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Abstract

The low-degree method postulates that no efficient algorithm outperforms
low-degree polynomials in certain hypothesis-testing tasks. It has been used to
understand computational indistinguishability in high-dimensional statistics.

We explore the use of the low-degree method in the context of cryptography.
To this end, we apply it in the design and analysis of a new public-key encryption
scheme whose security is based on Goldreich’s pseudorandom generator. The
scheme is a combination of two proposals of Applebaum, Barak, and Wigderson,
and inherits desirable features from both.

1 Introduction

Hypothesis testing is concerned with the computational task of detecting a noisy signal.
The question is cast as a distinguishing problem between a pure noise distributionQ and
an alternative distribution P that contains a planted signal. The goal is to understand
tradeoffs between the “amplitude” θ and the “frequency” m.

Several works [BR13,HWX15,BB20] uncover that such problems exhibit statistical-
to-computational gaps: depending on θ, there is a range of frequenciesm ∈ [mstat,mcomp]
for which hypothesis testing is possible, but no efficient algorithm is known.

The low-degree method is a heuristic for generating remarkably accurate estimates
of the computational threshold mcomp at which the hypothesis testing problem becomes
feasible [HKP+17]. It relies on the observation that for several natural average-case
hypothesis testing problems, the optimal polynomial time distinguisher amounts to
computing a low-degree polynomial in input samples.

The method was first employed [BHK+19] in constructing lower bound witnesses
for the sum-of-squares semidefinite programming hierarchy for the planted clique prob-
lem. It was later [HKP+17] shown to be powerful enough to capture natural spectral
algorithms and in fact used to design new algorithms for certain Bayesian estimation
problems [HS17]. Indeed, no efficient algorithm appears to outperform what can be
inferred by observing “local statistics”.
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In [HKP+17], the authors make the pseudocalibration conjecture positing that hard-
ness in the low-degree model implies sum-of-squares lower bounds for average-case refu-
tation problems under certain mild niceness conditions. Later works [HS17, Hop18,
KWB19] have proposed a stronger variant of the pseudocalibration conjecture positing
that thresholds computed in the low-degree method are in fact mcomp i.e., a threshold
for all polynomial time computable distinguishers. In the past few years, a sequence of
works have used the low-degree method to find evidence of gap between computational
and statistical thresholds for a number of average-case algorithmic problems.

In this work we will be interested in exploring the applicability of the low-degree
method to cryptography, and in particular to the design and analysis of a new public-
key cryptosystem. While we do not claim that the method’s predictions always coincide
with the computational infeasibility threshold mcomp, we do believe that it can serve a
guideline for sound design, in addition to being a sanity-check for assessing security.

1.1 Goldreich’s Pseudorandom Generator

The main object underlying our new public-key encryption scheme is Goldreich’s can-
didate one-way function [Gol11]. We will instantiate it in a way that may allow us to
conjecture it to be a pseudorandom generator given known attacks.

The function, denoted FH , maps n bits to m bits. It is described in terms of two
main objects:

• A d-hypergraph H on on n vertices and m (ordered) hyperedges, each of size d.
See Figure 2 where the vertices are represented by circles (◦) and the hyperedges
are represented by squares (■).

• A d-ary predicate that is applied to the projection of an n-bit input x on each
one of the m hyperedges of H.

1 1 0 1 0 0 0 0

0 0 0 0 1 1 0 1 1 0 0 0

Figure 1: An instance of Goldreich’s function with predicate x1 ⊕ x2 ⊕ x3 ⊕ x4x5. The
non-linear part x4x5 is shaded light grey.

For concreteness, we set H to be a 5-hypergraph on n vertices and m hyperedges,
let d = k+ 3, and k = 2. In Section 6 we give a more general description parametrized
by k. We set the predicate to be x1 ⊕ x2 ⊕ x3 ⊕ x4x5 [MST06].
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1.2 A New Public-Key Encryption scheme

Recall that a public-key encryption scheme involves three algorithms: Key generation,
Encryption, and Decryption (see Section 2). Our scheme has binary message space and
we allow both imperfect correctness and security.

Encryption. In our scheme, encryptions of 0 are outputs y = FH(x) of Goldreich’s
function applied to a random input x. Encryptions of 1 are random m-bit strings y.
Indistinguishability of encryptions of 0 from encryptions of 1 follows from pseudoran-
domness of FH given H.

Decryption. Decryption is made possible thanks to logarithmic size hypergraphs
(called ”hyperloops”) that are planted in H in the key generation process. These
hyperloops make it effectively possible to distinguish between y = FH(x) and a random
m-bit string y.

Key-generation. A hyperloop is a 3-hypergraph in which every vertex has degree
two. Let L0 be a fixed hyperloop with ℓ0 = O(log n) hyperedges. The public key of our
scheme consists of a 5-hypergraph H sampled as follows. Let:

• L be the union of t = 2Θ(ℓ0) vertex-disjoint copies of L0,

• Q be a random 3-hypergraph with n vertices and hyperedge probabilityO(n−3/2−δ),

• P = Q ∪ L where L is planted on a random subset of vertices of Q,

• H be obtained by randomly adding 2 vertices to each hyperedge in P .

The public key is the 5-hypergraph H and the secret key is S1, . . . , St, where Si ⊆
{1, . . . ,m} are the hyperedges corresponding to the ith planted copy of L0.

1 0 1 1 0 0 0 1 0 0 1 1 1 0 1

1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 00 1 0 0 1 0

Figure 2: A public key and ciphertext with a single planted hyperloop L0 (from Fig-
ure 3). The secret key and the ciphertext section used in decryption are marked in red.
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1.3 Correctness

The hypergraphH is published, enabling anybody to encrypt by evaluating the function
FH on a random input. Knowledge of S1, . . . , St enables correct decryption, since each
planted hyperloop S gives noticeable advantage in distinguishing the output of FH from
a random string. Our decryption function is a majority of parities over hyperloops
S ⊆ {1, . . . ,m}.

Claim 1. If y = FH(x) then z = ⊕j∈Syj has bias 2−ℓ0.

Proof. All vertices in S have degree two and so ⊕j∈S(xj1 ⊕ xj2 ⊕ xj3) = 0. Thus, when
y = FH(x), we have ⊕j∈Syj = ⊕j∈Sxj4xj5 , which has bias 2−ℓ0 .

Testing whether more than (1+2−ℓ0)t/2 of z1, . . . , zt are zero distinguishes y = FH(x)
from random, and thus decrypts correctly, with probability 1− o(1).

1.4 Security

For the scheme to be secure it is necessary that the output of the function FH is
pseudorandom and that the public key H hides the planted hyperloops S1, . . . , St. This
will in particular be true if:

1. A planted hypergraph P = Q ∪ L is indistinguishable from a random one Q.

2. The output of FH is pseudorandom when H is a random hypergraph Q.

While these two properties may be strictly stronger than required, we will analyze
their individual plausibility. Our examination is conducted both in light of the best
known asymptotic attacks, and within the low-degree framework.

A distinguisher of non-negligible advantage exists as there is already noticeable
probability that FH contains a constant-sized subset of output bits that always XOR
to zero. We will restrict the discussion to efficient distinguishers of constant advantage,
but arguments remain valid for distinguishing advantage n−o(1). Ruling those out is
sufficient to obtain a gap between decryption advantage and distinguishing advantage,
which can then be amplified (at some cost in efficiency). On the other hand, the secret
key can be inverted by exhaustive search in time

(
m
ℓ0

)
= nO(logn) so we will restrict the

analysis to distinguishers that run in time no(logn).

Indistinguishability of P and Q. The distributions P and Q are statistically dis-
tinguishable since the planted hyperloops L of size ℓ0 in P are unlikely to appear in
Q. There are two natural distinguishers to try in this context. Exhaustive search for
a hyperloop of size ℓ0 has complexity at least n−O(1)

(
m
ℓ0

)
. Another possibility is to look

for a discrepancy in the number of hyperedges between P and Q. As long as the 2Θ(ℓ0)

hyperedges present are within o(1) of the standard deviation n0.75−δ/2 in the number of
edges of Q this discrepancy will not be noticeable.

These two distinguishers are based on counting size-ℓ0 hyperloops and counting
hyperedges. The counts are polynomials of degree ℓ0 and one, respectively, in the
adjacency tensor of H. In Proposition 9 we show that they are close to best possible
in the low-degree framework: For every ϵ there exists an δ and a choice of L0 so that
no polynomial of degree at most (1− ϵ)ℓ0 has constant advantage.
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Conjecture 2. For a sufficiently small constant δ, m = n1.5−δ, ℓ0 = 0.36 log n, and
t = n0.75−δ, P and Q are (1− Ω(1))-indistinguishable in nO(1)-time.

Pseudorandomness of FQ. For a random Q, the output y = FQ(x) has been con-
jectured to be computationally indistinguishable from a random y ∈ {0, 1}m given Q.
When the hyperedge probability is O(n−3/2−δ) the graph has m = Θ(n1.5−δ) edges with
high probability. The best known distinguisher has complexity mΘ(n2δ) and is based
on a landmark result of Feige, Kim, and Ofek [FKO06]. They prove that H is likely
to contain 2Θ(ℓ1) hyperloops each of size ℓ1 ≈ n2δ. The distinguisher effectively inverts
the secret key and runs our decryption algorithm assuming the “public key” is sampled
from the model distribution Q.

In Proposition 14 we show that the advantage of any statistic that depends ar-
bitrarily in Q but has most degree d in y in distinguishing y = FQ from random
is upper bounded by the expected number of hyperloops of size at most d in Q.
This expectation is o(1) when d = o(n−2δ), that is for any statistic of degree just
too low to “see” the hyperloops in Q. This complements results on the small-bias of
FQ [MST06,ABR16,OW14,AL18].

Conjecture 3. For every δ, m = n1.5−δ, random x ∈ {0, 1}n, y ∈ {0, 1}m, (Q,FQ(x))
and (Q, y) are o(1)-indistinguishable in nO(1)-time.

1.5 The Low-Degree Method

The low-degree method is a formal framework for arguing computational hardness of
hypothesis testing. Although the method is, in full generality, neither complete or
sound, it correctly predicts the computational thresholdmcomp for a variety of problems.
The method is effective in settings where the computational advantage is non-negligible
but vanishing (e.g., n−Ω(1)), and where the model distribution is a high-dimensional
product distribution. It is in particular applicable for analyzing the two security claims
from Section 1.4 and for detecting vulnerabilities in alternative design choices.

We are in particular interested in the following question: For which planted struc-
tures L are the distributions Q and P = Q ∪ L computationally indistinguishable?
Perhaps the simplest attack is to try and detect a discrepancy in the number of edges.
Should the edge numbers be close, could the attacker rely on discrepancies on other
fixed-size substructures such as 5-cycles? It turns out that this won’t help as long as
the planted substructure L is sufficiently small-set expanding (see Proposition 9).

Consider for example an alternative construction P ′ = Q ∪ L′ in which L′ now
consists of a union of 2Θ(ℓ0) independent random size-ℓ0 hyperloops. P ′ and Q are now
distinguishable as L′ will induce a significant discrepancy in the number of 4-cliques.
These additional structures completely break security of encryption.

The low-degree method is in general incomplete as it does not model algebraic
attacks. For example it predicts that random n-bit strings of parities 0 and 1 are
degree-(n− 1) indistinguishable. Nevertheless we believe that it can be a useful guide
in “noisy linear algebra” type constructions with noticeable security error.

One technical difficulty in low-degree analysis is the lack of a triangle inequality. In
our case we show that P = Q∪L is low-degree indistinguishable fromQ and that (Q,FQ)
is low-degree indistinguishable from (Q, random). However we cannot compose the
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two claims to conclude that (P, FP ) is low-degree indistinguishable from (Q, random).
Nevertheless, we prove a weaker security claim with an additional assumption on the
“distinguisher” in Theorem 16.

1.6 Relation to the ABW Schemes

Applebaum, Barak, and Wigderson [ABW10] proposed two closely related public-key
encryption schemes that differ from ours in the choice of planted structure L and pred-
icate used in the underlying pseudorandom generator.

In their first scheme (ABW1) L is a single hyperloop of size ℓ = Θ(n2δ) and the
predicate is the randomized function x1⊕x2⊕x3⊕e, where e is a noise bit of probability
n−2δ. Alternatively, e can be replaced by an AND of k = log ℓ+O(1) input bits. This
encryption is not local (although in any reasonable parameter setting a small value of
k may suffice.) Their security analysis relies on statistical indistinguishability of Q and
P = Q ∪ L thus obviating the need for additional computational assumptions.

The main difference is that, unlike ABW1, our proposal has constant locality. An-
other difference is that our construction doesn’t use extrinsic noise bits e. The role of
the noise is played by the nonlinear part x4x5 of our predicate.

In their second scheme (ABW2) L is a single subgraph of size ℓ = ℓ0 = Θ(log n),
with fewer vertices than hyperedges. The predicate in this construction can be arbitrary.
To decrypt one checks whether the ℓ-bit part of the ciphertext restricted to L has a
preimage. (With a small modification this scheme supports errorless decryption.)

Unlike in ABW2, our secret key consists of multiple planted known linear dependen-
cies between the output bits. This endows our scheme with natural leakage-resilience:
Even if a small subset of these dependencies becomes public encryption remains secure.
Another difference is that our decryption may be of lower complexity in some models
as it is a majority of parities, while ABW2 rely on a hardcoded lookup table.

Moreover, we believe that our scheme may be marginally more secure than theirs.
A brute-force search for the secret key would have complexities

(
m
ℓ0

)
and

(
n
ℓ0

)
in our and

their variant, respectively. The gap is most prominent when m = n3/2−δ is large, i.e.,
when δ is small. In the regime where δ approaches 1/2 lower-degree attacks (based on
detecting some substructure present in L) become possible. A more precise low-degree
analysis is needed for a fair comparison.

As for security guarantees, Applebaum, Barak, and Widgerson identify a discrep-
ancy in the number of small cycles as a potential vulnerability of their schemes and
account for it in parameter setting. The low-degree method systematically rules out
all attacks of this type and more. While the low-degree method readily applies to
ABW1 and ABW2, its relevance in security analysis is better highlighted in our scheme
as it informs choices in the construction (hyperloop sampling in key generation) and
parameters (size and density of hyperloops).

1.7 Open Questions

One weakness of our security analysis is that it relies on computational indistinguisha-
bility of the model hypergraph distribution Q and the planted distribution P that
contains 2Θ(ℓ0) copies of the planted hyperloop L0 with ℓ0 = Θ(log n) edges. Might it
be possible to argue that the proximity is statistical?
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Feige, Kim, and Ofek prove that a random 3-hypegraph with n vertices and hyper-
edge probability p = O(n−3/2/ℓ

1/2
0 ) is likely to contain Kℓ0 hyperloops of size ℓ0 (for

any desired constant K). We believe, however, that the number of disjoint hyperloops
of size ℓ0 is at most polynomial by the following heuristic argument. In expectation a
large fraction of the hyperloop pairs intersect. If we model the intersection graph as
a random graph its maximum independent set would have expected size logarithmic
in the number of hyperloops 2ℓ0 , namely polynomial in the hyperloop size ℓ0. Thus it
appears that the planted instance P is statistically far apart from the model instance Q.

Nevertheless, most of the intersections between the Kℓ0 hyperloops are small on
average. This raises the following question: Is it possible to efficiently sample the
collection L of Kℓ0 intersecting size-ℓ0 hyperloops jointly with the random hypergraph
Q? If the answer to this question is positive, the public key can be sampled directly
from the model distribution. Although the information bits z1, . . . , zt arising from the
different hyperloops in the decryption process would be dependent, their correlations
are sufficiently small to enable reliable decryption.

Concerning empirical security, it is unclear if the noise Q is needed at all in the con-
struction. Could the scheme be secure even if P consists of nothing but n1.1 randomly
planted copies of L0?

2 Public Key Encryption

Our encryption scheme has binary message space, decrypts incorrectly with bounded
probability δ, and has noticeable (but still bounded) computational distance ε between
the distribution of encryptions of zero and those of one. Assuming both errors are
sufficiently small constants they can be amplified to be negligible at a loss of parame-
ters [DNR04].

Definition 4 (Syntax). A public key encryption scheme consists of three algorithms
(Gen,Enc,Dec) such that for n ∈ N, Gen(1n) outputs a pair of keys (sk, pk); Enc(pk, b)
encrypts a message b with the public key pk and outputs a ciphertext c; Dec(sk, c)
decrypts a ciphertext c using the secret key sk and outputs a message b.

Both key-generation, Gen, and encryption, Enc, are randomized. As mentioned
above, we allow the decryption algorithm, Dec, to make errors.

Definition 5 (δ-correctness). A public key encryption scheme (Gen,Enc,Dec) is cor-
rect with probability δ if

Pr [Dec(sk,Enc(pk, b)) = b] ≥ δ,

where probability is taken over the randomness of Gen and Enc. We call 1 − δ the
decryption error.

Security is defined through indistingushability of encryptions [GM84]. To this end,
we rely on the notion computational indistinguishability.

Definition 6 (ε-indistinguishability). Two distributions X, Y are ε-indistinguishable
if for any probabilistic polynomial time algorithm A:

|Pr[A(X) = 1]− Pr[A(Y ) = 1]| ≤ ε.
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Definition 7 (ε-security). A public key encryption scheme (Gen,Enc,Dec) is said to
have security error ε ∈ [0, 1] if the distributions (pk,Enc(pk, 0)) and (pk,Enc(pk, 1))
are ε-indistinguishable, where probabilities are over the randomness of Gen and Enc.

3 The Low-Degree Method

Suppose we want to distinguish distribution P from model distribution Q. One way is
to sort the outcomes x in order of decreasing likelihood ratio L(x) = P (x)/Q(x), say
“p” if it is large and “q” if it is small. The Neyman-Pearson Lemma says that this test
minimizes the false positive error among all tests with a given false negative error.

The likelihood ratio can also be used to argue indistinguishability. For any test T ,

|P (T )−Q(T )| = |EQ[(L− 1) · 1T ]| ≤
√
EQ[(L− 1)2] · EQ[12T ] =

√
VarQ[L] ·Q(T ).

Therefore the statistical distance is at most the standard deviation of L under Q. Even
if the variance is greater than one but bounded, this bound rules out the possibility
that P (T ) → 1 and Q(T ) → 0 so the statistical distance between P and Q must be
bounded away from one.

Example Let Q and P consist of n i.i.d. ±1 bits that are unbiased and ϵ-biased,
respectively. The likelihood ratio is L(x) =

∏
(1+ϵxi), its variance is Var[L] =

∏
E[(1+

ϵxi)
2]− 1 = (1+ ϵ2)n− 1. The variance is o(1) as long as ϵ ≪ 1/

√
n, which matches the

regime in which we cannot distinguish reliably. If we expand L(x) as a polynomial we
get L(x) = 1+ ϵ

∑
xi + ϵ2

∑
i ̸=j xixj + · · · . The degree-d part contributes

(
n
d

)
ϵ2d to the

variance so the main contribution comes from the degree-1 part L1(x) = 1+ ϵ
∑

xi. In
fact we can use the value of L1 to distinguish P and Q when VarQ[L

1] is large.

This example suggests using the low-degree projection L1 or more generally Ld to
distinguish P from Q assuming Q is a product distribution over bits. (The theory
generalizes to product distributions over other domains.) The advantage of Ld is that
it can be computed in size

(
n
d

)
. In contrast, L may not be efficiently computable in

general. For a number of statistical hypothesis testing problems, the best efficient
distinguishers are based on the value of some low-degree polynomial. Among those
distinguishers, Ld is optimal in the following sense:

Claim 8. Among all degree-d polynomials f , Ld maximizes the advantage

ad = maxf
EP [f ]− EQ[f ]√

VarQ[f ]
.

Moreover, ad = ∥Ld − 1∥Q.

A degree-d polynomial can capture any “d-local” statistic. For example, if P and Q
are graphs (represented by their adjacency matrices) then f can compute the number
of copies of any given induced subgraph with d edges. A natural distinguisher in this
context is a test of the form f(x) > t for a suitable threshold t. If it happens that
VarP [f ] = O(VarQ[f ]) then f will be concentrated around its means under both P
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and Q so a large value of ad means that f(P ) will typically be large while f(Q) will
typically be small. If on the other hand VarP [f ] ≫ VarQ[f ] then it may be reasonable
to try g(x) = (f(x)− EQ[f ])

2 as a distinguisher of degree 2d. Thus small advantage is
evidence of failure for all distinguishers of this type.

Proof of Claim 8. The maximum advantage can be rewritten as maxEP [f ] where f is
constrained to have degree d, mean EQ[f ] = 0 and variance EQ[f

2] = 1. Since f has
degree at most d,

EP [f ] = EQ[f · L] = EQ[f · (Ld − EQ[L
d])] = EQ[f · (Ld − 1)],

This expression is maximized when f = (Ld − 1)/∥Ld − 1∥. (As the maximum is
invariant under scaling and shifting we can also take f = Ld.) The advantage is

EP [L
d − 1]

∥Ld − 1∥Q
=

EQ[L
d(Ld − 1)]

∥Ld − 1∥Q
= ∥Ld − 1∥Q.

If Q is the p-biased product distribution over {±1}n so that Pr(Xi = −1) = p,
Pr(Xi = 1) = q = 1 − p. The Fourier basis is given by ϕS(x) =

∏
i∈S ϕ(xi), where

ϕ(−1) = −
√

q/p and ϕ(1) =
√

p/q. The squared degree-d advantage a2d is

a2d = ∥Ld − 1∥2Q =
∑

1≤|S|≤d

EP [ϕS]
2. (1)

4 Planting Hyperloops

A hyperloop is a 3-hypergraph in which every vertex has degree two. Let Q be a
random 3-hypergraph on n vertices with edge probability p and P = Q ∪ L where L is
a hyperloop on ℓ edges.

Proposition 9. Assume that for every 1 ≤ s ≤ d, every set of s hyperedges in L touches
at least (3/2 − δ)(s + 1) − 2δ vertices. If p ≥ C

√
dn−3/2−δ and ℓ ≤ η

√
pn3/Cd3/2 for

some constant C and sufficiently large n then the degree-d advantage ad(P,Q) is ≤ η.

The proposition guarantees degree-d indistinguishability as long as L is small-set
expanding and the number of planted hyperedges is within o(η/d3/4) standard deviations
of the expected number of hyperedges pn3 in the host hypergraph Q. Thus in this
regime, no low-degree distinguisher can significantly improve over counting hyperedges.

In our intended application L will consist of ℓ/ℓ0 vertex-disjoint copies of a single
hyperloop L0 with ℓ0 = O(log n) hyperedges. By Claim 13 a random choice of L0 will
have the desired expansion with constant probability.

Proof. We expand ad in the Fourier basis as:

a2d =
∑

1≤|S|≤d

EP [ϕS]
2 =

∑
1≤|S|≤d

(
1− p

p

)|S|

Pr[S ⊆ L]2.

A copy of S in L is a map from the vertices of S to the vertices of L that maps
edges into edges. Let C(S, L) be the number of such copies. By a union bound
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Pr[S ⊆ L] ≤ C(S, L)/n(n − 1) · · · (n − v(S) + 1) where v(S) is the number of ver-
tices in S. Assuming that v(S) ≤ 3d = O(

√
n) the denominator dominates nv(S)

so Pr[S ⊆ L] ≲ C(S, L)n−v(S). Therefore a2d ≤
∑

1≤|S|≤d f(S) where f(S) = ((1 −
p)/p)|S|C(S, L)2n−2v(S).

If the vertex sets of S and S ′ are disjoint then f(S ∪ S ′) ≤ f(S)f(S ′). Therefore
f(S ′) ≤

∏
C f(S) where the product ranges over the connected components S of S ′:

a2d ≤
∑

1≤|S′|≤d

∏
c.c. S of S′

f(S) ≤
(
1 +

∑
1≤|S|≤d

S connected

f(S)

)d

− 1.

To obtain ad ≤ η it is therefore sufficient to show that the summation over connected
S is at most η2/2d.

Claim 10. If S is connected then C(S, L) ≤ 3|L| · 2|S|.

Proof. Let s = |S| and let e1, . . . , es be an ordering of the edges so that ei is connected
to e1, . . . , ei−1 for all i. The first edge e1 = {v1, v2, v3} of S can map into L into at
most ℓ ways, and there are 3! = 6 ways to assign v1, v2, v3 that are consistent with this
edge map. Since L has degree two and e2 intersects e1, the image of e2 is fixed by this
assignment. There are then at most two ways to assign the vertices of e2 \ e1. By the
same argument there are at most two ways to assign the vertices of ei \ (e1∪ · · · ∪ ei−1).
Therefore C(S, L) ≤ 3!|L| · 2s−1 = 3|L| · 2s.

Applying this bound and disregarding the (1− p)|S| factor (which will be small) we
obtain ∑

1≤|S|≤d
S connected

f(S) ≤ 9ℓ2bd where bd =
∑

1≤|S|≤d

1

(p/2)|S|n2v(S)
.

Let N(s, v) be the number of connected 3-hypergraphs with s edges that span a fixed
set of v vertices and appear at least once in L. Then

bd ≤
d∑

s=1

∑
v

(
n

v

)
N(s, v)(p/2)−sn−2v ≤

d∑
s=1

∑
v

N(s, v)

v!
· (p/2)−sn−v. (2)

The leading term s = 1, for which v must equal 3, contributes O(1/pn3). The objective
is to show that it dominates the summation assuming that L is sufficiently expanding.
If this is the case then the advantage will be bounded as long as 1/pn3 = O(η−2/dℓ2),
or ℓ = O(η

√
pn3/d). Owing to some slackness in the calculation we will only show that

the dominating term is at most O(
√
d/pn3), thereby accounting for the additional

√
d

factor in the statement.

Claim 11. N(s, v)/v! = O(csss/2) for some constant c.

Proof. Let u be the number of degree-1 vertices. Since all vertices have degree 1 or 2
we must have v = (3s+u)/2. There are

(
v
u

)
ways to choose the degree-1 vertices. Once

these are fixed we argue that the hypergraph can be chosen in Θ(h(s, u)) ways, where

h(s, u) =
(3s)!

s! · 6s · 2(3s−u)/2
.

10



Using Stirling’s formula we obtain N(s, v) = O(c′ss2s/u!(v − u)!) for some constant c′.
The denominator is minimized when u = ⌊v/2⌋ which gives, again applying Stirling’s
formula, N(s, v) = O(css2s/vv). As the maximum degree is 2, v must be at least 3s/2
and the claim follows.

Let C be the set of 3s “clones” consisting two copies of each degree-2 vertex and all
the degree-1 vertices. The clones can be partitioned into s hyperedges in (3s)!/(s! · 6s)
ways. Each (s, u)-hypercycle arises from 2(3s−u)/2 partitions of clones in which no pair
of clones is covered by the same hyperedge.

Thus the number of (s, u)-hypercycles is between qh(s, u) and h(s, u), where q is the
probability that no pair of clones is covered by the same hyperedge when the partition
is chosen at random.

It remains to lower bound q by a constant. The random partition can be sampled
by randomly arranging the 3s clones and assigning clones 3j, 3j + 1, and 3j + 2 to
the j-th hyperedge. After arranging the u degree-one vertices and the first clone of the
remaining (3s−u)/2 vertices, no pair is covered by the same hyperedge as long as each
of the second clones is separated by the corresponding first clone by at least two other
clones when its position in the arrangement is chosen. For any given second clone, this
happens with probability at least 1−4/((3s+u)/2) (as there are at most four forbidden
positions). Thus q is at least (1−4/((3s+u)/2))(3s−u)/2 ≥ (1−4/(3s/2))3s/2 ≥ e−4.

Plugging into (2) we obtain

bd ≲
d∑

s=1

∑
v

(p/2c
√
s)−sn−v ≲

d∑
s=1

(p/2c
√
d)−sn−v(s),

where v(s) = minS⊆L,S connected,|S|=s v(S).

Assume p/2c
√
d ≥ n−3/2−δ for some constant δ > 0. Then the summation is domi-

nated by the term s = 1 as long as (3/2 + δ)s− v(s) < −3/2 + δ, or

v(s) ≥ (3/2 + δ)(s+ 1)− 2δ for every s ≤ d. (3)

4.1 Expansion of 3-regular graphs

Assume L consists of ℓ/ℓ0 vertex-disjoint copies of a single hyperloop L0 with ℓ0 edges.
If L0 satisfies (3) so will L. It will be more convenient to analyze the dual object L∗

0 of
L0 obtained by transposing the incidence matrix of L0. Then L∗

0 is a simple 3-regular
graph with ℓ0 vertices and 3ℓ0/2 edges. Equation (3) then any set of s ≤ d vertices in
L∗
0 must touch at least (3/2 + δ)(s+ 1)− 2δ edges.

Claim 12. If a set S of size s touches e edges then the cut (S, S) has size at least
2e− 3s.

Proof. We can write e = in + out where in and out is the number of edges inside S
and leaving S, respectively. Since every vertex (in S) has degree 3, 2in + out = 3s.
Therefore out = 2e− 3s.

11
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Figure 3: (a) A hyperloop L and (b) its dual representation L∗

It is therefore sufficient that the cut (S, S) has size at least 2δ(s− 1) + 3 for every
set S of s vertices in L∗

0. If L∗
0 has sufficiently high girth and high spectral expansion

this would hold for sets up to size linear in ℓ0. However this type of analysis would
likely give poor concrete parameters: Even if L∗

0 is Ramanujan its spectral expansion
would be at most 1 − 2

√
2/3 ≈ 0.06, which merely guarantees that |(S, S)| ≥ 0.17s.

To obtain the desired expansion for small sets the girth would need to be at least 18
resulting in a prohibitively large L∗

0.
In terms of concrete parameters there exists a hyperloop L0 on 14 vertices that

satisfies (3) with d = 9 and δ = 1/8 (see Figure 4). A random construction also works
well asymptotically:

Figure 4: A size 14 hyperloop L∗
0 with δ = 1/8 for d = 9.

Claim 13. For every ϵ > 0 there exists a δ > 0 so that for sufficiently large ℓ0 and for
a random L0 (3) is satisfied with constant probability up to d = (1− ϵ)ℓ0.

Proof. We sample L0 from the configuration model in which vertices are cloned thrice
and then the clones are randomly matched. We consider three parameter ranges.

If ϵℓ0 < s ≤ (1 − ϵ)ℓ0, with probability approaching one as ℓ0 → ∞, L0 is a edge-
expander [HLW06] so |(S, S)| ≥ αmin{|S|, |S|} for every S for some absolute expansion
constant α. This is at least 2δ(|S| − 1) + 3 for all |S| = s in the desired range as long
as δ ≤ αϵ/2− 3/2(ℓ0 − 1).

If 4 ≤ s ≤ ϵℓ0, the probability that there exists a set of s vertices that touches at
most v = αs edges is at most(

ℓ0
s

)(
3ℓ0/2

v

)
· 2v
3ℓ0

· 2v − 1

3ℓ0 − 1
· 2v − 3s+ 1

3ℓ0 − 3s+ 1
≤

(eℓ0
s

)s(3eℓ
2v

)v( 2v

3ℓ0

)3s

=

(
c(α)

( s

ℓ0

)2−α
)s

,
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where c(α) = (8eα3/27)(3e/2α)α. Setting α = 1/8 − 3δ/4 we obtain that (3) can be
satisfied for all 4 ≤ d ≤ ℓ0 with probability that approaches one as ϵ approaches zero.

If 1 ≤ s ≤ 3 we will argue that v(1) = 3, v(2) = 5, and v(3) = 7, namely the
graph has no parallel edges, no self-loops, and has girth at least five, with probability
Ω(1). Consider the following procedure for sampling the graph. Start with the integer
sequence s = (1, 2, . . . , 3ℓ0/2). Now insert another copy of each integer at a random
position in the sequence. In the resulting sequence of length 3ℓ0 identify the integers
with edges and the “clones” at positions 3j, 3j + 1, 3j + 2 with vertex j. We describe
a sequence of events G1, . . . , G3ℓ/2 where Gi is measurable in the filtration obtained by
exposing the j-th insertion, each Gi has probability at least 1−O(1/ℓ0) conditioned on
G1, . . . , Gi−1, and the conjunction G1 ∩ . . . ∩G3ℓ/2 implies the desired properties.

The property v(1) = 3 (no parallel edges or self-loops) will be satisfied as long as the
two copies of every integer are spaces at least three items apart. It is clearly sufficient
that this holds at the time of insertion as subsequent insertions can only increase the
distance. The corresponding event Gj has clearly the desired properties as at the time
of each insertion there are only four forbidden positions out of at least 3ℓ0/2.

Similarly, v(2) = 5 and v(3) = 7 (the girth is at least five) is satisfied as long at
when i is inserted it does not land two slots within any number that is within “two
hops” to the copy of i that is already present, where a hop between i and i′ is allowed
if they appear within two positions of each other. This specifies at most 160 forbidden
positions so the corresponding event Gj still has probability 1−O(1/ℓ0).

5 Low-degree Security of Goldreich’s Function

We show that Goldreich’s function on a random hypergraph is secure with respect to
low-degree tests. We consider tests f that receive as input a hypergraph H and a string
y that is either an output FH of Goldreich’s function or a random string R. The test f
may depend arbitrarily on H but must have degree at most d in y.

Proposition 14. The squared low-degree advantage of f is at most the expected number
of projections of FH on nonempty subsets of size at most d that have nonzero bias.

In particular, if the predicate is of the form X1 +X2 +X3 + g(Y ) then all nonzero
bias subsets must come from hyperloops induced by the X-variables. Therefore a2d is at
most the expected number of hyperloops of size at most d in a random 3-hypergraph.
Any hyperloop that spans a specific set of v vertices must have at least 2v/3 hyperedges,
so in the H(n, p) model the expected number of hyperloops that span some set of v
vertices is at most (

n

v

)( (
v
3

)
2v/3

)
p2v/3 ≤

(
en

v

)v(
ev2p

4

)2v/3

.

Assuming d ≤ 0.4p−2n−3 = Ω̃(n2δ), the expectation is dominated by the first term
v = 6 for which it has value Õ(n−4δ).

Proof of Proposition 14. As in the proof of Claim 8, the advantage is maxf E[f(H,FH)]
where f is constrained to have zero mean and unit variance under the model distribution
(H,R). We can write EH,FH

[f ] = EH,R[f · L] where L is the joint likelihood ratio

L(h, r) =
Pr(H = h, FH = r)

Pr(H = h, r = R)
=

Pr(FH = r|H = h)

Pr(r = R)
.

13



Namely, L(h, r) equals the conditional likelihood ratio L(r|h). Thus the optimal choice
of f is the conditional degree-d projection Ld(r|h) and the squared advantage is Var[Ld].
By the total variance formula, Var[Ld] = EVar[Ld|H] + VarE[Ld|H]. For fixed h, Ld

has the Fourier expansion

Ld( · |h) =
∑
|S|≤d

E[L(R|h)χS(R)]χS =
∑
|S|≤d

E[χS(FH)]χS,

In particular, E[Ld(·|h)] = 1 for every h and VarE[Ld|H] = 0. It follows that the
advantage is

Var[Ld] = EVar[Ld|H] = E
∑

1≤|S|≤d

E[χS(FH)|H]2.

As χS(FH) is nonzero only when FH is nonuniform and it is at most one otherwise, the
right hand side is at most the expected number of biased subsets of FH .

6 The Encryption Scheme

We present a general construction that exhibits a tradeoff between the parameter k
that governs the locality of encryption and the size of the hyperloop ℓ0.

We will assume that the vertices in a hyperedge are ordered. Let

• Q be a random 3-hypergraph with n vertices and hyperedge probability C
√
dn−3/2−δ,

• L0 be a fixed 3-hypergraph on ℓ0 = 0.09 · 2k log n vertices satisfying Claim 13,

• L consists of t = O(1/β2 log 1/δ) vertex-disjoint copies of L0, β = (1− 2−k+1)ℓ0 ,

• P be the m-edge hypergraph union of Q and a copy of L planted on a random
subset of 3ℓ/2 vertices of Q,

• H be (k + 3)-hypergraph obtained by extending each hyperedge of P with k
random vertices,

• F : {0, 1}n → {0, 1}m be the function obtained by evaluating the (k + 3)-ary
predicate x1 ⊕ x2 ⊕ x3 ⊕ (y1 ∧ · · · ∧ yk) on all sequences of input bits indexed by
hyperedges in H.

The key generation procedure outputs H as the public key and disjoint ℓ0-subsets
S1, . . . , St of {1, . . . ,m} indexing the copies of L0 in P as the secret key.

To encrypt a 0, output y = F (x) for a random x. To encrypt a 1, output a random
string of length m.

To decrypt y, calculate the parities zi = ⊕j∈Si
yj for all 1 ≤ j ≤ t. If more than

(1 + β)t/2 of them are zero output 0, otherwise output 1.
Call the public key good if all extensions of the hyperedges in L are pairwise disjoint.

By a union bound the public key is good except with probability O(ℓ2k2/n) = n−Ω(1).

Claim 15. Assuming H is good, decryption is correct except with probability δ.

14



Proof. For an encryption of 1, the bits z1, . . . , zt are independent random so the prob-
ability that more than (1 + β)t/2 of them are zero is at most δ by Chernoff bounds.

For an encryption of 0, each bit zi evaluates to an ℓ0-XOR of disjoint k-ANDs so it
has bias β. As z1, . . . , zℓ are independent the probability that fewer than (1+β)t/2 are
zero is at most δ again.

Theorem 16. If f has degree less than (1−ϵ)ℓ0 and bounded 4-norm, the distinguishing
advantage E[f(P, FP )]− E[f(Q,R)] is n−Ω(1).

We do not know if a bounded variance assumption on f would suffice.

Proof. We may assume E[f(Q,R)] = 0. By Proposition 9, for every g of degree at
most d = (1 − ϵ)ℓ0, E[g(P )] − E[g(Q)] ≤ n−Ω(1)

√
Var[g(Q)]. Given f of degree d let

g(G) = E[f(G,FG)|G]. Then g has the same degree as f and

E[f(P, FP )]− E[f(Q,FQ)] ≤ n−Ω(1)
√

Var[f(Q,FQ)].

By Proposition 14 applied to f 2,

|E[f(Q,FQ)
2]− E[f(Q,R)2]| ≤ n−Ω(1)

√
Var[f(Q,R)2].

By the boundedness of the 4-norm of f ,

Var[f(Q,FQ)
2] ≤ Var[f(Q,R)2] + n−Ω(1)

so E[f(P, FP )]− E[f(Q,FQ)] = n−Ω(1). By Proposition 14 applied to f this time,

E[f(Q,FQ)]− E[f(Q,R)] = n−Ω(1)
√

Var[f(Q,R)] = O(n−Ω(1)).

The claim follows by the triangle inequality.
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