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Abstract

We construct a succinct non-interactive argument (SNARG) for the class of monotone policy
batch NP languages under the Learning with Errors (LWE) assumption. This class is a subclass
of NP that is associated with a monotone function f : {0, 1}k → {0, 1} and an NP language L,
and contains instances (x1, . . . , xk) such that f(b1, . . . , bk) = 1 where bj = 1 if and only if xj ∈ L.
Our SNARGs are arguments of knowledge in the non-adaptive setting, and satisfy a new notion
of somewhere extractability against adaptive adversaries.

This is the first SNARG under standard hardness assumptions for a sub-class of NP that
is not known to have a (computational) non-signaling PCP with small locality. Indeed, our
approach necessarily departs from the known framework of constructing SNARGs dating back to
[Kalai-Raz-Rothblum, STOC ’13].

Our construction combines existing quasi-arguments for NP (based on batch arguments for
NP) with a novel ingredient which we call a predicate-extractable hash (PEHash) family. This
notion generalizes the notion of a somewhere extractable hash. Whereas a somewhere extractable
hash allows to extract a single input coordinate, our PEHash extracts a global property of the
input. We view this primitive to be of independent interest, and believe that it will find other
applications.
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1 Introduction

Succinct non-interactive arguments (SNARGs) are a powerful cryptographic primitive whose feasi-
bility is still poorly understood. Informally, a SNARG for an NP language L is a computationally
sound non-interactive argument system for L whose proofs are short (much shorter than the length
of an NP witness) and easy to verify.

In the random oracle model, it is known that there are SNARGs for every NP language [Kil92,
Mic94]. However, constructing SNARGs for NP in the “plain model” under falsifiable and preferably
standard cryptographic assumptions remains a grand challenge, and will require overcoming some
serious barriers [GW11]. As such, the main focus of this work is making progress on the following
question.

Which NP languages have SNARGs in the standard model?

Prior Positive Results. Constructing SNARGs in the standard model has received extensive
attention over the last 15 years, both in the privately verifiable [KR09, KRR14,KP16, BHK17,
BKK+18] and publicly verifiable [SW14,PR17,CCH+19,KPY19,JKKZ21,CJJ21b,CJJ21a,WW22]
settings. At this point in time, the achieved results in the privately and publicly verifiable settings
are similar,1 so we focus on the latter. There are two main results to summarize:

1. [KPY19,CJJ21a,KVZ21] construct SNARGs for a restricted class of NP languages: those that
have a (computational) non-signaling PCP with low locality,2 where the size of the SNARG
grows with the locality. This class of NP languages is known to include all languages in
P [KRR14,BHK17] and all languages with low (read-once) non-deterministic space complexity
[BKK+18].

2. [SW14] constructs a variant of SNARG for any NP language, with the following caveats:

• The scheme requires a (non-succinct) common reference string that is as large as the NP
verification circuit, and in particular as long as the instance and witness.

• The scheme is only non-adaptively sound; this means that an adversarial prover is only
unable to prove false statements that are fixed in advance (before the crs is sampled).

• The scheme is secure assuming (in addition to one-way functions) the existence of
indistinguishability obfuscation (iO) [BGI+01,GGH+13], which is not a falsifiable as-
sumption [GGSW13].3 This issue was partially circumvented by [JJ22] for some languages
in NP ∩ coNP.

• The scheme does not provide any knowledge extraction (or argument of knowledge)
guarantee. That is, it is not possible to argue that a convincing prover in their argument
system knows an NP witness for the statement x.

1There are some differences in the computational assumptions required for SNARGs in the two settings.
2Loosely speaking, a computational non-signaling PCP with locality ℓ consists of a distribution of answers for every

set of ℓ PCP queries q1, . . . , qℓ, with the guarantee that for any two sets of queries Q and Q′, each of size ℓ, the two
distributions of answers, when restricted to the queries Q ∩Q′ are computationally indistinguishable.

3There are constructions of iO under standard cryptographic hardness assumptions [JLS21] but these are assumed
to be hard for 2n-size adversaries (and thus can be falsified in time 2n), where n is the instance size of the SNARG.
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The Non-Signaling Barrier. Given result (1), it is natural to ask if we are already done –
does this give us SNARGs for NP? Probably not. It is unlikely that all languages in NP have
(computational) non-signaling PCPs with small locality. Indeed, it is known that if a language L has
a non-signaling PCP with locality ℓ then L is contained in DTIME(2ℓ) [DLN+04,KRR14]. Thus,
under widely believed complexity assumptions, there is no non-signaling PCP for all of NP with
non-trivial locality.

To explain why all previous SNARG constructions that are not based on iO are limited to
languages with (computational) non-signaling PCPs, we recognize that all these constructions follow
the same blueprint:

• Use cryptography to build a “quasi-argument system”, which is an argument system for 3SAT
with a weak soundness guarantee: any successful cheating prover P ∗ can be used to produce a
distribution of “locally satisfying assignments” for each set of at most ℓ variables, such that
the distributions are non-signaling.4 The argument size grows with the locality ℓ.

• Use an information-theoretic encoding of an NP instance x into a 3SAT formula ϕx such that
any locally satisfiable assignment distribution to ϕx gives an NP witness for x.

The power of this approach is inherently limited since deciding if a given formula ϕ has a locally
satisfying assignment distribution with locality ℓ can be done in time 2O(ℓ). Therefore, it is unlikely
that all languages in NP can be reduced to deciding local satisfiability. This limits the scope of
results in this framework to a strict subclass of NP.

In this work, we show how to modify the above approach and circumvent the known complexity-
theoretic barrier by making additional use of cryptography. More specifically, we replace
the information-theoretic encoding ϕx above with a cryptographic encoding. Our encoding ensures
that if ϕx has a locally satisfying assignment distribution that can be generated efficiently then we
can reconstruct from it a global satisfying assignment for ϕx and recover an NP witness for x. In
particular, even if we can can find a locally satisfying assignment for ϕx inefficiently, in time 2O(ℓ),
we can no longer deduce that x ∈ L.

Prior work beyond local satisfiability. The work of [KRR14] gives an information-theoretic
encoding of any (unbounded space) deterministic computation into a formula such that local
satisfiability implies global satisfiability. We remark that some follow-up works do make use of
cryptographic encodings, but not in order to achieve SNARGs for new languages:

• [KP16, BHK17, CJJ21a] use a cryptographic encoding based on collision-resistant hash
functions. This enables a reduced proof generation time from RAM computations, and allow
fast verification of computations over “delegated memory”.

• Encoding based on more sophisticated hash functions were used in [DGKV22,PP22,KLVW23]
to improve the efficiency of “batch argument systems” (BARGs), which led to other applications
such as a stronger notions of RAM delegation and constructions of incrementally verifiable
computation.

To reiterate, a non-signaling barrier remains: we have yet to obtain SNARGs for languages
that are not known to have corresponding non-signaling PCPs. In this work, we make use of new
cryptographic encodings to do precisely this.

4The distribution are non-signaling if for any (local) sets of variables I and J , the corresponding assignments xI

and xJ are computationally indistinguishable on the variables I ∩ J .
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1.1 Our Results

In this work, we go beyond the information-theoretic non-signaling approach and construct SNARGs
for new languages. More specifically, we construct a SNARG for the class of “monotone policy
BatchNP” languages, which is a subclass of NP defined as follows. Fix any NP language L with
witness relation R and any monotone function f . Let

L(k)f =
{
(x1, . . . , xk) : ∃(w1, . . . , wk) s.t. f(b1, . . . , bk) = 1, where bi = R(xi, wi)

}
.

That is, a statement (x1, . . . , xk) is in L
(k)
f if enough of the statements x1, . . . , xk are true to provide

a satisfying input assignment to f . SNARGs for monotone policy BatchNP generalize the notion of
batch arguments (BARGs) captured by the special case where f is the conjunction b1 ∧ b2 ∧ . . . ∧ bk.

Our main result is a construction of SNARGs for L(k)f for every f that has a polynomial-size monotone
circuit. We first state a version of our construction satisfying non-adaptive soundness.

Theorem 1.1 (informal, see Theorem 6.1). Assuming the polynomial hardness of learning with
errors (LWE), there exist non-adaptively sound SNARGs for monotone policy BatchNP for all
polynomial-size monotone circuit policies. Our SNARG has the following quantitative succinctness:

• The length of the SNARG proof is m · poly(λ) – growing with the length of a single NP witness
|wi|= m rather than k of them.

• The common reference string has length (m+ k) · poly(λ).

In particular, the proof length of our SNARG matches the efficiency of BARGs, and achieving
sublinear dependence on m would imply SNARGs for NP (by setting k = 1).

Our SNARG additionally has the following properties:

1. Short CRS for low-width C. The crs length in Theorem 1.1 can actually be reduced to
(m+min{k,width(C)}) · poly(λ), where width(C) is the width of the monotone circuit C.5

In our circuit model (see Section 4), we allow wires in the (i+ 1)th layer to be computed from
wires in the ith layer along with the input layer. This allows for sublinear circuit width which
corresponds roughly to the space complexity of the evaluation of C.

As a result, for circuits of width poly(λ, log k), we obtain a fully succinct crs, as in BARGs.

2. Argument of Knowledge. Our SNARG is an argument of knowledge. Namely, for any
prover that convinces the verifier to accept some non-adaptively chosen statement (x1, . . . , xk)
there exists a PPT extractor that extracts valid witnesses for a subset J ⊆ [k] of the instances,
such that f(b1, . . . , bk) = 1, where bj = 1 if and only if j ∈ J .

3. Efficient Verification. In our protocol, the verifier runs in time polynomial in the proof
length plus time linear in the length of the input (C, x1, . . . , xk). When the input has a
succinct representation (or if the verifier has a hash of (C, x1, . . . , xk)), verification is even
faster.

5In fact, the crs length can be compressed down to a more delicate complexity measure of the circuit C related to
“necessary subsets.”
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Importantly, we remark that Theorem 1.1 appears to be beyond the reach of the framework used
by previous SNARG constructions, dating back to [KRR13]. Instead, we introduce a new technique
for building SNARGs that we believe is of independent interest and likely to be used to obtain
SNARGs for other NP languages.

Our new approach. To go beyond the non-signaling barrier, we use cryptography to ensure
that local satisfiability holds and that a specific global predicate is satisfied. Unlike prior work
(such as [KRR14]), our global predicate depends on the instance x. In our scheme, we encrypt a
description of a predicate P in the crs, which allows us to change it in the analysis to a predicate
Px that depends on x. In fact, we make use of Px that is not even efficiently computable given x; as
long as Px has a short description, we can hard-wire it in the analysis.

Somewhere Argument of Knowledge. Theorem 1.1 above achieves non-adaptive soundness
(and argument of knowledge). We strengthen our result to achieve a variant of soundness against
provers that can choose the statements x1, . . . , xk adaptively based on the common reference string.
We consider a relaxation of adaptive soundness called somewhere extractability, generalizing the
notion of somewhere extractability for batch arguments.

Theorem 1.2 (informal, see Theorem 7.1). Assuming the polynomial hardness of learning with
errors, there exist somewhere extractable SNARGs for monotone policy BatchNP where the common
reference string is of size (m+ k) · poly(λ).

We define somewhere extractable SNARGs for L(k)f with respect to “necessary subsets” for
the policy f . We say that a subset J ⊂ [k] is necessary for f if every input b1, . . . , bk satisfying
f(b1, . . . , bk) = 1 has the property that bj = 1 for some j ∈ J . For example, if f is the conjunction
b1 ∧ b2 ∧ . . . ∧ bk, then every non-empty subset of [k] is necessary.

Our somewhere extractability property requires that for every necessary subset J ⊂ [k], it
is possible to sample a computationally indistinguishable common reference string crsJ that is
extractable on J in the following sense: if the prover adaptively chooses statements x1, . . . , xk and
provides a proof π for (x1, . . . , xk), then it is possible to extract a valid NP witness wj for some
j ∈ J . In general, even an honest prover may not have a witness for multiple indices in J , so
we cannot hope to extract more than one such witness. Relatedly, we remark that the common
reference string in Theorem 1.2 must, in general, grow with k. This is because the common reference

string crsJ must encode the set J , and the number of necessary subsets for a language L(k)f may be
exponential in k.

Our somewhere extractability property immediately implies that if the crs is sampled to be
extractable on J , an adversarial prover P ∗ cannot produce statements x1, . . . , xk and an accepting
proof π such that xj ̸∈ L for all j ∈ J . Since this property is testable in time 2m, under a
subexponential security assumption the same must hold when the crs is sampled honestly. However,
this is still weaker than a full adaptive soundness property: in principle, an adaptive adversary may

still be able to prove a false statement (x1, . . . , xk) /∈ L(k)f such that the “violated” necessary subset
J depends adaptively on the crs.

Comparison with [SW14]. Compared to the general NP SNARG result of [SW14], our results
above (1) achieve significantly shorter common reference string for all monotone batch NP languages
(as [SW14] requires a crs of size k ·m ≫ k +m) and sometimes achieve a fully compact crs (for
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width(C) ≤ poly(λ, log k)), (2) achieve forms of somewhere extractability (with a crs of size k+m),
and (3) rely on the (polynomial) hardness of LWE instead of indistinguishability obfuscation.

Low-depth Monotone Policies. Theorem 1.1 and Theorem 1.2 give SNARGs for BatchNP with
policy implemented by any (polynomial-size) monotone circuit. We remark that the need to go
beyond non-signaling comes from handling circuits C that have high depth. Specifically, we give a
complementary, more direct construction of SNARGs for policies given by a low-depth monotone
circuit.6

Theorem 1.3 (informal). Assuming 2d-secure (somewhere extractable) BARGs and collision-resistant
hash functions, there exist SNARGs for monotone policy BatchNP for all depth-d polynomial-size
monotone circuit policies. The common reference string and the proof in this SNARG scheme have
size m · poly(d, λ).

In particular, based on existing constructions of BARGs [CJJ21b,CJJ21a,WW22,KLVW23,
CGJ+22], we get SNARGs for policies given by a monotone formula with CRS and proof of size
m · poly(λ) under polynomial LWE, DLIN or sub-exponential DDH. Unlike our other results, we
prove Theorem 1.3 by (implicitly) constructing a suitable non-signaling PCP, which does not seem
to be possible for high depth C.

A New Tool: Predicate Extractable Hash Functions. In order to prove Theorems 1.1
and 1.2, we introduce (and use) a new primitive called a predicate extractable hash (PEHash) family.
This primitive generalizes the notion of a somewhere extractable hash family [HW15,OPWW15].
While the latter enforces binding to (and extractability of) a single input coordinate, our notion
enforces binding to (and extractability of) a potentially global property of the input string x.

Specifically, a PEHash family is a hash family with local opening, such that a hash key hk encodes
a secret predicate P . Given a trapdoor tdP for hk one can extract the predicate evaluation P (x)
from the hash value v = h(x). Somewhere extractable hash families have exactly this syntax when
P is restricted to be an index function x 7→ xi.

In this work, we construct and use PEHash families for bit-fixing predicates, where each such
predicate PJ,y is associated with a subset J ⊆ [|x|] and a string y ∈ {0, 1}J . The predicate is defined
as

PJ,y(x) =
∧
j∈J

1(xj = yj).

In other words, the predicate PJ,y checks that the input string x matches y on all indices in J
simultaneously.

Theorem 1.4 (informal). Assuming the polynomial hardness of LWE, there exist PEHash families
for bit-fixing predicates. The size of the hash key is ℓ · poly(λ), where ℓ is a bound on the maximum
size of a set J supported by the family.

Defining security of PEH families is quite subtle. We defer a detailed discussion of this to the
technical overview (Section 2), but we roughly require that it is computationally infeasible for an
adversary to produce a hash value v along with a local opening at an index j that contradicts the
value of the predicate P . A formal definition of this primitive can be found in Section 5.

We believe that the notion of PEH is of independent interest and will be useful in future SNARG
constructions and elsewhere in cryptography.

6This is based on an unpublished work of Brakerski and Kalai [BK18] which is merged with this work.
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2 Our Techniques

We first give an overview of our proof of Theorem 1.1, focusing on our new technique involving
predicate-extractable hash functions. We mainly discuss the problem of obtaining short proof length;
at the end, we briefly list additional ideas for minimizing the crs length and for obtaining somewhere
extractable soundness.

Monotone Policy BatchNP. Fix any NP language L with witness relation R and fix any function
f computable by a monotone circuit family C. Recall that we wish to construct a SNARG for the

NP language L(k)f defined as follows:

L(k)f =
{
(x1, . . . , xk) : ∃(w1, . . . , wk) s.t. f(b1, . . . , bk) = 1, where bi = R(xi, wi)

}
.

Our goal is to construct a SNARG for L(k)f with proof length m ·poly(λ), where m denotes the length
of a single witness wi.

Why don’t BARGs just work? Before discussing our techniques, we briefly mention a naive
idea that is fundamentally flawed but highlights a key difficulty of the problem. For any instance

(x1, . . . , xk) ∈ L
(k)
f , there is a set of witnesses {wi}i∈S for a subset S ⊂ [k] such that f(χS) = 1,

where χS denotes the indicator vector for S. Therefore, one can prove that (x1, . . . , xk) ∈ L
(k)
f using

a BARG to prove the claim that “xi ∈ L for all i ∈ S.”
This idea results in a sound argument system; however, the verifier does not know the set S. As

a result, the prover would at least have to communicate S, which may require sending an additional
O(k) bits, ruining succinctness.

As a result, one key technical challenge in this work is finding a way to argue about these
implicitly defined sets S of size O(k) even though the SNARG proof cannot contain this much
information. For a concrete example, one can think about the case where f is the majority function,
where the sets S in question have size

⌈
k
2

⌉
.

2.1 The Canonical Protocol

We first describe a simple candidate SNARG for monotone policy BatchNP. While we cannot show
its soundness, our results are based on variants of this canonical protocol. Roughly following
[CJJ21a,KVZ21], a candidate argument system for an arbitrary NP language can be built from a
(somewhere extractable) batch argument system (BARG), which enables proving that a large number
of NP statements are all true, at the communication cost of roughly one NP witness. Somewhere
extractable BARGs are now known from a wide variety of assumptions, including LWE [CJJ21a].

Tailored to our setting, the candidate argument system for L(k)f is constructed as follows:

• Given an instance (x1, . . . , xk) ∈ L
(k)
f together with a witness (w1, . . . , wk) compute the bits

bj = RL(xj , wj) for 1 ≤ j ≤ k and evaluate the circuit C(b1, . . . , bk).

• Compute a succinct commitment (i.e., tree hash) v of the values of all the wires in the
evaluation of C.
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• Use the batch argument system to prove the conjunction of the following |C|+1 statements:

– Input wires: For every j ∈ [k] there exists a witness wj and a local opening of v in
location j to a value bj such that bj = RL(xj , wj).

– Internal wires: For every gate of C with wires j, j1, j2 ∈ [|C|+1] there exist local openings
of v in locations j, j1, j2 to values bj , bj1 , bj2 that are consistent with the gate.

– Output wire: There exists a local opening of v in location |C| (corresponding to the
output wire) to the value 1 (indicating that C accepts).

Since the witness to each claim proven in the BARG is of length at most m+ poly(λ), the overall
proof length is m ·poly(λ). This style of argument system enforces the local consistency of a claimed

execution of the NP verifier for L(k)f . Unfortunately, we do not know whether, in general, this
argument system is sound!

Prior works can be thought of as using a variant of the canonical protocol with ℓ independent
BARG executions (with respect to the same commitment), where ℓ is a locality parameter. In this
case, the canonical protocol turns out to be a “quasi-argument” [KPY19] with locality ℓ.

Low-depth Circuits. Towards proving Theorem 1.1, we next describe how to obtain Theorem 1.3
using the canonical protocol (with locality ℓ = 2). We focus on the case where C is a logarithmic
depth monotone circuit. More generally, we can prove soundness for depth d circuits with proof
length m · poly(λ, d), under a 2d-time security assumption.

As stated above, we consider a variant of the canonical protocol that includes two independent
BARG executions with respect to the same commitment v. To prove soundness, we rely on the fact
that the BARG is somewhere extractable. This means that for every j ∈ [|C|+1], we can sample a
computationally indistinguishable CRSj together with a corresponding trapdoor tdj , so that given
any accepting proof under CRSj we can efficiently extract a witness for the jth claim from the proof:

ωj ← Extract(tdj , π).

Since we use BARGs with two independent CRSs, we are actually able to extract witnesses
(ωj1 , ωj2) for two of the claims at once. Moreover, we can extract from one of the BARG proofs
while the index on which the other BARG is extractable remains hidden.

To argue non-adaptive soundness, fix a false statement (x1, . . . , xk) ̸∈ L
(k)
f . For j ∈ [k], let b∗j = 1

if xj ∈ L and b∗j = 0 otherwise. Let (b∗j )1≤j≤|C| denote the values of all the wires in the evaluation
of C(b∗1, . . . , b

∗
k) = 0. The idea is to argue inductively that if an efficient adversary P ∗ breaks the

argument system, then for every layer, there exists a wire j in the layer such that if the BARGs
are extractable on the statement involving the jth wire value, then the committed value bj in the
extracted witness is greater than b∗j (i.e., bj = 1 but b∗j = 0) with non-negligible probability.

For the output layer of the circuit, this is clear since b∗|C| = 0, but b|C| = 1 by the correctness of
the output-wire statement. For the inductive step, assume that bj > b∗j with probability p when the
BARGs are extractable on the jth claim and let j1, j2 be the two child wires of the jth wire. Then
for some α ∈ [2], we must have that bjα > b∗jα with probability at least p/2 because the (j, j1, j2)
gate is monotone (AND or OR). Furthermore, the same holds when the BARGs are extractable on
the jαth claim by a standard non-signaling argument.7

7Consider a hybrid experiment where one of our BARG proofs is extractable on the jth claim and the other BARG
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Since the circuit is of logarithmic depth, we can apply this argument inductively and show that
for one of the input wires j ∈ [k] the extracted value bj is greater than b∗j with noticeable probability
in the appropriate hybrid experiment. This is a contradiction because if RL(xj , wj) = b∗j = 0 then
by the correctness of the input-wire statement, bj = 0 with all but negligible probability.

We can extend this analysis to consider circuits of any depth d where the loss in the reduction
grows exponentially with d. We can still obtain soundness by relying on subexponential hardness
assumptions; however, the security parameter and thus also the length of the SNARG proof must
grow with d. We prove this formally in Section 8.

Avoiding the Exponential Decay. Constructing SNARGs for monotone policy BatchNP where
the circuit C has arbitrary depth (without a depth dependence in the proof length) requires a new
type of analysis where the success probability does not decay exponentially with the depth. Previous
works [KRR13,KRR14] introduce two techniques for avoiding this exponential decay in the context
of SNARGs for P. For completeness, we briefly describe these techniques and explain why they are
insufficient in our context.

The solution of [KRR13] was restricted to circuits of small width, allowing the proof to grow
with the width. In particular, in this setting it is possible to extract from the proof an entire layer
of the circuit instead of just a single gate. Accordingly, in their inductive argument, the success
probability only decreases by a negligible amount in each layer, instead of by a factor of 2.

To deal with circuits with unbounded width, [KRR14] proposed the following modification:
instead of extracting an entire layer of the circuit (which would require the proof to grow), the
prover augments each layer with a short Merkle hash of the layer.8 Now, by extracting only the
hash of the layer and comparing it against the hash of the layer values in the correct evaluation of
the deterministic circuit we can certify that each value in the layer was computed correctly.

In our context, however, the circuit in question is non-deterministic and may have many possible
evaluations. For example, if xj ∈ L and b∗j = 1, an evaluation using an invalid witness will give the
jth input wire of C the value 0. Instead, we want to make sure that the value extracted for each
wire bj is not greater than the value b∗j of the wire in the evaluation of C(b∗1, . . . , b

∗
k) = 0 described

above. Indeed, it is not at all clear that such global information can be discerned from a short hash
of the layer.

2.2 Enforcing Global Properties with Predicate Extractable Hashing

Our solution for general circuits extends the paradigm from [KRR14] to the regime of non-
deterministic languages.9 We modify the “canonical protocol” by defining and using a more
powerful cryptographic hash family to commit to the wire values b1, . . . , b|C|. At a high level of
generality, imagine that we want a hash function h that maps a long input x to a short output

proof is extractable on the jαth claim. By CRS indistinguishability, the probability that the value b
(1)
jα

extracted from
the first proof satisfies bjα > b∗jα is close to that of the experiment where both proofs are extractable on j. Similarly,

the probability that b
(2)
jα

> b∗jα matches the experiment where both proofs are extractable on jα. Finally, since both

claims argue about openings of the commitment v to bjα , the binding property of the commitment b
(1)
jα

= b
(2)
jα

with all
but negligible probability.

8In fact, [KRR14] proposed an information theoretic analog of this idea where the short hash is replaced by a few
random locations in the low-degree extension of the layer.

9In contrast, the work of [BKK+18] gives an analysis for read-once bounded space non-deterministic computations,
extending the earlier work of [KRR13]. This approach is not applicable in our setting.
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v, such that the evaluation v = h(x) is binding to a (potentially arbitrary) predicate P (x). We
formalize this with a following syntax for a “predicate-extractable hash family” PEHash:

• Given the description of a predicate P , it should be possible to sample a hash key hkP along
with a trapdoor tdP . The key hkP should computationally hide the choice of predicate P .

• Given a hash key hk and an input x, we can compute a short hash v = H(hk, x).

• As in a standard hash tree, we require that it is possible to locally open a hash value v on an
index j to the bit xj . The opening should be short and poly(λ)-efficient to verify.

• Finally, given a hash value v and trapdoor tdP , it should be possible to extract a bit
Extract(tdP , v) which is supposed to correspond to the evaluation P (x) (at least on an honestly
generated v = H(hk, x)).

We view this object as a syntactic generalization of somewhere statistically binding (and somewhere
extractable) hash families [HW15, CJJ21a], which have proved to be extremely useful in the
construction of cryptographic protocols. In our formalization, somewhere extractable hash families
correspond to the case where the predicate P is an index function x 7→ xi. In this special case,
security is defined as follows: if the hash key hk is sampled to be binding on index i, then it is
infeasible for an adversary to produce a hash value v and an opening of v to a bit b on location i
such that Extract(tdi, v) = 1− b. In other words, the ith location opening must be consistent with
the extracted bit value.

PEHash families for bit-fixing predicates. In this work, we define, construct, and make use
of predicate-extractable hash families for “bit-fixing” predicates. That is, for inputs of length N ,
a predicate P is specified by a subset J ⊆ [N ] and a string y ∈ {0, 1}J . The predicate PJ,y(x) is
defined to be 1 if yj = xj for all j ∈ J .

Defining security for bit-fixing PEH requires significant care. Specifically, security is asymmetric
with respect to whether P (x) = 1 or P (x) = 0.

• Security in the P (x) = 1 case is relatively easy to describe. We require that if the hash key
hk is extractable on bit-fixing predicate (J, y), an adversary cannot produce a hash value v
such that Extract(td, v) = 1 together with an opening of v to a bit b on index j ∈ J such that
b ̸= yj . We note that the adversary here can choose j adaptively. This corresponds to the
intuition that an evaluation Extract(td, v) = 1 should simultaneously bind every value xj to yj .

• Security in the P (x) = 0 case is more subtle. Intuitively, we want to say that if Extract(td, v) = 0
then the adversary cannot simultaneously open on every index j ∈ J to yj . However, this
security property is insufficiently “succinct” to be useful in our construction. Instead, we require
that, in addition to the predicate value, we can extract a specific index j∗ = ExtractIndex(td, v)
such that the adversary cannot open v to yj∗ on the j∗th location.

Constructing PEHash for bit-fixing predicates. The high-level idea for constructing a bit-
fixing PEHash family is simple and takes inspiration from [HW15]: we can hash a string x in a way
that is binding to PJ,y, via a tree of homomorphic evaluations on pairs of ciphertexts. In more
detail, the hash key will contain an encryption of the predicate (J, y). We hash x as follows:
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• First, for every j we homomorphically evaluate Enc(1((xj = yj) ∨ (j /∈ J))). This results in a
collection of “leaf ciphertexts” that we want to homomorphically AND together.

• To compute a parent ciphertext ctj corresponding to some prefix j ∈ {0, 1}≤log k given sibling
ciphertexts ctj||0, ctj||1 encrypting bits zj||0, zj||1, we homomorphically evaluate zj||0 ∧ zj||1.

• To enforce correctness with respect to a malicious committer, we implement the evaluation
tree with an FHE bootstrapping mechanism (each layer has its own FHE secret key, and
homomorphic operations are always computed on ciphertexts encrypting ski+1 under pki,
which are included as part of the hash key).

• The construction above is sufficient to satisfy “one-sided” (P (x) = 1) security. To obtain
two-sided security, we have the FHE evaluation tree also keep track of the lexicographically first
index j∗ ∈ J on which xj ̸= yj . This invariant can be maintained throughout the evaluation.

As a result, an honestly evaluated hash of x will be an encryption of (PJ,y(x), j
∗), where j∗ = ⊥ if

PJ,y(x) = 1 and j∗ equals to the lexicographically first index such that xj ̸= yj if PJ,y(x) = 0.
We prove in Section 5.3.1 that this construction satisfies both sides of our security definition.

However, it is unfortunately not succinct enough: verifying an opening requires recomputing a path
along the tree (as is typical for Merkle-style commitments), but each step of our tree evaluation
requires doing a computation involving Enc(J), which is not succinct if J is a large set. Fortunately,
this opening verification can be delegated to the opening generation using a RAM SNARG, enabling
the verifier to check correctness efficiently given a short hash of hk (generated at setup time).

2.3 New SNARG Construction

Having defined and constructed a predicate extractable hash family for bit-fixing predicates, we
now show how to use it to build a SNARG for monotone policy BatchNP. Our SNARG construction
is similar in structure to the canonical construction, but (for reasons that will become clear later) in
place of a the hash tree we make use of two instantiations of a PEHash family. Roughly speaking,
the SNARG proof is computed as follows.

• Using two independent hash keys hk(1), hk(2), succinctly commit to b1, . . . , b|C|, which are all

the wire values of the circuit C. Let v(1), v(2) denote the two resulting hash values.

• Use the batch argument system to prove the conjunction of the following |C|+1 statements:

– Input wires: For every j ∈ [k] there exists a witness wj and local openings of v(1), v(2) in
location j to a value bj such that bj = RL(xj , wj).

– Intermediate wires: For every gate of C with wires j, j1, j2 ∈ [|C|] there exist values
bj , bj1 , bj2 that are consistent with the gate and local openings of v(1), v(2) in locations
j, j1, j2 to bj , bj1 , bj2 .

– Output wires: The final wire value of C is 1 (according to both commitments v(1), v(2)).

How are we better equipped to prove soundness of this argument system? The idea is that
predicate extractability gives us a means to argue about the consistency of an entire layer of C
based on a single bit.
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More specifically, to argue non-adaptive soundness, we again fix a false statement (x1, . . . , xk)
and define “correct wire values” b∗1, . . . , b

∗
|C| as before. Next, for a fixed layer i, we switch to a

computationally indistinguishable world in which the predicate P (1) on which hk(1) is extractable is
the predicate PJi,0 that checks for the “forced zeroes” of the circuit evaluation. That is, P (b1, . . . , b|C|)
is defined to be 1 if and only if bj = 0 for all j in the ith layer of C such that b∗j = 0. We know that

in any honest evaluation of the circuit, this predicate P (1) would evaluate to 1.
We first argue that if an adversary cheats and produces an accepting proof for a false statement

with i = d then it must be the case that the extracted value of P (1)(·) is 0 (except with negligible
probability). This holds because if the proof is accepting then (by the soundness of the BARG) it
must be that b|C| = 1 and hence P (1) = 0.

The key step is then to argue inductively over the layers; this is where we make use of our
two independent hash keys hk(1), hk(2). Specifically, we argue that given hk(1) and hk(2) encoding
predicates P (i) and P (i−1), for any adversary that generates a valid proof (v(1), v(2), π), it must be
the case that Extract(td(1), v(1)),Extract(td(2), v(2)) agree (except with negligible probability). This
follows from the binding properties of the PEHash along with the (extractable) soundness of the
batch argument system, because:

• If Extract(td(1), v(1)) = 0, there must be some specific index j∗ on which bj > b∗j (where bj is
defined if the seBARG is extractable on the jth gate).

• Thus, if the jth gate is correct, there exists a child jα such that bjα > b∗jα .

• However, this implies that we should have Extract(td(2), v(2)) = 0 except with a negligible error
probability.

Combined with non-signaling arguments, this allows us to inductively argue about predicates Pji,0

corresponding to layer i = d, d − 1, . . . , 1. However, if the prover produces a proof where the
predicate Pj1,0 evaluates to 0, this is also a contradiction: this means that some bj is equal to 1 for
an unsatisfiable xj , contradicting the somewhere extractability of the BARG.

Crucially, the “exponential decay” in success probability from layer to layer has disappeared
– the local gate-by-gate analysis has been replaced by a global layer-by-layer analysis that suffers
from a linear loss in the depth, as opposed to an exponential loss.

2.4 Achieving Somewhere Extractability

Having sketched our proof of Theorem 1.1, we now turn our attention to Theorem 1.2. In this
setting, we no longer have a fixed false statement x⃗ = (x1, . . . , xk). Instead, we have a subset J ⊆ [k]
of instances that is necessary for C (meaning that if C evaluates to 1 then bj = 1 for some j ∈ J).
We would like to modify our analysis so that given a prover P∗ that produces instances (x̃1, . . . , x̃k)
and a proof π that makes the verifier accept, we would like to extract a witness wj (associated to
x̃j) for some j ∈ J .

We begin by following the analysis of the non-adaptive case. However, rather than programming
the PEHash on predicates PJi,0 that check for zeroes in layer i that are “forced” by fixed false
statements (xj), we instead set Ji to be the set of wires that are forced to be 0 by the condition that

bj = 0 for all j ∈ J . Then, if P∗ produces an accepting proof, we again must have Extract(td(1), v(1)) =
0 when using the predicate PJd,0. By a similar layer-by-layer analysis to the non-adaptive case, we

can conclude that Extract(td(1), v(1)) = 0 for the predicate PJ0,0, where J0 = J .
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Thus, if we program the crs such that the PEHash is extractable on PJ,0, we can use the trapdoor

td(1) to extract from the proof an index j∗ = ExtractIndex(td(1), v(1)) ∈ J where, intuitively, the
predicate must be violated, so we should have that xj∗ ∈ L. However, we do not yet have a
mechanism for extracting the witness wj∗ .

One may hope that we would be able to extract this witness from the seBARG. Unfortunately, it
is not clear how to do this because the index j∗ depends on the adversary’s behavior, so a seBARG
trapdoor on j∗ cannot be programmed in advance (unless you set the seBARG to be extractable on
all of J , which would ruin succinctness).

Predicate extractable hash families with tags. To overcome this issue, we extend our notion
of PEHash to one which would enable us to extract the witness from v(1). Specifically, we define and
construct an extended notion of PEHash families for bit-fixing predicates, which we call PEHash
families with tags. This object supports hashing the input x ∈ {0, 1}N together with tags t1, . . . , tN ,
attaching a tag to each bit of the input. Similarly, the opening and verification algorithms also
receive tags.

We correspondingly strengthen our security definition in the P (x) = 0 setting. Previously, we
required that if Extract(td, v) = 0 then the adversary cannot open the index j∗ = ExtractIndex(td, v) to
the bit yj∗ . Now, we further require that the adversary is bound to a specific tag t = ExtractTag(td, v)
on the index j∗. This extended notion will enable us to extract a witness wj∗ for xj∗ at the end of
the security analysis above.

We construct a PEHash family with tags (for bit-fixing predicates) by making a simple modifica-
tion to our original construction: in the FHE evaluation tree, in addition to (b, j), we also keep track
of the tag t attached to the index j. An honestly evaluated hash is an encryption of (PJ,y(x), j

∗, t)
where t is the tag attached to index j∗, which guarantees that the adversary is bound to t when
opening j∗.

2.5 Shortening the CRS

Finally, we briefly describe an optimization that allows us to shorten the prover common reference
string crsP :

• In our non-adaptive SNARG, we can reduce the length of crsP from (m+width(C)) · poly(λ)
to (m+min(width(C), k)) · poly(λ).

• In our somewhere extractable SNARG, we can reduce the length of crsP from (m + k +
width(C)) · poly(λ) to (m+ k)poly(λ).

This is especially useful in our somewhere extractable SNARG, where the size of crsP must be at
least k since it is binding on a subset J ⊆ [k] of input wires, so the optimization allows us to achieve
a length (m+ k) · poly(λ) which is optimal.

To understand the optimization, we recall that the length of crsP grows with width(C) · poly(λ)
due to the PEHash hash key, which is as long as a description of the predicate PJi,y. In our SNARG,
we use the predicates PJi,0 where Ji is a set of wires in a single layer i of the circuit C, so its size
grows with the largest layer of C, i.e. its width.

However, we observe that the sets Ji are not arbitrary sets of wires in a layer; they can be
described as the set of wires in a layer that are 0 in a computation of C on some input (b1, . . . , bk).
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Therefore, one can alternatively encode the predicate PJi,0 using an FHE encryption of some string
in {0, 1}k.

3 Preliminaries

Notations. We use PPT to denote probabilistic polynomial-time, and denote the set of all positive
integers up to n as [n] := {1, . . . , n}. For any x ∈ {0, 1}n and any subset J ⊂ [n] we denote by
xJ = (xj)j∈J . For any finite set S, x← S denotes a uniformly random element x from the set S.
Similarly, for any distribution D, x← D denotes an element x drawn from the distribution D.

3.1 Hash Family with Local Opening

In this section we recall the definition of a hash family with local opening [Mer88].10

Syntax. A hash family (HT) with succinct local opening consists of the following algorithms:

Gen(1λ)→ hk. This is a PPT algorithm that takes as input the security parameter 1λ in unary and
outputs a hash key hk.

Hash(hk, x)→ rt. This is a deterministic poly-time algorithm that takes as input a hash key hk and
an input x ∈ {0, 1}N for N ≤ 2λ, and outputs a hash value rt.

Open(hk, x, j)→ ρ. This is a deterministic poly-time algorithm that takes as input a hash key hk,
an input x ∈ {0, 1}N for N ≤ 2λ, and an index j ∈ [N ], and outputs an opening ρ.

Verify(hk, rt, j, b, ρ)→ 0/1. This is a deterministic poly-time algorithm that takes as input a hash
key hk, a hash value rt, an index j ∈ [N ], a bit b ∈ {0, 1} and an opening ρ. It outputs 1
(accept) or 0 (reject).

Definition 3.1. (Properties of HT) A HT family (Gen,Hash,Open,Verify) is required to satisfy the
following properties.

Opening completeness. For any λ ∈ N, any N ≤ 2λ, any x ∈ {0, 1}N , and any index j ∈ [N ],

Pr

 Verify(hk, rt, j, xj , ρ) = 1 :
hk← Gen(1λ),
rt = Hash(hk, x),
ρ = Open(hk, x, j)

 = 1− negl(λ).

Succinctness. In the completeness experiment above, we have that |hk|+|rt|+|ρ|= poly(λ).

Collision resistance w.r.t. opening. For any poly-size adversary A there exists a negligible
function negl(·) such that for every λ ∈ N,

Pr

[
Verify(hk, rt, j, 0, ρ0) = 1
∧ Verify(hk, rt, j, 1, ρ1) = 1

:
hk← Gen(1λ),
(rt, j, ρ0, ρ1)← A(hk)

]
= negl(λ).

10In what follows we use the notation HT to denote a hash family with local opening, where HT symbolizes a Hash
Tree construction. We emphasize that we are not restricted to such a construction, and use this notation only to give
the reader an example to have in mind.
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Remark 3.1. We say that a hash family with local opening is T -secure, for T = T (λ), if the
collision resistance w.r.t. opening property holds against any poly(T )-size adversary (as opposed
to poly(λ)-size) and the probability that the adversary finds a collision is negl(T ) (as opposed to
negl(λ). We refer to this property as T -collision-resistance w.r.t. opening.

Remark 3.2. One can naturally extend the definition of a hash family with local opening to allow
the Open algorithm to take as input (hk, x, J) where J ⊆ [N ] consists of a set of indices, as opposed to
a single index. Open(hk, x, J) will simply run Open(hk, x, j) for every j ∈ J . Verify can be extended
in a similar way to take as input (hk, rt, J, bJ , ρJ), and accept if and only if Verify(hk, rt, j, bj , ρj) = 1
for every j ∈ J .

Theorem 3.2 ( [Mer88]). Assuming the existence of a collision resistant hash family there exists a
hash family with local opening (according to Definition 3.1).

3.2 Fully Homomorphic Encryption

In this section we define fully homomorphic encryption.

Syntax. A fully homomorphic encryption scheme consists of a fixed ciphertext size ℓctxt = ℓctxt(λ)
and the following polynomial time algorithms:

FHE.Setup(1λ)→ (pk, sk). This is a probabilistic algorithm that takes as input a security parameter
1λ. It outputs a public key pk and a secret key sk.

FHE.Encpk(b)→ c. This is a probabilistic algorithm that takes as input a public key pk and a bit
b ∈ {0, 1}. It outputs a ciphertext c ∈ {0, 1}ℓctxt .

FHE.Decsk(c)→ b. This is a deterministic algorithm that takes as input a secret key sk and a
ciphertext c ∈ {0, 1}ℓctxt . It outputs a bit b ∈ {0, 1}.

FHE.Evalpk(f, c1, . . . , cn)→ c∗. This is a deterministic algorithm that takes as input a public key pk,
a circuit representing a function f : {0, 1}n → {0, 1} and n ciphertexts c1, . . . , cn ∈ {0, 1}ℓctxt .
It outputs a ciphertext c∗ ∈ {0, 1}ℓctxt .

Definition 3.3 (FHE). A fully homomorphic encryption scheme FHE = (FHE.Setup,FHE.Enc,
FHE.Eval,FHE.Dec) is required to satisfy the following properties:

Encryption Correctness. For any choice of (pk, sk)← FHE.Setup(1λ), any b ∈ {0, 1} and any
c← FHE.Encpk(b) we have FHE.Decsk(c) = b.

Evaluation Correctness. For any choice of (pk, sk)← FHE.Setup(1λ), any ciphertexts c1, . . . , cn ∈
{0, 1}ℓctxt such that FHE.Decsk(ci) = bi ∈ {0, 1} and any circuit f : {0, 1}n → {0, 1}, if we set
c = FHE.Eval(f, c1, . . . , cn) then FHE.Decsk(c) = f(b1, . . . , bn).

Security. The encryption scheme is semantically secure.

Remark 3.3. Given a FHE scheme, one can extend the definition of the encryption algorithm
FHE.Enc to take as input a longer message m ∈ {0, 1}n, as opposed to a single bit. FHE.Encpk(m)
will simply run ci = FHE.Encpk(mi) for every i ∈ [n], and set c = (c1, . . . , cn) ∈ {0, 1}n·ℓctxt . Similarly,
we extend FHE.Eval to take as input a function f : {0, 1}n → {0, 1}u with multi-bit output.
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3.3 Somewhere Extractable Batch Arguments (seBARGs)

A batch argument system BARG for an NP language L enables proving that k NP statements
are true with communication cost that is polylogarithmic in k. There are many BARG variants
which are known to be existentially equivalent under mild computational assumptions (see, e.g.,
[CJJ21a,KVZ21,KLVW23]). In this work, for simplicity in our constructions, we make use of an
argument system for what we call “batch index Turing machine SAT” (BatchTMSAT), defined
below.

Definition 3.4. The language BatchIndexTMSAT consists of instances of the form x = (M, z, k, T ),
where:

• M is the description of a Turing machine.

• z is an input string (to M)

• k is a batch size, and

• T is a running time.

An instance x = (M, z, k, T ) is in BatchIndexTMSAT if for all i ≤ i ≤ k, there exists a string wi

such that M(z, i, wi) accepts within T steps.

We sometimes use the notation R(x, i, wi) to denote the relation with instance (x, i) and
corresponding witness wi.

Syntax. A (publicly verifiable and non-interactive) somewhere extractable batch argument system
seBARG for BatchIndexTMSAT consists of the following polynomial time algorithms:

Gen(1λ, 1n, 1m, i∗)→ (crs, td). This is a probabilistic polynomial-time algorithm that takes as input
a security parameter 1λ, input length 1n, witness length 1m, and an index i∗ ∈ [2λ]. It outputs
a common reference string crs along with a trapdoor td.

P(crs,M, z, 1T , w1, . . . , wk)→ π. This deterministic polynomial-time algorithm takes as input a crs,
Turing machine M , input z, runtime 1T , and k witnesses w1, . . . , wk. It outputs a proof π.

V(crs, x, π)→ 0/1. This deterministic polynomial-time algorithm takes as input a crs, instance
x = (M, z, k, T ), and a proof π. It outputs a bit (1 to accept, 0 to reject).

Extract(td, π)→ w∗. This deterministic polynomial-time algorithm takes as input a trapdoor td and
a proof π. It outputs a single witness w∗.

Definition 3.5 (seBARG). A somewhere-extractable batch argument scheme seBARG = (Gen,P,V,Extract)
for BatchIndexTMSAT is required to satisfy the following properties:

Completeness. For any λ ∈ N, any k(λ), n(λ),m(λ), T (λ) ≤ 2λ, any instance x = (M, z, k, T ) ∈
BatchIndexTMSAT with |M |+|z|= n, any corresponding witnesses w1, . . . , wk ∈ {0, 1}m and
any index i∗ ∈ [k],

Pr

[
V(crs, x, π) = 1 :

(crs, td)← Gen(1λ, 1n, 1m, i∗),
π ← P(crs,M, z, 1T , w1, . . . , wk)

]
= 1.
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Efficiency. In the completeness experiment above, |crs|+|π|≤ m · poly(λ, log(knT )). The running
time of the verifier is at most poly(|crs|+|π|) + poly(λ) · |x|.

Index hiding. For any poly-size adversary A and any polynomials k(λ), n(λ),m(λ), there exists
a negligible function negl(·) such that for every λ ∈ N and every pair of indices i0, ii ∈ [k],

Pr

[
A(crs) = b :

b← {0, 1},
(crs, td)← Gen(1λ, 1n, 1m, ib)

]
≤ 1

2
+ negl(λ).

Somewhere argument of knowledge. For any poly-size adversary A and any polynomials
k(λ), n(λ),m(λ), T (λ) there exists a negligible function negl(·) such that for any index i∗ ∈ [k]
and for every λ ∈ N,

Pr

 V(crs, x, π) = 1
∧ (x, i∗, w∗) ̸∈ R :

(crs, td)← Gen(1λ, 1n, 1m, i∗)
(M, z, π) = A(crs)
w∗ ← Extract (td, π)

 ≤ negl(λ).

Remark 3.4. We say that a seBARG scheme is T -secure, for T = T (λ), if the index hiding property
and the somewhere argument of knowledge property hold w.r.t. a poly(T )-size adversary (as opposed
to a poly(λ)-size), and the advantage probability is negl(T ) (as opposed to negl(λ)). We refer to
these properties as T -index-hiding and T -somewhere-argument-of-knowledge, respectively.

Throughout this paper, when we refer to a BARG or seBARG, we will implicitly mean a seBARG for
BatchIndexTMSAT.

Remark 3.5. Given an seBARG, one can naturally extend the definition of the key generation
algorithm Gen to take as input an index set I ⊂ [k], as opposed to a single index. Gen(1λ, 1n, 1m, I)
will simply run Gen(1λ, 1n, 1m, i) for every i ∈ I. The prover algorithm P, given a crs that encodes
the |I| indices, will simply generate |I| proofs (one for each crs), and the verifier will check these |I|
proofs independently.

Theorem 3.6 ( [CJJ21a,WW22,KLVW23,CGJ+22]). There exists an seBARG for BatchIndexTMSAT
assuming LWE or DLIN or subexponential DDH.

Remark 3.6. While seBARGs for BatchIndexTMSAT were not discussed explicitly in the above
works, they can be constructed generically from all previous “flavors” of BARG along with a
somewhere extractable hash family with local opening. This follows from a similar proof to that
of Theorem 12 in [CJJ21a]; an index seBARG for batch circuit SAT can be run to batch verify
the executions of a RAM delegation scheme (or memory delegation scheme), which checks the
computation of M(z, i, wi) in time poly(λ, log k, log T ) given a tree hash of (M, z).

3.4 RAM SNARGs

In this section we define RAM SNARGs.
A RAM machine R is modeled as a deterministic machine with random access to memory of

size 2ℓ bits and a local state of size S. At every step, the machine reads or writes a single memory
bit and updates its state.

For convenience, we think of the input to the RAM machine as a pair x = (ximp, xexp), where
ximp is large and is stored in the random access memory, and xexp is a short explicit input.
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Syntax. A RAM SNARG for machine R consists of the following polynomial time algorithms:

Gen(1λ, T )→ crs. This is a probabilistic algorithm that takes as input a security parameter 1λ and
a time bound T . It outputs a common reference string crs.

Digest(crs, ximp)→ d. This is a deterministic algorithm that takes as input a crs and a string ximp.
It outputs a digest d of size poly(λ).

P(crs, (ximp, xexp))→ (b, π). This is a deterministic algorithm that takes as input a crs and a pair
(ximp, xexp) which consists of a (long) input ximp and a (short) input xexp. It outputs a bit
b = R(ximp, xexp) ∈ {0, 1} and a proof π.

V(crs, d, xexp, b, π)→ {0, 1}. This is a deterministic algorithm that takes as input a crs, a digest d
of the long input, a short input xexp, a bit b ∈ {0, 1} and a proof π. It outputs a bit (1 to
accept, 0 to reject).

Definition 3.7 (RAM SNARG). A RAM SNARG for machine R with local state of size S ≥
|xexp|+ log|ximp| is required to satisfy the following properties:

Completeness. For any λ, n ∈ N such that n ≤ T (n) ≤ 2λ and any x = (ximp, xexp) ∈ {0, 1}n
such that R(x) halts within T time steps, we have that

Pr

 V(crs, dximp , xexp, b, π) = 1 ∧
b = R(x) :

crs← Gen(1λ, T )
(b, π) = P(crs, x)
dximp = Digest(crs, ximp)

 = 1.

Efficiency. In the completeness experiment above, the length of crs and the proof π is at most
poly(λ, S, log T ).

Collision resistance of RAM digest. For any poly-size adversary A and any polynomial T =
T (λ) there exists a negligible function negl(·) such that for every λ ∈ N,

Pr

[
Digest(crs, ximp) = Digest(crs, x′imp) ∧
ximp ̸= x′imp

:
crs← Gen(1λ, T )
(ximp, x

′
imp)← A(crs)

]
≤ negl(λ).

Soundness. For any poly-size adversary A and any polynomial T = T (λ) there exists a negligible
function negl(·) such that for every λ ∈ N,

Pr

 V(crs, d, xexp, b, π) = 1 ∧
Digest(crs, ximp) = d ∧
R(ximp, xexp) ̸= b

:
crs← Gen(1λ, T )
(d, ximp, xexp, b, π)← A(crs)

 ≤ negl(λ).

Theorem 3.8 ( [CJJ21a,WW22,KLVW23,CGJ+22]). There exists a RAM SNARG assuming LWE
or DLIN or subexponential DDH.
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4 SNARGs for Monotone Policy BatchNP

Monotone Policy BatchNP Model. Fix any NP language L with witness relation R and fix any
function f computable by a monotone circuit family C.

The complexity of C (and its topology) is described in the following way:

• C has some input length k = k(n) and size |C|= s = s(n). These parameters are functions of
n, the length of an instance of L.

• C may have a more efficient uniform description, i.e., polynomial-time Turing machine M
that generates C on input aux of length less than s.

• The circuit C is layered if the wires of C can be partitioned into “layers” J0, J1, . . . , Jd ⊂ [s]
such that for every gate (j, j0, j1, c ∈ {AND,OR}) ∈ Gates(C), if j ∈ Ji then j0, j1 ∈ Ji−1∪J0.
In other words, wire values in layer i are computed from wires in layer i− 1 along with input
wires.

• We say that a layered circuit C has depth d if it has d layers (not including the input layer),
and has width w if each layer (besides the input layer) has size at most w. We note that this
notion allows for C to have width less than k.

In what follows, we construct a SNARG for the NP language L(k)f defined as follows:

L(k)f =
{
(x1, . . . , xk) : ∃(w1, . . . , wk) s.t. f(b1, . . . , bk) = 1, where bi = R(xi, wi)

}
.

We first define the notion of a SNARG for L(k)f .

4.1 Definition

We now define succinct non-interactive arguments (SNARGs) for languages of the form L(k)f above.
The syntax follows that of SNARGs for general (NP) languages; however, similarly to the case of
batch arguments (Definition 3.5), we allow the proof size (and other parameters) to grow with the
size of a single NP witness wi.

Syntax. A SNARG for L(k)f consists of the following PPT algorithms:

Gen(1λ, k, n)→ (crsP , crsV). This is a probabilistic algorithm that takes as input the security
parameter 1λ as well as a batch size k and instance size n. It outputs a common reference
string (crsP , crsV), separated into two parts for efficiency reasons.

P(crsP , C, x1, . . . , xk, w1, . . . , wk)→ π. This is a deterministic polynomial-time algorithm that takes
as input the crs crsP , a description of the monotone circuit C, the k NP instances x1, . . . , xk,
and corresponding witnesses w1, . . . , wk. It outputs a proof string π.

V(crsV , C, x1, . . . , xk, π)→ 0/1. This is a deterministic polynomial-time algorithm that takes as
input the verification key crsV , a description of C, the k NP instances x1, . . . , xk, and a proof
string π. It outputs a bit (1 to accept, 0 to reject).

18



We will sometimes drop C from our algorithm notation, as it is fixed once and for all based on

the language L(k)f and choice of implementation C of f .
We next define the properties of a SNARG scheme. We consider two soundness guarantees:

non-adaptive soundness and semi-adaptive soundness (somewhere extractability).

Definition 4.1 (SNARG for Monotone Policy BatchNP). A SNARG scheme (Gen,P,V) for L(k)f is
required to satisfy the following properties.

Completeness. For any λ ∈ N, any k = k(λ), n = n(λ), and x = (x1, . . . , xk) ∈ L
(k)
f , such that

|x|≤ 2λ and |xi|= n for every i ∈ [k], and any corresponding witness w = (w1, . . . , wk) ∈
{0, 1}k·m,

Pr

[
V(crsV , C, x, π) = 1 :

(crsP , crsV)← Gen(1λ, k, n),
π ← P(crsP , C, x, w)

]
= 1.

Succinctness. In the completeness experiment above, the size of crsV and π are at most poly(λ, log k,m).

Non-Adaptive Soundness. For any polynomials k = k(λ) and n = n(λ) and any polynomial-

size P∗ there exists a negligible function negl(·) such for any instance x = (x1, . . . , xk) /∈ L(k)f

such that |xi|= n for every i ∈ [k], it holds that for every λ ∈ N,

Pr

[
V(crsV , C, x, π) = 1 :

(crsP , crsV)← Gen(1λ, k, n),
π ← P∗(crsP , crsV)

]
≤ negl(λ).

In addition to the standard soundness definition, we introduce a variant of “somewhere ex-
tractability” for SNARGs for monotone policy BatchNP. Roughly speaking, our definition says that
for any “necessary subset” J ⊂ [k] for C (meaning that if C(b1, . . . , bk) = 1 then bj = 1 for some
j ∈ J), the common reference string can be programmed to be “extractable on J ,” meaning that it
is possible to extract (from an efficiently generated proof π on an adaptively chosen statement) a
witness wj for some j ∈ J .

Definition 4.2 (Somewhere Extractable SNARGs for Monotone Policy BatchNP). A SNARG for

L(k)f is somewhere extractable if it additionally supports the following syntax:

Gen(1λ, k, n, J)→ (crsP , crsV , td). This is a probabilistic algorithm that takes as input the security
parameter 1λ, batch size k, input length n, and the description of a set J ⊂ [k]. It outputs a
common reference string (crsP , crsV) along with a trapdoor td.

Extract(td, π)→ (i, wi). This is a polynomial-time algorithm that takes as input a trapdoor td and
proof string π. It outputs an index i and witness wi.

We additionally require the following two properties (which together imply soundness):

Key Indistinguishability. For any poly-size adversary A, any polynomials k = k(λ) and n =
n(λ), and any sets J0, J1 ⊆ [k] there exists a negligible function negl(·) such that for every
λ ∈ N,

Pr

[
A(crsP , crsV) = b :

b← {0, 1},
(crsP , crsV , td)← Gen(1λ, k, n, Jb)

]
≤ 1

2
+ negl(λ).
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Somewhere argument of knowledge. For any polynomials k = k(λ) and n = n(λ) and any
polynomial-size P∗, there exists a negligible function negl(·) such that for any set J ⊆ [k] where
the assignment bi = 1i/∈J satisfies f(b1, . . . , bk) = 0, and every λ ∈ N,

Pr

 V(crsV , C, x1, . . . , xk, π) = 1 ∧
i /∈ J ∨ R(xi, wi) = 0

:
(crsP , crsV , td)← Gen(1λ, k, n, J)
(x1, . . . , xk, π)← P∗(crsP , crsV)
(i, wi)← Extract (td, π)

 ≤ negl(λ).

5 Predicate Extractable Hash Families

In order to construct a SNARG scheme for monotone policy BatchNP languages, we first introduce a
new tool: a predicate extractable hash family (PEHash). PEHash extends the commonly used notion
of a somewhere extractable hash (SEHash) in the following way:

• A PEHash is associated with a class of predicates F . A SEHash can be viewed as an instance
of PEHash where F consists of all index functions fi(x) = xi.

• A hash key hk is sampled to be binding on a specific predicate f ; however, hk itself computa-
tionally hides f .

• When hk is binding on f , it should be possible to extract f(x) from a hash of x.

Defining security of PEHash for general predicates is somewhat challenging. In the case of
SEHash, the key security property (aside from index hiding) is that if the bit b is extracted from a
hash value v, and the hash function is binding on index i, then it should be hard (or impossible) to
locally open v to 1− b on the ith input location.

In this work, we define and construct PEHash for the class of bit-fixing predicates fy,J where
fy,J(x) = 1 if and only if yi = xi for all i ∈ J . However, we view PEHash as a more general object
and expect extensions to be useful in the future. Therefore, in what follows we define the syntax and
basic properties of PEHash for general predicates. Our security definitions, however, are tailored to
bit-fixing predicates.

5.1 Syntax and Basic Properties

A predicate extractable hash family PEHash with respect to a family F consists of the following
PPT algorithms:

Gen(1λ, N, f)→ (hk, vk, td). This is a PPT setup algorithm that takes as input a security parameter
1λ, a message length N , and a predicate f : {0, 1}N → {0, 1} in F . It outputs a hash key hk,
a verification key vk, and a trapdoor td.

Hash(hk, x)→ v. This is a poly-time deterministic algorithm that takes as input a hash key hk and
an input x ∈ {0, 1}N , and outputs a hash value v ∈ {0, 1}poly(λ).

Open(hk, x, j)→ ρ. This is a poly-time deterministic algorithm that takes as input a hash key hk,
an input x ∈ {0, 1}N and an index j ∈ [N ], and outputs an opening ρ ∈ {0, 1}poly(λ).
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Verify(vk, v, j, b, ρ)→ 0/1. This is a poly-time deterministic algorithm that takes as input a verifica-
tion key vk, a hash value v ∈ {0, 1}poly(λ), an index j ∈ [N ], a bit b ∈ {0, 1} and an opening
ρ ∈ {0, 1}poly(λ), and outputs 1 (accept) or 0 (reject).

Extract(td, v)→ u. This is a deterministic extraction algorithm that takes as input a trapdoor td
and a hash value v, and outputs a bit u.

Most properties of a PEHash can be stated independently of the predicate class F : we require
that a PEHash hash key should hide the predicate, the extraction algorithm should output the
predicate f(x) on Hash(x), and that PEHash should be a secure hash family with local opening.

Definition 5.1 (PEHash Basic Properties). A predicate extractable hash family

PEHash = (Gen,Hash,Open,Verify,Extract)

satisfies the following properties:

Opening completeness. For any λ ∈ N, any N ≤ 2λ, any predicate f ∈ F , any index j ∈ [N ],
and any x ∈ {0, 1}N ,

Pr

 Verify(vk, v, j, xj , ρ) = 1 :
(hk, vk, td)← Gen(1λ, N, f),
v = Hash(hk, x),
ρ = Open(hk, x, j),

 = 1.

Succinctness. In the completeness experiment above, the size of the verification key vk and the
hash value v is poly(λ). The size of the hash key hk is at most |f |·poly(λ, logN).

Computational binding. For any poly-size adversary A it holds that for any polynomial N =
N(λ) and any predicate f ∈ F there exists a negligible function µ such that for any λ ∈ N,

Pr

[
Verify(vk, v, j, 0, ρ0) = 1 ∧
Verify(vk, v, j, 1, ρ1) = 1

:
(hk, vk, td)← Gen(1λ, N, f),
(v, j, ρ0, ρ1)← A(hk, vk)

]
≤ negl(λ).

Predicate hiding. For any poly-size adversary A, any polynomial N = N(λ), and any two
predicates f0, f1 ∈ F such that |f0|= |f1|, there exists a negligible function negl(·) such that
for every λ ∈ N,

Pr

[
A(hk, vk) = b :

b← {0, 1}
(hk, vk, td)← Gen(1λ, N, fb)

]
≤ 1

2
+ negl(λ),

Extraction correctness. For any λ ∈ N, any N ≤ 2λ, any predicate f ∈ F , and any x ∈ {0, 1}N ,
there exists a negligible function negl(·) such that for every λ ∈ N,

Pr

[
f(x) ̸= Extract(td, v) :

(hk, vk, td)← Gen(1λ, N, f)
v = Hash(hk, x)

]
≤ negl(λ).
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5.2 Extractable Hash for Bit-Fixing Predicates

Next, we describe what it means for a PEHash to be secure for bit-fixing predicates. Recall that for
x ∈ {0, 1}n, we define fy,J(x) = 1 if and only if yi = xi for all i ∈ J . We want a security notion
that restricts the behavior of an adversarial sender, which given (hk, vk) produces a hash value v. It
turns out that security is asymmetric depending on whether Extract(td, v) is equal to 0 or 1:

• If Extract(td, v) = 1, we want it to be hard for the adversary to open the ith bit of x to 1− yi
for any i ∈ J .

• If Extract(td, v) = 0, we want to say that there is some index j ∈ J such that the adversary
cannot open the jth bit of x to yj . To formalize this, we introduce an auxiliary algorithm
ExtractIndex(td, v)→ j that “points” to which index the adversary is constrained on.

We give a formal definition below.

Definition 5.2 (Bit-fixing PEHash). A predicate extractable hash family PEHash with respect to
the bit-fixing predicate family is a PEHash satisfying the basic properties above (Definition 5.1),
augmented with the following algorithm:

ExtractIndex(td, v)→ j. This is a deterministic extraction algorithm that takes as input a trapdoor
td and a hash value v ∈ {0, 1}poly(λ), and outputs an index j ∈ [N ].

The hash family is furthermore required to satisfy the following consistency properties:

Index Extraction Correctness. For any λ ∈ N, any N ≤ 2λ, any predicate f = (J, y) ∈ F
such that J ̸= ∅, and any hash value v,

Pr
[
ExtractIndex(td, v) ∈ J : (hk, vk, td)← Gen(1λ, N, J, y)

]
= 1 .

Consistency of extraction. For any poly-size adversary A it holds that for any polynomial
N = N(λ) and any bit-fixing predicate described by a set J ⊂ [N ] and string y ∈ {0, 1}J , there
exists a negligible function negl(·) such that for any λ ∈ N,

Pr

[
j ∈ J ∧ Extract(td, v) = 1 ∧
Verify(vk, v, j, 1− yj , t, ρ) = 1

:
(hk, vk, td)← Gen(1λ, N, J, y),
(v, j, t, ρ)← A(hk, vk)

]
≤ negl(λ),

and

Pr

 Extract(td, v) = 0 ∧
ExtractIndex(td, v) = j ∧
Verify(vk, v, j, yj , t, ρ) = 1

:
(hk, vk, td)← Gen(1λ, N, J, y),
(v, j, t, ρ)← A(hk, vk)

 ≤ negl(λ).

Theorem 5.3. Assuming the hardness of LWE, there exists a PEHash family for bit-fixing predicates.

We defer the proof of Theorem 5.3 to Section 5.3.1, where we construct a stronger object used
in our somewhere extractable SNARG construction.
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5.3 Extractable Hash with Tags for Bit-Fixing Predicates

In this section we define an extension of PEHash for bit-fixing predicates, which we call a PEHash
family with tags. This object supports hashing the input together with a vector of tags, such that
each bit of the input has an attached tag.

We use this extended definition in Section 7, to achieve a somewhere extractable SNARG.
We modify the syntax of the basic PEHash algorithms to support tags, as follows:

• Gen,Extract and ExtractIndex are identical.

• Hash and Open receive a vector of tags t⃗ = (t1, . . . , tN ) as an additional input.

• Verify receives a tag t as an additional input, which should correspond to the tag attached to
the jth bit of x.

We additionally introduce an auxiliary algorithm ExtractTag that is defined similarly to ExtractIndex
except that it extracts the tag associated with input that the adversary is constrained on instead of
its index. We give the full syntax below.

Syntax. A predicate extractable hash family PEHash with tags with respect to the bit-fixing
predicate family consists of the following PPT algorithms:

Gen(1λ, N, J, y)→ (hk, vk, td). This is a probabilistic setup algorithm that takes as input a security
parameter 1λ in unary, a message length N , a set of indices J ⊆ [N ], and a string y ∈ {0, 1}J .
It outputs a hash key hk, verification key vk and trapdoor td.

Hash(hk, x, t⃗)→ v. This is a deterministic algorithm that takes as input a hash key hk, an input
x ∈ {0, 1}N , and tags t⃗ = (t1, . . . , tN ) ∈ ({0, 1}T )N . It outputs a hash value v ∈ {0, 1}T ·poly(λ).

Open(hk, x, t⃗, j)→ ρ. This is a deterministic algorithm that takes as input a hash key hk, an input
x ∈ {0, 1}N , tags t⃗ = (t1, . . . , tN ) ∈ ({0, 1}T )N and an index j ∈ [N ]. It outputs an opening
ρ ∈ {0, 1}T ·poly(λ).

Verify(vk, v, j, b, t, ρ)→ 0/1. This is a deterministic algorithm that takes as input a verification key
vk, a hash value v ∈ {0, 1}T ·poly(λ), an index j ∈ [N ], a bit b ∈ {0, 1}, a tag t ∈ {0, 1}T and an
opening ρ ∈ {0, 1}T ·poly(λ), and outputs 1 (accept) or 0 (reject).

Extract(td, v)→ u. This is a deterministic extraction algorithm that takes as input a trapdoor td
and a hash value v ∈ {0, 1}T ·poly(λ), and outputs a bit u ∈ {0, 1}.

ExtractIndex(td, v)→ j. This is a deterministic extraction algorithm that takes as input a trapdoor
td and a hash value v ∈ {0, 1}T ·poly(λ), and outputs an index j ∈ [N ].

ExtractTag(td, v)→ t. This is a deterministic extraction algorithm that takes as input a trapdoor
td and a hash value v ∈ {0, 1}T ·poly(λ), and outputs a tag t ∈ {0, 1}T .

The basic properties of PEHash with tags are as in Definition 5.1, with minor adjustments to
account for the modified syntax. For security, we extend the consistency of extraction property to
hold also for tags.
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Definition 5.4 (Bit-fixing PEHash with Tags). A predicate extractable hash family PEHash with
tags with respect to the bit-fixing predicate family is a PEHash satisfying the basic properties defined
in Definition 5.1 modified to account for tags, and the following consistency properties:

Index Extraction Correctness. For any λ ∈ N, any N ≤ 2λ, any predicate f = (J, y) ∈ F
such that J ̸= ∅, and any hash value v,

Pr
[
ExtractIndex(td, v) ∈ J : (hk, vk, td)← Gen(1λ, N, J, y)

]
= 1 .

Consistency of extraction. For any poly-size adversary A it holds that for any polynomial
N = N(λ) and any bit-fixing predicate described by a set J ⊆ [N ] and string y ∈ {0, 1}J , there
exists a negligible function negl(·) such that for any λ ∈ N,

Pr

[
j ∈ J ∧ Extract(td, v) = 1 ∧
Verify(vk, v, j, ȳj , t, ρ) = 1

:
(hk, vk, td)← Gen(1λ, N, J, y),
(v, j, t, ρ)← A(hk, vk)

]
≤ negl(λ),

and

Pr

 Extract(td, v) = 0 ∧
ExtractIndex(td, v) = j ∧
Verify(vk, v, j, yj , t, ρ) = 1

:
(hk, vk, td)← Gen(1λ, N, J, y),
(v, j, t, ρ)← A(hk, vk)

 ≤ negl(λ).

Consistency of tag extraction. For any poly-size adversary A it holds that for any polynomial
N = N(λ) and any bit-fixing predicate described by a set J ⊆ [N ] and string y ∈ {0, 1}J , there
exists a negligible function negl(·) such that for any λ ∈ N,

Pr


Extract(td, v) = 0 ∧
ExtractIndex(td, v) = j ∧
ExtractTag(td, v) ̸= t ∧
Verify(vk, v, j, ȳj , t, ρ) = 1

:
(hk, vk, td)← Gen(1λ, N, J, y),
(v, j, t, ρ)← A(hk, vk)

 ≤ negl(λ).

Remark 5.1. We note that a bit-fixing PEHash (Definition 5.2) can be derived from any bit-fixing
PEHash with tags by fixing all the tags to ⊥. Therefore, it is sufficient to construct a bit-fixing
PEHash with tags.

5.3.1 Construction.

In this section we construct bit-fixing PEHash with tags. We first give a “base construction” where
the length of the verification key vk grows with the predicate description (same as the hash key
hk), however, the hash values and openings are fully succinct. We analyze the security of the base
construction in Section 5.3.2. Then, in Section 5.3.3, we use RAM SNARGs to generically shorten vk
to the desired poly(λ) length.

Our base construction uses a FHE scheme (Definition 3.3)

FHE = (FHE.Setup,FHE.Enc,FHE.Eval,FHE.Dec).

Gen(1λ, N, f = (J, y)) is defined as follows:
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1. Assume wlog that N is a power of 2, and let N = 2n.

2. Let (pkleaf , skleaf)← FHE.Setup(1λ), and for every 0 ≤ j ≤ n let (pkj , skj)← FHE.Setup(1λ).

3. Let c0 ← FHE.Encpk0(skleaf), and for every 1 ≤ j ≤ n let cj ← FHE.Encpkj (skj−1).

4. Let cf = cf,0 ← FHE.Encpk0(J, y).

5. Output hk = (pkleaf , pk0, . . . , pkn, c0, . . . , cn, cf ) , vk = hk , td = (J, skn).

Hash(hk, x, t⃗) is as follows:

1. Parse hk = (pkleaf , pk0, . . . , pkn, c0, . . . , cn, cf ).

2. We consider a binary tree of height n whose vertices are represented as v ∈ {0, 1}j for all
0 ≤ j ≤ n (where the root is represented by the empty string ε). Compute a ciphertext
for each of the vertices, as follows:

(a) For every leaf v ∈ {0, 1}n = [N ], we compute leafv = FHE.Encpkleaf (xv, tv) using fixed
all-zero randomness.

(b) For j = 0, we proceed as follows:

i. Let cf,0 = cf .

ii. For every vertex v ∈ {0, 1}n = [N ], we compute
ctv = FHE.Evalpk0(gv,leafv , (c0, cf,0)), where gv,leafv(skleaf , J, y) is as follows:

• Compute (b, t) = FHE.Decskleaf (leafv).

• If v ∈ J and b ̸= yv, output (0, v, t).

• Otherwise, output (1,⊥,⊥).
(c) For every 1 ≤ j ≤ n, we proceed as follows:

i. Compute cf,j = FHE.Evalpkj (gcf,j−1
, cj), where gcf,j−1

(skj−1) outputs (J, y) =
FHE.Decskj−1

(cf,j−1).

ii. For every vertex v ∈ {0, 1}n−j , we compute ctv = FHE.Evalpkj (gctv||0,ctv||1 , (cj , cf,j)),
where gctv||0,ctv||1(skj−1, J, y) is as follows:

• For every i ∈ {0, 1}, compute (bi, ji, ti) = FHE.Decskj−1
(ctv||i).

• If there exists an i ∈ {0, 1} such that bi = 0, ji ∈ J and v||i is a prefix of ji (in
other words, ji is a descendant of v||i), take the minimum such i and output
(0, ji, ti).

• Otherwise, output (1,⊥,⊥).
3. Output v = ctε associated with the root of the tree.

Open(hk, x, t⃗, j) is as follows:

1. Write j ∈ [N ] as a string of bits j = (j1, . . . , jn) ∈ {0, 1}n.
2. For every 0 ≤ i ≤ n, let vi = (j1, . . . , jn−i−1, jn−i), and v′i = (j1, . . . , jn−i−1, 1− jn−i).

In other words, vi is the ith node in the path from j to the root ε, and v′i is vi’s sibling.

3. Compute the tree as in Hash(hk, x, t⃗), and all leaf and ct ciphertexts.

4. Output ρ =

(
leafj ,

{
ctvi , ctv′i

}
0≤i≤n

)
.

Verify(vk, v, j, b, t, ρ) is as follows:

25



1. Parse vk = (pkleaf , pk0, . . . , pkn, c0, . . . , cn, cf ).

2. Parse ρ =

(
leaf∗j ,

{
ct∗vi , ct

∗
v′i

}
0≤i≤n

)
.

3. Accept if all the following checks pass:

(a) Check that leaf∗j = FHE.Encpkleaf (b, t) with fixed all-zero randomness.

(b) For i = 0, proceed as follows:

i. Let cf,0 = cf .

ii. Recall that v0 = j and check that ct∗j = FHE.Evalpk0(gj,leaf∗j , (c0, cf,0)), where
gj,leaf∗j is defined as in Hash.

(c) For every 1 ≤ i ≤ n, proceed as follows:

i. Let cf,i = FHE.Evalpki(gcf,i−1
, ci), where gcf,i−1

is defined as in Hash.

ii. Check that ct∗vi = FHE.Evalpki(gct∗vi−1
,ct∗

v′
i−1

, (ci, cf,i)), where gct∗vi−1
,ct∗

v′
i−1

is de-

fined as in Hash.

(d) Recall that vn = ε and check that v = ct∗ε.

Extract(td, v) is as follows:

1. Parse td = J, skn.

2. Compute (b, j, t) = FHE.Decskn(v).

3. Output b.

ExtractIndex(td, v) is as follows:

1. Parse td = J, skn.

2. Compute (b, j, t) = FHE.Decskn(v).

3. Output j, or an arbitrary element of J if j /∈ J .

ExtractTag(td, v) is as follows:

1. Parse td = J, skn.

2. Compute (b, j, t) = FHE.Decskn(v).

3. Output t.

Remark 5.2 (Shorter hash key for restricted families of predicates). We can modify the above
construction to achieve a shorter hash key hk, if we consider restricted families F of bit-fixing
predicates f = (J, y) that have a succinct description df (potentially shorter than |J |).

Namely, let F be a family of bit-fixing predicates, such that there exists a poly-time TM
M =MF that receives an input z = zF and a description df of a predicate f ∈ F , and outputs
f = (J, y). Then, we can construct a PEHash family for the family F , with the following syntax
and efficiency:

• The Gen algorithm receives df rather than f , and the rest of the algorithms receive z as an
additional input.

• The size of the hash key hk generated by Gen(1λ, N, df ) is |df |·poly(λ).
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The construction is identical to the construction above, with the following changes:

• Gen computes cdf ← FHE.Encpk0(df ) rather than cf ← FHE.Encpk0(f), includes cdf in hk = vk,
and sets td = df , skn.

• Hash,Open,Verify first compute cf ← FHE.Evalpk0(gz, cdf ) where gz(df ) = M(z, df ), then
proceed as in the original algorithms.

• Extract,ExtractIndex,ExtractTag parse td = df , skn, compute (J, y) =M(z, df ), then proceed
as in the original algorithms.

This variant of PEHash with shorter hk is used in our SNARG construction in Section 7, to achieve a
prover common reference string crsP of size (k+m) ·poly(λ) rather than (k+m+width(C)) ·poly(λ).

5.3.2 Analysis.

In this section we analyze the above construction, and show that it satisfies Definition 5.4, except
for the verification efficiency requirement.

Opening completeness. Follows immediately by construction and the correctness of the FHE
scheme.

Predicate hiding. We define a series of hybrid algorithms Geni for 0 ≤ i ≤ n+ 1, as follows:

• For i = n+ 1, we define Genn+1 = Gen.

• For 1 ≤ i ≤ n, we define Geni that is identical to Geni+1, except that we compute ci ←
FHE.Encpki(0) rather than ci ← FHE.Encpki(ski−1).

• For i = 0, we define Gen0 that is identical to Gen1, except that we compute cf ← FHE.Encpk0(0)
rather than cf ← FHE.Encpk0(J, y).

We observe that Genn+1(1
λ, N, J, y) = Gen(1λ, N, J, y), and Gen0(1

λ, N, J, y) is independent of
the predicate J, y. Therefore, by a hybrid argument it suffices to show that Geni ≈c Geni+1 for every
0 ≤ i ≤ n. This follows from the semantic security of the underlying FHE scheme (with encryption
key pki), since the outputs of both Geni and Geni+1 can be sampled efficiently given pki without ski.

Index extraction correctness. Follows immediately by definition of ExtractIndex.

Consistency of extraction. Fix any poly-size adversary A, and polynomial N = N(λ), and any
bit-fixing predicate described by a set J ⊆ [N ] and a string y ∈ {0, 1}J .

The proof of the consistency of extraction property is given by the following two claims. Note
that the original properties require a negligible error probability, but in this construction it is 0.

Claim 5.5.

Pr

[
j ∈ J ∧ Extract(td, v) = 1 ∧
Verify(vk, v, j, 1− yj , t, ρ) = 1

:
(hk, vk, td)← Gen(1λ, N, J, y),
(v, j, t, ρ)← A(hk, vk)

]
= 0.
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Proof of Claim 5.5. In the above experiment, we parse:

• hk = vk = (pkleaf , pk0, . . . , pkn, c0, . . . , cn, cf ).

• ρ =

(
leaf∗j ,

{
ct∗vi , ct

∗
v′i

}
0≤i≤n

)
.

Assume j ∈ J and Verify(vk, v, j, 1− yj , t, ρ) = 1. We show by induction that for every 0 ≤ i ≤ n we
have FHE.Decski(ct

∗
vi) = (0, j′, ·) for some j′ ∈ J that is a descendant of vi. This suffices, since we also

check that ct∗vn = v, so we must have FHE.Decskn(v) = (0, j′, ·) which implies that Extract(td, v) = 0.
For the base case of i = 0 and v0 = j, we have that c0, cf,0 are honest encryptions of skleaf , J, y,

so using the evaluation correctness of the FHE scheme, we have

FHE.Decsk0(ct
∗
j ) = FHE.Decsk0(FHE.Evalpk0(gj,leaf∗j , (c0, cf,0))) = gj,leaf∗j (skleaf , J, y).

Now, by definition of gj,leaf∗j , and since leaf∗j is FHE.Encpkleaf (1 − yj , t) and we have j ∈ J and

1− yj ̸= yj , we get FHE.Decsk0(ct
∗
j ) = (0, j, t).

Now, assume the claim holds for i−1. Similarly, since ci, cf,i are honest encryptions of ski−1, J, y,
evaluation correctness of the FHE scheme implies that

FHE.Decski(ct
∗
vi) = FHE.Decski(FHE.Evalpki(gct∗vi−1

,ct∗
v′
i−1

, (ci, cf,i))) = gct∗vi−1
,ct∗

v′
i−1

(ski−1, J, y).

By the induction hypothesis we have FHE.Decski−1
(ct∗vi−1

) = (0, j′, ·) for some j′ ∈ J that is a
descendant of vi−1, so by definition of gct∗vi−1

,ct∗
v′
i−1

we get that FHE.Decski(ct
∗
vi) = (0, j′′, ·) for some

j′′ ∈ J that is a descendant of vi (either j′ or the index j′′ in FHE.Decski−1
(ct∗v′i−1

) if it is valid),

which shows that the claim holds for i, and finishes the proof of Claim 5.5.

Claim 5.6.

Pr

 Extract(td, v) = 0 ∧
ExtractIndex(td, v) = j ∧
Verify(vk, v, j, yj , t, ρ) = 1

:
(hk, vk, td)← Gen(1λ, N, J, y),
(v, j, t, ρ)← A(hk, vk)

 = 0.

Proof of Claim 5.6. We proceed similarly to the proof of Claim 5.5. Assume Verify(vk, v, j, yj , t, ρ) =
1. We show by induction that for every 0 ≤ i ≤ n we have either FHE.Decski(ct

∗
vi) = (1,⊥,⊥) or

FHE.Decski(ct
∗
vi) = (0, j′, ·) for some j′ ̸= j. This suffices, since we also check that ct∗vn = v, so we

must have Extract(td, v) = 1 or ExtractIndex(td, v) = j′ ̸= j.
For the base case of i = 0 and v0 = j, as in the previous claim, we have FHE.Decsk0(ct

∗
j ) =

gj,leaf∗j (skleaf , J, y). By definition of gj,leaf∗j , and since leaf∗j is FHE.Encpkleaf (yj , t), we get FHE.Decsk0(ct
∗
j ) =

(1,⊥,⊥).
Now, assume the claim holds for i−1. Similarly, we have FHE.Decski(ct

∗
vi) = gct∗vi−1

,ct∗
v′
i−1

(ski−1, J, y).

By the induction hypothesis we know that FHE.Decski−1
(ct∗vi−1

) = (1,⊥,⊥) or (0, j′, ·) for some
j′ ̸= j, and since j is not a descendant of v′i−1 we get that FHE.Decski(ct

∗
vi) preserves the same

property, which finishes the proof of Claim 5.6.
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Consistency of tag extraction. Fix any poly-size adversary A, and polynomial N = N(λ), and
any bit-fixing predicate described by a set J ⊆ [N ] and a string y ∈ {0, 1}J . We claim that

Pr


Extract(td, v) = 0 ∧
ExtractIndex(td, v) = j ∧
ExtractTag(td, v) ̸= t ∧
Verify(vk, v, j, 1− yj , t, ρ) = 1

:
(hk, vk, td)← Gen(1λ, N, J, y),
(v, j, t, ρ)← A(hk, vk)

 = 0.

Indeed, assume Verify(vk, v, j, 1− yj , t, ρ) = 1. Similarly to Claim 5.6, it follows by induction that
for every 0 ≤ i ≤ n it holds that FHE.Decski(ct

∗
vi) = (0, j, t) or FHE.Decski(ct

∗
vi) = (0, j′, ·) for some

j′ ̸= j, which in the case of i = n implies ExtractTag(td, v) = t or ExtractIndex(td, v) = j′ ̸= j.

Computational binding. This property follows from the predicate hiding and consistency of
extraction properties. Indeed, fix any poly-size adversary A, polynomial N = N(λ), and bit-fixing
predicate described by a set J ⊆ [N ] and a string y ∈ {0, 1}J . We define

ϵ(λ) ≜ Pr

[
Verify(vk, v, j, 0, t0, ρ0) = 1 ∧
Verify(vk, v, j, 1, t1, ρ1) = 1

:
(hk, vk, td)← Gen(1λ, N, J, y),
(v, j, t0, t1, ρ0, ρ1)← A(hk, vk)

]
,

and show that ϵ is negligible. First, there exists an index j∗ ∈ [N ] such that

Pr

 Verify(vk, v, j, 0, t0, ρ0) = 1 ∧
Verify(vk, v, j, 1, t1, ρ1) = 1 ∧
j = j∗

:
(hk, vk, td)← Gen(1λ, N, J, y),
(v, j, t0, t1, ρ0, ρ1)← A(hk, vk)

 ≥ ϵ(λ)

N(λ)
.

We now switch to an experiment where we program the PEHash on the predicate described by
the set J ′ = {j∗} and the string y′ = 0. By the predicate hiding property, there exists a negligible
function µ such that

Pr

 Verify(vk, v, j, 0, t0, ρ0) = 1 ∧
Verify(vk, v, j, 1, t1, ρ1) = 1 ∧
j = j∗

:
(hk, vk, td)← Gen(1λ, N, J ′, y′),
(v, j, t0, t1, ρ0, ρ1)← A(hk, vk)

 ≥ ϵ(λ)

N(λ)
− µ(λ).

It suffices to show that this probability is negligible to conclude that ϵ is negligible.
This follows from the consistency of extraction property together with the definition of J ′, y′,

since it implies that for every b ∈ {0, 1}, there exists a negligible function negl(·) such that

Pr

[
Verify(hk, v, j∗, b, t, ρ) = 1 ∧
Extract(td, v) = b

:
(hk, vk, td)← Gen(1λ, N, J ′, y′),
(v, t, ρ)← A(hk, vk)

]
≤ negl(λ).

5.3.3 Construction with efficient verification.

In this section, we describe how to obtain a bit-fixing PEHash with tags that satisfies our efficiency
requirement of |vk|= poly(λ), given the base construction in Section 5.3.1 with vk = hk.

Our construction uses the following building blocks:

• A bit-fixing PEHash family with tags

PEHash′ = (Gen′,Hash′,Open′,Verify′,Extract′,ExtractIndex′,ExtractTag′)

such that Gen′ outputs (hk, vk, td) with hk = vk.

29



• A RAM SNARG (Definition 3.7) for the machine R defined in the Open algorithm below

(GenRAM,DigestRAM,PRAM,VRAM).

We describe the PEHash algorithms.

Gen(1λ, N, f) is as follows:

1. Let (hk′, vk′ = hk′, td′)← Gen′(1λ, N, f).

2. Let crsRAM ← GenRAM(1λ, T ), where T is the runtime of Verify′.

3. Let d = DigestRAM(hk′).

4. Output hk = (crsRAM, hk′) , vk = (crsRAM, d) , td = td′.

Hash(hk, x, t⃗) is as follows:

1. Parse hk = (crsRAM, hk′).

2. Output v = Hash′(hk′, x, t⃗).

Open(hk, x, t⃗, j) is as follows:

1. Let R(ximp, xexp) be a RAM machine defined as follows:

(a) Parse ximp = hk′, and xexp = (v, j, b, t, ρ′).

(b) Output Verify′(hk′, v, j, b, t, ρ′).

2. Parse hk = (crsRAM, hk′).

3. Let v = Hash′(hk′, x, t⃗), and ρ′ = Open′(hk′, x, t⃗, j).

4. Let ximp = hk′ and xexp = (v, j, xj , tj , ρ
′).

5. Compute πRAM = PRAM(crsRAM, (ximp, xexp)).

6. Output ρ = (ρ′, πRAM).

Verify(vk, v, j, b, t, ρ) is as follows:

1. Parse ρ = (ρ′, πRAM).

2. Let xexp = (v, j, b, t, ρ′).

3. Output VRAM(crsRAM, d, xexp, 1, π).

Extract(td, v) outputs Extract′(td, v).

ExtractIndex(td, v) outputs ExtractIndex′(td, v).

ExtractTag(td, v) outputs ExtractTag′(td, v).

Efficiency. By construction and the efficiency of the underlying RAM SNARG,

• The size of hk is |crsRAM|+|hk′|= poly(log T, λ) + |hk′|.

• The size of vk is |crsRAM|+|d|= poly(log T, λ).

• The size of the hash value and openings is m · poly(logN,λ), where m is the tag length.
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Analysis. The opening completeness and predicate hiding properties are immediate.
For the consistency properties, we observe that RAM SNARG soundness implies that if an

adversary A(hk, vk) produces (v, j, b, t, ρ) such that Verify(vk, v, j, b, t, ρ) = 1, then if we parse
hk = (crsRAM, hk′) and ρ = (ρ′, πRAM), we have Verify′(hk′, v, j, b, t, ρ′) = 1 except with negligible
probability. Therefore, the consistency properties follow from the consistency of PEHash′.

6 Non-Adaptive SNARG Construction

In what follows we construct a SNARG scheme (Gen,P,V) for the language L(k)f defined in Section 4
with respect to an underlying NP language L and a monotone circuit C computing function f .

Our construction uses the following building blocks:

• A PEHash family (Definition 5.2)

PEHash = (GenPEH,HashPEH,OpenPEH,VerifyPEH,ExtractPEH,ExtractIndexPEH)

with respect to the bit-fixing predicate family F where each f ∈ F is a Boolean function
with domain {0, 1}N , where N = s := |C|. Each function f ∈ F is associated with a subset
J ⊆ [N ] of size ℓ ≤ width(C) and a string y ∈ {0, 1}ℓ.

• A seBARG scheme (Definition 3.5)

(GenseBARG,PseBARG,VseBARG,ExtractseBARG).

We are now ready to define our SNARG for L(k)f .

Gen(1λ, k, n) does the following:

1. Fix two arbitrary predicates f1, f2 ∈ F . Recall that |fβ|= ℓ·(log s+1) for every β ∈ {1, 2}.

2. Generate (hk
(β)
PEH, vk

(β)
PEH, td

(β)
PEH)← GenPEH(1

λ, N, fβ) for each β ∈ {1, 2}.
3. Generate (crsseBARG, tdseBARG)← GenseBARG(1

λ, 1n
′
, 1m

′
, I), where

n′ = O(1) + logN + 2|vkPEH|+2|v|,

m′ = m+ 3 + 6|ρ|,

|v| is the length of the output of HashPEH(hkPEH, ·), |ρ| is the length of the output of
OpenPEH(hkPEH, ·), and where I ⊂ [N ] is a set of size three initialized to {1, 2, N}.

4. Let crsP = (hk
(1)
PEH, vk

(1)
PEH, hk

(2)
PEH, vk

(2)
PEH, crsseBARG) and let crsV = (vk

(1)
PEH, vk

(2)
PEH, crsseBARG).

5. Output (crsP , crsV).

P(crsP , C, x1, . . . , xk, w1, . . . , wk) does the following:

1. For every 1 ≤ j ≤ k, compute bj = RL(xj , wj). Then, compute the values of all the wires
in the circuit evaluation C(b1, . . . , bk). Denote these values by b1, . . . , bN (the first k bits
are the input wire values).
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2. Parse crsP = (hk
(1)
PEH, vk

(1)
PEH, hk

(2)
PEH, vk

(2)
PEH, crsseBARG).

3. Compute v(β) = HashPEH(hk
(β)
PEH, (b1, . . . , bN )) for β ∈ {1, 2}.

4. Define an instance X = (M, z,N, T ) of BatchIndexTMSAT. The input z is defined as

z = (C, x1, . . . , xk, (vk
(β)
PEH, v

(β))β∈{1,2}). The batch size is set to N . The Turing machine
M(z, j, ωj) is defined to operate as follows:

(a) Parse z = (C, x1, . . . , xk, (vk
(β)
PEH, v

(β))β∈{1,2}).

(b) If 1 ≤ j ≤ k:

i. Parse ωj =
(
wj , bj , ρ

(1), ρ(2)
)
.

ii. Check that Verify(vk
(β)
PEH, v

(β), j, bj , ρ
(β)) = 1 for β ∈ {1, 2}.

iii. Check that RL(xj , wj) = bj .

(c) If j > k:

i. Compute the jth gate of C, gj = (j, j1, j2, c ∈ {AND,OR}).

ii. Parse ωj =

(
bj , bj1 , bj2 ,

(
ρ
(β)
j , ρ

(β)
j1

, ρ
(β)
j2

)
β∈{1,2}

)
.

iii. Check that VerifyPEH(vk
(β)
PEH, v

(β), j, bj , ρ
(β)
j ) = 1 for β ∈ {1, 2}.

iv. Check that VerifyPEH(vk
(β)
PEH, v

(β), jα, bjα , ρ
(β)
jα

) = 1 for α, β ∈ {1, 2}.
v. Check that bj = c(bj1 , bj2). (That is, check that the gate is satisfied.)

vi. If j = N is the output wire then check that bj = 1.

The description length of M is a constant. Finally, the time bound T = poly(N,n,m, k)
is set so that the pseudocode above terminates.

5. For every j ∈ [N ], construct a witness (j, ωj) for X, using the OpenPEH algorithm to
produce openings for (b1, . . . , bN ) as appropriate.

6. Compute πseBARG = PseBARG(crsseBARG,M, z, 1T , ω1, . . . , ωN ).

7. Output (v(1), v(2), πseBARG).

V(crsV , C, x1, . . . , xk, π) does the following:

1. Parse crsV = (vk
(1)
PEH, vk

(2)
PEH, crsseBARG).

2. Parse π = (v(1), v(2), πseBARG).

3. Define X = (M, z,N, T ) as above.

4. Output VseBARG(crsseBARG, X, πseBARG).

6.1 Analysis

Theorem 6.1. The construction given in Section 6 is a SNARG for L(k)f (Definition 4.1) with the
following additional efficiency properties:

• The runtime of the verifier is poly(|crsV |+|π|) + (kn+ |C|)poly(λ, log k).

• The (prover) common reference string crsP has size poly(λ, log k)(m+width(C)).
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Proof of Theorem 6.1.

Completeness. Follows directly from the correctness properties of the underlying PEHash and
seBARG.

Efficiency. To bound |crsV |+|π|, we make use of the following facts:

• By the efficiency of PEHash, |vk(β)PEH|+|v
(β)
PEH|≤ poly(λ, log k) for β ∈ {1, 2}.

• The length of the BatchIndexTMSAT instance X is |X|≤ kn + |C|+poly(λ, log(knm)). The
length of a witness ωi is at most poly(λ, log k) +m.

• Therefore, by the succinctness of seBARG, we conclude that |crsseBARG|+|πseBARG|≤ m ·
poly(λ, log(knm)).

To bound the running time of the verifier, we again invoke the efficiency of the seBARG to
conclude the claimed poly(|crsV |+|π|) + (kn+ |C|)poly(λ, log k) bound.

Finally, the size of |crsP | is at most m · poly(λ, log(knm)) + 2 · |hkPEH|≤ m · poly(λ, log(knm)) +
poly(λ, log k) · width(C) by the efficiency of the PEHash family.

Remark 6.1 (Improved Verifier Efficiency). Suppose that there is a polynomial-time Turing machine
M ′ and input string aux such that:

• M(aux, “circuit”) outputs C, and

• M(aux, “input”) outputs (x1, . . . , xk).

Then, the efficiency of the verifier can be improved to poly(|crsV |+|π|) + poly(λ, log k) · |aux|. This is
accomplished simply by having the Turing machine M defined in the construction take as input aux
(as part of z) rather than (C, x1, . . . , xk) and generate (C, x1, . . . , xk) from aux at the beginning of
its execution.

Soundness. Fix any poly-size cheating prover P∗, any two polynomials k = k(λ) and n = n(λ),

and any instance x = (x1, . . . , xk) /∈ L(k)f such that |xj |= n for every j ∈ [k]. By definition, the
success probability of P∗ is

ϵ(λ) ≜ Pr

[
V(crsV ,x, π) = 1 :

(crsP , crsV)← Gen(1λ, k, n),
π = P∗(crsP , crsV)

]
. (1)

We want to show that ϵ(λ) is a negligible function. To do so, we first define the following information
(which depends on x) that may be hard-wired during steps of our (non-adaptive) soundness analysis:

• Define (b∗1, . . . , b
∗
k) ∈ {0, 1}k where for every j ∈ [k], b∗j = 1 if and only if xj ∈ L.

• Define (b∗1, . . . , b
∗
N ) to be the values of all the wires in C on input (b∗1, . . . , b

∗
k).

• Let d = depth(C). For each i ∈ [d] denote by Ji ⊂ [N ] the wires that correspond to the ith
layer of C that have the value 0. Note that |Ji| is at most the width of C, as we do not
include the input layer in this definition.
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We prove soundness by a hybrid argument based on alternative key generation algorithms (Geni,j)0≤i,j≤d

defined below.

Geni,j(1
λ, k, n) does the following:

1. Define predicates f1 = fJi,0ℓ and f2 = fJj ,0ℓ . If i = 0, we define f1 to be the all zeroes
function (and similarly for j).

2. Generate (hk
(β)
PEH, vk

(β)
PEH, td

(β)
PEH)← GenPEH(1

λ, N, fβ) for each β ∈ {1, 2}.
3. Proceed otherwise as in Gen.

By the predicate hiding property of the underlying PEH family (Definition 5.1), Equation (1)
implies there exists a negligible function negl(·) such that for every i ∈ [d]

Pr

[
V(crsV ,x, π) = 1 :

(crsP , crsV)← Geni,i−1(1
λ, k, n),

π = P∗(crsP , crsV)

]
≥ ϵ− negl(λ). (2)

Parse π = (v(1), v(2), πseBARG). For every i ∈ [d] and every λ ∈ N, denote by

µi(λ) = µ
(1)
i (λ) ≜ Pr

[
V(crsV ,x, π) = 1 ∧
Extract(td

(1)
PEH, v

(1)) = 0
:

(crsP , crsV)← Geni,i−1(1
λ, k, n),

π = P∗(crsP , crsV)

]

In other words, µi is the probability that the verifier accepts and the evaluation of the ith layer
predicate fJi,0ℓ is inconsistent with the correct evaluation of C(b∗1, . . . , b

∗
k).

Lemma 6.2. µd is a negligible function.

Before proving Lemma 6.2, we first argue that the lemma indeed implies soundness. To see
this, we make use of the seBARG: by the definition of Gend (and Gen), it is extractable on index N .
Thus, we consider the following experiment:

• Sample (crsP , crsV , td
(1)
PEH, tdseBARG)← Gend,d−1(1

λ, k, n).

• Compute π = P∗(crsP , crsV). Parse π = (v(1), v(2), πseBARG).

• Compute (ω∗
1, ω

∗
2, ω

∗
N ) = ExtractseBARG(tdseBARG, πseBARG).

• Parse ω∗
N =

(
bN , bN1 , bN2 ,

(
ρ
(β)
N , ρ

(β)
N1

, ρ
(β)
N2

)
β∈{1,2}

)
.

• Output (bN , ρ
(1)
N ).

Let z =
(
C, x1, . . . , xk, (vk

(β)
PEH, v

(β))β∈{1,2}

)
and let M denote the Turing machine described in

the construction. By the somewhere argument of knowledge property of the underlying seBARG,
there exists a negligible function negl such that for every λ ∈ N,

Pr
[
V(crsV ,x, π) = 1 ∧ M(z,N, ω∗

N ) = 0
]
= negl(λ). (3)
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Equations (2) and (3) imply that there exists a negligible function negl such that for every λ ∈ N,

Pr
[
V(crsV ,x, π) = 1 ∧ M(z,N, ω∗

N ) = 1
]
≥ ϵ− negl(λ),

Moreover, M(z,N, ωN ) = 1 implies that bN = 1 and ρ
(1)
N is a valid opening of v(1) to bN on the

final wire of the circuit assignment. Thus, by the consistency of extraction property of the PEHash
family (and the fact that b∗N = 0), we know that

Pr
[
M(z,N, ω∗

N ) = 1 ∧ Extract(td
(1)
PEH, v

(1)) = 1
]
= negl(λ).

Thus, if µd is negligible (Lemma 6.2) we conclude that ϵ is negligible, as desired.

Proof of Lemma 6.2. We prove that there exists a negligible function negl(λ) such that for every
i ∈ [d],

µ
(1)
i ≤ µ

(1)
i−1 + negl(λ),

where µ0 is defined to be zero. To prove this, we define the intermediate quantity

µ
(2)
i−1(λ) ≜ Pr

[
V(crsV ,x, π) = 1 ∧
Extract(td

(2)
PEH, v

(2)) = 0
:

(crsP , crsV)← Geni,i−1(1
λ, k, n),

π = P∗(crsP , crsV)

]

for i > 1, and define µ
(2)
0 = 0. We will prove the following two claims (which together imply

Lemma 6.2):

Claim 6.3. For all i ≥ 1, µ
(1)
i ≤ µ

(2)
i−1 + negl(λ).

Claim 6.4. For all i > 1, µ
(2)
i−1 ≤ µ

(1)
i−1 + negl(λ).

Proof of Claim 6.3. It suffices to show that

δi,i−1 ≜ Pr

 V(crsV ,x, π) = 1 ∧
Extract(td

(1)
PEH, v

(1)) = 0 ∧
Extract(td

(2)
PEH, v

(2)) = 1

:
(crsP , crsV)← Geni,i−1(1

λ, k, n),
π = P∗(crsP , crsV)

 = negl(λ).

In the above experiment (and the following experiments), let BAD = BADi,i−1 denote the event

that V(crsV ,x, π) = 1, Extract(td
(1)
PEH, v

(1)) = 0, and Extract(td
(2)
PEH, v

(2)) = 1 simultaneously.
We upper bound the probability of BAD in the above experiment making use of a hybrid setup

algorithm G̃eni,i−1(1
λ, k, n), which is identical to Geni,i−1(1

λ, k, n) except for how the seBARG setup
procedure is executed:

• Sample a uniformly random index j = j0 from the ith level of C.

• Let the jth gate of C be described as (j1, j2, cj ∈ {AND,OR}).

• Sample (crsseBARG, tdseBARG)← GenseBARG(1
λ, 1n

′
, 1m

′
, {j, j1, j2}).

Let Pr[ · ], P̃r[ · ] denote probabilities under Geni,i−1 and G̃eni,i−1 setup, respectively. We now
proceed to bound δi,i−1.
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Step 1: Switch to G̃en. This is accomplished in two steps. First, we note that

Pr
[
BAD ∧ j = ExtractIndex(td

(1)
PEH,i, v

(1))
]
= δi,i−1 ·

1

width(C)
≥ δi,i−1

poly(λ)
,

since j is independent of the Geni,i−1 experiment. Then, we also have that

P̃r
[
BAD ∧ j = ExtractIndex(td

(1)
PEH,i, v

(1))
]
≥ δi,i−1

poly(λ)
− negl(λ)

by the index-hiding of seBARG.

Step 2: Analyze the output of ExtractseBARG. Consider the experiment of running P∗(crsP , crsV)
on a common reference string generated using Gen′i,i−1(1

λ, k, n). The prover outputs a string π,

which we parse as (v(1), v(2), πseBARG). Then, running the extractor ExtractseBARG(tdseBARG, πseBARG)
produces potential witnesses ω∗

j , ω
∗
j1
, ω∗

j2
.

Let CorrectM denote the event that M(z, jα, ω
∗
jα
) = 1 for all α ∈ {0, 1, 2}. By the extractability

property of seBARG, we know that

P̃r
[
BAD ∧ j = ExtractIndex(td

(1)
PEH,i, v

(1)) ∧ CorrectM

]
≥ δi,i−1

poly(λ)
− negl(λ).

Parse the witness ω∗
j as

ω∗
j =

(
bj , bj1 , bj2 ,

(
ρ
(β)
N , ρ

(β)
j1

, ρ
(β)
j2

)
β∈{1,2}

)
.

The structure of ω∗
j1
, ω∗

j2
depends on whether j1 and j2 correspond to input wires, but ω∗

j1
(respectively,

ω∗
j2
) will always be parsed to contain an opening of each v(β) to the j1th wire value (respectively,

the j2th wire value). The fact that each ω∗
jα

is a valid witness and the computational binding of
PEHash imply that the j1, j2 openings are to bits bj1 , bj2 (except with negligible probability). From
now on, we will assume that the bits bj1 , bj2 are well-defined and contained in both ω∗

j and ω∗
j1
/ω∗

j2
.

Finally, since BAD implies Extract(td
(1)
PEH, v

(1)) = 0, consistency of PEH(1) extraction implies that

P̃r
[
BAD ∧ j = ExtractIndex(td

(1)
PEH,i, v

(1)) ∧ CorrectM ∧ bj = 1
]
≥ δi,i−1

poly(λ)
− negl(λ).

Step 3: Analyze the jth Gate. At this point in the hybrid argument, we are analyzing an

event in which bj = 1; however, we also know that b∗j = 0, since j = ExtractIndex(td
(1)
PEH, v

(1)) is an
extracted index with respect to fJi,0ℓ . We now claim that for a randomly sampled α ∈ {1, 2},

P̃r
[
BAD ∧ j = ExtractIndex(td

(1)
PEH,i, v

(1)) ∧ CorrectM ∧ bjα > b∗jα

]
≥ δi,i−1

poly(λ)
− negl(λ).

Specifically, the probability compared to above is cut in half (at most). This holds because
M(z, j, ω∗

j ) = 1 implies that bj = cj(bj1 , bj2). Moreover, we know that bj = 1, b∗j = 0, and
b∗j = cj(b

∗
j1
, b∗j2). These conditions together imply that bjα > b∗jα for some α ∈ {1, 2}.
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Step 4: Analyze the “incorrect child” jα. We split the Step 3 event into two cases.

• When jα ≤ k, the event happens with probability zero. This is because CorrectM implies that
M(z, jα, ω

∗
α) = 1, which implies that ω∗

α contains a string wjα such that RL(xjα , wjα) = bjα .
But since bjα > b∗jα , this is impossible (b∗jα = 0 means that xj ̸∈ L).

• Thus, we can append “jα > k” to the event without loss of generality. If i = 1 we are done (we
have reached an empty event). Otherwise, we conclude that δi,i−1 = negl(λ) by the extraction

consistency of PEH(2). This is because the (valid) witness ω∗
j contains an opening ρ

(2)
jα

of v(2)

to bjα > b∗jα on location jα ∈ Ji−1. Moreover, BAD implies that Extract(td(2), v(2)) = 1, so
extraction consistency gives the desired bound.

This completes the proof of Claim 6.3.

Proof of Claim 6.4 We observe that by PEH key indistinguishability,

µ
(2)
i−1 ≤ Pr

[
V(crsV ,x, π) = 1 ∧
Extract(td

(2)
PEH, v

(2)) = 0
:

(crsP , crsV)← Geni−1,i−1(1
λ, k, n),

π = P∗(crsP , crsV)

]
+ negl(λ)

and

Pr

[
V(crsV ,x, π) = 1 ∧
Extract(td

(1)
PEH, v

(1)) = 0
:

(crsP , crsV)← Geni−1,i−1(1
λ, k, n),

π = P∗(crsP , crsV)

]
≤ µ

(1)
i−1 + negl(λ).

Thus, it suffices to show that

δi−1 ≜ Pr

 V(crsV ,x, π) = 1 ∧
Extract(td

(2)
PEH, v

(2)) = 0 ∧
Extract(td

(1)
PEH, v

(1)) = 1

:
(crsP , crsV)← Geni−1,i−1(1

λ, k, n),
π = P∗(crsP , crsV)

 = negl(λ).

To prove this, we make use of a further hybrid setup G̃eni−1,i−1(1
λ, k, n) where the key generation

for the seBARG is modified as follows:

• Sample a uniformly random index j from the i− 1th level of C.

• Sample (crsseBARG, tdseBARG)← GenseBARG(1
λ, 1n

′
, 1m

′
, {1, 2, j}).

The proof that δi−1 = negl(λ) now proceeds analogously to the proof that δi,i−1 = negl(λ) above
(with fewer steps, since we are only concerned with a single index j rather than a gate).
This completes the proofs of Claim 6.4, Lemma 6.2, and Theorem 6.1.

6.2 Argument of Knowledge

In this section, we show that our non-adaptive SNARG is an argument of knowledge.

Theorem 6.5. The SNARG for L(k)f given in Section 6 satisfies the following argument of knowledge
property: for every constant c ∈ N, there exists a PPT oracle machine Ec such that for every

37



polynomials k = k(λ) and n = n(λ) and every poly-size P∗, if for infinitely many λ ∈ N there exist
instances x = (x1, . . . , xk) with |xi|= n such that

Pr

[
V(crsV , C,x, π) = 1 :

(crsP , crsV)← Gen(1λ, k, n),
π ← P∗(crsP , crsV)

]
≥ 1

λc
,

then for these λs,

Pr

[
f(b1, . . . , bk) = 1
for bi = R(xi, wi)

: (w1, . . . , wk)← EP
∗

c (1λ, C,x)

]
= 1− negl(λ).

Proof of Theorem 6.5. Let c ∈ N. We define the PPT oracle machine Ec that is given oracle
access to a cheating prover P∗, and does the following given 1λ, C,x = (x1, . . . , xk) as input:

1. Let t = t(λ) be some polynomial chosen later.

2. For each i ∈ [k] and j ∈ [t],

(a) Generate (crsP , crsV , tdseBARG) ← Geni(1
λ, k, n), where Geni is identical to Gen, except

that it generates (crsseBARG, tdseBARG) programmed on the set I = {1, 2, i}, and addition-
ally outputs tdseBARG.

(b) Query P∗(crsP , crsV) and obtain a proof π = (v(1), v(2), πseBARG).

(c) Extract ωi,j = ExtractseBARG(td
(3)
seBARG, π

(3)
seBARG), and parse ωi,j = (wi,j , bi,j , ρ

(1), ρ(2)).

3. For each i ∈ [k], let wi = wi,j for some j ∈ [t] such that R(xi, wi,j) = 1, or wi = ⊥ if there
does not exist such a j. Output w = (w1, . . . , wk).

Fix polynomials k = k(λ), n = n(λ) and a poly-size cheating prover P∗ such that for infinitely
many λ ∈ N there exist instances x = (x1, . . . , xk) with |xi|= n such that

Pr

[
V(crsV , C,x, π) = 1 :

(crsP , crsV)← Gen(1λ, k, n),
π ← P∗(crsP , crsV)

]
≥ 1

λc
.

For i ∈ [k], let EXPi be the following experiment:

• Generate (crsP , crsV , tdseBARG)← Geni(1
λ, k, n), where Geni is defined as in Ec.

• Query P∗(crsP , crsV) and obtain a proof π = (v(1), v(2), πseBARG).

• Extract ω∗
i = ExtractseBARG(td

(3)
seBARG, π

(3)
seBARG), and parse ω∗

i = (wi, bi, ρ
(1), ρ(2)).

• Output (crsV , π, wi).

For c′ ∈ N, define the set Jc′ ⊆ [k] such that i ∈ Jc′ if

Pr
EXPi

[
V(crsV , C,x, π) = 1 ∧ R(xi, wi) = 1

]
≤ 1

λc′
.

Lemma 6.6. There exists c′ ∈ N such that for J = Jc′ it holds that f(b1, . . . , bk) = 1, where
(b1, . . . , bk) are defined by bi = 1i/∈J .
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Before proving Lemma 6.6, we first argue that it implies the correctness of Ec, and thus
Theorem 6.5. Let c′ given by the lemma. We define t(λ) = λc′+1, and argue that for this choice of t
for Ec, we have

Pr

[
f(b1, . . . , bk) = 1
for bi = R(xi, wi)

: (w1, . . . , wk)← EP
∗

c (1λ, C,x)

]
= 1− negl(λ).

By the lemma, it suffices to show that in the above experiment, for every i ∈ [k] such that i /∈ J ,
we have bi = 1 except with negligible probability. Indeed, observe that bi = 0 occurs if and only if
wi = ⊥, which means that R(xi, wi,j) = 0 for all j ∈ [t]. These are independent experiments, and
by definition of J occur with probability > 1

λc′ , so we have

Pr
[
bi = 0

]
<

(
1− 1

λc′

)t

=

(
1− 1

λc′

)λc′ ·λ
≤ e−λ = negl(λ) .

Thus, if Lemma 6.6 holds, we conclude that Ec is correct.

Proof of Lemma 6.6. We proceed similarly to the proof of Theorem 6.1, with a few key differences
due to the new definition of Jc′ , which is no longer the set of false instances.

We first define the sets Jc′
1 , . . . , Jc′

d ⊆ [N ]: let (b∗1, . . . , b
∗
k) defined by b∗j = 1j /∈Jc′ , and let

(b∗1, . . . , b
∗
N ) be the values of all the wires in C on input (b∗1, . . . , b

∗
k). We define Jc′

i ⊆ [N ], the set of
wires that correspond to the ith layer of C that have the value 0.

We recall the alternative key generation algorithms Geni,j , and the functions µi = µ
(1)
i , µ

(2)
i ,

defined by Jc′
1 , . . . , Jc′

d as in the proof of Theorem 6.1. We prove the following claim:

Claim 6.7. There exists a polynomial poly such that for all c′ ∈ N and i ≥ 1, µi ≤ µi−1 +
poly(λ)

λc′ +
negl(λ).

We now observe that Claim 6.7 implies Lemma 6.6. Iteratively applying the claim and using
the fact that µ0 = 0, we get that µd ≤ poly(λ)

λc′ for some polynomial poly. Defining c′ such that
poly(λ)

λc′ ≤ 1
2λc for large enough λ, we get

Pr

[
V(crsV ,x, π) = 1 ∧
Extract(td

(1)
PEH, v

(1)) = 1
:

(crsP , crsV)← Gend,d−1(1
λ, k, n),

π = P∗(crsP , crsV)

]
≥ 1

λc
− µd(λ) ≥

1

2λc
.

Since the seBARG in Gend,d−1 is extractable on index N , extracting and parsing

ω∗
N =

(
bN , bN1 , bN2 ,

(
ρ
(β)
N , ρ

(β)
N1

, ρ
(β)
N2

)
β∈{1,2}

)
from the seBARG proof in the above experiment, we

have that

Pr

 V(crsV ,x, π) = 1 ∧
Extract(td

(1)
PEH, v

(1)) = 1 ∧
M(z,N, ω∗

N ) = 1

:
(crsP , crsV)← Gend,d−1(1

λ, k, n),
π = P∗(crsP , crsV)

 ≥ 1

2λc
− negl(λ) .

Observe that M(z,N, ω∗
N ) = 1 implies that bN = 1 and ρ

(1)
N is a valid opening of v(1) to bN . Assume

towards contradiction that f(b∗1, . . . , b
∗
k) = 0, then b∗N = 0 so Jc′

d contains wire N , but then since

Extract(td
(1)
PEH, v

(1)) = 1 by PEHash extraction correctness the above can only happen with negligible
probability. So, once we prove Claim 6.7, we can conclude that f(b∗1, . . . , b

∗
k) = 1.
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Proof of Claim 6.7. We first show that for all i ≥ 1, µ
(1)
i ≤ µ

(2)
i−1 +

poly(λ)

λc′ + negl(λ). The proof
follows similarly to Claim 6.3. Steps 1,2,3 in the proof are identical, since they do not depend on
the set J . In the notation of the original proof, we have

P̃r
[
BAD ∧ j = ExtractIndex(td

(1)
PEH,i, v

(1)) ∧ CorrectM ∧ bjα > b∗jα

]
≥ δi,i−1

poly(λ)
− negl(λ).

In step 4, we claimed that the above event happens with probability zero when jα ≤ k. This is no
longer the case, however we can claim that it happens with probability ≤ 1

λc′ + negl(λ). Indeed, by
definition, in case the above event happens we have bjα = 1, and b∗jα = 0. The latter implies that

jα ∈ Jc′ , and we know that in this case (by definition of Jc′) the former happens with probability
≤ 1

λc′ (since bjα = 1 and CorrectM imply that R(xjα , wjα) = 1), with negligible error to account for

BARG and PEHash key indistinguishability errors in switching to the experiment in P̃r.
The case jα > k is identical, and happens with negligible probability. Therefore, we get

1

λc′
+ negl(λ) ≥ δi,i−1

poly(λ)
− negl(λ).

which implies the desired bound, since

µ
(1)
i ≤ µ

(2)
i−1 + δi,i−1 ≤ µ

(2)
i−1 +

poly(λ)

λc′
+ negl(λ).

Now, we observe that Claim 6.4 still holds (the proof does not depend on J), so we have

µ
(2)
i−1 ≤ µ

(1)
i−1 + negl(λ), which together with the above bound finishes the proof of Claim 6.7.

7 Somewhere Extractable SNARG Construction

In this section, we construct and analyze a somewhere extractable SNARG scheme (Gen,P,V) for
the language L(k)f defined in Section 4 with respect to an underlying NP language L and a monotone
circuit C computing function f . We give the construction in Section 7.1 and analyze its security
and efficiency in Section 7.2.

7.1 Construction

Our construction is similar to the construction in Section 6, with the following differences:

• To obtain somewhere extractability, we add an additional PEHash family with tags, that is
used to hash the input layer to the monotone circuit, such that each bit of the input is attached
with the corresponding witness as its tag.

• We obtain a crsP of length (m+ k) · poly(λ, log k), rather than (m+width(C)) · poly(λ, log k).
This is achieved by using a PEH family with shorter hash key (discussed in Remark 5.2) to
hash the monotone circuit wires.

• We assume for simplicity that the layers of the circuit are partitioned such that wire values in
layer i are computed only from wires in layer i− 1, and only layer 1 is computed from input
wires in layer 0. We no longer have circuits with width less than k, but this has no effect on
efficiency, since crsP grows with k (unlike the SNARG in Section 6).
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We now describe the construction, which uses the following building blocks:

• A PEHash family with tags (Definition 5.4)

(GenPEHT,HashPEHT,OpenPEHT,VerifyPEHT,ExtractPEHT,ExtractIndexPEHT,ExtractTagPEHT)

with respect to the bit-fixing predicate family.

• A PEHash family (Definition 5.2 and Remark 5.2)

(GenPEH,HashPEH,OpenPEH,VerifyPEH,ExtractPEH,ExtractIndexPEH)

for a restricted set of bit-fixing predicates F with succinct description. We consider the set of
predicates defined by the TMM =MF , that does the following given input z = zF = C and
predicate description df :

1. Parse df = (x, i), where x ∈ {0, 1}k is an input to the circuit and i ∈ [d] is a layer in the
circuit.

2. Let (b∗1, . . . , b
∗
N ) be the values of all the wires in C on input x.

3. Let J ⊆ [N ] be the set of wires in the ith layer of C whose values b∗ are 0, and let
y ∈ {0, 1}J be the all-zero vector.

4. Output J, y.

Recall that the PEHash algorithms (except GenPEH) are modified to receive z = C as an
additional input.

• A seBARG scheme (Definition 3.5)

(GenseBARG,PseBARG,VseBARG,ExtractseBARG).

We are now ready to define our SNARG for L(k)f .

Gen(1λ, k, n, J) does the following:

1. Generate (hkPEHT, vkPEHT, tdPEHT)← GenPEHT(1
λ, N, J, y), where y = 0J .

2. For each β ∈ {1, 2}, generate (hk
(β)
PEH, vk

(β)
PEH, td

(β)
PEH)← GenPEH(1

λ, N, dfβ ), where dfβ is a
description of an arbitrary predicate fβ ∈ F .

3. Generate (crsseBARG, tdseBARG)← GenseBARG(1
λ, 1n

′
, 1m

′
, I) where

n′ = O(1) + |C|+kn+ |vkPEHT|+|vPEHT|+2|vkPEH|+2|vPEH|,
m′ = m+ 3 + 6|ρ|,

and where I ⊆ [N ] is initialized to {1, 2, N}.

4. Let crsP = (hkPEHT, vkPEHT, hk
(1)
PEH, vk

(1)
PEH, hk

(2)
PEH, vk

(2)
PEH, crsseBARG).

5. Let crsV = (vkPEHT, vk
(1)
PEH, vk

(2)
PEH, crsseBARG).

6. Output (crsP , crsV , td = tdPEHT).
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P(crsP , C, x1, . . . , xk, w1, . . . , wk) does the following:

1. Compute the values of all the wires in the circuit C. Denote these values by (b1, . . . , bN ).

2. Parse crsP = (hkPEHT, vkPEHT, hk
(1)
PEH, vk

(1)
PEH, hk

(2)
PEH, vk

(2)
PEH, crsseBARG).

3. Compute vPEHT = HashPEHT(hkPEHT, (b1, . . . , bk), (w1, . . . , wk)).

4. Compute v(β) = HashPEH(hk
(β)
PEH, (b1, . . . , bN ), C) for β ∈ {1, 2}.

5. Define an instance X = (M, z,N, T ) of BatchIndexTMSAT. The input z is defined as

z = (C, x1, . . . , xk, vkPEHT, vPEHT, (vk
(β)
PEH, v

(β))β∈{1,2}). The batch size is set to N . The
Turing machine M(z, j, ωj) is defined to operate as follows:

(a) Parse z = (C, x1, . . . , xk, vkPEHT, vPEHT, (vk
(β)
PEH, v

(β))β∈{1,2}).

(b) If 1 ≤ j ≤ k:

i. Parse ωj = (wj , bj , ρPEHT, ρ
(1), ρ(2)).

ii. Check that VerifyPEHT(vkPEHT, vPEHT, j, bj , wj , ρPEHT) = 1.

iii. Check that VerifyPEH(vk
(β)
PEH, v

(β), j, bj , ρ
(β), C) = 1 for β ∈ {1, 2}.

iv. Check that RL(xj , wj) = bj .

(c) If j > k:

i. Compute the jth gate of C, gj = (j, j1, j2, c ∈ {AND,OR}).

ii. Parse ωj =

(
bj , bj1 , bj2 ,

(
ρ
(β)
j , ρ

(β)
j1

, ρ
(β)
j2

)
β∈{1,2}

)
.

iii. Check that VerifyPEH(vk
(β)
PEH, v

(β), j, bj , ρ
(β)
j , C) = 1 for β ∈ {1, 2}.

iv. Check that VerifyPEH(vk
(β)
PEH, v

(β), jα, bjα , ρ
(β)
jα

, C) = 1 for α, β ∈ {1, 2}.
v. Check that bj = c(bj1 , bj2). (That is, check that the gate is satisfied.)

vi. If j = N is the output wire then check that bj = 1.

The description length of M is a constant. Finally, the time bound T = poly(N,n,m, k)
is set so that the pseudocode above terminates.

6. For every j ∈ [N ], construct a witness (j, ωj) for X, using the OpenPEH,OpenPEHT

algorithms to produce openings for (b1, . . . , bN ) and (b1, . . . , bk) with tags (w1, . . . , wk)
as appropriate.

7. Compute πseBARG = PseBARG(crsseBARG,M, z, 1T , ω1, . . . , ωN ).

8. Output π = (vPEHT, v
(1), v(2), πseBARG).

V(crsV , C, x1, . . . , xk, π) does the following:

1. Parse crsV = (vkPEHT, vk
(1)
PEH, vk

(2)
PEH, crsseBARG).

2. Parse π = (vPEHT, v
(1), v(2), πseBARG).

3. Define X = (M, z,N, T ) as above.

4. Output VseBARG(crsseBARG, X, πseBARG).

Extract(td, π) does the following:

1. Parse π = (vPEHT, v
(1), v(2), πseBARG).

2. Compute j = ExtractIndexPEHT(td, vPEHT), and wj = ExtractTag(td, vPEHT).

3. Output (j, wj).
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7.2 Analysis

Theorem 7.1. The construction given in Section 7 is a somewhere extractable SNARG for L(k)f

(Definition 4.1) with the following additional efficiency properties:

• The runtime of the verifier is poly(|crsV |+|π|) + (kn+ |C|)poly(λ, log k).

• The (prover) common reference string crsP has size poly(λ, log k)(m+ k).

Proof of Theorem 7.1.

Completeness. Follows immediately from the completeness of the underlying seBARG and the
opening completeness of the underlying PEHash families.

Efficiency. To bound |crsV |+|π|, we make use of the following facts:

• By the efficiency of PEH, |vk(β)PEH|+|v
(β)
PEH|≤ poly(λ, log k) for β ∈ {1, 2}.

• By the efficiency of PEHT, |vkPEHT|+|vPEHT|≤ m · poly(λ, log k).

• The length of the BatchIndexTMSAT instance X is |X|≤ |C|+kn + poly(λ, log(knm)). The
length of a witness ωi is at most m+ poly(λ, log k).

• Therefore, by the succinctness of seBARG, we conclude that |crsseBARG|+|πseBARG|≤ m ·
poly(λ, log(knm)).

The bound the running time of the verifier, we again invoke the efficiency of the seBARG to
conclude the claimed poly(|crsV |+|π|) + (kn+ |C|)poly(λ, log k) bound.

Finally, the size of |crsP | is at most m · poly(λ, log(knm)) + 2 · |hkPEH|+|hkPEHT| which is at
most m · poly(λ, log(knm)) + poly(λ, log k) · k by the efficiency of the PEHash family with succinct
description.

Key Indistinguishability. Follows immediately from the predicate hiding property of the
underlying PEHash families.

Somewhere argument of knowledge. Fix any poly-size cheating prover P∗, any two polynomials
k = k(λ) and n = n(λ), and any set J ⊆ [k] such that the assignment b ∈ {0, 1}k defined by bi = 1i/∈J
satisfies C(b1, . . . , bk) = 0.

Let EXP be the experiment of the somewhere argument of knowledge requirement:
(crsP , crsV , td)← Gen(1λ, k, n, J)
(x1, . . . , xk, π)← P∗(crsP , crsV)
(j, wj)← Extract(td, π)

 .

By definition, the success probability of P∗ is

ϵ(λ) ≜ Pr
EXP

[
V(crsV , x1, . . . , xk, π) = 1 ∧
j /∈ J ∨ R(xj , wj) = 0

]
. (4)
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We want to show that ϵ(λ) is a negligible function.
We prove soundness by a hybrid argument based on alternative experiments (EXPi,j)0≤i,j≤d.

The experiment EXPi,j is identical to EXP, except for an alternative key generation algorithm Geni,j
defined below.

Geni,j(1
λ, k, n, J) does the following:

1. Define predicates df1 = (b, i) and df2 = (b, j), where b ∈ {0, 1}k is defined by bi = 1i/∈J .

2. Generate (hk
(β)
PEH, vk

(β)
PEH, td

(β)
PEH)← GenPEH(1

λ, N, dfβ ) for β ∈ {1, 2}.
3. Proceed otherwise as in Gen.

By the predicate hiding property of the underlying PEH family (Definition 5.1), Eq. (4) implies
there exists a negligible function negl(·) such that for every i ∈ [d]

Pr
EXPi,i−1

[
V(crsV , C, x1, . . . , xk, π) = 1 ∧
j /∈ J ∨ R(xj , wj) = 0

]
≥ ϵ(λ)− negl(λ).

Parse π = (vPEHT, v
(1), v(2), πseBARG). For every i ∈ [d] and every λ ∈ N, denote by

µi(λ) = µ
(1)
i (λ) ≜ Pr

EXPi,i−1

 V(crsV , C, x1, . . . , xk, π) = 1 ∧
j /∈ J ∨ R(xj , wj) = 0 ∧
Extract(td

(1)
PEH, v

(1), C) = 0

 ,

µ
(2)
i−1(λ) ≜ Pr

EXPi,i−1

 V(crsV , C, x1, . . . , xk, π) = 1 ∧
j /∈ J ∨ R(xj , wj) = 0 ∧
Extract(td

(2)
PEH, v

(2), C) = 0

 .

Additionally, denote

µPEHT(λ) ≜ Pr
EXP0,0

 V(crsV , C, x1, . . . , xk, π) = 1 ∧
j /∈ J ∨ R(xj , wj) = 0 ∧
Extract(tdPEHT, vPEHT) = 0

 .

Lemma 7.2. µd is a negligible function.

First, we argue that Lemma 7.2 implies that ϵ is negligible. This follows as in the analysis in
Section 6, using the fact that the predicate described by dfd = (b, d) requires that the output wire is
0 (since we assumed C(b1, . . . , bk) = 0) and the somewhere argument of knowledge and consistency
of extraction properties of the underlying seBARG and PEHash.

Proof of Lemma 7.2. We prove the following three claims, which together imply Lemma 7.2.

Claim 7.3. There exists a negligible function negl such that for every i ∈ [d],

µi ≤ µi−1 + negl(λ),

where we define µ0(λ) = µ
(2)
0 (λ).

Claim 7.4. µ0 ≤ µPEHT + negl(λ).

Claim 7.5. µPEHT ≤ negl(λ).
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Proof of Claim 7.3. Recall that in Section 6, we proved Claim 6.3 and Claim 6.4, which state

that µ
(1)
i ≤ µ

(2)
i−1 + negl(λ) for all i ≥ 1, and µ

(2)
i−1 ≤ µ

(1)
i−1 + negl(λ) for all i > 1.

Observe that these claims still hold for our construction, with the following minor differences in
the proof:

• The quantities µ
(1)
i , µ

(2)
i in Section 6, unlike our definition, do not have the condition that

j /∈ J ∨ R(xj , wj) = 0. However, Claim 6.3 and Claim 6.4 respectively bound the difference
between them by showing that quantities δi,i−1 and δi−1 are negligible, and adding the
condition j /∈ J ∨ R(xj , wj) = 0 to δi,i−1, δi−1 only reduces them, so it suffices to bound the
original δi,i−1, δi−1 as in Section 6.

• The seBARG instances for j > k in our construction are identical to the construction in
Section 6, except for slightly modified syntax since we use a PEHash family for predicates with
succinct description.

• In Step 4 in the proof of Claim 6.3, it is no longer true that the event with jα ≤ k happens
with probability zero (this uses the fact that the instances x1, . . . , xk are fixed). However,
since we assumed that input wires can only be used as inputs to layer 1, this only changes the
claim in the case of i = 1, but there we can use the same argument as in jα > k to claim that
the event occurs with negligible probability, and get that µ1 ≤ µ0 + negl(λ) (where observe we

have µ0 = µ
(2)
0 , and not µ0 = 0).

This completes the proof of Claim 7.3, since we get that for every i ∈ [d],

µi ≤ µ
(2)
i−1 + negl(λ) ≤ µi−1 + negl(λ).

Proof of Claim 7.4. The proof follows similarly to the proof of Claim 6.4. First, by the predicate
hiding property of the underlying PEH,

µ0 = µ
(2)
0 ≤ Pr

EXP0,0

 V(crsV , C, x1, . . . , xk, π) = 1 ∧
j /∈ J ∨ R(xj , wj) = 0 ∧
Extract(td

(2)
PEH, v

(2), C) = 0

+ negl(λ).

Therefore, it suffices to show that

δ0,PEHT ≜ Pr
EXP0,0


V(crsV , C, x1, . . . , xk, π) = 1 ∧
j /∈ J ∨ R(xj , wj) = 0 ∧
Extract(td

(2)
PEH, v

(2), C) = 0 ∧
Extract(tdPEHT, vPEHT) = 1

 = negl(λ).

Observe that by definition v(2), vPEHT are both programmed on the predicate J, 0J , and the seBARG
instances for 1 ≤ j ≤ k verify openings wrt both v(2) and vPEHT, so this follows exactly as in
Claim 6.4, which completes the proof of Claim 7.4.

Proof of Claim 7.5. We define a hybrid experiment ẼXP0,0, that is identical to EXP0,0, except
for the following changes:

• Sample a uniformly random index 1 ≤ j∗ ≤ k.
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• Sample (crsseBARG, tdseBARG)← GenseBARG(1
λ, 1n

′
, 1m

′
, {1, 2, j∗}).

• Parse π = (vPEHT, v
(1), v(2), πseBARG), where π is the proof outputted by P in EXP0,0.

• Extract ω1, ω2, ωj∗ ← ExtractseBARG(tdseBARG, πseBARG).

We proceed to bound µPEHT. Denote by BAD the event defined in µPEHT.

Step 1: Switch to ẼXP0,0. This is accomplished in two steps. First, we note that

Pr
EXP0,0

[
BAD ∧ j∗ = ExtractIndex(tdPEHT, vPEHT)

]
=

µPEHT

k
=

µPEHT

poly(λ)
,

since j is independent of the EXP0,0 experiment. Then, we also have that

Pr
ẼXP0,0

[
BAD ∧ j∗ = ExtractIndex(tdPEHT, vPEHT)

]
≥ µPEHT

poly(λ)
− negl(λ),

by the index-hiding of seBARG.

Step 2: Analyze the output of ExtractseBARG. By the somewhere argument of knowledge
property of seBARG, we know that

Pr
ẼXP0,0

[
BAD ∧ j∗ = ExtractIndex(tdPEHT, vPEHT) ∧ M(z, j∗, ωj∗) = 1

]
≥ µPEHT

poly(λ)
− negl(λ).

Parse the witness ωj∗ as ωj∗ = (w, b, ρPEHT, ρ
(1), ρ(2)). Recall that M(z, j∗, ωj∗) = 1 implies that

VerifyPEHT(vkPEHT, vPEHT, j, b, w, ρPEHT) = 1 and RL(xj , w) = b.
Recall that BAD implies j /∈ J ∨ RL(xj , wj) = 0, where (j, wj) ← Extract(td, π) are defined

by j ← ExtractIndex(tdPEHT, vPEHT) and wj ← ExtractTag(tdPEHT, vPEHT). But we have j ∈ J by
definition.

Step 3: Use PEHT consistency. We get

Pr
ẼXP0,0


Extract(tdPEHT, vPEHT) = 0 ∧
ExtractIndex(tdPEHT, vPEHT) = j ∧
ExtractTag(tdPEHT, vPEHT) = wj ∧
VerifyPEHT(vkPEHT, vPEHT, j, b, w, ρPEHT) = 1 ∧
RL(xj , w) = b ∧ RL(xj , wj) = 0

 ≥ µPEHT

poly(λ)
− negl(λ).

Now, by the PEHT consistency of extraction property, and since y = 0J and j ∈ J , we have that
except with negligible probability, b = 1. By the consistency of tag extraction property, we get that
w = wj except with negligible probability.

This implies that the above probability is negligible, since we get 1 = b = RL(xj , w) =
RL(xj , wj) = 0. So we get that µPEHT is negligible, which finishes the proof of Claim 7.5, Lemma 7.2,
and Theorem 7.1.
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8 SNARGs for Low-Depth Monotone BatchNP Circuits

In this section, we construct and analyze a SNARG scheme (Gen,P,V) for the language L(k)f defined
in Section 4 with respect to an underlying NP language L and a monotone circuit C computing
function f .

We give the construction in Section 8.1 and analyze its security and efficiency in Section 8.2.

8.1 Construction

Our construction is similar to the construction in Section 6, with the following differences:

• Rather than using a bit-fixing PEHash family to hash the monotone circuit wire values (with
two separate keys), we use a standard hash family with local opening.

• Due to the analysis, both the hash family and seBARG are required to be subexponentially
secure rather than polynomially secure.

We now describe the construction, which uses the following building blocks:

• A subexponentially-secure hash family with local opening (Definition 3.1)

(GenHT,HashHT,OpenHT,VerifyHT).

• A subexponentially-secure seBARG scheme (Definition 3.5)

(GenseBARG,PseBARG,VseBARG,ExtractseBARG).

We are now ready to define our SNARG for L(k)f .

Gen(1λ, k, n) does the following:

1. Set λ′ = poly(λ, d(λ)), where d = d(λ) is the depth of the monotone circuit C.

2. Generate hkHT ← GenHT(1
λ′
).

3. Generate (crsseBARG, tdseBARG)← GenseBARG(1
λ′
, 1n

′
, 1m

′
, I) where

n′ = O(1) + |C|+kn+ poly(λ′),

m′ = m+ 3 + 3 · poly(λ′),

and where I ⊆ [N ] is initialized to {1, N}.
4. Output crsP = crsV = (hkHT, crsseBARG).

P(crsP , C, x1, . . . , xk, w1, . . . , wk) does the following:

1. Compute the values of all the wires in the circuit C. Denote these values by (b1, . . . , bN ).

2. Parse crsP = (hkHT, crsseBARG).

3. Compute rt = HashHT(hkHT, (b1, . . . , bN )).
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4. Define an instance X = (M, z,N, T ) of BatchIndexTMSAT. The input z is defined as
z = (C, x1, . . . , xk, hkHT, rt). The batch size is set to N . The Turing machine M(z, j, ωj)
is defined to operate as follows:

(a) Parse z = (C, x1, . . . , xk, hkHT, rt).

(b) If 1 ≤ j ≤ k:

i. Parse ωj = (wj , bj , ρ).

ii. Check that VerifyHT(hkHT, rt, j, bj , ρ) = 1.

iii. Check that RL(xj , wj) = bj .

(c) If j > k:

i. Compute the jth gate of C, gj = (j, j1, j2, c ∈ {AND,OR}).
ii. Parse ωj = (bj , bj1 , bj2 , ρj , ρj1 , ρj2).

iii. Check that VerifyHT(hkHT, rt, j, bj , ρj , C) = 1.

iv. Check that VerifyHT(hkHT, rt, jα, bjα , ρj , C) = 1 for α ∈ {1, 2}.
v. Check that bj = c(bj1 , bj2). (That is, check that the gate is satisfied.)

vi. If j = N is the output wire then check that bj = 1.

The description length of M is a constant. Finally, the time bound T = poly(N,n,m, k)
is set so that the pseudocode above terminates.

5. For every j ∈ [N ], construct a witness (j, ωj) for X, using the OpenHT algorithm to
produce openings for (b1, . . . , bN ) as appropriate.

6. Compute πseBARG = PseBARG(crsseBARG,M, z, 1T , ω1, . . . , ωN ).

7. Output π = (rt, πseBARG).

V(crsV , C, x1, . . . , xk, π) does the following:

1. Parse crsV = (hkHT, crsseBARG).

2. Parse π = (rt, πseBARG).

3. Define X = (M, z,N, T ) as above.

4. Output VseBARG(crsseBARG, X, πseBARG).

8.2 Analysis

Theorem 8.1. The construction given in Section 8 is a subexponentially-secure SNARG for L(k)f

(Definition 4.1) with the following efficiency properties:

• The common reference string crsP = crsV and the proof π have size m · poly(λ, d(λ), log k).

• The runtime of the verifier is poly(|crsV |+|π|) + (kn+ |C|)poly(λ, d(λ), log k).

Completeness. Follows immediately from the completeness of the underlying seBARG and the
opening completeness of the underlying HT family.
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Efficiency. To bound |crsP |, |crsV |, |π|, we make use of the following facts:

• By definition of λ′, |hkHT|≤ poly(λ′) = poly(λ, d(λ)).

• The length of the BatchIndexTMSAT instance X is |X|≤ |C|+kn+ poly(λ, d(λ)). The length
of a witness ωi is at most m+ poly(d(λ)).

• Therefore, by the succinctness of seBARG, we conclude that |crsseBARG|+|πseBARG|≤ m ·
poly(λ, d(λ), log(knm)).

To bound the running time of the verifier, we again invoke the efficiency of the seBARG to
conclude the claimed poly(|crsV |+|π|) + (kn+ |C|)poly(λ, d(λ), log k) bound.

Soundness. Let T = T (λ) be a subexponential function. Fix any size T cheating prover P∗, any

two polynomials k = k(λ) and n = n(λ), and any instance x = (x1, . . . , xk) /∈ L(k)f such that |xj |= n
for every j ∈ [k].

Let EXP be the experiment of the soundness requirement:{
(crsP , crsV)← Gen(1λ, k, n)
π = P∗(crsP , crsV)

}
.

Define
ϵ(T (λ)) ≜ Pr

EXP

[
V(crsV ,x, π) = 1

]
,

and assume towards contradiction that ϵ is non-negligible.
We prove soundness using hybrid experiments (EXPj1,j2)1≤j1,j2≤N . The experiment EXPj1,j2 is

identical to EXP, except for the following changes:

• In Gen, sample (crsseBARG, tdseBARG)← GenseBARG(1
λ′
, 1n

′
, 1m

′
, {j1, j2}).

• Extract ω
(1)
j1

, ω
(2)
j2
← ExtractseBARG(tdseBARG, πseBARG), where we parse π = (rt, πseBARG).

• For α ∈ {1, 2}, parse:

1. If 1 ≤ j ≤ k, parse ω
(α)
jα

= (w
(α)
jα

, b
(α)
jα

, ρ
(α)
jα

).

2. If j > k, parse ω
(α)
jα

= (b
(α)
jα

, b
(α)
jα,1

, b
(α)
jα,2

, ρ
(α)
jα

, ρ
(α)
jα,1

, ρ
(α)
jα,2

).

For ease of notation, if j1 = j2 = j, we use the notation EXPj instead of EXPj,j , and skip the

superscript (1) when referring to ω
(1)
j and the values parsed from it.

We define (b∗1, . . . , b
∗
k) ∈ {0, 1}k where for every j ∈ [k] we have b∗j = 1 if and only if xj ∈ L, and

extend them to (b∗1, . . . , b
∗
N ), the values of all the wires in C on input (b∗1, . . . , b

∗
k).

Lemma 8.2. For every 0 ≤ i ≤ d(λ), there exists a wire j in the ith layer of C such that for every
λ ∈ N,

Pr
EXPj

[
V(crsV ,x, π) = 1 ∧ bj > b∗j

]
≥ ϵ(T (λ))

3d(λ)−i+1
.
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Before proving Lemma 8.2, we first argue that the lemma indeed implies soundness. For i = 0,
the lemma implies there exists an input wire j ∈ [k] such that

Pr
EXPj

[
V(crsV ,x, π) = 1 ∧ bj > b∗j

]
≥ ϵ(T (λ))

3d(λ)+1
.

Let z = (C, x1, . . . , xk, hkHT, rt) and let M defined as in P . By the somewhere argument of knowledge
property of the underlying seBARG, there exists a negligible function negl such that for every λ ∈ N,

Pr
EXPj

[
V(crsV ,x, π) = 1 ∧ bj > b∗j ∧ M(z, j, ωj) = 1

]
≥ ϵ(T (λ))

3d(λ)+1
− negl

(
T (λ), 2d(λ)

)
,

which is non-zero since ϵ is non-negligible. This is a contradiction, since M(z, j, ωj) = 1 implies that
RL(xj , wj) = bj = 1, but b∗j = 0 implies xj /∈ L.

Proof of Lemma 8.2. We first prove the base case of i = d. Let j = N , by the index hiding and
somewhere argument of knowledge properties of the underlying seBARG we have

Pr
EXPN

[
V(crsV ,x, π) = 1 ∧ M(z,N, ωN ) = 1

]
≥ ϵ(T (λ))− negl

(
T (λ), 2d(λ)

)
≥ ϵ(T (λ))

3
.

This implies the lemma for i = d, since M(z,N, ωN ) = 1 implies by definition bN = 1, and we have

b∗N = 0 since x⃗ /∈ L(k)f .
Assume by induction that the lemma holds for i+ 1, and let j in the i+ 1th layer of C given by

the lemma. By the somewhere argument of knowledge property of the underlying seBARG and the
induction hypothesis, we have

Pr
EXPj

[
V(crsV ,x, π) = 1 ∧ bj > b∗j ∧ M(z, j, ωj) = 1

]
≥ ϵ(T (λ))

3d(λ)−i
− negl

(
T (λ), 2d(λ)

)
.

We now analyze the jth gate. We know that M(z, j, ωj) = 1 implies bj = cj(bj1 , bj2). Moreover,
if we also have bj > b∗j , we get bjα > b∗jα for some α ∈ {1, 2}. Therefore, there exists an α ∈ {1, 2}
for which we have

Pr
EXPj

[
V(crsV ,x, π) = 1 ∧ bjα > b∗jα

]
≥ ϵ(T (λ))

2 · 3d(λ)−i
− negl

(
T (λ), 2d(λ)

)
. (5)

It remains to prove the following claim, which shows that the lemma holds for jα, and thus
finishes the inductive step.

Claim 8.3.

Pr
EXPjα

[
V(crsV ,x, π) = 1 ∧ bjα > b∗jα

]
≥ ϵ(T (λ))

3d(λ)−i+1
.

Proof of Claim 8.3. Recall that EXPj is a shorthand for EXPj,j , and rewrite Eq. (5) as follows:

Pr
EXPj,j

[
V(crsV ,x, π) = 1 ∧ b

(1)
jα

> b∗jα

]
≥ ϵ(T (λ))

2 · 3d(λ)−i
− negl

(
T (λ), 2d(λ)

)
.
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We first switch to the hybrid experiment EXPj,jα . By the index hiding of seBARG, we have

Pr
EXPj,jα

[
V(crsV ,x, π) = 1 ∧ b

(1)
jα

> b∗jα

]
≥ ϵ(T (λ))

2 · 3d(λ)−i
− negl

(
T (λ), 2d(λ)

)
.

Let CorrectM denote the event that M(z, j, ω
(1)
j ) = 1 and M(z, jα, ω

(2)
jα

) = 1. By the somewhere
argument of knowledge property of the seBARG, we have that in the above experiment, CorrectM
holds except with negligible probability.

Now, observe that M(z, j, ω
(1)
j ) = 1 implies that VerifyHT(hkHT, rt, jα, b

(1)
jα

, ρ
(1)
jα

) = 1, whereas

M(z, jα, ω
(2)
jα

) = 1 implies VerifyHT(hkHT, rt, jα, b
(2)
jα

, ρ
(2)
jα

) = 1. By the collision resistance wrt opening

property of the HT family, we get that except with negligible probability, b
(1)
jα

= b
(2)
jα

. Therefore,

Pr
EXPj,jα

[
V(crsV ,x, π) = 1 ∧ b

(2)
jα

> b∗jα

]
≥ ϵ(T (λ))

2 · 3d(λ)−i
− negl

(
T (λ), 2d(λ)

)
.

Finally, we switch to the experiment EXPjα,jα . By the index hiding of seBARG,

Pr
EXPjα,jα

[
V(crsV ,x, π) = 1 ∧ b

(2)
jα

> b∗jα

]
≥ ϵ(T (λ))

2 · 3d(λ)−i
− negl

(
T (λ), 2d(λ)

)
.

Applying the same argument using somewhere argument of knowledge and collision resistance

wrt opening, we get that in the above experiment we also have b
(1)
jα

> b∗jα except with negligible
probability, which implies

Pr
EXPjα

[
V(crsV ,x, π) = 1 ∧ bjα > b∗jα

]
≥ ϵ(T (λ))

2 · 3d(λ)−i
− negl

(
T (λ), 2d(λ)

)
≥ ϵ(T (λ))

3d(λ)−i+1
.

This concludes the proof of Claim 8.3, Lemma 8.2 and Theorem 8.1.
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