
OccPoIs: Points of Interest based on Neural Network’s Key
Recovery in Side-Channel Analysis through Occlusion

Trevor Yap

trevor.yap@ntu.edu.sg

Nanyang Technological University

Singapore

Shivam Bhasin

sbhasin@ntu.edu.sg

Nanyang Technological University

Singapore

Stjepan Picek

picek.stjepan@gmail.com

Radboud University

Nijmegen, The Netherlands

ABSTRACT
Deep neural networks (DNNs) represent a powerful technique for

assessing cryptographic security concerning side-channel analysis

(SCA) due to their ability to aggregate leakages automatically, ren-

dering attacks more efficient without preprocessing. Nevertheless,

despite their effectiveness, DNNs employed in SCA are predomi-

nantly black-box algorithms, posing considerable interpretability

challenges. In this paper, we propose a novel technique called Key

Guessing Occlusion (KGO) that acquires a minimal set of sample

points required by the DNN for key recovery, which we call Oc-

cPoIs. These OccPoIs provide information on which areas of the

traces are important to the DNN for retrieving the key, enabling

evaluators to know where to refine their cryptographic implemen-

tation. After obtaining the OccPoIs, we first explore the leakages

found in these OccPoIs to understand what the DNN is learning

with first-order Correlation Power Analysis (CPA). We show that

KGO obtains relevant sample points that have a high correlation

with the given leakage model but also acquires sample points that

first-order CPA fails to capture. Furthermore, unlike the first-order

CPA in the masking setting, KGO obtains these OccPoIs without the

knowledge of the shares or mask. Next, we employ the template at-

tack (TA) using the OccPoIs to investigate if KGO could be used as a

feature selection tool. We show that using the OccPoIs with TA can

recover the key for all the considered synchronized datasets and is

consistent as a feature selection tool even on datasets protected by

first-order masking. Furthermore, it also allows a more efficient at-

tack than other feature selections on the first-order masking dataset

called ASCADf.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; • Secu-
rity and privacy→ Side-channel analysis and countermea-
sures.

KEYWORDS
Side-channel, Neural Network, Deep Learning, Profiling attack,

Explanability, Feature Importance, Feature Selection

1 INTRODUCTION
Side-channel analysis (SCA) is a class of cryptanalytic attacks that

aims to extract sensitive information from a system by observing

its physical attributes. Profiling SCA represents the worst-case se-

curity assumptions where the adversary has access to two similar

devices: the prototype (or clone) and target (or test) devices. The

Conference’17, July 2017, Washington, DC, USA
2023. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

adversary can manipulate or knows the inputs and key of the pro-

totype device. On the other hand, the adversary has no control or

knowledge of the key in the target device but can obtain traces (e.g.,

power or EM measurements) through an oscilloscope and record

the corresponding plaintext/ciphertext used. The adversary’s goal

is to obtain the secret key of the target device. Classical profiling

techniques such as the template attack (TA) build their profiling

models based on multivariate Gaussian distribution to obtain the

key [8]. In recent years, the use of Deep Neural Networks (DNNs) in

profiling attacks has gained much attention as it outperforms exist-

ing techniques without requiring the evaluator to conduct arduous

preprocessing on the traces before mounting the attack [7].

DNNs are capable of finding the necessary sample points re-

quired for key recovery, even in the presence of hiding countermea-

sures like desynchronization and masking countermeasure where

the secret information is split into multiple shares [7]. DNN can

implicitly combine these shares to retrieve the secret key of the

target device. Since traces contain relevant and redundant sample

points, an inherent question arises: What features/sample points
does a trained DNN use to obtain the secret key?

In this paper, we propose an algorithm that extracts the minimal
number of relevant sample points that DNN requires to find the se-
cret key. Our proposed algorithm applies the technique commonly

known as occlusion, which involves replacing each sample point

with a baseline value. The goal of our novel algorithm is twofold.

First, we aim to identify the features pertinent to the DNN in acquir-

ing the secret key and comprehending the decision-making process

of the DNN. Knowing which sample points are leaking is of utmost

importance for evaluators so that the designers can understand and

rectify their cryptographic implementation to ensure the system’s

security. Second, we introduce this algorithm as a feature selec-

tion tool to extract a smaller set of sample points. Although DNNs

have found great success in retrieving the key, finding a successful

model could require tremendous effort due to the large number of

hyperparameters involved. While efforts have been made to au-

tomate searching for those hyperparameters [24, 29], significant

time and processing power are needed. Therefore, template attack

(TA) remains a popular choice among evaluators. While TA has no

hyperparameters to tune
1
, it has been demonstrated that extracting

relevant points, also known as Points of Interest (PoIs), can lead to

significantly more effective attacks [12, 21]. Therefore, introducing

this algorithm as a feature selection tool can aid the evaluation

of cryptographic implementations. In other words, we utilize the

explainability of DNN in the form of feature extraction to improve

classical attacks like TA.

1
Besides the choice of using the template attack or pooled template attack, the leakage

model, and the number of features.

https://doi.org/XXXXXXX.XXXXXXX

Our Contributions. Our main contributions can be summarized

as follows:

(1) We present a new algorithm called Key Guessing Occlusion

(KGO) that utilizes occlusion to identify the smallest set of

PoIs necessary for the successful key recovery by the DNN.

We refer to this set of PoIs as OccPoIs. Using the KGOmethod,

we can determine the feature importance for DNN in retriev-

ing the correct key. Thus, this method provides valuable

insights to explain the DNN’s decision-making process.

(2) We compare OccPoIs with leakage samples obtained from

first-order correlation power analysis (CPA) with known key

and mask. Our results show that while the KGO method,

in some cases, provides the PoIs with high correlation with

the leakage model, there are instances where KGO captures

sample points that the first-order CPA fails to detect (i.e., low

correlation with the leakage model). Moreover, KGO attains

these PoIs without any knowledge of the mask, unlike first-

order CPA. Therefore, using KGO allows the evaluators to

protect areas of the cryptographic implementation in which

classical techniques fail.

(3) We demonstrate the capability of KGO as a feature selection

tool for TAs and compare it with other “classical” feature se-

lection methods as well as other DNN’s explainability meth-

ods like Saliency Map, LRP, and 1-Occlusion. We show that

utilizing the OccPoIs provided by KGO as a feature selec-

tion tool enables us to recover the secret key for all datasets

tested, indicating that KGO is stable when used as a feature

selection tool. Furthermore, KGO provides superior results

for the first-order masking dataset called ASCADf. In some

cases, KGO obtains the minimum number of sample points

required to obtain the secret key and thus identify the mask-

ing order. These results show the effectiveness of KGO as a

feature selection tool.

(4) Lastly, we explore the leakage profile of a dataset with first-

order masking and desynchronization protection by apply-

ing KGO. We visualize the OccPoIs through the algorithm

called 1-KGO to show that KGO obtains sample points that

evaluators may overlook when using other attribution-based

methods. As KGO is linked with guessing entropy, it allows

visualization with a human-interpretable context that none

of the attribution-based methods provides. This assures eval-

uators that the OccPoIs shown in the visualization are leak-

ing secret information.

The results presented focus on unprotected or first-order mask-

ing due to the nature of available datasets. The proposed approaches

can be easily applied to higher-order masking, but we leave this to

future works. The source code for our experiments can be accessed

at https://anonymous.4open.science/r/OccPoIs-60DE/.

Paper Organization. The structure of the paper is as follows. First,
we provide the notation and the necessary background on profil-

ing attack, explainability techniques, and feature selection methods

used in this paper in Section 2. Next, we present related works on ex-

plainability and feature selection in Section 3. Section 4 introduces

the KGO algorithm to obtain the relevant sample points. Section 5

provides the experimental settings. We explore the leakages in Oc-

cPoIs in Section 6 and investigate KGO as a feature selection tool

for TA in Section 7. Subsequently, Section 8 examines the use of

KGO on desynchronized traces with a masking countermeasure.

Finally, we discuss the limitation of KGO in Section 9 and conclude

our work in Section 10.

2 BACKGROUND
2.1 Notation and Terminology
We denote sets with calligraphic letters X. The corresponding cap-

ital letter 𝑋 defines a random variable, and the bold capital letter

𝑿 denotes a random vector. We use the corresponding lowercase

letters 𝑥 and 𝒙 to represent the realizations of𝑋 and𝑿 , respectively.

We use 𝒙 [𝑖] and 𝒙𝑖 as the 𝑖𝑡ℎ entry of a vector 𝒙 . A side-channel

trace is defined as a vector 𝒕 ∈ R𝐷 where𝐷 is the number of sample

points in a trace. Throughout this paper, we will call 𝒕 [𝑖] sample

points or features interchangeably. Let𝐶 represent a cryptographic

primitive with 𝑃𝑇 denoting some public variable (e.g., plaintext or

ciphertext). We denote 𝑘 as a realization of the key byte candidate

taking its value from the keyspaceK and the correct key as 𝑘∗. The
targeted sensitive variable is the output of the cryptographic primi-

tive, 𝑍 = 𝐶 (𝑃𝑇, 𝑘∗) with 𝑍 taking values inZ = {𝑠1, 𝑠2, . . . , 𝑠 |Z | }.

2.2 Profiling Attacks
Profiling attacks consist of two stages: the profiling and attack

phases. In the profiling phase, the adversary builds a distinguisher

F that takes in a set of profiling traces from the prototype device

and returns a conditional probability mass function Pr(𝑍 |𝑻 = 𝒕).
In the attack phase, a probability score is returned from the dis-

tinguisher 𝒚𝑖 = F (𝒕𝑖) for each attack trace 𝒕𝑖 acquired from the

target device. Given a fixed number of attack traces 𝑁𝑎 , the log-

likelihood score is calculated for all key candidates 𝑘 , 𝑠𝑁𝑎
(𝑘) =∑𝑁𝑎

𝑖=1
𝑙𝑜𝑔(𝒚𝑖 [𝑧𝑖,𝑘]). Here, 𝑧𝑖,𝑘 = 𝐶 (𝑝𝑖 , 𝑘) denotes the hypotheti-

cal sensitive value based on the key 𝑘 with the public variable

𝑝𝑖 that corresponds to the trace 𝒕𝑖 . Next, we sort the keys of the
log-likelihood scores in decreasing order and place them into a

guessing vector 𝑮 = [𝐺0,𝐺1, . . . ,𝐺 |K |−1
]. The key corresponding

to the score 𝐺0 is the most likely candidate, and the key 𝐺 |K |−1

is the least likely candidate. The index of the guessing vector 𝑮
is called the rank of the key. The guessing entropy 𝐺𝐸 is defined

as the average rank of the correct key 𝑘∗ for a fixed number of

experiments. The attack is successful if𝐺𝐸 = 0 (or some sufficiently

small value). The two common profiling attacks are the TA and the

deep learning-based SCA (DLSCA).

TA uses Bayes’ Theorem to build its distinguisher by assuming

the conditional probability 𝑃𝑟 (𝑻 |𝑍 = 𝑧) to be the multivariate

Gaussian distribution [9]. On the other hand, DLSCA uses a DNN,

𝑓𝜽 , as the distinguisher where F = 𝑓𝜽 with trainable weights \ .

The most commonly used DNNs in SCA are Multilayer Perceptrons

(MLPs) and Convolutional Neural Networks (CNNs).

2.3 Explainability Techniques for Feature
Importance in DNNs

In this section, we review some techniques used to identify the

importance of features based on DNN in a side-channel setting. In

particular, we shall focus on attribution-based techniques.

2

https://anonymous.4open.science/r/OccPoIs-60DE/

In [15], Hettwer et al. proposed an attribution heatmap to visual-

ize the relevance of each sample point. This is done by calculating

𝒓 =
1

𝑁𝑎𝑡𝑡𝑟𝑖

𝑁𝑎𝑡𝑡𝑟𝑖∑︁
𝑗=1

𝒓𝐶𝑘∗ (𝒕 𝑗 , 𝑓\), (1)

where𝐶𝑘∗ is the output class of correct key and𝑁𝑎𝑡𝑡𝑟𝑖 is the number

of traces used to obtain the relevance 𝒓𝐶𝑘∗
of the DNN 𝑓\ . The

relevance 𝒓𝐶𝑘∗
can be calculated in different ways. We next present

the three methods used in [15]. Here, we did not consider the use

of gradient*input because it has been shown that under certain

circumstances, it is equivalent to LRP [3].

2.3.1 Saliency Map. The Saliency Map was first applied to side-

channel traces in [17]. It was then extended into an attribution

method by [15]. The Saliency Map is implemented such that each

sample point’s relevance is computed by

𝑟𝑐𝑗 =

 𝜕𝑓𝑐 (𝒕)𝜕𝒕𝑖

∞
,

where 𝑓\ (𝒕) = [𝑓1 (𝒕), . . . , 𝑓𝐶 (𝒕)] is the output of the DNN. It repre-
sents how the DNN’s prediction is impacted by a small modification

in the sample points of the trace.

2.3.2 Layer-wise Relevance Propagation. Another method used to

calculate the relevance 𝒓𝐶𝑘∗
is the Layer-wise Relevance Propaga-

tion (LRP) developed by Bach et al. [4]. This method provides a

relevant value to each neuron and layer of the DNN. The process

starts from the last layer and computes the relevant value layer-wise

backward through the following propagation rule:

𝑟
(𝑙)
𝑖

=
∑︁
𝑗

𝑧𝑖 𝑗∑
𝑖′ 𝑧𝑖′ 𝑗 + 𝜖 × 𝑠𝑖𝑔𝑛(∑𝑖′ 𝑧𝑖′ 𝑗)

𝑟
(𝑙+1)
𝑗

,

where 𝑧𝑖 𝑗 = 𝑎
(𝑙)
𝑖

𝑤
(𝑙,𝑙+1)
𝑖 𝑗

with 𝑎
(𝑙)
𝑖

being the neuron 𝑖 in layer 𝑗 and

𝑤
(𝑙,𝑙+1)
𝑖 𝑗

being the (𝑖, 𝑗)-th weight between the layer 𝑙 and 𝑙 + 1. The

value 𝑟
(𝑙)
𝑖

denotes the relevance associated with the 𝑖𝑡ℎ neuron in

layer 𝑙 . The 𝜖 is applied to ensure numerical stability. Therefore,

one can obtain the relevance value of each sample point in the trace

and visualize it using Eq. (1).

2.3.3 1-Occlusion. Occlusion sensitivity analysis is developed by

Zeiler and Vergus to find the location of an image relevant to the

DNN by systematically setting areas of the input with grey in-

put [35]. [15] applied the 1-Occlusion approach on side-channel

traces by setting exactly one sample point to zero per time. The

authors calculated the attribution of a single sample point as

𝑟𝑐𝑖 = 𝑓𝑐 (𝒕) − 𝑓𝑐 (𝒕 [𝑖] = 0),

where 𝑐 is the class and 𝒕 [𝑖] = 𝑣 is the trace 𝒕 whose 𝑖𝑡ℎ sample

point is replaced with the value 𝑣 . This is then applied to the Eq. (1)

for visualization.

Although explainability techniques applied to side-channel anal-

ysis show some success in pinpointing the sample points that are

leaking, there are times when the visualization is not clear. For

example, [17] shows that when DNN is overfitting, the PoIs are not

distinguishable. It was shown that to distinguish the PoIs, the au-

thors had to retrain a neural network with early stopping. However,

it is still important to understand the decisions made by DNNs, and

how they retrieve the secret key to protect against such attacks.

3 RELATEDWORKS
This section discusses related works in interpretability and explain-

ability of DNN in SCA. We then discuss works on feature selection

techniques.

Prior Works on Interpretability and Explainability. We first pro-

vide definitions of interpretability and explainability to differentiate

them [2]. Interpretability is used to describe transparent models

where humans can easily interpret their decision. For example, de-

cision trees provide interpretation based on the rules in which it

splits the data [6]. On the other hand, explainability encompasses

techniques used to explain black-box models like DNN as their

decision-making process is not interpretable by humans [6, 13].

Two main areas of explainability of DNNs are: understanding the

DNN’s learning process during training and providing post-hoc

explanations to understand what a trained DNN has learned.

The field of explainability and interpretability in SCA has re-

ceived very little attention over the past few years as most of the

works are focused on the difficult task of hyperparameter tun-

ing [24, 29]. Yet, there exist some works on this topic. In [19], Perin

et al. provided a metric based on the Information Bottleneck theory

to visualize the information that the DNN is learning for each epoch.

This technique is further improved to visualize how shares are pro-

cessed for each layer during training [20]. The authors of [27] tried

to understand the layers of DNN by training the same DNN architec-

ture between two different datasets. They used a technique called

Singular Vector Canonical Correlation Analysis (SVCCA) to see

how correlated the weights of the same layers are. Wu et al. applied

the ablation technique to explore how hiding countermeasures are

processed within the DNN [31]. This is achieved by randomly re-

moving weights or channels of a particular layer in the DNN. They

concluded the early layers are used to process Gaussian noise while

harder countermeasures like desynchronization are being processed

in the deeper layers. Instead of exploring interpretability in terms

of a discriminative model, [33] designed a generative model by

combining with a stochastic attack using an autoencoder called

Conditional Variational Autoencoder, which provides equations of

the leakage in the trace through the autoencoder’s weights.

Out of all the significant techniques for improving the explain-

ability of deep neural networks, a crucial approach is determining

feature importance. This involves analyzing the traces to identify

which specific features are most significant to a trained DNN. Zaid

et al. provided a feature importance technique by visualizing only

the convolutional layers in a heatmap. They further used weight

visualization for MLP to understand which features are impor-

tant [34]. However, the visualization of the sample points here did

not consider the secret key in their analysis and only applies to

CNN architecture. Next, Wouters et al. [28] uses gradient*input

to understand the impact of filters size on desynchronized traces.

Yap et al. introduced a partially interpretable DNN by utilizing the

interpretable model named Truth Table Deep Convolutional Neural

Network (TTDCNN) [32]. This model provides rules to identify

windows of PoIs required to recover a secret key. However, while

TTDCNN provides valuable insights into the network’s behavior, it

3

does not provide feature importance for every point. Additionally,

the results obtained from this approach are model-specific and only

applicable to the TTDCNN architecture and cannot be generalized

to other types of DNNs. To understand the worst-case scenario of

an adversary, it is essential to comprehend what a general DNN

has learned rather than just within one specific family of models.

Therefore, we would like to explore techniques that do not depend

on the DNN’s architecture (i.e., are model-agnostic). Other fea-

ture importance techniques are also explored by Masure et al. [17],

where they used a Saliency Map (also known as Gradient Visual-

ization) to visualize the importance of each sample point. Hettwer

et al. [15] further applied this technique using attribution methods

to include the class of the correct key into consideration. They also

considered other feature importance techniques like LRP [4] and

1-Occlusion [35]. However, these methods did not directly consider

the attack process of retrieving the key. Therefore, this highlights

a gap in our understanding of the sample points required by any

DNN to retrieve the secret key.

Works on Feature Selection. Regarding the feature selection in

SCA, early works proposed using the sum of squared differences

(SOSD) and the sum of squared T-differences (SOST) to enhance the

performance of TAs [9]. Zheng et al. further compared SOSD and

SOST with other techniques like Pearson Correlation [36]. They

concluded that Pearson Correlation is the best in general. However,

they did not consider using machine learning (ML) techniques for

feature selection. [21] explores using ML techniques for feature se-

lection. The authors proposed using wrapper selection methods and

hybrid selection methods to find a subset of features for profiling

attacks. Wrapper selection methods employ classifier algorithms

such as linear support vector machines to pick out the relevant

subset of features. On the other hand, the hybrid selection methods

utilize both wrapper methods and classical filter selection methods

like SOSD/SOST to determine these important features. The authors

showed that with enough tuning, ML techniques for the feature

selection could be better than classical filter selection. Picek et al.

also explored the use of feature selection through information gain

for profiling attacks using ML models [22]. The works mentioned

above conduct their experiments on unprotected implementations.

As for masked implementation, Reparaz et al. presented amethod

for using mutual information to find tuples of sample points be-

fore employing the multivariate differential power analysis (DPA)

for key recovery [23]. Rioja et al. considered using metaheuristics

known as Estimation of Distribution Algorithms (EDAs) to help

automate the selection of the PoIs in both unprotected and masking

settings [25].

Instead of working with the original sample points, feature ex-

traction techniques transform and reduce the dimensionality of

the traces into relevant embedding that consists of important in-

formation for a better attack. Feature extraction techniques such

as Principal Component Analysis (PCA) [16], Linear Discriminant

Analysis [26], and the use of triplet network [30] have succeeded

in improving the TA’s results and efficiency. However, feature ex-

traction techniques do not consider the original traces (samples),

and the evaluator may have difficulty knowing where the leak-

age is coming from. Therefore, we shall focus on feature selection

methods.

4 KEY GUESSING OCCLUSION (KGO)
As discussed in the introduction, relevant and irrelevant features

exist in the traces, and a DNN explicitly chooses the features to

retrieve the secret key. Then a natural question arises: What is
the smallest set of features required by the DNN for a successful key
recovery? In this section, we present our proposed method called

Key Guessing Occlusion (KGO). KGO is a greedy heuristic algorithm

that provides a post-hoc explanation of the trained DNN. It does this

by giving the smallest set of features/sample points required by the

DNN for retrieving the secret key. Furthermore, it is model-agnostic

and can be applied to any DNN, regardless of its architecture.

Algorithm 1 Key Guessing Occlusion (KGO)

Input:
Attack traces D𝑎𝑡𝑡𝑎𝑐𝑘 ,

Threshold, _,
Trained DNN 𝑓\ .
Output:
A set of OccPoIs 𝑖𝑛𝑑𝑒𝑥𝑂𝑐𝑐𝑃𝑜𝐼 .

1: procedure KGO(D𝑎𝑡𝑡𝑎𝑐𝑘 , _, 𝑓\)

2: 𝑓 𝑙𝑎𝑔 = 𝐹𝑎𝑙𝑠𝑒

3: 𝑞𝑢𝑒𝑢𝑒 = [0, . . . , 𝐷 − 1]
4: while 𝑓 𝑙𝑎𝑔 == 𝐹𝑎𝑙𝑠𝑒 do
5: 𝑓 𝑙𝑎𝑔 = 𝑇𝑟𝑢𝑒

6: 𝑞𝑢𝑒𝑢𝑒 = 𝑠ℎ𝑢𝑓 𝑓 𝑙𝑒 (𝑞𝑢𝑒𝑢𝑒)
7: 𝑖𝑛𝑑𝑒𝑥𝑟𝑑 = {}
8: for 𝑖 ∈ [0, . . . , 𝐷 − 1] do
9: 𝑠𝑝𝑡 = 𝑞𝑢𝑒𝑢𝑒 [𝑖].
10: Initialize 𝒕𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 with zeros of length |𝐷𝑎𝑡𝑡𝑎𝑐𝑘 | .
11: for all 𝑗 ∈ {0, . . . , |𝐷𝑎𝑡𝑡𝑎𝑐𝑘 | } do
12: Obtain the 𝑗𝑡ℎ attack trace: 𝒕 = 𝐷𝑎𝑡𝑡𝑎𝑐𝑘 [𝑗]
13: Keep the original trace value 𝒕𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 [𝑗] = 𝒕 [𝑠𝑝𝑡].
14: Replace sample point 𝑠𝑝𝑡 with 0: 𝒕 [𝑠𝑝𝑡] = 0.

15: end for
16: Run attack phase to obtain𝐺𝐸 by using the updated traces 𝐷𝑎𝑡𝑡𝑎𝑐𝑘 on DNN 𝑓\ .

17: if 𝐺𝐸 ≥ _ then
18: Add 𝑠𝑝𝑡 into 𝑖𝑛𝑑𝑒𝑥𝑟𝑑 .

19: for all 𝑗 ∈ {0, . . . , |𝐷𝑎𝑡𝑡𝑎𝑐𝑘 | } do
20: Obtain the 𝑗𝑡ℎ attack trace: 𝒕 = 𝐷𝑎𝑡𝑡𝑎𝑐𝑘 [𝑗]
21: Replace sample point 𝑠𝑝𝑡 with its original values: 𝒕 [𝑠𝑝𝑡] = 𝒕𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 [𝑗].
22: 𝑓 𝑙𝑎𝑔 = 𝐹𝑎𝑙𝑠𝑒 .
23: end for
24: end if
25: end for
26: 𝑞𝑢𝑒𝑢𝑒 = 𝑖𝑛𝑑𝑒𝑥𝑟𝑑 .
27: end while
28: 𝑖𝑛𝑑𝑒𝑥𝑂𝑐𝑐𝑃𝑜𝐼 = 𝑖𝑛𝑑𝑒𝑥𝑟𝑑
29: return 𝑖𝑛𝑑𝑒𝑥𝑂𝑐𝑐𝑃𝑜𝐼 .

30: end procedure

The methodology of KGO is illustrated in Algorithm 1. The

algorithm uses a while loop and a flag to generate the smallest

list of relevant sample points that the trained DNN 𝑓\ needs to

recover the correct key. In each iteration of the while loop, the

algorithm first randomly shuffles 𝑞𝑢𝑒𝑢𝑒 uniformly and initializes

𝑖𝑛𝑑𝑒𝑥𝑟𝑑 as the empty set. Then, it iterates through the indices in

𝑞𝑢𝑒𝑢𝑒 . For each sample point 𝑠𝑝𝑡 in 𝑞𝑢𝑒𝑢𝑒 , the algorithm sets it to

the baseline 0 in all traces (Lines 8 to 15) and runs the attack phase

using the trained DNN 𝑓\ with the perturbed traces to obtain 𝐺𝐸

(Line 16). It then checks if the resulting 𝐺𝐸 is greater than or equal

to a threshold _ (Lines 17 to 24). If𝐺𝐸 ≥ _, the original value of the

sample point 𝑠𝑝𝑡 is restored in the traces because it is essential to

the DNN in retrieving the correct key at the moment. If𝐺𝐸 < _, the

sample point 𝑠𝑝𝑡 is not currently useful for the DNN in recovering

the key, and it remains 0 throughout the algorithm. In this paper,

we shall set _ = 1.

After one iteration of the while loop, we obtain a set of sample

points 𝑖𝑛𝑑𝑒𝑥𝑟𝑑 . We notice that some of the sample points in 𝑖𝑛𝑑𝑒𝑥𝑟𝑑

4

could still be further removed after one iteration. This could be

due to the order in which the sample points are being occluded.

Irrelevant sample points positioned behind the sample point 𝑠𝑝𝑡

could add noise to the traces and result in𝐺𝐸 ≥ _ for that iteration.

But the same sample point 𝑠𝑝𝑡 may no longer be necessary for the

DNN to recover the key in the next iteration. Therefore, we fix

𝑞𝑢𝑒𝑢𝑒 to be the set of sample points 𝑖𝑛𝑑𝑒𝑥𝑟𝑑 for the next round of

occlusion (Line 26). The algorithm will exit the while loop when all

the sample points in 𝑞𝑢𝑒𝑢𝑒 are required by the DNN to recover the

secret key. In other words, none of the sample points in 𝑞𝑢𝑒𝑢𝑒 when

being occluded will result in 𝐺𝐸 = 0. This will cause the 𝑓 𝑙𝑎𝑔 to be

fixed as 𝑇𝑟𝑢𝑒 and exit the while loop. Since all the sample points

will result in 𝐺𝐸 ≥ _ in the last round, the 𝑖𝑛𝑑𝑒𝑥𝑟𝑑 will contain

the same elements as 𝑞𝑢𝑒𝑢𝑒 . Therefore, we fix the set of relevant

sample points 𝑖𝑛𝑑𝑒𝑥𝑟𝑑 as 𝑖𝑛𝑑𝑒𝑥𝑂𝑐𝑐𝑃𝑜𝐼𝑠 and return 𝑖𝑛𝑑𝑒𝑥𝑂𝑐𝑐𝑃𝑜𝐼𝑠 as

output. We shall call this set of relevant sample points obtained by

the KGO algorithm, 𝑖𝑛𝑑𝑒𝑥𝑂𝑐𝑐𝑃𝑜𝐼 , as the Occluded Points of Interest

(OccPoIs).

Note that there might be more than one smallest set of relevant

sample points that the DNN could use to recover the correct key.

The sample point may not be necessary to the DNN at the moment

when it was occluded, as the DNN could still use other sample

points to retrieve the secret key. Therefore, the sample points not

selected by KGO might still contain leakages. Instead, the proposed

method uses the occlusion technique to reveal one set of sample

points relevant to the DNN for retrieving the secret key.

To gauge the importance of each of the OccPoIs, we propose

to use the following algorithm called 1-Key Guessing Occlusion

(1-KGO):

(1) For all the attack traces 𝒕 , we set the value 𝒕 [𝑠𝑝𝑡] = 0 for all

sample points 𝑠𝑝𝑡 that are not OccPoIs.

(2) Given a OccPoI 𝑠𝑝𝑡𝑂𝑐𝑐𝑃𝑜𝐼 , we set the value 𝒕 [𝑠𝑝𝑡𝑂𝑐𝑐𝑃𝑜𝐼] = 0

for all attack traces 𝒕 , and run attack phase to obtain the

guessing entropy𝐺𝐸 using the updated traces on the DNN

𝑓\ .

(3) Keep the 𝐺𝐸 corresponding to OccPoI 𝑠𝑝𝑡𝑂𝑐𝑐𝑃𝑜𝐼 .

(4) Set the original value of 𝒕 [𝑠𝑝𝑡𝑂𝑐𝑐𝑃𝑜𝐼] back to the trace.

(5) Repeat step 2 to 4 for all OccPoIs.

The metric for measuring the contribution of each OccPoI in key

recovery is𝐺𝐸 provided by 1-KGO. The greater the𝐺𝐸 value of an

OccPoI, the larger its contribution toward retrieving the secret key

through the DNN. We highlight that since all these sample points

are OccPoIs, none of them will result in 𝐺𝐸 = 0 when occluded.

5 EXPERIMENTAL AND TRAINING SETTING
We utilize widely employed public datasets: Chipwhispherer (CW),

ASCAD (i.e., ASCADf/ASCADr), and AES_HD. We direct readers

to Appendix A.2 for more comprehensive details on these datasets.

For most datasets, we use random search to find the DNN ar-

chitecture. For the AES_HD dataset, we consider the architecture

proposed by Zaid et al. [34]. We use a learning rate of either

0.0001, 0.001, or 0.005, while the optimizers are either Adam or

Root Mean Squared Propagation (RMSprop) . Next, we apply either

the He Uniform , Glorot Uniform , or Random Uniform for the

weight initialization and use either ReLU or SeLU for the activation

function. For regularizer, we consider either no regularizer, 𝑙2 norm ,

Table 1: Hyperparameters used when training DNNs for each
dataset.

CW ASCADf ASCADr AES_HD ASCADf_desync50 ASCADf_desync100

Batch Size 128 50 200 256 500 300

Learning Rate 0.0001 0.005 0.005 0.005 0.001 0.001

Epochs 20 50 100 20 100 100

Weight Initialization Glorot Uniform He Uniform He Uniform He Uniform Random Uniform Glorot Uniform

Optimizer RMSprop Adam Adam Adam RMSprop RMSprop

Regularizer None None None None 𝑙2 Dropout

Regularizer Strength - - - - 0.0001 -

Table 2: The number of OccPoIs 𝜔 obtained by KGO.

CW ASCADf ASCADr AES_HD

Total number of sample points 5000 700 1400 1250

𝜔 1 5 6 1

or dropout . The training hyperparameters are presented in Table 1.

We train our DNNs using the categorical cross-entropy loss . For

more details of the DNNs’ architecture that we considered, we refer

readers to Appendix A.3.

Since our goal is to understand which sample points are impor-

tant to the DNN when retrieving the correct key, all the DNNs we

analyze successfully retrieve the secret key. This means that the

trained DNN can obtain 𝐺𝐸 = 0 during the attack phase.

6 KGO’S EXPLAINABILITY OF DNN
6.1 Understanding the Number of OccPoIs
The OccPoIs are sample points the DNN considers necessary for

obtaining the secret key. Let𝜔 represent the number of OccPoIs that

KGO deems relevant for key recovery as acquired by Algorithm 1.

Table 2 presents the number of sample points𝜔 and the total number

of sample points for different datasets. As observed from Table 2,

the DNN requires a very small number of sample points to recover

the key successfully. In the best case, KGO demonstrates that the

DNN could retrieve the key with the minimum number of sample

points required. For example, the CW and AES_HD datasets are

unprotected and require only one sample point for key recovery.

Thus, KGO demonstrates that DNNs can effectively recover secret

keys with minimal sample points.

6.2 Validating Leakage within OccPoIs
Next, we want to validate what leakages these OccPoIs contain

and hopefully glimpse into how the DNN could learn a function to

retrieve the secret through these sample points by KGO. To validate

the leakages that the OccPoIs contain, we apply CPA to these sample

points using only the attack traces.We further investigate if OccPoIs

contain leakages that are missed by a first-order CPA.

6.2.1 Unprotected Setting.

Chipwispherer (CW). First, we shall explore the leakage of Oc-
cPoIs for CWwith the HW leakagemodel. Figure 1a shows that only

one OccPoI is chosen by KGO. This OccPoI is the sample point 4922.

It is highly correlated to the target hypothetical sensitive variable

𝐻𝑊 (𝑆𝑏𝑜𝑥 (𝑃𝑇 ⊕ 𝑘∗)) (see Figure 1b). This shows that DNN could

pinpoint sample points with a high correlation to the hypothetical

sensitive variable 𝑍 to recover the key.

5

(a) Correlation with different
leakage model vs OccPoIs

(b) CPA on the sample point
4922 using leakage model
𝐻𝑊 (𝑆𝑏𝑜𝑥 (𝑝𝑡 ⊕𝑘)) for all keys
𝑘 with respect to the number
of traces.

Figure 1: CPA in CW (HW).

(a) Correlation with different
leakage model vs OccPoIs.

(b) CPA on the sample point
1365 using leakage model
𝑆𝑏𝑜𝑥 (𝑝𝑡 ⊕ 𝑘) for all keys 𝑘

with respect to the number of
traces.

Figure 2: CPA in CW (ID).

Next, we examine the leakage of OccPoI for CW trained with

the ID leakage model and found that the OccPoI located at sample

point 1365 has a very low correlation, unlike the previous case.

Note that the DNN can recover the key with just the sample point

1365, as KGO ensures that𝐺𝐸 = 0. We want to check if this OccPoI

deemed by DNN as relevant is leaking in other leakage models

like Hamming Weight (HW), Most Significant Bit (MSB), or Least

Significant Bit (LSB). We are also considering the leakage 𝑝𝑡 ⊕ 𝑘∗,
as Figure 2a suggests that some sample points in the area consist

of that leakage. However, from Figure 3, we observe that none of

the CPA attempts with the corresponding leakage models could

recover the secret key.

We highlight that this OccPoI is situated near sample points

that have a high correlation with the target hypothetical sensitive

variable 𝑆𝑏𝑜𝑥 (𝑝𝑡 ⊕ 𝑘∗) (see Figure 2). This suggests that the sample

point 1365 is indeed leaking some secret information, but we cannot

find any such information with the leakage model used in CPA

above. Yet, the DNN can use this sample point for key recovery.

This shows that the DNN can extract complex information about the

secret key from this sample point to recover the key that first-order

CPA failed to capture.
2
Since we have already explored the OccPoIs

for both HW and ID leakage model for the CW dataset, and most

works on DNN consider only the ID leakage model [24, 34], we

shall focus on the ID leakage model for the rest of the experiments.

AES_HD. For AES_HD, despite the low SNR, KGO finds one Oc-

cPoI at sample point 969. This sample point is highly correlated to

the hypothetical leakage model 𝑆𝑏𝑜𝑥−1 (𝑐𝑡15 ⊕ 𝑘∗
15
) ⊕ 𝑐𝑡11 among

2
Note that CPA is used under a known key setting to understand the OccPoIs provided

by KGO and should not consider KGO as a competing technique.

(a) 𝐻𝑊 (𝑆𝑏𝑜𝑥 (𝑝𝑡 ⊕ 𝑘∗)) . (b)𝑀𝑆𝐵 (𝑆𝑏𝑜𝑥 (𝑝𝑡 ⊕ 𝑘∗)) .

(c) 𝐿𝑆𝐵 (𝑆𝑏𝑜𝑥 (𝑝𝑡 ⊕ 𝑘∗)) . (d) 𝑝𝑡 ⊕ 𝑘∗.

Figure 3: CPA on the sample point 1365 using different leak-
age models with respect to the number of traces for the CW
dataset (ID).

all the other keys (see Figure 4a). This validates that the OccPoIs ob-

tained through KGO are leaking concerning CPA, even on datasets

with low SNR running on FPGA.

6.2.2 First-order Masked Setting. Next, we apply KGO to masking

datasets. For comparison, we run correlation with the same leakage

model used in [11] for the ASCAD datasets.

ASCADf. First, we observe the OccPoIs obtained through KGO

on the ASCADf dataset. There are 5 OccPoIs that the DNN regard as

important for key recovery, namely sample points 149, 168, 179, 515,

and 516. We observe from Figure 4b that the OccPoIs are situated

where the shares are primarily leaking. These points consists of

leakage of the shares 𝑆𝑏𝑜𝑥 (𝑝𝑡3 ⊕𝑘∗
3
) ⊕ 𝑟 and 𝑟 (see Figure 4c). All of

the sample points have a high correlation with 𝑆𝑏𝑜𝑥 (𝑝𝑡3 ⊕ 𝑘∗
3
) ⊕ 𝑟

while sample points 149, 168, and 179 have a high correlation with

𝑟 . We also note that these points contain leakages from 𝑆𝑏𝑜𝑥 (𝑝𝑡3 ⊕
𝑘∗

3
) ⊕ 𝑟𝑜𝑢𝑡 and 𝑟𝑜𝑢𝑡 (see Figure 4d). Sample points 168 and 516 have

the highest correlation with 𝑆𝑏𝑜𝑥 (𝑝𝑡3 ⊕ 𝑘∗
3
) ⊕ 𝑟𝑜𝑢𝑡 compared to

the other keys, while sample points 1491, 68, and 179 have a high

correlation with 𝑟𝑜𝑢𝑡 . However, we cannot know whether the DNN

used both leakages or only one of these leakages at these sample

points, and this remains an open question. We highlight that the

correlation results are obtained with the knowledge of mask, while

KGO does not need mask values to acquire these OccPoIs.

ASCADr. Lastly, KGO reveals that DNN could use sample points

that consist of other leakages to retrieve the secret key. In AS-

CADr, we observe that 6 OccPoIs are extracted by KGO, i.e., 445, 699

, 880, 914, 988, and 1318. The sample point 445 consists of leakage

on 𝑝𝑡3 ⊕ 𝑘∗
3
⊕ 𝑟𝑖𝑛 while the sample points 699, 880, 914, and 1318

consist of the leakage 𝑟𝑖𝑛 (see Figure 5a). However, we note that

CPA cannot distinguish the leakages of 𝑝𝑡3 ⊕ 𝑘∗
3
⊕ 𝑟𝑖𝑛 among other

keys (see sample point 445 in Figure 5b). Despite that, the DNN can

still use this point to retrieve the key. This is similar to the scenario

with the CW dataset trained on the ID leakage model. Furthermore,

the sample point 988 does not correlate highly with 𝑝𝑡3 ⊕ 𝑘∗
3
⊕ 𝑟𝑖𝑛

and 𝑟𝑖𝑛 . Moreover, from Figure 5a, sample point 988 is not corre-

lated highly with any of the abstract leakage models tested, yet

the DNN requires this sample point to obtain the secret key. This

6

(a) CPA with respect to sample
points for AES_HD.

(b) Correlation with different
leakage model vs OccPoIs for AS-
CADf.

(c) CPA of 𝑆𝑏𝑜𝑥 (𝑝𝑡3 ⊕ 𝑘∗
3
) ⊕ 𝑟

and 𝑟 on OccPoIs for ASCADf.
(d) CPA of 𝑆𝑏𝑜𝑥 (𝑝𝑡3 ⊕ 𝑘∗

3
) ⊕ 𝑟𝑜𝑢𝑡

and 𝑟𝑜𝑢𝑡 on OccPoIs for ASCADf.

Figure 4: Explainability of DNN in AES_HD and ASCADf.

(a) Correlation with different
leakage model vs OccPoIs.

(b) CPA of 𝑝𝑡3 ⊕𝑘∗
3
⊕ 𝑟𝑖𝑛 and 𝑟𝑖𝑛

on OccPoIs.

Figure 5: CPA in ASCADr.

means that the DNN manages to extract complicated information

from the sample point 988. Overall, we show that KGO reveals

sample points that help an evaluator identify the points that may

have been missed when evaluating with known leakage models

using first-order CPA. Furthermore, the first-order CPA requires the

knowledge of the mask to knowwhere the PoIs are located but KGO

works without any knowledge of the mask. Therefore, using KGO

provides sample points that are exploitable by DNN. This allows

evaluators and designers to better understand the leakage profile

of their cryptographic implementation, especially since DNN could

learn intricate information about the secret key.

7 EXPLOITATION OF OCCPOIS WITH THE
TEMPLATE ATTACK

Since the number of OccPoIs is much smaller than the total num-

ber of sample points and DNN could recover the secret key from

these sample points, we ask the question if these could be used as

features to improve classical SCA like TA. Therefore, we compare

KGO with classical feature selection methods like SOSD, SOST, and

Pearson Correlation (denoted as CPA throughout this section). We

refer readers to Appendix A.1 for the exact details of these feature

selections used. Since KGO is an explainability technique, we also

compare it with other known explainability techniques that are

used for general DNN to extract relevant sample points. These ex-

plainability techniques are the attribution-based methods such as

Saliency Map, LRP, and 1-Occlusion. For simplicity, we will call

both these attribution-based explainability techniques and classical

Table 3: 𝑁𝑇𝐺𝐸 of the TA when using various feature selection
techniques.

CW ASCADf ASCADr AES_HD

SOSD 3 > 10𝑘 (𝐺𝐸 = 2) > 100𝑘 (𝐺𝐸 = 103) 2623

SOST 9 > 10𝑘 (𝐺𝐸 = 68) > 100𝑘 (𝐺𝐸 = 51) 2718

CPA (first-order) 11 > 10𝑘 (𝐺𝐸 = 67) > 100𝑘 (𝐺𝐸 = 162) 2809

CPA (multi.) - 367 7184 -

Saliency 9 > 10𝑘 (𝐺𝐸 = 248) > 100𝑘 (𝐺𝐸 = 210) 3515

LRP 8 > 10𝑘 (𝐺𝐸 = 100) 50061 2265
1-Occlusion 18 > 10𝑘 (𝐺𝐸 = 162) > 100𝑘 (𝐺𝐸 = 7) 3381

KGO 10 313 42991 6176

feature selection methods simply feature selection methods unless

it is necessary to differentiate between them.

Threat Model. We adopt a threat model in which an attacker has

access to both profiling traces and attack traces. In addition, we

assume that the attacker has retrieved the sample points for each

feature selection technique independently. Finally, we select the

relevant features and investigate key recovery using TA.
3

Experimental Results. We select the top 𝜔 sample points from

the other feature selection techniques indicated to compare with

KGO. The number of sample points 𝜔 selected by KGO can be

found in Table 2 in Section 6. Throughout the paper, we use the

library called INNvestigate [1] to apply the Saliency Map and LRP.

In our experiments, we apply first-order CPA for all datasets and

normalized multivariate second-order CPA with the multiplication

of sample points as the combining function for the protected dataset

with masking order 1 like the ASCADf and ASCADr datasets. We

denote the first-order CPA as CPA (first-order) and the multivariate

second-order CPA as CPA (multi.).

We present the number of traces TA requires to obtain 𝐺𝐸 = 0,

also known as 𝑁𝑇𝐺𝐸 , when applying the corresponding feature

selection technique for each dataset in Table 3. We observe that the

OccPoIs obtained through KGO can successfully recover the key

for all datasets. While SOSD obtained the best 𝑁𝑇𝐺𝐸 for the CW

dataset and LRP obtained the best results for AES_HD, KGO obtains

competitive results with second-order CPA for ASCADf. In fact,

KGO obtains superior results for ASCADf (see Table 3). We observe

that for both Saliency and 1-Occlusion, we obtain 𝐺𝐸 = 0 for

unprotected datasets, but the𝐺𝐸 did not converge at all for the first-

order masking implementation - ASCADf and ASCADr. For LRP, it

obtains𝐺𝐸 = 0 for the unprotected datasets and ASCADr but fails

to obtain a𝐺𝐸 = 0 for ASCADf. In other words, KGO obtains stable

results compared with all other explainability methods, especially

when used on datasets protected with first-order masking. This

demonstrates that the OccPoIs obtained through KGO are applicable

as a feature selection tool for TA on synchronized traces, especially

for implementation with first-order masking.

Non-overfitting DNN.. It was reported by Masure et al. [17] that

non-overfitting DNN provides better visualization for the Saliency

Map when applying on first-order masking datasets like ASCADf

and ASCADr. Therefore, we explore how this affects the feature

selection process. We run the same DNN architecture and use the

3
For feature selection that requires a known key setting (i.e., CPA and KGO), we follow

the assumption used in [36].

7

Table 4: The number of OccPoIs 𝜔 obtained by KGO for non-
overfitting DNN.

ASCADf ASCADr

Total sample points 700 1400

𝜔 31 36

(a) CPA concerning sample points. (b) GE when applying 1-KGO.

(c) CPA of 𝑆𝑏𝑜𝑥 (𝑝𝑡3 ⊕ 𝑘∗
3
) ⊕ 𝑟

and 𝑟 on OccPoIs.
(d) CPA of 𝑆𝑏𝑜𝑥 (𝑝𝑡3 ⊕ 𝑘∗

3
) ⊕ 𝑟𝑜𝑢𝑡

and 𝑟𝑜𝑢𝑡 on OccPoIs.

Figure 6: Explainability of non-overfitting DNN in ASCADf.

smallest epoch number required to obtain 𝐺𝐸 = 0. We show this

on datasets with masked implementation, namely ASCADf and

ASCADr, as Masure et al. reported that the issue only arises in this

scenario.

The leakages of these OccPoIs are similar to those explained

in Section 6.2. The OccPoIs and their leakages are illustrated in

Figures 6 and 7. The number of OccPoIs 𝜔 selected as essential for

key recovery by KGO on DNN that are non-overfitting can be found

in Table 4. We obtain 31 OccPoIs for the ASCADf dataset when

using the non-overfitted DNN and observe that the OccPoIs found

in the ASCADf dataset are situated around the 𝑆𝑏𝑜𝑥 (𝑝𝑡3 ⊕ 𝑘∗
3
) ⊕ 𝑟

and 𝑟 or the 𝑆𝑏𝑜𝑥 (𝑝𝑡3 ⊕ 𝑘∗
3
) ⊕ 𝑟𝑜𝑢𝑡 and 𝑟𝑜𝑢𝑡 . This means that the

DNN can explicitly combine these shares. In addition, there exist

some points that the DNN considers important that are not shown

in first-order CPA, namely sample points 190, 250, 365, 390, and 407.

These are still as relevant to the DNN, meaning the DNN learns

more complex information from these points that we could not

obtain from first-order CPA.

On the other hand, we acquire 36 OccPoIs for the ASCADr

dataset when using a non-overfitting DNN. Similarly, we obtained

OccPoIs with high correlation 𝑆𝑏𝑜𝑥 (𝑝𝑡3 ⊕ 𝑘∗
3
) ⊕ 𝑟 and 𝑟 (see Fig-

ure 7c) or 𝑆𝑏𝑜𝑥 (𝑝𝑡3 ⊕ 𝑘∗
3
) ⊕ 𝑟𝑜𝑢𝑡 and 𝑟𝑜𝑢𝑡 (see Figure 7b). There are

also OccPoIs which contains the leakage of 𝑝𝑡3 ⊕𝑘∗
3
⊕𝑟𝑖𝑛 and 𝑟𝑖𝑛 , es-

pecially the sample points 820, 821, 824, 854, and 860 (see Figure 7d).

We also observe that some OccPoIs have a very low correlation

with the leakage model tested. For example, the OccPoIs on 603, 642,

and 648 are located in the area not picked up by first-order CPA (see

Figure 7a). This means there are leakages in these sample points

that the DNN found that the first-order CPA fails to capture.

Next, we explore if the OccPoIs can still be exploited even when

the DNN is non-overfitted. The 𝑁𝑇𝐺𝐸 required by TA for using the

different feature selection methods by extracting 𝜔 sample points

(a) CPA concerning sample
points.

(b) CPA of 𝑝𝑡3 ⊕𝑘∗
3
⊕ 𝑟𝑖𝑛 and 𝑟𝑖𝑛 on

OccPoIs.

(c) CPA of 𝑆𝑏𝑜𝑥 (𝑝𝑡3 ⊕ 𝑘∗
3
) ⊕ 𝑟

and 𝑟 on OccPoIs.
(d) CPA of 𝑆𝑏𝑜𝑥 (𝑝𝑡3 ⊕ 𝑘∗

3
) ⊕ 𝑟𝑜𝑢𝑡

and 𝑟𝑜𝑢𝑡 on
OccPoIs.

Figure 7: Explainability of non-overfitting DNN in ASCADr.

Table 5: 𝑁𝑇𝐺𝐸 of the TA for non-overfitting DNN using vari-
ous explainability techniques.

ASCADf ASCADr

SOSD 3311 > 100𝑘 (𝐺𝐸 = 117)

SOST > 10𝑘 (𝐺𝐸 = 2) 7937

CPA (first-order) > 10𝑘 (𝐺𝐸 = 25) > 100𝑘 (𝐺𝐸 = 50)

CPA (multi.) 2707 5427

Saliency > 10𝑘 (𝐺𝐸 = 1) 22631

LRP 1496 > 100𝑘 (𝐺𝐸 = 118)

1-Occlusion 2775 10763

KGO 1197 10807

can be found in Table 5. Among the explainability techniques, KGO

and 1-Occlusion attain the 𝐺𝐸 = 0 for both the ASCADf and AS-

CADr datasets. However, we recall that 1-Occlusion obtains𝐺𝐸 ≠ 0

when DNN are overfitted (see Table 3). On the other hand, Saliency

Map did not achieve 𝐺𝐸 = 0 for ASCADf, and LRP did not manage

to recover the key with𝐺𝐸 > 0 for ASCADr. Therefore, these show

that KGO is a better feature selection technique compared to other

explainability techniques in choosing the relevant sample points

regardless if DNN is overfitted to the profiling data.

8 TRACES WITH DESYNCHRONIZATION
In this section, we explore the OccPoIs for desynchronized datasets

and provide the visualization of these OccPoIs through the 1-KGO

algorithm. Currently, to know which sample points are leaking for

desynchronized traces, one could resynchronize them and apply

CPA or Signal-to-Noise ratio (SNR) to observe any leakage. How-

ever, the process of resynchronizing the traces is tedious. Therefore,

it is desirable to have a tool that can observe which sample points

are leaking without any additional analysis. For an unprotected case

with a large enough number of traces, an evaluator could obtain

the PoIs without resynchronizing the traces [10]. However, when

it comes to identifying the PoIs of traces from implementations

that are protected by both desynchronization and masking, it is

not possible without resynchronizing the trace [10]. Through the

explainability methods, we hope to find out the positions where the

8

(a) Saliency Map for AS-
CADf_desync50.

(b) 1-KGO of DNN for AS-
CADf_desync50.

(c) Saliency Map for AS-
CADf_desync100.

(d) 1-KGO of DNN for AS-
CADf_desync100

Figure 8: Explainability of DNN for ASCADf with desynchro-
nization.

leakages are. Although Masure et al. explored the use of a Saliency

Map in an unprotected dataset and showed that the desynchro-

nization is observable in the unprotected case [17], to the best of

our knowledge, there are no works that explore the use of explain-

ability techniques to visualize leakages within each sample points

for datasets with desynchronization and masking protection. We

investigate the ASCADf and ASCADr datasets with a desynchro-

nization level of 50 and 100. We will present the results specifically

for ASCADf (i.e., ASCADf_desync50 and ASCADf_desync100) as

both datasets provide similar observations.

To observe how much contribution each OccPoIs has toward re-

trieving the secret key, we apply 1-KGO. Both 1-KGO and Saliency

Map results are provided in Figure 8 for ASCADf_desync50 and

ASCADf_desync100. We observe that the number of OccPoIs is still

relatively small compared to the total number of samples. There

are only 32 OccPoIs for ASCADf_desync50 and 60 OccPoIs for AS-

CADf_desync100 out of the 700 sample points. Most sample points

acquired by KGO are similar to those by Saliency Map. However,

we observe that some sample points with a relatively low relevance

value in Saliency Map are attained by KGO. For example, the sam-

ple point 4 is picked up by KGO in ASCADf_desync50 (the first

sample point on Figure 8b) while with Saliency Map, it gives a

value relative lower than all the rest of the sample points. An eval-

uator may interpret this sample point as not useful for the DNN

in recovering the secret key. Similarly, in ASCADf_desync100, the

sample points around 300 could be missed if an evaluator interprets

those points as irrelevant because the Saliency Map presents these

sample points with the lowest relevance values. Therefore, this

gives the evaluator a false sense of security when using Saliency

Map. In fact, all other attribution-based methods could provide the

user with the wrong interpretation [14]. This is because attribution-

based methods provide feature importance without any context

in a human-interpretable way. On the other hand, KGO provides

confidence that the OccPoIs are necessary for the DNN to recover

the secret key by introducing the attack phase into consideration.

Table 6: Time taken to run KGO.

CW ASCADf ASCADr AES_HD

Time Taken (hrs) 26.3 21.3 227.7 44.9

9 LIMITATIONS
Although the KGO algorithm helps find the minimal set of features

that the DNN requires to retrieve the key, there is still a trade-

off in terms of time. Given the time complexity of running the

DNN on the attack traces as 𝑀 , the time complexity of the KGO

algorithm is 𝑂 (𝐷 ∗ |Z|𝑙𝑔 |Z| + 𝐷 ∗𝑀). The total time to run the

KGO algorithm is presented in Table 6. We ran this according to the

experimental setup presented in Section 5 on four Nvidia GeForce

GTX 970 together with four Intel Core i5-4460 running at 3.2GHz

with only one thread each.

If we consider KGO as a feature selection technique instead of

just an explainability technique, the drawback of this technique is

the inability to choose the number of sample points. Even so, the

number of OccPoIs acquired by KGO is small in comparison to the

total number of sample points in the traces. This means that using

the OccPoIs still increases the efficiency of TA. Another drawback is

that KGO only gives importance to a very small set of points, unlike

other explainability technique, which gives different importance

to all the sample points. Furthermore, it does not mean the sample

points are not leaking if KGO does not consider them. In fact, there

might be more than one minimal set in which the DNN manages

to recover the secret key. Despite that, knowing at least one set

of points needed by the DNN to obtain the secret key through

the KGO algorithm allows evaluators to know which area requires

further protection to increase the security of the cryptographic

implementation.

10 CONCLUSION AND FUTUREWORK
In this paper, we propose a novel explainability technique called

KGO, which is executed by occluding the sample point one by one.

The KGO algorithm helps us to obtain a set of relevant sample points

for DNN to retrieve the secret key known as OccPoIs. Through these

OccPoIs, we can observe what kind of leakage these sample points

contain for the DNN to recover the key. Some of these sample

points are highly correlated to the hypothetical leakage model.

We also observe that there exist sample points that the DNN can

use to recover the secret key which cannot be detected by CPA.

Next, we show that KGO could be used as a feature selection tool

for TA on synchronized traces. Moreover, our approach obtains

superior results for ASCADf compared to other methods. We also

demonstrated that KGO could be used on desynchronized traces to

visualize the leakages evenwhen the implementation is protected by

first-order masking. In addition, since KGO directly encompasses

the running of 𝐺𝐸 into the algorithm, it provides confidence to

the evaluators in areas leaking secret information, unlike other

attribution-based methods.

Since KGO is a heuristic algorithm to obtain the minimum set

of relevant sample points for key recovery, one could try to find

a faster algorithm to find more sets of OccPoIs from the DNN. A

possible approach could be using the occluding window of sample

points first before switching to a single sample point. One could

9

also study how to incorporate the attack phase into the attribution-

based methods to provide importance for every sample point that

gives human-interpretable context. Lastly, one could investigate the

complex leakage model DNN uses to retrieve the key that first-order

CPA fails to obtain in order to protect against DLSCA.

REFERENCES
[1] Maximilian Alber, Sebastian Lapuschkin, Philipp Seegerer, Miriam Hägele,

Kristof T. Schütt, GrégoireMontavon,Wojciech Samek, Klaus-Robert Müller, Sven

Dähne, and Pieter-Jan Kindermans. 2019. iNNvestigate Neural Networks! Journal
of Machine Learning Research 20, 93 (2019), 1–8. http://jmlr.org/papers/v20/18-

540.html

[2] Amazon. 2021. Model Explainability with AWSArtificial Intelligence andMachine

Learning Solutions. https://docs.aws.amazon.com/whitepapers/latest/model-

explainability-aws-ai-ml/interpretability-versus-explainability.html

[3] Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. 2018. Towards

better understanding of gradient-based attribution methods for Deep Neural

Networks. arXiv:1711.06104 [cs.LG]

[4] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,

Klaus-Robert Müller, and Wojciech Samek. 2015. On pixel-wise explanations for

non-linear classifier decisions by layer-wise relevance propagation. PloS one 10,
7 (2015), e0130140.

[5] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile

Dumas. 2020. Deep learning for side-channel analysis and introduction to ASCAD

database. J. Cryptogr. Eng. 10, 2 (2020), 163–188. https://doi.org/10.1007/s13389-

019-00220-8

[6] Nadia Burkart and Marco F. Huber. 2021. A Survey on the Explainability of

Supervised Machine Learning. Journal of Artificial Intelligence Research 70 (jan

2021), 245–317. https://doi.org/10.1613/jair.1.12228

[7] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. 2017. Convolutional Neural

Networks with Data Augmentation Against Jitter-Based Countermeasures. In

Cryptographic Hardware and Embedded Systems – CHES 2017, Wieland Fischer

and Naofumi Homma (Eds.). Springer International Publishing, Cham, 45–68.

[8] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. 2003. Template Attacks. In

Cryptographic Hardware and Embedded Systems - CHES 2002, Burton S. Kaliski,

çetin K. Koç, and Christof Paar (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-

berg, 13–28.

[9] Omar Choudary and Markus G Kuhn. 2014. Efficient template attacks. In Smart
Card Research and Advanced Applications: 12th International Conference, CARDIS
2013, Berlin, Germany, November 27-29, 2013. Revised Selected Papers 12. Springer,
253–270.

[10] Nicolas Debande, Youssef Souissi, Maxime Nassar, Sylvain Guilley, Thanh-Ha

Le, and Jean-Luc Danger. 2011. “Re-synchronization by moments”: An efficient

solution to align Side-Channel traces. In 2011 IEEE International Workshop on In-
formation Forensics and Security. 1–6. https://doi.org/10.1109/WIFS.2011.6123143

[11] Maximilian Egger, Thomas Schamberger, Lars Tebelmann, Florian Lippert, and

Georg Sigl. 2022. A Second Look at the ASCAD Databases. In Constructive Side-
Channel Analysis and Secure Design, Josep Balasch and Colin O’Flynn (Eds.).

Springer International Publishing, Cham, 75–99.

[12] Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. 2006. Templates vs.

Stochastic Methods. In Cryptographic Hardware and Embedded Systems - CHES
2006, Louis Goubin and Mitsuru Matsui (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 15–29.

[13] Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael Specter, and

Lalana Kagal. 2019. Explaining Explanations: An Overview of Interpretability of

Machine Learning. arXiv:1806.00069 [cs.AI]

[14] Yash Goyal, Amir Feder, Uri Shalit, and Been Kim. 2020. Explaining Classifiers

with Causal Concept Effect (CaCE). arXiv:1907.07165 [cs.LG]

[15] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. 2019. Deep Neural Net-

work Attribution Methods for Leakage Analysis and Symmetric Key Recovery.

Cryptology ePrint Archive, Report 2019/143. https://eprint.iacr.org/2019/143.

[16] Liran Lerman, Romain Poussier, Gianluca Bontempi, Olivier Markowitch, and

François-Xavier Standaert. 2015. Template attacks vs. machine learning revis-

ited (and the curse of dimensionality in side-channel analysis). In International
Workshop on Constructive Side-Channel Analysis and Secure Design. Springer,
20–33.

[17] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. 2019. Gradient Visualization

for General Characterization in Profiling Attacks. In Constructive Side-Channel
Analysis and Secure Design, Ilia Polian and Marc Stöttinger (Eds.). Springer Inter-

national Publishing, Cham, 145–167.

[18] Colin O’Flynn and Zhizhang David Chen. 2014. ChipWhisperer: An Open-Source

Platform for Hardware Embedded Security Research. In International Workshop
on Constructive Side-Channel Analysis and Secure Design.

[19] Guilherme Perin, Ileana Buhan, and Stjepan Picek. 2020. Learning when to stop: a

mutual information approach to fight overfitting in profiled side-channel analysis.

Cryptology ePrint Archive, Report 2020/058. https://eprint.iacr.org/2020/058.

[20] Guilherme Perin, Lichao Wu, and Stjepan Picek. 2022. I Know What Your

Layers Did: Layer-wise Explainability of Deep Learning Side-channel Analysis.

Cryptology ePrint Archive, Paper 2022/1087. https://eprint.iacr.org/2022/1087

https://eprint.iacr.org/2022/1087.

[21] Stjepan Picek, Annelie Heuser, Alan Jovic, and Lejla Batina. 2019. A Systematic

Evaluation of Profiling Through Focused Feature Selection. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 27, 12 (2019), 2802–2815. https:

//doi.org/10.1109/TVLSI.2019.2937365

[22] Stjepan Picek, Annelie Heuser, Alan Jovic, Simone A. Ludwig, Sylvain Guilley,

Domagoj Jakobovic, and Nele Mentens. 2017. Side-channel analysis and machine

learning: A practical perspective. In 2017 International Joint Conference on Neural
Networks (IJCNN). 4095–4102. https://doi.org/10.1109/IJCNN.2017.7966373

[23] Oscar Reparaz, Benedikt Gierlichs, and Ingrid Verbauwhede. 2012. Selecting

Time Samples for Multivariate DPA Attacks. In Cryptographic Hardware and
Embedded Systems – CHES 2012, Emmanuel Prouff and Patrick Schaumont (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 155–174.

[24] Jorai Rijsdijk, Lichao Wu, Guilherme Perin, and Stjepan Picek. 2021. Reinforce-

ment Learning for Hyperparameter Tuning in Deep Learning-based Side-channel

Analysis. Cryptology ePrint Archive, Report 2021/071. https://ia.cr/2021/071.

[25] Unai Rioja, Lejla Batina, Jose Luis Flores, and Igor Armendariz. 2021. Auto-tune

POIs: Estimation of distribution algorithms for efficient side-channel analysis.

arXiv:2012.13225 [cs.CR]

[26] François-Xavier Standaert and Cedric Archambeau. 2008. Using Subspace-Based

Template Attacks to Compare and Combine Power and Electromagnetic Informa-

tion Leakages. In Cryptographic Hardware and Embedded Systems – CHES 2008,
Elisabeth Oswald and Pankaj Rohatgi (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 411–425.

[27] Daan van der Valk, Stjepan Picek, and Shivam Bhasin. 2021. KilroyWas Here: The

First Step Towards Explainability of Neural Networks in Profiled Side-Channel

Analysis. In Constructive Side-Channel Analysis and Secure Design, Guido Marco

Bertoni and Francesco Regazzoni (Eds.). Springer International Publishing, Cham,

175–199.

[28] Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel. 2020.

Revisiting a Methodology for Efficient CNN Architectures in Profiling Attacks.

IACR Transactions on Cryptographic Hardware and Embedded Systems 2020, 3
(Jun. 2020), 147–168. https://doi.org/10.13154/tches.v2020.i3.147-168

[29] Lichao Wu, Guilherme Perin, and Stjepan Picek. 2020. I Choose You: Automated

Hyperparameter Tuning for Deep Learning-based Side-channel Analysis. IACR
Cryptol. ePrint Arch. 2020 (2020), 1293.

[30] Lichao Wu, Guilherme Perin, and Stjepan Picek. 2022. The Best of Two Worlds:

Deep Learning-assisted Template Attack. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2022, 3 (Jun. 2022), 413–437. https://doi.org/10.

46586/tches.v2022.i3.413-437

[31] Lichao Wu, Yoo-Seung Won, Dirmanto Jap, Guilherme Perin, Shivam Bhasin,

and Stjepan Picek. 2021. Explain Some Noise: Ablation Analysis for Deep

Learning-based Physical Side-channel Analysis. Cryptology ePrint Archive,

Report 2021/717. https://eprint.iacr.org/2021/717.

[32] Trevor Yap, Adrien Benamira, Shivam Bhasin, and Thomas Peyrin. 2022. Peek

into the Black-Box: Interpretable Neural Network using SAT Equations in Side-

Channel Analysis. Cryptology ePrint Archive, Paper 2022/1247. https://eprint.

iacr.org/2022/1247 https://eprint.iacr.org/2022/1247.

[33] Gabriel Zaid, Lilian Bossuet, Mathieu Carbone, Amaury Habrard, and Alexandre

Venelli. 2022. Conditional Variational AutoEncoder based on Stochastic Attack.

Cryptology ePrint Archive, Report 2022/232. https://ia.cr/2022/232.

[34] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli. 2019.

Methodology for Efficient CNN Architectures in Profiling Attacks. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems 2020, 1 (Nov. 2019),
1–36. https://doi.org/10.13154/tches.v2020.i1.1-36

[35] Matthew D Zeiler and Rob Fergus. 2013. Visualizing and Understanding Convo-

lutional Networks. https://doi.org/10.48550/ARXIV.1311.2901

[36] Yingxian Zheng, Yongbin Zhou, Zhenmei Yu, Chengyu Hu, and Hailong Zhang.

2015. How to Compare Selections of Points of Interest for Side-Channel Distin-

guishers in Practice?. In Information and Communications Security, Lucas C. K.
Hui, S. H. Qing, Elaine Shi, and S. M. Yiu (Eds.). Springer International Publishing,

Cham, 200–214.

10

http://jmlr.org/papers/v20/18-540.html
http://jmlr.org/papers/v20/18-540.html
https://docs.aws.amazon.com/whitepapers/latest/model-explainability-aws-ai-ml/interpretability-versus-explainability.html
https://docs.aws.amazon.com/whitepapers/latest/model-explainability-aws-ai-ml/interpretability-versus-explainability.html
https://arxiv.org/abs/1711.06104
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1613/jair.1.12228
https://doi.org/10.1109/WIFS.2011.6123143
https://arxiv.org/abs/1806.00069
https://arxiv.org/abs/1907.07165
https://eprint.iacr.org/2019/143
https://eprint.iacr.org/2020/058
https://eprint.iacr.org/2022/1087
https://eprint.iacr.org/2022/1087
https://doi.org/10.1109/TVLSI.2019.2937365
https://doi.org/10.1109/TVLSI.2019.2937365
https://doi.org/10.1109/IJCNN.2017.7966373
https://ia.cr/2021/071
https://arxiv.org/abs/2012.13225
https://doi.org/10.13154/tches.v2020.i3.147-168
https://doi.org/10.46586/tches.v2022.i3.413-437
https://doi.org/10.46586/tches.v2022.i3.413-437
https://eprint.iacr.org/2021/717
https://eprint.iacr.org/2022/1247
https://eprint.iacr.org/2022/1247
https://eprint.iacr.org/2022/1247
https://ia.cr/2022/232
https://doi.org/10.13154/tches.v2020.i1.1-36
https://doi.org/10.48550/ARXIV.1311.2901

A APPENDIX
A.1 Feature Selection
In this section, we recall classical feature selection techniques used

in SCA. We let 𝑥 be a single sample point in the trace.

SOSD. Gierlichs et al. [12] defined the sum of squared differences

(SOSD) as

𝑆𝑂𝑆𝐷 (𝑥,𝑦) =
|Z |∑︁
𝑖, 𝑗=1,
𝑗>𝑖

(𝑥𝑦𝑖 − 𝑥𝑦 𝑗
)2

with 𝑥𝑦𝑖 being the mean of the sample point under the class 𝑦𝑖 .

SOST. Gierlichs et al. further introduced the normalized version

called the sum of squared T-differences (SOST) as

𝑆𝑂𝑆𝑇 (𝑥,𝑦) =
|Z |∑︁
𝑖, 𝑗=1,
𝑗>𝑖

(
𝑥𝑦𝑖 − 𝑥𝑦 𝑗√︂
𝜎2

𝑦𝑖

𝑛𝑦𝑖
+

𝜎2

𝑦𝑗

𝑛𝑦𝑗

)2

where 𝜎2

𝑦𝑖
is the variance of the sample point 𝑥 under the class 𝑦𝑖

and 𝑛𝑦𝑖 is the total number of traces in class 𝑦𝑖 .

Pearson Correlation. Pearson Correlation is used in the classical

non-profiling attack CPA. The Pearson Correlation is calculated as

𝑃𝑒𝑎𝑟𝑠𝑜𝑛(𝑥,𝑦) =
∑𝑁
𝑖=1

(𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)√︃∑𝑁
𝑖=1

(𝑥𝑖 − 𝑥)2

√︃∑𝑁
𝑖=1

(𝑦𝑖 − 𝑦)2

where 𝑁 denotes the number of traces used.

In [36], the authors considered Pearson Correlation as a feature

selection method and compared it with other classical feature se-

lection techniques. They observed that, in general, using Pearson

Correlation as a feature selection is the best. Throughout this paper,

when we use Pearson Correlation as a feature selection, we shall

call it CPA.

A.2 Datasets
In this paper, we consider datasets running the Advanced Encryp-

tion Standard (AES). We focus on attacking a single byte of the

secret key. Furthermore, we examine two common hypothetical

leakage models used in SCA: the Identity (ID) and the Hamming

Weight (HW) leakage model.

Chipwhisperer (CW). The Chipwhisperer dataset provides a stan-
dard comparison base for the evaluation of different algorithms [18].

The dataset we considered runs the unprotected AES-128 implemen-

tation on the Chipwhisperer CW308 Target. We shall denote this

dataset as CW throughout this paper. This dataset targets the first

byte in the first round of the AES substitution box, 𝑆𝑏𝑜𝑥 (𝑝𝑡 ⊕ 𝑘∗),
with a fixed key 𝑘∗. The dataset consists of 10000 traces. We use

8000 traces for profiling and 2000 traces for the attack. We use the

full 2000 attack traces to run the KGO algorithm.

ASCAD. The ASCAD dataset is a first-order masked AES im-

plementation on an 8-bit AVR microcontroller (ATMega8515) [5].

We target the third byte of the first round AES substitution box,

which we denote as 𝑆𝑏𝑜𝑥 (𝑝𝑡3 ⊕ 𝑘∗
3
) where 𝑝𝑡3 is the third plaintext

byte and 𝑘∗
3
is the third byte of the first round key. The dataset

contains two versions known as ASCADf and ASCADr. ASCADf

consists of fixed key traces, while ASCADr contains random key

traces for profiling while there is a fixed key for the attack phase.

For ASCADf and ASCADr, we use 45000 traces for profiling. In the

attack phase, we used 10000 attack traces for ASCADf and 100000

attack traces for ASCADr. Since running KGO is time-consuming,

we consider 55000 attack traces for ASCADr when applying the

KGO algorithm. This is also because the number of traces required

by our trained DNN to attain 𝐺𝐸 = 0 is less than 55000.

AES_HD. The AES_HD is an unprotected AES hardware imple-

mentation dataset executed on an FPGA in a round-based archi-

tecture. We target the last round leakage 𝑆𝑏𝑜𝑥−1 (𝑐𝑡15 ⊕ 𝑘∗
15
) ⊕ 𝑐𝑡11

where 𝑐𝑡𝑖 is the 𝑖
𝑡ℎ

ciphertext byte and 𝑘∗
15

is the 15
𝑡ℎ

byte of the

last round secret key. We consider the extended version but only

use 45000 traces for the profiling phase and 20000 traces out of the

50000 for the attack phase. For the KGO algorithm, we used 10000

attack traces to obtain the relevant points.

A.3 Details on DNN Architectures
Throughout this section, we denote 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 9 for the HW leakage

model and 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 256 for the ID leakage model, and “padding

= same” is padding evenly left and right such that the output has

the same dimension as the input. We use the same DNN architec-

ture for the CW dataset for both HW and ID leakage models. The

architecture is explained in Table 7.

Table 7: DNN architecture used for the CW dataset for both
HW and ID leakage models.

Layers Hyperparameters

Conv1D_1 Number of filters/channels out = 8, kernel size = 11, stride = 1, padding = same, activation = ReLU

Average Pooling kernel size = 2, stride = 2

Linear Regression 1 features out = = 128, activation = ReLU

Linear Regression 2 features out = = 128,activation = ReLU

Linear Regression 3 features out = 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 , activation = Softmax

Table 8: DNN architecture used for the ASCADf and ASCADr
datasets.

Layers Hyperparameters

Conv1D_1 Number of filters/channels out = 128, kernel size = 25, stride = 1, padding = same, activation = SeLU

Batch Normalization

Average Pooling kernel size = 25, stride = 25

Linear Regression 1 features out = 20, activation = SeLU

Linear Regression 2 features out = 15, activation = SeLU

Linear Regression 3 features out = 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 , activation = Softmax

We used the same architecture for ASCADf and ASCADr (Ta-

ble 8). For the AES_HD dataset, we use the same DNN architecture

as in Zaid et al. [34]. Details are in Table 9.

Table 9: DNN architecture used for the AES_HD dataset.

Layers Hyperparameters

Conv1D_1 Number of filters/channels out = 2, kernel size = 1, stride = 1, padding = same, activation = SeLU

Average Pooling kernel size = 4, stride = 4

Linear Regression 1 features out = 15, activation = SeLU

Linear Regression 2 features out = 10, activation = SeLU

Linear Regression 3 features out = 4, activation = SeLU

Linear Regression 4 features out = 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 , activation = Softmax

11

As for DNNs trained on the desynchronized datasets, we show

the architectures in Tables 10 and 11 for ASCADf_desync50 and

ASCADf_desync100, respectively.

Table 10: DNN architecture used for the ASCADf_desync50
dataset.

Layers Hyperparameters

Conv1D_1 Number of filters/channels out = 8, kernel size = 34, stride = 17, padding = same, activation = SeLU

Max Pooling kernel size = 2, stride = 2

Batch Normalization

Linear Regression 1 features out = 400, activation = SeLU

Linear Regression 2 features out = 400, activation = SeLU

Linear Regression 3 features out = 400, activation = SeLU

Linear Regression 4 features out = 400, activation = SeLU

Linear Regression 5 features out = 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 , activation = Softmax

Table 11: DNN architecture used for the ASCADf_desync100
dataset.

Layers Hyperparameters

Conv1D_1 Number of filters/channels out = 12, kernel size = 30, stride = 15, padding = same, activation = SeLU

Max Pooling kernel size = 2, stride = 2

Batch Normalization

Linear Regression 1 features out = 300, activation = SeLU

Dropout rate = 0.05

Linear Regression 2 features out = 300, activation = SeLU

Dropout rate = 0.05

Linear Regression 3 features out = 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 , activation = Softmax

12

	Abstract
	1 Introduction
	2 Background
	2.1 Notation and Terminology
	2.2 Profiling Attacks
	2.3 Explainability Techniques for Feature Importance in DNNs

	3 Related Works
	4 Key Guessing Occlusion (KGO)
	5 Experimental and Training Setting
	6 KGO's Explainability of DNN
	6.1 Understanding the Number of OccPoIs
	6.2 Validating Leakage within OccPoIs

	7 Exploitation of OccPoIs with the Template Attack
	8 Traces with Desynchronization
	9 Limitations
	10 Conclusion and Future Work
	References
	A Appendix
	A.1 Feature Selection
	A.2 Datasets
	A.3 Details on DNN Architectures

