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Abstract. During the pandemic, the limited functionality of existing
privacy-preserving contact tracing systems highlights the need for new
designs. Wang et al. proposed an environmental-adaptive framework
(CSS ’21) but failed to formalize the security. The similarity between
their framework and attribute-based credentials (ABC) inspires us to re-
consider contact tracing from the perspective of ABC schemes. In such
schemes, users can obtain credentials on attributes from issuers and prove
the credentials anonymously (i.e., hiding sensitive information of both
user and issuer). This work first extends ABC schemes with auditability,
which enables designated auditing authorities to revoke the anonymity
of particular issuers. For this purpose, we propose an “auditable public
key (APK)” mechanism that extends the updatable public key by Fauzi
et al. (AsiaCrypt ’19). We provide formal security definitions regarding
auditability and build our auditable ABC scheme by adding a DDH-
based APK to Connolly et al.’s ABC construction (PKC ’22). Note that
the APK mechanism can be used as a plug-in for other cryptographic
primitives and may be of independent interest. Finally, regarding contact
tracing, we refine Wang et al.’s framework and present a formal treat-
ment that includes security definitions and protocol construction. An
implementation is provided to showcase the practicality of our design.

Keywords: Attribute-Based Credentials · Auditable Public Keys · Con-
tact Tracing

1 Introduction

Contact tracing, a method that prevents diseases from spreading, faces new chal-
lenges considering new findings in epidemiology research. Proposed in [38], the
environmental-adaptive contact tracing (EACT) framework took different trans-
mission modes (i.e., droplet and airborne) and virus distribution (e.g., lifespan
and region size, which depends on environmental factors) into consideration
(Appendix A recalls the rationale behind embedding environmental factors in
contact tracing systems). However, their framework are based on an informal



2 Pengfei Wang, Xiangyu Su, Mario Larangeira, and Keisuke Tanaka

threat model and failed to unify the system syntax for different transmission
modes, hence, leaving a gap between theoretical proofs and implementations.

The similarity between their framework and a self-issuing decentralized cre-
dentials scheme [28] inspires us to turn our eyes to credentials schemes, typically
the attribute-based ones (ABC). Note that we consider ABC schemes, e.g., [26,
18], instead of more general anonymous credentials, e.g., [11–13]. This is be-
cause the capability of embedding attributes in credentials empowers contact
tracing systems to manage environmental factors as attributes. To the best of
our knowledge, this approach has seen limited exploration or association with
contact tracing in previous works despite its inherent viability1. We explain the
reason as follows. Recall that an ABC scheme involves issuers, users, and veri-
fiers. In the issuance phase, an issuer grants a credential to a user on the user’s
attributes. The user can then prove possession (showing) of the credential on
their attributes without revealing identities, but they cannot prove attributes
that are not embedded in their credentials. Hence, by building contact trac-
ing systems atop ABC schemes: (1) users can take environmental factors and
local information as attributes; (2) users can issue others credentials on these
attributes as contact records; (3) users can anonymously prove their records to
potentially malicious verifiers (in contact tracing, medical agencies). It is also
convenient to bring the broad spectrum of functionalities in ABC to contact trac-
ing, e.g., selective showing [26], proof of disjoint attributes [18], issuer-hiding [6,
18], delegation [4], traceability [32], etc.

Moreover, the security of ABC, i.e., anonymity and unforgeability, can also
be adapted to contact tracing (as we will show in Section 4.2)2. Intuitively,
given any honest user’s showing of contact records, anonymity prevents other
users and medical agencies (even if they collude) from identifying the user or
learning anything except what is intentionally revealed by the user. Whereas,
unforgeability guarantees that no user can perform a valid showing if she does not
possess a corresponding contact record (i.e., a credential issued by another user
according to some committed attributes, e.g., environmental factors). The two
properties resemble the “(pseudonym and trace) unlinkability” and “integrity”
of contact tracing systems proposed in [19] (more discussion in Section 4.2).

However, existing ABC schemes cannot be utilized directly to build contact
tracing systems due to the lack of tracing capability. Note that the traceability
in [32] is similar to group signatures, i.e., to revoke the anonymity of regular
users. In contrast, the traceability of contact systems should enable the issuer of
a contact record to be notified whenever the record is being shown. For example,
when two users (A and B) have contact, they first exchange contact records by
issuing each other a credential based on the contact. Then, when one user (say,

1 Silde and Strand [37] proposed a contact tracing system based on anonymous tokens,
i.e., an anonymous credential variant that does not support attributes.

2 Notably, game-based and simulation-based security definitions of contact tracing
systems have been proposed in [19, 5], respectively. This work will focus on the
game-based ones because we proceed from the perspective of ABC schemes with
game-based definitions.
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user A) is diagnosed and presents her credential issued by her counterparty (user
B) to medical agencies, user B should be able to check if the presented credential
is issued by herself. If so, user B can confirm that she had close contact with
user A. We formalize this functionality as auditability of issuers in the underlying
credentials scheme, which we call an auditable ABC.

Our approach and contributions. We show a brief image of our approach.
In order to build an auditable ABC scheme, we first propose a cryptographic
tool called the “auditable public keys (APK)” mechanism, which extends the
updatable public key given in [23]. The APK embeds extra structure in the secret
and public key pair with a new auditing key. The structure will be preserved
even after updating the public key and can be verified (we call it audit) by the
auditing key. That is, a participant who holds the auditing key corresponding to
some key pair can audit if a given public key is updated from the corresponding
public key without knowing the secret randomness in the update algorithm. Like
the updatable public key, our APK can be used as a plug-in for many different
cryptographic primitives, hence, not being limited to credentials schemes (we
show a concrete example in Appendix D).

Next, we adapt APK to the existing ABC scheme [26] and define the for-
mal syntax of our auditable ABC. We show a concrete construction for the
APK mechanism based on the matrix Diffie-Hellman problem over matrix dis-
tributions [22, 35]. We prove that our APK construction can be inserted into
the structure-preserving signatures on equivalence classes (SPS-EQ) scheme [18]
without breaking the security of the original SPS-EQ (though incurring a slight
reduction loss). By employing our modified SPS-EQ, a set-commitment scheme
from [26], and a zero-knowledge proofs of knowledge protocol [24], we present a
construction for the auditable ABC scheme.

Finally, we refine the EACT framework [38] and provide a construction based
on our auditable ABC scheme. Hence, we can unify the tracing process of the
conventional Bluetooth Low Energy (BLE)-based setting for droplet mode and
their discrete-location-tracing setting (DLT) for airborne mode. Then, we ar-
gue that the security of the refined EACT can be derived from our auditable
ABC scheme but requires sufficient adaptions, e.g., in contact tracing, the ver-
ifier of credentials may be malicious and approve falsely shown credentials. We
explain these adaptions and finally show an implementation (in Section 4.3) of
our construction on real-life Android devices to demonstrate practicality.

Our contributions. Our contributions are threefold: (1) we propose an APK
mechanism that can be used as a plug-in tool for many cryptographic primi-
tives; (2) we propose an auditable ABC scheme that inherits auditability from
APK. Then, we show concrete constructions for APK and the auditable ABC
scheme; (3) we refine and construct the EACT framework [38] based on cre-
dentials schemes. We also provide formal security definitions and implement the
construction. Additionally, we add algorithms to jPBC library [15] to support
matrix-based bilinear pairing operations during implementation.
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Related works. Despite the broad functionalities of ABC schemes, no existing
work considers the same traceability (revoking issuer’s anonymity) as in contact
tracing systems. Regarding auditability of ABC schemes, existing works [7, 17]
focused on auditing the credentials back to their holders, i.e., regular users.
Instead, our auditability intends to identify issuers. This is because, as shown
in Section 3.2, modifications are made into ABC syntax so that verifiers cannot
identify the issuer of shown credentials even if they collude with the original
issuer. However, such a property opens the gate of fabricating issuers. Hence, it
is crucial to let issuers (or designated third parties chosen by the issuer, called
auditors) check if a shown credential originates from the issuer herself.

To compare with existing contact tracing systems, we consider three aspects:
(1) security (i.e., anonymity/unlinkability and tracing-soundness/integrity); (2)
extensibility (e.g., the capability of handling different transmission modes and
environmental factors); (3) efficiency (e.g., requiring BLE handshakes during the
recording phase or not). We notice that these requirements may contradict each
other (in fact, unlinkability and integrity may also have contradictions [19]). For
example, as mentioned above, revealing more data (extensibility) inevitably in-
curs breaches in anonymity (security). Then, to fix such breaches, we have to rely
on heavy mechanisms that burden the system’s efficiency. In the following, we
evaluate several cryptographic contact tracing systems to prove our observation.

A simple paradigm of contact tracing utilizes symmetric primitives (e.g.,
pseudo-random permutations/functions/generators (PRP/PRF/PRG) [2, 1] and
hash functions [14]) to generate period-specific keys and pseudonyms (here, the
period can be several hours or days). As shown in [19], these systems can achieve
unlinkability (i.e., period-specific pseudonyms are unlinkable) due to the pseudo-
randomness of the underlying building blocks; and integrity (i.e., no adversary
can forge recorded pseudonyms to trigger users’ tracing) due to the pre-image
resistance of these primitives; but suffer from the relay (and replay) attacks
(i.e., the adversary can relay or replay previous records to break integrity) [17]
because users cannot tell if a pseudonym has been presented or not (without
checking timestamps). The simplicity of this paradigm allows us to construct
highly efficient systems. However, the simplicity also prevents us from recording
anything but pseudonyms, hence, limiting the extension capability.

One method to enhance the aforementioned systems is to use re-randomizable
primitives (e.g., signature schemes) as in [34, 38] and in our work. Concretely, a
user obtains a piece of authorized information (in most cases, a signature) from
her counterparty (in [38], the counterparty can be regarded as the user herself)
during a close contact, and then presents an updated (re-randomized) signature
to medical agencies when she is diagnosed. This approach achieves unlinkability
from the re-randomizability of the building blocks; and integrity from unforge-
ability. Previous works [34, 38] consider semi-honest verifiers (medical agencies)
who only approve valid signatures to extend the bulletin board. Hence, they can
prevent the relay and replay attacks by requiring additionally the freshness of
signatures.
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Moreover, Wang et al. [38] demonstrate with the environmental-adaptive
framework that contact tracing systems can handle more useful information
to enhance tracing precision (as explained in Appendix A). Their drawback
is that users must reveal all attributes to verifiers during the tracing phase.
We push forward their idea of utilizing credential schemes and add selective
showing capability to our system. Hence, users in our system only reveal what
is necessary for deciding close contacts without leaking any other information.
However, extensions come with associated costs: our system requires handshakes
during BLE scanning (same to [34]) and is built atop pairing-based primitives
(same to [38] and the third construction given in [14]).

Inherently shown in [1, 14], where authors present various constructions of
contact tracing systems with varying levels of security and efficiency, the trade-
off among these requirements (security, extensibility, and efficiency) prevents
us from finding the ultimate solution for contact tracing. We argue that our
system is secure despite handling more sensitive data; is extensible to tackle new
epidemiology findings; and is efficient enough to be implemented in real life.

Organization. We organize the content as follows. First, we present the nec-
essary general building blocks and assumptions in Section 2. Section 3 formally
introduces our first contribution, i.e., an APK mechanism and an auditable ABC
scheme. We show constructions and give security proofs to these schemes. Sec-
tion 4 shows a construction for our refined EACT framework based on auditable
ABC, argues its security, and provides implementation results. Finally, Section 5
concludes this work.

2 Preliminaries

Notation. Throughout this paper, we use λ for the security parameter and negl(·)
for the negligible function. PPT is short for probabilistic polynomial time. For an

integer q, [q] denotes the set {1, . . . , q}. Given a set A, x
$← A denotes that x is

randomly and uniformly sampled from A; whereas, for an algorithm Alg, x← Alg
denotes that x is assigned the output of an algorithm Alg on fresh randomness.
Let Alg1,Alg2 be two algorithms, ⟨Alg1,Alg2⟩ denotes a potentially interactive
protocol between the two algorithms. Let H denote a collision-free hash function.
For an additive group G, G∗ denotes G \ {0G}. For a set A ⊆ Zp, we refer to a

monic polynomial of order |A| defined over Zp[X], ChA(X)
∆
= Πx∈A(X − x) =∑|A|

i=0 ci ·Xi as A’s characteristic polynomial.

We denote the asymmetric bilinear group generator as BG ← BGGen(1λ)

where BG
∆
= (p,G1,G2,GT , P1, P2, e). Here,G1,G2,GT are additive cyclic groups

of prime order p with ⌈log2 p⌉ = λ, P1, P2 are generators of G1,G2, and e :
G1 × G2 → GT is a type-3, i.e., efficiently computable non-degenerate bilinear
map with no efficiently computable isomorphism between G1 and G2. For an
element a ∈ Zp and i ∈ {1, 2}, [a]i denotes aPi ∈ Gi as the representation of
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a in group Gi. As mentioned in [18], for vectors or matrices A,B, the bilinear
map e computes e([A]1, [B]2) = [AB]T ∈ GT .

General building blocks and assumptions. This work takes the black-

box use of three cryptographic primitives: (1) a digital signature scheme SIG
∆
=

(KGen,Sign,Verify) that satisfies correctness and existentially unforgeability un-
der adaptive chosen-message attacks (EUF-CMA) [29]; (2) a set-commitment

scheme SC
∆
= (Setup,Commit,Open,OpenSubset,VerifySubset) that satisfies cor-

rectness, binding, subset-soundness, and hiding [26]; (3) a zero-knowledge proofs
of knowledge (ZKPoK) protocol Π that satisfies completeness, perfect zero-
knowledge, and knowledge-soundness [24]. The formal definitions of these prim-
itives can be found in Appendix B.

Moreover, we assume the following assumptions hold over matrix distribu-
tion: the matrix decisional Diffie-Hellman (MDDH) assumption [22] and the
kernel matrix Diffie-Hellman (KerMDH) assumption [35]. We also assume the
Diffie-Hellman (DDH) assumption and the q-co-discrete-logarithm (q-co-DL) as-
sumption holds over bilinear groups.

Definition 1 (Matrix Distribution). Let l, k ∈ N with l > k. Dl,k is a matrix
distribution that outputs matrices in Zl×k

p of full rank k in polynomial time. We

further denote Dk
∆
= Dk+1,k.

Let BGGen be the bilinear group generator that outputs BG = (p,G1,G2,GT ,
P1, P2, e) and Dl,k be a matrix distribution.

Definition 2 (Dl,k-MDDH Assumption). The Dl,k-MDDH assumption holds
in group Gi ∈ BG where i ∈ {1, 2, T} relative to BGGen, if for all BG ←
BGGen(1λ),A

$← Dl,k,w
$← Zk

p,u
$← Zl

p and all PPT adversary A, the following
advantage is negligible of λ:

AdvMDDH
Dl,k,Gi

= |Pr[A(BG, [A]i, [Aw]i) = 1]− Pr[A(BG, [A]i, [u]i) = 1]|.

Definition 3 (Dl,k-KerMDH Assumption). The Dl,k-KerMDH assumption
holds in group Gi ∈ BG where i ∈ {1, 2} relative to BGGen, if for all BG ←
BGGen(1λ),A

$← Dl,k and all PPT adversary A, the following advantage is
negligible of λ:

Pr[[x]3−i ← A(BG, [A]i]) : e([x
⊤]3−i, [A]i) = [0]T ∧ x ̸= 0)].

Definition 4 (DDH Assumption). The DDH assumption holds in Gi ∈ BG

where i ∈ {1, 2} for BGGen, if for all BG ← BGGen(1λ), x, y, z
$← Zp and all

PPT adversary A, the following advantage is negligible of λ:

|Pr[A(BG, xPi, yPi, xyPi) = 1]− Pr[A(BG, xPi, yPi, zPi) = 1]|.

Definition 5 (q-co-DL Assumption). The q-co-DL assumption holds for BGGen,

if for all BG← BGGen(1λ), a
$← Zp and all PPT adversary A, the following ad-

vantage is negligible of λ:

Pr[a′ ← A(BG, ([aj ]1, [aj ]2)j∈[q] : a
′ = a].
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3 Auditable Attribute-Based Credentials Scheme

This section first presents an auditable public key (APK) mechanism, then an
APK-aided ABC scheme, which will be the main building block of our refined
environmental-adaptive contact tracing framework.

Conventionally, an attribute-based credentials (ABC) scheme involves three
types of participants: Issuer (also called organization), user, and verifier. An
issuer grants credentials to a user on the user’s attributes. The user can then
prove possession of credentials with respect to her attributes to verifiers. The
basic requirements of a secure ABC include correctness, anonymity, and unforge-
ability [26]. On a high level, correctness guarantees that verifiers always accept
the showing of a credential if the credential is issued honestly; Anonymity pre-
vents verifiers and (malicious) issuers (even by colluding) from identifying the
user or exposing information during a showing against the user’s will; Unforge-
ability requires that users (even by colluding) cannot perform a valid showing
of attributes if the users do not possess credentials for the attributes.

The recent specifications of decentralized identifiers and verifiable creden-
tials [36, 33] refueled the interest of the community in researching ABC schemes.
New functionalities, as shown in Section 1, have been proposed to broaden the
application of ABC schemes. Abstracted from the demands of contact tracing
systems, we propose yet another functionality, i.e., the auditability, that enables
designated users to verify the particular issuer of a shown credential. In order
to present our scheme, we first introduce the notion of the auditable public key
(APK) mechanism that extends the updatable public key [23]. Then, we employ
APK and present our auditable ABC scheme.

3.1 Auditable Public Keys

Proposed in [23], the updatable public key mechanism is a generic tool that can
be integrated into many cryptographic primitives, e.g., digital signature and pub-
lic key encryption schemes. The mechanism enables public keys to be updated
in a public fashion, and updated public keys are indistinguishable from freshly
generated ones. The verification of public keys either requires the correspond-
ing secret key (verifying the key pair) or the randomness used in the updating
algorithm. However, these approaches are insufficient in multi-user cases, e.g.,
in credentials schemes and contact tracing systems. The reasons are: (1) secret
keys should only be known to their holders; (2) asking the user who runs the up-
dating algorithm to store its random value or keep the value secret may require
impractical assumptions (e.g., assuming every user to be honest).

Therefore, we propose an APK mechanism to extend the updatable public
key by embedding a structure represented by an auditing key into public keys.
The structure enables designated third parties who hold the auditing key, the
auditors, to decide whether a public key is updated from the corresponding
public key of the auditing key. Moreover, we require that no auditor can learn
the corresponding secret key of its auditing key. Hence, we separate the role of
users, i.e., a user can delegate her capability of auditing to an auditor without
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revealing the secret key, and a user who performs the updating algorithm can
discard her randomness without the concern of being asked to provide it.

The formal syntax and security definitions of APK are given in the following.
We recall and extend the definitions from [23].

Definition 6 (Auditable Public Key Mechanism). An auditable public key

(APK) mechanism involves a tuple of algorithms APK
∆
= (Setup,KGen,Update,

VerifyKP,VerifyAK,Audit) that are performed as follows.

– Setup(1λ) takes as input the security parameter λ and outputs the public pa-
rameter pp that includes secret, public and auditing key space SK,PK,AK.
These are given implicitly as input to all other algorithms;

– KGen(pp) takes as input the public parameter pp and outputs a secret and
public key pair (sk, pk) ∈ SK×PK, and an auditing key ak ∈ AK. Later, we
omit pp in algorithm inputs;

– Update(pk; r) takes as input a public key pk and a randomness r. It outputs a
new public key pk′ ∈ PK;

– VerifyKP(sk, pk′, r) is deterministic, and takes as input a secret key sk ∈ SK,
a value r and a public key pk′ ∈ PK. It outputs 1 if pk′ ← Update(pk; r) given
(sk, pk, ·)← KGen(pp), or 0 otherwise;

– VerifyAK(sk, ak) is deterministic, and takes as input a secret key sk ∈ SK and
an auditing key ak ∈ AK. It outputs 1 if (sk, ·, ak)←KGen(pp), or 0 otherwise;

– Audit(ak, pk′, pk) is deterministic and is performed by a designated auditor
who holds the auditing key ak ∈ AK of a secret and public key pair (sk, pk) ∈
SK×PK. Audit takes as input a public key pk′ ∈ PK, the auditing key ak and
the public key pk. It outputs 1 if pk′ is updated from pk, i.e., there exists r
such that pk′←Update(pk; r), or 0 otherwise.

APKmechanism satisfies correctness, indistinguishability, and unforgeability.

Definition 7 (Correctness). An APK mechanism satisfies perfect correctness
if the following properties hold for any λ > 0, pp← Setup(1λ), and (sk, pk, ak)←
KGen(pp): (1) the update process verifies, i.e., VerifyKP(sk,Update(pk; r), r) = 1;
(2) the auditing key verifies, i.e., VerifyAK(sk, ak) = 1; (3) the auditing process
verifies, i.e., Audit(ak, pk′, pk) = 1 for any pk′ ← Update(pk).

The indistinguishability of APK follows [23], i.e., no adversary can distin-
guish between an updated known public key and a freshly generated one. Note
that (also applies in unforgeability) the adversary can query to KGen and Update
since these algorithms are publicly available.

Definition 8 (Indistinguishability). An APK mechanism satisfies indistin-
guishability if for any PPT adversary A, the following probability holds for any
λ > 0, pp← Setup(1λ), and (sk∗, pk∗, ak∗)← KGen(pp)∣∣∣∣∣∣Pr

 b
$← {0, 1}; pk0 ← Update(pk∗);

(sk1, pk1, ak1)← KGen(pp); : b∗ = b
b∗ ← A(pk∗, pkb)

− 1

2

∣∣∣∣∣∣ ≤ negl(λ).
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We formalize two types of unforgeability, i.e., for secret key and auditing key.
Concretely, the former requires that given an auditing key with its corresponding
public key, the adversary cannot produce a secret and public key pair, and a
randomness, such that: (1) the output public key is updated from the secret
key’s corresponding public key with respect to the randomness; (2) the output
secret key and the given auditing key pass the verification given by VerifyAK;
(3) the auditing key, the output public key and the given public key pass the
auditing given by Audit. This property captures adversarial auditors who hold
an auditing key and intend to recover the corresponding secret key. Hence, it
covers the one given in [23], in which the adversary is only given a public key.

Next, the auditing key unforgeability requires that given a public key, the
adversary cannot produce an auditing key such that the corresponding secret
key of the public key verifies the auditing key. This property captures adver-
sarial participants who intend to trigger the auditing algorithm to output 1 for
arbitrary public keys. The formal definitions are as follows.

Definition 9 (Secret Key Unforgeability). An APK mechanism satisfies
secret key unforgeability if for any PPT adversary A, the following probability
holds for any λ > 0, pp← Setup(1λ), and (sk, pk, ak)← KGen(pp)

Pr

 VerifyKP(sk′, pk′, r) = 1∧
(sk′, pk′, r)← A(ak, pk) : VerifyAK(sk′, ak) = 1∧

Audit(ak, pk′, pk) = 1

 ≤ negl(λ).

Definition 10 (Auditing Key Unforgeability). An APK mechanism satis-
fies auditing key unforgeability if for any PPT adversary A, the following prob-
ability holds for any λ > 0, pp← Setup(1λ), and (sk, pk, ak)← KGen(pp)

Pr
[
ak′ ← A(pk) : VerifyAK(sk, ak′) = 1

]
≤ negl(λ).

For constructions, similar to the updatable public key [23], our APK can be
constructed from the DDH problem and its variants. Section 3.3 will show a
concrete construction based on the MDDH problem, which will further serve as
a building block for our auditable ABC scheme3.

3.2 Formal Definitions of Auditable ABC

The starting point of our auditable ABC is [26] which supports selective showing
on subsets of attributes. Then, we integrate APK by modifying the key genera-
tion algorithm of issuers and adding the auditing algorithm. Given a credential
showing, the auditing algorithm with an auditing key outputs 1 or 0 to indi-
cate whether the shown credential is issued by a secret key corresponding to the
auditing key. We show the formal syntax of auditable ABC in the following.

3 We will also give a DDH-based construction in Appendix D. There, we show an
example that utilizes the DDH-based APK to extend the famous B(G)LS signature
scheme [9, 8].
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Definition 11 (Auditable ABC Scheme). An auditable ABC scheme AABC
consists of PPT algorithms (Setup,OrgKGen,UsrKGen), two potentially interac-
tive protocols ⟨Obtain, Issue⟩ and ⟨Show,Verify⟩, and a deterministic algorithm
Audit. The participants in AABC perform as follows.

– Setup(1λ, q) takes as input the security parameter λ and the size upper bound
q of attribute sets. It outputs the public parameter pp;

– OrgKGen(pp) is executed by issuers. OrgKGen takes as input the public pa-
rameter pp. It outputs an issuer-secret and issuer-public key pair (osk, opk)
with an auditing key ak. The issuer delegates ak to users (auditors) selected
by herself (if there is none, the issuer is the auditor);

– UsrKGen(pp) is executed by users. UsrKGen takes as input the public parameter
pp. It outputs a user-secret and user-public key pair (usk, upk). Later, we omit
pp in algorithm inputs;

– ⟨Obtain(usk, opk, A), Issue(upk, osk, A)⟩ are PPT algorithms executed between
a user and an issuer, respectively. Obtain takes as input the user-secret key
usk, the issuer-public key opk and an attribute set A of size |A| ≤ q; Issue takes
as input the user-public key upk, the issuer-secret key osk and the attribute set
A. Obtain returns cred on A to the user, and cred =⊥ if protocol execution
fails. The protocol outputs (cred, I) where I denotes the issuer’s transcript;

– ⟨Show(opk, A,D, cred),Verify(D)⟩ are executed between a user and a verifier,
respectively, where Show is a PPT algorithm, and Verify is deterministic. Show
takes as input an issuer-public key opk, an attribute set A of size |A| ≤ q, a
non-empty set D ⊆ A representing the attributes to be shown, and a credential
cred; Verify takes as input the set of shown attributes D. Verify returns 1
if the credential showing is accepted, or 0 otherwise. The protocol outputs
(S, b) where S denotes the showing (user’s transcript), and b ∈ {0, 1}. For
convenience, we also write b← ⟨Show,Verify⟩(S);

– Audit(ak, S, opk) is executed by a designated auditor with an auditing key ak
such that corresponding issuer-key pair is (osk, opk). Audit also takes as input
a showing of credential (S, ·) ← ⟨Show,Verify⟩ and the issuer-public key opk.
It outputs 1 if the shown credential is issued with osk, or 0 otherwise.

In addition to the auditing process, we make two modifications to the ABC
scheme from [26]. First, we write protocol transcriptions of ⟨Obtain, Issue⟩ and
⟨Show,Verify⟩ explicitly in our syntax concerning that the application in contact
tracing may involve non-interactive proofs and require some transcripts to be
publicly accessible (Section 4.1). In contrast, the previous works [26, 18] only
mentioned them in security definitions.

Second, our Verify algorithm of ⟨Show,Verify⟩ takes as input only the attribute
sets to be shown. In contrast, the original scheme also takes the issuer-public key
opk of the Show algorithm. Their purpose is to prevent credentials from being
issued by unidentified issuers. However, as shown in [18], the exposure of the
issuer identity affects the users’ anonymity. Although some previous works [6, 18]
proposed the issuer-hiding property so that users can hide their credential issuers’
identities within a list of identified issuers, achieving such security incurs heavy
mechanisms. Here, we rely on the Audit algorithm to provide an extra verification
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layer. That is, given an updated issuer-public key in a credential showing, the
auditor who holds an auditing key corresponding to an identified public key must
prove whether the shown credential is issued by the corresponding secret key.

Security properties. We formally define correctness, anonymity, and unforge-
ability (two types) for our auditable ABC scheme. Concretely, correctness re-
quires auditors to output 1 on any valid showing of credentials if the credential
was issued by the corresponding secret key of the auditing key. The unforgeabil-
ity game grants its adversary access to auditing keys. In the following, we omit
pp if the algorithm takes as input other variables.

Definition 12 (Correctness). An AABC scheme satisfies perfect correctness,
if the following properties hold for any λ > 0, q > 0, any non-empty sets
A,D such that |A| ≤ q and D ⊆ A, and pp ← Setup(1λ, q), (osk, opk, ak) ←
OrgKGen(pp), (usk, upk) ← UsrKGen(pp), (cred, ·) ← ⟨Obtain(usk, opk, A), Issue(
upk, osk, A)⟩: (1) the credential showing verifies, i.e., (·, 1) ← ⟨Show(opk, A,D,
cred),Verify(D)⟩; (2) if the credential showing is accepted, the auditing verifies,
i.e., Audit(ak, S, opk) = 1 for any (S, 1)← ⟨Show,Verify⟩.

For anonymity and unforgeability, we follow the approach given by [26], in
which adversaries can corrupt some participants. We first introduce the following
lists and oracles to model the adversary.

Lists and oracles. At the beginning of each experiment, either the experiment
generates the key tuple (osk, opk, ak), or the adversary outputs opk. The sets
HU,CU track all honest and corrupt users. We use the lists USK,UPK,CRED,
ATTR,OWNER to track user-secret keys, user-public keys, issued credentials with
the corresponding attribute sets, and the users who obtain the credentials. In
the anonymity games, we use JLoR, ILoR to store the issuance indices and the
corresponding users that have been set during the first query to the left-or-right
oracle. The adversary is required to guess a bit b.

Considering a PPT adversary A, the oracles are listed in the following. Note
that we add the OAudit oracle for the unforgeability experiment.

– OHU(i) takes as input a user index i. If i ∈ HU ∪ CU, the oracle returns ⊥;
Otherwise, it creates a new honest user i with (USK[i],UPK[i])← UsrKGen(pp)
and adds the user to the honest user list HU. It returns UPK[i] to the adversary.

– OCU(i, upk) takes as input i and (optionally) a user public key upk. If i ∈ CU
or i ∈ ILoR, the oracle returns ⊥; If i ∈ HU, it moves i from HU to CU and
returns USK[i] and CRED[j] for all j such that OWNER[j] = i; If i /∈ HU∪CU,
it adds i to CU and sets UPK[i] = upk.

– OObtIss(i, A) takes as input i and a set of attributes A. If i /∈ HU, the oracle re-
turns ⊥; Otherwise, it generates a credential with (cred,⊤)← ⟨Obtain(USK[i],
opk, A), Issue(UPK[i], osk, A⟩). If cred =⊥, the oracle returns ⊥; Otherwise, it
adds (i, cred, A) to (OWNER,CRED,ATTR) and returns ⊤.

– OObtain(i, A) takes as input i and A. If i /∈ HU, the oracle returns ⊥; Oth-
erwise, it runs (cred, ·) ← ⟨Obtain(USK[i], opk, A), ·⟩ by interacting with the
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adversary A running Issue. If cred =⊥, the oracle returns ⊥; Otherwise, it
adds (i, cred, A) to (OWNER,CRED,ATTR) and returns ⊤.

– OIssue(i, A) takes as input i and A. If i /∈ CU, the oracle returns ⊥; Otherwise,
it runs (·, I)← ⟨Obtain(USK[i], opk, A), ·⟩ by interacting with the adversary A
running Obtain. If I =⊥, the oracle returns ⊥; Otherwise, it adds (i,⊥, A) to
(OWNER,CRED,ATTR) and returns ⊤.

– OShow(j,D) takes in the index j and a set of attributesD. Let i = OWNER[j], if
i /∈ HU, the oracle returns ⊥; Otherwise, it runs (S, ·)← ⟨Show(opk,ATTR[j],
D,CRED[j]), ·⟩ by interacting with the adversary A running Verify.

– OAudit(S) is an oracle that holds public and auditing keys for all identified is-
suers. Given a showing transcript of a credential S, it runs b← ⟨Show,Verify⟩(S).
If there exists opk and ak pair such that Audit(ak, S, opk)=1, the oracle returns
(opk, b, 1) to the adversary; Otherwise, it returns ⊥.

– OLoR(j0, j1, D; b) takes as input two issuance indices j0, j1, a set of attributes

D and a challenge bit b
$← {0, 1}. If JLoR ̸= ∅ and JLoR ̸= {j0, j1}, the oracle

returns ⊥. Let i0 = OWNER[j0], i1 = OWNER[j1]. If JLoR = ∅, it sets JLoR =
{j0, j1}, ILoR = {i0, i1}. If i0, i1 /∈ HU orD ⊈ (ATTR[j0]∩ATTR[j1]), the oracle
returns ⊥; Otherwise, it runs (Sb, ·)← ⟨Show(opkb,ATTR[jb], D,CRED[jb]), ·⟩
by interacting with the adversary A running Verify.

Then, the formal definitions are as follows.

Definition 13 (Anonymity). An AABC scheme satisfies anonymity if for any
PPT adversary A that has access to oracles O = {OHU,OCU,OObtIss,OIssue,OShow,
OLoR}, the following probability holds for any λ, q > 0, pp← Setup(1λ, q):∣∣∣∣∣∣Pr

 (opk0, opk1, st)← A(pp);
b

$← {0, 1}; : b∗ = b
b∗ ← AO(st)

− 1

2

∣∣∣∣∣∣ ≤ negl(λ).

Note that we modify the Verify in ⟨Show,Verify⟩ so that it does not take
as input issuer-public keys. Hence, our anonymity also captures the indistin-
guishability of these keys. The definition above is arguably more close to the
unlinkability from [6] because the OLoR oracle runs the Show algorithm with

opkb according to the challenge bit b
$← {0, 1}.

Definition 14 (Unforgeability). An AABC scheme satisfies unforgeability, if
for any PPT adversary A that has access to oracles O = {OHU,OCU,OObtIss,OIssue,
OShow,OAudit}, the following probability holds for any λ > 0, q > 0, pp← Setup(1λ, q),
and (osk, opk, ak)← OrgKGen(pp)

Pr

[
(D, st)← AO(opk, ak); : b = 1 ∧ If OWNER[j]∈CU,
(S, b)← ⟨A(st),Verify(D)⟩ D/∈ATTR[j]

]
≤ negl(λ).

Like APK, unforgeability regarding to auditing keys is needed. A user should
not recover the auditing key of a given public key even after querying the auditing
oracles on other key tuples for polynomial times. Since the adversary can run
key generation on its own in APK, the auditing unforgeability of auditable ABC
is equivalent to the auditing key unforgeability in Definition 10.
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3.3 Our Constructions and Analysis

Our auditable ABC construction has the same approach of [18], relying on
a structure-preserving signatures on equivalence classes (SPS-EQ) and a set-
commit schemes. We extend their ABC construction with our APK mechanism.

An MDDH-based APK construction. In order to work with the ABC
scheme (precisely, the SPS-EQ) given in [18], the setup algorithm Setup runs

BG ← BGGen(1λ) and samples a matrix A
$← D1. It outputs pp

∆
= (BG, [A]2, ℓ)

where BG = (p,G1,G2,GT , P1, P2, e), and ℓ is a parameter for message size in
the SPS-EQ. We present a construction of APK based on group (G2, P2, p) where
the MDDH and KerMDH assumptions are believed to hold.

Construction 1 (MDDH-Based APK APK) The rest of the algorithms are:

– KGen(pp): Sample matrices K0
$← Dℓ,2 and K1

$← Z2×2
p of full rank 2. Set

K = K0K1. Then, compute [B]2 = [K1A]2 and [C]2 = [KA]2. Finally, set
sk = (K1,K), pk = ([B]2, [C]2), ak = K0 and output (sk, pk, ak);

– Update(pk; r): Sample r
$← Zp and compute [B′]2 = r · [B]2, [C

′]2 = r · [C]2.
Output pk′ = ([B′]2, [C

′]2);
– VerifyKP(sk, pk′, r): Parse sk = (sk0, sk1) and pk′ = (pk′0, pk

′
1). Output 1 if

pk′0 = r · sk0 · [A]2 ∧ pk′1 = r · sk1 · [A]2, or 0 otherwise;
– VerifyAK(sk, ak): Parse sk = (sk0, sk1). Output 1 if sk1 = ak · sk0, or 0 other-

wise;
– Audit(ak, pk′, pk): Parse pk′ = (pk′0, pk

′
1), pk = (pk0, pk1). Output 1 if pk1 =

ak · pk0 ∧ pk′1 = ak · pk′0, or 0 otherwise.

Hence, we have the following theorem.

Theorem 1. The APK mechanism APK given by Construction 1 satisfies the
following properties.

– Correctness (Definition 7);
– Indistinguishability (Definition 8) if the Dl,1-MDDH assumption where l ∈
{2, ℓ} holds on G2;

– Secret key and auditing key unforgeability (Definition 9 and 10) if the D1-
KerMDH holds on G2.

Proof. On the additive cyclic group G2, APK correctness can be yielded directly
from our construction. To prove indistinguishability, let pp ← Setup(1λ) where
pp = (BG, [A]2, ℓ) are given as above. The reduction receives an MDDH challenge

over G2, chl = (P2, [X]2, [z]2) where X
$← Dl,1. According the challenge bit b ∈

{0, 1}, z is set to Xy with y
$← Zp (when b = 0) or z

$← Zl
p (when b = 1). l takes

its value from {2, ℓ} because the two components in a public key, [B]2 and [C]2,
are matrices of size 2×1 and ℓ×1, respectively. Note that the reduction needs
to prepare both components of the public key. That is, it samples a full-ranked
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X′ $← Zl′×l
p such that l′ ∈ {2, ℓ} ∧ l′ ̸= l, and embeds the MDDH challenge chl

by setting pk∗
∆
= ([X]2,X

′[X]2) and pk′
∆
= ([z]2,X

′[z]2). The indistinguishability
adversary A takes as input (pk∗, pk′). If the challenge tuple satisfies [z]2 = [Xy]2
(when b = 0), then pk′ is distributed identically to pk0 (pk0 ← Update(pk∗),
the adversary will output b∗ = 0). Otherwise (when b = 1), pk′ is distributed
identically to pk1 (a freshly generated public key, the adversary outputs b∗ = 1).
Therefore, the reduction has the same advantage in the Dl,1-MDDH (l ∈ {2, ℓ})
game as the adversary in the indistinguishability game of Definition 8.

The proofs of two types of unforgeability are similar. For secret key unforge-
ability, the reduction receives a KerMDH challenge over G2, chl = (P2, [A]2)

where A
$← D1. The reduction prepares the inputs for the unforgeability adver-

sary A. That is, it samples K0
$← Dℓ,2 and K1

$← Z2×2
p of full rank 2. Then, let

[X]2 = [K1A]2, the reduction embeds the challenge chl by setting ak
∆
= K0 and

pk
∆
= ([X]2, [K0X]2). Hence, the input to the adversary in the reduction is dis-

tributed identically as in the definition of unforgeability. Suppose the adversary
A breaks secret key unforgeability, which means that VerifyKP,VerifyAK,Audit
verify the output tuple (sk′, pk′, r). More precisely, parse sk′ = (sk′0, sk

′
1), it holds

that sk′0[A]2 = [X]2 = [K1A]2 and sk′1[A]2 = [K0X]2. If the adversary can
find a non-zero vector sk′0 −K1 in the kernel of A, it can break the secret key
unforgeability. However, finding sk′0 is equivalent to solving a D1-KerMDH prob-
lem (with sk′0, the reduction outputs [sk′0 −K1]1 to the KerMDH challenge and
e([sk′0 −K1]1, [A]2) = [0]T ). Thus, the reduction advantage in the D1-KerMDH
game is the same as the adversary in the secret key unforgeability game.

Similarly, the auditing key unforgeability reduction receives a KerMDH chal-
lenge over G2, chl = (P2, [X]2) where X ∈ D1. The reduction samples K0 ∈ Zℓ×2

p

of full rank 2 and relays (P2, [X]2, [K0X]2) to the adversary. Hence, the input
of the adversary, i.e., pk = ([X]2, [K0X]2), distributes identically to the defini-
tion. Suppose the adversary A breaks auditing key unforgeability, which means
it finds ak′ such that VerifyAK(sk, ak′) = 1. Note that although the reduction
cannot prepare the corresponding secret key, the structure preserves in the pub-
lic key, i.e., the adversary must output a non-zero ak′ −K0 in the kernel of X.
As explained before, the reduction cannot gain advantages in the D1-KerMDH
game by invoking the auditing key unforgeability adversary.

An auditable ABC construction. Before we present the full construction of
our auditable ABC scheme, we first recall briefly the SPS-EQ scheme from [18]
(the construction and security definitions can be found in Appendix C). We will
note that the key generation in their construction differs from our APK.KGen.
Hence, by further proving that the change only incurs slightly more advantage to
the adversary in the original scheme, we show that our modification preserves the
security definitions of the SPS-EQ. Moreover, as proven before, our modification
also satisfies the security of the APK mechanism.
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Extending the SPS-EQ [18]. We show the original key generation of the SPS-EQ
in the following. Recall that the Setup algorithm outputs pp = (BG, [A]2, ℓ).

– SPSEQ.KGen(pp): Sample matrices K1
$← Z2×2

p and K
$← Dℓ,2 of full rank

2. Then, compute [B]2 = [K1A]2 and [C]2 = [KA]2. Finally, set sk = (K1,
K), pk = ([B]2, [C]2) and output (sk, pk).

The only difference here is that we further sample K0
$← Dℓ,2 of full rank 2

and compute K by the multiplication of K0 and K1. In the following lemma,
we show that this change only increases the SPS-EQ adversary’s advantage by
at most the advantage of solving a Dℓ,2-MDDH problem over G2.

Lemma 1. Replacing SPSEQ.KGen with APK.KGen in the SPSEQ scheme given
in Construction 4 (Appendix C) preserves the correctness, EUF-CMA and perfect
adaption of signatures with respect to message space of the original scheme.

Proof. Correctness is straightforward as proven in Theorem 1. We unify the
proofs of EUF-CMA and perfect adaption of signatures with respect to mes-
sage space by considering a sequence of two games: Game1 is the EUF-CMA
and perfect adaption of signatures with respect to message space games for the
original SPS-EQ scheme with SPSEQ.KGen given in Definition 28 and 29 (in
Appendix C); and Game0 substitutes SPSEQ.KGen with our APK mechanism’s
APK.KGen. Hence, Game0 is the game for our modified scheme. We further de-
note the adversary A’s advantage with Advi for each game Gamei where ∈ {0, 1}.
In the transition of Game0 → Game1, pkGame1 = ([K1A]2, [KGame1A]2) replaces
pkGame0 = ([K1A]2, [K0K1A]2). Note that all matrices are of full rank 2, hence,
distinguishing pkGame1 and pkGame0 is equivalent to solve a challenge of Dℓ,2-
MDDH problem (because KGame1 is an ℓ×2 matrix of full rank 2). That is,
|Adv0 − Adv1| ≤ AdvMDDH

Dℓ,2,G2
. Moreover, as shown in [18], the original SPS-EQ

scheme satisfies EUF-CMA and perfect adaption of signatures with respect to
message space. We conclude Lemma 1.

Constructing the auditable ABC. Let BGGen be the bilinear group generation,
SC=(Setup,Commit,Open,OpenSubset,VerifySubset) be the set-commitment [26]
that satisfies correctness, binding, subset-soundness and hiding (definitions given
in Appendix B.2), and Π be a general ZKPoK protocol that satisfies complete-
ness, perfect zero-knowledge and knowledge-soundness (definitions given in Ap-
pendix B.3). With the necessary algorithms from our APK mechanism and the
SPS-EQ [18], i.e., (KGen,Update,Audit)∈APK and (Setup,Sign,ChgRep,Verify)∈
SPSEQ, we show an auditable ABC AABC in the following. Note that the SPS-
EQ scheme [18] utilizes a non-interactive zero-knowledge argument (which we
take as a black-box) under the common reference string (CRS) model.

Construction 2 (Auditable ABC AABC) The algorithms are as follows.

– Setup(1λ, q): Run BG←BGGen(1λ) where BG=(p,G1,G2,GT , P1, P2, e). Sam-

ple a
$← Z∗

p and compute ([ai]1, [a
i]2)i∈[q]. Sample matrices [A]2, [A0]1, [A1]1
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$← D1, and a common reference string crs for SPSEQ. Output pp=(BG, ([ai]1,
[ai]2)i∈[q], ([A]2, [A0]1, [A1]1), crs, ℓ=3);

– OrgKGen(pp): Output (osk, opk, ak)← APK.KGen(BG, [A]2, ℓ) and delegate ak
to auditors selected by the issuer;

– UsrKGen(pp): Sample usk
$← Z∗

p and output (usk, upk = uskP1);
– ⟨Obtain, Issue⟩ and ⟨Show,Verify⟩: See Figure 1. In ⟨Obtain, Issue⟩, following

the arguments in [18], we consider malicious issuer-keys and user-keys. Hence,
both the issuer and the user should run a ZKPoK protocol to prove their public
keys to each other, i.e., Πosk(opk) and Πusk(upk) in Figure 1; Whereas, in
⟨Show,Verify⟩, the ZKPoK protocol, i.e., (π1, π2, π3)←Π(C,rC,P1)(C1, C2, C3),
proves freshness to prevent transcripts of valid showings from being replayed
by someone not in possession of the credential [26];

– Audit(ak, S, opk): Parse S=(opk′, cred′,W ;D). Return APK.Audit(ak, opk′, opk).

Therefore, we have the following result.

Theorem 2. The auditable ABC scheme AABC given by Construction 2 satis-
fies the following properties.

– Correctness (Definition 12);
– Anonymity (Definition 13) if the DDH assumption holds, the ZKPoK pro-

tocol has perfect zero-knowledge, the underlying APK satisfies indistinguisha-
bility and auditing key unforgeability, and the SPS-EQ scheme perfectly adapts
signatures with respect to message space;

– Unforgeability (Definition 14) if the q-co-DL assumption holds, the ZKPoK
protocol has perfect zero-knowledge, the set-commitment scheme SC satisfies
subset-soundness, the APK satisfies secret key unforgeability, and SPS-EQ
satisfies EUF-CMA;

– Auditing unforgeability (Definition 10) if the D1-KerMDH holds on G2.

Proof. We show a brief proof here. Correctness follows directly from the correct-
ness of building blocks. From now, we describe the proof rationale for anonymity,
unforgeability, and auditing unforgeability properties, respectively. In general, we
rely on [18] (Theorem 6 and 7) for properties of the ABC scheme and Theorem 1
for the APK part of our construction.

The proof for anonymity (Definition 13) is an adaptation of the one given
in Theorem 7 of [18]. Note there are two slight modifications to the anonymity
definition in our work: (1) the adversary in the anonymity game generates two
issuer-public keys (opk0, opk1); (2) the challenge oracle OLoR requires the adver-
sary also to distinguish under which issuer-public key is the credential issued.
To adjust the previous proof for these modifications, we first consider the two
issuer-public keys (opk0, opk1) and the updated issuer-public key in the creden-
tial showing, i.e., opk′b ← APK.Update(opkb) where b ∈ {0, 1} is the challenge bit
in OLoR. The adversary can win our introduced anonymity game if: (1) it can dis-
tinguish opk′0 from opk′1, then, the adversary can also win the indistinguishability
game of the APK mechanism given in Definition 8; (2) it can recover the corre-
sponding auditing keys (ak0, ak1) from the issuer-public keys (hence, winning the



Auditable ABC and Its Application in Contact Tracing 17

anonymity game trivially by running APK.Audit(ak∗b , opk
′
b, opkb)), which means

the adversary wins the auditing key unforgeability game of the APK mechanism
given in Definition 10. However, since the aforementioned APK properties have
been proven in Theorem 1, our defined anonymity adversary gains no advantage
over the anonymity adversary of [18].

Next, by the proof in [18], the anonymity of ABC requires that the DDH
assumption holds, the ZKPoK protocol has perfect zero-knowledge (which is
taken as a black-box in this work), and the SPS-EQ perfectly adapts signatures
with respect to message space (which has been proven in Lemma 1), thus we
conclude the anonymity part for our auditable ABC scheme.

Similarly, our proof of unforgeability (Definition 14) adapts the one given
in Theorem 6 of [18]. The only modification we make is that the unforgeability

Obtain(pp, usk, opk, A) Issue(pp, upk, osk, A)
π←Πusk(upk)←−−−−−−−→→ If Π fails, return ⊥

If Π fails, return ⊥ ←π←Πosk(opk)←−−−−−−−→
(C,O)←SC.Commit(A; usk);

r
$← Z∗p;R

∆
= rC;

(C,R)−−−−→ If e(C,P2) ̸=e(upk,ChA(a)P2

and ∀a′∈A:[a′]1=[a]1:
return ⊥. Else return:
(σ, τ)←SPSEQ.Sign(osk, (C,R, P1))

(σ,τ)←−−−
Check
SPSEQ.Verify(opk, (C,R, P1), (σ, τ));

Return cred
∆
= (C, (σ, τ), r, O)

AABC.Show(opk, A,D, cred) AABC.Verify(D)

Parse cred=(C, σ, r,O);

µ, ρ
$← Z∗p;

((C1, C2, C3), σ
′)←SPSEQ.ChgRep(
(C, rC, P1), (σ, τ), µ, ρ, opk);

(C1, C2, C3)
∆
= µ · (C, rC, P1);

cred′
∆
= (C1, C2, C3, σ

′);
opk′←APK.Update(opk, ρ);

O′
∆
= (b, µ ·O) where b∈{0, 1};

W←SC.OpenSubset(SC.pp, µC,A,O′, D)

S
∆
= (opk′, cred′,W );

(π1, π2, π3)←Π(C,rC,P1)(C1, C2, C3)
(S,π1,π2,π3)←−−−−−−−→→

If Π fails, return 0; Else return:
SPSEQ.Verify(opk′, cred′)∧
SC.VerifySubset(C1, D,W )

Fig. 1. ⟨Obtain, Issue⟩, ⟨Show,Verify⟩ in AABC.
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game provides its adversary with auditing keys. With additional auditing keys,
the adversary can win the unforgeability game if it can recover the secret key of
the underlying APK mechanism, which violates the secret key unforgeability of
APK as proven in Theorem 1. Then, by the proof in [18], the unforgeability of
ABC requires that the q-co-DL assumption holds, the ZKPoK protocol has per-
fect zero-knowledge, the set-commitment scheme SC satisfies subset-soundness
(which is also taken as a black-box in this work), and SPS-EQ satisfies EUF-
CMA (which has been proven in Lemma 1), thus we conclude unforgeability for
our auditable ABC scheme.

Finally, for the auditing unforgeability property, the adversary in the auditing
unforgeability game aims to recover the issuer-public key’s corresponding audit-
ing key. Hence, the definition is equivalent to the auditing key unforgeability of
APK (we use the same definition), which has been proven in Theorem 1.

4 Application: Contact Tracing

From the perspective of credentials, we review the environmental-adaptive con-
tact tracing (EACT) framework proposed in [38]. We provide a construction
based on our auditable ABC scheme and argue that the game-based security
definitions of auditable ABC suffice the requirements in contact tracing systems.
Finally, we implement our construction to showcase its practicality.

Overview. We start by recalling the EACT framework [38]. It utilizes a bulletin
board to store contact records, which can be instantiated by a blockchain pro-
tocol satisfying the robust ledger properties [27], i.e., the capability of achieving
immutable consensus atomically. Concerning different virus transmission modes
(droplet and airborne), EACT considered tracing approaches via Bluetooth Low
Energy (BLE) and self-reported discrete location (DLT). However, the frame-
work cannot unify the tracing approach in both settings because the recorded
data are of different structures. As we will show later, ABC schemes enable us
to circumvent this problem by regarding environmental and location data as at-
tributes. Here, for completeness, we define a comparison algorithm to decide close
contacts for BLE and DLT, i.e., Compare{BLE,DLT}(envpp, D,A) takes as input
the environmental parameters envpp, an opened attributed set D (from other
users, potentially downloaded from the bulletin board) and an attribute set A
(of the user who runs the algorithm). We say the algorithm is “well-defined” if it
outputs 1 when attributes in D and A are regarded as close contact concerning
the tracing setting in {BLE,DLT}, and 0 otherwise.

The EACT framework involves three phases: key management, recording, and
tracing, with two types of participants: user U and medical agencyM. We refine
the algorithms with respect to our auditable ABC scheme. Intuitively, in the key
management phase, users generate key pairs for participating as both issuers and
regular users. The medical agency generates its key pair from a signature scheme.
Users need to register their issuer-public keys, and medical agencies need to
register their public keys. Then, in the recording phase, when users contact (two
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users in BLE or one user in DLT), we consider a pairwise executed ⟨Obtain, Issue⟩,
i.e., each user performs as an ABC issuer to grant its counterparty (itself in DLT)
a credential on the attributes of current environmental data (or location data).
This approach in the DLT setting can be easily adapted to the case in which the
user can communicate to BLE beacons, providing additional evidence for the
user’s location data. Finally, in the tracing phase, whenever a user searches for
medical treatment, she shows her records while the agency performs verification.
The medical agency uploads records to the bulletin board (as we will show in
tracing-soundness (Definition 16), we assume a malicious agency who can upload
invalid records). Hence, users can refer to the bulletin board and audit if any
shown credential is issued by themselves. Then, by comparing the environmental
factors, they can detect close contact. The following section presents the full
construction, including our modifications to the original framework.

4.1 An Auditable ABC-Based Construction

Let SIG = (KGen,Sign,Verify) be a signature scheme that satisfies correctness
and EUF-CMA (definitions given in Appendix B.1), and let AABC be our au-
ditable ABC construction given in Construction 2.

Construction 3 (Refined EACT REACT) Our refined EACT framework in-
volves three phases, i.e., Key management: (Setup,OrgKGen,UsrKGen,MedKGen,
KReg); Recording: Exchange; Tracing: (⟨Show,Verify⟩,Merge,Trace). The algo-
rithms are performed as follows.

– Setup(1λ, q, envpp) is run by the system where envpp denotes the environmen-
tal parameters. It runs AABC.pp ← AABC.Setup(1λ, q) and outputs pp =
(AABC.pp, envpp).

– OrgKGen(pp) is run by a user and outputs (osk, opk, ak)← AABC.OrgKGen(pp).
Note that in contact tracing, we consider the user auditing for herself;

– UsrKGen(pp) is run by a user and outputs (usk, upk)← AABC.UsrKGen(pp);
– MedKGen(pp) is run by a medical agency. It outputs a medical agent key pair

with (msk,mpk)← SIG.KGen(1λ). Later, we omit pp in algorithm inputs;
– KReg(pk,misc,B) is a DID [36] black-box, which takes as input a public key

pk ∈ {opk,mpk}, auxiliary information misc, and a bulletin board B. KReg
registers pk with the corresponding misc on B.

– Exchange({(oski, opki), (uski, upki), Ai}i∈{0,1}) is an interactive protocol exe-
cuted between two users U0,U1, who may be identical, e.g., in the DLT setting.
For i ∈ {0, 1}, both users perform (credi, ·)← ⟨Obtain(uski, opk1−i, Ai), Issue(
upki, osk1−i, Ai)⟩ to grant each other a credential. The protocol outputs cred0
and cred1 for each user, respectively.

– ⟨Show,Verify⟩ is the showing and verification protocol in our auditable ABC,
which here, is executed between a user U and a medical agencyM. The protocol
outputs (S, b) ← AABC.⟨Show,Verify⟩ where S is a showing of the credential

and b ∈ {0, 1}. Note that we explicitly add revealed attributes to S, i.e., S
∆
=

(opk′, cred′,W,D). Moreover, we enable this protocol to process in batches, i.e.,
it can take a list of n credentials and verifies for each entry;
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– Merge(msk, (S, b),B) is run by a medical agency M. If b = 1, Merge runs
σ ← SIG.Sign(msk, S) and outputs B||(mpk, S, σ), or aborts otherwise;

– Trace(ak, A,B) is run by a user U with issuer-public and auditing keys opk, ak.
It parses B = {(mpkj , Sj , σj)}j∈[|B|], and for each entry, parses Sj = (opk′j ,

cred′j ,Wj , Dj). Then, for each entry, it runs b ← SIG.Verify(mpkj , Sj , σj),

and b′ ← AABC.Audit(ak, Sj , opk) (which is APK.Audit(ak, opk′j , opk)). For all
j∈[|B|] such that b=1∧b′=1, it compares according to environmental parame-
ters and tracing settings, i.e., bj ← Compare{BLE,DLT}(envpp, Dj , A). If there
exists any j that satisfies bj = 1, Trace outputs 1; Otherwise, it outputs 0.

4.2 Security and Analysis

We directly employ the cryptographic game-based security definitions from our
auditable ABC scheme given in Section 3.2, including correctness, anonymity,
and unforgeability. Moreover, we consider two separate properties for tracing,
i.e., traceability and tracing-soundness. At the end of this section, we will com-
pare our ABC-based security definitions to the ones in [19].

The refined EACT requires signatures from medical agencies in Merge and
on the bulletin board B (satisfying robust ledger properties [27]). Hence, we first
formalize the tracing process correctness to capture these new requirements.

Definition 15 (Traceability). Given the bulletin board B, a REACT system
satisfies traceability, if for any λ > 0, q > 0, any non-empty sets A with |A| ≤ q,

and for any honest user U with a key tuple (osk, opk, ak)
$← OrgKGen(pp) where

pp← Setup(1λ, 1q), if there exists (mpk, S, σ) ∈ B such that ⟨Show,Verify⟩(S) =
1, SIG.Verify(mpk, S, σ) = 1, D ∈ S such that Compare{BLE,DLT}(envpp, D,A) =
1, then Pr[Trace(ak, A,B) = 1] = 1 where A is the attribute set of U when she
issues the credential being shown in S.

Then, we have the following lemma.

Lemma 2. Let the bulletin board satisfy the robust ledger properties [27]. The
refined EACT REACT given by construction 3 satisfies traceability if AABC and
SIG satisfy correctness, and the Compare algorithm is well-defined.

The proof follows directly from the correctness of AABC and SIG, and the
well-defined comparing algorithm Compare{BLE,DLT}(envpp, ·, ·). Moreover, we
require the bulletin board to satisfy the robust ledger properties [27] so that any
entry on it cannot be erased or modified after a period of time.

Next, we consider the soundness of tracing, i.e., the situation in which an
honest user’s Trace outputs 1 falsely. The PPT adversary A either: (1) forges
a valid credential on behalf of honest users; or (2) colludes with a malicious
medical agency so that arbitrary showings can be uploaded to the bulletin board.
The first case has been captured by our unforgeability game in the auditable
ABC scheme (Definition 14) with additional assumptions for the bulletin board,
signature scheme, and comparing algorithm (like in Lemma 2).
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However, the second one is dedicated to contact tracing. The reason lies in
the different use cases, i.e., in auditable ABC, auditors audit credential show-
ings on behalf of the original issuer, hence, triggering the auditing algorithm of
another auditor gains the adversary no benefits; whereas, in contact tracing, it
will cause false positive errors to the original issuer. In order to prevent such
an attack, we require the proof in AABC.⟨Show,Verify⟩ to be non-interactive.
Concretely, since our bulletin board is instantiated by a blockchain, users can
apply the Fiat-Shamir transformation on the head block of the blockchain, i.e.,
embedding the hash of the blockchain’s head block into their proof. Note that
this approach also guarantees the freshness of the proof that prevents the relay
and replay attacks [17]. This is because the adversary cannot guess the head of
the blockchain priorly due to the security of blockchain protocols.

As shown in Theorem 2, the anonymity and unforgeability of AABC (also
for REACT in Theorem 3) requires perfect zero-knowledge of Π. Hence, we must
rely on heavy mechanisms, e.g., [30], to make such a protocol non-interactive. An
alternative way is to prove these theorems with computational zero-knowledge
with a looser security reduction. The transformation to a non-interactive pro-
tocol with computational zero-knowledge can be achieved with the Fiat-Shamir
heuristic [25] to trade security tightness for efficiency. Then, the showing of a
credential becomes publicly verifiable so that even if a malicious medical agency
falsely uploads credential showings to the bulletin board, every user (including
the one who runs Trace) can verify the showing.

Compared to the unforgeability of auditable ABC in Definition 14, due to
the malicious AM setting, tracing-soundness removes the requirement of b = 1
(the credential showing can be invalid) but embeds the proof of freshness (the
showing must be presented at most once). We formally define tracing-soundness
(with respect to malicious AM).

Definition 16 (Tracing-Soundness). Given the bulletin board B, a REACT
system satisfies tracing-soundness (with respect to malicious AM), if for any
PPT adversary A that has access to oracles O = {OHU,OCU,OObtIss,OIssue,
OShow,OAudit}, the following probability holds for any λ > 0, q > 0, pp← Setup(1λ,
q, envpp), and (osk, opk, ak)← OrgKGen(pp):

Pr

[
(D, st)← AO(opk, ak); Trace(ak, ·, (S, π)) = 1∧
((S, π), b)← ⟨A(st),Verify(D)⟩ : If OWNER[j]∈CU, D/∈ATTR[j]

]
≤ negl(λ),

where π = (π1, π2, π3) ← Π(C,rC,P1)(C1, C2, C3), and the variables are given in
Figure 1 of auditable ABC construction.

Finally, we have the following theorem.

Theorem 3. Our refined EACT REACT satisfies correctness, anonymity, un-
forgeability, traceability, and tracing-soundness (with respect to malicious AM).

Proof. The proofs of correctness, anonymity, and unforgeability follow directly
from the underlying auditable ABC scheme, which has been given in Theorem 2.
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Traceability has been captured by Lemma 2. Hence, we only show the proof of
tracing-soundness with respect to malicious AM.

Let (mpk, (S, π)σ) ∈ B be an entry stored on the bulletin board that triggers
an honest user’s tracing algorithm, i.e., Trace(ak, A, (mpk, (S, π), σ)) = 1. Here,
ak and A are the user’s auditing key and attribute set when issuing the shown
credential; whereas, mpk and σ are the public key and signature of the malicious
AM. Now, we consider the adversary’s outputs, ((S, π), b)← ⟨A(st),Verify(D)⟩.
By traceability (Lemma 2), if b = 1, then the Trace algorithm will output 1. How-
ever, by the unforgeability of the underlying auditable ABC, the probability of
the adversary outputting b = 1 is negligible of λ. In contrast, since we assume the
medical agency AM to be malicious, it may approve invalid showing transcripts,
i.e., b = 0, to be uploaded to the bulletin board. However, as discussed above,
the non-interactive proof π enhanced the showing transcript S to be publicly
verifiable (freshness and validity). Hence, the user who runs Trace can reproduce
b′ ← ⟨Show,Verify⟩(S, π) on herself. Considering the situation where b = 0, we
should have b′ = 0. Therefore, Trace will also output 0, i.e., the adversary fails
to break tracing-soundness even if it colludes with a malicious medical agency.

Comparison with existing game-based security definitions in [19]. The
authors consider unlinkability and integrity. The former requires the adversary
to distinguish two given pseudonyms, and the latter focuses on the false positive
attack, i.e., the adversary tries to trigger an honest user’s tracing algorithm
to output 1. Given the differences in syntax (their model [19] only considers
pseudonyms; whereas, our system considers showing of credentials), we compare
our definitions with theirs as follows.

Concretely, the unlinkability in [19] is further separated into pseudonym
unlinkability (during the recording phase in which other users’ pseudonyms
are stored locally) and trace unlinkability (during the tracing phase in which
recorded pseudonyms become publicly available). In comparison, the anonymity
of our auditable ABC schemes (Definition 13) guarantees that no adversary can
distinguish any two credential showings (similar to the revealed pseudonyms in
trace unlinkability), even when the adversary has full control over issuing the
challenge credentials. Note that the adversary can control issuer-public keys but
not the corresponding auditing keys (this is guaranteed by the auditing key un-
forgeability of the underlying APK mechanism). Otherwise, it can trivially win
the anonymity game by auditing the updated public keys in credential show-
ings (as we explained in the proof of Theorem 2). Moreover, user-public keys
(similar to the pseudonyms in [19]) are generated with AABC.UsrKGen, which
are distributed uniformly on G1 (since usk is sampled uniformly at random from
Z∗
p). Hence, no adversary, as in the pseudonym unlinkability game, can distin-

guish any two distinct user-public keys in our system. Therefore, our anonymity
captures both of the unlinkability definitions.

Next, the integrity in [19] provides its adversary with oracles to: (1) cre-
ate new users; (2) generate, record, and send pseudonyms (during the recording
phase, similar to credentials in our system); (3) generate and upload pseudonyms
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for tracing (during tracing phase, similar to our credential showings); (4) set time
periods. In comparison, our tracing-soundness (Definition 16) provides similar
oracle accessibility to the adversary, i.e., (1) create new users; (2) issue and ob-
tain credentials (contact records); (3) show credentials and upload the showing.
Hence, it resembles the integrity in [19] except for the oracle that sets time for
the adversary (this is because our system model is not period-specific like the
one in [19]).

4.3 Implementation

We provide a proof-of-concept implementation for the refined EACT construc-
tion to prove its practicality on mobile devices with comparatively limited perfor-
mance. The implementation uses Java/Kotlin for the raw Android environment.
However, we also implement necessary functions since the Java Pairing-Based
Cryptography (jPBC) library [15] cannot fully support matrix-based bilinear
pairing operations. The library-level implementation, together with extended
parts for jPBC [15] library, can also be found in our anonymous repository
(https://anonymous.4open.science/r/EAHT_MODULE_TEST).

Overall, we implement the following algorithms (Setup,OrgKGen,UsrKGen,
Exchange) ∈ REACT. Moreover, in Exchange, we need to measure the perfor-
mance of algorithms and transmission (which is written in the form of Transmit(·)
for simplicity), separately. Hence, we further divide Exchange into (Obtain-1,
Transmit1,AABC.Issue,Transmit2,Obtain-2). The results are shown in Table 1.

Table 1. Experiment Results (Time in milliseconds)

Algorithms Time Algorithms Time Algorithms Time

Setup 168.99 Obtain-1 40.08 Transmit(σ, τ) 75.16
OrgKGen 54.18 Transmit(π,C,R) 38.32 Obtain-2 164.81
UsrKGen 9.05 AABC.Issue 257.50 GenProof 0.26

Experiment device: Samsung SM-S9080 Android 12, Bluetooth
5.0 (Bluetooth Low Energy); Time consumption is presented in
milliseconds and calculated with the average of 100 attempts.

Setup and OrgKGen are performance-insensitive because they only need to
be executed once. We implement them merely to support other algorithms. Al-
though we do not require user key pairs to be renewed once per contact, UsrKGen
should be run periodically (e.g., once per hour) to prevent a user’s complete
track under its public key from being exposed. We leave the setting of the re-
newal interval for real-life users to decide. Finally, for Exchange, we consider the
performance of AABC.Obtain = (Obtain-1,Obtain-2), AABC.Issue and the time
cost of data transmission, i.e., Transmit(π,C,R) and Transmit(σ, τ). A one-sided
round trip, e.g., U0 issuing a credential to U1 is performed with (U0.Obtain-1 −→
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U0.Transmit(π,C,R) −→ U1.Issue −→ U1.Transmit(σ, τ) −→ U0.Obtain-2) takes
approximately 575.87 milliseconds in total. Consider the worst case, e.g., when
a crowded train is filled with 101 users. Each of them needs to Exchange with
the other 100, hence, taking approximately 57.6 seconds to finish the execution
and transmission. We consider this result to be reasonable and plausible.

5 Conclusion

Motivated by the contact tracing new requirements, we adopt a novel approach
from ABC schemes due to their similarity. By abstracting “traceability” in con-
tact tracing systems, we propose an auditable public key (APK) mechanism
that, like its predecessor, the updatable public keys can be applied in many
cryptographic primitives, making it of independent interest.

Next, we extend the ABC schemes in [26, 18] with our APK mechanism
to port the auditability to the world of ABC. Such property enables auditors,
delegated by an issuer, to audit if a shown credential is issued by the issuer. We
argue that it adds an additional layer of accountability to the schemes in which
credential showings can hide issuer identities. The capability of hiding issuer
identities is usually considered an overpowerful anonymity property in real- ife.
The auditability for identifying issuers may also help credential revocation, which
has been another long-worried problem of credentials schemes.

Finally, our refined EACT framework fixes the problems in the original
work [38], i.e., (1) distinct tracing approaches for different settings; (2) weak
security guarantee from informal threat models. We achieve so by constructing
it from our auditable ABC and adapting security properties accordingly. More-
over, we clarify that EACT is only one example application for our auditable
primitives (public keys and ABC).
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A The Necessity of Enhancing Contact Tracing Systems

This work considers the enhancement of contact tracing systems due to the
following two epidemiology findings: (1) modes of transmission (droplet and
airborne); (2) environmental factors (temperature, humidity, air velocity, etc.).

Droplet transmission refers to the infections caused by viruses ejected with
droplets by sneezes or coughs; whereas, airborne transmission means that in-
fections are caused by floating liquid drops carrying viruses suspended in the
air [21]. Hence, “close contact” should be defined differently in the two trans-
mission modes, i.e., droplet transmissible viruses require face-to-face contact;
whereas, airborne transmissible viruses only require people to come into the
region of the floating virus during their lifespan. Conventional contact tracing
systems utilize Bluetooth Low Energy (BLE) technology to trace face-to-face
contact. In contrast, to the best of our knowledge, only Wang et al. [38] consid-
ered the airborne transmission with their discrete-location-tracing setting (DLT).
Intuitively, the DLT setting records users’ relative and absolute positions to de-
cide close contact4.

As mentioned above, virus distribution, e.g., lifespan and region size, af-
fects the infectiousness of viruses. Epidemiology research [16, 20, 31] concludes
that virus distribution depends on environmental factors, including tempera-
ture, humidity, air velocity, etc. However, in conventional contact tracing sys-
tems, BLE usually scans according to predetermined parameters, e.g., interval
and radius. The mismatch between virus distribution and scan parameters may
cause overwhelmingly false-positive records, burdening the medical system in
real-life. Therefore, we consider that it is necessary to filter records according to
environmental factors for practical contact tracing systems.

A problem caused by including more data (i.e., position and environmental
factors) is that revealing these data may result in the identification of users.
Therefore, this work embeds them into the attributes of an attribute-based cre-
dentials (ABC) scheme. Anonymity and selective showing capability of ABC
schemes (from [26, 18] and our Construction 2) empower users to reveal only
necessary attributes to verifiers while keeping other attributes secret, i.e., medi-
cal agencies and other users (including the issuer) cannot learn more than what
is revealed during the showing of credentials5. Potentially, we can further tweak
the set-commitment scheme [26] (mentioned in Section 2) to enable the proof of
knowledge of the commitment content, hence, achieving blind issuance as shown
in [10]. The blind issuance capability can prevent issuers from learning users’
attributes during the issuance of credentials.

4 However, due to the inherent decentralization of their system (i.e., users are designed
to issue their own contact records), they failed to achieve meaningful integrity guar-
antees for the DLT setting.

5 Users are required to report necessary data to decide if they are closed enough to
be considered involved in a contact. The reveal of such data may also have privacy
impacts. However, we found it hard to quantify such impacts and left this problem
for further consideration.



30 Pengfei Wang, Xiangyu Su, Mario Larangeira, and Keisuke Tanaka

B Auxiliary Definitions

This section recalls the formal definitions for our black-box building blocks.

B.1 Digital Signature Schemes

The tuple of algorithm in a digital signature scheme SIG = (KGen,Sign,Verify)
works as follows.

– KGen(1λ) takes as input the security parameter λ and outputs a key pair
(sk, pk);

– Sign(sk,m) takes as input the secret key sk and a message m. It outputs a
signature σ on m under sk;

– Verify(pk,m, σ) takes as input the public key pk, the message m and the sig-
nature σ. It outputs 1 if the signature is valid and 0 otherwise.

This work employs a signature scheme that satisfies correctness and the exis-
tential unforgeability under adaptive chosen message attacks (EUF-CMA) [29].

Definition 17 (Correctness). A signature scheme satisfies correctness, if for
any λ > 0 and (sk, pk)← KGen(1λ):

Pr [Verify(pk,m,Sign(sk,m)) = 1] = 1.

Definition 18 (EUF-CMA). A signature scheme satisfies EUF-CMA, if for
any adversary that has access to a signing oracle OSign(sk, ·) with queries m ∈ Q,
the following probability is negligible of λ for any λ > 0 and (sk, pk)← KGen(1λ):

Pr
[
(m∗, σ∗)← AOSign(pk) : m∗ /∈ Q ∧ Verify(m∗, σ∗, pk) = 1

]
.

B.2 Set-Commitment Scheme

We consider a set-commitment scheme SC
∆
= (Setup,Commit,Open,OpenSubset,

VerifySubset) that satisfies correctness, binding, subset-soundness and hiding [26].
Its algorithms work as follows [26].

– Setup(1λ, q) takes as input the security parameter λ and the size upper bound
q of committed sets. It outputs the public parameter pp;

– Commit(pp, A) takes as input pp and a non-empty set A. It outputs a com-
mitment C and opening information O;

– Open(pp, C,A,O) takes as input pp, a commitment C, a set A, and opening
information O. It outputs 1 if O is a valid opening of C to A; and 0 otherwise;

– OpenSubset(pp, C,A,O,D) takes as input pp, a commitment C, a set A, open-
ing information O, and a non-empty set D. If D ⊆ A, it outputs a witness W
that shows D being a subset of the set A committed in C;

– VerifySubset(pp, C,D,W ) takes as input pp, a commitment C, a non-empty
set D, and a witness W . It outputs 1 if W is a witness that shows D being a
subset of the set A committed in C; and 0 otherwise.
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Definition 19 (Correctness). A set-commitment scheme satisfies correctness,
if for any λ, q ≥ 0, any A and non-empty D ⊆ A, and any pp← Setup(1λ, q):

Pr [(C,O)← Commit(pp, A) : Open(pp, C,A,O) = 1] = 1∧

Pr

[
(C,O)← Commit(pp, A) : VerifySubset(pp, C,D,W ) = 1
W ← OpenSubset(pp, C,A,O,D)

]
= 1.

Definition 20 (Binding). A set-commitment scheme is binding, if for any
λ, q ≥ 0, any pp← Setup(1λ, q), and all PPT adversary A, the following proba-
bility is negligible of λ:

Pr

 Open(pp, C,A,O) = 1∧
(C,A,O,A′, O′)← A(pp) : Open(pp, C,A′, O′) = 1∧

A ̸= A′

 .

Definition 21 (Subset-Soundness). A set-commitment scheme satisfies subset-
soundness, if for any λ, q ≥ 0, any pp ← Setup(1λ, q), and all PPT adversary
A, the following probability is negligible of λ:

Pr

 Open(pp, C,A,O) = 1∧
(C,A,O,D,W )← A(pp) : VerifySubset(pp, C,D,W ) = 1∧

D ⊈ A

 .

Definition 22 (Hiding). A set-commitment scheme is hiding, if for any λ, q ≥
0, any pp ← Setup(1λ, q), and all PPT adversary A with accessibility to an
OOpenSubset oracle that opens the challenge commitment to any subset in the in-
tersection of the two committed sets, the following probability holds:∣∣∣∣∣∣∣Pr

 b
$← {0, 1}; (A0, A1, st)← A(pp)

(C,O)← Commit(pp, Ab); : b∗ = b
b∗ ← AOOpenSubset(pp,C,Ab,O,·⊆A0∩A1)(st, C)

− 1

2

∣∣∣∣∣∣∣ ≤ negl(λ).

B.3 Zero-Knowledge Proofs of Knowledge (ZKPoK) Protocol

We follow the generic definition of ZKPoK given in [26]. Let LR = {x : ∃w, s.t.,
(x,w) ∈ R} ⊆ {0, 1}∗ be a formal language with respect to a binary, polynomial-
time (witness) relation R ⊆ {0, 1}∗ × {0, 1}∗, i.e., when given a polynomial-size
(of |x|) witness w that certifies (x,w) ∈ R, x ∈ LR can be decided in the
polynomial time of |x|. Denote the interactive protocol between a (potentially
unbounded) prover P and a PPT verifier V with ⟨·, b⟩ ← ⟨P(·, ·),V(·)⟩ where
b ∈ {0, 1}. Here, b = 1 indicates that V accepts the conversation with P; and
b = 0 indicates V rejects. If an interactive protocol satisfies completeness, perfect
zero-knowledge, and knowledge-soundness [24], we call it a ZKPoK.

Definition 23 (Completeness). An interactive protocol ⟨P,V⟩ for a relation
R satisfies completeness, if for any x ∈ LR and w s.t., (x,w) ∈ R:

Pr[⟨·, 1⟩ ← ⟨P(x,w),V(x)⟩] = 1.
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Definition 24 ((Perfect) Zero-Knowledge). An interactive protocol ⟨P,V⟩
for a relation R is (perfect) zero-knowledge, if for any PPT adversary A there
exists a PPT simulator S such that {SA(x)}x∈LR ≈ {⟨P(x,w),A(x)⟩}(x,w)∈R
where ⟨P(·, ·),A(·)⟩ denotes the transcript of the interaction between P and A,
and “≈” denotes (perfect) indistinguishability.

Definition 25 (Knowledge-Soundness). An interactive protocol ⟨P,V⟩ is
proofs of knowledge (PoK) relative to an NP relation R, if for any potentially un-
bounded adversarial prover A accepted by V on x, i.e., ⟨·, 1⟩ ← ⟨A(x),V(x)⟩, with
probability greater than ϵ, then there exists a PPT knowledge extractor KA(x)
(denoting that the extractor has rewinding black-box access to A) that can output
a value w satisfying (x,w) ∈ R with probability polynomial of ϵ.

Since we assume the symmetric external Diffie-Hellman (SXDH) assump-
tion [3] holds over bilinear groups for the DDH-based APK construction (Con-
struction 5), we also show its definition in the following.

Definition 26 (SXDH assumption). The SXDH assumption holds for BGGen,
if the DDH assumption (Definition 4) holds in G1 and G2.

C The SPS-EQ Scheme from [18]

We show the SPS-EQ scheme given by [18] with respect to a fully adaptive NIZK

argument NIZK
∆
= (PGen,PPro,PSim,PRVer,PVer,ZKEval).

Construction 4 (SPS-EQ Scheme SPSEQ) The algorithms are as follows.

– Setup(1λ). Run BG← BGGen(1λ) and sample matrices A,A0,A1
$← D1 from

matrix distribution. Generate a common reference string and trapdoor for the
malleable NIZK argument with (crs, td) ← NIZK.PGen(1λ,BG). Return pp =
(BG, [A]2, [A0]1, [A1]1, crs, ℓ);

– KGen(pp). Sample K0
$← Z2×2

p ,K
$← Zℓ×2

p . Compute [B]2 = [K0]2[A]2 and
[C]2 = [K]2[A]2. Set sk = (K0,K) and pk = ([B]2, [C]2). Return (sk, pk);

– Sign(pp, sk, [m]1). Sample r1, r2
$← Zp. Compute [t]1 = [A0]1r1 and [w]1 =

[A0]1r2. Compute u1 = K⊤
0 [t]1 + K⊤[m]1 and u2 = K⊤

0 [w]1. Generate
proof with (Ω1, Ω2, [z0]2, [z1]2, Z1)← NIZK.PPro(crs, [t]1, r1, [w]1, r2). Set σ =
([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1) and τ = ([u2]1, [u2]1, [w]1, Ω2). Return (σ, τ);

– ChgRep(pp, [m]1, (σ, τ), µ, ρ, pk). Parse σ = ([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1) and
τ ∈ {([u2]1, [w]1, Ω2),⊥}. Let Ω = (Ω1, Ω2, [z0]2, [z1]2, Z1). Check proof with
NIZK.PVer(crs, [t]1, [w]1, Ω). Check if e([u2]

⊤
1 ,A]2) = e([w]⊤1 ,B]2) and e([u1]

⊤
1 ,

A]2) = e([t]⊤1 ,B]2) + e([m]⊤1 ,C]2). Sample α, β
$← Z∗

p. Compute [u′
1]1 =

ρ(µ[u1]1 + β[u2]1) and [t′]1 = µ[t]1 + β[w]1 = [A0]1(µr1 + βr2). And for
i ∈ {0, 1}, compute [z′i]2 = α[zi]2, [a

′
i]1 = αµ[a1i ]1 + αβ[a2i ]1, [d

′
i]2 = αµ[d1i ]2 +

αβ[d2i ]2. Set Ω
′ = (([a′i]1, [d

′
i]2, [z

′
i]2)i∈{0,1}, αZ1). Set σ

′ = ([u′
1]1, [t

′]1, Ω
′).

Return (µ[m]1, σ
′);
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– Verify(pp, (ρ, pk), [m]1, (σ, τ)). Parse σ = ([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1) and
τ ∈ {([u2]1, [w]1, Ω2),⊥}. Check proof Ω1 with NIZK.PRVer(crs, [t]1, Ω1, [z0]2,
[z1]2, Z1) and check if e([u1]

⊤
1 ,A]2) = e([t]⊤1 ,B]2) + e([m]⊤1 ,C]2). If τ ̸=⊥,

then check proof Ω2 with NIZK.PRVer(crs, [w]1, Ω2, [z0]2, [z1]2, Z1) and check
if e([u2]

⊤
1 ,A]2) = e([w]⊤1 ,B]2).

The given SPS-EQ construction (Construction 4) satisfies correctness, the
EUF-CMA, and the property of Perfect Adaption of Signatures with respect to
Message Space. The formal definitions are as follows.

Definition 27 (Correctness). An SPS-EQ scheme satisfies correctness, if for
any λ > 0, ℓ > 1, pp← Setup(1λ), and (sk, pk)← KGen(pp):

Pr [Verify(pk,Sign(sk, [m]1)] = 1∧
Pr [Verify(ρ · pk,ChgRep([m]1,Sign(sk, [m]1), µ, ρ, pk))] = 1.

Definition 28 (EUF-CMA). An SPS-EQ scheme satisfies EUF-CMA, if for
any adversary that has access to a signing oracle OSign(sk, ·) with queries [m]i ∈
Q, the following probability is negligible of λ for any λ > 0, ℓ > 1 and pp ←
Setup(1λ):

Pr

[
(sk, pk)← KGen(pp); : ∀[m]i ∈ Q, [m∗]R ̸= [m]R∧
([m]∗i , σ

∗)← AOSign(pk) Verify([m]∗i , σ
∗, pk) = 1

]
.

Definition 29 (Perfect Adaption of Signatures with respect to Mes-
sage Space (under Malicious Keys in the Honest Parameters Model)).
An SPS-EQ scheme over a message space Sm ⊆ (G∗

i )
ℓ perfectly adapts signa-

tures with respect to the message space, if for all tuples (pp, [pk]j , [m]i, (σ, τ), µ, ρ)
such that pp← Setup(1λ), [m]i ∈ Sm, µ, ρ ∈ Z∗

p, and Verify(pk, [m]i, (σ, τ)) = 1,
we have the output ([µ ·m]i, σ

∗)← ChgRep([m]i, (σ, τ), µ, ρ, [pk]j) where σ∗ is a
random element in the signature space such that Verify([ρ · pk, µ ·m]i, σ

∗) = 1.

D Extending the BLS Signature [9] with APK

This section demonstrates the capability of APK being used as a plug-in tool for
cryptographic primitives. Concretely, we give a DDH-based APK construction
and integrate it into the BLS signature scheme [9]. We modify the update algo-
rithm in APK to enable signers in the BLS scheme to re-randomize their public
keys and signatures. Whereas, the audit algorithm helps to link the updated
public keys to their original signers.

First, recall the BLS construction given in [9]. Let BGGen(1λ) be the bilinear
group generator that outputs BG = (p,G1,G2,GT , P1, P2, e) as shown in Sec-
tion 2. Let H : Sm → G1 be a cryptographic hash function where Sm denotes the
message space. For simplicity, we omit the algorithms for aggregation to focus

on auditability. Denote the algorithms with BLS
∆
= (KGen,Sign,Verify).

– KGen(BG): Sample sk
$← Zp and compute pk = sk · P2 ∈ G2. Output (sk, pk);
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– Sign(sk,m): Output σ = sk · H(m) ∈ G1;
– Verify(pk,m, σ): Output 1 if e(σ, P2) = e(H(m), pk), or 0 otherwise;

Next, we show the DDH problem (in group G2)-based APK construction.

Construction 5 (DDH-Based APK APKDDH) Let BG = (p,G1,G2,GT , P1,
P2, e) be the output of the bilinear group generator BGGen(1λ). The algorithms
of APK are as follows.

– KGen(BG): Sample ak, sk0
$← Zp. Set sk1 = ak · sk0. Then, compute pk0 =

sk0 · P2 and pk1 = sk1 · P2. Finally, set sk = (sk0, sk1), pk = (pk0, pk1) and
output (sk, ak, pk);

– Update(pk; r): Parse pk = (pk0, pk1). Sample r
$← Zp and compute pk′0 =

r · pk0, pk
′
1 = r · pk1. Output pk′ = (pk′0, pk

′
1);

– VerifyKP(sk, pk′, r): Parse sk = (sk0, sk1) and pk′ = (pk′0, pk
′
1). Output 1 if

pk′0 = r · sk0 · P2 ∧ pk′1 = r · sk1 · P2, or 0 otherwise;
– VerifyAK(sk, ak): Parse sk = (sk0, sk1). Output 1 if sk1 = ak · sk0, or 0 other-

wise;
– Audit(ak, pk′, pk): Parse pk′ = (pk′0, pk

′
1), pk = (pk0, pk1). Output 1 if pk1 =

ak · pk0 ∧ pk′1 = ak · pk′0, or 0 otherwise.

Therefore, the integration works as follows.

Construction 6 (BLS with APK) Let BG = (p,G1,G2,GT , P1, P2, e) be the
output of the bilinear group generator BGGen(1λ). Let H : Sm → G1 be a cryp-
tographic hash function where Sm denotes the message space. Let APKDDH =
(KGen,Update,VerifyKP,VerifyAK,Audit) be a DDH-based APK mechanism. The
algorithms of BLS with APK are as follows.

– KGen,VerifyKP,VerifyAK,Audit are the same as in APKDDH;
– Sign(sk,m): Parse sk = (sk0, sk1) and output σ = sk1 · H(m) ∈ G1;
– Verify(pk,m, σ): Parse pk = (pk0, pk1) and output 1 if e(σ, P2) = e(H(m), pk1),

or 0 otherwise;
– Update(pk, σ; r): Run APKDDH.Update(pk; r) → pk′ and compute σ′ = r · σ.

Output (pk′, σ′).

Since the EUF-CMA security of the (type-3) BLS signature is proven under
the co-CDH assumption [8], and the APK given in Construction 5 considers the
DDH problem in G2, it is convenient to assume the SXDH assumption to hold
for BGGen to prove the EUF-CMA security of our extended BLS construction
(Construction 6).


