
ZK-for-Z2K: MPC-in-the-Head Zero-Knowledge Proofs for Z2k

Lennart Braun1 ID , Cyprien Delpech de Saint Guilhem2 ID , Robin Jadoul2 ID ,

Emmanuela Orsini3 ID , Nigel P. Smart2,4 ID , and Titouan Tanguy4 ID

1 Department of Computer Science, Aarhus University, Aarhus, Denmark,
2 COSIC, KU Leuven, Leuven, Belgium,

3 Department of Computing Sciences, Bocconi University, Milan, Italy,
4 Zama. Inc, Paris, France.

braun@cs.au.dk, cyprien.delpechdesaintguilhem@kuleuven.be,

robin.jadoul@esat.kuleuven.be, emmanuela.orsini@unibocconi.it,

nigel.smart@kuleuven.be, titouan.tanguy@zama.ai

Abstract. In this work, we extend the MPC-in-the-Head framework, used in recent efficient zero-
knowledge protocols, to work over the ring Z2k , which is the primary operating domain for modern
CPUs. The proposed schemes are compatible with any threshold linear secret sharing scheme and
draw inspiration from MPC protocols adapted for ring operations. Additionally, we explore various
batching methodologies, leveraging Shamir’s secret sharing schemes and Galois ring extensions, and
show the applicability of our approach in RAM program verification. Finally, we analyse different
options for instantiating the resulting ZK scheme over rings and compare their communication
costs.

,

https://orcid.org/0000-0001-9164-305X
https://orcid.org/0000-0002-0147-2566
https://orcid.org/0000-0002-5997-9992
https://orcid.org/0000-0002-1917-1833
https://orcid.org/0000-0003-3567-3304
https://orcid.org/0000-0002-7965-620X
mailto:braun@cs.au.dk,cyprien.delpechdesaintguilhem@kuleuven.be,robin.jadoul@esat.kuleuven.be,emmanuela.orsini@unibocconi.it,nigel.smart@kuleuven.be,titouan.tanguy@zama.ai
mailto:braun@cs.au.dk,cyprien.delpechdesaintguilhem@kuleuven.be,robin.jadoul@esat.kuleuven.be,emmanuela.orsini@unibocconi.it,nigel.smart@kuleuven.be,titouan.tanguy@zama.ai
mailto:braun@cs.au.dk,cyprien.delpechdesaintguilhem@kuleuven.be,robin.jadoul@esat.kuleuven.be,emmanuela.orsini@unibocconi.it,nigel.smart@kuleuven.be,titouan.tanguy@zama.ai

Table of Contents

1 Introduction . 3
1.1 Our Contribution . 4

2 Preliminaries . 5
2.1 Notation . 5
2.2 Rings . 6
2.3 Secret-Sharing Schemes over Rings . 7
2.4 MPC-in-the-Head via Linear Secret Sharing . 8

3 Checking Multiplications over Rings . 10
3.1 Sacrifice Based Check . 10
3.2 Inner Product Multiplication Check . 11
3.3 Compressed Multiplication Check . 12

4 Checking Base Ring Sharings . 15
5 Protocol Communication Costs . 16

5.1 Primitive Costs . 17
5.2 Protocol Costs . 17
5.3 Overall Costs . 18
5.4 Concrete Comparison of the Three ΠMult-Check Subprotocols 18

6 Packing . 21
6.1 Packing in the Shamir Domain . 21
6.2 Packing in the Galois Domain . 21
6.3 Multi-Round Computations . 22

7 RAM Application . 23
7.1 Permutation Check . 23
7.2 Bound Check . 24
7.3 Array Access Check . 24

References . 26

1 Introduction

Zero-knowledge (ZK) proofs [GMR85] are a fundamental tool for numerous privacy-preserving
applications. A proof system enables a prover to convince a verifier that a statement is true
beyond reasonable doubt. The zero-knowledge property additionally ensures that the only in-
formation learnt from the interaction by the verifier (or any other listener) is the veracity of the
statement, and nothing else.

A common method of expressing statements for proof systems is circuit satisfiability. In this
approach, both the prover and verifier possess a circuit C, and the prover aims to demonstrate
their knowledge of a witness w which satisfies the condition C(w) = 0. Usually, C is a circuit
defined over a field, either binary or arithmetic. However, many use cases of ZK proof systems
(such as program verification) require the statement to be expressed with arithmetic over a ring,
such as Z2k . In particular, the underlying structure of choice for modern CPUs, 64-bit integers,
can be expressed over the ring Z264 . Hence proof systems natively compatible with this ring
arithmetic allow to preserve the semantics of a conventional CPU, without the costly need to
emulate it with finite field arithmetic instead.

There are few exceptions to this approach and some ZK protocols have been extended to
operate over rings. In particular, when considering highly efficient and scalable zero-knowledge
protocols, some works [BBMH+21, BBMHS22, LXY23] have extended protocols based on vector
oblivious linear evaluation (VOLE) to work over Z2k . These kinds of proofs are able to handle
very large statements, such as proving properties of complex computer programs, but are only
designated-verifier, i.e., the verifier needs to keep some state secret from the prover. This means
that these proofs cannot be made non-interactive and require both parties to be online at the
same time.

Publicly verifiable proofs can be generated in different ways, for example following the
MPC-in-the-Head (MPCitH) paradigm introduced by Ishai, Kushilevitz, Ostrovsky and Sahai
in [IKOS07]. Despite its simplicity, this technique has proven efficiency and flexibility, and
found a variety of different applications. In the context of zero-knowledge, MPCitH leads to
very efficient protocols [AHIV17, BN20, GMO16, FR22, FMRV22, KZ22, KKW18] for proving
statements that can be expressed with small to medium-size circuits, and it can be used to
develop efficient post-quantum digital signature schemes [BDK+21, CDG+17].

MPC-in-the-Head. The core idea behind MPCitH is for the prover P to emulate an MPC
protocol for the circuit C, amongst N parties, in their head, and commit to each of the emulated
parties’ view. The verifier V then asks to decommit a small enough subset of these views so
as not to break the privacy of the MPC scheme. The soundness of the proof comes from the
correctness of the underlying secure MPC protocol and the decommitment of parties’ views. In
this way, if the prover wants to cheat in the MPC protocol, they need to simulate some parties
as acting maliciously, which in turn can be detected if the set of malicious parties overlaps
the set of decommited parties. In addition, since the verifier sees fewer views than the privacy
threshold of the MPC protocol, the zero-knowledge property holds.

The seminal work of Ishai et al. [IKOS07] describes a generic compiler which makes black-
box use of the underlying MPC protocol, but only considers asymptotic complexity; on the other
hand, recent concretely efficient protocols [GMO16, FR22, FMRV22, KKW18, AHIV17] pro-
vide different concrete instantiations for the MPC protocol used to evaluate the circuit C, based
both on full-threshold [BN20, KZ22, KKW18, DOT21] and variable t-threshold secret-sharing
schemes [GMO16, FR22, FMRV22, AHIV17]. In the latter case, the resulting ZK scheme can
achieve better soundness and different choices of t result in different proof-size/efficiency/soundness
trade-offs.

3

Another significant difference among these efficient MPCitH based schemes lies in the way
the MPC protocol is used, i.e., whether its task consists of computing the circuit C or just
verifying it. In the former approach, taken for example by [BN20, KKW18, IKOS07], the prover
locally emulates the MPC protocol by secret-sharing the witness w among the N simulated
parties as the input of the MPC evaluation; then it evaluates in MPC the circuit C and sends
to the verifier commitments to each parties’ input shares, random tapes and received messages
(these values constitute a party’s view) and to all output shares. Then, the verifier randomly
chooses t of the views’ commitments to be opened, and verifies that the committed messages
are all consistent with each other and with the output shares.

In the latter approach, used for example by [AHIV17, BDK+21, DOT21], instead of com-
puting the entire circuit C in MPC, the prover, that knows the witness and all the intermediate
values of the circuit evaluation, inputs (or injects) all these values (the witness and results of
non-linear operations) in a secret-shared form as input of the MPC protocol, whose role at this
point is simply checking that these inputs are indeed correct. This approach usually leads to
better performance for the prover. The input of this MPC protocol is also called extended wit-
ness, since the role of the MPC protocol is not only that of verifying that w is a valid witness,
i.e., that C(w) = 0, but also that the non-linear operations in C have been honestly computed.

1.1 Our Contribution

This work describes how to adapt some efficient MPCitH protocols, like [BN20, DOT21, FR22],
to work over a ring of the form Z2k . As said before, compared to VOLE-based schemes, MPCitH
proofs have the advantage to be public coin, which enables public verifiability and the ability to
obtain non-interactive proofs via the Fiat–Shamir transformation [FS87].5 We summarize our
contributions as follows.

MPCitH over Z2k . Our approach considers MPCitH schemes such as Limbo [DOT21] and [FR22]
where the MPC protocol is used to verify the correctness of the committed extended inputs.
This type of protocols can be well suited to particular use cases, such as verifying computations
or proving the correct execution of RAM programs (where an extension of existing protocols to
work over Z2k can be practically relevant).

In recent years, MPC protocols have also been extended to work over rings; see for example
[CDE+18, EXY22] for the case of dishonest majority (i.e. t ≥ N/2), and [ACD+19, JSL22] for
the case of honest majority (i.e. t < N/2). In the case of honest majority protocols, the natural
secret-sharing scheme to instantiate a threshold MPC protocol, Shamir’s secret sharing [Sha79],
requires the underlying algebraic structure to be suitably large. In the case of MPC over finite
fields one simply extends the base field so that it contains N + 1 elements (where N is the
number of parties). In the case of rings it requires a large enough Galois ring extension, so
that the largest exceptional sequence6 in the extension ring contains N + 1 elements. This was
originally introduced in the context of secret sharing by Fehr [Feh98].
A similar approach is also needed in our protocols, where we replace the full-threshold additive
sharing scheme used in Limbo with a t-threshold secret sharing scheme to achieve better sound-
ness. We show different options to instantiate our MPC verification procedures, and analyse
their respective communication costs. While the t-threshold approach generally comes with a
larger proof size than the additive sharing, it trades this for higher efficiency for the verifier,
who now only needs to verify that t parties behaved honestly rather than N − 1.

5 Many VOLE proofs can be split into an interactive, witness-independent preprocessing phase and a public-
coin online phase, of which the latter can be made non-interactive. Note that this still requires the designated
verifier to keep secret state.

6 Informally, an exceptional sequence of elements in a ring R is such that their pairwise difference is invertible.
(See Section 2.2.)

4

Finally, we recall that KKW [KKW18] already works over any rings. This scheme is known
for its efficiency when dealing with small to medium-sized circuits, however, as mentioned earlier,
it requires an MPC evaluation of the entire circuit C, which may not be the most suitable
approach for applications like program verification.

Packing techniques. In Section 6, we describe a methodology for packing within our MPCitH
proofs, that is, proving multiple statements for the same circuit in parallel, in a single proof.
It consists of two orthogonal approaches that could potentially be combined to achieve better
packing rates. We take advantage of Shamir’s threshold secret sharing scheme by embedding
multiple secrets in the roots of the sharing polynomial, and we also make use of the additional
coefficients provided by Galois ring extensions by placing multiple secrets within a single ring
element.

Performing batch proofs in this way additionally alleviates the extra communication cost for
a threshold scheme, since the extra space that was introduced to have a large enough exceptional
set becomes completely utilised. In combination with the increased verifier efficiency and the
better soundness guarantees, this makes the threshold setting preferable to the additive setting
for batch proofs.

RAM applications. In Section 7, we adapt the compilation procedure of [DOTV22] to the ring
structure. The techniques used there allow to compile a list of read and write array accesses to a
standard arithmetic circuit for proof systems in order to enable program verification. This com-
pilation naturally fits the MPCitH framework extended to the ring Z2k that we describe in this
paper. This approach removes the need of any bit-decomposition operation; this is different from
other recent works [GHAH+23] that use MPCitH schemes based on the KKW protocol [KKW18]
for program verification and ring switching techniques based on edaBits [EGK+20].

In our work, to verify the correctness of the memory operations, the initial array is extended
to a checking circuit Ccheck over Z2k—with standard linear and multiplication gates and calls
to a random oracle—that verifies the consistency of a list of access tuples which contains both
the initial array and the accesses performed, encoded as a set of tuples. Given this list, Ccheck

produces new multiplication triples that need to be verified via a checking procedure over rings.
To perform these consistency checks, [DOTV22] describes three subcircuits EqCheck, BdCheck
and PermCheck to verify respectively equality, upper and lower bounds and permutation of a
list of values in zero-knowledge.

While our compilation follows the blueprint of [DOTV22], the main difference is that, to
suit the ring structure, we require a large enough exceptional sequence and the removal of
the EqCheck sub-circuit that crucially relies on every element having an inverse. Our resulting
construction inherits all the properties of the scheme described in [DOTV22], leading to a
public-coin constant-overhead ZK proof system for computations over Z2k in the RAM model.

2 Preliminaries

This section establishes notation and recalls standard results.

2.1 Notation

We denote by λ the computational security parameter and by σ the statistical security param-
eter. For a set S, we let a ← S denote the uniform sampling a from S. If D is a probability
distribution over S, we let a← D denote sampling a from S according to D. For a probabilistic
algorithm A, we let a ← A denote the probabilistic assigning to a of the output of algorithm
A, with the distribution being determined by the random coins of A. We let [n] ⊂ N denote the
set {1, . . . , n}. We use x for vectors of elements, and x ◦ y for element-wise products.

5

Zero-knowledge proofs. We use standard definitions of zero-knowledge proofs; we construct our
protocols to allow proving arbitrary NP language-membership statements. Let L be in NP
and R(x,w) be a corresponding NP relation with statement x and witness w. That is, the
statement x is a member of L if and only if a witness w exists such that (x,w) ∈ R. We can
then consider an arithmetic circuit C (with addition and multiplication gates) that decides (or
rather confirms) membership of L when given such a witness. Concretely, the circuit satisfies
C(x,w) = 0 if and only if (x,w) ∈ R. The focus of this work are zero-knowledge proofs of
knowledge for relations where C is an arithmetic circuit over the ring Z2k .

2.2 Rings

While the circuits we use in our proof systems are defined over the ring Z2k , we need to work
over larger rings to enable threshold secret sharing and to achieve low soundness errors. In this
work we consider two ways to obtain such larger rings as described below.

2-adic extensions. Instead of using Z2k , we increase the modulus and work over Z2k+s , where
s depends on the security parameter. This methodology of extending the ring 2-adically
in order to check various relations was first introduced in the SPDZ2k protocol [CDE+18].
While this is a well-studied technique in the MPC literature, there are some limitations
inherent to our application to MPCitH. Many soundness checks that use such an extension
only guarantee consistency for the k lower bits; this may therefore require iterating such
extensions to Z2k+n·s . Moreover, since Z2k is not a subring of Z2k+s , we cannot easily lift Z2k

elements to Z2k+s if we also wish to retain some auxiliary algebraic relationship between the
lifted values. The converse direction—truncating elements of Z2k+s to Z2k—is a well-defined
ring homomorphism.

Galois extensions. We extend the base ring Z2k by forming the Galois ring GR(2k, d) =
Z2k [X]/(p(X)), the ring of polynomials with Z2k coefficients reduced modulo an irreducible
polynomial p(X) of degree d. One advantage of this technique is that reduction modulo
2 results in the field F2d , i.e., we have GR(2k, d)/(2) ≃ F2d . Also, while taking a degree-d
extension increases the size of elements by a multiplicative factor d, it can be used for several
different checks—unlike the 2-adic extensions. Moreover, a Z2k element can be easily “lifted”
into a GR(2k, d) element by using zero for the coefficients of non-constant terms. This lift
often retains algebraic relationships between the lifted elements.

Note that both techniques can also be combined to obtain rings of the form GR(2k+s, d).

Definition 2.1 ((Maximal) Exceptional Sequence). Let GR(2k, d) be a degree-d Galois
extension of Z2k . A set {α1, . . . , αn} is an exceptional sequence (of length n) in GR(2k, d) if
for all i ̸= j ∈ [n] we have αi − αj ∈ GR(2k, d)∗.

An exceptional sequence of length n is maximal if there does not exist an exceptional sequence
of length n′ > n.

In GR(2k, d), there exists a maximal exceptional sequence of length 2d, see [ACD+19, Prop. 2].
We use Ex(R) to denote a maximal exceptional sequence of a Galois ring R and assume that
we can efficiently sample uniformly random elements from it. For Ex(R) we can take the 2d

polynomials with {0, 1} coefficients as an exceptional sequence.
To perform soundness checks in our proof systems, we will often reduce these to equality

checks between two polynomials. While the Schwartz–Zippel Lemma is frequently used for this
purpose when the polynomials are defined over finite fields, we require a generalised variant
that is adapted to our ring-based setting.

6

Lemma 2.1 (Generalized Schwartz–Zippel Lemma [CCKP19]). Let R be a ring, and
f : Rn → R an n-variate non-zero polynomial of total degree (the sum of degrees of each variable)
D over R. Let A ⊆ R be a finite exceptional sequence with |A| ≥ D. Then, Prx∈RAn [f(x) =
0] ≤ D

|A| .

For soundness checks over 2-adic extensions, we also introduce the following lemma to bound
the soundness error over Z2k when performing computations over Z2k+s .

Lemma 2.2 (2-adic Random Linear Combinations). Let δ1, . . . , δn be elements of GR(2k+s, d),
such that at least one δi ̸≡ 0 (mod 2k). Also let α1 = 1 and α2, . . . , αn ← GR(2s+1, d) be cho-
sen uniformly at random. Then we have the probability bound Pr

[∑
αi · δi ≡ 0 (mod 2k+s)

]
≤

2−(s+1)·d.

Proof. Let δj (for j ̸= 1)7 be a value that is nonzero modulo 2k and w < k be the maximal
integer such that 2w | δj . Then

∑
αi · δi ≡ 0 (mod 2k+s) only when

αj ≡
−
∑

i ̸=j αi · δi
2w

·
(
δj
2w

)−1

(mod 2k+s−w),

where the inverse used is guaranteed to exist due to the maximality of w. Since αj is uniformly
random from GR(2s+1, d) and k + s− w ≥ s+ 1, our claim holds. ⊓⊔

2.3 Secret-Sharing Schemes over Rings

We consider additive (A) as well as threshold (T) secret sharing schemes over our commutative
finite rings R, e.g. R = GR(2k, d), which we denote as J·KA and J·KT respectively. Our protocols
work with any linear secret sharing scheme. Only the overall soundness and the communica-
tion cost depend on the instantiation. Hence, we will often drop the A or T from the notation
and just write J·K. Both schemes allow the parties to compute linear functions on shared values
such as JγK = a·JαK+b·JβK+c by performing only local computations on their individual shares.

Additive Secret-Sharing. An additive (N − 1)-out-of-N secret sharing over R is straightfor-
ward. To share a value v ∈ R, first sample values v1, . . . , vN ← R and then set∆v = v−

∑
i∈[N] vi.

The share of party Pi is then defined as JvKAi := (vi;∆v). We denote this procedure as JvKA ←
ShareA(v). Reconstruction is performed by computing v = ∆v +

∑
i∈[N] vi, which we denote as

v ← RecA(JvKA).

Threshold Secret-Sharing. The well-known threshold secret sharing scheme due to Shamir [Sha79]
relies on polynomial interpolation which usually requires a field structure. We follow the work
of Abspoel et al. [ACD+19], who have shown how to use Galois rings to realize Shamir-style
threshold secret sharing over rings in the context of MPC.

Let α0, . . . , αN be an exceptional sequence of length N+1 within GR(2k, d). To share a value
v ∈ Z2k among parties P1, . . . , PN with threshold t, first sample a random degree-t polynomial f
from GR(2k, d)[X]≤t with the condition that f(α0) = v. To then create shares, give each party
Pi, for i ∈ [N], the value JvKTi := yi := f(αi). We denote such a sharing with JvKT ← ShareT (v).

To reconstruct a value v, we use Lagrange interpolation using any index set S ⊆ [1, N] of at
least t+ 1 shares:

f(X) =
∑
i∈S

yi ·
∏

j∈S\{i}

X − αj

αi − αj

7 if only δ1 ̸≡ 0, the equality holds with probability 0.

7

This interpolation over GR(2k, d) is well-defined since, by definition of an exceptional sequence,
all differences αi − αj are invertible. Let the reconstruction procedure be denoted by v ←
RecT ({JvKTi }i∈S).

Note that, in general, one needs to check whether a shared value lies in the base ring Z2k or
(strictly) in the ring extension GR(2k, d) \ Z2k . To deal with this, we describe a checking pro-
cedure ΠRing-Check, which ensures a set of shares corresponds to values in Z2k without violating
t-privacy, in Section 4. This procedure can then be applied to the input shares. In our protocols,
no other wires or shares, such as the rest of the extended witness, need be validated in this way,
as either these shares are obtained through linear operations that preserve this property, or the
property is guaranteed by the correctness of our subprotocol to check multiplications.

2.4 MPC-in-the-Head via Linear Secret Sharing

This section presents a general framework for MPCitH protocols based on threshold linear
secret sharing schemes, built on the framework of Feneuil et al. [FR22] that provides a generic
transformation for MPC protocols based on threshold linear secret sharing. We first describe
a generic MPC protocol for circuit verification, then show how it can be used to obtain a ZK
proof system, and finally analyse the resulting soundness.

MPC Protocol for MPCitH. The MPC protocol presented in Figure 1 is generic for threshold
LSSS over Z2k , in the sense that it can be instantiated with any multiplication checking protocol
and any suitable LSSS. It involves an input party who distributes secret shared values to the
computing parties. Looking ahead, we refer to the totality of these input values as the extended
witness of the resulting proof system. In addition, computing parties have access to two oracles:
a hint oracle OH which provides the parties with a sharing of an arbitrary secret value from
the input party; and a randomness oracle OR which outputs random public values.

These oracles are mainly used in the following subprotocols whose goal is to verify some
properties on shares of (extended) witness values:

ΠZero-Check takes as input a value JvK (resp. a vector of values JvK) and returns ⊤ when v = 0
(resp. every entry of v is zero), or ⊥ otherwise. This can be achieved similarly to share
reconstruction, with the difference that the opened value is not sent.

ΠMult-Check takes a triple (JaK, JbK, JcK) and returns ⊤ if and only if a ◦ b = c. In some cases,
this equality can be checked over a different ring than that in which the input values are
shared. We provide three instantiations of ΠMult-Check in Section 3, and these form the main
contribution of this paper.

ΠRing-Check takes as input a vector of values JvK, shared over a 2-adic extension GR(2k+src , d0)
and outputs ⊤ if and only if the truncation of v to GR(2k, d0) lies in the subring Z2k . It
also truncates the elements of v to the ring GR(2k+s, d0). (See Section 4.)

We write Πτ
Mult-Check to denote the parallel repetition of τ instances. By verifying a property

through one of these subprotocols, we mean that the subprotocol is run, and Reject is returned by
the MPC protocol when the output differs from ⊤. Reconstructing a shared value is performed
by each party Pj first broadcasting its share JvKj and then running v ← Rec(JvK) In the threshold
setting, only t+ 1 shares are required since the other shares are determined by these.

In essence, this protocol does not compute the circuit C, but only checks that the values given
by the input party are consistent with an honest evaluation of C. To do so, the computation
parties parse C in topological order but only (locally) compute the linear gates, whereas output
of non-linear gates and Rec are provided as input and hence need to be checked. This is necessary
because the input party is not trusted to provide the correct values. The output of the protocol

8

Generic MPC Protocol ΠC for Circuit Verification

Parameters: A circuit C over Z2k consisting of linear and multiplication gates with #inputs inputs and
m multiplications Mul; a LSSS sharing scheme J.K defined over GR(2k+s, d0) for parameters s and d0.
The inputs wi are defined over GR(2k+src , d0), for parameter src ≥ s which matches the parameter for
ΠRing-Check.

Inputs: The input party calls Share on its input wi, i ∈ [#inputs] and wγ for each gate (α, β, γ,Mul)i for
i ∈ [m], and send Jw∗Kj to the computing party Pj .

Protocol: Each Pj initializes an empty checklistM
1. Verify the inputs are in Z2k : ΠRing-Check(w1, . . . , w#inputs)
2. For each gate (α, β, γ, T) ∈ C, in topological order:

(a) Case T = Lin: JvγK := a · JvαK + b · JvβK + c done locally by each party.
(b) Case T = Mul:

– Party Pj retrieves JwγKj received from the input party and sets JvγKj = JwγKj .
– Each Pj adds a tuple to (their share of) the multiplication checklist Mj ← Mj ∪
{(JvαKj , JvβKj , JvγKj)}

3. Verify circuit output: ΠZero-Check(JvoK).
4. Verify multiplications: parties parseM column-wise as (JxK, JyK, JzK) and runΠτin

Mult-Check(JxK, JyK, JzK).

Fig. 1. Generic MPC protocol for circuit verification

is either Accept or Reject. To decrease the false-positive rate of the multiplication checking
procedure, the parties execute it τin times in parallel.

From MPC to ZK. The compilation technique of Ishai et al. [IKOS07], applied to this MPC
protocol, provides our interactive zero-knowledge scheme between a prover P and a verifier V.

The prover executes, in their head, the MPC protocol ΠC(x,w) between N parties using an
LSSS with t-privacy. To do so, P first evaluates C(x,w) in the clear, and secret shares w as well
as the intermediate values required for a local computation of C. After recording these N input
views, it plays the role of the input party and distributes these shares to virtual computing
parties. These parties execute ΠC(x,w) and its checking sub-protocols. When the protocol
queries OH , the requested shared values are provided by P to the virtual parties and recorded
in the input views. Queries to OR are replaced by an interaction with the verifier, where first
P commits to the input views so far, and then V responds with a random value.

In the final interaction, after ΠC terminates, V asks to open t of the N views, which it
checks for consistency. If the consistency check succeeds, and the output of ΠC(x,w) is Accept,
then V also outputs Accept.

ZK Protocol Soundness. The MPC protocol may output Accept for an invalid witness with
some bounded false-positive rate p, i.e., the probability that ΠC(x,w) outputs Accept when
in fact C(x,w) ̸= 0. When p is not sufficiently small, we increase the detection probability by
performing τin parallel inner repetitions of the circuit check inside the MPC protocol. This leads
to an overal false-positive rate of errMPC = pτin .

The framework of Feneuil et al. [FR22] provides a generic transformation for any such MPC
protocol with N parties and tolerating up to t corruptions into an MPCitH proof, with a
soundness error of

errZK =
1(
N
t

) + errMPC ·
t · (N − t)

t+ 1
. (1)

For an additive full-threshold secret sharing scheme (t = N − 1), this becomes

errZK =
1

N
+ errMPC ·

(
1− 1

N

)
.

9

By setting N and t, we obtain a certain errZK for the soundness error of a single execution
of the protocol. Since this may be too high for a given security setting, we can repeat the
transformed protocol τout times (outer repetitions) to obtained any desired soundness error,
errτoutZK .

We denote the overall proof size by sizeProof , which one can think of as the communication
cost in bits, required to commit to the parties’ views and open t of them in τout repetitions.

3 Checking Multiplications over Rings

We now describe three instantiations for ΠMult-Check. The three protocols have appeared previ-
ously in the context of MPCitH over fields, but their extension to MPC over rings is mostly new,
although a protocol similar to our sacrificing check can be found in [BBMH+21] for VOLE-based
zero-knowledge proofs over Z2k .

We analyse their soundness in the ring-based setting, and compare their performance. For
each of the checking procedures, we analyse the false-positive rate errMPC of the resulting MPC
protocol. It then suffices to use the generic transformation of Feneuil and Rivain [FR22] to
compile our MPC protocol into an MPCitH proof system with soundness error as in eq. (1).

Our three different checking procedures are: 1) A simple sacrifice-based check,ΠSac-Check (de-
scribed in Section 3.1), 2) an inner product multiplication check, ΠIP-Check (in Section 3.2), and
3) a compressed multiplication check, ΠCompress (in Section 3.3). For the first two of these, one
can improve the soundness by utilizing either 2-adic or Galois extensions. The third, compressed
multiplication check, is adapted from the methodology in [BBC+19, DOT21], and requires a
Galois ring extension.

Looking ahead, in the next section we also present a fourth procedure which checks that a
set of shares (typically the input to the circuit) all correspond to values in Z2k (as in line 1 of
Figure 1). This procedure takes its inputs as shares in GR(2k+src , d0), has a soundness error of
errRing-Check. When the chosen multiplication checking procedure would have sufficient soundness
with smaller s < src, it is possible to locally truncate the input shares correspondingly before
performing the procedure.

The false-positive rate of the MPC protocol becomes errMPC := errτinCheck + errRing-Check where
errCheck denotes the false-positive rate of a single execution of the checking procedure. In Sec-
tion 5, we investigate the differences in communication cost for our different multiplication
checks and sharing scheme choices.

3.1 Sacrifice Based Check

Our first multiplication checking procedure is a sacrificing based check. This is based on the
checking protocol of Baum and Nof [BN20], combined with an optimization of Kales and Za-
verucha [KZ22, Sec. 2.5, Optimization 3], transferred to the ring setting. The algorithm is
presented in Figure 2.

As inputs, it receives the vectors (JxK, JyK, JzK) of multiplication input and output values,
secret-shared over the “computation ring” GR(2k+s, d0). In case of d1 > 1, it first lifts these
vectors to the “checking ring” GR(2k+s, d0 · d1). Then, the hint oracle OH distributes to the
parties secret shares of JaK and JcK, correlated in such a way that a ◦ y = c. After receiving
a random coefficient ε from the randomness oracle OR, the parties “sacrifice” the vector JaK
by using it to mask the randomized vector ε · JxK and reconstruct the masked value as α.
Finally, the protocol checks whether both z and c were computed correctly by OH by checking
that the sacrificing equation ε · JzK − JcK − α ◦ JyK is equal to 0. The argument is that if
either z or c is incorrect, then the probability that the equality holds, taken over the choice of
ε ∈ GR(21+s, d0 · d1), is very small.

10

ΠSac-Check: Sacrificing Check

Parameters: Additional Galois extension size d1.

Inputs: (JxK, JyK, JzK) shared over GR(2k+s, d0).

Protocol:

1. Lift (JxK, JyK, JzK) to GR(2k+s, d0 · d1).
2. (JaK, JcK)← OH uniformly random with a ◦ y = c over GR(2k+s, d0 · d1)
3. ε← OR such that ε ∈ GR(21+s, d0 · d1)
4. α← Rec(ε · JxK− JaK)
5. Output ΠZero-Check(ε · JzK− JcK−α ◦ JyK)

Fig. 2. The sacrificing check over rings.

We first take a brief look at the correctness of the protocol. If the input is valid, then the
protocol always outputs Accept, since

ε · z− c−α ◦ y = ε · x ◦ y − a ◦ y − (ε · x− a) ◦ y
= ε · x ◦ y − a ◦ y − ε · x ◦ y + a ◦ y = 0.

The zero-knowledge property remains preserved by virtue of α being uniformly random as a
result of the mask a being uniformly random.

Soundness follows from the following theorem.

Theorem 3.1 (Soundness of ΠSac-Check). For invalid input, i.e., ∃i ∈ [m] . xi · yi ̸= zi, the
check passes with probability at most errSac-Check := 2−(s+1)·d0·d1.

Proof. Write x ◦ y = z+ δz and a ◦ y = c+ δc. The protocol outputs Accept if and only if for
all i ∈ [m], we have

0 = ε · zi − ci − αi · yi
= ε · (xi · yi + δz,i)− (ai · yi + δc,i)− (ε · xi − ai) · yi
= ε · xi · yi + ε · δz,i − ai · yi − δc,i − ε · xi · yi + ai · yi
= ε · δz,i − δc,i.

Recall that ε ∈R GR(2s+1, d0 · d1), δz,j ∈ GR(2k+s, d0), and δc,j ∈ GR(2k+s, d0 · d1). Assume
that δz,j ̸= 0 (mod 2k) for some j ∈ [m]. By Lemma 2.2, we can bound the probability that a
malicious prover chooses δz,j , δc,j such that 0 = ε · δz,j + δc,j holds over GR(2k+s, d0 · d1). ⊓⊔

3.2 Inner Product Multiplication Check

Our second checking procedure, which is based on inner product checks, is described as a
precursor to the Limbo protocol [DOT21], together with optimizations from Kales and Za-
verucha [KZ22], adapted to the ring setting. We present the algorithm in Figure 3.

This second checking procedureΠIP-Check works very similarly to the sacrificing checkΠSac-Check

of Figure 2, the main difference is that the hint oracle OH produces a single correlated inner
product tuple ((a, c) such that ⟨a,y⟩ = c) rather than m correlated multiplication tuples ((a, c)
such that a ◦ y = c). This change then requires the random oracle OR to produce m random
values (contained in the vector η), instead of a single one, and it also changes the checking
equation so that it checks a single equality, rather than m. This time, the security rationale is
that if either z or c is incorrect, then the single checking equation will not equal 0 except with
small probability (over the choice of η). The rationale for the zero-knowledge property is again
due to the random mask JaK.

11

ΠIP-Check: Inner Product Check

Parameters: Additional Galois extension size d1.

Inputs: (JxK, JyK, JzK) shared over GR(2k+s, d0).

Protocol:

1. Lift (JxK, JyK, JzK) to GR(2k+s, d0 · d1).
2. (JaK, JcK)← OH uniformly random with ⟨a,y⟩ = c over GR(2k+s, d0 · d1).
3. η ← OR such that η ∈ GR(21+s, d0 · d1)m.
4. α← Rec(η ◦ JxK− JaK)
5. Output ΠZero-Check(⟨η, JzK⟩ − JcK− ⟨α, JyK⟩)

Fig. 3. The inner product check over rings.

Here as well, the protocol is correct, since if the input is valid, then the protocol always
outputs Accept as

⟨η, z⟩ − c− ⟨α,y⟩ = ⟨η,x ◦ y⟩ − ⟨a,y⟩ − ⟨η ◦ x− a,y⟩
= ⟨η,x ◦ y⟩ − ⟨a,y⟩ − ⟨η ◦ x,y⟩+ ⟨a,y⟩ = 0.

Soundness follows from the following theorem.

Theorem 3.2 (Soundness of ΠIP-Check). For invalid input, i.e., ∃i ∈ [m] . xi · yi ̸= zi
(mod 2k), the check passes with probability at most errIP-Check := 2−(s+1)·d0·d1.

Proof. Write x ◦ y = z + δz and ⟨a,y⟩ = c + δc. If the input is invalid, then there is an index
j ∈ [m] such that δz,j ̸= 0 (mod 2k). The protocol accepts if and only if

0 = ⟨η, z⟩ − c− ⟨α,y⟩ = ⟨η, z⟩ − c− ⟨η ◦ x,y⟩+ ⟨a,y⟩

=
∑
i∈[m]

ηi · (zi − xi · yi)− c+ ⟨a,y⟩ =
∑
i∈[m]

ηi · (−δz,i) + δc

With this equality, we can conclude by Lemma 2.2. ⊓⊔

3.3 Compressed Multiplication Check

Our third, and final check, is adapted from Limbo [DOT21]. In contrast to the previous checks,
we do not use 2-adic extensions here, since we would have to extend the modulus repeatedly
at least logν(m) times. To apply the compressed protocol with compression factor ν, the check
must happen over an algebraic structure where an exceptional sequence of length at least 2ν+1
exists.

We first give the subprotocol of [DOT21] to compress a sequence of ν inner product tuples
into a single inner product tuple in Figure 4; then we present the main protocol in Figure 5.
Correctness and zero-knowledge for this checking protocol follow the same arguments as the
original version over fields. Soundness follows from the following theorem.

Theorem 3.3 (Soundness of ΠComp-Check). Let d := d0 · d1. For invalid input, i.e., ∃i ∈
[m] . xi · yi ̸= zi (mod 2k), the check passes with probability at most

errComp-Check :=2−d + (1− 2−d) ·

((
2(ν − 1)

2d − ν

)
·
logν(m)−2∑

j=0

(
1− 2(ν − 1)

2d − ν

)j

+

(
2ν

2d − ν

)
·
(
1− 2(ν − 1)

2d − ν

)logν(m)−1
)
≤ 2−d +

2ν

2d − ν
· logν(m).

12

ΠCompress Subroutine for Inner Product Compression

Parameters: compression factor ν, dimension ℓ, flag rand ∈ {⊤,⊥}
Inputs: ν shared dimension-ℓ inner product tuples (JxiK, JyiK, JziK)i∈[ν] shared over GR(2k, d)
Outputs: one shared dimension-ℓ inner product tuple (JxK, JyK, JzK) shared over GR(2k, d)
Protocol:
Let {α1, . . . , α2ν+1} ⊂ Ex(GR(2k, d)).
1. If rand = ⊥ define two shared dimension-ℓ vectors of degree-(ν − 1) polynomials JfK, JgK:

f(αi) =
(
x1 · · · xν

)T
g(αi) =

(
y1 · · · yν

)T
where i ∈ [ν]. Note, the parties can compute the shared coefficients JfjK, JgjK locally from the JxiK, JyiK
by Lagrange interpolation.
If rand = ⊤, obtain random shares JvK, JwK ← OH and define f ,g instead of degree ν with the
additional points f(αν+1) = v and g(αν+1) = w.

2. Inject JziK← OH for i ∈ [ν + 1, 2ν − 1] such that zi := ⟨f(αi),g(αi)⟩.
If rand = ⊤, similarly inject JziK for i ∈ {2ν, 2ν + 1}.

3. If rand = ⊥ define shared polynomial JhK of degree 2(ν − 1) by h(αi) = zi for i ∈ [ν, 2ν − 1]. Again,
the parties can compute the shared coefficients JhjK locally from the JziK by Lagrange interpolation.
If rand = ⊤, instead define h of degree 2ν with the additional points h(αi) = zi for i ∈ {2ν, 2ν + 1}.

4. Obtain challenge ε← OR such that ε ∈ Ex(GR(2k, d)) \ {αi}i∈[ν].
5. Output (JxK, JyK, JzK) := (Jf(ε)K, Jg(ε)K, Jh(ε)K).

Fig. 4. The subroutine for inner product compression

ΠComp-Check: Compressed Multiplication Check

Parameters: number of multiplications m, compression factor ν (assume logν(m) ∈ N), Galois extension
degree d1
Inputs: (JxK, JyK, JzK) of length m shared over GR(2k, d0).
Protocol:

1. Lift (JxK, JyK, JzK) to GR(2k, d0 · d1).
2. Create inner product tuple

(
Jx0K, Jy0K, Jz0K

)
:

(a) η ← OR such that η ∈ GR(2, d0 · d1)m.
(b) Set Jx0K := η ◦ JxK, Jy0K := JyK, and Jz0K := ⟨η, JzK⟩.

3. For each round j ∈ [logν(m)]:
(a) Parse

(
Jxj−1K, Jyj−1K, Jzj−1K

)
(of length m/νj−1) as

Jxj−1K =
(
Jaj

1K, . . . , Ja
j
νK
)

Jyj−1K =
(
Jbj

1K, . . . , Jb
j
νK
)

where the aj
i ,b

j
i are of length m/νj .

(b) For i ∈ [ν], obtain Jcji K← OH such that cji =
〈
aj
i ,b

j
i

〉
.

(c) If j < logν(m), run (
JxjK, JyjK, JzjK

)
← ΠCompress((Jaj

i K, Jb
j
i K, Jc

j
i K)i∈[ν]),

else if j = logν(m), run(
JxjK, JyjK, JzjK

)
← ΠRand

Compress((Ja
j
i K, Jb

j
i K, Jc

j
i K)i∈[ν]).

Both yield inner product tuples of length m/νj .
4. Open xlogν(m) ← Rec(Jxlogν(m)K).
5. Output ΠZero-Check(x

logν(m) · Jylogν(m)K− Jzlogν(m)K).

Fig. 5. The compressed multiplication check

13

Proof. We follow the corresponding proof by [DOT21] and define a sequence of events given
that the input is invalid:

– Let A be the event that the protocol outputs Accept.
– Let A1 be the event that the tuple

(
Jx0K, Jy0K, Jz0K

)
obtained through the ConstructIP sub-

protocol is correct.
– Let Aj

2 for j ∈ [logν(m)] be the event that the tuple
(
JxjK, JyjK, JzjK

)
obtained through the

Compress subprotocol is correct, and write A0
2 = A1.

We relate the probabilities as follows:

Pr[A] = Pr[A1] + Pr[¬A1] · Pr[A | ¬A1]

Pr[A | ¬Aj
2] = Pr[Aj+1

2] + Pr[¬Aj+1
2] · Pr[A | ¬Aj+1

2] for j ∈ [1, logν(m)− 1]

Pr[A | ¬Alogν(m)
2] = 0

We get from Lemmas 3.2 and 3.1 (see below), that

Pr[A1]
L. 3.2
= 2−d

Pr[Aj
2]

L. 3.1
=

2(ν − 1)

2d − ν
for j ∈ [1, logν(m)− 1]

Pr[A
logν(m)
2]

L. 3.1
=

2ν

2d − ν

Combining them (and using A1 = A0
2 yields

Pr[A] = Pr[A0
2] + Pr[¬A0

2] · Pr[A | ¬A0
2]

= Pr[A0
2] + Pr[¬A0

2] · (Pr[A1
2] + Pr[¬A1

2] · Pr[A | ¬A1
2])

= Pr[A0
2] + Pr[¬A0

2] · Pr[A1
2] + Pr[¬A0

2] · Pr[¬A1
2] · Pr[A | ¬A1

2]

= Pr[A0
2] + Pr[¬A0

2] · Pr[A1
2]

+ Pr[¬A0
2] · Pr[¬A1

2] · (Pr[A2
2] + Pr[¬A2

2] · Pr[A | ¬A2
2])

= · · ·

=

logν(m)∑
j=0

Pr[Aj
2] ·

j−1∏
i=0

Pr[¬Ai
2] + Pr[A | ¬Alogν(m)

2] ·
logν(m)∏
j=0

Pr[¬Aj
2]

=

logν(m)∑
j=0

Pr[Aj
2] ·

j−1∏
i=0

Pr[¬Ai
2]

= Pr[A0
2] + Pr[¬A0

2] ·

(logν(m)−1∑
j=1

Pr[Aj
2] ·

j−1∏
i=1

Pr[¬Ai
2]

+ Pr[A
logν(m)
2] ·

logν(m)−1∏
i=1

Pr[¬Ai
2]

)

= 2−d + (1− 2−d) ·

((
2(ν − 1)

2d − ν

)
·
logν(m)−2∑

j=0

(
1− 2(ν − 1)

2d − ν

)j

+

(
2ν

2d − ν

)
·
(
1− 2(ν − 1)

2d − ν

)logν(m)−1
)

14

≤ 2−d +
2ν

2d − ν
· logν(m),

which concludes this proof. ⊓⊔

Lemma 3.1 (Soundness of ΠCompress). If one of the inner product tuples

(JxiK, JyiK, JziK)i∈[ν]

is incorrect, or any of the values zi, i ∈ [ν + 1, 2ν − 1], is defined incorrectly, then the output

inner tuple (JxK, JyK, JzK) is also incorrect, except with probability at most 2(ν−1)
2d−ν

if Rand = ⊥
and 2ν

2d−ν
if Rand = ⊤.

Proof. For now assume that Rand = ⊥. Suppose there is an error at index j ∈ [2ν − 1]. Then
we have zj ̸= ⟨f(αj),g(αj)⟩, where zj is either part of the input (j ∈ [ν]) or an injected value
(j ∈ [ν + 1, 2ν − 1]). In both cases, we have h(αj) ̸= ⟨f(αj),g(αj)⟩, and therefore h ̸= ⟨f ,g⟩.

We now apply the generalized Schwartz-Zippel Lemma (Lemma 2.1). Note that the challenge
ε is sampled from the exeptional sequence Ex(GR(2k, d)) \ {αi}i∈[ν] of size 2d − ν. Hence, we

obtain that ⟨x,y⟩ ≠ z iff ⟨f ,g⟩ (ε) ̸= h(ε) with probability at most 2(ν−1)
2d−ν

.

In the case Rand = ⊤, we analogously obtain an error probability of at most 2ν
2d−ν

. ⊓⊔

Lemma 3.2. For invalid input (JxK, JyK, JzK) into ΠComp-Check, i.e., such that x ◦ y ̸= z, we
have

〈
x0,y0

〉
̸= z0 except with probability 2−d0·d1.

Proof. Write x ◦ y = z+ δz Let j ∈ [m] such that xj · yj ̸= zj and, hence, δz,j ̸= 0. Then〈
x0,y0

〉
= z0

⇐⇒
∑
i∈[m]

ηi · xi · yi =
∑
i∈[m]

ηi · zi

Hence we can apply Lemma 2.2 ⊓⊔

4 Checking Base Ring Sharings

To ensure the prover knows and inputs a witness over the base ring Z2k , we devise a check for the
parties to ensure this in Figure 6. We can perform a batched check that all the values we wish
to inspect are simultaneously correct by taking a random linear combination with coefficients
from Z21+src , and opening that. Since this would leak a linear combination of secret values, we
also allow the prover to input an additional sharing of a value in Z2k+src to mask this relation
(before receiving the random coefficients from the verifier). This is conceptually similar to the
recent approach by Shoup and Smart in [SS23].

In [ACD+19], Abspoel et al. consider a similar problem for the case of non-MPCitH MPC
protocols. They solve this problem by generating random secret shared masks hiding values in
the correct ring by means of hyperinvertible matrices, after which these masks can be adjusted
with a public value to hide the wanted secret. In an MPCitH context however, this becomes
both less convenient, since all computing parties need to contribute their own randomness, as
well as requiring a higher communication cost in the final proof size. Soundness follows from
the following theorem.

Theorem 4.1 (Soundness of ΠRing-Check). For invalid input, that is if any of x0, x1, . . . , xℓ
are a value in GR(2k, d0) \ Z2k when reduced modulo 2k, the check passes with probability at
most errRing-Check := 2−(src+1).

15

ΠRing-Check

Inputs: JxK = (Jx1K, . . . , JxℓK) shared over GR(2k+src , d0)

Protocol:

1. Obtain Jx0K, corresponding to a value in the ring Z2k+src from OH .
2. Receive ℓ random coefficients r1, . . . , rℓ ∈ Z21+src from OR.
3. Compute and open JvK = Jx0K + r1Jx1K + . . .+ rℓJxℓK.
4. If v ∈ Z2k+src , return ⊤, otherwise return ⊥.

Fig. 6. The check to ensure sharings correspond to values in the base ring.

Table 1. Rings and numbers of primitive operations used by the three multiplication checking protocols.

Multiplication Check

ΠSac-Check ΠIP-Check ΠComp-Check

small ring Rsmall GR(2k+s, d0) GR(2k+s, d0) GR(2k, d0)

big ring Rlarge GR(2k+s, d0 · d1) GR(2k+s, d0 · d1) GR(2k, d0 · d1)
challenge space C GR(21+s, d0 · d1) GR(21+s, d0 · d1) GR(2, d0 · d1)
rounds µ 1 1 logν(m) + 1

input over Rsmall #inputs+m #inputs+m #inputs+m
hint over Rlarge m 1 (2ν − 1) · logν(m) + 2
uniform hint over Rlarge m m 2
reconstruction over Rlarge m m 1
challenge from C 1 m m+ logν(m)

Proof. This is simply Lemma 2.2, applied to only a single coefficient of the Galois extension.
Hence we get a bound of 2−(src+1)·1. ⊓⊔

When dealing with additive sharings, the parties can instead simply check their own local
shares to lie in the correct ring and return ⊥ when this is not the case. For semi-honest parties,
this is guaranteed to have no false positives.

5 Protocol Communication Costs

The communication costs of the zero-knowledge proofs depends greatly on the used secret
sharing scheme and the multiplication check protocol, as well as a large set of parameters.
To simplify notation, we use Rsmall for the ring used to share the witness, Rlarge for the ring
extension in which the checks are performed. Moreover, the random challenges from OR live
in the challenge space C, and µ denotes the number of rounds of the MPC protocol, i.e., the
number of calls to OR. For brevity of notation, we use B (S) = ⌈log2 |S|⌉ to denote the number
of bits needed to represent an element from S.

Table 1 shows how many primitive operations we need for each checking protocol, and
Table 2 gives the communication cost of each operation in both sharing types. The costs of the
challenges are B (C) · µ · τin, since they can be shared across the “outer repetitions”.

16

Table 2. Communication costs in bits of the primitive operations. Here B(·) denotes the number of bits required
to encode an element of the set passed as argument.

Sharing Scheme

Additive Threshold

input over Rsmall B (Rsmall) B (Rsmall) · t
hint over Rlarge B (Rlarge) B (Rlarge) · t
uniform hint over Rlarge 0 B (Rlarge) · t
reconstruction over Rlarge B (Rlarge) B (Rlarge)
challenge from C B (C) B (C)

5.1 Primitive Costs

The communication costs for our basic operations can be summarized as follows.

Commitments: Before each call to OR the prover commits to the current state of the compu-
tation. The τout · µ · N total commitments can be combined into τout · µ Merkle trees, and for
each round it is sufficient to send a hash of the τout Merkle roots. Thus, committing costs 2λ ·µ
bits. Before the verifier selects a subset of parties whose views to open, the prover sends another
hash with shares of the last reconstructed values.

To open t of the commitments in each repetition, we have to send, in addition to the
committed data, λ bits of randomness per commitment as well the corresponding Merkle paths.
Each path is of length log2(N), but since we open t views and the path overlap, we pay 2λ ·
log2(N/t) bits per path.

Overall, this results in

sizeCommit := 2λ · (µ+ 1) + τout · λ · µ · t · (2 log2(N/t) + 1)

bits of communication for committing and opening.

Opening sharings: Since to open a sharing only the reconstructed value needs to be revealed
on top of the t already decommited shares, the cost for opening a Z2k value is k bits (for a
GR(2k, d) value this is k · d bits), regardless of the secret sharing scheme being used.

Providing hints: The OH oracle can be instantiated in two different ways, depending on the kind
of secret sharing being used. For a threshold secret sharing scheme, both specific and uniformly
random values v ∈ Z2k (or v ∈ GR(2k, d)) can be obtained by running JvK ← Share(v) and
distributing the shares to the corresponding parties. This costs t · k (or t · k · d) bits of proof
size.

For additive secret sharing, uniformly random values in Z2k or GR(2k, d) can be obtained
at zero extra cost by having all parties individually derive their shares from a PRG seed. A
uniformly random sharing JrKA can be transformed into a sharing of a specific value JvKA by
updating the public adjustment ∆v, at the cost of only k or k · d bits of proof size.

5.2 Protocol Costs

We can now summarize the communication costs per checking protocol:

ΠSac-Check: The sacrificing check requires

sizeASac-Check := 2 ·m · (k + s) · d0 · d1
sizeTSac-Check := (2 ·m · t+m) · (k + s) · d0 · d1

bits of additional communication for additive, resp. threshold, sharing.

17

ΠIP-Check: The inner product check results requires

sizeAIP-Check := (m+ 1) · (k + s) · d0 · d1
sizeTIP-Check := ((m+ 1) · t+m) · (k + s) · d0 · d1

bits of additional communication for additive, resp. threshold, sharing.
ΠComp-Check: The compressed multiplication check results requires

sizeAComp-Check := ((2ν − 1) · logν(m) + 3) · k · d0 · d1
sizeTComp-Check := (((2ν − 1) · logν(m) + 4) · t+ 1) · k · d0 · d1

bits of additional communication for additive, resp. threshold, sharing.
ΠRing-Check: For additive sharing, this check has no overhead. In the threshold case, this proce-

dure requires one additional share input and one share reconstruction in GR(2k+src , d0) to
the overall proof size, hence the total costs are

sizeARing-Check := 0

sizeTRing-Check := (t+ 1) · (k + src) · d0

bits of communication for additive, resp. threshold, sharing.

Here we do not take into account the cost of the verifier sending a challenge or a seed for
outputs of the OR oracle. In the non-interactive case, these are obtained from the Fiat–Shamir
transform and therefore free in terms of communication; in the interactive case however, the
verifier sends λ bits per “round” of dependent calls to OR.

5.3 Overall Costs

Finally, we can present the overall communication cost, i.e., the proof size. Note here that the
cost for sizeInput depends on k + src, rather than the potentially smaller k + s.

sizeProof = sizeCommit + τout · (sizeInput + τin · sizeCheck) + τin · sizeChallenge

5.4 Concrete Comparison of the Three ΠMult-Check Subprotocols

To compare our different protocols concretely with one another, we fix certain choices for σ, k
and m and examined the per-multiplication-gate communication cost of a full proof σ bits of
security. The size presented in the tables corresponds to the communication cost of an entire
proof, except for the challenges sent from the verifier. That is, we only examine the commu-
nication from the prover towards the verifier, which also gives a good idea of the proof size
that would be incurred when the protocol is transformed to a non-interactive proof by the
Fiat-Shamir transform.

All our experimental validations were computed with #inputs = 128 elements in Z2k . Since
the additive sharing has some optimizations for random sharings and ΠRing-Check and does not
require d0 > 1 to enable sharing values across N parties, it generally comes out as the optimal
choice for the configurations examined here.

When combining our protocols with the packing techniques of Section 6, the balance shifts
since a threshold t < N − 1 gives better soundness per parallel repetition, allows for more
packing, and compensates for the larger d0 by performing more parallel proofs. Out of interest
for this trade-off, we present the parameter sets and associated costs for additive and threshold
secret sharing separately.

18

We observe that for ΠSac-Check and ΠIP-Check, which require at least m openings each, the
optimal choice for d1 is one since the overhead for d0 · s extra bits is generally smaller than
d0 ·(d1−1)·k extra bits, even though the size of inputs and injected multiplications grows as well.
When the communication due to the check is asymptotically smaller than the communication
due to the input of the extended witness, it becomes preferable to avoid the extra d0 · s bits per
multiplication cost in the input already.

Table 3. Cost comparison for σ = 40, m = 1024 with threshold secret sharing.

k Protocol N t d0 d1 s src ν τin τout Proof size in kB

32
ΠSac-Check 63 1 6 1 2 17 / 1 7 748
ΠIP-Check 255 3 8 1 3 31 / 1 2 539
ΠCompress 63 1 6 4 / 18 4 1 7 236

64
ΠSac-Check 255 3 8 1 3 31 / 1 2 1 413
ΠIP-Check 255 3 8 1 3 31 / 1 2 1 012
ΠCompress 63 1 6 4 / 18 4 1 7 452

256
ΠSac-Check 255 3 8 1 3 31 / 1 2 5 399
ΠIP-Check 255 3 8 1 3 31 / 1 2 3 846
ΠCompress 63 1 6 4 / 18 2 1 7 1 726

Table 4. Cost comparison for σ = 40, m = 1024 with additive secret sharing.

k Protocol N d0 d1 s ν τin τout Proof size in kB

32
ΠSac-Check 255 1 1 7 / 1 6 116
ΠIP-Check 63 1 1 8 / 1 7 82
ΠCompress 15 1 12 / 4 1 11 87

64
ΠSac-Check 255 1 1 7 / 1 6 191
ΠIP-Check 255 1 1 7 / 1 6 137
ΠCompress 63 1 14 / 4 1 7 135

256
ΠSac-Check 255 1 1 7 / 1 6 641
ΠIP-Check 255 1 1 7 / 1 6 443
ΠCompress 63 1 14 / 4 1 7 411

Table 5. Cost comparison for σ = 40, m = 32768 with threshold secret sharing.

k Protocol N t d0 d1 s src ν τin τout Proof size in kB

32
ΠSac-Check 255 3 8 1 3 31 / 1 2 22 449
ΠIP-Check 255 3 8 1 3 31 / 1 2 15 729
ΠCompress 63 1 6 4 / 17 4 1 7 5 459

64
ΠSac-Check 255 3 8 1 3 31 / 1 2 42 953
ΠIP-Check 255 3 8 1 3 31 / 1 2 30 090
ΠCompress 63 1 6 4 / 17 4 1 7 10 895

256
ΠSac-Check 255 3 8 1 3 31 / 1 2 165 979
ΠIP-Check 255 3 8 1 3 31 / 1 2 116 252
ΠCompress 63 1 6 4 / 17 2 1 7 43 476

Since we can observe thatΠCompress consistently results in the smallest proof sizes, we further
also look at the overhead of this protocol. That is, we investigate the ratio of proof size to the
theoretical optimum of k · (#inputs +m) bits for any protocol that needs to inject the results
of multiplications. This rate is a constant that mostly depends on the target value of σ and

19

Table 6. Cost comparison for σ = 40, m = 32768 with additive secret sharing.

k Protocol N d0 d1 s ν τin τout Proof size in kB

32
ΠSac-Check 255 1 1 7 / 1 6 2 836
ΠIP-Check 255 1 1 7 / 1 6 1 900
ΠCompress 255 1 16 / 8 1 6 945

64
ΠSac-Check 255 1 1 7 / 1 6 5 143
ΠIP-Check 255 1 1 7 / 1 6 3 439
ΠCompress 255 1 16 / 8 1 6 1 745

256
ΠSac-Check 255 1 1 7 / 1 6 18 985
ΠIP-Check 255 1 1 7 / 1 6 12 673
ΠCompress 255 1 14 / 4 1 6 6 531

Table 7. Cost comparison for σ = 128, m = 32768 with threshold secret sharing.

k Protocol N t d0 d1 s src ν τin τout Proof size in kB

32
ΠSac-Check 255 2 8 1 2 23 / 1 9 68 673
ΠIP-Check 255 3 8 1 4 39 / 1 6 48 550
ΠCompress 63 1 6 4 / 17 4 1 22 17 158

64
ΠSac-Check 255 3 8 1 4 39 / 1 6 130 798
ΠIP-Check 255 3 8 1 4 39 / 1 6 91 631
ΠCompress 63 1 6 4 / 17 4 1 22 34 239

256
ΠSac-Check 255 3 8 1 4 39 / 1 6 499 875
ΠIP-Check 255 3 8 1 4 39 / 1 6 350 119
ΠCompress 63 1 6 4 / 17 2 1 22 136 637

decreases slightly as the number of multiplications increases. Since the choice of k doesn’t
influence the choice of multiplication check, it also has no further impact on the overhead.

Table 8. Cost comparison for σ = 128, m = 32768 with additive secret sharing.

k Protocol N d0 d1 s ν τin τout Proof size in kB

32
ΠSac-Check 255 1 1 9 / 1 17 8 443
ΠIP-Check 255 1 1 9 / 1 17 5 655
ΠCompress 255 1 16 / 8 1 17 2 677

64
ΠSac-Check 255 1 1 9 / 1 17 14 980
ΠIP-Check 255 1 1 9 / 1 17 10 016
ΠCompress 255 1 16 / 8 1 17 4 944

256
ΠSac-Check 255 1 1 9 / 1 17 54 199
ΠIP-Check 255 1 1 9 / 1 17 36 179
ΠCompress 255 1 16 / 8 1 17 18 549

20

6 Packing

In this section, we present two orthogonal ways in which our protocols can be extended to provide
SIMD-style packing for parallel proofs of multiple independent statements. We then discuss how
this packing can be applied to achieve parallelization of proofs for structured circuits.

6.1 Packing in the Shamir Domain

The most common way to achieve packing, when using Shamir secret sharing, is to hide multiple
secrets in the same polynomial by ensuring the sharing polynomial p evaluates to p(α0) =
v0, p(α1) = v1, . . . , p(αℓ−1) = vℓ−1 when sharing ℓ values, for α0, . . . , αℓ+N−1 ∈ Ex(R). Of
course, the shares for the parties should then be evaluations at αℓ, . . . , αℓ+N−1 in order to
preserve privacy.

The degree of p now must become t+ℓ−1 to ensure that t parties still learn nothing (including
algebraic relations between values) about the shared secrets. This implies that opening a shared
value now requires t + ℓ shares, rather than the regular t + 1. In the context of our protocols
however, this does not mean we need to open more commitments towards the verifier since
either the opened value is assumed to be known (in the case of ΠZero-Check) or provided as part
of the proof (in the case of a normal reconstruction). In both of these cases, the additional
knowledge effectively acts as ℓ additional known shares at the evaluation points α0, . . . , αℓ−1.

Applying this technique to our protocols then allows us to prove ℓ separate witnesses for an
identical circuit in parallel. The impact on the communication cost is twofold: Ex(GR(2k, d0))
should be large enough to allow for t+ ℓ points and hence 2d0 ≥ t+ ℓ, and any reconstruction
must provide ℓ reconstructed values as part of the proof. Importantly however, the size of
sharing of the (extended) witness does not grow, resulting in an approach that is cheaper than
performing ℓ separate proofs independently.

6.2 Packing in the Galois Domain

Our second approach to packing makes use of the “extra space” that is found in a GR(2k, d0)
element. Rather than having to send k · d0 bits to represent a single k-bit value, we can send
d0 such values, each in its own coefficient of the Galois ring element, considering it more as a
Z2k -module of dimension d0.

As long as any operation the parties perform on their shares is an operation for this module
(so addition and scalar multiplication by scalars in Z2k), the actions of the secret sharing and
reconstruction are not further impeded. Losing the ability to perform scalar multiplication with
values from the entire space GR(2k, d0) incurs some cost on the soundness of ΠSac-Check and
ΠIP-Check, where the verifier’s random coefficients can now only come from Z2k instead, leading
to a soundness error of 2−(s+1)·d1 rather than 2−(s+1)·d1·d0 .

If ΠCompress is used, then it is necessary to deal with the polynomial interpolation needed
in ΠCompress, which requires some scalar multiplication with values coming from an exceptional
set of at least size 2 · ν. To handle this case, we suggest two possible approaches.

Reducing module dimension. The first approach plays with the same concept described
before. It uses the additional free space available in GR(2k, d0), but rather than seeing
it as a Z2k -module, it treats it as a GR(2k, dinterp)-module of dimension d0

dinterp
, subject to

2dinterp ≥ 2 · ν to allow for the interpolation.
Tweak the lifting. In the second approach, we tweak the “local lifting” from GR(2k, d0) to

GR(2k, d0 · d1). Rather than treating the larger ring as a degree d1 extension of the smaller
one, we can choose d1 such that gcd(d0, d1) = 1, and construct the larger ring as a degree d0

21

extension of GR(2k, d1), even though the input lies in GR(2k, d0). To see why this works, we
can consider GR(2k, d0 ·d1) = Z2k [β, γ], where GR(2k, d0) = Z2k [β] and GR(2k, d1) = Z2k [γ].
Due to our restriction that gcd(d0, d1) = 1, β and γ are algebraically independent, allowing
us to reinterpret Z2k [β, γ] = (Z2k [β])[γ] = (Z2k [γ])[β]. In the interpretation (Z2k [γ])[β], we
are now left with a form that allows us to treat these values as a GR(2k, d1)-module of
dimension d0. When doing this, the only further constraint we have is that 2d1 ≥ 2 · ν, while
being able to fully pack all d0 input coefficients.

These approaches incur some loss in soundness, resulting in a cheating probability for the

multiplication checks of 2
−d1· d0

dinterp or 2−d1 respectively.

Although the loss in soundness necessitates more communication to return to the same level
of security, the reduction in communication when averaged over the parallel proof instances
brings some benefits. When performing d0 proofs in parallel, neither the communication for
the input of the extended witness, nor the communication to reconstruct a secret-shared value
increase. When all coefficients in the input sharing are filled with actual inputs, we also no
longer need to perform ΠRing-Check, as all GR(2k, d0) elements now correspond to a valid set of
d0 elements in Z2k .

We also considered the use of Reverse Multiplication-Friendly Embeddings (RMFEs), as
introduced by [CCXY18], for this sort of packing, but since this only provides Z2k -linearity, it is
incompatible with our threshold secret sharing. Additionally, RMFEs only provide a constant
packing rate, whereas our technique succeeds in utilising the available space maximally.

6.3 Multi-Round Computations

Instead of proving some ℓ independent instances of a circuit in parallel, one would often prefer
to use this packing to prove a single instance more efficiently, either by performing multiple of
the “outer” repetitions in parallel, or by performing multiple gates of the circuit in parallel.
As the challenges provided by the verifier are shared across the parallel instances being proved,
the former is unfortunately not possible. The latter however, can be achieved by introducing a
gadget that checks whether two secret shared values JaK and JbK are (prescribed) permutations.

Depending on the efficiency of such a check, this could allow optimizing for circuits that
are wide enough (that is, circuits that perform enough independent multiplications in parallel),
to only allowing optimization for circuits that are highly structured. As an example of such
structured circuits, one could consider a computation that procedes in several identical rounds,
such as a circuit that performs several consecutive RAM accesses like in Section 7. In an ideal
scenario, the permutation check can be performed mostly entirely locally, with a final ΠZero-Check

at the end of the protocol, yielding an improvement in communication cost of factor ℓ practically
for free. For the permutation checks we will describe here, a highly structured/repetitive circuit
should be preferred however.

To check the reordering of a Shamir packed secret sharing, each party can re-share their
share and enable a private reconstruction of the underlying secrets, which can then be re-ordered
and eventually checked in batch with a random linear combination and ΠZero-Check. This results
in t·(2·N−t) ring elements of communication to perform the re-sharing. To check the reordering
of Galois coefficients in GR(2k, d), we let the prover inject d sharings of Z2k elements Mi (which
need to be checked through ΠRing-Check), which can be used to mask corresponding coefficients
in a and b identically and provide privacy of the values. Then we can perform a (batched)
ΠZero-Check(a+

∑
i x

iMi − b−
∑

i x
π(i)Mi) to validate the permutation. This incurs a cost of d

ring elements per permutation check to input the mask values Mi.

22

7 RAM Application

In this section, we show how to construct the Ccheck circuit of [DOTV22] to verify the consis-
tency of a series of T read or write accesses to an initial array L of size N . Our Ccheck circuit is
very similar to that of [DOTV22] albeit with minor modifications to fit our ring structure. In
particular, we cannot use the EqCheck sub-circuit that crucially relies on the underlying field
structure and we tweak the PermCheck to use the Generalized Schwartz-Zippel (Lemma 2.1). In
addition, we assume a large exceptional set. In all the sub-circuits of this section, we overload
the notation J.K to denote sensitive values that cannot be revealed in the zero-knowledge proof.

First, we introduce the main building blocks, i.e. PermCheck and BdCheck, and later in 7.3,
we describe the ring version of Ccheck.

7.1 Permutation Check

First, we design a procedure PermCheck, see Figure 7, to verify that two arrays (Ja1K, . . . , JaSK)
and (Jb1K, . . . , JbSK) of S shared elements are one a permutation of the other. The idea behind the
check is to define two polynomials PA(X) =

∏
i∈[S](X − ai) and PB(X) =

∏
i∈[S](X − bi) which

are identical if and only if both arrays are a permutation of each other, and then use polynomial
identity testing to verify this is indeed the case. Both polynomials PA and PB are of degree S,
thus the Generalized Schwartz-Zippel (Lemma 2.1) states that if A is not a permutation of B
(i.e. PA ̸= PB), the check passes with probability at most S

2d0·d1
.

PermCheck

Inputs: JAK = (Ja1K, . . . , JaSK) and JBK = (Jb1K, . . . , JbSK) both over GR(2k, d0)
Protocol:

1. Lift JaiK and JbiK from GR(2k, d0) to GR(2k, d0 · d1).
2. s← OR such that s ∈ Ex(GR(2k, d0 · d1)).
3. Add the S− 1 multiplication gates necessary to compute JPA(s)K = Πi∈[S](s− JaiK) and similarly for

JPB(s)K = Πi∈[S](s− JbiK).
4. Add JPA(s)K− JPB(s)K to the list of outputs.

Fig. 7. Permutation check

PermCheck for Tuples

Inputs: JAK = ((Ja(1)
1 K, Ja(2)

1 K, Ja(3)
1 K, Ja(4)

1 K) . . . , (Ja(1)
S K, . . . , Ja(4)

S K)) and
JBK = ((Jb(1)1 K, Jb(2)1 K, Jb(3)1 K, Jb(4)1 K) . . . , (Jb(1)S K, . . . , Jb(4)S K)) both shared over GR(2k, d0)
Protocol:

1. Lift Ja(j)
i K and Jb(j)i K from GR(2k, d0) to GR(2k, d0 · d1).

2. r = (r(1), r(2), r(3), r(4))← OR such that r(j) ∈ Ex(GR(2k, d0 · d1))
3. For i ∈ [S] add the linear gates to compute JaiK = Σj∈[4]Ja

(j)
i · r

(j)K and JbiK = Σj∈[4]Jb
(j)
i · r

(j)K
4. s← OR such that s ∈ Ex(GR(2k, d0 · d1)).
5. Add the S− 1 multiplication gates necessary to compute JPA(s)K = Πi∈[S](s− JaiK) and similarly for

JPB(s)K = Πi∈[S](s− JbiK).
6. Add JPA(s)K− JPB(s)K to the list of outputs.

Fig. 8. Permutation check for tuples

In addition, we also describe another procedure, given in Figure 8, for when the ai and
bi are themselves tuples of 4 elements — looking ahead, the array to be checked consists of
tuples of 4 elements. This protocol is similar to the previous one, except we first compress

23

our tuple into a single element. Assuming that A and B are not a permutation of each other,

then for all permutations π there exists at least one tuple (a
(1)
i , a

(2)
i , a

(3)
i , a

(4)
i) and one tuple

(b
(1)
π(i), b

(2)
π(i), b

(3)
π(i), b

(4)
π(i)) that differs. The probability that such tuples are compressed into ai and

bπ(i) respectively such that ai = bπ(i) is bounded by the Generalized Schwartz-Zippel lemma for

4-variate polynomial of total degree 4 by 4
2d0·d1

. By union bound, the check thus passes with

probability at most S+4
2d0·d1

.

7.2 Bound Check

The bound check BdCheck is exactly the same as [DOTV22]. For completeness, we recall it in
Figure 9. It checks in zero-knowledge that a set of T sensitive values are contained between two
public bounds, B1, B1, with B1 < B2.

BdCheck

Input: The lower and upper bounds B1 < B2.
JLK = [B1, B1 + 1, . . . , B2, Jx1K, . . . , JxT K] of size S
JL′K that contains the entries of L sorted from lowest to highest (with all the entries sensitive)
Protocol:

1. Jis permutationK← PermCheck(JLK, JL′K)
2. For i ∈ [S − 1]

(a) JαiK← JL′[i+ 1]K− JL′[i]K
(b) JλiK← JαiK · J1− αiK.

3. Add all the following to the list of outputs:
– Jis permutationK
– JλiK for i ∈ [S − 1]
– JL′[1]K−B1

– JL′[S]K−B2

Fig. 9. Bound Check for a batch of sensitive values

7.3 Array Access Check

We now describe our version of Ccheck, see Figure 10. We assume the memory has N slots and
is first initialized with sensitive values Mi. The array L consists of tuples of the form

(memory address︸ ︷︷ ︸
ℓ

, global timestamp︸ ︷︷ ︸
t

, operation︸ ︷︷ ︸
op

, data︸︷︷︸
d

).

Here, ℓ ∈ [N], t ∈ [N + T], op ∈ {0, 1} (0 for read, 1 for write), and d is the data that has been
read or written.

Intuition Behind the Check: The protocol takes as input the initial array M arranged into a
list L as described before. The list of tuples is sorted first by the address ℓ, and then by the
timestamp t, forming a list L′ which consists of contiguous blocks for each address ℓ = 1, . . . , N
that list the consecutive accesses to the same address ℓ sorting chronologically starting with
writing the initial value Mℓ.

We need to check the following conditions hold:

– Each block concerns one valid address and all addresses are covered
– Inside each block, the instructions are ordered by their timestamp
– If the operation is read, then the read value matches the previous value at that address

24

Ccheck

Input: JLK = [(1, 1, 1, JM1K), . . . (N,N, 1, JMN K),
(JlN+1K, N + 1, JopN+1K, JdN+1K), . . . , (JlN+T K, N + T, JopN+T K, JdN+T K)]
JL′K containing entries of L sorted first by ℓ then by t.
Protocol:

1. Jis permutationK← PermCheck(JLK, JL′K)
2. For i ∈ [N + T − 1] do

(a) JαiK← 1− (Jℓ′i+1K− Jℓ′iK)
(b) JλiK← JαiK · J1− αiK.
(c) Jτ̃iKj ← JαiK, Jt′i+1 − t′iK and JτiK← Jτ̃iK + (1− JαiK).
(d) JζiK← JopiK · J1− opiK.
(e) JβiK← Jd′iK− Jd′i+1K.
(f) Jγ̃iK← JαiK · JβiK and JγiK← Jγ̃iK · (1− Jopi+1K).

3. Jis in boundK← BdCheck(({JτiK})i∈[N+T−1], 1, N + T − 1)
4. Add all the following to the list of outputs

– Jis permutationK
– JλiK for i ∈ [N + T − 1]
– JγiK for i ∈ [N + T − 1]
– JζiK for i ∈ [N + T − 1]
– Jis in boundK
– N − Jℓ′N+T K

Fig. 10. Complete checking circuit for random memory accesses

– Each operation is either a read or a write.

The used variables carry the following meaning:

– αi = 1 if and only if ℓ′i = ℓ′i+1 and 0 otherwise, i.e., when the next tuple describes an access
to the same address

– λi = 0 if and only if αi ∈ {0, 1}
– τi is the difference between the timestamps of subsequent accesses otherwise, τi = 1
– ζi = 0 if and only if opi ∈ {0, 1}
– βi is the difference between the data d′i− d′i+1 which is supposed to be 0 if the next tuple is

a read instruction
– γi = βi if and only if opi+1 is a read operation to the same address; therefore it is supposed

to be zero.

Changes Compared to [DOTV22]: The protocol of [DOTV22] uses the so-called EqCheck circuit,
that takes to shared values JxK, JyK and outputs a shared bit JbK such that b = 1 if and only
if x = y. We cannot use the EqCheck circuit in our setting, since it relies on the existence of
inverses of arbitrary non-zero elements. Hence, we introduce some changes:

– Changes to the αi:
• Used to be EqCheck(ℓ′i, ℓ

′
i+1).

• Now is 1− (ℓ′i+1 − ℓ′i) and check αi ∈ {0, 1} with λi.
– Changes to the βi:
• Used to be EqCheck(d′i, d

′
i+1).

• Now is d′i − d′i+1.

Zero-knowledge. Replacing αi this way does not impact zero-knowledge as for a honest proof,
consecutive memory addresses are at most 1 apart. Replacing βi does not impact zero-knowledge
either as it only appears in γi when both αi = 1 and op′i+1 = 0 (i.e. read), in which case for an
honest proof we expect βi = 0.

25

Soundness. Replacing αi does not impact soundness as it is still an equality check as we ensure
αi ∈ {0, 1} with λi. Replacing βi does not impact soundness either as for αi = 0 or op′i+1 = 1,
we allow d′i and d′i+1 to be arbitrary and when αi = 1 and op′i+1 = 0 we deterministically ensure
d′i = d′i+1 with the ΠZero-Check on γi.

Acknowledgements

The work was partially supported by the Defense Advanced Research Projects Agency (DARPA)
under Contract No. HR001120C0085, by CyberSecurity Research Flanders with reference num-
ber VR20192203, by the FWO under an Odysseus project GOH9718N, and by the European
Research Council (ERC) under the European Unions’s Horizon 2020 research and innovation
programme under grant agreement No. 803096 (SPEC). Cyprien Delpech de Saint Guilhem is
a Junior FWO Postdoctoral Fellow under project 1266123N. The work of the last author was
conducted whilst they were a PhD student at KU Leuven.

Any opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of DARPA, the US Government,
Cyber Security Research Flanders or the FWO. The U.S. Government is authorized to reproduce
and distribute reprints for governmental purposes notwithstanding any copyright annotation
therein.

References

ACD+19. Mark Abspoel, Ronald Cramer, Ivan Damg̊ard, Daniel Escudero, and Chen Yuan. Efficient
information-theoretic secure multiparty computation over Z/pkZ via galois rings. In Dennis Hofheinz
and Alon Rosen, editors, TCC 2019, Part I, volume 11891 of LNCS, pages 471–501. Springer, Hei-
delberg, December 2019.

AHIV17. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 2087–2104. ACM Press, Oc-
tober / November 2017.

BBC+19. Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-knowledge
proofs on secret-shared data via fully linear PCPs. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 67–97. Springer, Heidelberg, August
2019.

BBMH+21. Carsten Baum, Lennart Braun, Alexander Munch-Hansen, Benôıt Razet, and Peter Scholl. Appen-
zeller to brie: Efficient zero-knowledge proofs for mixed-mode arithmetic and Z2k. In Giovanni Vigna
and Elaine Shi, editors, ACM CCS 2021, pages 192–211. ACM Press, November 2021.

BBMHS22. Carsten Baum, Lennart Braun, Alexander Munch-Hansen, and Peter Scholl. MozZ2karella: Efficient
vector-OLE and zero-knowledge proofs over Z2k . In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part IV, volume 13510 of LNCS, pages 329–358. Springer, Heidelberg, August 2022.

BDK+21. Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales, Emmanuela Orsini, Peter Scholl,
and Greg Zaverucha. Banquet: Short and fast signatures from AES. In Juan Garay, editor,
PKC 2021, Part I, volume 12710 of LNCS, pages 266–297. Springer, Heidelberg, May 2021.

BN20. Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments for arithmetic circuits
and their application to lattice-based cryptography. In Aggelos Kiayias, Markulf Kohlweiss, Petros
Wallden, and Vassilis Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages 495–526.
Springer, Heidelberg, May 2020.

CCKP19. Shuo Chen, Jung Hee Cheon, Dongwoo Kim, and Daejun Park. Verifiable computing for approximate
computation. Cryptology ePrint Archive, Report 2019/762, 2019. https://eprint.iacr.org/2019/
762.

CCXY18. Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan. Amortized complexity of
information-theoretically secure MPC revisited. In Hovav Shacham and Alexandra Boldyreva, edi-
tors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 395–426. Springer, Heidelberg, August
2018.

CDE+18. Ronald Cramer, Ivan Damg̊ard, Daniel Escudero, Peter Scholl, and Chaoping Xing. SPD Z2k :
Efficient MPC mod 2k for dishonest majority. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 769–798. Springer, Heidelberg, August 2018.

26

https://eprint.iacr.org/2019/762
https://eprint.iacr.org/2019/762

CDG+17. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian
Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-knowledge and signatures
from symmetric-key primitives. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 1825–1842. ACM Press, October / November 2017.

DOT21. Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy. Limbo: Efficient zero-
knowledge MPCitH-based arguments. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021,
pages 3022–3036. ACM Press, November 2021.

DOTV22. Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, Titouan Tanguy, and Michiel Verbauwhede.
Efficient proof of RAM programs from any public-coin zero-knowledge system. In Clemente Galdi and
Stanislaw Jarecki, editors, SCN 22, volume 13409 of LNCS, pages 615–638, Amalfi, Italy, September
2022. Springer, Heidelberg.

EGK+20. Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl. Improved primi-
tives for MPC over mixed arithmetic-binary circuits. In Daniele Micciancio and Thomas Ristenpart,
editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages 823–852. Springer, Heidelberg, Au-
gust 2020.

EXY22. Daniel Escudero, Chaoping Xing, and Chen Yuan. More efficient dishonest majority secure compu-
tation over Z2k via galois rings. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part I, volume 13507 of LNCS, pages 383–412. Springer, Heidelberg, August 2022.

Feh98. Serge Fehr. Span programs over rings and how to share a secret from a module, 1998. MSc Thesis,
ETH Zurich.

FMRV22. Thibauld Feneuil, Jules Maire, Matthieu Rivain, and Damien Vergnaud. Zero-knowledge proto-
cols for the subset sum problem from MPC-in-the-head with rejection. In Shweta Agrawal and
Dongdai Lin, editors, ASIACRYPT 2022, Part II, volume 13792 of LNCS, pages 371–402. Springer,
Heidelberg, December 2022.

FR22. Thibauld Feneuil and Matthieu Rivain. Threshold linear secret sharing to the rescue of MPC-in-the-
head. Cryptology ePrint Archive, Report 2022/1407, 2022. https://eprint.iacr.org/2022/1407.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signa-
ture problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194.
Springer, Heidelberg, August 1987.

GHAH+23. Matthew Green, Mathias Hall-Andersen, Eric Hennenfent, Gabriel Kaptchuk, Benjamin Perez,
and Gijs Van Laer. Efficient proofs of software exploitability for real-world processors. PoPETs,
2023(1):627–640, January 2023.

GMO16. Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster zero-knowledge for Boolean
circuits. In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016, pages 1069–1083.
USENIX Association, August 2016.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In 17th ACM STOC, pages 291–304. ACM Press, May 1985.

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure mul-
tiparty computation. In David S. Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21–30.
ACM Press, June 2007.

JSL22. Robin Jadoul, Nigel P. Smart, and Barry Van Leeuwen. MPC for Q2 access structures over rings
and fields. In Riham AlTawy and Andreas Hülsing, editors, SAC 2021, volume 13203 of LNCS,
pages 131–151. Springer, Heidelberg, September / October 2022.

KKW18. Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero knowledge
with applications to post-quantum signatures. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018, pages 525–537. ACM Press, October 2018.

KZ22. Daniel Kales and Greg Zaverucha. Efficient lifting for shorter zero-knowledge proofs and post-
quantum signatures. Cryptology ePrint Archive, Report 2022/588, 2022. https://eprint.iacr.

org/2022/588.
LXY23. Fuchun Lin, Chaoping Xing, and Yizhou Yao. More efficient zero-knowledge protocols over Z2k via

galois rings. Cryptology ePrint Archive, Report 2023/150, 2023. https://eprint.iacr.org/2023/
150.

Sha79. Adi Shamir. How to share a secret. Communications of the Association for Computing Machinery,
22(11):612–613, November 1979.

SS23. Victor Shoup and Nigel P. Smart. Lightweight asynchronous verifiable secret sharing with optimal
resilience. Cryptology ePrint Archive, Paper 2023/536, 2023. https://eprint.iacr.org/2023/536.

27

https://eprint.iacr.org/2022/1407
https://eprint.iacr.org/2022/588
https://eprint.iacr.org/2022/588
https://eprint.iacr.org/2023/150
https://eprint.iacr.org/2023/150
https://eprint.iacr.org/2023/536

	ZK-for-Z2K: MPC-in-the-Head Zero-Knowledge Proofs for Z2k
	Introduction
	Our Contribution

	Preliminaries
	Notation
	Rings
	Secret-Sharing Schemes over Rings
	MPC-in-the-Head via Linear Secret Sharing

	Checking Multiplications over Rings
	Sacrifice Based Check
	Inner Product Multiplication Check
	Compressed Multiplication Check

	Checking Base Ring Sharings
	Protocol Communication Costs
	Primitive Costs
	Protocol Costs
	Overall Costs
	Concrete Comparison of the Three MultCheck Subprotocols

	Packing
	Packing in the Shamir Domain
	Packing in the Galois Domain
	Multi-Round Computations

	RAM Application
	Permutation Check
	Bound Check
	Array Access Check

	References

