
Contemporary Mathematics

Deuring for the People: Supersingular Elliptic Curves
with Prescribed Endomorphism Ring in General Characteristic

Jonathan Komada Eriksen, Lorenz Panny, Jana Sotáková, and Mattia Veroni

Abstract. Constructing a supersingular elliptic curve whose endomorphism ring is isomorphic to
a given quaternion maximal order (one direction of the Deuring correspondence) is known to be
polynomial-time assuming the generalized Riemann hypothesis [KLPT14; Wes21], but notoriously
daunting in practice when not working over carefully selected base fields.

In this work, we speed up the computation of the Deuring correspondence in general characteristic,
i.e., without assuming any special form of the characteristic. Our algorithm follows the same overall
strategy as earlier works, but we add simple (yet effective) optimizations to multiple subroutines to
significantly improve the practical performance of the method.

To demonstrate the impact of our improvements, we show that our implementation achieves highly
practical running times even for examples of cryptographic size. One implication of these findings is
that cryptographic security reductions based on KLPT-derived algorithms (such as [EHLMP18; Wes22])
have become tighter, and therefore more meaningful in practice.

Another is the pure bliss of fast(er) computer algebra: We provide a Sage implementation which
works for general primes and includes many necessary tools for computational number theorists’ and
cryptographers’ needs when working with endomorphism rings of supersingular elliptic curves. This
includes the KLPT algorithm, translation of ideals to isogenies, and finding supersingular elliptic curves
with known endomorphism ring for general primes.

Finally, the Deuring correspondence has recently received increased interest because of its role
in the SQISign signature scheme [DeF+20]. We provide a short and self-contained summary of the
state-of-the-art algorithms without going into any of the cryptographic intricacies of SQISign.

1. Introduction

Every supersingular elliptic curve defined over a field of characteristic p has endomorphism ring isomor-
phic to a maximal order in a quaternion algebra ramified only at p and∞. Conversely, for every maximal
order in such a quaternion algebra, there exists a supersingular elliptic curve whose endomorphism ring
is isomorphic to this order. This correspondence is called the Deuring correspondence (see Section 2.5
for a precise formulation) and is an important tool in isogeny-based cryptography.

The Deuring correspondence allows us to translate problems which are assumed to be hard for elliptic
curves into analogous questions about maximal orders in quaternion algebras, which are often more
tractable. For instance, while finding smooth degree isogenies between supersingular elliptic curves over
Fp2 is assumed to be hard, the analogous problem for quaternionic orders can be solved in polynomial
time with the KLPT algorithm [KLPT14]. The security of virtually all isogeny-based cryptography
relies on the hardness of computing the endomorphism ring of a supersingular elliptic curve (the Deuring
correspondence in one direction).

The other direction —constructing a supersingular elliptic curve with a given endomorphism ring— is
called Constructive Deuring Correspondence. It is known to be computable in polynomial time assuming
the generalized Riemann hypothesis [KLPT14; Wes21]. Recently, the Constructive Deuring Correspon-
dence has been used constructively in the post-quantum isogeny-based cryptographic signature scheme
SQISign [DeF+20; DLW22]. However, the signature scheme SQISign is only implemented for certain

2020 Mathematics Subject Classification. Primary 11Y16, 11T71; Secondary 14K02, 11R52, 11G20.
Key words and phrases. Algorithms, supersingular elliptic curves, endomorphism rings, quaternion algebras.
Author list in alphabetical order; see https://ams.org/profession/leaders/CultureStatement04.pdf. This research

was funded in part by the Academia Sinica Investigator Award AS-IA-109-M01 and the Dutch Research Council (NWO)
through Gravitation-grant Quantum Software Consortium – 024.003.037. Date of this document: 2023-08-18.

1

https://ams.org/profession/leaders/CultureStatement04.pdf

primes p of a very special form. In this paper, we revisit the problem of computing the Constructive
Deuring Correspondence for all primes p.

Previous work. Early algorithms to find a supersingular elliptic curve with a specified endo-
morphism ring required exponential time [Cer04; CG14]. With the introduction of the KLPT algo-
rithm [KLPT14], it became possible to solve this problem in heuristic polynomial time, as described in
[EHLMP18]: the KLPT algorithm produces an ideal connecting the given order to the endomorphism ring
of some well-chosen elliptic curve E0, and this ideal is then translated to an isogeny whose codomain E
is the desired curve. Wesolowski [Wes21] later gave a variant of the KLPT algorithm which is provably
polynomial-time assuming GRH, resting the algorithm on more solid theoretical foundations and leading
to more security reductions between related problems in isogeny-based cryptography [Wes22].

Despite these groundbreaking implications, earlier efforts to implement the KLPT algorithm had
suggested that computations relying on KLPT could be largely impractical for parameter sizes relevant for
isogeny-based cryptography: the main bottleneck is the ideal-to-isogeny translation, that is, translating
the KLPT output (a quaternionic ideal of smooth norm) to a sequence of computable isogenies. The
exception is in the case when the characteristic p is chosen to be especially nice (that is, such that p2− 1
has a large smooth factor), such as in SQISign [DeF+20; DLW22]. The case of general characteristic
(without any conditions on the prime p) was studied in at least two earlier works [Ray18; Kam+22].
In [Ray18], the focus was on expository aspects rather than fast implementation, and even examples
with p as small as 1619 required several minutes for the ideal-to-isogeny translation. The approach
of [Kam+22] is practical for larger sizes, but their ideal-to-isogeny step involves precomputing certain
symbolic formulae for isogenies, which are currently only available up to degree 131 and grow very quickly
in general, so [Kam+22] only covers primes up to about 25 bits. We note that these implementations all
restrict to the case p ≡ 3 (mod 4).

Contributions. In this work, we devise an algorithm to compute the Deuring correspondence in
general characteristic— that is, without assuming any special form of the prime p. One of the simplest
and most effective optimizations in our implementation comes from the observation that there is a trade-
off between the degrees of the isogenies we use, and extension fields needed to compute such isogenies.
We optimize for keeping the degree of the extensions low, allowing for isogenies of larger prime-power
degree. In practice, we take a cost model as input (describing the contribution of each prime power),
and use a greedy algorithm to find the best configuration of degrees which minimizes cost while keeping
the total degree large enough for the KLPT algorithm. This simple improvement makes the algorithm
much faster in practice: Our implementation (in SageMath) computes the Deuring correspondence for
generic 200-bit primes in less than an hour on a single CPU core.

Building upon results of Ibukiyama [Ibu82] and Bröker [Brö09], we present an algorithm to construct
supersingular elliptic curves over Fp together with explicitly known (effective) endomorphism rings, for
any p. The outline of our algorithm was previously known, but we optimize one crucial subroutine, which
results in striking practical speedups when compared to earlier methods.

We speed up the computation of the ideal-to-isogeny translation step with the help of two improved
algorithms: We compute the ideal kernel by a new method that completely avoids point divisions and
discrete-logarithm computations, and we give a faster algorithm for computing the kernel polynomial of
a rational isogeny when given a generating irrational point.

Additionally, our method “automatically” exploits the particular structure of the primes typically
used in isogeny-based cryptography. Cryptographic protocols like SQISign typically work with primes p
such that p2 − 1 contains a large smooth factor, so that all individual isogeny steps can be computed
over Fp2 . Our method extends this approach, and even though our general implementation cannot
compete with the optimized SQISign implementation, it is able to practically compute with a 256-bit
prime that has been suggested for use in SQISign.

Our implementation works for arbitrary p without any congruence conditions. To the best of our
knowledge, this is the first implementation for primes p ̸≡ 3 (mod 4).

Organization of the paper. The paper is organised as follows:
• In Section 2 we recall some notions on supersingular elliptic curves, isogenies and quaternion

algebras, concluding the section with the constructive Deuring correspondence;
• In Section 3 we recall the steps of the current de-facto standard approach to computing the

Deuring correspondence;

Code. https://github.com/friends-of-quaternions/deuring
2

https://github.com/friends-of-quaternions/deuring

• In Section 4 we discuss our improvements, applying optimizations known from other contexts
as well as introducing new algorithmic techniques to generalize and accelerate the computation;

• In Section 5 we present empirical timings for our implementation, clearly demonstrating its
applicability to cryptographically-sized parameters, and discuss some numerical examples.

Acknowledgements. Many thanks to the anonymous reviewers and to John Cremona and Andrew
Sutherland for their insightful comments, which (among other things) led to a neater proof of Lemma 16.

2. Preliminaries

In this section we recall some basic notions on supersingular elliptic curves, isogenies and quaternion
algebras, concluding with the Deuring correspondence. We refer the interested reader to [Sil09] and
[Voi21] for detailed accounts of elliptic curves and quaternion algebras respectively.

Throughout, the letter p will denote a prime integer greater than 3.
Denote by fO(1) the set of functions bounded above by some polynomial in f . The “soft-O” nota-

tion Õ(f) is shorthand for f · (log f)O(1). An integer N is B-smooth if none of its prime factors are larger
than B. For brevity, we say that N is smooth if it is B-smooth for some B ∈ (log p)O(1). We say that N
is power-smooth if for any prime factor q | N , the largest power of q dividing N is smaller than B for
some B ∈ (log p)O(1).

We letM(k) denote the cost of arithmetic on polynomials over Fp2 of degree bounded by k; computing
operations in Fp2k has the same cost. The standard asymptotics are quadratic time M(k) ∈ O(k2) ·M(1)
for naïve “schoolbook” arithmetic and quasilinear time M(k) ∈ O(k log k log log k) ·M(1) for FFT-based
“fast” arithmetic [CK91].

2.1. Isogenies of elliptic curves over finite fields. Every elliptic curve E over Fq of character-
istic p > 3 admits a short Weierstraß equation y2 = x3 +Ax+B with A,B ∈ Fq. The set of Fq-rational
points of E is defined as

E(Fq) = {(x, y) ∈ (Fq)2 : y2 = x3 +Ax+B} ∪ {0E}

where 0E is the point at infinity. This set is a finite abelian group with respect to elliptic-curve point
addition and 0E the neutral element. The discriminant of E is the quantity ∆(E) := −16(4A3 +27B2),
and the j-invariant of E is j(E) := −1728/∆(E). Two curves are isomorphic over Fp if and only if their
j-invariants are equal. A twist over Fq of E/Fq is another elliptic curve Ẽ/Fq with j(Ẽ) = j(E), which is
not isomorphic to E over Fq. The curve Ẽ is a quadratic twist of E if Ẽ is a twist of E that is isomorphic
to E over a quadratic extension of Fq (but not over Fq).

Given two elliptic curves E and E′ over Fq, an isogeny φ : E −→ E′ over Fq is a non-constant
morphism over Fq mapping the identity of E into the identity of E′. Two curves E,E′ are isogenous
over Fq if there exists an isogeny φ : E −→ E′ over Fq. By Tate’s theorem, we know that E,E′ are
isogenous over Fq if and only if they have the same number of Fq-rational points.

Any finite subgroup K of E gives rise to an isogeny φ : E −→ E′ whose kernel equals K. The
isogeny φ can be defined over the same field as the subgroup K and is unique up to post-composition
with purely inseparable isogenies (in particular, isomorphisms). The degree of such an isogeny is its
degree as a morphism, and is equal to the size of its kernel. Degrees are multiplicative with respect to
isogeny composition. Given an isogeny φ : E −→ E′ of degree d over Fpk , its dual φ̂ : E′ −→ E is an
isogeny of degree d over Fpk such that φ ◦ φ̂ = [d] on E and φ̂ ◦ φ = [d] on E′.

Note that the even if the isogeny is defined over K, the points in the kernel are not necessarily all
K-rational. Therefore, even when working with K-rational isogenies, we will need to be careful about the
fields of definition; see Section 2.3. Fortunately, at least for supersingular elliptic curves, the situation is
a bit simpler thanks to the power of Frobenius (Section 2.2).

2.2. Frobenius and supersingular curves. An isogeny from E to itself is an endomorphism. As
usual, we promote the zero map to an endomorphism, so that all endomorphisms (over the algebraic
closure Fp) of an elliptic curve E form a ring under pointwise addition and composition, called the (geo-
metric) endomorphism ring of E and denoted by End(E). The ring End(E) is not always commutative:
Over finite fields, the endomorphism ring End(E) is isomorphic either to an order in an imaginary qua-
dratic extension of Q or to a maximal order in a quaternion algebra over Q. In the first case E is called
ordinary, in the latter E is called supersingular. Every supersingular elliptic curve in characteristic p is
isomorphic to an elliptic curve defined over Fp2 .

3

Any elliptic curve E/Fq has the (q-power) Frobenius endomorphism π : E → E, (x, y) 7→ (xq, yq).
Part of its significance lies in the fact that the number of Fq-rational points on E is given by the formula
#E(Fq) = q+1−tr(π), where the trace tr(ϑ) of any endomorphism ϑ is defined as the quantity ϑ+ϑ̂ ∈ Z.
Quadratic twisting negates Frobenius, that is, πẼ = −πE .

Group structure. Going even further, the structure of the group of rational points on supersingular
elliptic curves can be characterized almost exactly. We make use of the following properties:

Lemma 1. Let E be a supersingular elliptic curve defined over Fp, for p > 3 prime, and let k ∈ Z>0.
Then the p-power Frobenius π of E satisfies π2 = −p and

#E(Fp2k) =
(
pk − (−1)k

)2
.

Proof. To count the number of points over Fp2k , we consider the 2k-th power of the p-power
Frobenius π. From supersingularity and Hasse’s bounds we have π2 = −p, so π2k = (−p)k, which has
trace 2(−p)k. Therefore, #E(Fp2k) = p2k + 1− 2(−p)k = ((−p)k − 1)2 = (pk − (−1)k)2. □

Theorem 2. Let E be a supersingular elliptic curve defined over Fp2 such that the p2-power Frobenius π
equals −p. Then

E(Fp2k) ∼= Z/(pk − (−1)k) ⊕ Z/(pk − (−1)k) .
Moreover, the quadratic twist over Fp2k of E satisfies

Ẽ(Fp2k) ∼= Z/(pk + (−1)k) ⊕ Z/(pk + (−1)k) .
Proof. See [Sch87, Lemma 4.8(ii)] or [Len96, Theorem 1(b)]. □

As a consequence, for such a curve E and arbitrary N ∈ Z>0, if any order-N point on E is rational,
then the entire N -torsion subgroup (a free Z/N -module of rank 2) is rational over the same field, and
the same holds true for the quadratic twist.

Remark 3. In Theorem 2, the order of extending the base field and taking the quadratic twist matters:
Twisting over Fp2 and then extending to Fp2k leads to group orders of the form (pk − (±1)k)2, while
extending first and then twisting over Fp2k leads to (strictly more) orders of the form (pk ± (−1)k)2.

Furthermore, the requirement in Theorem 2 that π = −p can (say, in algorithms) always be satisfied
by taking an isomorphism:

Lemma 4. Any supersingular elliptic curve in characteristic p> 3 is isomorphic to a curve defined
over Fp2 whose Frobenius equals −p.

Proof. As the j-invariant lies in Fp2 , we may suppose we are given a curve E/Fp2 . By supersin-
gularity and [Sch87, Theorem 4.2(iii)] the p2-power Frobenius π of E satisfies π2 −mpπ + p2 = 0 where
m ∈ {0,±1,±2}; in other words, π = ζp where ζ is an automorphism of E whose order divides 4 or 6.

On a short Weierstraß model for E, there exists an element α ∈ Fp such that ζ : (x, y) 7→ (α2x, α3y).
Fix any (p2−1)-th root τ of −1/α and define the (twisting) isomorphism ψ : E → Ẽ, (x, y) 7→ (τ2x, τ3y).

An explicit calculation shows that the p2-power Frobenius on Ẽ is π̃ = −ψζ−1πψ−1 = −p as
desired. □

One particular consequence of Lemma 4 is that any isogeny between two supersingular elliptic curves can
be defined over Fp2 , by working with isomorphism representatives on which Frobenius is a scalar. This
makes isogenies of supersingular elliptic curves particularly nice to compute with; see Section 2.3. It also
explains why we do not make the distinction between the geometric endomorphism ring and rational
endomorphism ring: all the endomorphisms are already defined over Fp2 .

2.3. Algorithms for computing isogenies. Recall from Section 2.1 that an isogeny is deter-
mined, essentially uniquely, by its kernel subgroup. In this section, we will survey methods to compute
an isogeny when given a representation of its kernel.

By computing an isogeny we refer to a procedure which takes as input an elliptic curve over a finite
field Fq and a representation of the kernel (the specifics vary with the method), and outputs the codomain
elliptic curve of an isogeny with the given kernel, along with an efficient algorithm to evaluate the isogeny
at points in extensions of Fq.

The typical strategy for computing isogenies involves decomposing the isogeny into prime-degree
steps for efficiency; in light of this, we shall restrict the discussion below to isogenies φ : E → E′ of prime
degree ℓ. In particular, this entails that the kernel subgroup K ≤ E is generated by a single order-ℓ
point P ∈ E.

4

Vélu’s formulas. Vélu [Vél71] gave explicit formulas for functions on the domain which are invariant
under translations by precisely the kernel subgroup, and which vanish on the kernel points with the
correct multiplicities. It is not overly difficult to see (but perhaps somewhat mind-boggling) that such
functions are essentially coordinate maps on the quotient E/K, i.e., the isogeny codomain. Interpolating
a curve equation is not difficult by evaluating the isogeny at a few points, but there are even general
formulas in terms of the x-coordinates of kernel points.

Computationally, the result is an algorithm for evaluating the isogeny at a point that involves
iterating over points in the kernel subgroup and performing elliptic-curve group operations between the
kernel points and the evaluation point. In particular, the computations must be performed in a ring
containing both the kernel points and the evaluation point: In the typical case of finite fields the degree
of this compositum equals the least common multiple of the individual degrees. (Recall that the field of
definition of the points inside K may be much larger than the field of definition of K, or equivalently φ.)

The time required to evaluate Vélu’s formulas is O(ℓ) operations in the base field. This complexity
was subsequently improved by (essentially) a square-root factor: The

√
élu algorithm from [BDLS20]

achieves the same result using only Õ(
√
ℓ) operations by exploiting a baby-step-giant-step decomposition

of the kernel subgroup and quasilinear-time “elliptic resultant” computations. In practice,
√

élu begins
to outperform Vélu’s formulas starting from ℓ ≈ 100.

Our application requires computing isogenies whose kernel points (despite defining an Fp2 -rational
isogeny) lie in various extension fields Fp2k of Fp2 , and evaluating them at points which may lie in different
extension fields Fp2k′ of Fp2 . Vélu’s formulas must thus be applied over Fp2k ⊗ Fp2k′ = Fp2 lcm(k,k′) . The
cost of working in these field extensions depends on the extension degrees k, k′ in a crucial way.

We shall see below that this issue can be (partially) remedied by using a different approach to
isogeny evaluation: Instead of working with individual kernel points, one starts from (the radical of) the
denominator of (the rational form of) the isogeny, which encodes information about all kernel points at
once —and, very conveniently, has coefficients in the field of definition of the isogeny. In our application
this permits reducing the required field extensions from degree lcm(k, k′) to degrees k, k′ separately.

Kernel polynomials. Every Fq-rational isogeny φ : E → E′ between two short Weierstraß curves
has a standard representation given by rational functions

(x, y) 7−→
(
f(x), cyf ′(x)

)
where f ∈ Fq(X) is a rational function, f ′ its formal derivative, and c ∈ F×

q a nonzero constant;
see [Gal12, Theorem 9.7.5]. Writing f = f1/f2 with coprime polynomials f1, f2 ∈ Fq[X], the nonzero
points P lying in the kernel of φ are characterized by f2(x(P)) = 0. The kernel polynomial h of φ is the
radical of f2.

More concretely, the kernel polynomial defining a finite subgroupK ≤ E, or an isogeny with kernelK,
is the unique monic squarefree polynomial hK whose set of roots is precisely the set of x-coordinates of
nonzero points in K. Partitioning K as K = S2⊔S⊔ (−S)⊔{0E} where S2 ⊆ K is the (possibly empty)
subset of points in K of order 2, the kernel polynomial equals hK =

∏
P∈S∪S2

(X − x(P)). Note that
whenever K is a subgroup defined over Fq, then (as a result of K being closed under the action of the
Galois group) the coefficients of hK are in Fq as well, even if its roots x(P) lie outside of Fq.

To compute the kernel polynomial when K is cyclic, and one is given a generator P , the simplest
approach is to iteratively enumerate the points P, [2]P, . . . , [⌊ℓ/2⌋]P using repeated point additions and
then compute the kernel polynomial hK =

∏⌊ℓ/2⌋
i=1 (X−x([i]P)) with a product tree; this takes time Õ(ℓ)

in the field of definition of P . For a slightly more efficient method, see Algorithm 4.
Kohel’s formulas. Kohel [Koh96, § 2.4] gave an algorithm to compute an isogeny from its domain

curve and kernel polynomial. The main idea is the following: the rational functions defining φ must
satisfy a short Weierstraß equation —that of the codomain. Writing f = f1/f2 for the x-coordinate map
of the isogeny as above and setting c=1, we thus get a differential equation (X3 + AX + B)f ′(X)2 =

f(X)3 + Ãf(X) + B̃ with unknowns Ã, B̃ ∈ Fq and f ∈ Fq(X), and where E : y2 = x3 + Ax + B.
Moreover, by assumption, the denominator f2 of f must have the same roots as the kernel polynomial h.

Kohel’s formulas then give a solution to this problem: one obtains simple algebraic formulas for Ã, B̃
in terms of the coefficients of E and h, and algebraic formulas for f1 and f2 in terms of the coefficients
of E, the kernel polynomial h, and its derivatives h′, h′′. All polynomials appearing in the formulas have
degree O(ℓ), which implies that they can be evaluated within Õ(ℓ) base-field operations using FFT-based
polynomial arithmetic. For a more elaborate discussion of the complexity, see [Shu09, Theorem 3.1.10].

5

Irrational
√

élu. Kohel’s formulas work with the kernel polynomial, which has size O(ℓ): its appear-
ance immediately thwarts all hope for achieving complexity sublinear in ℓ. However, for prime ℓ, the
kernel is already uniquely defined by any irreducible divisor of the kernel polynomial; we exploit this
in Algorithm 3. An algorithm which interpolates between the

√
élu and Kohel approaches by working

with irreducible (rational!) divisors of the kernel polynomial is outlined in [BDLS20, § 4.14], where it
is argued that this algorithm cannot be expected to improve upon Kohel’s formulas for average inputs.
However, the approach seems well-suited for the particular situation where the irreducible divisors have
degree significantly smaller than

√
ℓ, assuming a suitable index system can be found. As far as we know,

this variant of the algorithm has never been implemented.
Notation for isogenies. By abuse of language, one often refers to “the” isogeny defined by a finite

subgroupK, and “the” target curve is often denoted by E/K, to emphasize that the kernel isK. However,
the curve E/K is only defined up to post-composing with an isomorphism, and so this notation mixes
models of curves with isomorphism classes. However, this notation is wide-spread, and for computational
purposes, we will always understand E/K as being computed from K using Vélu’s or Kohel’s formulas.

2.4. Quaternion algebras. A quaternion algebra B over Q is a four-dimensional central simple
algebra over Q. Every quaternion algebra admits a Q-basis {1, i, j,k} with ij = −ji = k and i2 = −q,
j2 = −p where q, p ∈ Q×; we write B = (−q,−p | Q). Every quaternion α = t+ xi+ yj+ zk ∈ B has a
conjugate α := t− xi− yj− zk ∈ B; conjugation is an involution. From this, one can define the reduced
trace and the reduced norm as:

trd(α) := α+ α = 2t

nrd(α) := αα = t2 + qx2 + py2 + pqz2.

Now consider a prime ℓ. The quaternion algebra Bℓ := B⊗QQℓ is obtained by extending the scalars
of B from Q to Qℓ. This notation includes ∞ by setting B∞ := B ⊗Q R. We say that B is ramified at ℓ
(including ℓ =∞) if Bℓ is a division ring. A quaternion algebra is determined up to isomorphism by the
set of its ramified primes. We will only consider the quaternion algebra Bp,∞ ramified at p and ∞, since
the endomorphism ring of a supersingular elliptic curve over a field of characteristic p is isomorphic to a
maximal order in this quaternion algebra.

Orders and ideals. A fractional ideal I of B is a Z-lattice contained in B, which can be written
as I = α1Z + α2Z + α3Z + α4Z for a Q-basis {α1, α2, α3, α4} of B. The norm of a fractional ideal is
defined as nrd(I) = gcd({nrd(α) : α ∈ I}); note that it suffices to evaluate the gcd on a generating set.
An order is a fractional ideal that is also a subring of B. An order O is maximal if, for any other order
O′, we have that O ⊆ O′ implies O = O′. For every fractional ideal I in B one can define the left order
OL(I) := {β ∈ B : βI ⊆ I} and the right order OR(I) := {β ∈ B : Iβ ⊆ I}. Saying that I is a left
O-ideal means that O ⊆ OL(I), and saying it is a right O′-ideal means that O′ ⊆ OR(I), in which case
it is clear that I is a O-O′-bimodule. Two left O-ideals I, J in Bp,∞ are (right) equivalent if J = Iβ for
some β ∈ B×

p,∞. In this case, OR(I) ∼= OR(J), with conjugation by β defining an isomorphism.
A fractional ideal is integral if it is contained in its left (or equivalently right) order. If a left fractional

O-ideal I is integral, it is also a left O-ideal in the usual sense, hence we often simply refer to integral
ideals as ideals. These ideals have integer norm and can be written as I = OL(I)α+OL(I)nrd(I) for any
α ∈ OL(I) satisfying gcd(nrd(α),nrd(I)2) = nrd(I), or analogously with their right orders. We say that
two orders O and O′ are connected if there exists an invertible ideal I with OL(I) = O and OR(I) = O′,
and we call I a connecting (O,O′)-ideal.

Working in a noncommutative ring, the product of ideals is not always well-behaved. Given two
ideals I, J ⊆ Bp,∞, we say that I is compatible with J if OR(I) = OL(J). If I is compatible with J , then
the product IJ := {αβ : α ∈ I, β ∈ J} is an ideal such that OL(IJ) = OL(I) and OR(IJ) = OR(J).
Whenever I and J are compatible, the product satisfies nrd(IJ) = nrd(I)nrd(J).

Finally, following [KLPT14, Section 2.3], an order O ∈ Bp,∞ is special p-extremal if it contains a
subring Z⟨ω1, ω2⟩ with nrd(ω1) = q and nrd(ω2) = p for q coprime to p, and such that the discriminant
of Z[ω1] is minimal among all quadratic orders in Bp,∞. Note that we can relax the definition and not
enforce the smallest discriminant. However, as always for efficiency, we need q small, cf. Section 3.1.

2.5. The Deuring correspondence. This subsection describes an equivalence between a category
from Section 2.1 and another from Section 2.4. The result can be seen as a modern formulation of
the so-called Deuring correspondence [Deu41]. For proofs of all statements in this section, see [Voi21,
Chapter 42].

6

In this section we consider two categories. The first one is the category of supersingular elliptic curves
over Fp under isogenies, denoted as SSp. As for any supersingular elliptic curve E, its endomorphism
ring End(E) is isomorphic to a maximal order in the quaternion algebra Bp,∞. We will see that the
homsets Hom(E,E′) between two elliptic curves also carry extra structure.

For two supersingular elliptic curves E,E′, fix isomorphisms ρ : O ∼−→ End(E) and ρ′ : O′ ∼−→ End(E′)
for O,O′ maximal orders in Bp,∞. It is clear that Hom(E,E′) is an abelian group (with addition of
isogenies performed pointwise), and further that the action

Hom(E,E′)×O → Hom(E,E′)

(ϕ, α) 7→ ϕ ◦ ρ(α)

turns Hom(E,E′) into a right O-module. With some extra work, one can show that Hom(E,E′) is not
only a right O-module, but in fact isomorphic to a right O-ideal. Completely analogously, Hom(E,E′)
is isomorphic to a left O′-ideal.

For the second category, let us fix a maximal order O0 ⊆ Bp,∞, and consider the category of left
fractional O0-ideals under homomorphisms of O0-modules. Denote this category by lfracO0.

By considering a curve E0 with End(E0) ∼= O0, and passing to the homsets, we get the functor

Hom(−, E0) : SSp → lfracO0.

This functor is actually an equivalence of categories [Koh96, Theorem 45], which has many important
consequences. For instance, we have noted before that every supersingular curve has endomorphism ring
isomorphic to a maximal order in a quaternion algebra Bp,∞. But from this equivalence of categories,
and since every pair of maximal orders has a connecting ideal, the converse is in fact also true: for every
maximal order O ⊆ Bp,∞, there exists a supersingular curve E defined over Fp2 , with End(E) ∼= O.
Further, this choice is unique up to Galois conjugacy. This bijection between isomorphism classes of
maximal orders in Bp,∞ and Galois conjugacy classes of supersingular j-invariants over Fp is one of the
classical formulations of the Deuring correspondence.

The inverse of this functor also has a simple description. Suppose given an O0-ideal I, and assume
for simplicity that p ∤ nrd(I). The ideal I defines the I-torsion subgroup of E0, or kernel of I, via

E0[I] = {P ∈ E0 | α(P) = 0 for all α ∈ I} ,

and thereby the isogeny defined by I
ϕI : E0 −→ E0/E0[I]

whose kernel is E0[I]. The curve EI := E0/E0[I] satisfies Hom(EI , E0) ∼= I (where the isomorphism is
given by sending ψ ∈ Hom(EI , E0) to ψ ◦ ϕI ∈ I), and we refer to it as the curve corresponding to I.
Its endomorphism ring is isomorphic to OR(I). The isogeny ϕI is (by definition) separable and satisfies
deg(ϕI) = nrd(I) and ϕI = ϕ̂I . Furthermore, we have ϕIJ = ϕJ ◦ϕI whenever I and J are compatible and
isomorphisms between the quaternion orders and endomorphism rings of the elliptic curves are chosen
appropriately.

Nomenclature. Despite being a correspondence, it is customary to refer to the two directions sepa-
rately: Starting from an elliptic curve, finding its endomorphism ring as a maximal order in the quaternion
algebra is typically referred to as computing the endomorphism ring problem (we make this precise in
Section 2.6). Conversely, starting from a maximal order in a quaternion algebra, the task of finding
a (supersingular) elliptic curve with that order as endomorphism ring is called the constructive Deur-
ing correspondence. This problem is the main focus of this paper and we give a proper definition in
Problem 8.

2.6. Computing with endomorphism rings. The problem of computing the endomorphism ring
of an elliptic curve depends on the representation of the endomorphism ring we ask for. This section
mostly follows the terminology of [EHLMP18; Wes22]. The basic endomorphism ring representation is
as an order in a quaternion algebra:

Problem 5 (MaxOrder). Given a supersingular elliptic curve E/Fp2 , find a maximal order O ∈ Bp,∞
with an explicit quaternion basis α1, . . . , α4 such that End(E) ∼= O.

Having abstract quaternions that generate the endomorphism ring is not the same as being able to
compute with the endomorphisms on the curve. We say that an endomorphism α ∈ End(E) comes in
efficient representation if its description has size (log p)O(1) and we are able to evaluate α(P) for any
P ∈ E in polynomial time (in the size of the input, i.e., the bit length of P).

7

Problem 6 (EndRing). Given a supersingular elliptic curve E/Fp2 , find endomorphisms ϕ1, . . . , ϕ4
of E in an efficient representation that generate End(E) as a Z-lattice.

Effective endomorphisms. Answers to Problems 5 and 6 separately are not immediately useful
for many advanced computational tasks in supersingular elliptic curves. The strongest form of “knowing
the endomorphism ring” involves having solutions to both problems, and an isomorphism between them.

Concretely, this data can be represented as a 4-tuple of pairs (αj , ϕj), each containing a quaternion
αj ∈ O and an endomorphism ϕj ∈ End(E) in efficient representation, such that mapping αj 7→ ϕj
defines a ring isomorphism between O and End(E). Whenever a supersingular elliptic curve E comes
equipped with this knowledge, we say that E has effective endomorphism ring.1

Evaluating fractional isogenies. In algorithms involving endomorphism rings, it is common that
the endomorphisms giving an effective basis of the endomorphism ring ϕ1, . . . , ϕ4 are not represented
directly as rational maps, but as Q-linear combinations of some easy-to-compute endomorphisms {ωi};
see for example [Koh96; BCEMP19; EHLMP20].

In the following, we will work with isogenies given as quotients ψ/t, where ψ : E → E′ is an efficiently
evaluatable isogeny and t an integer ≥ 1. More formally, ψ/t is shorthand notation for a tensor ψ ⊗ 1/t
inside Hom(E,E′) ⊗Z Q. Moreover, we shall assume that t really does divide ψ: we assume that there
exists some isogeny ψ′ : E → E′ such that ψ⊗1/t = ψ′⊗1. If ψ is an endomorphism of E, this divisibility
implies that ψ/t is also an endomorphism of E.

In principle, it is possible to compute the rational functions defining ψ/t directly [ML04; McM14],
but this usually requires exponential space and time and is therefore not a viable option in most cases.

Luckily, for smooth enough (or otherwise favorable) denominators there is a way to evaluate ψ/t
without recovering an explicit representation as rational maps. The basic idea is as follows: To evaluate
ψ/t at some point P , it suffices to find any point Q with [t]Q = P , amounting to an elliptic-curve point
division, and simply output ψ(Q). (Proof: (ψ/t)(P) = (ψ/t)([t]Q) = (ψ/t · t)(Q) = ψ(Q).)

The main issue with this approach is that the result of point divisions by t generally live in field
extensions of degree linear in t. Decomposing the input point as a sum of points of prime-power order
is a way to partially alleviate this [EHLMP18, Algorithm 5]: Suppose P has order n and write u for the
largest divisor of t coprime to n. If u = t, output [t−1 mod n]ψ(P). Otherwise, let ℓe11 , ..., ℓ

er
r denote

the prime powers in the factorization of t/u and write n = n′ · ℓf11 · · · ℓfrr with gcd(n′, t/u) = 1; note that
each fj ≥ 1. Set m1 := n′ · ℓf11 and mj := ℓ

fj
j for 2≤ j≤ r. Write P as a sum P1 + P2 + · · ·+ Pr of

points where Pj has order mj ; such points Pj can be found by multiplying P by scalars comprising a
CRT basis2 for the sequence (m1, ...,mr). Then, for each j, compute Qj such that [ℓ

ej
j]Qj = Pj , and

finally output

(ψ/t)(P) =

r∑
j=1

[(
t/ℓ

ej
j

)−1
mod mj

]
ψ(Qj) .

As a result of applying this technique, the required extensions are now (generally) linear in ℓ
ej
j , rather

than (generally) linear in t, at the expense of requiring more evaluations of ψ.

Remark 7. Any isogeny φ : E0 → E relates the endomorphism rings of E0 and E via the induced ring
embedding [Wat69, § 3] defined by End(E) ↪→ End(E0) ⊗ Q, α 7→ (φ̂ ◦ α ◦ φ)/deg(φ). This allows us
to represent the basis of O ∼= End(E) as a rational combination of a basis of φ̂End(E0)φ, albeit with
potentially very large denominators. As the algorithm above shows, evaluating endomorphisms repre-
sented in this (fractional) way can be prohibitively expensive. However, whenever the endomorphisms
in End(E0) can be evaluated efficiently and the isogeny φ has powersmooth norm, it can be used to
evaluate endomorphisms of E on points of E in polynomial time (in the smoothness bound).

3. Computing the Deuring correspondence

We refer by the constructive Deuring correspondence to the following problem:

Problem 8 (Deuring). The Constructive Deuring Correspondence problem is the following: Given a
maximal order O in Bp,∞, compute a supersingular elliptic curve E/Fp2 such that End(E) ∼= O.

1A very similar, slightly more general notion was called “ε-basis” in [Wes22, Definition 4]; here we leave the isomorphism
ε : Bp,∞

∼→ End(E)⊗ Q implicit.
2For coprime (m1, ...,mr), a list of integers (a1, . . . , ar) such that ai ≡ 1 (mod mi) ∀i and ai ≡ 0 (mod mj) ∀i ̸= j.

8

As noted before in Section 2.5, the converse to Deuring is the MaxOrder problem (Problem 5).
Following the KLPT algorithm [KLPT14], we will in fact output E together with a powersmooth

isogeny ϕ : E0 → E for a very special E0 with efficiently represented endomorphism ring O0. We
will construct this E0 in Section 3.1 and consider it fixed (per characteristic) for the remainder of the
discussion. Note that from Remark 7, this means that E will also have an efficient representation of the
endomorphism ring End(E) ∼= O.

In light of the categorical equivalence described in Section 2.5, a natural strategy to tackle the
Deuring problem for a maximal order O ∈ Bp,∞ goes as follows:

Step 0: Fix some base curve E0/Fp with a known, effective endomorphism ring O0.
Step 1 (KLPT): Construct an ideal I connecting O0 and O of suitable norm.
Step 2 (IdealToIsogeny): Compute the isogeny corresponding to I as φI : E0 → E.

The target E is the desired curve with End(E) ∼= O.
Steps 1 and 2 are fairly disjoint and algorithmically different steps. However, the complexity of Step 1

needs to be considered together with Step 2 which involves translating quaternionic ideals into isogenies
of elliptic curves. For certain ideal norms, the translation into isogenies is easier, and, conversely, it may
be infeasible — or even impossible — to find ideals of a specific norm.

We start with Step 0 in Section 3.1; this is done once per characteristic p. Next, upon choosing
a target norm R for a given ideal I, Step 1 can be solved using KLPT-like algorithms, as we explain
in Section 3.2. We postpone the details on how to select R to Section 4. Finally, we give a high level
overview of IdealToIsogeny step in Section 3.3.

3.1. Step 0: Constructing the base curve. For p ≡ 3 (mod 4), it is customary to use the
elliptic curve E0 : y

2 = x3 + x with endomorphism ring

O0 = Z ⊕ Z i ⊕ Z
i+ j

2
⊕ Z

1 + k

2

in (−1,−p | Q), where j corresponds to the p-power Frobenius endomorphism π on E0 as usual and i cor-
responds to the order-4 automorphism ι : (x, y) 7→ (−x,

√
−1 ·y) of E0. The action of linear combinations

of 1, i, j,k with denominators can be evaluated using the technique from Section 2.6.
Similarly, for p ≡ 2 (mod 3), the standard choice is E0 : y

2 = x3 + 1 with endomorphism ring

O0 = Z ⊕ Z
1 + i

2
⊕ Z

j+ k

2
⊕ Z

i+ k

3

in (−3,−p | Q), where (i − 1)/2 corresponds to the order-3 automorphism ω : (x, y) 7→ (ζ3 · x, y) of E0,
for ζ3 a non-trivial cube root of unity. It is also possible to give the maximal order for p ≡ 5 (mod 8),
see [KLPT14, § 2.3]. However, this case is subsumed in the following.

For p ≡ 1 (mod 4), a base curve can be constructed using a combination of Bröker’s algorithm [Brö09]
with a classification result from Ibukiyama [Ibu82, Theorem 1] on quaternion maximal orders containing
a norm-p element; see also [KLPT14, § 2.3] and [EHLMP18, § 5.1]. The steps are as follows: Find the
smallest prime q ≡ 3 (mod 4) such that p remains inert in Q

(√
−q

)
, compute the unique (see [CX22,

Theorem 1.1] and [Cox22, Proposition 3.11]) rational root j ∈ Fp of the Hilbert class polynomial H−q,
and construct E0/Fp with j-invariant j. The endomorphism ring of E0 is isomorphic to a maximal order
in the quaternion algebra Bp,∞ = (−q,−p | Q), hence i corresponds to an endomorphism ϑ of E0 such
that ϑ2 = [−q] and ϑπ = −πϑ.

As q is tiny, one can find ϑ explicitly by simply enumerating and testing all q-isogenies E0 → E0;
this method is already polynomial-time in q. However, there is a faster way: Fixing a short Weierstraß
model E0 : y

2 = x3 + ax+ b with a, b ∈ Fp2 , the curve E′
0 : y

2 = x3 + q2ax− q3b is the codomain of the
isomorphism τ : E0 → E′

0 given by (x, y) 7→ (−qx,
√
−q3y). The desired endomorphism ϑ : E0 → E0 acts

on the standard Weierstraß differential dx/y via multiplication by
√
−q ∈ Fp2 , while τ acts as 1/

√
−q

by construction. Hence, the composition ϑ′ = τϑ : E0 → E′
0 is a normalized isogeny of degree q, which

can be computed within Õ(q) operations in Fp using [BMSS08]. Then clearly ϑ = τ−1ϑ′. Choosing the
other square root of −q in the definition of τ recovers ϑ̂ = −ϑ, which is also a correct output.

Then, according to Ibukiyama, there are only two candidates for End(E0), namely

O0 = Z ⊕ Z
1 + i

2
⊕ Z

j+ k

2
⊕ Z

ci± k

q
(1)

9

where c is a fixed integer satisfying c2 ≡ −p (mod q). The correct choice of sign can be determined by
evaluating the endomorphism ϑ([c] + π) associated to ci+ k on a basis of the q-torsion of E0: The + is
correct if the image is trivial, − otherwise.

Remark 9. The curve E0 is the reduction modulo p of an elliptic curve in characteristic zero with complex
multiplication by the imaginary quadratic ring Z

[
(1+
√
−q)/2

]
. Note that the degree deg(H−q) ≈

√
q,

which can quickly get expensive to compute with. Fortunately, assuming GRH, the minimal q is in
O((log p)2) and can in practice be found very easily.

Finally, notice that the above demonstrates that constructing supersingular elliptic curves in this way
reveals the endomorphism ring, as [CPV20; LB20] showed previously. Therefore, this method is not suited
to solve the open problem of hashing into the supersingular isogeny graph, see for instance [Boo+22].

Representation of quaternion orders. Choosing O0 in the way described above means we will
work in the quaternion algebra (−q,−p | Q). However, the quaternion order O given to us may have been
represented as an order in a different, but isomorphic quaternion algebra (−q′,−p′ | Q): For instance,
for p ≡ 11 (mod 12) we could use either of the constructions for p ≡ 3 (mod 4) or p ≡ 2 (mod 3) to
express O0. Both choices are natural as they correspond to the well-known curves E1728 : y

2 = x3 + x
and E0 : y

2 = x3 + 1. We will return to this specific situation in Example 22.
In the following, we require that p = p′, so that j2 = j′2 = −p. (This holds true for all constructions

of O0 given above.) Then we can pass between the two representations of the quaternion algebra Bp,∞
using the following lemma:

Lemma 10. Let p be a prime number and q, q′ ∈ Z>0 such that B = (−q,−p | Q) and B′ = (−q′,−p | Q)
are quaternion algebras ramified at p and ∞.

Then there exist x, y ∈ Q such that x2 + py2 = q′/q. Writing 1, i′, j′,k′ for the generators of B′ and
1, i, j,k for the generators of B, and setting γ := x+ yj, the mapping

i′ 7→ iγ, j′ 7→ j, k′ 7→ kγ

defines a Q-algebra isomorphism B′ ∼−→ B.

Proof. Existence of (x, y): Since B and B′ are ramified at the same places, there exists an isomor-
phism f : B′ → B. By the Skolem–Noether theorem, we may without loss of generality assume f(j′) = j;
see for instance [Voi21, Corollary 7.1.5]. Using this, a direct calculation shows jf(i′) = −f(i′)j, which
implies f(i′) ∈ Qi+Qk. Therefore, the element γ := i−1f(i′) is of the form x+ yj with x, y ∈ Q, and we
have x2 + py2 = nrd(γ) = q′/q by multiplicativity of the norm.

Correctness of the constructed isomorphism is readily verified. □

The sledgehammer method to find the pair (x, y) in Lemma 10 constructively would consist in running
Simon’s general algorithm for quadratic forms [Sim05], which runs in polynomial time after factoring q
and q′, but note that the particular special case required here (a Legendre equation) is classical.

3.2. Step 1: Finding a connecting ideal. In this section, we will explain the KLPT step
from Section 3. It is based on the KLPT algorithm [KLPT14]; the state-of-the-art improvements were
made in the context of SQISign [DeF+20; DLW22].

In the previous section, we have fixed E0 with an efficient endomorphism ring O0. Finding a con-
necting ideal between O0 and O is straightforward: set N = [O0 : O ∩O0] and then define

I(O0,O) := NO0O.(2)

It is easy to see that it is a connecting ideal, and it is clearly integral. Note also that N is minimal
possible such that I(O0,O) is integral, as can be seen from requiring NO ⊂ NO0O ⊂ O0. However,
since we do not have any control over N , this choice would almost certainly make all the following steps
exponential-time.

From the Deuring correspondence, a curve E with End(E) ∼= O is defined uniquely up to Galois
conjugacy; it corresponds to a left ideal class of I(O0,O). Therefore, we search for more suitable ideals
among the ideals I(O0,O) ·β for β ∈ B×

p,∞: They give rise to the same codomain curve (or its conjugate).
From now on, all ideals we will discuss will be integral left O0-ideals in this equivalence class.

The following lemma controls the norm (and works for any order, not just O0 from Section 3.1).

Lemma 11 ([KLPT14, Lemma 5]). Let I be a left O0-ideal and α ∈ I an element of norm N . Then

χI(α) := Iα/nrd(I)

is an integral ideal of norm N/nrd(I).
10

Therefore, to find an equivalent ideal I ∼ J of norm R, one only has to find an element α ∈ I of
norm nrd(α) = R · nrd(I). Since I is a 4-dimensional Z-lattice, this task is equivalent to representing
the integer R by a certain positive-definite quadratic form.

Prime norm. Finding an equivalent ideal of prime norm is easy; simply iterating over short vectors
in the ideal lattice quickly finds an element β ∈ I such that the norm of χI(β) is prime. So from now
on, let us assume that the ideal I we start with has prime norm.

Remark 12 (Failure in KLPT). For a random ideal, we expect to find equivalent ideals of prime norm
≈ p1/2. De Feo, Leroux and Wesolowski [DLW22, Section 3.2] observed that this heuristic may fail if
there is a representative in the class of I with unexpectedly small composite norm (smaller than p1/2).
In our case, this simply means that the KLPT output will have bigger norm than expected, hence we
may require more torsion to work with. We fix this by only selecting the target norm (see Section 4.2)
after having obtained an equivalent prime ideal. In practice, this almost never happens when working
with random ideal classes, except when working with very small primes.

KLPT. Let I be an ideal of prime norm N . The original KLPT algorithm [KLPT14] takes as input
a prime ℓ and finds an equivalent ideal J ∼ I of norm ℓe for some e. It has since been extended to more
general norms R. In this section, we will give an overview of the modern formulation of the algorithm:
The high-level steps are shown in Algorithm 1.

Algorithm 1: KLPT(O0, I, R)

Input: Maximal order O0 ⊆ Bp,∞, connecting (O0,O)-ideal I of norm N , target norm R.
Output: J ∼ I with nrd(J) = R, or failure.

1 Split R as a product R = r1r2, where r2 ≈ r51.
2 Find any γ ∈ O0 of norm Nr1.
3 Find µ0 ∈ jZ[i] such that O0γµ0/NO0 = I/NO0.
4 Use strong approximation modulo N on µ0 to find µ ∈ O0 of norm r2.
5 Set β = γµ of norm NR.
6 Return χI(β) = Iβ/N .

Following [DeF+20], the substeps are typically called as follows: Step 2 is called RepresentInte-
ger, Step 3 is called IdealModConstraint, and Step 4 is called StrongApproximation. Heuristi-
cally, the original KLPT algorithm works as long as R exceeds ≈ p7/2. Petit and Smith [PS18] improved
the StrongApproximation step by searching for a small solution using lattice reduction, rather than
returning a random solution, which enables them (and us) to find ideals of norm ≈ p3.

To make this algorithm work in heuristic polynomial time, KLPT require O0 to be a special extremal
order. This simplifies the situation in two ways: in Step 2, one can find γ by representing Nr1 by a
quadratic form of the shape f(t, x) + pf(y, z) for a binary quadratic form f(u, v), which allows for
reduction to 2 variables and using Cornacchia’s algorithm [Cor08]. Note that for general O, even if
there exists a suitable decomposition of the quadratic form using a binary form f , the class number of
the quadratic order corresponding to f might be too large, and the chances of a random integer being
represented by f(u, v) are small. Similarly, using a special extremal order in Step 3 means the search
for µ reduces to a search in a quadratic suborder, again making the step much easier.

For our purposes, we have only used the generalization from having the target norm be a power of
ℓ to instead be R = r1 · r2 ≈ p3: In Step 2, one looks for elements of norm Nr1, and in Step 4 replace
the power of ℓ with r2. Clearly not every choice of r1, r2 will work: heuristic estimates suggest that
r1 ≈ p1/2 and r2 ≈ p5/2 should suffice, though if the ideal I is of prime norm ≫ p1/2 (see Remark 12)
then r2 needs to be bigger as well. Typically, one chooses r1, r2 smooth, as we will in Section 4.2.

The KLPT algorithm can further be generalized to a larger class of orders, than just special extremal
maximal orders; see [DeF+20; Ler22].

3.3. Step 2: Ideal-to-Isogeny translation. The next step is to translate the ideal J of norm
nrd(J) = N to its corresponding isogeny. Following Section 2.5, one can start by computing the J-torsion
subgroup E0[J]. The standard approach is to do so by evaluating the action of J on the N -torsion of E0.
However, the complexity of this approach is in general exponential in log(N): It follows from Theorem 2
that the torsion group E0[N] is in general only defined over Fp2k where k ∈ O(N). Furthermore,
computing isogenies of degree N from its kernel group is exponential in log(N) in general. Therefore,
for general norms, translating ideals to isogenies is infeasible.

11

This is why we need the flexibility of KLPT to efficiently find equivalent ideals of prescribed norm.
The simplest way is to set KLPT to target a generic powersmooth norm. However, this is far from
optimal, and one of our contributions is precisely an improvement on how to choose this target norm.

To translate the ideal to the corresponding isogeny ϕJ , we first find the kernel by computing the
J-torsion E0[J]. Algorithms for doing this were first presented by Galbraith, Petit and Silva [GPS17].
Our version is based on this but includes a few tricks we present in Section 4.1. For now, suppose that J
has smooth norm

∏
i ℓ
ei
i . The first step in finding the J-torsion subgroup E0[J] is to generate the bases

of the torsion subgroups E0[ℓ
ei
i].

Generating bases of torsion groups. We need to generate a basis for the torsion groups E0[ℓ
ei
i]

for all ℓeii | nrd(J). Let k be an integer such E0[ℓ
ei
i] ⊆ E0(Fp2k). Generating a basis can be done by

sampling random points and multiplying them by a suitable cofactor (pk ± (−1)k)/ℓeii ; cf. Theorem 2.
This in general generates points of order dividing ℓeii . With probability (ℓ2eii −ℓ

2(ei−1)
i)/ℓ2eii = (ℓ2i −1)/ℓ2i

we obtain a point of full order. However, for two points P,Q to generate E0[ℓ
ei
i], we also need to check

linear independence (for instance, by checking that the weil pairing eℓeii (P,Q) is a primitive ℓeii -root of
unity). Hence, we can prove that with overwhelming probability, it is enough to repeat the sampling
several times. More importantly, in practice, we only need a few tries.

So generating the torsion bases costs O(k log p) ·M(k), for M(k) the cost of multiplying in Fp2k .

Finding kernel generators. Once we have the bases for E0[ℓ
ei
i], we can compute Ei[J]. Follow-

ing [GPS17], the idea is to find the action on the torsion subgroup E0[ℓ
ei
i] of a set of endomorphisms αi

which generate the ideal J . This is done as follows: Every αi is a Q-linear combination of the basis 1, i, j,k
of Bp,∞, typically with small denominators, and can hence be evaluated on the basis ⟨P,Q⟩ = E0[ℓ

ei
i]

by means of the techniques discussed in Section 2.6. By computing two discrete logarithms (easy if ℓi
is small), one finds integers a, b, c, d such that αi(P) = [a]P + [b]Q and αi(Q) = [c]P + [d]Q, and hence
recovers the matrix Mi ∈ (Z/ℓe)2×2 by which αi acts on E[ℓe] ∼= Z/ℓe × Z/ℓe. The intersection of the
kernels of all these matrices Mi is (by definition) equal to E[J].

In Section 4.1, we shall present an improved variant of this algorithm which avoids both discrete
logarithms and potential point divisions.

Evaluating isogenies. For every prime power ℓeii dividing nrd(J), we need to compute an isogeny
of degree ℓeii . In the case that the kernel points found in the previous step are defined over Fp2ki ,
using Vélu’s or Kohel’s algorithm (Section 2.3), each isogeny computation has complexity bounded by
Õ(ℓiM(ki)). (Note that we will improve upon this with Algorithm 4).

We use Kohel’s algorithm because we need to compute a sequence of isogenies, and evaluate these
isogenies at several points defined over different extensions Fp2kj . Using Vélu’s or the

√
élu formulas

would require us to work in the compositum of these two fields, which impacts the performance at least
quadratically in the extension degrees.

Remark 13 (Known speedups for computing isogenies). When computing several isogenies of different
degrees using points defined over the same extension field, there are many possibilites for small speedups,
such as using (optimal) strategies. Many of these tricks are successfully used to accelerate the computation
of sequences of isogenies in other isogeny protocols, [DJP14; CLMPR18].

In the same spirit, the
√

élu formulas offer a significant speedup for isogenies of moderate degree.
These formulas can be used directly in the final step of the isogeny evaluation, computing the last
isogeny without performing any evaluations and thus saving the cost from possibly having to pass to
larger composite extension fields. Even better, we may pick one particular extension field and compute
all the isogenies whose generators lie in that field at the very end using

√
élu. Note that this finds the

codomain curve faster in some cases, but evaluating the isogeny itself may become slower.

4. Our improvements

This section explains the improvements in our implementation, which works for any prime p> 3.

4.1. Computing the kernel. In this section, we go through our algorithm for finding E[J], where
J is an ideal of norm nrd(J) = N .

We will assume that J is cyclic, that is, it is does not factor as J = mK for any integer m ̸= ±1 and
integral ideal K; otherwise we scale J by a suitable scalar. (Equivalently, the kernel of the corresponding
isogeny is a cyclic subgroup.) In this case, we may simplify the algorithm from Section 3.3 by writing
J = O0α+O0N for some α ∈ J satisfying gcd(nrd(α), N2) = N ; see [Ler22, Algorithm 19].

12

In this case, E0[J] = E0[α] ∩E0[N] and we can easily find E0[J] as α(E0[N]). We do the following:
Write N =

∏
ℓeii . We can evaluate α on the bases ⟨Pi, Qi⟩ = E0[ℓ

ei
i] and then take whichever image point

has full order (and hence generates the kernel of α restricted to E0[ℓ
ei
i]). By the structure theorem for

finite abelian groups, these images together generate the kernel of E0[α]∩E0[N]. Clearly, this technique
avoids discrete-logarithm computations.

Remark 14. We do not have to work on each prime power individually; if one instead wishes to work
directly with a basis ⟨P,Q⟩ = E0[N], the group E0[J] is simply ⟨α(P), α(Q)⟩. (Note that in this case
we are not guaranteed that either α(P) or α(Q) has full order.) This shows that it is easy to find E0[J]
whenever J is cyclic, even if N is not smooth, as long as E0[N] is defined over a small extension field.

Next, we note how to avoid point divisions. Let α have denominator t. Since α ∈ O0, we know
that t | 2q by construction (see Section 3.1). We will always avoid having to do point division by finding
the slightly larger ℓe+νℓ(t)-torsion. This only changes the algorithm at two primes at most, that is,
2 and q. The full algorithm is given in Algorithm 2.

Algorithm 2: IdealToKernelGens(J,E0)
Input: Left O0-ideal J of norm N =

∏r
i=1 ℓ

ei
i , curve E0 with effective endomorphism ring

End(E0) ∼= O0.
Output: {G1, ..., Gr}, a generating set of kerϕI , with ord(Gi) = ℓeii .

1 Compute α ∈ End(E0) such that J = O0α+O0N under the isomorphism End(E0) ∼= O0.
2 Let (ϕ1, ..., ϕ4) be a basis of End(E0) ∼= O0 consisting of efficiently evaluatable endomorphisms.
3 Write α as a fraction of the form (c1ϕ1 + ...+ c4ϕ4)/t, where c1, c2, c3, c4 ∈ Z and t ∈ Z≥1.
4 For i ∈ {1, . . . , r} do
5 Set vi = νℓi(t) to be the ℓi-adic valuation of t.
6 Let c(i)j ← cj(t/ℓ

vi)−1 mod ℓei+vii for j ∈ {1, ..., 4}.
7 Define γi ← c

(i)
1 ϕ1 + · · ·+ c

(i)
4 ϕ4.

8 Find P,Q ∈ E0 such that ⟨P,Q⟩ = E0[ℓ
ei+vi
i] .

9 Compute Gi ← γi(P).
10 If [ℓei−1

i]Gi = 0 then
11 Compute Gi ← γi(Q).

12 Return {G1, ..., Gr}.

In Algorithm 2, after the basis is found for E[ℓe
′
] with a suitable e′, the cost of finding the kernel is

dominated by evaluating the Frobenius endomorphism and is in O(log p+ e′ · log ℓ) ·M(k). In the typical
case that ℓe

′
is minuscule compared to p, the cost can be simplified to O(log p) ·M(k).

4.2. Choosing the norm. We start with a quote from [DLW22]: “The efficiency of SQISign is
mostly governed by the ideal-to-isogeny translation, [...]”. However, the cost of this is heavily influenced
by the choice of R. In this section, we explain our main trick of choosing R such that this cost is reduced.

We make the following changes to the KLPT algorithm: first, we include the known improvement due
to [PS18] in the last step. Second, before running the KLPT algorithm, we include a greedy optimization
step, in which we compute the optimal R-torsion to work with.

Selecting favorable torsion. We want to select the best combination of prime-power factors ℓe | R
such that the cost of the translation to isogeny step (see Section 3.3) is minimized. It is clear that each
prime power ℓe | R contributes in many direct and indirect ways: we need to compute the basis of
the ℓe-torsion, evaluate the action of the endomorphism ring on this torsion, find the kernel generator,
compute up to e different ℓ-isogenies, etc. Moreover, remembering that we use many of the standard
implementation tricks such as pushing points through isogenies, the specific amount by which any one
prime power is contributing to the total cost is difficult to determine. As such, our implementation takes
a simple cost model as input, and this cost model estimates the cost of computing with ℓe-torsion in an
extension of degree k. We then use a greedy algorithm to find R > B for a suitable bound B, depending
on the ideal-to-isogeny strategy. When simply aiming to translate the KLPT output directly (as our
implementation does by default), the bound is (usually, see Remark 12) B = p3. In Appendix A, we
show how this bound can be reduced to B = p2, using a method based on SQISign.

13

The cost model we use in our implementation works as follows, for some constants c1, c2, c3, c4 ∈ R>0:
• the cost ratio of Fp2k -operations to Fp2 -operations in SageMath (which uses PARI internally)

was measured empirically for various sizes of p and k and approximated numerically by simple
formulas;

• the cost of computing a basis of E[ℓe] is modelled as c1 · k · log p operations in Fp2k ;
• the cost of computing the kernel generators in Algorithm 2, done by evaluating the action of

the dual of the generator α, is modelled as c2 · log p operations in Fp2k ;
• the cost of computing the ℓe-isogeny is modelled as c3 · e · ℓ · (k + c4(log ℓ)

2) operations in Fp2 .
In our experiments, we use (c1, c2, c3, c4) = (0.31, 1.17, 0.46, 0.01), which were estimated empirically.

We stress that this cost model is very rudimentary, and may be far from optimal. First, it follows
the asymptotic costs of the relevant algorithms, which might be significantly different for practical values
of p. Then, the values ci, i = 1, . . . , 4 have been computed by optimising the average runtime by
trial-and-error, strongly depending on the cost model. Fine-tuning this torsion-optimization step, that is
improving the cost-model and then recomputing the constant, can almost certainly lead to better results.

A picture is worth a thousand words. To illustrate why our approach can lead to improvements,
we examine the following two figures. In Figure 1, for each prime power ℓe (ℓ ≥ 2, e ≥ 1) between 2 and
101 on the x-axis, we plot on the y-axis the extension degrees — different primes may require different
extension degrees, hence the plural — of Fp2 required to define the full ℓe-torsion subgroup . The intensity
of the color of the pixels corresponds to the probability of obtaining degree k when p varies. We see that
the extension degree is most often (ℓ− 1)/2.

The naïve/powersmooth strategy picks prime powers ℓe starting from the left, and so usually ends
up with extension degrees depicted in the upper part of Figure 1 (as those are the most probable ones).

Our approach corresponds to looking at a “wider” picture for each particular p: in Figure 2, each
data point still corresponds to the extension degree over Fp2 over which the ℓe-torsion is defined, but
we allow for larger values of ℓe. We then choose data points in the lower part of the picture, speeding
up computations by skipping values ℓe which need large extension degrees k, when working with these
would require — based on the cost model — more computations than using larger values ℓe with smaller
extension degrees k.

Finally, SQISign chooses for its parameters a prime p such that in the corresponding Figure 2, the
bottom of the picture is heavily inhabited, and only computes with torsion which does not require large
extension degrees.

4.3. Irrational x-only arithmetic. A standard technique in elliptic-curve and isogeny-based cryp-
tography is to work with x-coordinates only, instead of “full” points (x, y) having both coordinates. This
allows us to compute both on the curve and its twists using unified formulas: x-coordinates for which
the associated y-coordinate is irrational define rational points on the quadratic twist.

One important advantage is that by Theorem 2, if we start with a curve with (pk − (−1)k)2 points,
its twist has (pk + (−1)k)2 points, allowing us to access more torsion. The special case k=1 amounts
to working with (p2−1)-torsion, which is nowadays standard in isogeny-based cryptography [Cos20], but
higher extensions are seldomly used.

Some computations can be done entirely in x-only arithmetic: Using the fact that x(−P) = x(P),
it is easy to see that the x-coordinate of a scalar multiple [n]P depends only on the x-coordinate of P .
Therefore, for any n ∈ Z not divisible by the order of P , the map x(P) 7→ x([n]P) is well-defined, and it
can be computed efficiently using only O(log |n|) operations in the base ring using a ladder algorithm.
We write xMUL(E, ξ, n) for such an algorithm, taking a curve E/Fq, an x-coordinate ξ of a point on E,
and a scalar n ∈ Z. Note that xMUL is algebraic; in particular, ξ may be an element of any Fq-algebra.

For other computations, typically those involving point additions, relying only on x-coordinates
can become difficult or inefficient or both. In our implementation, we employ full points (either on
the original curve or on a rational model of a suitable quadratic twist) up until the evaluation of the
endomorphism α in Algorithm 2, then drop the y-coordinates and perform all remaining computations
in an x-only manner.

Kernel polynomials from irrational points. We need to compute many isogenies with kernels
whose points are only defined over extension fields. As such, computing kernel polynomials is a bottleneck
in our algorithm. Algorithm 4 computes the kernel polynomial from an irrational point (represented by its
x-coordinate ξ) faster than naïvely enumerating points inK and applying a product tree (see Section 2.3).
We introduce the following terminology, a mild generalization of the concept of kernel polynomials:

14

2 50 101 [ℓe]

1

50

[k]

Figure 1. Heatmap of distribution of extension degrees k required to access the ℓe-
torsion subgroup of a supersingular elliptic curve defined over Fp2 , under the heuristic
assumption that p behaves like a random unit modulo all ℓe. The intensity with which
each data point (ℓe, k) is drawn represents the number of units µ ∈ (Z/ℓe)× such that k
is minimal with µk ∈ {±1}; the choice of sign translates to working on a curve model
with Frobenius (−p)k or −(−p)k (see Section 4.3).

2 50 100 150 199 [ℓe]
1

16

41

[k]

Figure 2. Illustration of ℓe-torsion subgroups with their associated extension degree k
chosen by naïve powersmooth KLPT (□) and our algorithm (■), for a quadratic-time
cost model and some particular combination of prime p and magnitude of norm of the
output ideal.

Definition 15. Let E be an elliptic curve over a field k and f ∈ k[X] a monic squarefree polynomial. The
subgroup defined by f is the subgroup H of E generated by the set of points {P ∈ E\{0} : f(x(P)) = 0}.

In this situation, we say that f is a defining polynomial for H, and if f is furthermore irreducible,
we refer to f as a minimal polynomial of H.

Note that every cyclic subgroup can be defined by a minimal polynomial; taking the minimal polyno-
mial of the x-coordinate of any generating point of the subgroup suffices. Representing subgroups by their
minimal polynomials instead of “full” kernel polynomials can save time, especially if the kernel points
are defined over field extensions of degree much smaller than the isogeny degree — i.e., the particular
scenario we are enforcing in our implementation. However, it does raise the algorithmic question of how
to compute and evaluate isogenies when subgroups are represented by minimal polynomials. Answers
will be given in this section.

15

Historical note. An algorithm very similar to Algorithm 3 was given in [Tsu13, § 3.4], but as described
there it involves computing a greatest common divisor with the ℓ-division polynomial, which renders it
less efficient than Algorithm 3. There is also no discussion of the complexity.

SageMath currently uses the algorithm from [Tsu13] to enumerate all ℓ-isogenies from a given curve.
The implementation additionally features an efficiency improvement due to Demeyer [Dem15] that is
mathematically identical to the technique used in Algorithm 3; however, it seems to have gone unnoticed
that Shoup’s algorithm is faster than the algorithm implemented in Sage (as of version 9.7).

Algorithm 3: KernelPolynomialFromDivisor(E, f, ℓ)

Input: Elliptic curve E/Fq, prime integer ℓ, minimal polynomial f ∈ Fq[X] of an order-ℓ
subgroup H ≤ E.

Output: The kernel polynomial h ∈ Fq[X] of H.

1 Set k ← deg f and m← ⌊ℓ/2k⌋ and f1 ← f .
2 Search for a primitive root a ∈ Z modulo ℓ of minimal absolute value.
3 For i from 2 to m do
4 Write X for the image of X in Fq[X]/fi−1 and compute αi ← xMUL(E,X, a) ∈ Fq[X]/fi−1.
5 Find the minimal polynomial fi ∈ Fq[X] of αi over Fq using Shoup’s algorithm.

6 Compute h←
∏m
i=1 fi ∈ Fq[X] using a product tree.

7 Return h.

An immediate application is computing isogenies from irrational kernel points:

Algorithm 4: KernelPolynomialFromIrrationalX(E, ξ, ℓ)

Input: Elliptic curve E/Fq, extension Fqr/Fq, x-coordinate ξ ∈ Fqr of an order-ℓ point P ∈ E
lying in an eigenspace of the q-power Frobenius on E.

Output: The kernel polynomial h⟨P ⟩ ∈ Fq[X] defining the subgroup of E generated by P .

1 Find the minimal polynomial µ ∈ Fq[X] of ξ over Fq using Shoup’s algorithm.
2 Return KernelPolynomialFromDivisor(E,µ, ℓ).

Lemma 16. Algorithm 3 is correct. It can be implemented in such a way that it runs within O(ℓk)+Õ(ℓ)
operations in the field Fq.

Proof. If ℓ = 2, then k = 1 and m = 1 and the algorithm simply returns f . Assume ℓ ≥ 3 below.
Fix any point P ∈ E\{0} with f(x(P)) = 0. As ℓ is prime, P is a generator of H. Let π denote the

q-power Frobenius endomorphism of E. Since x(π(P)) = x(P)q is a Galois conjugate of a root of f , it
must itself be a root of f , and therefore π(P) also generates H. Hence, there exists a scalar λ ∈ (Z/ℓ)×
such that π(P) = [λ]P , and since all other points in H are scalar multiples of P we conclude that H is
a λ-eigenspace of Frobenius. In other words, the Galois action on H\{0} factors through the (free and
transitive) action of (Z/ℓ)× on the set H\{0} of generators of H: Its image is ⟨λ⟩ ≤ (Z/ℓ)×.

We quotient everything by negation, yielding a (still free and transitive) action of A := (Z/ℓ)×/±
on the set X := (H\{0})/± = {{Q,−Q} : Q ∈ H\{0}}. Via the x-coordinate projection, the latter
is in bijection with the set {x(Q) : Q ∈ H\{0}} of roots of the desired kernel polynomial, and this
correspondence is compatible with the respective Galois actions. Thus, the irreducible factors of the
desired kernel polynomial correspond to Galois orbits of the subgroup S := ⟨λ⟩/± on the A-set X.
Since the orbit corresponding to f has size k, all other orbits must have the same size. The orbits are
in bijection with the quotient group A/S, and they can be enumerated by acting with any transversal
of A/S: The algorithm uses the first m powers of a.

Concretely, for i ≥ 2, the algorithm computes the polynomial fi corresponding to the i-th Galois
orbit as the minimal polynomial over Fq of an explicitly constructed root αi of fi. Indeed, throughout,
the quotient ring Fq[X]/fi−1 is a representation of the finite field Fqk , and the images of the αi in Fqk
form a set of representatives for the Galois orbits of the roots of the kernel polynomial.

Regarding the complexity: The loop runsO(ℓ/k) times. FFT-based arithmetic in Fq[X]/fi−1 requires
Õ(k) operations in Fq. Shoup’s algorithm [Sho99] requires O(k2) operations in Fq. The final product

16

tree can be computed in Õ(ℓ) operations in Fq, again using FFT-based polynomial arithmetic. Simplify
using ℓ/k · Õ(k) = ℓ(log k)O(1) and k, |a| ∈ O(ℓ) to get the claimed runtime. □

Remark 17. The complexity of Algorithm 4 is O(r2) for Shoup’s algorithm plus the time required by
Algorithm 3. Hence, unless the given x-coordinate ξ is represented as an element of an excessively large
extension field of degree /∈ O(degµ), Algorithm 4 runs in time O(ℓr) + Õ(ℓ) as well.

By comparison, the complexity of the straightforward algorithm outlined in Section 2.3 is Õ(ℓr).

Remark 18. Algorithm 3 has been restricted to irreducible f and prime orders ℓ for simplicity and
ease of notation. It can be generalized to arbitrary orders ℓ, and reducible defining polynomials of H,
assuming one is willing to deal with the added complications in the structure of the monoid (Z/ℓ, ·)
when ℓ is composite. However, the particular case of prime powers is fairly manageable and very useful.

Pushing subgroups through isogenies. This section presents an algorithm for finding the image
of a finite subgroup under an isogeny when using the minimal-polynomial representation (Definition 15).
The technique generalizes Steps 4 and 5 of Algorithm 3.

Algorithm 5: PushSubgroup(E, f, φ)

Input: Elliptic curve E/Fq, minimal polynomial f ∈ Fq[X] of a subgroup H ≤ E,
isogeny φ : E → E′ defined over Fq.

Output: Minimal polynomial fφ ∈ Fq[X] of the subgroup φ(H) ≤ E′.
1 Write the x-coordinate map of φ as a fraction g1/g2 of polynomials g1, g2 ∈ Fq[X].
2 Let gker ← gcd(g2, f) and f1 ← f/gker.
3 Compute g1 · g−1

2 mod f1 ∈ Fq[X] and reinterpret it as a quotient-ring element α ∈ Fq[X]/f1.
4 Find the minimal polynomial fφ ∈ Fq[X] of α over Fq using Shoup’s algorithm.
5 Return fφ.

Lemma 19. Algorithm 5 is correct. It can be implemented in such a way that it runs within O(k2)+Õ(n)
operations in the field Fq, where k = deg f and n = degφ.

Proof. Consider an arbitrary root ξ ∈ Fq of f and a point P ∈ E with x-coordinate ξ. If gker(ξ) = 0,
then g2(ξ) = 0, so that P ∈ kerφ. Otherwise, we have f1(ξ) = 0 and hence ι1(α) = g1(ξ)/g2(ξ) = x(φ(P))
where ι1 : Fq[X] → Fq, X 7→ ξ. This shows that fφ is the minimal polynomial of x(φ(P)). However,
since fφ was defined independently of the particular P considered, we see that fφ in fact vanishes at
x(φ(P)) for all such points P . Thus, fφ is indeed a defining polynomial for the group φ(H) generated
by all the φ(P), as claimed.

Regarding the complexity: FFT-based arithmetic on polynomials of degree bounded by d takes Õ(d)
operations in Fq. Shoup’s algorithm [Sho99] requires O(k2) operations in Fq. The overall cost is therefore
Õ(max{n, k}) +O(k2) ⊆ O(k2) + Õ(n). □

For comparison, the complexity of straightforward evaluation of φ at a single generating point of H
with coordinates in Fqk uses O(nk(log k)O(1)) operations in Fq.

Remark 20. Algorithm 5 did not make any assumption on the degree of φ, but of course the reasonable
thing to do in most cases will be to apply the algorithm to each prime-degree step of φ sequentially.

If φ is a scalar multiplication, it is better dealt with by running xMUL in the quotient ring Fq[X]/f ,
as in Step 5 of Algorithm 3, rather than writing out the rational maps first.

5. Numerical examples and experiments

We start in Section 5.1 with examples illustrating the tools developed in Section 4: in Example 21 we
give a worked example of the entire computation for a prime p ≡ 1 (mod 12), and in Example 22 we
give an example of finding an isogeny connecting elliptic curves with j-invariants 1728 and 0.

We report on the timings of our algorithm in Section 5.2.
17

5.1. Examples. We begin by providing a numerical example to illustrate the algorithm.

Example 21. In this example we are working with p = 61057, a 16-bit prime with p ≡ 1 (mod 12). The
quaternion algebra Bp,∞ can be given the Q-basis {1, i, j,k}, where i2 = −7, j2 = −p and ij = −ji = k.
In Bp,∞, the order

O = Z ⊕ Z
1 + 79i

2
⊕ Z (3i+ j) ⊕ Z

553 + 35467i+ 987j+ k

1106

is maximal, and our goal will be to construct an elliptic curve with endomorphism ring isomorphic to O.
Step 0. The unique root of

H−7(X) = X + 3375

in Fp is 57682, and we find that the curve E0/Fp : y2 = x3+19621x+41436 has j(E0) = 57682. Further,
we find that the endomorphism ring of E0 is isomorphic to

O0 = Z ⊕ Z
1 + i

2
⊕ Z

j+ k

2
⊕ Z

2i− k

7
,

where the endomorphism corresponding to i has kernel with a minimal polynomial (Definition 15)

X3 + 30526X2 + 23984X + 12309.

In order to find a curve with endomorphism ring isomorphic to O, we need a connecting (O0,O)-ideal.
We make the same choice as in Equation (2):

I = NO0O = Z 79 ⊕ Z
79 + 79i

2
⊕ Z (37 + 3i+ j) ⊕ Z

791 + 453i+ 7j+ k

14

and aim to translate this ideal to its corresponding isogeny.
Step 1. We start by finding the target norm for the KLPT algorithm. We will do the simple trans-

lation in Step 2, hence we need R > p3. We find that

210 | p8 − 1, 34 | p9 − 1, 53 | p2 + 1, 7 | p3 + 1, 11 | p5 + 1,

13 | p3 − 1, 17 | p8 + 1, 19 | p9 + 1, 29 | p2 + 1, 53 | p− 1,

and that R = 210 · 34 · 53 · 7 · 11 · 13 · 17 · 19 · 29 · 53 > 227617885752193 = p3. Running KLPT, with R as
a target norm, we find an equivalent ideal J ∼ I with nrd(J) | R as

J = Z 92006270928000

⊕ Z (31627155631500 + 2875195966500i)

⊕ Z
25167369945337 + 690338525003i+ 32j

2

⊕ Z
740914458532283 + 24241082699825i+ 21j+ k

14

with nrd(J) = 27 · 34 · 53 · 11 · 13 · 17 · 19 · 29 · 53.
Step 2. Next, we find generators for the full torsion groups (recall, we need an extra power of 2

because of the denominators):

E0[2
8] ⊆ E0(Fp4), E0[3

4] ⊆ Ẽ0(Fp18), E0[5
3] ⊆ Ẽ0(Fp4), E0[11] ⊆ Ẽ0(Fp5), E0[13] ⊆ Ẽ0(Fp6),

E0[17] ⊆ Ẽ0(Fp16), E0[19] ⊆ E0(Fp18), E0[29] ⊆ Ẽ0(Fp4), E0[53] ⊆ Ẽ0(Fp2).

Here, Ẽ(Fq) denotes the group of Fq-rational points on a quadratic twist of E over Fq.
Next, we determine the action of J on the different torsion groups (see Algorithm 2), and find a

generator Pℓe for every (maximal) prime power ℓe | nrd(J). Some of these generators are a priori only
defined over twists, but using the twisting isomorphism we can transfer the x-coordinate back to E0.

From the x-coordinates of these generators, we compute the corresponding chain of isogenies (using
Algorithm 4) and end up at the curve

EJ/Fp(α) : y2 = x3 + (38455α+ 40273)x+ (3066α+ 17732),

where α satisfies α2 + 5 = 0. From the Deuring correspondence, we know that

End(EJ) ∼= OR(J) ∼= OR(I) = O.
18

Example 22 (Connecting j=1728 with j=0). When p ≡ 11 (mod 12), both the curves E0 : y
2 = x3 + x

and E1 : y
2 = x3+1, of j-invariants 1728 and 0 respectively, are supersingular. This has prompted [CPV20,

Example 19] to investigate the problem of finding an Fp-rational isogeny between those two curves in the
setting of the cryptographic group action CSIDH [CLMPR18]. In the following, we will arbitrarily work
in characteristic p = 7799999 for the sake of an example and consider the analogous problem of finding
an arbitrary, not necessarily Fp-rational isogeny.

Recall from Section 3.1 that E0 has endomorphism ring O0 = ⟨1, i, (i+ j)/2, (1+k)/2⟩ with i2 = −1
while E1 has endomorphism ring O′

1 = ⟨1, (1 + i′)/2, (j′ + k′)/2, (i′ + k′)/3⟩ with i′2 = −3.
Our first task is to map the order O′

1 from the quaternion algebra B′ = (−3,−p) to the (isomorphic)
quaternion algebra B = (−1,−p), in order to recover the embedding O′

1 ↪→ O0 ⊗Q from Remark 7. To
apply Lemma 10, we solve the Diophantine equation x2 + py2 = 3 over the rationals. The solution with
the smallest denominator is (x, y) = (598/1649, 1/1649), so we let γ = (598 + j)/1649 ∈ B.

Pulling back O′
1 to B = O0⊗Q through the isomorphism from Lemma 10 gives the isomorphic order

O1 = Z ⊕ Z 4947i ⊕ Z
4947i+ j

2
⊕ Z

4947 + 32631010i+ k

9894
.

Hence, the connecting ideal I = NO0O1, with N as in Equation (2), equals

I = NO0O1 = Z 4947 ⊕ Z 4947i ⊕ Z
598 + 4947i+ j

2
⊕ Z

4947 + 598i+ k

2
,

and its norm 4947 factors as 3 · 17 · 97. Using (for instance) Theorem 2, we see that E0[3] ⊆ E0(Fp2),
E0[17] ⊆ Ẽ0(Fp8), and E0[97] ⊆ Ẽ0(Fp6), where as before Ẽ(Fq) denotes the group of Fq-rational points
on a quadratic twist of E over Fq.

With the explicit endomorphisms from Section 3.1, in particular ι : E0 → E0, (x, y) 7→ (−x, iy)
where i is a fixed square root of −1 in Fp2 , we may then run Algorithm 2 to compute generators of the
subgroup of E0 defined by I, and find the minimal polynomials of the x-coordinates to recover minimal
polynomials of the kernel subgroups (Definition 15). One possible set of such minimal polynomials is:

f3 = X + 1584399 ;

f17 = X4 + (1991643 + 7147424i)X3 + (5285403 + 5254148i)X2

+ (1481864 + 4554701i)X + (6263369 + 6535494i) ;

f97 = X3 + (5961087 + 1392356i)X2 + (7797495 + 394298i)X + (4229973 + 3176957i) .

The rest of the computation is done using Algorithms 3 and 5: We obtain the sequence of isogenies

E0
φ3−−−−−→ E′ φ17−−−−−−→ E′′ φ97−−−−−−→ E1

where E′ : y2 = x3 + 808882x + 347859 and E′′ : y2 = x3 + 1607537x + 7524091, and degφd = d. The
images of the subgroups defined by f17 and f97 on E′ and E′′ are defined by the minimal polynomials

f ′17 = X4 + (5419201 + 308473i)X3 + (940694 + 1289266i)X2

+ (4123481 + 25574i)X + (5711471 + 1208667i) ;

f ′97 = X3 + (948701 + 1793351i)X2 + (160774 + 5202674i)X + (5191824 + 6173732i) ;

f ′′97 = X3 + (3261011 + 405855i)X2 + (6008102 + 1767374i)X + (460134 + 2885906i) .

5.2. Experiments. We implemented our algorithm in SageMath [The22], making use of its good
library support for elliptic curves and isogenies over finite fields as well as quaternion algebras. It seems
likely that one could obtain handsome practical speedups by switching to a lower-level programming
language. Our hope is that our Sage implementation will be easy to use and extend for computa-
tional number theorists and isogenistas. The code is available at https://github.com/friends-of-
quaternions/deuring.

Comparison to previous work. Earlier work by Kambe, Yasuda, Noro, Yokoyama, Aikawa,
Takashima, and Kudo [Kam+22] deals with computing the Deuring correspondence for generic primes
p ≡ 3 (mod 4). In Step 1, they select R to be the smallest powersmooth number exceeding p3. In Step 2
of the algorithm, they apply precomputed symbolic formulae for isogenies, to recover a factor of the ℓ-th
division polynomial, which in turn recovers an ℓ-torsion point, and use this technique to construct a basis
for the ℓ-torsion group. This basis can then be lifted to a basis of the ℓe-torsion group. Such formulas
are currently only available for ℓ ≤ 131.

We compare our timings against the results from [Ray18] and [Kam+22] in Table 1.
19

https://github.com/friends-of-quaternions/deuring
https://github.com/friends-of-quaternions/deuring

Table 1. Comparison of our implementation to [Ray18; Kam+22].

Bit length [Ray18, Figure 4.1] [Kam+22, Table 4] This work

9 (p = 431) 407 s - 1.2s
11 (p = 1619) 718 s - 1.46 s

15 - 45 s 1.333 s
20 - 447 s 1.281 s
25 - 392 s 1.792 s

Table 2. The results of running our implementation on three primes specifically chosen
to facilitate the computation of the Deuring correspondence. The computations were
run using SageMath 9.7 on a laptop with an Intel Core i5-1038NG7 processor. The third
column lists the torsion subgroups that required the top 3 longest runtimes, together
with the required extension degree.

Prime Time Top 3 most expensive torsion groups to work with (per cost model)

p3923 1863 s E[4733] ⊆ E(Fp52), E[368] ⊆ E(Fp54), E[109] ⊆ E(Fp54)
p1 962 s E[13789] ⊆ E(Fp36), E[691] ⊆ E(Fp46), E[461] ⊆ E(Fp46)
p2 1578 s E[409] ⊆ E(Fp68), E[1321] ⊆ E(Fp66), E[859] ⊆ E(Fp66)

Generic primes. We tested our implementation on random primes between 5 and 255 bits, in
steps of 5 bits. The results are summarized in Figure 3. The target orders were chosen by sampling
representatives I of random left-ideal classes of O0, after O0 was constructed as described in Section 3.1.
Each I was sampled by growing a chain of 55+ ⌈log2 p⌉ connecting norm-2 ideals starting from O0

uniformly at random, intermittently replacing the chain by an equivalent ideal of smaller norm when the
integers used to write the basis elements grew too big.

To evaluate the effectiveness of our torsion-selection optimization from Section 4.2, we also compare
to a “naïve” variant of our implementation, in which the KLPT phase does not pay any attention to the
field extension degrees and instead simply selects prime-power torsion subgroups in ascending order as
suggested by prior literature [GPS17; EHLMP18].

Nice primes. The runtime can vary a lot for primes of similar size. By carefully choosing p, it is
possible to construct exceptional cases, where the computation of the Deuring correspondence becomes
much faster than average. For instance, in SQISign, the prime p is selected such that p2 − 1 factors
favorably, allowing E[R] ⊆ E(Fp4) (note that they use a much smaller R than our implementation, see
Appendix A).

We also test our algorithm against primes specifically constructed to facilitate the computation of
the Deuring correspondence. We run the computation on three different primes of ≈ 256 bits:

• p3923: The 254-bit prime currently used in SQISign [DLW22],
• p1: A 253-bit prime specifically constructed for our implementation, using techniques from

[Bru+22],
• p2: A 255-bit prime from [Bru+22], suggested for instantiating SQISign,

Table 2 shows the results of these experiments. They demonstrate how our approach “automatically”
benefits from the particular structure of the carefully selected primes: For all these primes, the runtime
is about one order of magnitude faster than a random 255-bit prime (see Figure 3).

We also see that our algorithm runs fastest for p1. While p2 and p3923 were constructed with SQISign
in mind (hence only looking for ℓe such that the multiplicative order of p in Z/ℓeZ is at most 2), the
prime p1 was constructed allowing slightly higher multiplicative orders of p. The integer values for these
primes can be found in Appendix B.

Remark 23 (Comparison with SQISign). The SQISign implementation will undoubtedly run the com-
putation of the Deuring correspondence for p2 and p3923 much faster, but it is not really a fair comparison:
By virtue of working with fixed primes, the SQISign implementation can precompute the actions of the
generators of O0 on fixed torsion bases on E0, which are heavy computations that our generic implemen-
tation has to perform on the fly.

20

0

1

5
10
20
30
60

120
180
240
300
450
600

900
1200

1800

2700

3600

4800

7200

10800

5 25 50 75 100 125 150 175 200 225 250 [bit length]

[seconds]

Figure 3. Timings for running our implementation of the Deuring correspondence
for random primes up to 255 bits (in steps of 5 bits), showing mean (■), minimum
(◦), maximum (•), and estimated standard deviation (error bars). The y-axis uses a
quartic scale. Each data point represents measurements from 256 independent runs.
Experiments were run in parallel, one instance per core at a time, using SageMath 9.7
on a server at Academia Sinica with two 64-core AMD EPYC 7763 processors.
Plotted in gray are runtime measurements when the cost model simply picks pow-
ersmooth torsion subgroups of increasing size while ignoring field extension degrees.
These timings are from 48 separate runs up to 150 bits on two servers with a total of
four 12-core Intel Skylake processors (Xeon Gold 5118, Xeon Gold 6136).
Note that the speeds for very small bit lengths can be beaten with a simple-minded
brute-force approach which does not rely on KLPT at all.

21

References

[BCEMP19] Efrat Bank, Catalina Camacho-Navarro, Kirsten Eisenträger, Travis Morrison, and Jen-
nifer Park. “Cycles in the Supersingular ℓ-Isogeny Graph and Corresponding Endomor-
phisms”. In: Research Directions in Number Theory. Ed. by Jennifer S. Balakrishnan,
Amanda Folsom, Matilde Lalín, and Michelle Manes. Springer, 2019, pp. 41–66. isbn:
978-3-030-19478-9.

[BDLS20] Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith. “Faster compu-
tation of isogenies of large prime degree”. In: ANTS XIV: Proceedings of the fourteenth
algorithmic number theory symposium. Ed. by Steven Galbraith. Auckland: Mathematical
Sciences Publishers, 2020, pp. 39–55. url: https://iac.r/2020/341.

[BMSS08] Alin Bostan, François Morain, Bruno Salvy, and Éric Schost. “Fast algorithms for com-
puting isogenies between elliptic curves”. In: Mathematics of Computation 77.263 (2008),
pp. 1755–1778. url: https://arxiv.org/abs/cs/0609020.

[Boo+22] Jeremy Booher, Ross Bowden, Javad Doliskani, Tako Boris Fouotsa, Steven D. Galbraith,
Sabrina Kunzweiler, Simon-Philipp Merz, Christophe Petit, Benjamin Smith, Katherine
E. Stange, Yan Bo Ti, Christelle Vincent, José Felipe Voloch, Charlotte Weitkämper, and
Lukas Zobernig. Failing to hash into supersingular isogeny graphs. Preprint. 2022. url:
https://ia.cr/2022/518.

[Brö09] Reinier Bröker. “Constructing supersingular elliptic curves”. In: Journal of Combinatorics
and Number Theory 1.3 (2009), pp. 269–273.

[Bru+22] Giacomo Bruno, Maria Corte-Real Santos, Craig Costello, Jonathan Komada Eriksen,
Michael Naehrig, Michael Meyer, and Bruno Sterner. Cryptographic Smooth Neighbors.
Preprint. 2022. url: https://ia.cr/2022/1439.

[Cer04] Juan Marcos Cerviño. On the Correspondence between Supersingular Elliptic Curves and
maximal quaternionic Orders. Preprint. 2004. url: https://arxiv.org/abs/math/
0404538.

[CG14] Ilya Chevyrev and Steven D. Galbraith. “Constructing supersingular elliptic curves with
a given endomorphism ring”. In: LMS Journal of Computation and Mathematics 17.A
(2014), pp. 71–91. doi: 10.1112/S1461157014000254.

[CK91] David G. Cantor and Erich Kaltofen. “On Fast Multiplication of Polynomials over Arbi-
trary Algebras”. In: Acta Informatica 28.7 (1991), pp. 693–701.

[CLMPR18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
“CSIDH: An Efficient Post-Quantum Commutative Group Action”. In: Lecture Notes
in Computer Science 11274 (2018), pp. 395–427. url: https://ia.cr/2018/383.

[Cor08] Giuseppe Cornacchia. “Su di un metodo per la risoluzione in numeri interi dell’ equazione∑n
h=0 Chx

n−hyh = P ”. In: Giornale di Matematiche di Battaglini 46 (1908), pp. 33–90.
[Cos20] Craig Costello. “B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion”.

In: ASIACRYPT (2). Vol. 12492. Lecture Notes in Computer Science. Springer, 2020,
pp. 440–463. url: https://ia.cr/2019/1145.

[Cox22] David A Cox. Primes of the Form x2+ ny2: Fermat, Class Field Theory, and Complex
Multiplication. with Solutions. Vol. 387. American Mathematical Soc., 2022.

[CPV20] Wouter Castryck, Lorenz Panny, and Frederik Vercauteren. “Rational Isogenies from Ir-
rational Endomorphisms”. In: EUROCRYPT (2). Vol. 12106. Lecture Notes in Computer
Science. Springer, 2020, pp. 523–548. url: https://ia.cr/2019/1202.

[CX22] Mingjie Chen and Jiangwei Xue. On Fp-roots of the Hilbert class polynomial modulo p.
Preprint. 2022. url: https://arxiv.org/abs/2202.04317.

[DeF+20] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin Wesolowski.
“SQISign: Compact Post-quantum Signatures from Quaternions and Isogenies”. In: ASIA-
CRYPT (1). Vol. 12491. Lecture Notes in Computer Science. Springer, 2020, pp. 64–93.
url: https://ia.cr/2020/1240.

[Dem15] Jeroen Demeyer. Further isogeny improvement. Ticket on the SageMath Developer Trac.
2015. url: https://trac.sagemath.org/ticket/18611.

[Deu41] Max Deuring. “Die Typen der Multiplikatorenringe elliptischer Funktionenkörper”. In:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 14 (1941),
pp. 197–272.

22

https://iac.r/2020/341
https://arxiv.org/abs/cs/0609020
https://ia.cr/2022/518
https://ia.cr/2022/1439
https://arxiv.org/abs/math/0404538
https://arxiv.org/abs/math/0404538
https://doi.org/10.1112/S1461157014000254
https://ia.cr/2018/383
https://ia.cr/2019/1145
https://ia.cr/2019/1202
https://arxiv.org/abs/2202.04317
https://ia.cr/2020/1240
https://trac.sagemath.org/ticket/18611

[DJP14] Luca De Feo, David Jao, and Jérôme Plût. “Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies”. In: Journal of Mathematical Cryptology 8.3
(2014), pp. 209–247. doi: doi:10.1515/jmc-2012-0015. url: https://ia.cr/2011/506.

[DLW22] Luca De Feo, Antonin Leroux, and Benjamin Wesolowski. New algorithms for the Deuring
correspondence: SQISign twice as fast. Preprint. 2022. url: https://ia.cr/2022/234.

[EHLMP18] Kirsten Eisenträger, Sean Hallgren, Kristin E. Lauter, Travis Morrison, and Christophe
Petit. “Supersingular Isogeny Graphs and Endomorphism Rings: Reductions and Solu-
tions”. In: EUROCRYPT (3). Vol. 10822. Lecture Notes in Computer Science. Springer,
2018, pp. 329–368. url: https://ia.cr/2018/371.

[EHLMP20] Kirsten Eisentraeger, Sean Hallgren, Chris Leonardi, Travis Morrison, and Jennifer Park.
“Computing endomorphism rings of supersingular elliptic curves and connections to
pathfinding in isogeny graphs”. In: ANTS XIV: Proceedings of the fourteenth algorithmic
number theory symposium. Ed. by Steven Galbraith. Auckland: Mathematical Sciences
Publishers, 2020, pp. 215–232. url: https://arxiv.org/abs/2004.11495.

[Gal12] Steven D. Galbraith. Mathematics of Public Key Cryptography. Cambridge University
Press, 2012. url: https://www.math.auckland.ac.nz/~sgal018/crypto- book/
crypto-book.html.

[GPS17] Steven D. Galbraith, Christophe Petit, and Javier Silva. “Identification Protocols and
Signature Schemes Based on Supersingular Isogeny Problems”. In: ASIACRYPT (1).
Vol. 10624. Lecture Notes in Computer Science. Springer, 2017, pp. 3–33. url: https:
//ia.cr/2016/1154.

[Ibu82] Tomoyoshi Ibukiyama. “On maximal orders of division quaternion algebras over the ratio-
nal number field with certain optimal embeddings”. In: Nagoya Mathematical Journal 88
(1982), pp. 181–195.

[Kam+22] Yuta Kambe, Masaya Yasuda, Masayuki Noro, Kazuhiro Yokoyama, Yusuke Aikawa, Kat-
suyuki Takashima, and Momonari Kudo. “Solving the Constructive Deuring Correspon-
dence via the Kohel–Lauter–Petit–Tignol Algorithm”. In: Mathematical Cryptology 1.2
(2022), pp. 10–24. url: https://journals.flvc.org/mathcryptology/article/view/
130618.

[KLPT14] David Kohel, Kristin Lauter, Christophe Petit, and Jean-Pierre Tignol. “On the quaternion
ℓ-isogeny path problem”. In: LMS Journal of Computation and Mathematics 17 (2014),
pp. 418–432. url: https://ia.cr/2014/505.

[Koh96] David Kohel. “Endomorphism rings of elliptic curves over finite fields”. PhD thesis. Uni-
versity of California at Berkeley, 1996. url: https://www.i2m.univ-amu.fr/perso/
david.kohel/pub/thesis.pdf.

[LB20] Jonathan Love and Dan Boneh. “Supersingular Curves With Small Non-integer Endomor-
phisms”. In: ANTS XIV: Proceedings of the fourteenth algorithmic number theory sympo-
sium. Ed. by Steven Galbraith. Auckland: Mathematical Sciences Publishers, 2020, pp. 7–
22. url: https://arxiv.org/abs/1910.03180.

[Len96] Hendrik W. Lenstra. “Complex multiplication structure of elliptic curves”. In: Journal of
Number Theory 56 (2 1996), pp. 227–241.

[Ler22] Antonin Leroux. “Quaternion algebras and isogeny-based cryptography”. PhD thesis. Ecole
doctorale de l’Institut Polytechnique de Paris, 2022.

[McM14] Ken McMurdy. Explicit representation of the endomorphism rings of supersingular elliptic
curves. Preprint. 2014. url: https : / / phobos . ramapo . edu / ~kmcmurdy / research /
McMurdy-ssEndoRings.pdf.

[ML04] Ken McMurdy and Kristin Lauter. Explicit Generators for Endomorphism Rings of Super-
singular Elliptic Curves. Preprint. 2004. url: https://phobos.ramapo.edu/~kmcmurdy/
research/ss_endomorphisms.pdf.

[PS18] Christophe Petit and Spike Smith. “An improvement to the quaternion analogue of the
ℓ-isogeny path problem”. In: MathCrypt 2018. 2018.

[Ray18] Dimitrij Ray. “Constructing the Deuring correspondence with applications to supersingular
isogeny-based cryptography”. Master’s thesis. Technische Universiteit Eindhoven, 2018.
url: https://research.tue.nl/files/109549304/Dimitrij_Ray.pdf.

[Sch87] René Schoof. “Nonsingular plane cubic curves over finite fields”. In: Journal of Combina-
torial Theory, Series A 46.2 (1987), pp. 183–211.

23

https://doi.org/doi:10.1515/jmc-2012-0015
https://ia.cr/2011/506
https://ia.cr/2022/234
https://ia.cr/2018/371
https://arxiv.org/abs/2004.11495
https://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html
https://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html
https://ia.cr/2016/1154
https://ia.cr/2016/1154
https://journals.flvc.org/mathcryptology/article/view/130618
https://journals.flvc.org/mathcryptology/article/view/130618
https://ia.cr/2014/505
https://www.i2m.univ-amu.fr/perso/david.kohel/pub/thesis.pdf
https://www.i2m.univ-amu.fr/perso/david.kohel/pub/thesis.pdf
https://arxiv.org/abs/1910.03180
https://phobos.ramapo.edu/~kmcmurdy/research/McMurdy-ssEndoRings.pdf
https://phobos.ramapo.edu/~kmcmurdy/research/McMurdy-ssEndoRings.pdf
https://phobos.ramapo.edu/~kmcmurdy/research/ss_endomorphisms.pdf
https://phobos.ramapo.edu/~kmcmurdy/research/ss_endomorphisms.pdf
https://research.tue.nl/files/109549304/Dimitrij_Ray.pdf

[Sho99] Victor Shoup. “Efficient Computation of Minimal Polynomials in Algebraic Extensions of
Finite Fields”. In: ISSAC ’99. ACM, 1999, pp. 53–58. doi: 10.1145/309831.309859. url:
https://shoup.net/papers/mpol.pdf.

[Shu09] Daniel Shumow. “Isogenies of Elliptic Curves: A Computational Approach”. Master’s the-
sis. University of Washington, 2009. url: https : / / sagemath . org / files / thesis /
shumow-thesis-2009.pdf.

[Sil09] Joseph H. Silverman. The Arithmetic of Elliptic Curves. 2nd ed. Vol. 106. Graduate Texts
in Mathematics. Springer, 2009. isbn: 978-0-387-09493-9. doi: 10.1007/978- 0- 387-
09494-6.

[Sim05] Denis Simon. “Solving quadratic equations using reduced unimodular quadratic forms”.
In: Mathematics of Computation 74.251 (2005), pp. 1531–1543.

[The22] The Sage Developers. SageMath, the Sage Mathematics Software System (version 9.7).
https://sagemath.org. 2022.

[Tsu13] Kiminori Tsukazaki. “Explicit isogenies of elliptic curves”. PhD thesis. University of War-
wick, 2013. url: https://wrap.warwick.ac.uk/57568.

[Vél71] Jacques Vélu. “Isogénies entre courbes elliptiques”. In: Comptes Rendus de l’Académie des
Sciences de Paris. A 273.4 (1971), pp. 238–241. url: https://gallica.bnf.fr/ark:
/12148/bpt6k56191248/f52.item.

[Voi21] John Voight. Quaternion Algebras. 2021. isbn: 978-3-030-56692-0. doi: 10.1007/978-3-
030-56694-4. url: https://math.dartmouth.edu/~jvoight/quat-book.pdf.

[Wat69] William C. Waterhouse. “Abelian varieties over finite fields”. In: Annales scientifiques de
l’École Normale Supérieure 2 (4 1969), pp. 521–560.

[Wes21] Benjamin Wesolowski. “The supersingular isogeny path and endomorphism ring problems
are equivalent”. In: FOCS. IEEE, 2021, pp. 1100–1111. url: https://ia.cr/2021/919.

[Wes22] Benjamin Wesolowski. “Orientations and the Supersingular Endomorphism Ring Problem”.
In: EUROCRYPT (3). Vol. 13277. Lecture Notes in Computer Science. Springer, 2022,
pp. 345–371. url: https://ia.cr/2021/1583.

24

https://doi.org/10.1145/309831.309859
https://shoup.net/papers/mpol.pdf
https://sagemath.org/files/thesis/shumow-thesis-2009.pdf
https://sagemath.org/files/thesis/shumow-thesis-2009.pdf
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.1007/978-0-387-09494-6
https://sagemath.org
https://wrap.warwick.ac.uk/57568
https://gallica.bnf.fr/ark:/12148/bpt6k56191248/f52.item
https://gallica.bnf.fr/ark:/12148/bpt6k56191248/f52.item
https://doi.org/10.1007/978-3-030-56694-4
https://doi.org/10.1007/978-3-030-56694-4
https://math.dartmouth.edu/~jvoight/quat-book.pdf
https://ia.cr/2021/919
https://ia.cr/2021/1583

Appendix A. Isogeny Slide

In this Appendix, we explain an alternative way to compute the ideal-to-isogeny translation, based on
[DeF+20]. The advantage is that it requires less torsion available. Our implementation, summarized in
Algorithm 6, does not perform better than the direct ideal-to-isogeny translation following Section 3.3
and Section 4. However, we include it to complete our catalogue of known techniques for translating
ideals to isogenies, and for future explorations of applicability.

This strategy is a simplified version of an idea originally described in SQISign: write R = ST , where
S, T are coprime, T > p3/2 and S ≪ T . In practice, we search for R > p2, select T | R satisfying
T > p3/2 and taking S = R/T ≈ √p. Once we have T and S, we run KLPT to find an equivalent ideal
J with n(J) | Sf such that Sf ≈ p3.

Translating the ideal to isogeny is then done as in Algorithm 6, which we describe next. The idea
is to write the ideal I of norm diving Sf as the product I = I1I2 · · · If of f integral ideals Ii of norm
dividing S, and iteratively translate each Ii to an isogeny ϕi : Ei−1 → Ei separately, as in the following
diagram:

E0 E1 E2 . . . Ef−1 Ef
ϕ1

ϕI

ϕ2 ϕ3 ϕf−1 ϕf

The major issue is that the ideal-to-isogeny translation for some Ik requires that the endomorphism
ring of Ek−1 be effective in the sense of Section 2.6, see also Remark 7.

We can remedy the situation by pulling back the ideal Ik to the base curve E0 through a different
isogeny ψk−1 : E0 → Ek−1 of degree coprime to S, computing the nrd(Ik)-part of the kernel there,
and pushing it back forward to Ek−1 through ψk−1. Concretely, this amounts to the following steps:
Replace I1 · · · Ik−1 with an equivalent ideal Jk ∼ I1 · · · Ik−1 of norm coprime to S. Writing Jk =
I1 · · · Ik−1β with β ∈ B×

p,∞, the product Jkβ−1Ikβ is a left O0-ideal equivalent to I1 · · · Ik of norm
nrd(Jk)nrd(Ik); thus, the corresponding isogeny factors as ϕIk ◦ ϕJk (for appropriate choices of elliptic
curves and endomorphism ring isomorphisms which respect the ideal decompositions). Compute the
subgroup K = E0[nrd(Ik)]∩E0[JkIk] defined by the pullback ideal [Jk]∗Ik = O0nrd(Ik)+JkIk and push
it through ϕJk to obtain kerϕIk = ϕJk(K). Repeating the same process for k = 1, ..., f then translates
the whole ideal I. This “sliding” procedure is summarized in Figure 4.

The trick that makes Algorithm 6 require less rational torsion is the following meet-in-the-middle
subroutine from SQISign [DeF+20], called SpecialIdealToIsogeny. It takes as input an ideal J of
norm dividing T 2, and an ideal I of norm dividing Sf where T and S are coprime, and the isogeny ϕI .
It outputs the isogeny ϕJ . It works by writing as a product J = J ′J ′′, both of norm dividing T . The
ideal J ′ is a left O0-ideal, so we can translate it directly. By using the ideal I of coprime norm, we can
translate J ′′ by computing the kernel of the pullback ideal [I]∗J ′′, and push it through ϕI to obtain
kerϕJ̄′′ = ker ϕ̂J′′ . One can then recover ϕJ as ϕ̂J̄′′ ◦ ϕJ′ .

This approach requires translating many extra ideals to isogenies. However, since we need less
available torsion, we can work with lower degree isogenies, and stay in lower degree extension fields. We
tested Algorithm 6 against the same primes and ideals as in Section 5. We used different constants in the
cost model, due to the fact that this technique requires many more isogeny translations, but generating
torsion bases still only happens once. Specifically, we used (c1, c2, c3, c4) = (0.31, 17.55, 6.90, 0.15). The
results are shown in Figure 5. The empirical data shows no sign of an asymptotic improvement in
complexity compared to the direct ideal-to-isogeny translation, and performs worse for us in practice.

E0 E1 E2 . . . Ef−1 Ef
ϕ1

ψ1

ψ2

...

ψf−1

ϕ2 ϕ3 ϕf−1 ϕf

Figure 4. An illustration of the IdealToIsogenySlide process, as in Algorithm 6.

25

Algorithm 6: IdealToIsogenySlide(I, E0)

Input: Left O0-ideal I of norm Sf , curve E0 with effective endomorphism ring End(E0) ∼= O0.
Output: ϕI .

1 Compute I1, . . . , If such that I = I1 · · · If , and nrd(Ii) | S for all i.
2 Set J1 := O0.
3 Set ϕJ1 : E0 → E0 to be the identity on E0.
4 For i ∈ {1, . . . , f} do
5 Compute [Ji]

∗Ii as JiIi +O0nrd(Ii).
6 Compute K as the group generated by IdealToKernelGens([Ji]

∗Ii, E0).
7 Compute ϕIi as Kohel(ϕJi(K)).
8 Compute Ji+1 ∼ I1 · · · Ii with KLPT, where n(Ji+1) | T 2.
9 Compute ϕJi+1

from SpecialIdealToIsogeny(Ji+1, I1 · · · Ii, ϕIi ◦ · · · ◦ ϕI1).
10 Return ϕIf ◦ · · · ◦ ϕI1 .

0

1

5
10

20
30

60

120

180
240
300

450

600

900

1200

1800

2700

3600

4800

5 25 50 75 100 125 150 [bit length]

[seconds]

Figure 5. Timings for running our implementation of the Deuring correspondence using
Algorithm 6 for primes up to 150 bits, with the same experimental setup as for Figure 3.
Each data point represents measurements from 128 independent runs. Data points
from Figure 3 shown in gray for reference.

We do not rule out the possibility that this technique may become faster with different parameters and
optimizations.

26

Appendix B. Custom primes used in experiments

Here we give the custom primes used in Section 5, for reproducibility.

p1 = 11956566944641502957704189594909498993478297403838643406058180334130656750161

p2 = 37670568336551536389503919665937491111216122470333837677213877442445311999999

p3923 = 23759399264157352358673788613307970528646815114090876784643387662192449945599

Norwegian University of Science and Technology
Email address: jonathan.k.eriksen@ntnu.no

Academia Sinica, Taipei, Taiwan
Email address: lorenz@yx7.cc

University of Amsterdam and QuSoft, Amsterdam, The Netherlands
Email address: ja.sotakova@gmail.com

Norwegian University of Science and Technology
Email address: mattia.veroni@ntnu.no

27

	1. Introduction
	Previous work.
	Contributions.
	Organization of the paper
	Acknowledgements.

	2. Preliminaries
	2.1. Isogenies of elliptic curves over finite fields
	2.2. Frobenius and supersingular curves
	2.3. Algorithms for computing isogenies
	Kernel polynomials.
	2.4. Quaternion algebras
	Orders and ideals.
	2.5. The Deuring correspondence
	2.6. Computing with endomorphism rings
	Effective endomorphisms.
	Evaluating fractional isogenies.

	3. Computing the Deuring correspondence
	3.1. Step 0: Constructing the base curve
	Representation of quaternion orders.
	3.2. Step 1: Finding a connecting ideal
	KLPT
	3.3. Step 2: Ideal-to-Isogeny translation
	Generating bases of torsion groups.
	Finding kernel generators.
	Evaluating isogenies.

	4. Our improvements
	4.1. Computing the kernel
	4.2. Choosing the norm
	Selecting favorable torsion.
	A picture is worth a thousand words.
	4.3. Irrational x-only arithmetic
	Kernel polynomials from irrational points.
	Pushing subgroups through isogenies.

	5. Numerical examples and experiments
	5.1. Examples
	5.2. Experiments
	Comparison to previous work.
	Generic primes.
	Nice primes.

	References
	Appendix A. Isogeny Slide
	Appendix B. Custom primes used in experiments

