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Abstract
Zero-Knowledge proof systems are widely used as building blocks of different protocols, e.g.,

such as those supporting blockchains. A core element in Zero-Knowledge proof systems is the un-
derlying PRF, usually modeled as a hash function that needs to be efficient over finite fields of prime
order. Such hash functions are part of a newly developed paradigm known as Arithmetization-
Oriented designs.

In this paper, we propose two new AO hash functions, XHash8 and XHash12 which are designed
based on improving the bottlenecks in RPO [ePrint 2022/1577]. Based on our experiments, XHash8
performs ≈ 2.75 times faster than RPO, and XHash12 performs ≈ 2 times faster than RPO, while
at the same time inheriting the security and robustness of the battle-tested Marvellous design
strategy.

1 Introduction

Zero-Knowledge (ZK) proof systems are advanced cryptographic protocols used to prove to a party (a
verifier) that some statement is true without revealing any private information about that statement.
Such a setting is used in many applications such as blockchains, or banking systems. A pioneer ZK
proof system is ZK-STARK [BSBHR18] which is a scalable proof system used in Layer 2 projects such
as Polygon and Starknet.

The design of Rescue was a major improvement in the domain of AO primitives by introducing non-
procedural computations. While Rescue is competitive inside the STARK, its security-first approach
leaves room for improvement when executed on more standard platforms such as a CPU or an FPGA.
Indeed, subsequent improvements were obtained in follow-up works such as Rescue-Prime [SAD20]
and more recently, RPO [AKM+22] where Ashur, Kindi, Meier, Szepieniec, & Threadbare published
an optimized variant for the specific case of 2-to-1 compression of elements from a finite field Fp with
p = 264 − 232 +1 for 128- and 160 bits of security. RPO offers the same performance as Rescue-Prime
when evaluated inside the STARK but is about 40% faster on a standard CPU. The lion’s share of
this improvement was achieved by finding a particularly efficient MDS matrix but without changing
the overall design or introducing new operations.

In this work, we take the next step in designing AO hash functions balancing between the CPU
and STARK running times. We start by analyzing the remaining bottlenecks in RPO and improve
the efficiency by introducing a new operation: multiplication over an extension field. Multiplication
over an extension field is quite common in the design of traditional symmetric-key algorithms such as
AES [DR02a]. In the context of AO ciphers this approach was carried over to Vision [AAB+20] and
Chaghri [AMT22] as well as the now defunct Starkad [GKK+19].

We adapt the same technique to prime order fields to achieve diffusion and algebraic complexity at
the same time at a reduced cost. Using multiplication over the extension field is an efficient way that
results in better diffusion of desired properties, such as high polynomial degree, and therefore improves
the efficiency of the design. We propose two candidates:
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1. XHash12: interleaving between Rescue rounds and a new type of round;

2. XHash8: a more aggressively optimized variant of XHash 12 which does not apply the expensive
x1/α S-box to all elements.

Related work. There are multiple hash functions designed for ZK-proof systems. Poseidon is an
efficient hash function that is widely used. The partial layers in the design of Poseidon were subject
to multiple attacks [KR21a, BCD+20] subsequently leading to updating the parameters. Recently,
in [ABM23a] the authors analyzed the security of Poseidon and showed that in some synthetic cases,
the number of rounds proposed for providing a specific security level is insufficient. In the same work,
the authors showed some flaws in the security proof of Poseidon. Recently, a new version of Poseidon,
called Poseidon2 [GKS23] was published to improve the efficiency of Poseidon but without correcting
the flaws found in the security arguments.

2 Background

2.1 Notation

In the rest of this work, p = 264−232+1 and Fp is a finite field of order p. Vectors and matrices are de-
noted by capital Latin script. For example, the vector S of size n is denoted by S = (S[0], . . . , S[n− 1])
and the elements of a matrix M with dimensions n×m are denoted by M [i][j] where 0 ≤ i ≤ n, 0 ≤
j ≤ m. ⊞ is used to denote addition over the finite field Fp.

2.2 Rescue-Prime Optimized

Rescue-Prime Optimized (RPO) hash is a sponge function instantiated with a permutation over F12
p .

The permutation consists of seven rounds and each round can be described in terms of four components:

• an S-box π0 : x 7→ x7;

• an S-box π1 : x 7→ x
1
7 ;

• an MDS matrix M ; and

• constant addition ⊞c.

With respect to the state vector s ∈ F12
p these components allow to define two types of steps:

• an (F )-step works as follows: first, the S-box π0 is applied to each of the state elements to
provide non-linearity. Then, the state vector is multiplied with an MDS matrix to spread local
properties over the entire state. Finally, a different round constant is added to each element to
avoid self-symmetry between different rounds.

• a (B)-step is almost the same, only that π1 is applied. That is, first the S-box π1 is applied to
each of the state elements to provide non-linearity. Then, the state vector is multiplied with an
MDS matrix to spread local properties over the entire state. Finally, a different round constant
is added to each element to avoid self-symmetry between different rounds.

With this notation, a typical round for a Rescue-like function is (F )(B). Concretely, RPO can be
written as

(F )(B)(F )(B)(F )(B)(F )(B)(F )(B)(F )(B)(F )(B) ,

except that the last M and constant injection is moved to the beginning for reasons explained
in [AAB+20, Sec. 4.3].
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3 XHash8 and XHash12 — Design Rationale

The two main operations used in the Marvellous design strategy are S-boxes and linear layers. S-boxes
are non-linear maps providing confusion. The linear layer, usually an MDS matrix multiplication,
provides diffusion. Together, S-boxes, MDS multiplication, and the key injection result in a complicated
polynomial representation with a high degree and high density. To reduce the cost of achieving this kind
of description, we propose to use power maps over an extension field. Multiplication in an extension
field simultaneously provides diffusion by mixing the base field elements as well as confusion by doing
so in a non-linear way.

A natural question that arises is whether the efficiency can be improved any further. Noting that
the costs of π0 and constant injection are almost negligible and M has been aggressively optimized, the
remaining bottleneck has been observed to be the π1 S-box. On a CPU, each call to π1 requires about
70 multiplications, there are 12 calls in each (B)-step, and seven (B) steps totaling in 70 · 12 · 7 = 5880
multiplications which is by far the largest cost driver in the entire permutation.

Before attempting to reduce this cost, one must determine what purpose the (B)-step serves.
Citing [AAB+20], the two S-boxes (π0, π1) are motivated as follows:

The difference between π0 and π1 is in their degree. They should be chosen such that π0

has a high degree when evaluated forward (i.e., in the direction of the encryption) and a
low degree when evaluated backward (i.e., in the direction of the decryption). The other
S-box, namely π1, is chosen with the opposite goal (i.e., to have a low degree in the forward
direction and a high degree in the backward direction). This choice serves to achieve three
objectives: (i) no matter which direction an adversary is trying to attack, the degree is
guaranteed to be high; (ii) it results in the same cost for the encryption and decryption
functions, and (iii) owing to non-procedural computation, the low-degree representation of
each S-box can be evaluated efficiently.

We remind the reader that the stated goal of [AAB+20] was to design a general-purpose primitive,
usable not only for hashing and not only in STARKs. Goal (ii) is irrelevant to our use case since
we expect honest users only to compute the primitive “forward”, never requiring efficient “backward”
evaluation. Thus we can abandon Goal (ii) altogether.

For similar reasons, goal (i) can also be relaxed. Avoiding attacks still requires that the degree in
either direction be high—but it no longer needs to be the same in both directions. First, observe that
the high degree in the “backward” direction is ensured by the (F)-rounds, which we are not looking
to optimize, therefore the degree remains sufficiently high and the security argument does not need to
be re-evaluated.

We now conjecture the possibility that the (B)-step may offer “too much security” for our purposes.
Concretely, [AAB+20] observes that the (B)-step achieves maximal degree already after two rounds.
Given that the minimal number of rounds is set to ten in Rescue, eight in Rescue-Prime, and seven
in RPO, supposing a (B’)-step that can achieve, hypothetically speaking, a maximal degree in four
rounds; the overall performance can be improved without affecting the security. Getting ahead of
ourselves, this is exactly what we will be doing.

Revisiting the design rationale for general Marvellous designs we see that in the context of a hash
function operating over F 12

p with p prime, the interpolation attack would be the main concern in
case the polynomial degree is not sufficiently high. Considering in detail the argument against the
interpolation attack we see that resistance is achieved when the univariate polynomial describing the
cipher is:

1. dense; and

2. of maximal degree.

Intuitively, the composition of an MDS matrix (which ensures optimal diffusion) with a power map
ensures density due to the Multinomial Theorem.

We are left with the goal of ensuring a maximal degree. Considering that

x
1
7 = x(2p−1)/7 = x10540996611094048183

achieves an almost maximal degree already in a single call to π1 we can informally argue that this is
an “overkill” and that an S-box resulting in a lower degree per step may still be sufficient to resist
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the interpolation attack as long as it reaches a maximal degree within a reasonable number of rounds.
Intuitively, we are looking for a power map β such that 7 < β < p−1

7 . However, by definition, such an
S-box will be inefficient to compute inside the STARK both directly and folded.

Seeing that a better power map is not readily available, we can instead apply the same power map,
but to fewer elements. However, with this approach, only the elements to which the power map was
applied are “protected”. Generally speaking, the operation we are looking for should combine the
high-degree element with the other elements in a non-linear way. This, if done right, would ensure
that all polynomials are both dense and of high degree.

4 Specification

We complement the S-boxes (π0, π1) described above with a third type of S-box:

• π2 is similar to π0 in that it takes a field element and raises it to the 7th power. However this
time, the element is in Fp3 rather than Fp.

Using the new S-box π2, we define XHash8 and XHash12. XHash12 uses a full layer of π1 S-boxes that
are applied to all elements of the state. On the other hand, XHash8 aims to improve the efficiency
and uses a partial layer of π1 S-boxes that are applied to 8 out of 12 elements in the state.

4.1 XHash12: With Full x
1
7 Layer

XHash12 uses a full layer of π1 S-boxes, and works as follows:

• An initial (I)-step that consists of constant addition and MDS operation.

• An standard (B)-step where π1 applies to all elements of the state followed by constant injection
without MDS operation.

• A (P3)-step starts by restructuring the 12-element state as a 4-element vector in a cubic extension
field, i.e.,

(s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11) 7→ (S0,1,2, S3,4,5, S6,7,8, S9,10,11)

where each si,j,k ∈ Fp3 followed by an application of π2 to each of these extension field elements,
such that

(S0,1,2, S3,4,5, S6,7,8, S9,10,11) 7→ (S7
0,1,2, S

7
3,4,5, S

7
6,7,8, S

7
9,10,11).

At this point, the state is decomposed back into a 12-element vector in Fp, an MDS matrix is
applied, and the step is concluded with constant injection.

The state consists of 12 field elements in Fp where p = 264 − 232 + 1. The permutation consists of
six steps (three rounds) as follows:

(I)(F )(B)(P3)(F )(B)(P3)(F )(B)(P3),

as depicted in Figure 1.

4.2 XHash8: With Partial x
1
7 Layer

XHash8 is a more aggressively optimized version XHash12. The difference is that it employs partial
layers of π1 S-boxes and works as follows:

• An initial (I)-step that consists of constant addition and MDS operation.

• A (B’)-step is an adaption of the standard (B)-step where π1 is applied to 8 out of the 12 state
elements, followed by constant injection, but without applying an MDS matrix. Concretely,

(s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11) 7→ (s
1
7
0 , s1, s

1
7
2 , s

1
7
3 , s4, s

1
7
5 , s

1
7
6 , s7, s

1
7
8 , s

1
7
9 , s10, s

1
7
11) ,

and this is followed by the constant injection operation;
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Figure 1: One round of the XHash12 permutation

• A (P3)-step starts by restructuring the 12-element state as a 4-element vector in a cubic extension
field, i.e.,

(s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11) 7→ (S0,1,2, S3,4,5, S6,7,8, S9,10,11)

where each si,j,k ∈ Fp3 followed by an application of π2 to each of these extension field elements,
such that

(S0,1,2, S3,4,5, S6,7,8, S9,10,11) 7→ (S7
0,1,2, S

7
3,4,5, S

7
6,7,8, S

7
9,10,11).

At this point, the state is decomposed back into a 12-element vector in Fp, an MDS matrix is
applied, and the step is concluded with constant injection.

We are now ready to introduce the full specification of our new permutation. As before, the state
consists of 12 field elements in Fp where p = 264−232+1. The permutation consists of six steps (three
rounds) as follows:

(I)(F )(B′)(P3)(F )(B′)(P3)(F )(B′)(P3),

as depicted in Figure 2.
A hash function offering 128-bit security is obtained by using this permutation in a sponge con-

struction with the elements (s0, s1, s2, s3, s4, s5, s6, s7) as the outer part, and (s8, s9, s10, s11) as the
inner part. The round constants are randomly selected and the MDS is the same as the one used
in RPO. Domain separation is handled in the same way as RPO by designating certain values of a
capacity element to encode the domain.

5 Security Rationale

We analyze the security of both XHash8 and XHash12 against standard attacks.

5.1 Differential cryptanalysis

We analyze the resistance of XHash8 against differential cryptanalysis. The resistance of XHash8
against differential cryptanalysis attacks also ensures the resistance of XHash12 since any trail of

5



M
D

S

M
D

S

output

Folding Point

STARK round (even) STARK round (odd)

M
D

S

Final round

Figure 2: One round of the XHash8 permutation

XHash12 is also a trail of XHash8 with equal or lower probability. Analyzing the resistance of XHash8
against differential cryptanalysis follows the standard argument: we find a lower bound on the number
of active S-box and an upper bound on the probability of the best differential transition; the quantity
obtained from raising the latter to the power of the former upper bounds the probability of the best
differential characteristic.

The aspects of our new function that require special care are:

1. The (B’) step uses a partial S-box layer;

2. The (B’) and (P3) steps are not separated by an MDS matrix;

3. The (P3) step mixes base field elements in a non-linear way.

As a result of these particularities, the Two-Round Propagation Theorem originally stated by Damean
and Rijmen in [DR02b, Thm. 9.3.1] for the case of alternating block ciphers cannot be applied directly
to XHash8.

To address these observations we provide a step-by-step detailed analysis. First, we observe that
in the first (I) step the adversary controls only the outer part of the sponge and therefore they can
only create a difference in 1 ≤ d(I) ≤ r = 8 field elements. Consequently, after the application of the
MDS matrix in the (I)-step, 5 ≤ d(F ) ≤ 12 S-boxes are active in the (F)-step. For the (B’)-step, the
adversary can activate 0 ≤ d(B′) ≤ 8 S-boxes, followed by 1 ≤ d(P3) ≤ 4 S-boxes in the (P3)-step.1 In
total, over a triplet of consecutive (F)(B’)(P3) steps, at least nine S-boxes are activated from (π0, π1),
and at least one S-box of type π2.

In theorem 5.1 we show that S-boxes of type π2 are (γ − 1)-uniform which in our setting means
that their differential transition probability is upper bounded by 2−186. Completing the argument, we
see that the probability of the best differential transition over a triplet of consecutive (F)(B’)(P3) is
upper bounded by 29·(−60) ·21·(−186) = 2−540−186 = 2−726; which is already enough to resist differential
attacks at the 128-bit security level.

Theorem 5.1. Let Fq be a finite field of order q = pn and characteristic p. Let F (x) = xγ be a power
mapp defined over Fq, then F is differentially (γ − 1)-uniform.

1We note that the S-boxes in the (P3)-step are of different type than those in the (F)- and (B)-steps).
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Proof. Given α, β ∈ Fq, α ̸= 0, the cardinality of the set D = {x ∈ Fq|F (x + α) − F (x) = β} can be
computed as the number of roots for the following polynomial:

(x+ α)γ − xγ =

γ−1∑
i=0

(
γ

i

)
αγ−ixi, (1)

which is a polynomial of degree γ− 1. Using the fundamental theorem of algebra, the number of roots
of Equation (1) is upper-bounded by γ − 1. Therefore, |D|≤ γ − 1.

5.2 Algebraic Attacks

Polynomial Degree We again analyze only the polynomial degree of XHash8 and use it also as a
lower bound for the polynomial degree of XHash12. Similar to other algorithms from the Marvellous
family, the high polynomial degree is obtained by applying a large power map to the elements of the
state. However, when we use XHash8, π1 is applied only to part of the state. Supposedly, even if we
ignore the (P3) round, the next application of M will distribute the high-degree terms to the entire
state. However, this is hard to argue formally without reverting to complicated case analysis and
furthermore, it is not clear that a linear transformation is enough to spread algebraic properties in a
sufficient way.2 Thus, we do not abstract the (P3)-step and instead analyze its diffusion properties.

Let (x0, x1, x2) ∈ F 3
p and x0,1,2 ∈ Fp3 . For brevity, we consider only a single squaring operation:

Consider the three polynomials describing the base field elements after a single squaring operation:

x2
0,1,2 = (c0x

2
0 + c1x1 · x2,

x1 · (c3x0 + c4x2) + c5x
2
2,

c6x0 · x2 + c7x
2
1 + c8x

2
2),

where ci ∈ Fp for all 0 ≤ i ≤ 8. Taking into account that x0 = π1(y0) = y
1/7
0 , x2 = π1(y2) = y

1/7
2 and

setting x1 = y1 we get

x2
0,1,2 = (y

2/7
0 + y1 · y1/72 ,

y1 · (y1/70 + y
1/7
2 ) + y

2/7
2 ,

y
1/7
0 · y1/72 + y21 + y

2/7
2 ),

and conclude that every possible polynomial description of the initial state is of a high degree even
before applying the MDS matrix. While this observation is already enough to argue resistance against
interpolation attacks in Appendix A we work out the complete case for x7 in Fp3 .

Density Several works have recently noticed that the solving degree of a polynomial system describ-
ing an AO primitive and consisting of π0 S-boxes alone is smaller than the degree of regularity. In
particular, Sauer observed in [Sau21a] that for Rescue-like functions (i.e., functions mixing π0 and π1

S-boxes), the solving degree grows at the same rate as the Macaulay bound; whereas this is not the
case for Poseidon-like ciphers. This observation was later independently confirmed by Ashur, Kindi,
Meier, Szepieniec, & Threadbare in the design of RPO and more recently quantified and leveraged
into an attack by Ashur, Buschman, and Mahzoun in [ABM23b].

To explain this observation Sauer introduces a new metric, “involvement”, as a proxy for the
difficulty of finding a Gröbner basis [Sau21b]. Two notions of involvement are suggested based on
vectors of origin; one based on the normalized average of polynomials from the original system required
to describe each element in the Gröbner basis and the other on the number of non-zero coefficients in
the matrix describing the vectors of origin. Sauer presents heat maps suggesting that the latter is a
reasonable, even if noisy, proxy for the difficulty of finding a Gröbner basis.

Here, we suggest that the notion of density is in fact sufficient to capture the quality we are
interested in when designing a symmetric-key primitive. As an instructive example, consider the

2See [KR21b] for the binary case and [ABM23b] for the prime case.
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polynomial modeling of a single Rescue round consisting of consecutive (F)(B) steps:(
m−1∑
k=0

M [j, k]S2i−1[k]
α

)
−

(
m−1∑
k=0

M−1[j, k](S2i+1[k]−K2i+1[k])

)α

+K2i[j] = 0 . (2)

Note that in the second term, the power map α is applied to the entire sum, creating a complicated
expression due to the multinomial theorem. For α = 7 and m = 12 as in the case of RPO, each such
polynomial consists of 12+

(
18
11

)
monomials in 24 variables. Comparably, the modeling of an (F)-round(

m−1∑
k=0

M [j, k]Si−1[k]
α

)
+K2i[j]− Si[j] = 0 (3)

consists of 12+1 = 13 monomials in 12+1 = 13 variables. It is straightforward to see that polynomials
of type (2) are denser than polynomials of type (3) and since clearly density implies involvement
(but not necessarily the other way around) we conjecture density to be the explanation to Sauer’s
observations.

XHash8 achieves density differently. Considering an even STARK round consisting of one pair of
(F)(B’) steps. This round gives rise to two types of polynomials:(

m−1∑
k=0

M [j, k]Si−1[k]
α

)
+K2i[j]− S7

i [j] = 0 j ̸≡ 1 (mod 3)(
m−1∑
k=0

M [j, k]Si−1[k]
α

)
+K2i[j]− Si[j] = 0 j ≡ 1 (mod 3) ,

neither of which is dense. Density arises from the polynomial modeling of (P3). The polynomial
description of (P3) can be found in Appendix A showing that each base element can be modeled as a
3-variate polynomial of degree seven with 31–34 monomials. Following the MDS, each state element
is modeled by a polynomial consisting of 36 · 4 = 144 monomials in 13 variables.

Resistance to Gröbner basis attacks is a delicate matter and no good method to evaluate it has been
established as of yet. The state-of-the-art approach is the one described in [AAB+20] where the behav-
ior of toy examples is compared to the expected behavior of a regular system and then extrapolated
to larger cases. We performed similar experiments and the results are reported in Appendix B.

6 Performance

A performance comparison of XHash8 and XHash12 with RPO is described in Table 1. The benchmarks
are showing the result of 2-to-1 hashing for random values over Fp with p = 264 − 232 + 1. The code
was written using Rust 1.68 and executed on an Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz.

Table 1: Cost of hashing random values using RPO, XHash8, and XHash12 over a CPU
Hash Function Time(µs)

RPO 8.1474
XHash8 2.9547
XHash12 4.0906
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A Polynomial representation of π2

Let (x0, x1, x2) ∈ F 3
p and (y0, y1, y2) ∈ F 3

p such that

π2(x0, x1, x2) = (y0, y1, y2);

then

y0 =

x7
0 + 35x4

0x
3
1 + 21x2

0x
5
1 + 7x0x

6
1 + x7

1 + 42x5
0x1x2 + 140x3

0x
3
1x2 + 105x2

0x
4
1x2+

42x0x
5
1x2 + 14x6

1x2 + 105x4
0x1x

2
2 + 210x3

0x
2
1x

2
2 + 210x2

0x
3
1x

2
2 + 210x0x

4
1x

2
2+

42x5
1x

2
2 + 35x4

0x
3
2 + 140x3

0x1x
3
2 + 420x2

0x
2
1x

3
2 + 280x0x

3
1x

3
2 + 105x4

1x
3
2+

70x3
0x

4
2 + 210x2

0x1x
4
2 + 315x0x

2
1x

4
2 + 140x3

1x
4
2 + 63x2

0x
5
2 + 168x0x1x

5
2 + 105x2

1x
5
2+

35x0x
6
2 + 49x1x

6
2 + 9x7

2,

y1 =

7x6
0x1 + 35x4

0x
3
1 + 35x3

0x
4
1 + 21x2

0x
5
1 + 14x0x

6
1 + 2x7

1 + 42x5
0x1x2 + 105x4

0x
2
1x2+

140x3
0x

3
1x2 + 210x2

0x
4
1x2 + 84x0x

5
1x2 + 21x6

1x2 + 21x5
0x

2
2 + 105x4

0x1x
2
2+

420x3
0x

2
1x

2
2 + 420x2

0x
3
1x

2
2 + 315x0x

4
1x

2
2 + 84x5

1x
2
2 + 70x4

0x
3
2 + 280x3

0x1x
3
2+

630x2
0x

2
1x

3
2 + 560x0x

3
1x

3
2 + 175x4

1x
3
2 + 105x3

0x
4
2 + 420x2

0x1x
4
2 + 525x0x

2
1x

4
2+

245x3
1x

4
2 + 105x2

0x
5
2 + 294x0x1x

5
2 + 189x2

1x
5
2 + 63x0x

6
2 + 84x1x

6
2 + 16x7

2,

y2 =

21x5
0x

2
1 + 35x3

0x
4
1 + 21x2

0x
5
1 + 7x0x

6
1 + 2x7

1 + 7x6
0x2 + 105x4

0x
2
1x2 + 140x3

0x
3
1x2+

105x2
0x

4
1x2 + 84x0x

5
1x2 + 14x6

1x2 + 21x5
0x

2
2 + 105x4

0x1x
2
2 + 210x3

0x
2
1x

2
2+

420x2
0x

3
1x

2
2 + 210x0x

4
1x

2
2 + 63x5

1x
2
2 + 35x4

0x
3
2 + 280x3

0x1x
3
2 + 420x2

0x
2
1x

3
2+

420x0x
3
1x

3
2 + 140x4

1x
3
2 + 70x3

0x
4
2 + 315x2

0x1x
4
2 + 420x0x

2
1x

4
2 + 175x3

1x
4
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84x2
0x
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2 + 210x0x1x
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2 + 147x2

1x
5
2 + 49x0x

6
2 + 63x1x

6
2 + 12x7

2.

Similarly

π2(x
(2p−1)/7
0 , x1, x

(2p−1)/7
2 ) = (y0, y1, y2)

gives

y0 = x
(2p−1)/7
0 + 35x

(8p−4)/7
0 x3

1 + 21x
(4p−2)/7
0 x5

1 + 7x
(2p−1)/7
0 x6

1 + x7
1 + 42x

(10p−5)/7
0 x1x

(2p−1)/7
2

+ 140x
(6p−3)/7
0 x3

1x
(2p−1)/7
2 + 105x

(4p−2)/7
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1x
(2p−1)/7
2 + 42x
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2
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(8p−4)/7
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(6p−3)/7
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(4p−2)/7
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(4p−2)/7
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1x
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(2p−1)/7
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(2p−1)/7
2 + 84x

(2p−1)/7
0 x5

1x
(2p−1)/7
2 + 21x6

1x
(2p−1)/7
2 + 21x

(10p−5)/7
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(4p−2)/7
2

+ 105x
(8p−4)/7
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(4p−2)/7
2 + 420x

(6p−3)/7
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1x
(4p−2)/7
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(4p−2)/7
0 x3

1x
(4p−2)/7
2

+ 315x
(2p−1)/7
0 x4

1x
(4p−2)/7
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y2 = 21x
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(6p−3)/7
0 x1x

(6p−3)/7
2 + 420x

(4p−2)/7
0 x2

1x
(6p−3)/7
2
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(2p−1)/7
0 x3

1x
(6p−3)/7
2 + 140x4

1x
(6p−3)/7
2 + 70x

(6p−3)/7
0 x

(8p−4)/7
2 + 315x

(4p−2)/7
0 x1x

(8p−4)/7
2

+ 420x
(2p−1)/7
0 x2

1x
(8p−4)/7
2 + 175x3

1x
(8p−4)/7
2 + 84x

(4p−2)/7
0 x

(10p−5)/7
2 + 210x

(2p−1)/7
0 x1x
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+ 147x2
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0 x
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2 + 63x1x
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2 + 12x

(2p−1)
2 .

B Gröbner Basis Resistance

To compute the Gröbner basis, each round is divided into two steps: The first step is called the basic
step and contains π0, linear layer, constant addition, and π1. The second step is called the extension
step which contains constant addition, π2, linear layer, and constant addition. In our experiments, we
used a toy instance with state size m = 3, rate r = 1, and capacity c = 2. We denote the number
of steps in the polynomial system with N and the number of rounds in the polynomial system with
R = 2N .

Polynomial description. The input is denoted with X0 = (X0[1], . . . , X0[r], 0, . . . , 0) , the state
after the step i with

Xi = (Xi[1], . . . , Xi[m]) ,

and the output with
Y = (H[1], . . . ,H[r], Y [r + 1], . . . , Y [m])

where H[i] is the ith output of the hash function. The MDS matrix is denoted by M and constants
used at step i are denoted by

Ki = (Ki[1], . . . ,Ki[m]) ,K ′
i = (K ′

i[1], . . . ,K
′
i[m]) .

In the case of the XHash12, the ith basic step is modeled as:

m−1∑
k=0

M [j, k] ·Xi[k]
α −Xi+1[k]

α −Ki[k] = 0.

In the case of the XHash8, the ith basic step is modeled as:

m−1∑
k=0

M [j, k] ·Xi[k]
α −Xi+1[k]

α −Ki[k] = 0 k ̸≡ 1 (mod 3)

m−1∑
k=0

M [j, k] ·Xi[k]
α −Xi+1[k]−Ki[j] = 0 k ≡ 1 (mod 3).

The ith extended step is modeled as:

m−1∑
k=0

M−1[j, k] · (Xi+1[k] +K ′
i[k])− π2,β = 0 β = k (mod 3).

The results of the Gröbner basis algorithm for XHash12 with m = 3, r = 1, p = 65519 are described
in Table 2.

Introducing partial layers in XHash8 results, as expected, in a smaller solving degree; interestingly,
the actual running time also increases. These experiments on toy parameters are described in Table 3.
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Table 2: Experimental result of computing the Gröbner basis in the degrevlex order for XHash12,
R N V solving degree Macaulay bound complexity time memory
1 1 3 7 19 13.81 0.0 0.15
1 2 6 12 37 28.36 72.38 1.13
2 3 9 21 55 47.54 26338 12.3

Table 3: Experimental result of computing the Gröbner basis in the degrevlex order for XHash8.
R N V solving degree Macaulay bound complexity time memory
1 1 3 8 19 14.73 0.0 0.15
1 2 6 12 37 28.36 61.33 1.12
2 3 9 17 55 43.15 74593 31.58

The total complexity of computing the Gröbner basis in degrevlex order for the hash function with
N steps, state size m, and rate r is:

Cgb ≥
(
V + dsol

dso

)2

, (4)

Cgb ≈ 2423.59.

By taking a very conservative approximation and assuming the solving degree remains 17 after the
third step, the complexity of both instances is lower bounded by

Cgb ≥ 2136.87.

C RPX Standard Specification

The XHash12 function defined in Section 4.1 has been implemented in optimized form by Polygon
Miden. We provide here a canonical specification of the function implemented in [Mid23] which we
refer to as RPX.

MDS Matrix. RPX uses the same MDS matrix found by the RPO project. That is, a circulant
matrix whose first row is

[7, 23, 8, 26, 13, 10, 9, 7, 6, 22, 21, 8].

Round Constants. To ensure “nothing-up-my-sleeve” round constants we reuse the ones drived for
RPO. Recall that the RPO constants were derived by employing the following procedure:

• Start from the string RPO(%i,%i,%i,%i);

• Populate the wildcards “%i” with the ASCII decimal expansion of the integer parameters p,m, c, λ,
in that order;

• Use SHAKE256 to expand this ASCII string into 9 · 2 ·N ·m pseudorandom bytes;

• For every chunk of 9 bytes, compute the matching integer by interpreting the byte array as the
integer’s base-256 expansion with the least significant digit first;

• Reduce the obtained integer modulo p;

• Collect all such integers. The list of obtained field elements constitutes the list of round constants.

Primitive. The permutation used in RPX is depicted in Figure 3. It is different from the one
depicted in Figure 1 in that the injection of the first set of round constants in even rounds is swapped
with the MDS matrix. All security arguments for XHash12 carry over to RPX as the operations are
commutative and therefore, injecting C before applying the MDS or M(C) after applying it has the
same effect.
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Figure 3: One round of the XHash8 permutation

Hashing Mode. To hash a sequence of field elements in p = 264 − 232 +1 we instantiate the sponge
construction with the RPX permutation. The state consists of 12 field elements, of which eight are
designated as rate, and the remaining four are designated as capacity. Absorbing is done in overwrite
mode (i.e., the topmost eight elements of the state are overwritten by new values every time the
permutation is invoked) and the squeezing phase outputs eight field elements, of which the first four
are returned as output and the rest are discarded.

Padding. For hashing field elements we use the zero-padding scheme; that is, if the length of the last
block is smaller than r = 8 field elements, a sufficient amount of [0] elements are appended to complete
it. We note that this padding rule alone is not sponge compliant. To avoid bijectivity problems we
partition the input space into eight input domains: all messages whose last block is of length 8 are
designated to the 0-domain; all messages whose last block is of length 7 are designated to the 1-domain,
etc.

Domain Separation. We enforce domain separation by fixing the topmost inner part element (i.e.,
the ninth state element) to the domain identifier. Designating one capacity element to encode the do-
main identifier effectively ensures that two messages whose last blocks differ in length will be processed
by different permutations. This approach has no effect on the probability of finding collisions which
remains 2−c/2. Indeed the function’s preimage resistance is reduced from 2c to 2c−|d|; however, noting
that c = 2 ·κ = 256 this does form a bottleneck and the security is still compatible with bounds found
in the literature (e.g., [BDPVA08]); i.e., at least 128-bit security.

D Test Vectors

The following test vectors are generated using the reference implementation [Mid23].

[0 0 0 0 0 0 0 0] ->

[15293807115397414812 15290017247514670316 10548590320248089637 9459855167724924903]

[0 1 0 0 0 0 0 0] ->

[12186327779210739392 12437198001472812457 17431583359007807548 5889070798901825636]
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[0 1 2 0 0 0 0 0] ->

[109841543348983755 17705465395673162594 5228101643025463311 7748133072458912307]

[0 1 2 3 0 0 0 0] ->

[12729520246190904536 6715713369175329478 13802021724186903884 16589532398625893763]

[0 1 2 3 4 0 0 0] ->

[3191491209909564984 4336372174992679659 3812090377223784023 16173224027531585338]

[0 1 2 3 4 5 0 0] ->

[6461289079179018348 10449674711255412289 5054891760098348434 10721040246835958771]

[0 1 2 3 4 5 6 0] ->

[16191592956183275197 746532334447080722 15358793909583453268 9513601171909830185]

[0 1 2 3 4 5 6 7] ->

[12373829276206882697 10138650388065685463 15520480835694974951 2510219987660336228]

[0 1 2 3 4 5 6 7 8 0 0 0 0 0 0 0] ->

[14898769958092295192 14076282783168040015 8476014900264177995 17336863755113979084]

[0 1 2 3 4 5 6 7 8 9 0 0 0 0 0 0] ->

[17237194195242105781 6087397938124003113 1345882193144969073 14783461183116020251]

[0 1 2 3 4 5 6 7 8 9 10 0 0 0 0 0] ->

[ 4575950952442466526 10298089839422454303 14861479923204285799 11880231458488351907]

[0 1 2 3 4 5 6 7 8 9 10 11 0 0 0 0] ->

[ 9169920211008402116 12659190867532264163 13563500138844524911 12617975739035351823]

[0 1 2 3 4 5 6 7 8 9 10 11 12 0 0 0] ->

[17454638445264588716 8802637143045803178 13982112504343449988 17442048147529824646]

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 0] ->

[11373557723159380221 17180935309137919099 3242047510064238430 12672923945735822946]

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0] ->

[6214573915685641755 17951587517596484461 11692428935571224516 6628032869761165814]

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15] ->

[586102497461023489 11384107678327501002 10422108750253329853 7699259539482247907]

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 0 0 0 0 0 0] ->

[16846145822493683059 6007639340046859794 13049520400071115122 5060263239960030371]

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0 0 0 0 0 0] ->

[6509160877964314093 12642155348170163940 7507001761825557252 4565405860198708542]

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 0 0 0 0 0] ->

[17905682982576162590 5720278714894771907 9596600499219832172 5974292660959196]
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