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Abstract—Lattice-based cryptographic schemes such as
Crystals-Kyber and Dilithium are post-quantum algorithms se-
lected to be standardized by NIST as they are considered to be
secure against quantum computing attacks. The multiplication in
polynomial rings is the most time-consuming operation in many
lattice-based cryptographic schemes, which is also subject to side-
channel attacks. While NTT-based polynomial multiplication is
almost a norm in a wide range of implementations, a relatively
new method, incomplete NTT is preferred to accelerate lattice-
based cryptography, especially on some computing platforms
that feature special instructions. In this paper, we present a
novel, efficient and non-profiled power/EM side-channel attack
targeting polynomial multiplication based on the incomplete
NTT algorithm. We apply the attack on the Crystals-Dilithium
signature algorithm and Crystals-Kyber KEM. We demonstrate
that the method accelerates attack run-time when compared to
the existing approaches. While a conventional non-profiled side-
channel attack tests a much larger hypothesis set because it needs
to predict two coefficients of secret polynomials together, we
propose a much faster zero-value filtering attack (ZV-FA), which
reduces the size of the hypothesis set by targeting the coefficients
individually. We also propose an effective and efficient validation
and correction technique employing the inverse NTT to estimate
and modify the mispredicted coefficients. Our experimental
results show that we can achieve a speed-up of 1915×over brute-
force.

Index Terms—post-quantum cryptography; side-channel at-
tack; correlation power analysis; multivariate mutual informa-
tion analysis; crsytals dilithium; crsytals kyber;

I. INTRODUCTION

SECURITY of public-key cryptosystems relies on the hard-
ness of well-known mathematical problems such as the

discrete logarithm problem for the elliptic curve cryptography
(ECC) [1], [2] and the digital signature algorithm (DSA) [3]
or the integer factorization problem for RSA [4]. While those
hard problems are conjectured to be secure against known
cryptanalytic algorithms running on classical computers, it
has been shown that Shor’s algorithm [5] can solve them in
polynomial time on a large-scale quantum computer.

To address the quantum threat, the National Institute of
Standards and Technology (NIST) has announced the stan-
dardization process for post-quantum public-key cryptographic
algorithms (PQC) in 2016. The standardization process cov-
ers quantum-resistant digital signature schemes, and public-
key encryption and key-establishment algorithms. Currently,
the contest is at the fourth round with already standardized
algorithms. Lattice-based schemes, based on various hard lat-
tice problems, facilitate the construction of quantum resilient

public-key cryptography with a promising level of efficiency.
Among the winners, the lattice-based digital signature algo-
rithm Crystals-Dilithium [6] is based on the Module-LWE [7]
and Module-SIS (MSIS) problems, while Crystals-Kyber [8] is
MLWE based key encapsulation mechanism (KEM). As Kyber
and Dilithium are members of the same family, Crystals, they
have several building blocks in common.

In cryptoanalysis, side-channel attacks (SCA) are the ones
that target the weaknesses in implementations rather than
algorithm specifications, by collecting side information such
as running time or power consumption that can leak sensitive
(intermediate) information during the execution of the targeted
cryptographic operation. Side-channel attacks are considered
as one of the main threats, particularly for embedded devices
because of the simplicity of side-information collection, such
as IoT chips, which sign sensor data before transmission. The
Correlation Power Analysis (CPA) is proposed in [9], which
models the power consumption of the device under test and
measures the correlation of the model with real-world data
to test secret value hypotheses. The power leakage of the
device/implementation is often modeled with the Hamming
Weight (HW)/Hamming Distance (HD) of/between the inter-
mediate data. The Mutual Information Analysis (MIA) [10]
is another efficient side-channel distinguisher, based on in-
formation theory and Shannon entropy. The Electromagnetic
(EM) side-channels [11] are similar to power analysis as any
attack suit designed for power leakage can be practiced with
EM leakage while it can supply more precise information
about the sensitive intermediate data. Masking is one of the
most promising countermeasures against power/EM attacks,
which randomizes the intermediate data with secret sharing
so that characteristics of sensitive data are not reflected in
power consumption.

JIL Rating [12] is a widely used metric to assess the
complexity of side-channel attacks; the higher the JIL score,
the harder to perform the attack. As the time needed to apply
the attack is a factor in the overall rating, both the number of
traces and the attack run-time affect the rating of the attack,
constituting an important motivation for this work.

Needless to say, the side-channel security of post-quantum
public cryptography is essential as well since post-quantum
algorithms are intended to replace the existing public-key
standards soon and the usage of public-key cryptography in
embedded devices will be potentially more extensive. For
example, a secure firmware update on an embedded device
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relies on the security of the employed digital signature while
embedded devices are open to timing, and power/EM attacks
by nature. With increasing interest, several attacks and coun-
termeasures have been proposed for PQC candidates in the
literature.

Polynomial multiplication is the core operation for practical
constructions of lattice-based cryptography, which are based
on ring-learning with errors (R-LWE) problem [13]. Most
implementations utilize number theoretic transform (NTT) for
efficient polynomial arithmetic [14]. A technique referred as
incomplete NTT is introduced to handle rings of special struc-
tures as well as for efficiency [15]–[17] in implementations
of various lattice-based cryptography algorithms. Our study
targets the incomplete NTT operation specifically.

Table I summarizes the related side-channel attacks against
lattice-based schemes from the literature. Among the attack
types, the profiled class forms the majority, where we require
a device identical to the one targeted by the attacker, who tries
to characterize the leakage when executing a cryptographic
algorithm with a known secret key. In other words, the attacker
needs to have more capability in a profiled attack compared to
the non-profiled class. Machine learning-based approaches are
gaining popularity in the design of profiled attacks for lattice-
based cryptography [18], [19]. In addition, Primas et al. [20]
present a notable study by combining the side-channel leakage
of NTT computation with the belief propagation algorithm to
conduct a single-trace profiled attack.

As for the non-profiled class, the polynomial multiplication
is the most attractive target operation [21]–[23]. Steffen et
al. [23] conduct an attack on a hardware implementation of
Dilithium. Chen et al. [22] target the reference implementation
of Dilithium, concentrating on improving the runtime perfor-
mance of non-profiled attack, as the conventional approach
requires brute-force effort over 23-bit secrets based on the
coefficient modulus length of Dilithium. Mujdei et al. [21]
attack ARM M4 implementation of Kyber [17], which has
a very similar NTT implementation with Dilithium, based on
[16]. The authors of [21] show that the secret coefficients must
be predicted in pairs since the incomplete NTT algorithm is
used in the polynomial multiplication of the targeted imple-
mentation.

In our study, we present a more efficient non-profiled attack
on the incomplete NTT implementation, which facilitates that
the coefficients of the secret polynomials can be predicted
individually. To show its efficacy, we use the very recent and
fast implementation of Dilithium and Kyber on ARM M4 [17]
as in [21]. We present several non-profiled side-channel attacks
targeting the multiplication in the incomplete NTT domain
and finally develop a much more efficient approach exploiting
the zero-valued coefficients of the known operand of the
incomplete NTT multiplication, with application to Dilithium
and Kyber schemes.

A. Main Contributions

We can list our contributions as follows:
• We present a novel non-profiled power/EM attack against

incomplete NTT-based implementations of polynomial

multiplication in Lattice-based Cryptography, referred to
as Zero-Value Filtering Attack (ZV-FA). Our approach is
efficient as it decreases the number of hypotheses signifi-
cantly by introducing a filtering technique based on zero-
value coefficients in the known input/output polynomials
of the operation targeted by the side-channel attack.

• We present an efficient validation technique for esti-
mating and correcting mispredicted values for attacking
secret polynomials with short coefficients. The method
not only ensures full accuracy on the estimated secret
polynomials but also accelerates the attack run time by
trading off the number of traces.

• We show that using short secret key polynomials in
lattice-based cryptography can be exploited to accelerate
side-channel attacks.

• We implement the ZV-FA with the validation technique
on the pqm4 [17] implementations of Dilithium and
Kyber [16]. Our experiments demonstrate that a moderate
increase in the number of traces can decrease the attack
run-time significantly. It is experimentally shown through
EM side-channel that, a speed-up of up to three orders of
magnitude in attack run-time can be achieved over a con-
ventional CPA targeting the polynomial multiplication.

• We experimentally show that our approach is also favor-
able in the presence of masking, by applying ZV-FA to
a protected implementation of Kyber.

II. NOTATION

Matrices are represented by bold uppercase letters, such
as A, while vectors are represented by bold lowercase letters,
such as b. Sets are denoted by uppercase calligraphic letters,
such as A. Polynomials are denoted by lowercase italic letters,
such as f . Depending on the context, polynomials may be
represented together with their indeterminate, such as f(x).
Subscripts together with square brackets are used to denote
element(s) of matrices and vectors, such as A[i,j] and s[i];
elements of sets, such as A[i]; coefficients of polynomials,
such as f[i]. The notation A[:,j] denotes the j-th column vector
of A. Similarly, A[:i] denotes the first i elements of the set A.

Modular reductions are performed in a centered manner.
Specifically, given an integer i and a modulus q, the operation
i′ = i (mod±q) maps i to a unique integer i′ in the range
of [−⌊q/2⌋, ⌊q/2⌋] for odd q. The set of integers modulo q
with centered reduction is denoted by Zq . On the other hand,
the notation Z+

q is used to denote the set of integers modulo
q using the positive range, namely [0, q − 1]. The ring of
polynomials Zq[x]/(X

n+1), where elements are polynomials
of the maximum degree of n − 1, whose coefficients are
modulo-q reduced, is denoted by Rq .

The dimensionality of matrices and vectors is shown in
the superscript. For example, Rk×l

q represents a matrix of
dimensions k × l, whose elements are in Rq . Similarly,
superscript is used for the matrices and vectors to express
their dimensionality, such as AN×M and bN . The cardinality
of the set A is denoted by |A|. The matrix-vector multipli-
cation of the operands A and b is denoted by Ab. Similarly,
multiplication of the vector b with scalar a is denoted by ab.
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Attack Class Algorithm Implementation Target Operation
this work Non-profiled Dilithium / Kyber ARM M4 (masked) polynomial multiplication

[22] Non-profiled Dilithium Reference C polynomial multiplication
[23] Non-Profiled Dilithium HW polynomial multiplication
[21] Non-profiled Kyber ARM M4 polynomial multiplication
[18] Profiled Dilithium Reference C NTT
[19] Profiled Dilithium Reference C bit-unpacking
[23] Profiled Dilithium HW decoding / NTT
[24] Profiled Dilithium Reference C / ARM M4 small polynomial sampling
[25] Profiled Dilithium Reference C decompose
[26] Profiled Kyber Reference C / ARM M4 NTT
[20] Profiled R-LWE Encryption ARM M4 (masked) [27] NTT

TABLE I: Related Side-Channel Attacks from the Literature

Polynomial multiplication is denoted by the standard symbol
·, while element-wise multiplication of two vectors is denoted
by ⊙. In some cases, the symbol · is used to represent integer
multiplication to support the narrative. The symbol × denotes
the Cartesian product between sets, such as A× B.

The notation (also referred to as infinity norm) ||s||∞ is
used to represent the maximum coefficient of the polynomial
s in absolute value, whose elements are reduced in a centered
manner. Similarly, ||s||∞ is the maximum of the maximum
absolute values of coefficients of the polynomials in the
vector s. The set Sη consists of polynomials w ∈ Rq with
||w||∞ ≤ η, where η is a (relatively small) positive integer,
referred to as the set of short polynomials. Bη is denotes
the central binomial distribution over Rq , where ||w||∞ ≤ η
as well for w ← Bη . Another subset of Rq is denoted by
Bτ , which consists of polynomials with exactly τ coefficients
that are either -1 or 1, and the rest is zero. {0, 1}N denotes
the set of N -bit strings. The operator ← denotes uniformly
random sampling from the set on the right-hand side, such as
ρ ← {0, 1}N . A prediction to a secret a is denoted by wide
hat, such as â.

III. SIDE-CHANNEL ATTACK OVERVIEW AND
DISTINGUISHERS

Main steps of a non-profiled side-channel attack can be
summarized as follows:

• The attacker observes N cryptographic operations involv-
ing the secret key and records the power consumption
of the victim device. M points are sampled in time at
each observation. Power samples are stored in the matrix
TN×M while pN is the vector of known variables.

• A point of interest (PoI) is selected by the adversary. The
PoI should be a function of a known variable that changes
at each experiment and the attacked secret that remains
the same for all experiments.

• A set of predictions is prepared, denoted by K. Then,
intermediate value matrix VN×|K| is computed w.r.t. each
hypothesis; i.e., V[i,j] is the value of the PoI computed
using p[i] and K[j].

• V is mapped to the hypothetical power consumption
matrix, HN×|K| by applying a power consumption model.
In other words, H[i,j] = HW(V[i,j]), in case HW is
chosen.

• Each hypothesis K[i] is tested, i.e. scored, with the
selected distinguisher, by considering the relationship

between H[:,i] and T[:,j1] (and T[:,j2] for second-order
case). Usually, the maximum score over all j1 (and j2)
is assigned.

In side-channel literature, distinguishers are statistical tools
that are used to rank predictions (i.e., hypotheses) for secret
keys, by exploiting the dependency between the data processed
by a cryptographic implementation and its power consumption.
The distinguishers employed in this study are presented in the
following subsections.

A. Correlation Power Analysis (CPA)

CPA [9] is a widely-used side-channel distinguisher, based
on Pearson’s correlation. For random variables X and Y , the
correlation coefficient is estimated by

ρ̂(X,Y ) =
ˆcov(X,Y )

ˆstd(X) · ˆstd(Y )
. (1)

To utilize correlation as a side-channel distinguisher,
ρ̂(H[:,i],T[:,j1]) is computed.

B. Higher-Order CPA (HOCPA)

To perform a higher-order attack using CPA, multiple sam-
ples must be combined using a pre-processing function. The
state-of-art pre-processing function is the normalized product
[28], defined as follows for the second-order case

T′
[κ,j1×j2]

= (T[κ,j1]−T[:,j1])·(T[κ,j2]−T[:,j2]) for 0 ≤ κ < N
(2)

which combines the leakage at time samples j1 and j2. Then,
ρ̂(H[:,i],T′

[:,j1×j2]
) is computed.

C. Mutual Information Analysis (MIA)

MIA [10] is an information-theoretic side-channel distin-
guisher. Let H(X) denote the entropy of a random variable X
on a discrete space X , and let H(X|Y ) denote the conditional
entropy for X and another random variable Y on a discrete
space Y . P(·) denotes the probability function. The mutual
information between X and Y is defined as

I(X;Y ) = H(X)− H(X|Y )

=
∑
x∈X

∑
y∈Y

P(X = x, Y = y)·

log2

( P(X = x, Y = y)

P(X = x)P(Y = y)

)
(3)
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NIST Security Level 2 3 5
Parameter Meaning

τ number of ±1 in c 39 49 60
k,l dimensions of A (4,4) (6,5) (8,7)
η coefficient range of s1,s2 2 4 2

Expected #repetitions 4.25 5.1 3.85

TABLE II: Dilithium parameter set

Verbally, the entropy in X not covered by Y , namely
H(X|Y ), is subtracted from H(X) to formulate the mutual in-
formation in between. Similar to Section III-A, I(H[:,i];T[:,j1])
is computed in side-channel analysis.

D. Multivariate Mutual Information Analysis (MMIA)

MMIA [29] is a generalization of MIA to high-order side-
channel attacks. The multivariate mutual information between
three random variables X , Y , and Z is given by

I(X;Y ;Z) = I(Y ;Z)− I(Y ;Z|X) (4)

where

I(Y ;Z|X) =
∑
x∈X

P(X = x) · I(Y ;Z|X = x) (5)

By plugging two power samples in time into the above equa-
tion, a second-order side-channel distinguisher is achieved,
namely I(H[:,i];T[:,j1];T[:,j2]).

IV. LATTICE-BASED POST-QUANTUM CRYPTOGRAPHY

In this section, we present the lattice-based post-quantum
cryptography algorithms, Dilithium and Kyber.

A. Dilithium

Crystals: Dilithium [6] is a lattice-based post-quantum dig-
ital signature scheme based on the hardness of MLWE and
MSIS problems. It operates over the ring of polynomials Rq

with dimension n = 256 and q = 8380417 = 223 − 213 + 1.
The rest of the parameter set used by Dilithium can be found in
Table II. Dilithium’s key generation creates an MLWE instance
by the equation t := As1 + s2. The matrix of polynomials
A ∈ Rk×l

q is part of the public key as well as the vector
of polynomials t ∈ Rk

q (in the full scheme, lower bits of
coefficients of polynomials in t are kept secret). The vectors
of short polynomials s1 ∈ Sl

η , s2 ∈ Sk
η forms the secret key.

The template of Dilithium’s signature generation, given in
Algorithm 1, applies the rejection sampling idea. Most of the
signature procedure is implemented in a loop, which iterates
until a valid and secure signature is found. The parameters
are chosen such that the expected number of repetitions is
small, as presented in Table II. Inside the signature loop, a
challenge polynomial c ∈ Bτ is generated. The candidate
signature z = y + cs1 is rejected and restarted in case the
security and correctness checks at line 7 fail. We would like
to note that, there is no difference between the template and
the standard Dilithium from the perspective of this work.

Algorithm 1 Dilithium.Sign(sk, M)

1: z := ⊥
2: while z = ⊥ do
3: y← S̃l

γ1

4: w1 := HighBits(Ay, 2γ2)
5: c ∈ Bτ := H(µ || w1)
6: z := y + cs1
7: if ||z||∞ ≥ γ1−β or ||LowBits(Ay− cs2)||∞ ≥ γ2−β

then
8: (z) := ⊥
9: return σ = (z, c)

NIST Security Level 1 3 5
Parameter Meaning

k dimensions of A 2 3 4
η Parameter of CBD Bη 2 4 2

TABLE III: Kyber parameter set

B. Kyber

Crystals: Kyber [6] is a lattice-based post-quantum KEM
signature scheme based whose security relies on the com-
putational difficulty of the MLWE problem. Kyber’s ring
dimension n = 256 and the coefficient modulus q = 3329 =
211 + 210 + 28 + 1 for the operated ring of polynomials
Rq . The rest of the related parameter set can be found in
Table III. Similar to Dilithium, the public-private key pair of
Kyber is generated by the MLWE equation t := As+e, where
s ∈ Rk

q is the secret key, t ∈ Rk
q and A ∈ Rk×k

q forms the
public key and e ∈ Rk

q is the noise vector. s and e are short
polynomials, whose coefficients are sampled from the central
binomial distribution Bη .

Algorithm 2 Kyber.CPAPKE.Dec(s, ct=(u,v))

1: return Compressq(v − sT u, 1)

Algorithm 2 presents a simplified version of Kyber’s key
decapsulation. The ciphertext ct is a composition of two parts;
u ∈ Rk

q and v ∈ Rq . The function Compressq maps from Rq

to {0, 1}n.

V. NUMBER THEORETIC TRANSFORM (NTT)

Number Theoretic Transform (NTT) is a special form of
Fast-Fourier Transform (FFT) that operates over Zq instead of
complex numbers C. NTT allows efficient multiplication of
polynomials over Rq . Representing a polynomial a(x) ∈ Rq

in the NTT domain can be viewed as an application of Chi-
nese Remainder Theorem (CRT). Polynomial multiplication is
achieved by element-wise multiplying the NTT representations
of the operands:

a(x) · b(x) = NTT−1(NTT(a(x))⊙ NTT(b(x))) (6)

Most lattice-based crypto systems, including Dilithium, op-
erates over the ring Rq . NTT in Rq requires q ≡ 1 (mod 2n),
which ensures a primitive 2n-th root of unity ζ2n exists in Zq

for which ζn2n = −1 mod q, referred to as negacyclic NTT.
In case n is a power of 2, NTT can be computed efficiently
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by splitting the polynomial to half of its size in recursive
manner until linear degree is reached. The transformation
at each layer can be efficiently implemented using Cooley-
Tukey (CT) butterfly circuit [30]. For degree-n/2i polynomial
a(x) = a0(x)+a1(x) ·xn/2i+1

, the CT butterfly is defined by
the map

a0(x)+a1(x)·xn/2i+1

−→ (a0(x)−δ ·a1(x), a0(x)+δ ·a1(x)).

where δ is an odd power of ζ2n, called the twiddle factor.
In this manner, full NTT computation requires log n layers.
Most applications use Gentleman-Sande (GS) butterfly for
computing the inverse NTT [31], although it is not necessarily
required. Using CT or GS when n is a power of 2, computing
NTT / inverse NTT takes Θ(n log n) steps.

A. Incomplete NTT

For efficiency NTT can be computed for m < log n
layers so polynomials are recursively splitted to degree-n/2m

polynomial components, denoted by NTTm(a(x)). The pre-
requisite for NTTm is to have q ≡ 1 (mod

n

2logn−m−1
) for

the negacyclic NTT [32].
Let a = NTTm(a(x)) and b = NTTm(b(x)). a and b are

2m-dimensional vectors and a[i],b[i] ∈ Zq[x]/(x
n/2m − δ) for

i < 2m, where δ is some power of ζ2n. Then, a(x)·b(x) can be
computed through a⊙b as in Equation 6. In this case, element-
wise multiplication refers to the multiplication of polynomials
of degree n/2m − 1, which is mostly implemented by the
school-book algorithm, and there are 2m such multiplications.
For instance, when m = log (n/2), n/2 multiplications of
degree-1 polynomials is performed, as presented in Algo-
rithm 3.

Algorithm 3 Incomplete NTT Multiplication(s′, c′)
1: for i← 0 until n/2 do
2: r[i,0] ← s′[i,0] · c

′
[i,0] + s′[i,1] · c

′
[i,1] · δi mod q

3: r[i,1] ← s′[i,0] · c
′
[i,1] + s′[i,1] · c

′
[i,0] mod q

4: return r

VI. TARGET IMPLEMENTATION AND POINT OF INTEREST
(POI)

We focus on the side-channel attack against incomplete
NTT-based polynomial multiplication (Algorithm 3). One of
the inputs is secret, and the attacker wants to learn it through
a side-channel attack while one of the inputs is public. This
case is directly applicable to Kyber and Dilithium, regarding
the operations sT u and cs1 (and cs2), respectively. Needless
to say, the attack aims to retrieve s for Kyber and cs1
and cs2 for Dilithium. To simplify notation, we denote the
attacked polynomial and its NTT representation by s′ and
s′, respectively. Note that, our attack is identical over the
polynomials in the vector of polynomials s, as well as the
polynomials in s1 and s2 and it is simply repeated to retrieve
all polynomials in those secret vectors. Similarly, c′ denotes
the known polynomial, and c′ denotes its NTT representation.

It corresponds to the challenge polynomial c, which is among
the output of the signature (Algorithm 1) for Dilithium. On
the other hand, the public polynomial is any element of the
u part of the ciphertext for Kyber, which is an input of the
key decapsulation (Algorithm 2). Again, our methodology is
identical for any polynomial in u.

Recall that, coefficient modulus q = 3329 and the ring
dimension n = 256 for Kyber permits incomplete NTT of
maximum log (n/2) layers. On the other hand, the specified
coefficient modulus of Dilithium does not require the NTT
to be incomplete. However, incomplete NTT can be preferred
by the implementers to enhance performance [16]. Specifi-
cally, the multiplications cs1 and cs2 are referred to as small
NTT and performed using a carrier prime. Although carrier
primes are usually denoted by q′, we will use q to unify our
notation. The small NTT operates with the prime q = 257
for Dilithium2 and Dilithium5 while q = 769 is chosen
for Dilithium3. The rationale behind the small NTT is that,
coefficients of cs1 and cs2 does not exceed τη in absolute
value. Recall that coefficient range of the polynomials in s1
and s2 is [−η, η] while c has exactly τ coefficients equal to
±1 and the rest of the coefficients are 0.

The target implementation is the pqm4 library [17], which
is mostly based on the work [16] In the mentioned imple-
mentation, r[i,j] (see Algorithm 3) are written to the memory
while the intermediate steps of the computation remain in the
processor. We consider the store instructions for r[i,j] as the
PoI, assuming a memory operation leads to a power leakage
with a greater signal-to-noise-ratio (SNR) compared to the
register updates or combinational logic. We use the HW model
for the hypothetical power consumption computation.

VII. PROPOSED SIDE-CHANNEL ATTACKS

In this section, we first show a straightforward baseline
attack and then give the details of a more efficient zero-value
filtering attack. Figure 1 presents a high-level overview of the
side-channel attacks discussed in this section.

A. The Baseline Attack

As each output coefficient r[i,j], chosen as the PoI, depends
on both s′[i,0] and s′[i,1], the baseline scheme is formed as
a conventional non-profiled attack using one of the distin-
guishers presented in Section III that predicts {s′[i,0], s′[i,1]},
simultaneously [21]. Consequently, q2 hypotheses are tested
by the baseline scheme.

We would like to make a note regarding the number
of hypotheses for the attack on Dilithium. When the NTT
multiplication function (Algorithm 3) is called, the coefficients
s′[i,j] can be larger than the modulus q, due to the so-called lazy
reductions. In particular, they are in the range [−7q−η, 7q+η],
[16], [22], [33]. Fortunately, it is sufficient to predict in the
set of residues, Zq , due to two main factors [21], [22]: 1) A
trivial mathematical fact is that the coefficients are indeed in
Zq , which is sufficient to compute the inverse NTT to obtain
the coefficients of the secret polynomial. 2) For the selected
PoI function, the integers in [−7q− η, 7q+ η], that are in the
same congruence class modulo q, mostly result in the same
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Baseline Attack
Test q2 hypotheses

for {a0, a1}
â0, â1

Baseline+ Attack
Test q · q/2 hypotheses

for ±{a0, a1}
â0, â1

Zero-Value
Attack

Test q/2 hypotheses
for ±a0

â0

Test q/2 hypotheses
for ±a1

â1

Zero-Value
Filtering Attack

Test q/2 hypotheses
for ±a0

Test q/2 hypotheses
for ±a1

Test d2

hypotheses
for

±{a0, a1}

â0, â1

Attack requires traces
with special condition

Attack does not require
traces with special condition

top-d

top-d

Fig. 1: Overview of the presented attacks. {a0, a1} ∈ Z2
q

denotes the attacked pair of secret coefficients, {s′[i,0], s′[i,1]}.

output. Therefore, the PoI that are calculated for integers of
the same congruence class are correlated with each other. This
situation does not exist in Kyber as the secret polynomials
are stored in the NTT domain by algorithm definition so the
coefficients are precisely in Zq .

The computational complexity of the baseline scheme is,
therefore, Θ(q2(n/2)). q2 is approximately 16.01-bit for
Dilithium2 and Dilithium5, 19.17-bit for Dilithium3, while it
is 23.4-bit for all security levels of Kyber. The baseline is
an accurate, yet inefficient attacking scheme in terms of the
attack run-time. Therefore, we seek more efficient methods to
accelerate the attack time in the next section.

B. Using Negative Correlation

It is possible to further narrow down the hypothesis set
presented in the preceding section by taking advantage of
the negative correlation [22]. This is due to the fact that the
Hamming weights of an integer and its additive inverse in 2’s
complement notation are inversely correlated.

Note that, V:,{−α0,−α1} = −V:,{α0,α1}, for any {α0, α1} ∈
Zq × Zq; recalling that V:,{α0,α1} is the intermediate value
vector computed w.r.t. {α0, α1}. The statistical properties of
Hamming Weight suggest that H:,{−α0,−α1} correlates with
H:,{α0,α1}. Therefore, ±{s′[i,0], s′[i,1]} is retrieved by testing
either the hypothesis set Zq × Z+

⌈q/2⌉ or Z+
⌈q/2⌉ × Zq , leading

to q · q/2 predictions.
Lastly, we need a distinguisher to tell the difference between

the actual key and its additive inverse as the attacker can get
either one of them. If the sign of the peak on correlation scores

is positive we conclude that the actual key is found. Otherwise,
the additive inverse of the hypothesis is computed as the output
of the attack. We would like to note that, the actual device
leakage inversely correlates with the HW of intermediate data
in some cases such as when the data-bus is pre-charged with
all 1’s. Then, the behavior of the explained distinguisher is
reversed.

The improved baseline scheme that takes advantage of
negative correlation is denoted by baseline+, dropping the
attack complexity by 1-bit to Θ(q(q/2)(n/2)).

C. Decreasing the Number of Hypotheses: Zero-Value Attack

A more practical scheme in terms of the attack run-time
can be constructed by attacking the coefficients s′[i,0] and
s′[i,1] individually, referred here as Zero-Value (ZV) Attack. To
achieve this, we need to eliminate the effect of one of the
secret coefficients from the reduction step during the NTT
multiplication, whose output constitutes the chosen PoI. This
can be accomplished by including only the traces to the attack
that contain zeros in their coefficients, which multiply one
of the secret coefficients. Consider line 2 of Algorithm 3 to
develop intuition for the proposed method. Assume c′[i,1] = 0
mod q for some 0 ≤ i < n/2, then s′[i,1] · c

′
[i,1] · δi mod q

becomes 0 and r[i,0] = s′[i,0] · c′[i,0] mod q. With sufficient
number of traces meeting the condition c′[i,1] = 0 mod q,
predictions on s′[i,0] can be made independently from s′[i,1] for
the specific value of i. The prerequisites for the ZV attack are
referred to as zero-value conditions. Table IV lists the four
attacking scenarios that can be adopted. For instance, to attack
s′[i,0], we need the condition c′[i,1] = 0 mod q and use c′[i,0] or
c′[i,0] = 0 mod q and use c′[i,1]. As the conditions are identical
with attack scenarios 1 and 4, both s′[i,0] and s′[i,1] will show
peaks in the results.

Attacking Scenario Target Condition Used Meta Probability
1 s′

[i,0]
c′
[i,1]

= 0 c′
[i,0]

0.0039

2 s′
[i,0]

c′
[i,0]

= 0 c′
[i,1]

0.0039

3 s′
[i,1]

c′
[i,0]

= 0 δi · c′
[i,1]

0.0039

4 s′
[i,1]

c′
[i,1]

= 0 c′
[i,0]

0.0039

TABLE IV: ZV-Attack Scenarios. Probabilities are equal to
1/n.

This approach leads to an attack complexity of Θ(qn) and
Θ((q/2)n) without and with the negative correlation trick,
respectively, from the previous section. The drawback of this
method is the hardness of finding traces meeting the mentioned
conditions. We mark a trace and the corresponding known
polynomial c as valid for the attack if at least one coefficient
in c is 0; namely,

c′[0,0] = 0 ∨ c′[0,1] = 0 ∨ ..

.. ∨ c′[n/2−1,0] = 0 ∨ c′[n/2−1,1] = 0 mod q (7)

The probability for a random c′ to be valid depends on q and
n, and can be computed by the following

1−
(q − 1

q

)n

, (8)
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which leads to 0.283 for Dilithium and 0.074 for Kyber.
Recall that, Dilithium’s signature function applies rejection
sampling, which means the target operation cs1 is performed
several times for each signature generation, with challenge
polynomials that are thrown away since the corresponding
signature is rejected. However, one can retrieve the unused
challenge polynomials through another side-channel attack
and include them in the attack to cs1. We would like to
note that, c is usually unprotected in the existing works from
literature [34] [35] and the same assumption is made by [36].
As the NTT of c is computed, it can be attacked as presented
in [20], which makes use of the belief-propagation algorithm
to attack NTT transformation. Moreover, the coefficients of c
are in {−1, 0, 1} so it would be relatively easier to distinguish
between those. We leave this application as a future work.
By multiplying the expected number of iterations presented
in Table II by the probability 0.283, we find out that each
signature operation contains 1.2, 1.44, 1.09 valid challenges,
i.e. known polynomials, on average. On the other hand, u is
produced by the key encapsulation function of Kyber, whose
inputs are publicly known. Therefore, an attacker can brute-
force the seeds used by key encapsulation to find u that
satisfies the validity condition given in Equation 7.

The individual probabilities for the coefficients c′[i,j] be-
ing 0 mod q, for a valid c′ are another crucial factor of
attack performance. Table IV lists the probabilities for the
aforementioned conditions, which is 1/n = 0.0039 for any i
and j. Note that, each s′[i,j] is attacked with the ones ensuring
the corresponding zero-value conditions among the collected
traces. The listed probabilities suggest that the conditions are
not met very often. Intuitively, assuming the SNR in T requires
200 traces for the attack to converge, then the attacker must
perform approximately 51.2K measurements on the victim’s
device considering the probabilities of conditions in Table IV.
Although the attacking phase of the presented scheme is
significantly faster than the baseline by a factor of q/2, a more
optimal strategy exists, in terms of both the number of traces
and attack run-time, as presented in the next section.

D. Decreasing the Number of Traces: Zero-Value Filtering

While the ZV scheme introduced in Section VII-C requires
a large number of traces to retrieve the correct key exactly,
alternatively having the correct key fall in top-d candidate
list is relatively inexpensive in terms of the number of traces,
depending on the value of d. Therefore, the ZV attack method
can be used as a filtering mechanism for the following hypoth-
esis testing, forming a two-stage attacking scheme, referred to
as Zero-Value Filtering Attack (ZV-FA), which is formalized
in Figure 2.

In the first stage (a.k.a. filtering stage), s′[i,0] and s′[i,1] are
attacked individually using the ZV attack scheme as presented
in the preceding section. The outcomes of these ZV attacks
are denoted by K0 and K1, the sorted set of predictions for
s′[i,0] and s′[i,1], respectively, based on the scores assigned by
the employed distinguisher in ZV attacks. Then, in the second
stage (a.k.a. scoring stage), a set of predictions K = K0

[:d] ×
K1

[:d] of size d2 is formed for the pair {s′[i,0], s′[i,1]}. Notice

START

ZV-Attack(s′[i,0]) ZV-Attack(s′[i,1])

ZV-FA.Score
(
{ s′[i,0], s′[i,1]},K0

[:d] ×K1
[:d]

)

filtering stage

scoring stage

λ > υ

Return { ŝ′[i,0], ŝ′[i,1]} increase d

K1K0

{ ŝ′[i,0], ŝ′[i,1]} with score λ

Yes No
K0

[:d] ×K1
[:d]

is expanded

Fig. 2: Flowchart of ZV-FA(s′[i])

that K0
[:d] (K1

[:d]) stands for the top scoring d predictions in
K0 (K1). Afterward, K is scored by one of the distinguishers
presented in Section III. Compared to the baseline scheme, a
relatively small number of hypotheses, d2 is used for attacking
{s′[i,0], s′[i,1]}, as opposed to q2.

By the filtering stage, this method assumes that the correct
key is in the top-d list of predictions of the highest scores for
the ZV attack. A threshold mechanism, denoted by υ, validates
the assumption through the attack output. The value of d is
iteratively increased and naturally K0

[:d] and K1
[:d] get larger,

until a prediction scoring greater than υ is found. By increasing
d, more candidates are evaluated by the second stage, which
increases the probability of having the correct key in the top-d
list; naturally, the second stage takes longer to evaluate more
candidates. A trivial strategy for increasing d can be doubling
it. Intuitively, doubling d is acceptable for Dilithium as q
is relatively small, regarding the RAM usage and response
times from scoring each set of candidates. However, reducing
the rate of increasing d for Kyber can be desirable, as the
search space can grow quite large, considering q2 is 23.4-
bit. We explicitly state how d is updated in our experiments
in Section VIII. Needless to say, the evaluated candidates
from previous trials are not included during the attack. The
attack becomes identical to the baseline attack, for which the
threshold is not taken into account if the scores remain below
υ until d covers the whole search space.

The negative correlation trick presented in Section VII-B
is also applied to ZV-FA both in the filtering stage and the
scoring stage. Therefore, the number of hypotheses to be
tested by ZV attacks in the filtering stage is q/2. Then, for
each α ∈ K0, we insert −α to K0, with the same rank
as α. In this manner, either {s′[i,0], s′[i,1]} or its additive inverse
{−s′[i,0],−s′[i,1]} is retrieved through the hypothesis testing in
the scoring stage. The sign is corrected by observing the sign
of the peak in correlation results as in the baseline+ scheme.

Compared to the ZV attack scheme, the new ZV-filtering
attack is more effective with a significantly smaller number
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of traces. The number of traces included in the filtering stage
is denoted by Nf , while the second stage can be carried out
without the zero-value conditions. As a result, it can be carried
out with a sufficient number of traces to ensure that its output
is reliable rather than using the entire set of valid traces, which
is excessive for evaluating the score.

E. Improving ZV-FA by Using Inverse NTT to Validate Pre-
dictions

The zero-value filtering attack introduced in Section VII-D
relies on the assumption that a precise threshold can be
found for all attacks on s′[i] for 0 ≤ i < n/2, which,
however, may not hold in practice as a non-profiled attack
is performed blindly. A possible solution to this problem is
to use a conservative threshold. However, this approach is
computationally expensive, and a conservative threshold can
still result in false positives, albeit with a lower probability.
Therefore, the attacker needs to verify the found secrets, s1, s2
for Dilithium, s for Kyber, by the MLWE equation presented
in Section IV-A and Section IV-B, respectively. Note that this
verification can only be performed after all the mentioned
secrets have been attacked in all vector indices.

A more reasonable strategy for the attacker is to make
use of the fact that NTT−1(s′) is a short polynomial. Recall
that, for Dilithium, s1 ∈ Sl

η , s2 ∈ Sk
η , whose coefficients

are in the range [−η, η]. Similarly, for Kyber, s is sampled
from Bη , for which the coefficients are in the range [−η, η],
as well. Therefore, a small mistake in the prediction will
diffuse through the inverse NTT computation and ruin the
coefficients of the output polynomial, empowering the attacker
to efficiently validate the attack output.

Figure 3 illustrates the flowchart of the ZV-FA from a
higher-level perspective with validation using the inverse NTT.
Let ŝ′ denote the vector of polynomials, a prediction to s′,
formed after completing the individual ZV attacks to s′[i,0]
and s′[i,1] for all i at Step 1. To validate ŝ′, NTT−1(̂s′) is
computed and the shortness property is sought in the resulting
polynomial. If the found polynomial is not validated the
mispredicted pair of coefficients in ŝ′ is approximated and
re-attacked to correct it. The approximation is performed by
selecting the pair of coefficients with the minimum score. The
current score for the prediction ŝ′[i] is denoted by λi. Observe
that the outputs of ZV attacks are immediately scored at Step 2
if the shortness check fails. This initial scoring step is needed
to be able to compare the ZV scores with ZV-FA scores, which
are originally in distinct scales. The same distinguisher with
ZV-FA.Score is applied to ŝ′[i] using the top scorer candidates
from Step 1, Ki,0

[0] and Ki,1
[0] , with the same number of traces

to get a comparable score with ZV-FA. In this manner, the
attack terminates without re-attacking predictions which are
already correctly predicted by ZV. Note that Ki,0 (Ki,1) is the
set of predictions for s′[i,0] (s′[i,1]) sorted for ZV attack scores,
by slightly modifying our notation from the previous section
as the coefficient index i is added to superscript.

The index of the minimum scoring pair from ŝ′ is found by
computing i′ = argmini(λi) and ZV-FA.Score is performed
on s′[i′] at Step 3 to replace ŝ′[i′]. Here, we skip the filtering

START

1.
ZV-Attack(s′[i,0])
ZV-Attack(s′[i,1])
∀ i

||NTT−1(̂s′)||∞ ≤ η

2. ZV-FA.Score
(s′[i],K

i,0
[0] ×Ki,1

[0] )
∀ i

i′ = argmini(λi)
3. ZV-FA.Score
(s′[i′],K

i′,0
[:di′ ]

×Ki′,1
[:di′ ]

)

||NTT−1(̂s′)||∞ ≤ η Return ŝ′

ŝ′

update ŝ′[i′],λi′ increase di′
No

Yes

No

Yes

Ki′,0,Ki′,1

Fig. 3: ZV-FA for the whole vector of polynomials s′ with the
application of inverse NTT validation

stage of ZV-FA (see Figure 2) because it is indeed performed
at Step 1 and therefore Ki′,0 and Ki′,1 are known. ŝ′[i′] is
updated if a better scoring prediction is found at the current
invocation of ZV-FA.Score. At the same time, di′ is updated
as in Figure 2 (Again, the coefficient index i is included in
the notation to differentiate between d for s′[i]). Notice that
the ZV-FA.Score can be performed for the same s′[i] multiple
times. However, the scoring is performed with distinct di at
each invocation of ZV-FA.Score to expand the search for the
actual secret. Recall that from the previous section, predictions
for s′[i] that are evaluated previously are not included in the
attack. The prediction ŝ′[i] is guaranteed to be corrected by
subsequent applications of ZV-FA.Score if the correct value
for s′[i], is the top-scorer among q · q/2 candidates.

The scheme is equivalent to ZV attack in terms of run-time
if the found polynomial is validated after Step 1. On the other
hand, the scheme evaluates O(q(q/2)(n/2)) predictions in the
worst case, via iterations of Step 3, thus it becoming equivalent
to the baseline+. The differentiation between both directions
depends on the number of filtering traces, Nf . Note that the
threshold υ presented in the previous section is not needed in
the improved scheme thanks to inverse-NTT validation. The
application of inverse NTT as a reliable and efficient method
of verification renders the ZV-FA fault-tolerant. This method
ensures the preservation of accuracy regardless of the choice
of Nf , enhancing the attack performance.

VIII. RESULTS

In this section, we present the results obtained after imple-
menting the above-mentioned attacks in a realistic experimen-
tal setting, against Dilithium-3 and Kyber-768. Moreover, we
apply our attack against a masked version of Kyber-768.
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(a)

(b)

Fig. 4: Iterations of _asymmetric_mul_16_loop, imple-
mentation of Algorithm 3 for Dilithium, highlighted over mean
trace

A. Experimental Setup

We employ Analog Devices’ MAX325201 as the victim
device to run pqm4’s Dilithium signature and Kyber key
decapsulation implementations. The first-order masked im-
plementation of Kyber is developed on top of the pqm4’s
implementation by randomly splitting s′. The MAX32520
incorporates a 120 MHz ARM Cortex-M4F core that can sign
random 32 B messages in 65.52 ms, on average, while it
can perform Kyber’s decapsulation in 7.2 ms. For EM trace
collection, LeCroy WavePro HD oscilloscope2 and Langer ICR
HH500-63 nearfield micro-probe are used. Sampling rate of
the oscilloscope is set to 10 GS/s and 1 GS/s, yielding 83.33
and 8.33 samples per clock, for unprotected and protected
implementations, respectively. We set up a trigger at the
beginning of the implementation of Algorithm 3 from the
target implementations for both Dilithium and Kyber to record
the relevant time samples because we focus on the polynomial
multiplication. The Scared library4 is used for analysis and
attack, running on a computer equipped with 64GB RAM and
AMD Ryzen 9 5900X 12-Core Processor clocked at 3.70 GHz.

B. Pre-processing and Analysis

To cope with the adverse effects of misalignment over
time, we performed the following pre-processing steps for
both algorithms: 1) pattern detection, 2) signal filtering, and
3) extraction around peaks. A reference pattern is set by
band-pass filtering the first trace between 100 MHz and
140 MHz and applying moving variance to it. The traces
are aligned based on the reference pattern. Then, 64 peaks
(128 for first-order protected Kyber), which correspond to
iterations of Algorithm 3 (loop is unrolled by a factor of
two), are detected and sequential points after each peak are

1https://www.analog.com/en/products/max32520.html
2https://teledynelecroy.com/oscilloscope/wavepro-hd-oscilloscope
3https://www.langer-emv.de/en/product/near-field-microprobes-icr-hh-h-

field/26/icr-hh500-6-near-field-microprobe-2-mhz-to-6-ghz/108
4https://pypi.org/project/scared/

combined. Figure 4 highlights the iterations over the average
of pre-processed traces for Dilithium, conforming with the
pre-knowledge on the implementation. On the other hand,
iterations of Algorithm 3 for (masked) Kyber, are observed
(for both shares) in Figure 5. Given the clear visibility of the
iterations of Algorithm 3 over time samples, it is possible to
conduct individual attacks on s′[i] in time regions associated
with each iteration. Note that, partitioning the attack range
over time is critical for the presented performance results of
all schemes.

Upon observation, we use the concatenation of r[i,0] and
r[i,1] (see Algorithm 3) as the PoI for attacking Dilithium,
while we use r[i,0] for Kyber. As an initial analysis, we
performed the baselineCPA on s′[0] and s′[1]. The convergence
patterns of the retrieved secrets are presented in Figure 6.

C. Attack and Performance

1) First-order: For the first-order attacks that target unpro-
tected implementations of Dilithium and Kyber, we use CPA as
the distinguisher. We start the evaluation by the performance of
the baselineCPA and baseline+CPA schemes. Figure 7 illustrates
the distribution of the required number of traces s′[i] needed
to converge in our experiments. Note that, the histograms are
computed based on a single s′ and varying i. Accordingly, 220
and 150 traces are needed the retrieve whole s′ for Dilithium
and Kyber, respectively. Notice that, these numbers are the
maximums of the values presented in the histograms. However,
a significant portion of the secret coefficients, s′[i], are indeed
revealed with fewer traces, around 50. The performance of
the baselineCPA and baseline+CPA schemes is reported in Table
V. In terms of accuracy, both schemes exhibit flawless per-
formance and do not pose any concerns regardin accuracy.
However, in terms of run-time, the performance of the attacks
is moderate. As expected, the baseline+ scheme improves
the performance of the baseline scheme by a factor of 2×
while preserving accuracy, which supports the correctness of
the attack methodology. Nevertheless, even with the baseline+

scheme, retrieving s1 and s2 requires approximately 4.37 hours
for Dilithium while it takes 22.4 hours to attack s for the Kyber
case. Note that the baselineCPA is equivalent to the attack
presented by [21] against the same implementation of Kyber.
Our application of the conventional approach is slightly better
than that work both in terms of attack run-time and number
of traces.

For the application of ZV-FA to Dilithium (to Kyber), the
attack scenarios 1 and 2 (scenario 1 for Kyber) from Table IV
are employed for attacking the lower degree coefficients of
the polynomials, specifically s′[i,0] for any 0 ≤ i < 128, while
the scenarios 3 and 4 (scenario 3) are utilized for the higher
degree coefficients s′[i,1]. It should be noted that scenarios 1
and 4 are not independently executed, as they represent the
same attack. The outcomes of different scenarios are combined
by multiplying their respective results. For both schemes, we
use N = 500 traces for ZV-FA.Score, and di is doubled to
increase it after each call to ZV-FA.Score (see Figure 3). Note
that, we use slightly more traces compared to the convergence
of the baselines (see Figure 6). This is needed to have the score
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Fig. 5: Iterations of frombytes_mul_asm_acc_32_16 for two shares, implementation of Algorithm 3 for Kyber,
highlighted over mean trace.

(a) (b)

(c) (d)

Fig. 6: Key convergence of BaselineCPA, for s′[0] (a,c) s′[1]
(b,d) for Dilithium (a,b) and Kyber (c,d). Green lines denote
the correct hypothesis while the blue line denotes its additive
inverse

of s′[i] converged and become comparable with the scores of
predictions to other secret coefficients. Observe from Figure 6
that the SNR of even and odd coefficients are different in
Dilitihum. Therefore we scale the scores onto the same range
by multiplying the odd coefficients by λ0/λ1 ≈ 5/7.

Thanks to the inverse NTT validation and correction mech-
anism presented in Section VII-E, The ZVFA’s accuracy is
independent of the number of traces used for filtering Nf ,
which, however, determines its performance. Recall that, the
performance of the ZV-FA scheme strongly depends on the
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Fig. 7: Histograms of the required number of traces N for
the baselineCPA to succeed against s′[i] for Dilithium (a) and
Kyber (b)

effectiveness of the filtering stage. Figure 8 shows that, even
with moderate values of Nf , the correct value for the attacked
secret pair is discovered within the top-d for a significant por-
tion of the secret coefficients and practical values of d in terms
of performance. Particularly for Dilithium and Nf = 5K, 203
of 256 (%80) secret coefficients are retrieved in top-64, which
corresponds to (769− 64)/769 (%92) reduction in the search
space from the baseline to ZV-FA.Score. Similarly for Kyber
and the same value of Nf , 202 coefficients are in the top-256,
leading to (%92) reduction in the search space.

Experimental results indicate that the ZV filtering can
substantially decrease the attack response time up to three
orders of magnitude, depending on the number of filtering
traces Nf available in the system. The trade-off between Nf

and speed-up is illustrated in Figure 9 for both attacked algo-
rithms. Observe that the trade-off suggests the same pattern
for Dilithium and Kyber. The ZV-FA approaches to the ZV
attack as Nf increases and approaches to the baseline as
Nf decreases. Notably, even a small number of traces can
significantly improve baseline performance. For example with

Algorithm Method N Runtime(s′
[i]

) Runtime(s′)

Runtime(s1,s2)
Dilithium-3 BaselineCPA 220 22.35s 48m ≈8.74h
Dilithium-3 Baseline+CPA 220 11.18s 24m ≈4.37h

Runtime(s)
Kyber-768 BaselineCPA 150 7m 14.9h ≈44.8h
Kyber-768 Baseline+CPA 150 3.5m 7.45h ≈22.4h

Kyber BaselineCPA [21] 200 5m 10.7h

TABLE V: Performance of Baseline and Baseline+ Attacks
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Fig. 8: Histograms of the ranks of correct hypotheses for s′[i,j]
in Ki,j during filtering stage of ZV-FA, i.e. the correct secret
among results of ZV attacks, w.r.t. Nf for Dilithium (a) and
Kyber (b)

Nf = 5K the collection of which is feasible, the ZV-FA
provides a speed-up of 17× and 30× for Dilithium and Kyber,
respectively.

When more valid traces are available in the system, par-
ticularly with Nf = 18K, ZV-FA achieves a speed-up of
362× for Dilithium over the baselineCPA. We underline that,
the achieved speed-up can save approximately 523 minutes
(≈ 8.71 hours) considering the retrieval of whole s1 and s2.
Recall that k = 6 and l = 5 for Dilithium-3, which means s1
and s2 consist of 5 and 6 secret polynomials, respectively. As
for Kyber (recall that k = 3 for Kyber-768, which means s
has 3 elements.), our scheme is more favorable as q is roughly
2-bit larger compared to Dilithium-3. With Nf = 17K, ZV-
FA achieves 1915× speed-up over the baselineCPA. It saves
roughly 44.77 hours of computation time, considering all the
elements of Kyber’s secret vector of polynomials s.

On the other hand, ZV-FA reduces the number of traces
needed for the ZV attack while the run-time performance is
slightly improved. Observe that the ZV attack is successful
with Nf = 30K for Dilithium which brings up a speed-up of
313×. The same speed-up is achieved by ZV-FA with Nf ≈
14K. Similarly for Kyber, the ZV attack is successful with
Nf = 26K accelerating the baselineCPA by 1508× while ZV-
FA reaches the same speed-up with Nf ≈ 14.5K.

Recall also that another study [22] targets Dilithium with
a non-profiled attack. However, the target implementation
uses the original 23-bit coefficient modulus of Dilithium.
Therefore, our study is not comparable to [22] as the target
implementations are different. On the other hand, while their
method accelerates the baseline approach about 16 times, ours
provides a speedup of more than two orders of magnitude.
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Fig. 9: Speed-up of ZV-FA w.r.t. Nf for Dilithium (a) and
Kyber (b). The performance of Baseline+CPA and ZV attack are
marked.

Method i N Runtime(s′
[i]

) Runtime(s′
[i]

)·n/2 · k
≈Runtime(s)

Baseline+HOCPA 0 14K 78m ≈21d
Baseline+HOCPA 1 23K 129m ≈34d
Baseline+MMIA 0 7K 182m ≈48.5d

TABLE VI: Performance of Baseline and Baseline+ Attacks
against first-order protected Kyber-768

(a) (b)

Fig. 10: Key convergence for s′[0] Baseline+HOCPA (a)
Baseline+MMIA (b) for masked Kyber. Blue line denotes the
additive inverse of the correct hypothesis

Consequently, we expect their method would not be as effec-
tive as ours when an incomplete NTT method is used in the
implementation.

2) Second-order: To discuss the efficiency of our attack
in the protected case, we first present the performance of the
baseline schemes thereof in Table VI. Due to long running
times, we perform the evaluation only for s′[0] and s′[1]. The last
column approximates the required amount of time to break
whole secret key s, based on the statistics of the attacks to
s′[0] and s′[1]. For instance, retrieving s would roughly take 68
days if all coefficients were retrieved by 23K traces as s′[1].
Therefore the baseline scheme stands as an impractical option.
The speed-up of ZV-FA is computed based on the average
number of traces needed by BaselineHOCPA over the analyzed
coefficients, (23 + 14)/2 = 18.5K.

Observe from Table VI and Figure 10 that MMIA is superior
to HOCPA in terms of the number of traces while HOCPA
runs faster. Therefore, we use MMIA as the distinguisher in
the filtering stage, differently from the unprotected case. We
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Fig. 11: Histograms of the ranks of the correct hypotheses for
s′[i,j] in Ki,j during filtering stage of ZV-FA, w.r.t. Nf , against
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Fig. 12: Speed-up of ZV-FA w.r.t. Nf against Masked Kyber.

utilize MMIA with two bins and select the bins such that
it partitions the samples into equal parts, i.e. halves. As the
iterations of Algorithm 3 are easily distinguishable through
the mean trace as depicted by Figure 5, we use constant offset
for combining points over time samples. We would like to
note that we observe that the MMIA is quite efficient in this
setting. However, we leave a comprehensive study on MMIA
in comparison with HOCPA regarding arithmetic masking as
a future work. On the other hand, we use HOCPA in the
scoring stage, considering its superior run-time performance
and we employ N = 50K traces for scoring. Recall that,
significantly more traces are available during scoring as zero-
value conditions are not sought therein.

Figure 11 demonstrates the distribution of the ranking of
the correct hypothesis for s′[i,j], among the sorted results from
the filtering stage of ZV-FA, Ki,j . We observe that the filtering
stage is quite effective as in the unprotected case. Particularly
with Nf = 480K, for 213 out of 256 secret coefficients,
the correct hypothesis is in top−256, i.e. Ki,j

[:256], leading to
%92 reduction in search space. Figure 12 depicts the speed-
up values achieved over the BaselineHOCPA. We observe that
ZV-FA reaches 1015× speed-up over BaselineHOCPA, with
Nf = 1.6M . If those many traces are not available to
the attacker, ZV-FA is still more practical compared to the
BaselineHOCPA. For instance, a speed-up of 35× is observed
with a relatively less number of filtering traces, Nf = 640K.

IX. CONCLUSION AND FUTURE WORK

This paper presents a series of non-profiled side-channel
attacks against the incomplete NTT-based polynomial multipli-
cation (Algorithm 3), which is widely adopted in lattice-based
cryptography. We exercised our approach in the proposed

attacks against the signature algorithm Dilithium and the
KEM Kyber [16], [17]. Specifically, the attacks focus on
the NTT-based polynomial multiplications cs1 and sT u. The
target implementation for Dilithium operates with a carrier
prime q′ = 769, which restricts the NTT to be incomplete.
On the other hand, Kyber also needs to employ 7 layers
of incomplete NTT by algorithm definition, albeit with a
different prime q = 3329. The baseline and baseline+ schemes
are conventional methods that rely on brute-force methods
in the sets of cardinality q2 and q2/2, respectively, as two
coefficients of the incomplete NTT representation must be
predicted together.

To mitigate the search costs, we introduced the zero-value
attack, which reduces the size of the set of hypotheses to
q in the brute force attack by taking advantage of mul-
tiplication by 0 to eliminate one of the attacked pair of
coefficients from the equation. However, this approach requires
a significantly higher number of traces. Next, we presented
the zero-value filtering attack, which represents a trade-off
between the number of traces and attack run-time. With an
appropriate number of traces, this attack can achieve a speed-
up of two orders of magnitude over the baseline. Finally, we
proposed an efficient way of verification of predictions on
short polynomials, utilizing the inverse NTT transformation.
It makes the proposed scheme accurate independent of the
number of filtering traces. Experiments suggest that the ZV-
FA is favorable even with moderate parameters. Moreover, we
show that our attack is effective in the presence of masking
by applying it against a first-order protected implementation
of Kyber. Our approach is also generalizable to higher orders
as long as the attacker can combine leaky samples over time
that correspond to the different shares. During the study, we
found out that MMIA outperforms HOCPA in terms of the
number of traces and we leave this study as a future work.
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