
Provably Secure Blockchain Protocols from
Distributed Proof-of-Deep-Learning⋆

Xiangyu Su1 , Mario Larangeira1,2 , and Keisuke Tanaka1

1 Department of Mathematical and Computing Science,
School of Computing,

Tokyo Institute of Technology,
Tokyo-to Meguro-ku Oookayama 2-12-1 W8-55, Japan.

{su.x.ab@m,mario@c,keisuke@is}.titech.ac.jp
2 Input Output Global, Singapore.

mario.larangeira@iohk.io

Abstract. Proof-of-useful-work (PoUW), an alternative to the widely
used proof-of-work (PoW), aims to re-purpose the network’s comput-
ing power. Namely, users evaluate meaningful computational problems,
e.g., solving optimization problems, instead of computing numerous hash
function values as in PoW. A recent approach utilizes the training pro-
cess of deep learning as “useful work”. However, these works lack se-
curity analysis when deploying them with blockchain-based protocols,
let alone the informal and over-complicated system design. This work
proposes a distributed proof-of-deep-learning (D-PoDL) scheme concern-
ing PoUW’s requirements. With a novel hash-traininßg-hash structure
and model-referencing mechanism, our scheme is the first deep learning-
based PoUW scheme that enables achieving better accuracy distribu-
tively. Next, we introduce a transformation from the D-PoDL scheme
to a generic D-PoDL blockchain protocol which can be instantiated with
two chain selection rules, i.e., the longest-chain rule and the weight-based
blockchain framework (LatinCrypt’ 21). This work is the first to provide
formal proofs for deep learning-involved blockchain protocols concerning
the robust ledger properties, i.e., chain growth, chain quality, and com-
mon prefix. Finally, we implement the D-PoDL scheme to discuss the
effectiveness of our design.

Keywords: (Weight-based) blockchain protocols · Proof-of-useful-work
· Distributed proof-of-deep-learning.

1 Introduction

A promising new line of research is to consider the substitution of proof-of-work
(PoW) with “useful work”, i.e., proof-of-useful-work (PoUW) [3], in distributed

⋆ This work was supported by the JST CREST under Grant JPMJCR14D6, through
the JST OPERA, through the JSPS KAKENHI under Grant JP16H01705 and Grant
JP17H01695, through the JST CREST Grant Number JPMJCR2113, through the
JSPS KAKENHI JP21H04879 and JP21K11882.

https://orcid.org/0000-0002-1319-6394
https://orcid.org/0000-0001-7168-898X
https://orcid.org/0000-0003-1330-4495

2 X. Su et al.

environments such as blockchain systems. This work focuses on the subset of
these protocols, namely the deep learning-based PoUW schemes. First, we de-
scribe a brief but extensive survey of the research literature on deep learning-
based schemes. The list is surprisingly short, considering the wide range of its
applications. Our motivation is to formalize and extend these schemes so that
we can achieve better use of computing power in blockchain-based protocols.

1.1 Background and Related Work

Recently, Chenli et al. [8] propose a PoUW scheme that utilizes the training
process of deep learning tasks as useful work. To the best of our knowledge,
there are only a handful of papers targeting the same problem [2,7,8,14–16]. We
show a brief analysis to them in the following.

As a starting point, all these works involve task publishers who control the
publication of deep learning tasks and miners who intend to solve the given
tasks. Except for Proof-of-Learning (PoLe) [14], task publishers are forbidden to
perform as miners under the assumption of limited computing power, whereas,
PoLe [14] discards this impractical assumption by adding secure mapping layers
during model training. However, this approach also prevents miners from collab-
orating, which violates our goal. A deep learning task consists of a description,
a training dataset, a potential test dataset, and an accuracy target threshold. In
Proof-of-Deep-Learning (PoDL) [8], Li et al.’s work [15] and PoLe [14], miners
are required to train a model on the training dataset, and the model is verified
according to the test dataset and test accuracy. This approach requires a strong
synchronous network assumption because the task publisher has to publish the
test dataset after miners produce their trained model. Otherwise, an adversary
can directly train its model based on the test dataset.

DLchain [7] overcomes the strong synchronous assumption by removing the
test dataset-based verification. Instead, it focuses on improving training accu-
racy. In order to verify a trained model efficiently, DLchain utilizes a merkle-
tree-based verification [9] to check training history. Moreover, DLchain considers
a similar goal to distribute PoDL, i.e., achieving better accuracy distributively.
They partially fulfill the goal with priorly determined “short-term targets” which
are accuracy targets below the threshold. Miners can generate blocks once their
models surpass a short-term accuracy target. However, considering only training
accuracy may result in overfitting, and determined short-term targets can affect
blockchain growth rate, which may weaken the security of the protocol [11].

CoinAI [2] is a descriptive work that proposes an outline for designing a
deep learning-based PoUW and proof-of-storage scheme. The authors propose
a “hash-to-architecture” mapping based on format context-free grammar. It
maps a hash value to an initial deep learning model concerning model architec-
tures, including hyper-parameters and initial learnable-parameters. The hash-to-
architecture technique is vital for security since it prevents miners from grinding
initial parameters. However, the security impacts are not clarified due to the lack
of formality in [2]. Instead of proposing a PoUW-based blockchain protocol, Lihu

Provably Secure Blockchain Protocols from D-PoDL 3

et al. [7] aim at taking blockchain’s security to enhance artificial intelligence sys-
tems. However, the protocol requires a dedicated blockchain structure and suffers
from complicated system design. For example, participants must select their role
before execution, and a unique type of participant called the supervisor needs
to monitor all message history during the execution. Thus, their work cannot be
integrated into any current blockchain-based protocols.

To sum up, none of these works can serve as a fully distributive deep learning
task solver, which is more desirable in distributed environments. Another crucial
problem is the lack of proper security analysis of the blockchain protocol. For ex-
ample, only DLchain [7] provides security proof against double-spending attacks.
However, a secure blockchain protocol should satisfy robust ledger properties,
i.e., the chain growth, chain quality, and common prefix. Therefore, our motiva-
tion for this work is to overcome the problems in the deep learning-based PoUW
schemes mentioned above, i.e., (1) to remove strong or impractical assumptions;
(2) to distribute the computation of deep learning-based PoUW; (3) to provide
concrete and thorough security analysis for blockchain protocols based on our
extended scheme. Next, we further detail our work’s significance.

1.2 Our approach and Results

This work proposes a distributed proof-of-deep-learning (D-PoDL) scheme by
extending deep learning-based PoUW schemes so that provers can work col-
laboratively on given tasks. Note that the term “distributed” in D-PoDL differs
from distributed deep learning, i.e., we do not require provers to perform a single
training course together but let them train atop published pre-trained models.

Intuitively, D-PoDL provers train a model from a given deep learning task as
their useful work. We propose a “hash-training-hash” structure to achieve ad-
justable difficulty while preventing provers from cherry-picking initial parameters
(grinding attack) and pre-computing task instances (pre-computation resilience).
As a result, the provers output a trained model with the corresponding accuracy
and step number for D-PoDL verifiers to check. Another novelty of our scheme
lies in how we handle intermediate models. Throughout the paper, an interme-
diate model, also called a pre-trained model, is a model “somewhat” trained yet
failing to meet a given accuracy or security level. Instead of discarding such a
model, we propose “model-referencing” that enables any prover to reference the
pre-trained model. Hence, provers can start their training process atop the refer-
enced model. Moreover, a referenced model will be rewarded so that even if the
prover fails to meet the goals, it is incentivized to do more training iterations.
We emphasize that this approach forms the distributed training process among
provers, and such a design is never discussed in any previous work.

The second contribution is that we build a generic blockchain protocol based
on our proposed D-PoDL scheme. We clarify the roles of participants: task pub-
lishers, miners, and external storage providers. Instead of assuming task pub-
lishers’ inability to train models properly, we enable them to perform as miners
while preventing them from pre-computing deep learning tasks with the hash-
training-hash structure. Only Pole [14] shares the same property by embedding

4 X. Su et al.

secure mapping layers into its training algorithm. Moreover, we make use of
both training and test datasets. Concretely, miners (D-PoDL provers) extend
the blockchain with models that have better training accuracy. In order to mit-
igate the overfitting problem while avoiding the strong synchronous network
setting, we require miners to work on each deep learning task for multiple time
slots. Hence, task publishers can evaluate the produced models with test dataset
and select according to test accuracy. Since the training process is publicly ver-
ifiable, task publishers cannot take advantage by training directly on the test
dataset. We will also discuss model verification and storage issues in Section 3.3
and Section 4.1.

Furthermore, the generic D-PoDL-based blockchain protocol is capable of
two different chain selection rules: i.e., the conventional “longest-chain rule” [11]
and the “weight-based” framework [12,13]. The former requires honest miners to
choose the longest branch as their chain whenever a fork occurs. In contrast, the
weight-based framework assigns blocks with weights according to their quality.
Hence, honest miners choose the branch with higher accumulated weight as their
chain. Although the longest-chain rule can be considered a special case of the
weight-based framework, we separate them into two concrete protocols and prove
the robust ledger properties for each. Finally, we implement our D-PoDL scheme
and compare it to existing schemes.

Table 1 compares our work and related works. Note that we omit CoinAI [2]
due to its informality and Lihu et al.’s work [16] due to their different research fo-
cus. We also include a recent result on stochastic local search-based PoUW [10].
The difference between our work and the PoUW [10] is that we leverage deep
learning characteristics, e.g., verifiable training steps and test datasets, and de-
rive a simple yet versatile protocol (i.e., proven secure under different chain
selection rules).

Table 1: Comparison with Previous Works

Protocols Work Evaluation
Network

Synchronicity
Publisher
As Miner

Distributed
Task Solver

Formal
Security

Chenli et al. [8] Test accuracy Strong X X X

Lan et al. [14] Test accuracy Strong ✓1 X X

Li et al. [15] Training accuracy Bounded X X X

Chenli et al. [7] Training accuracy Bounded X △2 △3

Fitzi et al. [10] —4 Bounded ✓ ✓ ✓5

This work Training and test Bounded ✓ ✓ ✓6

Notes: (1) By secure mapping layers; (2) By pre-determined short-term tar-
gets; (3) Against double-spending attack; (4) Stochastic local search; (5) Un-
der the longest-chain rule [11]; (6) Against robust ledger properties under the
longest-chain rule [11] and the weight-based framework [12,13].

Provably Secure Blockchain Protocols from D-PoDL 5

1.3 Paper Organization

The remainder is organized as follows. Section 2 reviews notations and the exe-
cution model of our blockchain protocol. The following two sections present our
main contribution: blockchain protocols from distributed proof-of-deep-learning
(D-PoDL). Concretely, Section 3 introduces the formal definition of D-PoDL
scheme and explains our design choices based on PoUW requirements; Section 4
transforms the D-PoDL scheme into a generic blockchain protocol and presents
two concrete protocols by instantiating the chain selection rule with the con-
ventional longest-chain rule [11] and the weight-based framework [12, 13]. We
analyze the security of our concrete protocols regarding robust ledger properties
in Section 5. Then, Section 6 provides an implementation of the D-PoDL scheme
to compare with existing algorithms. Finally, Section 7 concludes this work.

2 Preliminaries

Throughout this paper, we use λ for the security parameter. For an integer k ∈ N,
[k] denotes the set {1, . . . , k}. Given a set X, x

$← X denotes that x is randomly
and uniformly sampled from X. For an algorithm Alg, x← Alg denotes that x is
assigned the output of an algorithm Alg on fresh randomness. Let Hash denote
a collision-free hash function.

Moreover, we employ and modify the hash-to-architecture mapping mech-
anism from [2], which is based on the formal context-free grammar and is
used to establish a surjective function between a hash value and a proper deep
learning architecture setup. Denote the original hash-to-architecture mapping
with HtoA∗, i.e., given a hash value h, HtoA∗(h) = (A(hpp), initLP) where
A(hpp) is the architecture A concerning hyper-parameters hpp, and initLP de-
notes the initial learnable parameters. Our modification, denoted by HtoA, is to
generate an additional random value from the hash, i.e., given a hash value
h = h1||h2 and a hash function Hash : {0, 1}∗ → {0, 1}λ, we extract r =
Hash(h2) and run HtoA∗(h1) = (A(hpp), initLP) so that the outputs of HtoA(h)
is (A(hpp), initLP, r).

Protocol execution model. Protocol executions are modeled by the standard
Interactive Turing Machines (ITM) approach [6]. A protocol refers to algorithms
for a set of nodes (users) to interact with each other. All corrupted nodes are
considered to be controlled by an adversary A who can read inputs and set
outputs for these nodes. We present our protocol settings as follows.

Time and network. We assume the protocol execution proceeds in rounds, which
corresponds to the smallest unit of time of interest. The network is synchronous
with a known bounded delay δ time on the delivery time, i.e., any message sent
by an honest node in round r is guaranteed to arrive at all honest nodes until
round r + δ;

6 X. Su et al.

Corruptions. We allow the adversary to corrupt up to β < 1
2 fraction of nodes

before each round, i.e., a corrupted node is under the adversary’s complete
control from the round. We also assume the adversary is rushing, i.e., it receives
honest users’ messages first and decides the order of message delivery or whether
to inject messages for each recipient.

3 The D-PoDL Scheme

As an extension of deep learning-based PoUW schemes, our D-PoDL scheme
provides an interface for its provers to solve a deep learning task together. Like
PoUW, a D-PoDL scheme involves two types of participants: provers and veri-
fiers. On a given deep learning task, a prover intends to output a trained model,
and claims the corresponding training accuracy and step number. Whereas, a
verifier checks if the model matches the prover’s claims and responds accord-
ingly. This section presents the D-PoDL scheme in terms of requirements and
syntax. We focus on a setting where provers work on a priorly given deep learn-
ing task with a designed target threshold. We clarify that the scheme focuses on
solving the task and verifying the model. Discussions about task selection, block
generation, and blockchain dynamics can be found in the protocol description
in later sections, i.e., Section 4 and Section 5.

D-PoDL requirements. A D-PoDL scheme should satisfy the same security re-
quirements [10] as the PoUW, i.e., no-grinding, pre-computation resilience, and
adjustable difficulty. Moreover, it should satisfy efficiency and usefulness require-
ments. The requirements are (1a) No-grinding: The adversary cannot cherry-
pick hyper-parameters to gain training advantages, i.e., less training steps with
higher accuracy; (1b) Pre-computation resilience: The adversary cannot manu-
facture problem instances to train the model faster; (1c) Adjustable difficulty:
The block difficulty (measured by training accuracy) can be adjusted to the
computing power of the network; (2a) Efficient verification: The running time of
the verification algorithm should be at most poly-logarithm of provers’ training
time; (2b) Measurable usefulness: The usefulness of a training process can be
quantified and compared to each other.

3.1 Design Overview

Along with the two processes in a D-PoDL scheme, i.e., solving a deep learning
task and verifying the correctness of the solution, we propose a novel “hash-
training-hash” structure for the solving process and utilize a widely used merkle-
tree-based verification procedure [9] as a black-box for the verification process.
Additionally, we propose a weighting algorithm to evaluate a weight function that
quantifies a solution’s usefulness. We describe the “hash-training-hash” structure
briefly in this section. More details of our design choices can be found after the
formal definition.

Provably Secure Blockchain Protocols from D-PoDL 7

Intuitively, on a given deep learning task, we enable provers to initialize its
solving algorithm with either a fresh or a pre-trained model from any prover, i.e.,
for “model-referencing”. The first hash requires provers to perform a proof-of-
work (PoW) with threshold T1, i.e., a prover needs to find a nonce such that the
hash value of the previous block, potentially a pre-trained model and the nonce
is less than T1. If the hash value passes the PoW check (less than T1), the prover
can map the hash value to an architecture with respect to hyper-parameters,
(initial) learnable-parameters and a random seed with our modified hash-to-
architecture algorithm. As introduced in Section 2, the architecture (with hyper-
parameters) and learnable-parameters determine a deep learning model. The
prover trains the model by updating learnable-parameters iteratively. The post-
hash checks the output model against threshold T2 to decide if the models are
eligible for publishing. If the post-hash fails, the prover can return to the pre-
hash or training process. The prover must perform more training iterations in
both cases to generate a valid model.

3.2 Formal Syntax and Construction

A D-PoDL scheme involves a tuple of algorithms (Setup,Solve,Verify,Weight).
Setup extracts a training dataset and a designed target threshold from a deep
learning task. Solve consists of three sub-algorithms PreHash, Train, and PostHash.
In general, PreHash determines the initial model, including its architecture,
hyper-parameters, learnable-parameters, and a random seed. Train casts the
training process and outputs a model with the corresponding accuracy and step
number. Note that we do NOT restrict the training algorithm to provide gener-
ality for our design. Instead, as we will show in Section 5.1, we model it with an
oracle due to its stochastic nature and model provers’ computing power by their
capability of oracle queries. Next, due to security concerns, PostHash returns a
bit according to a hash proof. Verify verifies the trained model’s validity concern-
ing accuracy. Weight is available to both provers and verifiers, and it evaluates
a weight function w : acc × Tacc → R, which maps the model’s accuracy and a
priorly decided target threshold to a real value. We present the formal syntax
and construction of the D-PoDL scheme as follows.

Construction 1 (D-PoDL Scheme) Given the hash-to-architecture algorithm
HtoA(·) from Section 2 and the weight function w : acc × Tacc → R, the tuple
algorithm of a D-PoDL scheme (Setup,Solve,Verify,Weight) works as follows:

– Setup(1λ, task) takes as input the security parameter λ and the description of
a deep learning task task from the task publisher. Setup extracts the public
parameter pp and a pair of threshold (T1, T2) for security concerns from the
system. It parses the task with a training dataset D and a target threshold
Tacc. Setup outputs (pp, T1, T2,D, Tacc). We omit pp later for simplicity;

– Solve((T1, prevBK, refM), (D, Tacc), T2). We divide Solve into three algorithms:
(PreHash,Train,PostHash).
• PreHash(T1, prevBK, refM) takes as input T1, a previous block prevBK and
potentially a pre-trained model refM. It samples nonce such that Hash(prevBK,

8 X. Su et al.

refM, nonce) = h1 ≤ T1. If refM =⊥, PreHash runs HtoA(h1) = (A(hpp), lp,
r) where A(hpp) denotes the architecture, lp denotes the learnable-parameters,
and r denotes the random seed. It sets initM = (A(hpp), lp); Otherwise, It
parses refM = (A(hppref), lpref) and sets initM ∈ {refM, (A(hpp), lp)}. Then,
PreHash returns (nonce, initM, r);

• Train(D, Tacc, initM, r) takes as input the training dataset D, a target thresh-
old Tacc, a initial model initM and a random seed r. It parses initM =
(A(hpp), lp) and trains the model by updating learnable-parameters itera-
tively. Train returns M = (A(hpp), lp∗), the corresponding training accuracy

acc ∈ [0, 1], step number S and a list of checkpoints CPs
∆
= {(Mi, acci, Si)}

where each entry denotes an intermediate result of the training process;
• PostHash(T2,M, acc, S) takes as input T2 and a model M with the cor-
responding accuracy acc and step number S. It computes Hash(M, acc, S)
= h2. If h2 ≤ T2, PostHash returns 1; Otherwise, it returns 0.

Finally, Solve outputs ((refM, nonce, initM, r), (M, acc, S), b) where b ∈ {0, 1};
– Verify((T1, prevBK, refM, nonce, initM, r), (D, Tacc,M, acc, S,CPs), (T2, b)) checks:
• If Hash(prevBK, refM, nonce) = h1 ≤ T1 and if initM is derived correctly
from refM;

• If M is trained correctly from initM with Train according to (S,CPs) and if
the corresponding accuracy acc′ = acc;

• Compute PostHash(T2,M, acc, S) = b′ and check if b′ = b.
If the situations above are satisfied, Verify outputs 1; Otherwise, it outputs 0.

– Weight(acc, Tacc) evaluates the weight function w and outputs w ∈ R.

3.3 Design Choices Explanation

Here, we explain our construction choices with respect to the requirements.

Setting up initial models with pre-hash. There are countless different
architectures in deep learning, each with its characteristics and limitations.
After selecting an appropriate architecture A, provers need to choose hyper-
parameters and initial learnable-parameters for the model, which may affect
the speed and quality of the training process. Usually, hyper-parameters are
not learnable, so provers must go through random sampling before obtaining a
good set of hyper-parameters. However, we may open a gate for grinding attacks
(Requirement 1a) if we offer provers the ability to choose hyper-parameters
and initial learnable-parameters. An adversary may outperform honest users’
training speed and quality by cherry-picking.

In order to mitigate this problem, we adopt the same approach as in Ofe-
limos [10]. Concretely, we rely on a PoW scheme with threshold T1, which re-
quires provers to sample a nonce nonce randomly and compute the hash of the
previous block (prevBK), potentially a pre-trained model refM with the nonce
such that Hash(prevBK, refM, nonce) = h1 ≤ T1. The hash function’s unifor-
mity prevents provers from grinding hyper-parameters and learnable-parameters.
Note that our T1 should not be as hard as a stand-alone PoW, e.g., the one in the

Provably Secure Blockchain Protocols from D-PoDL 9

Bitcoin system, because we intend to encourage provers to train models instead
of solving PoW. Finally, if refM is empty, the prover needs to generate an initial
model with HtoA(h1) = (A(hpp), lp, r) such that initM = (A(hpp), lp); Otherwise,
the prover can either refer to the pre-trained model refM = (A(hppref), lpref)
or use the freshly generated hyper-parameters and the pre-trained learnable-
parameters (A(hpp), lpref) as its initial model. In this case, the pre-hash enforces
provers to establish links from their model to previous blocks and the referenced
models. Such links are crucial to the security of model-referencing.

Model-referencing and pre-computation resilience. An initial model can
be sampled from HtoA or from a pre-trained model refM. The purpose of taking
as input a pre-trained model is to enable provers to work atop any valid but
not-good-enough model. Hence, we prevent their computing power from being
wasted and form a distributed solver for given deep learning tasks. However,
starting from a pre-trained model can shorten the prover’s training iteration
because these models may be only a few steps from reaching the accuracy tar-
get threshold. For example, an adversary may steal an honest prover’s outputs
(M0, acc0, S0) and produce a new model MA with accuracy accA ≥ Tacc ≥ acc0
and a claimed step number SA. Such an attack violates pre-computation re-
silience (Requirement 1b) because the adversary achieves better accuracy
while performing only (SA − S0) training steps.

In order to tackle this problem, we design a novel mechanism called “model-
referencing”. We require provers to make references if their models are trained
based on another model. Otherwise, their models are regarded as invalid. The ref-
erence is (prevBK, refM, nonce), which can be publicly verified with Hash(prevBK,
refM, nonce) ≤ T1. Hence, model-referencing enables provers to train each oth-
ers’ models together for the same goal (surpassing the target threshold and
post-hash check threshold) while preventing them from stealing others’ models
(by discarding those “use-without-reference” models). Furthermore, the provers
should only reference the latest models, i.e., if two pre-trained models share the
same setup, provers should reference the model with higher accuracy and step
number. With this setting, we also prevent provers from flooding the system
with too many pre-trained models. Therefore, the mechanism inherently forms
an additional “link” (like the hash link between blocks) that connects models,
i.e., a valid block must be linked to a previous block and a previous model. More
details can be found in Section 4.1.

Adjusting computation with post-hash. One argument concerning the ad-
justable difficulty (Requirement 1c) is that training a model so that its accu-
racy surpasses the target threshold Tacc should be harder than finding a nonce to
meet the PoW puzzle with threshold T1. Otherwise, the computational difficulty
is determined by the PoW rather than the training process, which violates the
usefulness of our scheme. Hence, we propose a solution based on [5]’s approach,
which requires the provers to perform one “post-hash” against a threshold T2

to decide if their models are eligible for publishing. If a model fails the post-

10 X. Su et al.

hash, the prover must revert to the pre-hash or training process. The threshold
T2 guarantees the overall security and usefulness level for our scheme, e.g., to
preserve the 10 minutes interval for block generation while enforcing provers’
computation focus on model training instead of PoW. We will show the impact
of the post-hash algorithm during our implementation of the D-PoDL scheme in
Section 6.

Model verification. In order to verify the outputs of a prover, a verifier needs
to check three conditions: (1) If the nonce satisfies the PoW check with threshold
T1; (2) If the model has the claimed accuracy; (3) If the post-hash outputs a
correct bit. In this section, we focus on verifying the model and its accuracy. A
naive approach is to check the prover’s model with the given training dataset.
However, it takes as many iterations as the training algorithm, which violates
the efficiency requirement (Requirement 2a).

We solve this problem by adopting the widely used merkle-tree-based ver-
ification [9] as a black box. This approach is also mentioned in the previous
work [7]. Namely, provers are required to include several intermediate results
as checkpoints into their training outputs and build a merkle-tree accordingly.
Hence, verifiers only need to check the validity of these checkpoints. Given n
checkpoints, the time complexity for verifiers can be reduced to O(polylog(n))
at the cost of provers’ space complexity being O(poly(n)). Moreover, there is
a trivial trade-off between the interval of two checkpoints and the granularity
of the check. As pointed out by [7], the interval setting can be left to users in
real-life applications and adjusted according to accuracy thresholds. However,
since each checkpoint has the size of a model, we explain this in Section 4.1 with
respect to external storage providers.

Measuring usefulness. The D-PoDL scheme focuses on improving the models’
training accuracy, whereas, the test accuracy is left for the protocol. Except
for the conventional longest-chain-based blockchain protocols [11], we intend to
build our D-PoDL scheme under a weight-based framework by [13]. In such a
setting, blocks are assigned with weight, and the chain is selected based on the
accumulated weight. We argue that the weight-based approach is natural for the
D-PoDL scheme because accuracy can be regarded as a quantified measurement
for usefulness (Requirement 2b). Moreover, we can generalize the weight-based
approach to arbitrary PoUW schemes as long as their usefulness is measurable.

4 Our D-PoDL Blockchain Protocols

This section describes the transformation from our D-PoDL scheme to D-PoDL-
based blockchain protocols. As mentioned in the execution model from Section 2,
our protocol proceeds in rounds. Honest users may share a slightly different view
of the round number. We further divide our protocol execution into time slots.
Each time slot is associated with a deep learning task, and the time slot ends

Provably Secure Blockchain Protocols from D-PoDL 11

when a validly generated block is added to the blockchain. Thus, a time slot may
include multiple rounds. Considering the workflow within a time slot, we propose
a generic D-PoDL blockchain protocol design as in Figure 1. Then, two concrete
protocols are derived from the generic design by instantiating the chain selection
rule with the longest-chain rule [11] and the weight-based framework [13]. Finally,
we discuss the incentive model of our protocols.

Publisher
Network

taski

task1
task2

...
taskn

Pre_HashprevBK

nonce

h1<T1h1

False

True Train(initM,D;r)

(initM;r)=HtoA(h1) or refM

Post_Hash(M,acc,S)

(M,acc,S,b)

b=1 True and acc>=Tacc
BK_Candidate
with model M*

False

Model_TX mtx
with pre-trained M

refM

Chain SelectionUpdated
BlockchainM* test accuracy

False

True
(i=i+1)

True and acc<Tacc

Fig. 1: Design of our Generic D-PoDL Blockchain Protocol

4.1 Generic Protocol Workflow

The generic blockchain protocol involves three types of participants: task pub-
lishers, miners, and external storage providers. Task publishers handle deep
learning tasks. Each task is associated with a dataset and desired accuracy
thresholds. Task publishers first split the dataset into a training dataset and
a test dataset. They publish the task description, the training dataset, and the
corresponding desired training accuracy as the target threshold. Miners per-
form the protocol by generating and verifying blocks according to the D-PoDL
scheme’s instructions. Concerning the size of deep learning models and check-
points (which are the same size as models), we employ the approach from [7] to
prevent storage overhead, i.e., embedding only a downloadable link within the
block and relying on external storage to store the whole model and checkpoints.

Task publication. We start our generic D-PoDL blockchain protocol from the
task publication mechanism. In order to keep the task publication as generic
as possible, we consider a situation in which these publishers form a network
to publish and decide the order of tasks. They aim to organize a distributed
solver for deep learning tasks and can be benefited from receiving the solutions.
The only requirement is that the outputs of the publisher network should be an

12 X. Su et al.

ordered list of deep learning tasks. We denote the output as {taski}i∈[n] where
taski spans over a period of ℓi time slots in Ti = {ti,j}j∈[ℓi].

Note that we do NOT separate task publishers from miners, i.e., a task pub-
lisher can participate in the protocol as a miner and gain mining rewards. We
argue that the task publisher cannot pre-compute the task to gain advantages
over regular miners due to the pre-hash algorithm and the model-referencing
mechanism. Without loss generality, let the current time slot be tp,q, we con-
sider an adversarial publisher who intends to pre-compute deep learning task
taski where i > p, q ∈ [ℓp]. Since i > p, without pre-trained models, the pub-
lisher has to train an initial model generated from HtoA, i.e., to find nonce
such that Hash(prevBK, nonce) = h1 ≤ T1 where prevBK associates with slot
ti−1,ℓi−1−1 ∈ Ti−1 and compute initM from HtoA(h1). To find such a nonce re-
quires the publisher to either predict the block in the future or find a collision
in the hash function. Since the probabilities of both cases are negligible, the
publisher cannot produce a trained or pre-trained model to pass the D-PoDL
scheme’s verification by pre-computing taskk.

Execution of D-PoDL scheme. Now, we consider a deep learning task taski
given to miners in time slot ti,j where j ∈ [ℓi]. Each miner runs as a prover
of the D-PoDL scheme. The Setup algorithm first extracts public parameters, a
training dataset, and thresholds (T1, T2, Tacc). The miner then finds a nonce and
initializes initM with PreHash; It runs the training course on the initial model
with the randomness r to obtain a model M, the corresponding accuracy acc
and step number S; PostHash tests the model according to T2 and outputs a bit
b. The miner outputs a tuple, including potentially a pre-trained model as the
reference, a nonce, an initial model, a random training seed, a trained model
with the corresponding accuracy and step number, and a post-hash check bit.

According to the post-hash check, the miner decides if its model is eligible for
publishing. Moreover, for generality, we introduce a relation between the model
accuracy and the target threshold as R(acc, Tacc), which will be instantiated in
concrete protocols. Hence, when b = 1∧R(acc, Tacc) = 1, the miner collects trans-
actions from the mempool as in conventional blockchain protocols and generates
a block candidate embedding the obtained model M; Otherwise, the miner gen-
erates a special model-transaction mtx for model-referencing, which contains the
outputs of the Solve algorithm, i.e., mtx = (prevBK, (refM, nonce, initM, r), (D,
Tacc,M, acc, S,CPs), 1). mtx is published into the mempool as ordinary transac-
tions. Any miner can reference the model M in the model-transaction mtx by
including mtx in the miner’s newly found block or model-transaction. That is,
the miner takes as input refM′ = M for its Solve algorithm. Note that different
miners can refer to the same model-transaction. We do not count this as “double-
spending” since no ordinary (money-used) transaction is involved. Newly trained
models still need to compete for acceptance. Moreover, miners can reference
model-transactions recursively, i.e., generating a model-transaction mtx′ with
higher accuracy from mtx is acceptable. The only restriction here is that miners
must reference the latest model-transaction, which embeds a pre-trained model

Provably Secure Blockchain Protocols from D-PoDL 13

with the highest accuracy observed so far. This prevents the adversary from
releasing a large amount of model-transaction to DoS attack [17] the network.

Cross time slot attacks and restrictions on step number. We leave block
selection (with respect to forks) to concrete protocols in Section 4.2. Here, we
consider the whole period (a span of time slots) associated with a deep learning
task. Once the blockchain gets updated, miners proceed to the next time slot.
A task can span over multiple time slots so that the publisher network can
check each selected model with the corresponding test dataset. This approach
is to mitigate the trend toward overfitting models since miners are given only
training datasets to overcome the strong synchronous network assumption.

However, this approach allows adversaries to reference models generated
in different time slots from the block they extend. Given a fragment of the
blockchain that associates with a deep learning task, we illustrate two attack
strategies in Figure 2a and 2b. Note that the adversary can also reference mod-
els embedded in blocks. We use model-transactions here for generality.

Model-referencing

BKadv
Extending

mtx

BKi+j+1BKi+jBKi+1BKi ...

(a) The adversary intends to extend block
bki+j by referencing an mtx that links to
block bki.

BKadv

BKi+j+1BKi+jBKi+1BKi

Model-referencing

Extending
mtx

...

(b) The adversary intends to extend block
bki by referencing a model-transaction
mtx that links to block bki+j .

Fig. 2: Intuition of Cross Time Slot Attacks

The first attack enables the adversary to extend the blockchain with fewer
training steps while not violating model-referencing requirements. In the second
attack, the adversary can produce a model with higher accuracy or weight using
new information, e.g., the model in mtx of Figure 2b. This attack may subvert
blockchain history if the adversary produces enough blocks to compete with the
selected chain.

In order to tackle these problems, we restrict the training step number in
published blocks. We introduce a lower bound of acceptable step number as Smin

to control the selected blocks’ step number during the period of a given task task.
Denote the period with T = {ti}i∈[ℓ], and for each i ∈ [ℓ], we denote the selected
model (in a block on the chain) with Mi ∈ bki and the model’s corresponding
step number with Si. Now, consider a block candidate bk embedding Mbk trying
to extend bkn with n ∈ [ℓ−1]. Let M = (M′

j)j∈[k] be Mbk’s recursively referenced
model list. Each of these models is either embedded in a block or a model trans-
action that extends some blocks on the blockchain. Without loss of generality,
we assume the first block being extended by one of these models in the period
to be bkm where m ∈ [ℓ− 1],m ≤ n. The restriction on Mbk’s step number Sbk

14 X. Su et al.

is:
∑k−1

j=0 S
′
j + Sbk ≥

∑n−1
i=m Si + Smin. Intuitively, the restriction requires that a

newly generated block and its referred models have no less training steps than
the steps on the main blockchain. It is reasonable in the sense that we require not
only the accuracy of models/blocks, but also miners donating enough comput-
ing power (training steps). Moreover, our D-PoDL scheme enables us to leverage
steps in model verification. The goal is to stabilize the block generation rate,
and we will discuss this later in Section 5.2. Finally, miners repeat the above
process when the publisher network proceeds to a new task.

4.2 Concrete Protocols

In this section, we instantiate the chain selection rule with the longest-chain rule
from [11] and the weight-based framework from [13].

Longest-chain-based D-PoDL blockchain. First, in the longest-chain-based pro-
tocol, we clarify the relation introduced above as: R(acc, Tacc) = 1 if acc ≥ Tacc.
Hence, a model is eligible to be published as a block if b = 1 ∧ acc ≥ Tacc.
Otherwise, i.e., acc < Tacc, the model can be embedded in a model-transaction
mtx and published to the mempool; if b = 0, the miner must continue training
the model or resample the nonce for another initial model to be trained. By the
longest-chain rule, miners of each time slot add blocks to the end of the longest
blockchain they have observed and broadcast the chain to the network. Later,
we will show that forks of the same length as the main chain can exist only
with negligible probability by proving the robust ledger properties [11] for our
longest-chain-based protocol.

Weighted-based D-PoDL blockchain. In the weight-based protocol,R(acc, Tacc) =
1 for any pair of (acc, Tacc). The situation indicates that a miner can generate
a block even if its deep learning model fails to surpass the target threshold.
However, the number of blocks produced in a time slot can be overwhelming
without proper filtering. Therefore, Kamp et al. [13] introduce a weight function
to quantify the quality of blocks so that miners only choose the blockchain with
the highest (accumulated) weight. Our weight function evaluates the embedded
model according to (acc, Tacc) with the Weight algorithm. Instead of showing
specific constructions, we will introduce two crucial properties for proving the
security of the weight-based D-PoDL blockchain in the next section. With these
properties, we show that forks with comparable weights as the main chain can
only exist with negligible probability by proving the weight-based variant of
robust ledger properties [13] for our weight-based protocol.

Discussion: Incentive models. The incentive model is crucial to a practical proto-
col. We aim to reward miners according to their useful computation, i.e., training
iterations. Moreover, our protocol differs from previous works in that miners can
reference model-transactions to generate another model-transaction, or a block,
without training models from the sketch. Models in model-transactions may
have inferior accuracy. However, they are crucial in forming the distributed deep

Provably Secure Blockchain Protocols from D-PoDL 15

learning task solver. Hence, in order to incentivize miners to produce models,
we reward not only the miners who produce selected blocks but also the model-
transactions referenced by selected blocks. The rewards are given according to
the model accuracy and the step number. For example, let M be the selected
model, which is trained for S steps. Furthermore, let its recursively referenced
models set be M = {Mj}j∈[k], and each j ∈ [k], Mj is trained for Sj steps.
Hence, M’s miner receives S/(

∑
Sj + S) fraction of the total rewards, and each

Mj ’s miner receives Sj/(
∑

Sj + S) of the total rewards. Finally, we want to
clarify that incentive models may affect the assumptions on honest miners’ frac-
tion, which will further affect chain growth for robust ledgers [1]. However, this
work assumes honest miners’ fractions directly. Hence, the incentive model in
this section will not change our security proofs.

5 Security Analysis

Our security analysis focuses on the period of one single deep learning task
because switching to a new task can be regarded as a mining difficulty shift in
the PoW-based protocols. However, extending the result to the whole blockchain
is easy if we assume the difficulty, represented by the accuracy target threshold,
is stable across different tasks. To clarify, the terms “model-transaction” and
“block” refer to the model embedded in the model-transaction or block.

Robust ledger properties. In this work, we focus on proving the robust ledger
properties, i.e., the chain growth, chain quality, and common prefix, for our
concrete protocols. The definitions originate from [11]. We adopt the modified
version from [10] for the longest-chain-based protocol. For completeness, we also
include the weight-based variant from [13].

Definition 1 (Robust ledger properties).

– Chain Growth: For any honest miner with chain C at a round, the chain growth
with parameter τ ∈ (0, 1] and s ∈ N states that for any portion of C spanning
s consecutive rounds, the number of blocks in this portion is at least τs;

– Existential Chain Quality: For any honest miner with chain C at a round, the
existential chain quality with parameter s ∈ N states that for any portion of C
spanning s consecutive rounds, at least one honestly-generated block appears
in this portion;

– Common Prefix: For any two honest miners with chains C1, C2 at round r1, r2
respectively, where r1 ≤ r2, the common prefix with parameter s ∈ N indicates
that C1 should be a prefix of C2 after removing the last s blocks.

Definition 2 ((Weight-based) robust ledger properties). The three as-
pects are defined as follows.

– Chain Growth: For any honest miner with chain C at a round, the chain
growth with parameter τ ∈ (0, 1] and s ∈ N states that for any portion of C
spanning s consecutive rounds, the number of blocks appearing in this portion
is at least τ · s (the accumulated weights W(C2) ≥W(C1) + τs);

16 X. Su et al.

– Existential Chain Quality: For any honest miner with chain C at a round,
the existential chain quality with parameter s ∈ N states that for any portion of
C spanning s consecutive rounds, at least one honestly-generated block appears
in this portion (the fraction of honest blocks’ weights is at least µ;);

– Common Prefix: For any two honest miners with chains C1, C2 at round
r1, r2 respectively, where r1 ≤ r2, the common prefix with parameter s ∈ N
indicates that C1 should be a prefix of C2 after removing the last s blocks.

5.1 The Training Oracle

Our first step models the combination of training and post-hash process with a
training oracle. Following [13]’s approach, we assume protocol participants can
make at most one query to the training oracle in each round. This assumption
is reasonable because a round is the smallest unit of time of interest in our
protocol and corresponds to the time for evaluating the hash function over one
training iteration on one miner’s computing device. For a real-world miner with
the computing power of more than one device, we model it as a collection of
“one-query-per-round” participants.

In each round, a miner queries the oracle OTrain with (Mpre, accpre, S; r) where
Mpre denotes the pre-query model, accpre and S denotes the corresponding train-
ing accuracy and step number, and r denotes the random seed for training.
The oracle OTrain first verifies the queried model and returns ⊥ if the model
is invalid. Otherwise, OTrain performs one training iteration with r to obtain
(Mafter, accafter, S+1) where Mafter and accafter denote the model and training
accuracy after query, respectively. It samples a random value h2 ← {0, 1}λ uni-
formly, where λ is the security parameter that indicates the length of the hash
function output. OTrain returns (Mafter, accafter, S+1, h2). Moreover, regarding
queries with different random seeds (r) as different queries, OTrain keeps a list of
performed queries and replies to former queries according to the list.

The uniqueness of our model is that OTrain performs one training iteration
before sampling the random value. A query is said to be successful only if the
output model satisfies: h2 ≤ T2 ∧R(accafter, Tacc) = 1. Since h2’s distribution is
defined to be uniform, we now consider the distribution of the output accuracy
accafter. Note that training accuracy usually grows faster before achieving a cer-
tain value. Like in [7], we name this value difficulty threshold, denoted by Dacc.
Our model focuses on the training process after such a threshold. The reason
is that, as explained in [4], increasing the training accuracy requires stochas-
tic/random search after this threshold. Hence, we assume that if accpre ≥ Dacc,
accafter follows an arbitrary distribution D over {acc : acc ≥ Dacc} such that

f1
∆
= Pr[accafter ≥ Tacc|accpre ≥ Dacc], e.g., when D is uniform, f1 = 1−Tacc

1−Dacc
.

Otherwise, i.e., accpre < Dacc, we assume accafter increase be monotonically but
unlikely to surpass Tacc, i.e., less than ϵ, negligible of the security parameter
λ. Therefore, we argue that the overall probability is Pr[accafter ≥ Tacc] ≥ 1

2f1
because the number of training steps before reaching the difficulty threshold is
much less than the step number afterward. The training oracle goes as follows.

Provably Secure Blockchain Protocols from D-PoDL 17

Training Oracle OTrain

Let task be a deep learning task with dataset D and accuracy target
threshold Tacc. The oracle OTrain keeps a list L with performed queries.
On a query (Mpre, accpre, S; r) from a miner in a round:

– If (Mpre, accpre, S; r) is invalid, i.e., Mpre has unmatched accuracy or
step number, return ⊥;

– If (Mpre, accpre, S; r) ∈ L, return the reply entry (Mafter, accafter, S+1)
according to the list L;

– Otherwise, run one training step Train(D, Tacc,Mpre, r) → (Mafter,
accafter, S+1) and sample h2 ← {0, 1}λ uniformly at random.
Add ((Mpre, accpre, S; r), (Mafter, accafter, S+1, h2)) to L and return
(Mafter, accafter, S+1, h2) to the miner.

We assume the distribution of accafter following the distribution D over
{acc : acc ≥ Dacc} such that Pr[accafter ≥ Tacc|accpre ≥ Dacc] = f1, and
Pr[accafter ≥ Tacc|accpre < Dacc] = ϵ where ϵ is negligible of the security
parameter λ.

5.2 Proving Ledger Properties

Consider the situation in which a deep learning task taski spans over time slots
Ti = {ti,j}j∈[ℓ]. We omit i in the following for simplicity. The hash function
in the PreHash algorithm guarantees that a new block is never added between
two existing blocks (insertions), the same block never occurs in two different
positions (copies), and a block never extends a block that will be mined in later
time slots (predictions).

The longest-chain-based protocol. A miner who outputs a block in slot
tj that meets the post-hash check, target accuracy, and step restriction has to
perform at least Sj training steps, which is equivalent to Sj queries to OTrain. As
miners, honest or adversarial, are bounded by the number of queries they can
make in each round, they cannot generate too many blocks in any polynomial
many consecutive rounds within the period T of taski. Simultaneously, miners
cannot generate too few blocks because the probability of at least one honest
miner outputting a block is lower bounded by the success rate of the oracle.

Like [11], we define typical execution for the situation in which miners gen-
erate not too many nor too few blocks in polynomial many consecutive rounds of
protocol execution. First, we consider three Boolean random variablesXr, Yr, Zrpq.
If at round r an honest miner obtains an output from the oracle OTrain that satis-
fies h2 ≤ T2∧R(accafter, Tacc) = 1, then Xr = 1, otherwise Xr = 0. If at round r
exactly one honest miner obtains such an output, then Yr = 1, otherwise Yr = 0.
For the adversary, if at round r, the p-th corrupted miner’s q-th query to the
oracle OTrain obtains such an output, then Zrpq = 1, otherwise Zrpq = 0. Hence,

18 X. Su et al.

we define a variable Zr =
∑

p

∑
q Zrpq. For a set X of k consecutive rounds, we

define X(X) =
∑

r∈X Xr, Y (X) =
∑

r∈X Yr, Z(X) =
∑

r∈X Zr.

Definition 3 ((ϵ, k)-typical execution). Let ϵ ∈ (0, 1) and k ∈ N, an execu-
tion is (ϵ, k)-typical if for any set X of at least k consecutive rounds within the
period of a deep learning task, the following holds:

– (1− ϵ)E[X(X)] < X(X) < (1 + ϵ)E[X(X)], (1− ϵ)E[Y (X)] < Y (X);
– Z(X) < E[S(X)] + ϵE[X(X)].

Theorem 1. Assume the training oracle and at most β < 1
2 corrupted min-

ers each round, the longest-chain-based D-PoDL blockchain protocol satisfies the
robust ledger properties (Definition 1).

Proof. We first prove the following lemma.

Lemma 1. An execution is (ϵ, k)-typical with probability 1− e−Ω(ϵ2kp) where p
is the probability of at least one honest miner obtaining a model that satisfies
h2 ≤ T2 ∧ acc ≥ Tacc.

Let accafter be the input accuracy to OTrain and Dacc be the difficulty thresh-
old, according to our oracle description, the probability of the output accuracy
accafter surpassing the target threshold Tacc in a query reply is:

Pr[accafter ≥ Tacc] = Pr[accafter ≥Tacc ∧ accpre ≥ Dacc]

+ Pr[accafter ≥ Tacc ∧ accpre < Dacc]

≥ Pr[accafter ≥Tacc|accpre ≥ Dacc] · Pr[accpre ≥ Dacc]

= f1 · Pr[accpre ≥ Dacc],

For a query, we have Pr[accpre ≥ Dacc] ≥ 1/2, as we assumed training steps
before reaching Dacc, which is less than the step number afterward. Thus, a
miner who makes at least one query to OTrain in a round obtains accafter ≥ Tacc

from OTrain with probability at least 1
2 · f1.

Let f2 be the probability of at least one honest miner obtaining an h2 from
the training oracle OTrain that satisfies h2 ≤ T2 in a round. Because the output of
the training algorithm is independent to the hash function, the probability of at
least one honest miner obtaining a tuple (Mafter, accafter, S+1, h2) that satisfies
h2 ≤ T2 ∧ accafter ≥ Tacc should be at least p ≥ 1

2 · f1 · f2 (and at most p ≤ f2).
Next, we analyze the probability of execution being typical. Note that the

training oracleOTrain takes queries with different training random seeds (r) as dif-
ferent queries. Moreover, a hash function, modeled as a random oracle, generates
such random seeds in the pre-hash PreHash algorithm. Hence, the probability
of two honest parties querying OTrain with the same input in polynomial many
rounds of execution is negligible of the security parameter λ. Such property
enables us to condition the probability space on the event that no two honest
parties query OTrain with the same input in a polynomial many rounds of exe-
cution. In this space, the random variables Xr (and similarly Yr and Zrpq) are
independent Bernoulli trials where each trail is successful with probability Θ(p)

Provably Secure Blockchain Protocols from D-PoDL 19

(as analyzed above). Hence, by the Chernoff bound, we prove the probability of

an (ϵ, k)-typical execution is 1− e−Ω(ϵ2kp).
Directly from [11], we have the following lemma that parameterizes the chain

growth, existential chain quality, and common prefix in a typical execution.

Lemma 2. In an (ϵ, k)-typical execution, the chain growth property holds for
parameter τ = (1−ϵ)p and s ≥ k, the existential chain quality property holds for
parameter s ≥ 2kp, and the common prefix property hold for parameter s ≥ 2kp.

Finally, by Lemma 1, we choose k = Ω(log2 λ) so that an execution fails to
be typical with negligible probability of the security parameter λ. Therefore, we
prove Theorem 1 with the parameters following Lemma 2.

The weight-based protocol. One concern is that selecting models with in-
ferior accuracy may accelerate the block generation rate because training such
models requires fewer steps in each time slot. The block may not be adequately
propagated to all honest miners before the next block is generated. To prevent
so, we require the weight function to be appropriately bounded (with isolated-
lower-bounds and upper-bounds, definitions can be found in [13]) so that the
low block weight indicates low model accuracy and the low accuracy models are
hard to be selected according to the weight function. Like the typical execution,
we adopt model isolation (Definition 4) from [13] for the situation in which the
round gap between any two models with sufficient accuracy is longer than the
unknown network delay. Under the properly bounded weight functions, we fur-
ther argue that our model-referencing mechanism cannot break model isolation.
A miner has to perform enough training steps so that the total step number of its
model, including all the referenced models, is no less than the total steps of the
selected models (Restriction). Hence, the model-referencing mechanism offers
no advantage to the miner in generating a model faster. Finally, we conclude the
following theorem for the weight-based protocol.

Definition 4 (acc-Isolation). Let M be the model embedded in the block mined
in round r within the period of a deep learning task. M is left-isolated if M is
generated by an honest miner, accM ≥ acc, and there is no block on the left
embedding a model with accuracy higher than acc in rounds [r−∆, r] where ∆ is
the unknown network delay. M is isolated if M is generated by an honest miner,
accM ≥ acc, and there is no block embedding a model with accuracy higher than
acc in rounds [r −∆, r +∆].

Theorem 2. Assume the training oracle and at most β < 1
2 corrupted miners

each round, the weight-based D-PoDL blockchain protocol satisfies the weight-
based robust ledger properties (Definition 1) if the weight function is isolated-
lower-bounded and upper-bounded.

Proof. It has been proven that a secure longest-chain-based blockchain protocol
can be transformed into a secure weight-based protocol as long as the weight

20 X. Su et al.

function is properly bounded [13]. We refer to their results and argue that our
model-referencing mechanism will not break the proof.

First, for chain growth, the restrictions on training step number in Section 4.1
enable honest miners to have enough time for block propagation. Therefore, hon-
est miners will have at least one chain that accumulates the weight from all left-
isolated blocks. Assuming the weight function is left-isolated-lower-bounded, the
probability of this accumulated weight being inferior to the lower bound is neg-
ligible to the security parameter. Next, for chain quality, the chain growth prop-
erty guarantees that the chain will accumulate at least all left-isolated blocks’
weights. Moreover, the adversary cannot generate left-isolated blocks fast enough
because it has to perform enough training steps, and the total weight is upper
bounded by the weight function. Finally, since model-referencing will not change
block selection, i.e., honest miners will only extend chains with sufficient weights
by each round, common prefix preserves regardless of model-referencing.

6 Implementation of D-PoDL Scheme

The average time consumption of block generation and the variance in the time
reflect the stability of the protocol, which may affect users’ experience. Further,
this time consumption can be analyzed with the solving time of the underlying
schemes. Therefore, this section shows a toy example for our D-PoDL scheme
implementation. We compare the PoW scheme and the plain deep learning to
our D-PoDL scheme with different sets of threshold parameters (T1, T2, Tacc). We
utilize the MNIST dataset to implement deep learning-based schemes, i.e., plain
deep learning and our D-PoDL, and follow the original split of 60000 images for
training and 10000 images for testing. Results can be found in Table 2.

Table 2: Experiment Results
Scheme/Algorithm Average Maximum Minimum Variance

PoW (2224) 433.37 1242.53 0.63 122336.11

Deep learning (0.97) 81.88 126.61 75.24 109.19

D-PoDL (2240, 2256, 0.97) 94.26 122.38 75.23 320.99

D-PoDL (2244, 2255, 0.97) 140.60 195.68 115.36 648.97

On MacBook Pro with 2.3GHz quad-core Intel Core i5 and 8GB
of 2133MHz LPDDR3 onboard memory; Time consumption is
presented in seconds and recorded for 20 attempts.

In the PoW implementation, we use a 256-bit hash function, e.g., SHA-256,
and set the difficulty to be T = 2228, i.e., to find a nonce with Hash(prevBK, nonce)
< T . Hence, the expected hash iteration is 228. Next, In the plain deep learn-
ing implementation, we set the batch size to 128, the learning rate to 0.001,
and the target threshold to 0.97. Most models reach this threshold in 2 epochs,
each including 387 training steps. Finally, in the two D-PoDL’s Solve algorithm,

Provably Secure Blockchain Protocols from D-PoDL 21

we implement with (T1, T2, Tacc) = (2240, 2256, 0.97) and (2244, 2255, 0.97). For
T2 = 2256, since the post-hash accepts all models, we use it to distinguish the
impact of the pre-hash algorithm PreHash. The change in time comes from two
factors: (1) Computation overhead from the hash function; (2) Training speed
due to the different hyper-parameters. For the second D-PoDL implementation,
the post-hash check significantly prolongs the average solving time despite the
fact that we lower the pre-hash threshold T1 to 2

244. The result indicates that the
post-hash plays an important role in controlling the solution generation speed,
which is the overall difficulty of the scheme.

Concerning variance values, we observe a big gap between deep learning-
based schemes and the PoW scheme. The reason is that the stochastic gra-
dient descent algorithm that optimizes the neural network has a more consis-
tent convergence speed. In contrast, a well-behaving hash function in the PoW
scheme should follow the uniform distribution with a high variance. However, low
variance is not always preferable because the algorithm should involve enough
stochasticity to prevent domination, i.e., the miner with the most computing
power generates all blocks. By comparing the variance value of the deep learning-
based schemes, we notice that both pre-hash and post-hash algorithms involve
randomness in the solving time, which can benefit the fairness among miners.

7 Conclusion

This paper extends the concept of deep learning-based proof-of-useful-work with
distribution in solving the deep learning task. We then formalize the extended
scheme as distributed proof-of-deep-learning (D-PoDL). Our novel designs, hash-
training-hash, and model-referencing, enable users to train models distributively
without suffering from grinding attacks and pre-computation attacks, which have
not been achieved by any previous work. Next, a generic blockchain protocol is
built atop the D-PoDL scheme alongside two concrete construction based on the
longest-chain rule and the weight-based framework. We prove security for both
concrete protocols in terms of robust ledger properties, which again is the first
paper to achieve so. Finally, we implement the D-PoDL scheme to compare with
PoW and deep learning-based schemes. We conclude that our D-PoDL fits in the
middle point of these existing schemes with a more stabilized solution generation
speed and enough randomness for fairness.

22 X. Su et al.

References

1. Badertscher, C., Garay, J.A., Maurer, U., Tschudi, D., Zikas, V.: But why does it
work? A rational protocol design treatment of bitcoin. In: Nielsen, J.B., Rijmen, V.
(eds.) Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv,
Israel, April 29 - May 3, 2018 Proceedings, Part II. Lecture Notes in Computer
Science, vol. 10821, pp. 34–65. Springer (2018). https://doi.org/10.1007/978-3-319-
78375-8 2, https://doi.org/10.1007/978-3-319-78375-8_2

2. Baldominos, A., Saez, Y.: Coin.ai: A proof-of-useful-work scheme for
blockchain-based distributed deep learning. Entropy 21(8), 723 (2019).
https://doi.org/10.3390/e21080723, https://doi.org/10.3390/e21080723

3. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Proofs of work from worst-case
assumptions. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology -
CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2018, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 10991, pp. 789–819. Springer (2018). https://doi.org/10.1007/978-3-
319-96884-1 26, https://doi.org/10.1007/978-3-319-96884-1_26

4. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012), http://dl.acm.org/citation.cfm?id=

2188395

5. Blocki, J., Zhou, H.: Designing proof of human-work puzzles for cryptocurrency
and beyond. In: Hirt, M., Smith, A.D. (eds.) Theory of Cryptography - 14th In-
ternational Conference, TCC 2016-B, Beijing, China, October 31 - November 3,
2016, Proceedings, Part II. Lecture Notes in Computer Science, vol. 9986, pp. 517–
546 (2016). https://doi.org/10.1007/978-3-662-53644-5 20, https://doi.org/10.
1007/978-3-662-53644-5_20

6. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA. pp. 136–145. IEEE
Computer Society (2001). https://doi.org/10.1109/SFCS.2001.959888, https://

doi.org/10.1109/SFCS.2001.959888

7. Chenli, C., Li, B., Jung, T.: Dlchain: Blockchain with deep learning as proof-of-
useful-work. In: Ferreira, J.E., Palanisamy, B., Ye, K., Kantamneni, S., Zhang,
L. (eds.) Services - SERVICES 2020 - 16th World Congress, Held as Part of the
Services Conference Federation, SCF 2020, Honolulu, HI, USA, September 18-
20, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12411, pp. 43–60.
Springer (2020). https://doi.org/10.1007/978-3-030-59595-1 4, https://doi.org/
10.1007/978-3-030-59595-1_4

8. Chenli, C., Li, B., Shi, Y., Jung, T.: Energy-recycling blockchain with proof-
of-deep-learning. In: IEEE International Conference on Blockchain and Cryp-
tocurrency, ICBC 2019, Seoul, Korea (South), May 14-17, 2019. pp. 19–23.
IEEE (2019). https://doi.org/10.1109/BLOC.2019.8751419, https://doi.org/

10.1109/BLOC.2019.8751419

9. Coelho, F.: An (almost) constant-effort solution-verification proof-of-work pro-
tocol based on merkle trees. In: Vaudenay, S. (ed.) Progress in Cryptology -
AFRICACRYPT 2008, First International Conference on Cryptology in Africa,
Casablanca, Morocco, June 11-14, 2008. Proceedings. Lecture Notes in Computer
Science, vol. 5023, pp. 80–93. Springer (2008). https://doi.org/10.1007/978-3-540-
68164-9 6, https://doi.org/10.1007/978-3-540-68164-9_6

https://doi.org/10.1007/978-3-319-78375-8_2
https://doi.org/10.1007/978-3-319-78375-8_2
https://doi.org/10.1007/978-3-319-78375-8_2
https://doi.org/10.3390/e21080723
https://doi.org/10.3390/e21080723
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1007/978-3-319-96884-1_26
http://dl.acm.org/citation.cfm?id=2188395
http://dl.acm.org/citation.cfm?id=2188395
https://doi.org/10.1007/978-3-662-53644-5_20
https://doi.org/10.1007/978-3-662-53644-5_20
https://doi.org/10.1007/978-3-662-53644-5_20
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-030-59595-1_4
https://doi.org/10.1007/978-3-030-59595-1_4
https://doi.org/10.1007/978-3-030-59595-1_4
https://doi.org/10.1109/BLOC.2019.8751419
https://doi.org/10.1109/BLOC.2019.8751419
https://doi.org/10.1109/BLOC.2019.8751419
https://doi.org/10.1007/978-3-540-68164-9_6
https://doi.org/10.1007/978-3-540-68164-9_6
https://doi.org/10.1007/978-3-540-68164-9_6

Provably Secure Blockchain Protocols from D-PoDL 23

10. Fitzi, M., Kiayias, A., Panagiotakos, G., Russell, A.: Ofelimos: Combinatorial op-
timization via proof-of-useful-work \\ A provably secure blockchain protocol. In:
Advances in Cryptology - CRYPTO 2022. Lecture Notes in Computer Science,
Springer (2022)

11. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Anal-
ysis and applications. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptol-
ogy - EUROCRYPT 2015 - 34th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part II. Lecture Notes in Computer Science, vol. 9057, pp.
281–310. Springer (2015). https://doi.org/10.1007/978-3-662-46803-6 10, https:
//doi.org/10.1007/978-3-662-46803-6_10

12. Garay, J.A., Kiayias, A., Leonardos, N., Panagiotakos, G.: Bootstrapping the
blockchain, with applications to consensus and fast PKI setup. In: Abdalla, M.,
Dahab, R. (eds.) Public-Key Cryptography - PKC 2018 - 21st IACR Interna-
tional Conference on Practice and Theory of Public-Key Cryptography, Rio de
Janeiro, Brazil, March 25-29, 2018, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 10770, pp. 465–495. Springer (2018). https://doi.org/10.1007/978-3-319-
76581-5 16, https://doi.org/10.1007/978-3-319-76581-5_16

13. Kamp, S.H., Magri, B., Matt, C., Nielsen, J.B., Thomsen, S.E., Tschudi, D.:
Weight-based nakamoto-style blockchains. In: Longa, P., Ràfols, C. (eds.) Progress
in Cryptology - LATINCRYPT 2021 - 7th International Conference on Cryp-
tology and Information Security in Latin America, Bogotá, Colombia, Octo-
ber 6-8, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12912, pp.
299–319. Springer (2021). https://doi.org/10.1007/978-3-030-88238-9 15, https:
//doi.org/10.1007/978-3-030-88238-9_15

14. Lan, Y., Liu, Y., Li, B., Miao, C.: Proof of learning (pole): Empowering ma-
chine learning with consensus building on blockchains (demo). In: Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference
on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Vir-
tual Event, February 2-9, 2021. pp. 16063–16066. AAAI Press (2021), https:

//ojs.aaai.org/index.php/AAAI/article/view/18013

15. Li, B., Chenli, C., Xu, X., Jung, T., Shi, Y.: Exploiting computation power
of blockchain for biomedical image segmentation. In: IEEE Conference on
Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2019,
Long Beach, CA, USA, June 16-20, 2019. pp. 2802–2811. Computer Vision
Foundation / IEEE (2019). https://doi.org/10.1109/CVPRW.2019.00339,
http://openaccess.thecvf.com/content_CVPRW_2019/html/BCMCVAI/Li_

Exploiting_Computation_Power_of_Blockchain_for_Biomedical_Image_

Segmentation_CVPRW_2019_paper.html

16. Lihu, A., Du, J., Barjaktarevic, I., Gerzanics, P., Harvilla, M.: A proof of useful
work for artificial intelligence on the blockchain. CoRR abs/2001.09244 (2020),
https://arxiv.org/abs/2001.09244

17. Pass, R., Shi, E.: Fruitchains: A fair blockchain. In: Schiller, E.M., Schwarzmann,
A.A. (eds.) Proceedings of the ACM Symposium on Principles of Distributed
Computing, PODC 2017, Washington, DC, USA, July 25-27, 2017. pp. 315–
324. ACM (2017). https://doi.org/10.1145/3087801.3087809, https://doi.org/

10.1145/3087801.3087809

https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-76581-5_16
https://doi.org/10.1007/978-3-319-76581-5_16
https://doi.org/10.1007/978-3-319-76581-5_16
https://doi.org/10.1007/978-3-030-88238-9_15
https://doi.org/10.1007/978-3-030-88238-9_15
https://doi.org/10.1007/978-3-030-88238-9_15
https://ojs.aaai.org/index.php/AAAI/article/view/18013
https://ojs.aaai.org/index.php/AAAI/article/view/18013
https://doi.org/10.1109/CVPRW.2019.00339
http://openaccess.thecvf.com/content_CVPRW_2019/html/BCMCVAI/Li_Exploiting_Computation_Power_of_Blockchain_for_Biomedical_Image_Segmentation_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/BCMCVAI/Li_Exploiting_Computation_Power_of_Blockchain_for_Biomedical_Image_Segmentation_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/BCMCVAI/Li_Exploiting_Computation_Power_of_Blockchain_for_Biomedical_Image_Segmentation_CVPRW_2019_paper.html
https://arxiv.org/abs/2001.09244
https://doi.org/10.1145/3087801.3087809
https://doi.org/10.1145/3087801.3087809
https://doi.org/10.1145/3087801.3087809

	Provably Secure Blockchain Protocols from Distributed Proof-of-Deep-Learning

