
A Side-Channel Attack on a Bitsliced
Higher-Order Masked CRYSTALS-Kyber

Implementation

Ruize Wang, Martin Brisfors and Elena Dubrova

KTH Royal Institute of Technology, Stockholm, Sweden
{ruize,brisfors,dubrova}@kth.se

Abstract. In response to side-channel attacks on masked implementa-
tions of post-quantum cryptographic algorithms, a new bitsliced higher-
order masked implementation of CRYSTALS-Kyber has been presented
at CHES’2022. The bitsliced implementations are typically more dif-
ficult to break by side-channel analysis because they execute a single
instruction across multiple bits in parallel. However, in this paper, we
reveal new vulnerabilities in the masked Boolean to arithmetic conver-
sion procedure of this implementation that make the shared and secret
key recovery possible. We also present a new chosen ciphertext construc-
tion method which maximizes secret key recovery probability for a given
message bit recovery probability. We demonstrate practical shared and
secret key recovery attacks on the first-, second- and third-order masked
implementations of Kyber-768 in ARM Cortex-M4 using profiled deep
learning-based power analysis.

Keywords: Public-key cryptography · Post-quantum cryptography ·
Kyber · LWE/LWR-based KEM · Side-channel attack

1 Introduction

CRYSTALS-Kyber is a key encapsulation mechanism (KEM) which is indis-
tinguishable under an adaptive chosen-ciphertext attack (IND-CCA2-secure) in
the classical and quantum random oracle models [3]. The security of Kyber re-
lies on the hardness of the module learning with errors (M-LWE) problem that
comes from inserting unknown noise into otherwise linear equations. Kyber has
recently been selected for standardization by the National Institute of Standards
and Technology (NIST) [24] and included in the National Security Agency (NSA)
suite of cryptographic algorithms recommended for national security systems [1].

However, the theoretical IND-CCA2 security of Kyber KEM can potentially
be bypassed by a side-channel attack of its implementation executed on a phys-
ical device. Side-channel attacks on software [5, 6, 29, 33, 34, 36, 38, 39, 42, 43]
and hardware [21, 31] implementations of Kyber have been demonstrated. The
discovered vulnerabilities promoted stronger mitigation techniques against side-
channel attacks, e.g. [4, 20, 35] and helped strengthen Kyber implementations

2 R. Wang et al.

that were released later [7, 11]. In these implementations, the known vulnera-
bilities are typically patched. Indeed, the experiments presented in this paper
show that side-channel information extracted from the higher-order masked im-
plementation of Kyber by Bronchain et al. in [9] is more difficult to exploit using
previous methods.
Contributions: We discovered new vulnerabilities in a higher-order masked
implementation of Kyber [9] that result in an effective message/shared key re-
covery attack. These vulnerabilities are located in the masked Boolean to arith-
metic conversion procedure which is carried out during the re-encryption step of
decapsulation.

We also present a new chosen ciphertext construction method which maxi-
mizes secret key recovery probability for a given message bit recovery probability.
This method uses 3 × k chosen ciphertexts to extract the secret key of Kyber
from a masked implementation, where k is the module rank. While this number
is the same as in the chosen ciphertext construction method of Ravi et al. [29],
the presented way of mapping message bits into the secret key coefficients can
raise the likelihood of successfully recovering the full secret key by up to 39%
compared to the worst case.

We demonstrate practical shared and secret key recovery attack on ω-order
masked implementations of Kyber-768 in ARM Cortex-M4 using profiled deep
learning-based power analysis, for ω ∈ {1, 2, 3}. The training of neural networks
is performed on traces captured from five profiling devices, different from the
device under attack (DUA). The message recovery is carried out using the single-
step method of Ngo et al. [25] which extracts the message without extracting
each share explicitly. For ω = 3, we use the recursive learning method of [13];
otherwise neural networks do not learn. Our experimental results show that, for
the first-order masked implementation run on a DUA, we can recover the shared
key from three traces with a close to 1 probability, and the secret key from 18
traces with 0.94 probability.

The rest of this paper is organized as follows. Section 2 reviews previous
work on side-channel analysis of Kyber implementations. Section 3 gives a back-
ground on Kyber algorithm, shared key establishment protocol and masking.
Section 4 defines the adversary model. Section 5 describes the profiling and at-
tack stages. Section 6 presents the equipment used in the experiments. Section 7
analyses side-channel leakage of three different implementations of Kyber and
describes new vulnerabilities in the implementation of [9]. Section 8 presents
neural network training strategy. Section 9 introduces the new chosen cipher-
text construction attack method. Section 10 summarizes experimental results.
Section 11 discusses possible countermeasures. Section 12 concludes the paper.

2 Previous work

Since the beginning of the NIST post-quantum cryptography standardization
process in 2016, many different side-channel attacks on software [6,34,36,38] and
hardware [21,31] implementations of Kyber have been presented. In response to

2. PREVIOUS WORK 3

these attacks, protected implementations have been developed such as [7, 9, 14,
19,32].

In [29], near field EM based secret key recovery attacks on unprotected and
protected implementations of Kyber are described. In these attacks, Hamming
weight-based templates are constructed for the message decoding operation to
recover the message bits. For secret key recovery, 3 × k chosen ciphertexts are
required to identify each key coefficient uniquely, where k is the rank of the
module. It is also shown how a first-order masked implementation can be broken
in two steps, by attacking each share individually.

In [18], a chosen ciphertext side-channel attack on a first-order masked soft-
ware implementation Kyber combined with belief propagation is presented. The
attack can recover the secret key from k traces from the inverse NTT step of
decryption, where k is the module rank, for a noise tolerance level σ ≤ 1.2 in the
HW leakage on simulated data. Furthermore, the attack can recover the secret
key from a single trace if the noise is in the range σ ≤ 0.5 to σ ≤ 0.7, depending
on the Kyber parameter set.

In [33] a chosen ciphertext side-channel attack is presented which uses codes
to detect faulty positions in the initially recovered secret key. These positions
are further corrected with additional traces. An EM-based template attack on
an unprotected software implementation of Kyber-512 is demonstrated which
can recover a full secret key using 1619 traces on average with 0.4 out of 512
faulty coefficients on average. Another code-based chosen ciphertext construc-
tion method for CRYSTALS-Kyber, low density paritiy check codes, targeting
masked message encoding using the implementation by Heinz et al [19] is de-
scribed in [16].

Yet another interesting chosen ciphertext construction method is presented
in [28]. The total number of queries required for the secret key recovery is reduced
by using binary decision trees. However, the downside of this method is that
it relies on an unbalanced distribution of the coefficients of the secret key. In
contract, the chosen ciphertext construction method introduced in this paper
is equally applicable to algorithms with a uniform distribution of secret key
coefficients. Furthermore, it is applicable to masked implementations, whereas
the method of [28] is not.

In [5], a chosen ciphertext side-channel attack on a first-order masked and
shuffled software implementation of Kyber-768 on an ARM Cortex-M4 is demon-
strated which can extract the secret key from 38,016 power traces. The main idea
is to recover shuffling indices 0 and 255, extract the corresponding two message
bits, and then cyclically rotate the message by modifying the ciphertext. In this
way, all message bits are extracted using 128 rotations.

In [38], a side-channel attack on the first-order masked implementation of
CRYSTALS-Kyber targeting the message encoding vulnerability found in [34] is
presented. In [6], side-channel attacks on two implementations of masked poly-
nomial comparison are demonstrated on the example of CRYSTALS-Kyber.

In [13], a message recovery attack on the higher-order masked implementation
of CRYSTALS-Kyber by Heinz et al. in [19] is presented. A new neural network

4 R. Wang et al.

KYBER.CPAPKE.KeyGen()
1: (ρ, σ)← U({0, 1}256)
2: A← U(Rk×k

q ; ρ)
3: s, e← βη1(R

k×1
q ;σ)

4: t = Encode12(As+ e)
5: s = Encode12(s)
6: return (pk = (t, ρ), sk = s)

KYBER.CPAPKE.Dec(s, c)
1: u = Decompressq(Decodedu(c1), du)
2: v = Decompressq(Decodedv (c2), dv)
3: s = Decode12(s)
4: m = Encode1(Compressq(v−s ·u, 1))
5: return m

KYBER.CPAPKE.Enc(pk = (t, ρ),m, r)
1: t = Decode12(t)
2: A← U(Rk×k

q ; ρ)
3: r ← βη1(R

k×1
q ; r)

4: e1 ← βη2(R
k×1
q ; r)

5: e2 ← βη2(R
1×1
q ; r)

6: u = ATr + e1

7: v = tTr + e2 + Decompressq(m, 1)
8: c1 = Encodedu(Compressq(u, du)
9: c2 = Encodedv (Compressq(v, dv)

10: return c = (c1, c2)

Fig. 1. KYBER.CPAPKE algorithms from [3] (simplified).

KYBER.CCAKEM.KeyGen()
1: z ← U({0, 1}256)
2: (pk, s) =

KYBER.CPAPKE.KeyGen()
3: sk = (s, pk,H(pk), z)
4: return (pk, sk)

KYBER.CCAKEM.Encaps(pk)
1: m← U({0, 1}256)
2: m = H(m)
3: (K̂, r) = G(m,H(pk))
4: c = KYBER.CPAPKE.Enc(pk,m, r)
5: K = KDF(K̂,H(c))
6: return (c,K)

KYBER.CCAKEM.Decaps(sk,c)
1: m′ = KYBER.CPAPKE.Dec(s, c)
2: (K̂′, r′) = G(m′,H(pk))
3: c′ = KYBER.CPAPKE.Enc(pk,m′, r′)
4: if c = c′ then
5: return K = KDF(K̂′,H(c))
6: else
7: return K = KDF(z,H(c))
8: end if

Fig. 2. KYBER.CCAKEM algorithms from [3] (simplified).

training method called recursive learning is introduced which constructs the
initial state for a neural network model based on the states of models trained
for the attack on a lower-order masked implementation.

3 Background

In this section, we describe notation used in the paper, Kyber algorithm speci-
fication [3], shared key establishment protocol and masking countermeasure.

3.1 Notation

Let Zq be the ring of integers modulo a prime q and Rq be the quotient ring
Zq[X]/(Xn + 1). We use regular font letters to denote elements in Rq, bold

3. BACKGROUND 5

Table 1. Parameters of different versions of Kyber.

Version n k q η1 η2 (du, dv)

Kyber-512 256 2 3329 3 2 (10, 4)

Kyber-768 256 3 3329 2 2 (10, 4)

Kyber-1024 256 4 3329 2 2 (11, 5)

lower-case letters to represent vectors with coefficients in Rq, and bold upper-case
letters to represent matrices. The transpose of a vector v (or matrix A) is denoted
by vT (or AT). The ith entry of a vector v is denoted by v[i]. The polynomial
multiplication is denoted by the sign “ ·”. The Boolean XOR is denoted by the
sign “⊕”. The term ⌈x⌋ denotes rounding of x to the closest integer with ties
being rounded up.

The term x ← D(S; r) stands for sampling x from a probability distribution
D over a set S using seed r. The uniform distribution is denoted by U . The
centered binomial distribution with parameter µ is denoted by Bµ.

3.2 Kyber algorithm

Kyber [3] consists of a chosen-plaintext attack (CPA)-secure PKE scheme,
KYBER.CPAPKE, and a CCA-secure KEM scheme, KYBER.CCAKEM, which is
built on the top of KYBER.CPAPKE using a version of the Fujisaki-Okamoto
(FO) transform [15]. These schemes are described in Fig. 1 and Fig. 2 respec-
tively.

Inputs and outputs to all API functions of Kyber are byte arrays. Kyber
works with vectors of ring elements in Rk

q , where k is the rank of the module
defining the security level. There are three versions of Kyber: Kyber-512, Kyber-
768 and Kyber-1024, for k = 2, 3 and 4, respectively, see Table 1 for details. In
this paper, we focus on Kyber-768.

Kyber uses the number-theoretic transform (NTT) to perform multiplications
in Rq efficiently. The NTT details are ommitted from Fig. 1 and Fig. 2 to simplify
the pseudocode.

The Decodel function decodes an array of 32l bytes into a polynomial with
n coefficients in the range {0, 1, · · · , 2l − 1}. The Encodel function is the inverse
of Decodel. It first encodes each polynomial coefficient individually and then
concatenates the output byte arrays.

The Compressq(x, d) and Decompressq(x, d) functions, for x ∈ Zq and d <
⌈log2(q)⌉, are defined by:

Compressq(x, d) = ⌈(2d/q) · x⌋mod+2d,

Decompressq(x, d) = ⌈(q/2d) · x⌋.

If Compressg or Decompressq is applied to x ∈ Rq or x ∈ Rk
q , the function is

applied to each coefficient individually. These functions enable the removal of

6 R. Wang et al.

Fig. 3. A shared key establishment protocol based on Kyber KEM.

some low-order bits in the ciphertext without significantly affecting the correct-
ness probability of decryption.

The functions G andH represent the SHA3-512 and SHA3-256 hash functions,
respectively. The KDF is a key derivation function. It is realized by SHAKE-256.

3.3 Shared key establishment protocol

Figure 3 depicts a possible shared (session) key establishment protocol based
on Kyber KEM. Two parties, Party 1 and Party 2, are willing to estab-
lish a shared key. To accomplish this, Party 1 employs the key generation
algorithm KYBER.CCAKEM.KeyGen() to generate a (public, secret) key pair
(pk, sk) and sends pk to Party 2. Party 2 employs the encapsulation algorithm
KYBER.CCAKEM.Encaps() to generate a ciphertext c encapsulating a shared
key K and transmits c to Party 1. Finally, Party 1 obtains K from c using the
decapsulation algorithm KYBER.CCAKEM.Decaps().

3.4 Masking countermeasure

Masking is a popular method to protect implementations of cryptographic al-
gorithms from power and EM side-channel attacks [10]. A ω-order mask splits
a sensitive variable x into ω + 1 shares: x0, x1, . . . , xω, where x can be recon-
structed from the shares as x = x0 ◦ x1 ◦ . . . ◦ xω. The type of the operation “◦”
depends on the masking method being used, for instance, in arithmetic masking
“◦” is the arithmetic addition, while in Boolean masking it is the XOR.

By performing operations separately on shares, the computations do not in-
volve x directly, thereby preventing leakage of side-channel information about x
in theory. The shares are randomized at each execution. Typically, the random-
ization is performed by assigning random masks x0, x1, . . . , xω−1 to ω shares and

4. ADVERSARY MODEL 7

deriving the last share as xω = x− (x0+x1+ . . .+xω−1) for arithmetic masking
or xω = x⊕ x0 ⊕ x1 ⊕ . . .⊕ xω for Boolean masking.

4 Adversary model

An adversary model is typically defined using three components: assumptions,
goals and capabilities [12].
Assumptions: We assume that an adversary has a physical access to the DUA
which runs the Kyber KEM decapsulation algorithm. We also assume that the
adversary possesses fully controllable profiling devices that are similar to the
DUA. In addition, we assume that the keys (pk, sk) are static.
Capabilities: The adversary is a clever outsider who has equipment and tools
for power analysis, as well as expertise in side-channel attacks, Kyber KEM, and
deep learning. The adversary is capable of eavesdropping on the channel between
the DUA and the server and query the DUA with chosen ciphertexts.
Goals: The goal of the adversary is to extract the shared key K and/or the
long-term secret key sk of Kyber from its implementation running on the DUA.
Note that the long-term secret key recovery implies the shared key recovery, but
not vice versa.

5 Attack description

Fig. 4 illustrates the main steps of the attack.

5.1 Profiling stage

At the profiling stage, the adversary first uses KYBER.CCAKEM.KeyGen() to
generate a key pair (pkp, skp). Then he/she selects uniformly at random a mes-
sage mp ∈ {0, 1}256 and uses KYBER.CCAPKE.Enc() to compute a ciphertext cp
encrypting mp. Knowing the message contained in cp is necessary for creating a
labeled dataset for neural network training.

These steps are repeated multiple times until a profiling dataset of the desired
size is gathered. Note that a labeled dataset can be created either using a static
key pair, or a set of key pairs which is re-generated for each message mp. This
does not affect the success probability of the presented attack.

Then, the adversary runs KYBER.CCAKEM.Decaps() on a profiling device to
decapsulate each cp in the dataset and measure the total power consumption of
the device during the execution of the algorithm. The resulting power trace Tp

is recorded.
Finally, the adversary uses the resulting labeled data set to train a neural

network M which learns the leakage profile of KYBER.CCAKEM.Decaps() in
order to predict message bit values from power traces.

8 R. Wang et al.

Fig. 4. Attack scenario.

5.2 Attack stage

To recover the shared key K, the adversary eavesdrops on the communication
channel between the two parties to obtain the public key pk and the ciphertext
c containing the encapsulated K. The adversary also measures the power con-
sumption of the DUA during the execution of the decapsulation algorithm with
c as input. The segments of the resulting power trace T corresponding to the
processing of the message m encrypted in c are extracted. These segments are
given as input to the modelM trained at the profiling stage to predict the bits
of m. Once m is recovered, the pre-key K̂ is derived as (K̂, r) = G(m,H(pk))
and then the shared key K is computed as K = KDF(K̂,H(c)).

To recover the secret key sk, the DUA is queried with chosen ciphertexts
c1, c2, . . . and the power consumption of the DUA during the execution of the
decapsulation algorithm is measured. We describe the method for constructing
chosen ciphertexts in Section 9. The messages m1,m2, . . . are extracted from
the recorded power traces T1, T2, . . . similarly to the case of shared key recov-
ery attack. A difference between the two attacks is that chosen ciphertexts are
malformed and do not pass the FO transform. This is however not important
for the presented attack since it targets an earlier step of the decapsulation al-
gorithm (re-encyption). Finally, the extracted messages m1,m2, . . . are mapped
into the coefficients of the secret key according to the mapping table of the
chosen ciphertexts construction method.

6. EXPERIMENTAL SETUP 9

Fig. 5. The equipment used in the experiments.The devices D1 −D5 are used for the
profiling and D6 is used for the attack.

6 Experimental setup

The equipment used in our experiments is shown in Fig. 5. It consists of the
ChipWhisperer-Pro, the CW308 UFO main board and six CW308T-STM32F4
target boards (see Fig. 5 in the Appendix). Each target board contains a STM32F415-
RGT6 chip based on ARM Cortex-M4 32-bit RISC core operating at a frequency
of 24Mhz. The traces are acquired with the sampling rate of 96MS/s.

Three C implementations of Kyber are used in the experiments:

1. The unprotected implementation by Kannwischer et al. [22].
2. The first-order masked implementation by Heinz et al. [19].
3. The higher-order masked implementation by Bronchain et al. [9].

All implementations are compiled using arm-none-eabi-gcc with the highest
optimization level -O3 (recommended default).

7 Leakage analysis

The presented attack targets the message encoding operation at the re-encryption
step of the FO transform. In this section, we first analyse the unprotected im-
plementation of the message encoding operation from the post-quantum crypto
library for the ARM Cortex-M4 developed by Kannwischer et al. [22]. Then, we
compare the realizations of message encoding in the implementations of Heinz et
al. [19] and Bronchain et al. [9]. We show that the leakage of the implementation
in [9] is significantly weaker than the one in [19]. Thus, the implementation of [9]
is more difficult to break. The presented attack would not be as effective if we
would use only previously known leakage points. However, we discovered two
new leakage points in the masked Boolean to arithmetic conversion procedure of
the implementation in [9] which results in an effective attack.

10 R. Wang et al.

void poly_frommsg(poly *r, unsigned char msg[32])
int i,j;
uint16_t mask;
1: for (i = 0; i < 32; i++) do
2: for (j = 0; j < 8; j++) do
3: mask = -((msg[i]>>j) & 1);
4: r->coeffs[8 * i + j] = mask & ((KYBER_Q+1)/2);
5: end for
6: end for

Fig. 6. The C code of poly_frommsg() procedure from [22].

Fig. 7. Distributions of power consumption during the processing of a single message
bit by poly_frommsg() procedure of the unmasked implementation in [22].

7.1 Unprotected message encoding

The message encoding operation converts an array of n/8 bytes representing
a message m into a polynomial f in which each of the n coefficients, f [j], is equal
to f [j] = ⌈q/2⌋ ·m[j], where m[j] is the jth bit of m for j ∈ {0, 1, · · · , 255}, see
Decompressq(Decode1(m), 1) at line 7 of KYBER.CPAPKE.Enc() in Fig. 1.

In the unprotected implementation of Kyber by Kannwischer et al. in [22],
the message encoding is realized by the procedure called poly_frommsg() shown
in Fig. 6. It contains two nested for-loops in which each polynomial coefficient is
computed individually. The intermediate variable mask is used to replace the if-
then-else-statement in order to guarantee a constant processing time regardless
of the message bit value. Otherwise, a timing attack can be mounted to extract
the message bit.

However, in a software implementation, the power consumption may differ
if the Hamming weights of the two processed values differ. The intermediate
variable mask is computed based on the message bit, see line 3 in Fig. 6. Its value
is either 0 (0x0000) or -1 (0xFFFF). The corresponding polynomial coefficient
computed from the mask in the next line takes values either 0 or (q+1)/2. Since
in both cases the difference in the Hamming weights of two values is large, one can

7. LEAKAGE ANALYSIS 11

void masked_poly_frommsg(masked_poly *r, masked_u8_msgbytes *msg)
int i,j;
uint16_t mask;

1: for (i = 0; i < 32; i++) do
2: for (j = 0; j < 8; j++) do
3: mask = -((msg->share[0].u8[i] >> j) & 1);
4: r->poly[0].coeffs[8*i+j] += (mask & ((KYBER_Q + 1)/2));
5: end for
6: end for
7: for (i = 0; i < 32; i++) do
8: for (j = 0; j < 8; j++) do
9: mask = -((msg->share[1].u8[i] >> j) & 1);

10: r->poly[1].coeffs[8*i+j] += (mask & ((KYBER_Q + 1)/2));
11: end for
12: end for
13: ...Further processing ...

Fig. 8. The C code of masked_poly_frommsg() procedure from [19].

recover the message bits by analysing power consumption [2,29,34]. Such type of
leakage is referred to as determiner leakage [34], because the mask/polynomial
values are determined by the corresponding message bit.

Fig. 7 shows the distributions of power consumption during the processing of
a single message bit by poly_frommsg() procedure. The distributions are plotted
based on 10K traces at the trace point with the maximum absolute t-test score.
The overlap in the plots of message bits with values 0 and 1 determines the
difficulty of distinguishing between these values. We can see that there is almost
no overlap. This means that two values can be distinguished easily.

7.2 Masked message encoding

A common way to decorrelate a sensitive variable from the power consump-
tion is to split the variable into multiple shares [7, 14, 26]. For the ω-order
masked message encoding, the message m is split into ω + 1 Boolean shares
{m0,m1, · · · ,mω}, such that m = m0 ⊕ m1 · · · ⊕ mω. For each Boolean share
mi, i ∈ {0, 1, · · · , ω}, the corresponding arithmetic share fi is computed so that
the jth coefficient of the polynomial f satisfies:

f [j] =

ω∑
i=0

fi[j] mod q = ⌈q/2⌋ ·m[j], (1)

for all j ∈ {0, 1, · · · , 255}, where “
∑

” is the arithmetic addition.

Implementation of masked message encoding in [19] The first-order
masked implementation of Heinz et al. in [19] adopts the masking strategy of [26].

12 R. Wang et al.

The message m is split into two Boolean shares {m0,m1} and the corresponding
arithmetic shares {f0, f1} are computed separately. If both Boolean shares have
value 1, then both resulting polynomial coefficients have value ⌈q/2⌋, which does
not satisfy eq. (1) due to the rounding. To fix this, an extra term is added1.

The C code of the procedure masked_poly_frommsg() realizing the message
encoding in the implementation of [19] is shown in Fig. 8. We can see that two
nested for-loops of the procedure poly_frommsg() in Fig. 6 are repeated twice
to compute the arithmetic shares {f0, f1}. Therefore, the leakage of each share
is similar to the one of the unprotected version. Several attacks exploiting this
leakage have been demonstrated recently [13,16].

Implementation of masked message encoding in [9] The higher-order
masked implementation of Bronchain et al. in [9] employs the masking strategy
of [32]. It uses a masked Boolean to arithmetic conversion algorithm to transform
the Boolean shares {m0,m1, · · · ,mω} into the arithmetic shares {f0, f1, · · · , fω}
such that

∑ω
i=0 fi[j] mod q = m[j], for all j ∈ {0, 1, · · · , 255}.

Fig. 9 shows the C code of the procedure masked_poly_frommsg() realizing
the message encoding in the implementation of [9]. First, each Boolean share bit
is extracted from the corresponding byte, see line 4 of masked_poly_frommsg()
in Fig. 9. This is similar to the lines 3 and 9 of masked_poly_frommsg() proce-
dure from [19] in Fig. 8. However, an essential difference is that, instead of com-
puting the variable mask, the implementation in [9] only extracts each Boolean
share bit and performs a masked Boolean to arithmetic conversion latter on.
Hence, the difference in the Hamming weight of values computed in line 4 of
Fig. 9 is only one, while the difference in the Hamming weight of mask values
computed in lines 3 and 9 of Fig. 8 is 16. Consequently, it is more difficult to
extract the Boolean share bits from the implementation in [9] by power analysis
using the leakage related to the line 4 of Fig. 9.

The plots at the bottom of Fig. 10 show the distributions of power
consumption during the processing of a single bit of Boolean shares by
masked_poly_frommsg() procedure of the implementation in [9]. The distribu-
tions are plotted based on 10K traces captured from a profiling device running
a first-order masked implementation with known masks at the trace point with
the maximum absolute t-test score. Note that these traces are used for leakage
analysis only. We do not use them for profiling or in the attack.

The plots at the top of Fig. 10 show similar distributions for the implemen-
tation in [19]. One can see the significant difference in the overlapping areas of
the plots of Boolean share bits with values 0 and 1. In the implementation of [19]
there is almost no overlap, while in the implementation of [9] the overlap is large.

7.3 Finding new leakage points

The C code of masked Boolean to arithmetic conversion procedure secb2a_1bit()
in Fig. 9 contains two operations that are directly related to the individual bits
1 We refer to [19,26] for details since our leakage analysis does not rely on that.

7. LEAKAGE ANALYSIS 13

void masked_poly_frommsg(StrAPoly y, uint8 m[32 * NSHARES], size_t
stride) /* stride is the byte distance between each share */
int i,j,k;
uint32_t t1[NSHARES]; /* Boolean shares */
int16_t t2[NSHARES]; /* Arithmetic shares */

1: for (i = 0; i < 32; i++) do
2: for (j = 0; j < 8; j++) do
3: for (k = 0; k < NSHARES; K++) do
4: t1[k] = (m[i+k*stride]>>j) & 1; /* Bit extraction from byte */
5: end for
6: secb2a_1bit(NSHARES, t2, t1); /* Masked B2A */
7: for (k = 0; k < NSHARES; k++) do
8: y[k][i*8+j] = (t2[k] * (KYBER_Q+1)/2) % KYBER_Q;
9: end for

10: end for
11: end for

void secb2a_1bit(size_t nshares, int16_t *a, uint32_t *x)

1: b2a_qbit(nshares, a, x);
2: refresh_add(nshares, a);

void b2a_qbit(size_t nshares, int16_t *a, uint32_t *x)
int i;

1: a[0] = x[0]; /* Copy the bit of the first share in x */
2: for (i = 1; i < nshares; i++) do
3: secb2a_qbit_n(i+1, a, a, x[i]); /* Use the bit of share i in x */
4: end for

void secb2a_qbit_n(size_t n, int16_t *c, int16_t *a, uint32_t x)
int j;
int16_t b[n];
int16_t r[2];
1: ... Processing ...
2: for (j = 0; j < n; j++) do
3: c[j] = b[j] + 2 * KYBER_Q;
4: c[j] -= 2 * b[j] * x; /* Compute polynomial value from bit value */
5: c[j] = c[j] % KYBER_Q;
6: end for
7: c[0] = (c[0] + x) % KYBER_Q;

Fig. 9. The C code of masked_poly_frommsg() procedure from [9].

of each share. One is located in b2a_qbit() procedure, see lines marked in
red. In line 1, the bit value of the first Boolean share x[0] is copied to the
first arithmetic share a[0]. In line 3, all bit values of the other shares x[i],
i ∈ {1, . . . , nshares}, are given as input to secb2a_qbit_n(), one by one, where
nshares is the number of shares.

14 R. Wang et al.

Fig. 10. Distributions of power consumption during the processing of a single bit of
Boolean shares by masked_poly_frommsg() in the first-order masked implementations
of [19] (top) and [9] (bottom).

1: LDRSH r3, [r5, 2]! /* load b[j] to r3 */
2: ADD.w r2, ip, r3 /* b[j] + 2 * KYBER_Q */
3: SMULBB r3, r3, r6 /* 2*b[j]*x */
4: SUBS r3, r2, r3 /* c[j] = b[j] + 2 * KYBER_Q - 2*b[j]*x */
5: /* calculate c[j] % KYBER_Q and store the value to r3 */
6: SXTH r3, r3
7: SMULL fp, r2, sl, r3
8: ADD.W fp, r2, r3
9: ASRS r2, r3, 0x1f

10: RSB r2, r2, fp, asr 11
11: ADDS r0, 1
12: MLS r3, lr, r2, r3
13: CMP r0, sb
14: STRH r3, [r4]

Fig. 11. Assembly code snippet of a single iteration of additive leakage vulnerability
in secb2a_qbit_n().

Another operation related to individual bits of each share is located in
secb2a_qbit_n() procedure. The bit value of the Boolean share x[i] is pro-
cessed i+1 times in the for-loop, see lines 2-6 of secb2a_qbit_n() in Fig. 9. In
line 4, the value of 2*b[j]*x is computed and subtracted from the intermediate
value c[j]. Therefore, the Hamming weight of c[j] does not change if x = 0.
Otherwise, for x = 1, it is likely to change2. The corresponding assembly code is
shown in Fig. 11.

2 The Hamming weight of an arithmetic share may remain the same if a non-zero
value is subtracted.

7. LEAKAGE ANALYSIS 15

To see if the two above-mentioned operations leak side-channel information,
we performed t-test of masked_poly_frommsg() procedure for the first-, second-
and third-order masked implementations with known masks captured from a
profiling device. Fig. 12 shows t-test results for a single bit of each Boolean
share on 10K traces. We can see multiple leakage points which can be grouped
into three types. Peaks on the left-hand side of the black vertical line are re-
lated to the extraction of a single Boolean share bit from a byte (line 4 of
masked_poly_frommsg() in Fig. 9). Such a leakage is also present in the unpro-
tected implementation of [22] (line 3 in Fig. 6) and the masked implementation
of [19] (line 3 and 9 in Fig. 8).

Peaks on the right-hand side of the black vertical line, marked by “①”
and “②”, are related to the processing of individual Boolean share bits by the
two above-mentioned operations (lines 1 and 3 of b2a_qbit() and line 4 of
secb2a_qbit_n()). We call them the direct-copy leakage and the additive leak-
age, respectively. They are specific for the implementation of arbitrary-order
masked Boolean to arithmetic conversion introduced in [9]. To the best of our
knowledge, until now nobody has reported that these leakages are exploitable.

For direct-copy leakage, since the first Boolean share x[0] is assigned to the
arithmetic share a[0] directly (line 1 of b2a_qbit()), the distance between the
peaks corresponding to x[0] and x[1] is smaller than the distance between the
peaks corresponding to x[i] and x[i+1], for any i > 0.

For additive leakage, the number of peaks is equal to the number of times the
share is processed in the for-loop. For example, at the bottom plot of Fig. 12
representing the third-order masked implementation, there are two orange peaks
(second share), three green peaks (third share), four red peaks (forth share)
marked by ‘②”. There is no peak for the first share since secb2a_qbit_n()) is
not called to process it. The fact that a change of the Hamming weight of a
Boolean share does not always lead to the change of the Hamming weight of
the arithmetic share may explain why in Fig. 12 additive leakage is weaker than
direct-copy leakage.

Next we compare distributions of power consumption of the direct-copy and
additive leakages on the example of the first-order masked implementation, see
Fig. 13. The distributions are plotted based on 10K traces at the trace point with
the maximum absolute t-test score. These traces are acquired from a profiling
device running the implementation with known masks during the execution of
masked Boolean to arithmetic conversion. We can see that, for direct-copy leak-
age, the overlap in the plots is larger than the one for additive leakage. This is
consistent with t-test results in Fig. 12. Since the overlap is not complete, both
types can be exploited for message recovery.

In the message recovery attack presented in Section 10.1, we use both direct-
copy and additive leakages as well as the leakage in the bit extraction part.

16 R. Wang et al.

Fig. 12. T-test results for a single bit of each Boolean share of masked_poly_frommsg()
procedure of the first- (top), second- (middle), third-order (bottom) masked implemen-
tations of [9]. Traces are acquired from a profiling device running implementations with
known masks (used for leakage analysis only).

8 Neural network training

This section describes our neural network training strategy. It is a combination
of techniques employed in previous profiling deep learning-based side-channel
attacks on PQC and symmetric cryptographic algorithms, with some differences
which we highlight.

Following [13], we train a single universal neural network model for message
bit prediction on cut-and-joined and standardized traces. A multilayer percep-
tron (MLP) with an archtecture similar to the one in [13] is used. A difference
from [13] is that we use traces from five profiling devices in the training set.
Such an approach is used in the side-channel attack on AES presented in [40].
Another difference from [13] is that we use three leakage points, so cut-and-join
is a bit more tedious to perform.

8.1 Trace acquisition and pre-processing

Since masked_poly_frommsg() procedure processes the Boolean share bits one-
by-one, it is possible to train a universal model for predicting all bits except the

8. NEURAL NETWORK TRAINING 17

Fig. 13. Distributions of power consumption during the processing of a single bit of
Boolean shares by secb2a_1bit() in the first-order masked implementation of [9] for
the direct-copy (top) and additive (bottom) leakage.

first and the last. The trace shape for the first/last bits typically differ from the
rest because their previous/next instructions differ [25].

The complete execution of masked_poly_frommsg() procedure in the imple-
mentation of [9] does not fit into the buffer of ChipWhisperer-Pro which we use
for trace acquisition. Therefore, for the first- and second-order masked imple-
mentation we capture traces containing the execution of the first 33 bits only
and use a union of intervals corresponding to the bits 1-32 for training. For the
third-order masked implementation, we capture traces containing the execution
of the first 17 bits only and use a union of intervals corresponding to the bits
1-16 for training. In all cases, the interval is a concatenation of three segments
covering the three leakage points described in Section 7.3.

Since the implementation in [9] uses a true random number generator (TRNG)
with a range check for generating masks, the raw traces are misaligned. We syn-
chronize the traces by cross-correlating with templates, one for each leakage
point.

To minimize the total number of traces required from the DUA, we perform
profiling on different devices. We use five profiling devices, D1 −D5, in order to
reduce the negative effect of inter-device variation on neural network’s classifica-
tion accuracy. The benefits of such a multi-source profiling are well-known [37].

We also apply standardization to traces. Given a set of traces T with elements
T = (t1, . . . , t|T |), each T ∈ T is standardized to T ′ = (t′1, . . . , t

′
|T |) such as:

t′i =
ti − µi

σi
,

18 R. Wang et al.

Table 2. MLP architecture used for message recovery. The input size is size = 590, 1000
and 1610 for the first-, second- and third-order masked implementations, respectively.

Layer type Output shape

Batch Normalization 1 size
Dense 1 512

Batch Normalization 2 512
ReLU 512

Dense 2 256
Batch Normalization 3 256

ReLU 256
Dense 3 128

Batch Normalization 4 128
ReLU 128

Dense 4 2
Softmax 2

where and µi and σi are the mean and the standard deviation of the elements
of T at the ith data point, i ∈ {1, . . . , |T |}.

8.2 Network architecture and training parameters

The neural networks with the architecture listed in Table 2 are trained with
a batch size of 1024 for a maximum of 100 epochs using early stopping with
patience 10. We use Nadam optimizer with a learning rate of 0.01 and a numerical
stability constant epsilon = 1e-08. Categorical cross-entropy is used as a loss
function to evaluate the network classification error. 70% of the training set is
used for training and 30% is left for validation. Only the model with the highest
validation accuracy is saved.

9 New chosen ciphertext construction method

It is known that the secret key of an LWE/LWR KEM algorithm can be derived
from messages recovered from chosen ciphertexts. Many different methods for
constructing the chosen ciphertexts have been presented in the past, including [5,
25, 29, 30, 42]. These methods uniquely map each secret key coefficient into a
b-bit binary vector composed from the message bits recovered from b chosen
ciphertexts. Some methods, e.g. [5, 25], impose an additional requirement that
b-bit binary vectors are codewords of some linear code with the code distance
Cd. In the latter case, for each secret key coefficient, c errors in the recovered
message bits can be corrected and d additional errors can be detected, where
2c + d + 1 ≤ Cd. The method [5] also minimizes the Hamming weight of the
chosen ciphertexts.

However, none of the previous chosen ciphertext construction methods map
the secret key coefficients into codewords so that the full secret key recovery

9. NEW CHOSEN CIPHERTEXT CONSTRUCTION METHOD 19

probability is maximized for a given message bit recovery probability. We intro-
duce such a method in this section.

First we explain the method of composing chosen ciphertexts and then derive
a formula relating the probability of the secret key recovery to the probability of
a message bit recovery. Using this formula, we select a best codeword for each key
coefficient which maximizes the secret key recovery probability. Finally, we show
that there is a considerable difference between secret key recovery probabilities
of the best and the worst mappings.

9.1 Composing chosen ciphertexts

In Kyber-768, the secret key s consists of three polynomials s = (s0, s1, s2),
and the ciphertext (u, v) consists of three polynomials u = (u0, u1, u2) and one
polynomial v. To recover n coefficients of si, one of the polynomials of u is set
to a non-zero constant k1 and the other two polynomials of u are set to zero:

u =

(k1, 0, 0) ∈ R3×1

q for i = 0,
(0, k1, 0) ∈ R3×1

q for i = 1,
(0, 0, k1) ∈ R3×1

q for i = 2.

All n coefficients of v are set to the same constant k0:

v = k0

255∑
j=0

xj ∈ R1×1
q .

The constants (k1, k0) inducing a given mapping between the secret key co-
efficients and message bits can be found by a brute-force search through all legal
pairs (k1, k0) (if the solution exists). In the next section, we derive a formula
which helps select the best mapping that maximizes the secret key recovery
probability.

9.2 Selecting optimal mapping

Let p be the probability of recovering a single message bit, and d(x, x′) be the
Hamming distance between the codewords representing the secret key coefficients
x and x′, for x, x′ ∈ {−2,−1, 0, 1, 2}.

Given a codeword composed from b recovered message bits, there are three
possible outcomes:

1. The codeword is recovered correctly (no errors). We denote this probability
by pc.

2. The recovered codeword contains errors and matches the codeword represent-
ing another secret key coefficient (undetected error). We denote this proba-
bility by pu.

3. The recovered codeword contains errors but does not match any codewords
of another secret key coefficients (detected error). We denote this probability
by pd.

20 R. Wang et al.

Table 3. Mappings which give the maximum (left) and the minimum psk (right).

Cbest: (k1, k0) -2 -1 0 1 2

(1977,208) 1 1 0 1 0
(627,208) 1 1 0 0 1

(731,1040) 0 1 1 0 0

Cworst: (k1, k0) -2 -1 0 1 2

(104,1040) 1 1 1 1 0
(419,416) 1 1 0 0 0

(940,1040) 0 1 1 0 1

The secret key coefficients are generated using the centered binomial distri-
bution, see line 3 of KYBER.CPAPKE.KeyGen() in Fig. 1. For Kyber-768, the
probability of occurrence of x ∈ {−2,−1, 0, 1, 2}, px, is given by:

px =

1/16, for x = −2
4/16, for x = −1
6/16, for x = 0

4/16, for x = 1

1/16, for x = 2

(2)

Thus, the expected probabilities of three outcomes listed above are given by:

pc =
∑
x

px · pb = pb (3)

pu =
∑
x

px ·
∑

x′,x′ ̸=x

(1− p)d(x,x
′)pb−d(x,x′) (4)

pd = 1− pc − pu (5)

Let e be the maximum tolerable number of detected errors. Then, for Kyber-
768, the probability of full secret key recovery is:

psk =

e∑
i=0

(
768

i

)
pid · p768−i

c (6)

By a brute-force search through all possible codewords of the length b = 3
for each secret key coefficient, one can find a mapping Cbest which results in
the highest psk and a mapping Cworst which gives the lowest psk. Examples of
such mapping are listed in Table 3. They are not unique. One can see that, for
the optimal mapping Cbest, d(0, x) ≥ 2 for all for x ∈ {−2,−1, 1, 2}, while for
Cworst, d(0, x′) = 1, for x′ ∈ {−1, 1, 2}. Thus, single-bit errors are more likely to
be undetected in Cworst case.

Fig. 14 plots psk as a function p for the mappings Cbest and Cworst and a fixed
e = 16. For 0 < p < 1, Cbest always results in a higher psk. The difference between
the two mappings first grows larger as p increases, reaching the maximium of
39% at p = 0.9991. Then, the difference starts decreasing and the plots converge
at p = 1.

10. EXPERIMENTAL RESULTS 21

Fig. 14. Secret key recovery probability as a function message bit recovery probability
for the best and worst mappings.

10 Experimental results

In this section, we present the results of message and secret key recovery attacks
on the higher-order masked implementation of Kyber-768 [9] in ARM Cortex-
M4.

10.1 Message recovery attack

Using the strategy described in Section 8, we trained neural network models for
message bit recovery. For each ω-order masked implementation in the experi-
ments, a single universal model was trained for recovering all bits. The mod-
els were trained using power traces captured from five profiling devices, Di,
i ∈ {1, 2, . . . , 5}. For each implementation, one fifth of training traces were cap-
tured from each profiling device. As we mentioned in Section 8.1, the complete
execution of masked_poly_frommsg() procedure in the implementation of [9]
does not fit into the buffer of ChipWhisperer-Pro. For ω = 1 and 2, we captured
2K traces from each Di and trained the models based on the message bits 1-32.
For ω = 3, 4K traces were captured from each Di and the models were trained
based on the message bits 1-16. In all three cases, after the cut-and-join, the
total number of training traces is 320K.

The models were tested on power traces captured from the DUA D6 for 1000
ciphertexts encrypting messages selected at random. For each ciphertext, we
repeated the decapsulation twenty times and recorded the corresponding power
traces. We use N to denote the number of repetitions of the same decapsulation.

Table 4 summarizes the results of message recovery attacks on the first-order
masked implementation of [9]. It lists the empirical average message bit recovery

22 R. Wang et al.

Table 4. Empirical results of message recovery attack on the first-order masked im-
plementation.

Repetitions N = 1 N = 2 N = 3

Avg. message bit
recovery prob., pbit

0.99928 0.99997 1

Est. full message
recovery prob., pm

0.83 0.99 1

Table 5. Empirical results of message recovery attack on the second-order masked
implementation.

Repetitions N = 1 N = 2 N = 4 N = 8 N = 16

Avg. message bit
recovery prob., pbit

0.97203 0.99519 0.99953 0.99959 0.99994

Est. full message
recovery prob., pm

0 0.29 0.89 0.90 0.98

Table 6. Empirical results of message recovery attack on the third-order masked im-
plementation.

Repetitions N = 1 N = 2 N = 4 N = 8 N = 16

Avg. message bit
recovery prob., pbit

0.95356 0.98219 0.99356 0.99819 0.99994

Est. full message
recovery prob., pm

0 0.01 0.19 0.63 0.98

probability, pbit, and the full message recovery probability, pm, estimated as
pm = (pbit)

256, for different number of repetitions N .
We can see that the estimated full message recovery probability is 0.83 for a

single-trace attack. When the number of repetitions increases to 3, pm reaches
1. As observed in [13], side-channel attacks of masked implementations benefit
from the independence of errors in repeated measurements due to random mask
update at each execution.

Table 5 and 6 shows the results of message recovery attacks on the second-
and third-order masked implementations of [9]. We increase the number of repe-
titions exponentially since higher-order masking is more difficult than first-order
to break. One can see that, for both ω = 2 and ω = 3, the empirical full message
recovery probability pm reaches 0.98 for sixteen repetitions.

Note that the ChipWhisperer target board used in our experiments has a low
noise. For the attacks in noisier conditions, convolutions neural networks [23,27],
or transformers [8,17] may be more suitable neural network architectures. Noise
reduction e.g. by using autoencoders [23,41] may also be helpful.

10. EXPERIMENTAL RESULTS 23

Table 7. Empirical results of secret key recovery attack on the first-order masked
implementation.

Repetition Cbest mapping Cworst mapping

pbit psk Enum. pbit psk Enum.

N = 1 0.99761 0.26 516 0.99746 0 >516

N = 2 0.99987 0.94 54 0.99989 0.84 51

N = 3 0.99995 0.98 54 0.99997 0.97 51

Table 8. Empirical results of secret key recovery attack on the second-order masked
implementation.

Repetition Cbest mapping Cworst mapping

pbit psk Enum. pbit psk Enum.

N = 1 0.97466 0 >516 0.97365 0 >516

N = 2 0.99600 0.10 511 0.99570 0 53

N = 4 0.99970 0.79 52 0.99960 0.60 51

N = 8 0.99975 0.81 55 0.99971 0.72 51

N = 16 0.99997 0.97 51 0.99996 0.92 51

Table 9. Empirical results of secret key recovery attack on the third-order masked
implementation.

Repetition Cbest mapping Cworst mapping

pbit psk Enum. pbit psk Enum.

N = 1 0.94794 0 >516 0.95095 0 >516

N = 2 0.98108 0 >516 0.98215 0 >516

N = 4 0.99290 0 >516 0.99297 0 >516

N = 8 0.99793 0.36 57 0.99781 0.02 51

N = 16 0.99977 0.82 52 0.99979 0.74 51

10.2 Secret key recovery attack

In order to evaluate the effectiveness of the new method of mapping mes-
sage bits into secret key coefficients, we generated 100 different secret and
public key pairs for ω = 1, 2 and 50 different key pairs for ω = 3 using
KYBER.CCAKEM.KeyGen(), respectively. According to Table 4, 5 and 6, three
and 16 repetitions should give a close to 1 message bit recovery probability for
ω = 1 and ω = 2, 3. Then, we captured from the DUA D6 the coresponding num-
ber of traces for each key pair during the decapsulation of chosen ciphertexts
constructed for the mappings Cbest and Cworst in Table 3.

Tables 7 summarizes the results for the mappings Cbest and Cworst using
the first-order masked implementation of [9]. We can see that the difference in
the average message bit recovery probabilities of Cbest and Cworst for a fixed N

24 R. Wang et al.

is insignificant. However, the difference in the average key coefficient recovery
probabilities of Cbest and Cworst is significant for N = 1, resulting in a large
difference in full key recovery probabilities. For N = 1, empirical full secret key
recovery probability for the mapping Cbest is ppk = 0.26 with the maximum
enumeration of 516. In contract, none of the 100 secret keys can be recovered
if the mapping Cworst is used. As the number of repetitions N increases, the
difference between Cbest and Cworst decreases.

Table 8 shows the results of secret recovery attack on the second-order masked
implementation of [9]. We can see that, for Cbest, 16 repetitions instead of three,
are required to reach the full secret key recovery probability psk = 0.97. We
can also see that, for N = 4, the difference in psk between Cbest and Cworst is
maximum, at 19%.

Similarly, Table 9 shows the results of secret recovery attack on the third-
order masked implementation of [9]. The probability of the full secret key recov-
ery is psk = 0.82 using Cbest when N = 16. The gap in psk between Cbest and
Cworst is maximum, at 34%, for N = 8.

11 Countermeasures

The presented secret key recovery attack would not be possible if the decapsulat-
ing device could refuse decrypting the chosen ciphertexts. This can be realized
by authenticating the ciphertexts e.g. using the Encrypt-then-Sign method pro-
posed by [4], or subjecting the ciphertexts to the minimal range check [42].

Another possibility is to update the keys (pk, sk) for each new shared key es-
tablishment session rather than keeping them static. In this scenario, the shared
key becomes the primary attack target. Note, however, that the dynamic keys
(pk, sk) make the likelihood of recovering a shared key less likely, but not impossi-
ble. For instance, for the first-order masking, the attacker is expected to recover
the shared key from a single trace with the probability of 26% (see Table 7).
Since the success probability grows quickly if the decapsulation can be repeated
multiple times, designing a mechanism which prevents repeated decapsulations
of the same ciphertext could be considered as an option.

The presented message recovery attack would be more difficult if the the
procedure masked_poly_frommsg() were bitsliced. Using a TRNG with a range
check for generating masks is an excellent design choice because the resulting
traces’ misalignment creates an extra hurdle for the attacker.

12 Conclusion

We demonstrated practical shared and secret key recovery attacks on the higher-
order masked implementation of Kyber from Bronchain et al. [9] by profiled deep
learning-based power analysis.

We discovered new vulnerabilities in the implementation of arbitrary-order
masked Boolean to arithmetic conversion introduced in [9]. Note that such an

13. ACKNOWLEDGMENTS 25

implementation is applicable not only to Kyber, but also to any algorithm using
masked Boolean to arithmetic conversion. Our work shows that, to resist power
analysis, the implementation needs to be further strengthened.

Another contribution is a chosen ciphertext construction method that maxi-
mizes the likelihood of recovering the secret key for a given message bit recovery
probability. The new way of mapping message bits into the secret key coefficients
can raise the likelihood of successfully recovering the secret key by up to 39%
compared to the worst case.

13 Acknowledgments

This work was supported in part by the Swedish Civil Contingencies Agency
(Grant No. 2020-11632) and the Swedish Research Council (Grant No. 2018-
04482).

References

1. Announcing the commercial national security algorithm suite 2.0. National Security
Agency, U.S Department of Defense (Sep 2022), https://media.defense.gov/
2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF

2. Amiet, D., Curiger, A., Leuenberger, L., Zbinden, P.: Defeating NewHope with
a single trace. In: Post-Quantum Cryptography: 11th International Conference,
PQCrypto 2020, Paris, France, April 15–17, 2020, Proceedings 11. pp. 189–205.
Springer (2020)

3. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,
J.M., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS-Kyber algorithm specifica-
tions and supporting documentation (2021), https://pq-crystals.org/kyber/
data/kyber-specification-round3-20210131.pdf

4. Azouaoui, M., Kuzovkova, Y., Schneider, T., van Vredendaal, C.: Post-quantum
authenticated encryption against chosen-ciphertext side-channel attacks. IACR
Transactions on Cryptographic Hardware and Embedded Systems pp. 372–396
(2022)

5. Backlund, L., Ngo, K., Gartner, J., Dubrova, E.: Secret key recovery attacks on
masked and shuffled implementations of CRYSTALS-Kyber and Saber. Cryptology
ePrint Archive, Paper 2022/1692 (2022), https://eprint.iacr.org/2022/1692

6. Bhasin, S., D’Anvers, J.P., Heinz, D., Pöppelmann, T., Beirendonck, M.V.: Attack-
ing and defending masked polynomial comparison for lattice-based cryptography.
Cryptology ePrint Archive, Paper 2021/104 (2021), https://eprint.iacr.org/
2021/104

7. Bos, J.W., Gourjon, M., Renes, J., Schneider, T., Van Vredendaal, C.: Masking Ky-
ber: First-and higher-order implementations. IACR Transactions on Cryptographic
Hardware and Embedded Systems pp. 173–214 (2021)

8. Brisfors, M.: Advanced Side-Channel Analysis of USIMs, Bluetooth SoCs and
MCUs. Master’s thesis, School of EECS, KTH (2021)

9. Bronchain, O., Cassiers, G.: Bitslicing arithmetic/Boolean masking conversions for
fun and profit: with application to lattice-based KEMs. IACR Trans. on Crypto-
graphic Hardware and Embedded Systems pp. 553–588 (2022)

https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf
https://eprint.iacr.org/2022/1692
https://eprint.iacr.org/2021/104
https://eprint.iacr.org/2021/104

26 R. Wang et al.

10. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Advances in Cryptology - CRYPTO ’99. vol. 1666,
pp. 398–412. Springer (1999)

11. D’Anvers, J.P., Beirendonck, M.V., Verbauwhede, I.: Revisiting higher-order
masked comparison for lattice-based cryptography: Algorithms and bit-sliced
implementations. Cryptology ePrint Archive, Paper 2022/110 (2022), https://
eprint.iacr.org/2022/110

12. Do, Q., Martini, B., Choo, K.K.R.: The role of the adversary model in applied
security research. Computers & Security 81, 156–181 (2019)

13. Dubrova, E., Ngo, K., Gartner, J.: Breaking a fifth-order masked implementation
of CRYSTALS-Kyber by copy-paste. In: Proc. of the 10th ACM Asia Public-Key
Cryptography Workshop (APKC 2023) (2023), https://eprint.iacr.org/2022/

14. D’Anvers, J.P., Heinz, D., Pessl, P., Van Beirendonck, M., Verbauwhede, I.: Higher-
order masked ciphertext comparison for lattice-based cryptography. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems pp. 115–139 (2022)

15. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In: Annual international cryptology conference. pp. 537–554.
Springer (1999)

16. Guo, Q., Nabokov, D., Nilsson, A., Johansson, T.: Sca-ldpc: A code-based frame-
work for key-recovery side-channel attacks on post-quantum encryption schemes.
Cryptology ePrint Archive (2023)

17. Hajra, S., Saha, S., Alam, M., Mukhopadhyay, D.: Transnet: Shift invariant
transformer network for side channel analysis. Cryptology ePrint Archive, Paper
2021/827 (2021), https://eprint.iacr.org/2021/827

18. Hamburg, M., Hermelink, J., Primas, R., Samardjiska, S., Schamberger, T., Streit,
S., Strieder, E., van Vredendaal, C.: Chosen ciphertext k-trace attacks on masked
CCA2 secure Kyber. IACR Transactions on Cryptographic Hardware and Embed-
ded Systems pp. 88–113 (2021)

19. Heinz, D., Kannwischer, M.J., Land, G., Pöppelmann, T., Schwabe, P., Sprenkels,
D.: First-order masked Kyber on ARM Cortex-M4. Cryptology ePrint Archive,
Paper 2022/058 (2022), https://eprint.iacr.org/2022/058

20. Hoffmann, C., Libert, B., Momin, C., Peters, T., Standaert, F.X.: Towards leakage-
resistant post-quantum CCA-secure public key encryption. Cryptology ePrint
Archive, Paper 2022/873 (2022), https://eprint.iacr.org/2022/873

21. Ji, Y., Wang, R., Ngo, K., Dubrova, E., Backlund, L.: A side-channel attack on a
hardware implementation of CRYSTALS-Kyber. Cryptology ePrint Archive, Paper
2022/1452 (2022), https://eprint.iacr.org/2022/1452

22. Kannwischer, M.J., Petri, R., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: Post-
quantum crypto library for the ARM Cortex-M4, https://github.com/mupq/pqm4

23. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
Security, Privacy, and Applied Cryptography Engineering. pp. 3–26. Springer In-
ternational Publishing, Cham (2016)

24. Moody, D.: Status Report on the Third Round of the NIST Post-Quantum Cryp-
tography Standardization Process. Nistir 8309 pp. 1–27 (2022), https://nvlpubs.
nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf

25. Ngo, K., Dubrova, E., Guo, Q., Johansson, T.: A side-channel attack on a masked
IND-CCA secure Saber KEM implementation. IACR Trans. on Cryptographic
Hardware and Embedded Systems pp. 676–707 (2021)

https://eprint.iacr.org/2022/110
https://eprint.iacr.org/2022/110
https://eprint.iacr.org/2022/
https://eprint.iacr.org/2021/827
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/873
https://eprint.iacr.org/2022/1452
https://github.com/mupq/pqm4
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf

13. ACKNOWLEDGMENTS 27

26. Oder, T., Schneider, T., Pöppelmann, T., Güneysu, T.: Practical CCA2-secure and
masked ring-LWE implementation. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems pp. 142–174 (2018)

27. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the perfor-
mance of convolutional neural networks for side-channel analysis. In: Chattopad-
hyay, A., Rebeiro, C., Yarom, Y. (eds.) Security, Privacy, and Applied Cryptogra-
phy Engineering. pp. 157–176. Springer International Publishing, Cham (2018)

28. Rajendran, G., Ravi, P., D’Anvers, J.P., Bhasin, S., Chattopadhyay, A.: Pushing
the limits of generic side-channel attacks on LWE-based KEMs-parallel PC ora-
cle attacks on Kyber KEM and beyond. IACR Trans. on Crypto. Hardware and
Embedded Systems pp. 418–446 (2023)

29. Ravi, P., Bhasin, S., Roy, S.S., Chattopadhyay, A.: On exploiting message leak-
age in (few) NIST PQC candidates for practical message recovery attacks. IEEE
Transactions on Information Forensics and Security (2021)

30. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic side-channel attacks on
cca-secure lattice-based PKE and KEMs. IACR Trans. on Cryptographic Hardware
and Embedded Systems. pp. 307–335 (2020)

31. Rodriguez, R.C., Bruguier, F., Valea, E., Benoit, P.: Correlation electromagnetic
analysis on an FPGA implementation of CRYSTALS-Kyber. Cryptology ePrint
Archive, Paper 2022/1361 (2022), https://eprint.iacr.org/2022/1361

32. Schneider, T., Paglialonga, C., Oder, T., Güneysu, T.: Efficiently masking bi-
nomial sampling at arbitrary orders for lattice-based crypto. In: Public-Key
Cryptography–PKC 2019: 22nd IACR International Conference on Practice and
Theory of Public-Key Cryptography, Beijing, China, April 14-17, 2019, Proceed-
ings, Part II 22. pp. 534–564. Springer (2019)

33. Shen, M., Cheng, C., Zhang, X., Guo, Q., Jiang, T.: Find the bad apples: An
efficient method for perfect key recovery under imperfect sca oracles–a case study
of kyber. IACR Transactions on Cryptographic Hardware and Embedded Systems
pp. 89–112 (2023)

34. Sim, B.Y., Kwon, J., Lee, J., Kim, I.J., Lee, T.H., Han, J., Yoon, H., Cho, J.,
Han, D.G.: Single-trace attacks on message encoding in lattice-based KEMs. IEEE
Access 8, 183175–183191 (2020)

35. Tsai, T.T., Huang, S.S., Tseng, Y.M., Chuang, Y.H., Hung, Y.H.: Leakage-resilient
certificate-based authenticated key exchange protocol. IEEE Open Journal of the
Computer Society 3, 137–148 (2022)

36. Ueno, R., Xagawa, K., Tanaka, Y., Ito, A., Takahashi, J., Homma, N.: Curse of re-
encryption: A generic power/EM analysis on post-quantum KEMs. IACR Trans.
on Crypt. Hardware and Embedded Systems pp. 296–322 (2022)

37. Wang, H., Forsmark, S., Brisfors, M., Dubrova, E.: Multi-source training deep
learning side-channel attacks. In: IEEE 50th International Symposium on Multiple-
Valued Logic (ISMVL’2020) (2020)

38. Wang, J., Cao, W., Chen, H., Li, H.: Practical side-channel attack on message
encoding in masked Kyber. In: 2022 IEEE International Conference on Trust, Se-
curity and Privacy in Computing and Communications (TrustCom). pp. 882–889.
IEEE (2022)

39. Wang, R., Ngo, K., Dubrova, E.: A message recovery attack on LWE/LWR-based
PKE/KEMs using amplitude-modulated EM emanations. In: International Conf.
on Information Security and Cryptology. pp. 450–471. Springer (2022)

40. Wang, R., Wang, H., Dubrova, E.: Far field EM side-channel attack on AES using
deep learning. In: Proceedings of the 4th ACM Workshop on Attacks and Solutions
in Hardware Security. pp. 35–44 (2020)

https://eprint.iacr.org/2022/1361

28 R. Wang et al.

41. Wu, L., Picek, S.: Remove some noise: On pre-processing of side-channel measure-
ments with autoencoders. IACR Transactions on Cryptographic Hardware and
Embedded Systems pp. 389–415 (2020)

42. Xu, Z., Pemberton, O.M., Roy, S.S., Oswald, D., Yao, W., Zheng, Z.: Magnifying
side-channel leakage of lattice-based cryptosystems with chosen ciphertexts: The
case study of Kyber. IEEE Transactions on Computers (2021)

43. Yajing, C., Yan, Y., Zhu, C., Guo, P.: Template attack of LWE/LWR-based
schemes with cyclic message rotation. Entropy 24(10) (2022)

	A Side-Channel Attack on a Bitsliced Higher-Order Masked CRYSTALS-Kyber Implementation

