairness. The protocol abstractly operates in three stages. Apart
from necessitating a relaxed definition of order fairness, it turns out Condorcet
cycles may become larger arbitrarily and also negatively affect the liveness of [30],
motivating the design of a follow-up protocol called Themis [29] with a similar
spirit. Cachin et al. [13] revisits the notion of order fairness by changing the
relative measure of batch order fairness to differential order fairness, taking into
account the difference between the number of correct parties that receive a tx
before tx’ compared to that of vice versa. They argue about the usefulness of
such modification to tolerate higher fault tolerance compared to that of batch
order fairness [29, 30] with a reasonable value for parameter γ, where in their
treatment only counts the honest parties.

Blind-order Fairness. The requirement for maintaining causality in SMR sys-
tems was first put forth by [40]. They showed the importance of preserving
the casual order of users/clients’ requests and proposed adding a confidentiality
layer to the underlying atomic broadcast (i.e., SMR) to establish a secure causal

9 Such a cycle shows up intransitivity in the majoritarian relations, yielding a paradox
in selecting a single winner.
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atomic broadcast [22]. The recent efforts in literature for blind-order fairness are
essentially an extension of this approach, realizing the confidentiality layer with
a range of new cryptographic tools and techniques. In [50], validators just carry
out the consensus to commit a block of encrypted transactions where a sepa-
rate secret-management committee runs the decryption per transaction. Such
separation could provide optimum fault tolerance of t < n/2 for the committee.
Fino [35] integrates the blind-order fairness into DAG-based BFT systems that
allow parallel dissemination of proposals by multiple validators, achieving high
throughput [20, 45]. The proposed blind-order fairness has a hybrid structure,
where the key for decryption is either obtained via a fast path using secret-
sharing with post-verification or a slow path using threshold decryption. The
authors in [36] develop a blind-order fairness system with minimal communica-
tion overhead, allowing users to encrypt their transactions to some future time
(i.e., view number) with the corresponding private key being released by a com-
mittee then. FairPoS [17] introduces a similar notion to blind-order fairness for
a longest-chain style consensus called input fairness. They rely on time-based
cryptography [11] to hide the content of transactions under a single unknown
key until block finalization, which consequently leads to achieving adaptive se-
curity. This is implied by the non-parallelizable sequential computation needed
for decryption, preventing the leakage of sensitive information (i.e., key ma-
terial) upon corrupting an honest party. Note that our proposed optimization
using timelock encryption share the same rationale with [17, 36] in the sense
that a single key (i.e., BLS signature) is enough for decrypting all the encrypted
transactions in a committed block.

Threshold Encrypted Mempool. Malkhi and Szalachowski [35] present four
approaches to building up an encrypted mempool with threshold security, in-
cluding threshold cryptography, VSS, secret sharing with post-verification, and
Hybrid. We present another approach using PVSS and elaborate on an optimized
variant that is relevant for this purpose. In what follows, we briefly describe the
two other approaches including secret sharing with post-verification and Hybrid.

Secret Sharing with Post-verification. VSS aims at ensuring the uniqueness,
meaning that invoking SS.Combine with any threshold number of shares results
in the same outcome, and completeness, meaning that any honest party receives
a (distinct) valid share from SS.Share. The authors in [35] adapt a technique
introduced in [48] to relax the requirements and only offer uniqueness. To do
so, the dealer runs SS.Share, combines all shares in a Merkle tree, certifies the
root, and sends with each share a proof of membership, i.e., a Merkle tree path
to the root. When a party receives a share, they should verify the Merkle tree
proof against the certified root (that is already broadcast by the dealer) before
acknowledging it. Moreover, after running SS.Combine, each party re-encodes
the Merkle tree with the reconstructed secret and compares it with the data
sent by the dealer. If the comparison fails, the dealer is faulty. Observe that
here the signed Merkle root acts as a public commitment to somewhat relax the
use of polynomial commitment. This protocol is the fastest as it uses the effi-
cient and trivial primitives. Note that the sharing completes for each transaction
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when there are n − t acknowledgments to ensure t + 1 honest validators have
received consistent shares, incurring latency. Another issue mentioned in [35] is
the possible impact of some specific subset of t+ 1 validators on the latency of
SS.Combine. More precisely, since there is no guarantee that all honest validators
receive their shares, SS.Combine may not be run by the fastest t + 1 validators
and depend on a specific subset.

Hybrid. In order to address the dependency issue, a hybrid design is proposed
where secret sharing with post-verification is augmented with threshold cryp-
tography, enabling any subset of t + 1 validators to perform the decryption.
Moreover, to maintain safety the protocol requires the results recovered from
the SS.Combine be equal to TE.Dec. To do so, each validator can make use of
t+1 secret shares or partial decryptions to check both approaches have the same
output. They just need to re-encrypt the key and re-encodes the Merkle tree and
check with those originally sent by the dealer.

8 Conclusion

We propose the use of permutation as a mitigation technique at the execution
layer against MEV, which is a topic of concern within the Web3 community.
We show how blind ordering and shuffling can enhance each other and propose
efficient constructions in the BFT style setting. When the users contribute to
the seed, our construction allows performing a secure permutation with no fur-
ther cost than creating an encrypted mempool. Moreover, we present various
optimizations and directions for future work.
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A Permutation Algorithm

Algorithm 1 Permute [4]

Input: An array a with l elements
Output: A random permutation on the array a
for i := l downto 2 by −1 do

j := Knuth-Yao(i) + 1;
swap(ai, aj);

end
Procedure: Knuth-Yao(l)
Input: A positive integer l
Output: Uniform[0, l − 1]
u := 1; x := 0;
while true do

while u < l do
u := 2u;
x := 2x+ randbit;

end
d := u− l;
if x ≥ d then

return x− d;
else

u := d;
end

end
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