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Abstract—The advent of quantum computers poses a serious
challenge to the security of cloud infrastructures and services, as
they can potentially break the existing public-key cryptosystems,
such as Rivest–Shamir–Adleman (RSA) and Elliptic Curve Cryp-
tography (ECC). Even though the gap between today’s quantum
computers and the threats they pose to current public-key cryp-
tography is large, the cloud landscape should act proactively and
initiate the transition to the post-quantum era as early as possible.
To comply with that, the U.S. government issued a National Secu-
rity Memorandum in May 2022 that mandated federal agencies
to migrate to post-quantum cryptosystems (PQC) by 2035. To
ensure the long-term security of cloud computing, it is imperative
to develop and deploy PQC resistant to quantum attacks. A
promising class of post-quantum cryptosystems is based on lattice
problems, which require polynomial arithmetic. In this paper, we
propose and implement a scalable number-theoretic transform
(NTT) architecture that significantly enhances the performance
of polynomial multiplication. Our proposed design exploits multi-
levels of parallelism to accelerate the NTT computation on
reconfigurable hardware. We use the high-level synthesis (HLS)
method to implement our design, which allows us to describe the
NTT algorithm in a high-level language and automatically gener-
ate optimized hardware code. HLS facilitates rapid prototyping
and enables us to explore different design spaces and trade-offs
on the hardware platforms. Our experimental results show that
our design achieves 11× speedup compared to the state-of-the-
art requiring only 14 clock cycles for an NTT computation over
a polynomial of degree 256. To demonstrate the applicability of
our design, we also present a coprocessor architecture for Kyber,
a key encapsulation mechanism (KEM) chosen by the NIST post-
quantum standardization process, that utilizes our scalable NTT
core.

Index Terms—cloud computing, cryptography, Kyber, NTT,
post-quantum cryptography

I. INTRODUCTION

Cloud computing has become an indispensable part of
modern society, offering various services and applications to
individuals and organizations. However, the security of cloud
computing is threatened by the advent of quantum computers,
which can potentially break the existing public-key cryptosys-
tems, such as Rivest–Shamir–Adleman (RSA) and Elliptic
Curve Cryptography (ECC) based on Shor’s algorithm [1].
Current public-key cryptography is far from being threatened
by today’s quantum computers, but the cloud landscape should

anticipate this challenge and initiate the transition to the post-
quantum era in a timely manner. In alignment with this goal,
the U.S. government issued a National Security Memorandum
in May 2022 that mandated federal agencies to migrate to
post-quantum cryptosystems (PQC) by 2035 to mitigate risks
to vulnerable cryptographic systems [2].

The long-term security of cloud computing against quantum
attacks depends on developing lattice-based cryptosystems,
which are among the most promising PQC algorithms that are
believed to be hard for both classical and quantum computers.
The American National Institute of Standards and Technology
(NIST) recognized this and selected CRYSTALS-KYBER
and CRYSTALS-Dilithium, two lattice-based algorithms, as
standards for post-quantum key-establishment and digital sig-
natures, respectively, in July 2022 [3]. Lattice-based cryptogra-
phy uses polynomial operations over a polynomial ring, which
can be implemented efficiently using number theoretic trans-
form (NTT) and inverse number theoretic transform (INTT).
These transforms can greatly reduce the computational com-
plexity of polynomial multiplication. NTT-based multiplica-
tion, which has a long history of use in various applications,
especially in signal processing, is also a performance chal-
lenge for lattice-based cryptography implementation. Hence,
many works have attempted to optimize NTT from different
aspects, such as resource utilization, performance, efficiency,
and energy consumption.

CRYSTALS-Kyber, a key encapsulation mechanism (KEM),
is based on module learning-with-errors problem (M-LWE)
in module lattices [4]. Kyber is notable for high-speed and
constant-time implementations. As the next generation of
the cryptosystem, Kyber is required to be implemented and
evaluated on various platforms and applications, especially
for cloud computing, which demands high performance and
security. However, Kyber has not received enough attention in
the cloudization framework. Therefore, exploring the hardware
design of Kyber is necessary to exploit the advantages of
FPGA-based architectures, such as parallelism, which can
improve the system performance.

Hardware accelerators can be designed using two main
approaches. RTL uses low-level languages such as VHDL or



Verilog to design a hardware architecture, which can offer
more control and optimization, but it requires a longer time
and a hand-optimized design that may sacrifice flexibility. On
the other hand, high-level synthesis (HLS) uses high-level
languages, which can offer flexibility and a shorter design
cycle, but it may not achieve the best efficiency.

In this paper, we use the HLS approach to implement a
pure hardware design of NTT architecture over the cloud,
which can be faster and more flexible than other methods.
HLS allows us to design a hardware architecture using high-
level specifications, which can be mapped to FPGA and ASIC
platforms with some optimizations. HLS also enables us to
leverage the cloud resources to provide a scalable and secure
environment for fast deploying a high-performance Kyber
architecture.

A. Related Work

A flexible and scalable NTT architecture is presented in
[5] targeting homomorphic encryption applications and post-
quantum digital signatures. Their design can be tuned for dif-
ferent arithmetic configurations and the number of processing
elements. Mert et. al. [6] present a flexible design for the NTT
using an HLS design approach targeted on a Virtex-7 FPGA
synthesized by Xilinx Vivado HLS tool. The paper reports that
the HLS design requires on average 4.4 times more resources
and 22.5 times more latency than the RTL design.

There are prominent works to design multi-core NTT archi-
tecture in the literature. Xing et. al. [7] propose an architecture
utilizing 4 butterfly cores running in parallel on a Zync-
7000 platform. Their design requires 2,688 cycles to perform
an NTT with the NewHope parameter set. A 2×2 butterfly
configuration is presented in [8], [9], and [10]. Between
these works, Bisheh-Niasar et. al. [10] achieve a high-speed
NTT architecture requiring 1,591 cycles for a polynomial
NTT of degree 1,024 on an Artix-7 FPGA by merging NTT
layers. This architecture requires 324 cycles for the Kyber
parameter set with a polynomial of degree 256. In [11], a
3-layer merged NTT algorithm for the NewHope parameter
set is implemented using RISC-V ISA features. However, the
authors argue that applying this algorithm to Kyber would not
yield any efficiency gains.

The pure hardware architectures of Kyber are proposed in
[9], [10], [12]–[16]. One of the first initiatives of post-quantum
acceleration using HLS was [12]. Furthermore, Nguyen et al.
[9] compare the HLS- and RTL-based design methodologies
for NTT and Kyber. They integrate the HLS implementation
into the Xilinx SDSoC environment, showing that an HLS
implementation obtained by modeling a block diagram is
typically much better than an implementation obtained by
using design space exploration. An instruction-set accelerator
for Kyber is presented in [13] to design a flexible hardware
architecture using a set of customized high-level instruction
codes. The authors in [15] present a polynomial-vector multi-
plication unit taking advantage of polynomial vector structure
in the Kyber. A resource-efficient modular reduction algorithm
for Kyber is also proposed in [16].

B. Our Contributions

To the best of our knowledge, this work is the first hardware
implementation of Kyber that focus on the cloud platform. Our
work addresses performance, complexity, and design period
challenges by proposing a novel framework for PQC cloudiza-
tion. Our framework aims to design and implement a scalable
and highly parallel framework based on NTT/INTT that can
accelerate Kyber and other NTT/INTT-based PQC algorithms
in cloud infrastructures and services. Our framework consists
of a modular and flexible architecture that can support different
NTT/INTT configurations. Our results show that our proposed
framework using various optimization techniques, including
multi-levels of parallelism, designing reconfigurable cores,
and implementing interleaved and pipelined architecture, can
achieve up to 11× speedup compared to existing NTT archi-
tectures while maintaining high security and scalability. Our
proposed framework can facilitate the adoption and deploy-
ment of PQC in cloud computing, and enhance the security
and efficiency of cloud services and applications in the post-
quantum era.

The rest of this paper is organized as follows: Section 2 pro-
vides some background information on NTT-based polynomial
multiplication and its importance for PQC algorithms such as
Kyber. Section 3 describes our proposed PQC cloudization
framework based on NTT/INTT in detail. Section 4 presents
our experimental results and analysis on an FPGA device and
cloud platform. Section 5 concludes the paper and suggests
some future directions for our research.

II. PRELIMINARIES

A. Notations

Let q be a prime number and Zq be the ring of integers
modulo q. We define the ring of polynomials for some integer
N as Rq = Zq[X]/(XN + 1), where the polynomials have n
coefficients, each modulo q. We use regular font lowercase
letters (a) to represent single polynomials, bold lowercase
letters (a) to represent polynomial vectors, and bold uppercase
letters (A) to represent a matrix of polynomials. Besides, their
representations in the NTT domain are referred by (â), (â) and
(Â), respectively. Let a and b be polynomial vectors in Rq .
We use a ◦ b ∈ Rq to denote coefficient-wise multiplication
of their polynomials. The ◦ product of a matrix and a vector
is the natural extension of coefficient-wise multiplication of
their polynomial vectors.

B. Number Theoretic Transform

The naive method of polynomial multiplication has O(n2)
complexity, but it can be speeded up by using the Number
Theoretic Transform. To multiply two polynomials efficiently
in lattice-based cryptography, the polynomial rings of the form
Rq = Zq[X]/(XN +1) can be used, where (XN +1) enables
fast polynomial division. This transform maps polynomials to
the NTT domain at the cost of O(n · log n) where multiplying
their coefficients results in a polynomial that corresponds to
the product of the original polynomials modulo q and (XN +



1). Coefficient-wise multiplication has a complexity of O(n).
Hence, a total time complexity would be O(n · log n).

The NTT is a generalization of a fast Fourier transform
(FFT) defined in a finite field. Suppose f is a polynomial of
degree n with coefficients in Zq , as follows:

f =
∑n−1

i=0
fiX

i (1)

FFT uses the twiddle factor ωn n-th root of unity of form
e2πj/n, while NTT has ωn ∈ Zq such that ωn be a primitive
n-th root of unity modulo q, i.e. ωn

n = 1 mod q. The NTT
transforms f , i.e., f̂ = NTT (f), is computed by Eq. 2 for
each i ∈ {0, 1, ..., n− 1}.

f̂i =
∑n−1

j=0
fjω

ij
n mod q (2)

The INTT recovers f from f̂ by Eq. 3 as follows:

fi =
∑n−1

j=0
f̂jω

−ij
n mod q (3)

Hence, the multiplication between two polynomials f and
g using NTT can be performed as follows:

f.g = INTT (NTT (f) ◦NTT (g)) (4)

NTT algorithm is shown in Algorithm 1. Cooley-Tukey
(CT) and Gentleman-Sande (GS) butterfly configurations, as
illustrated in Fig. 1, can be used to facilitate NTT/INTT
computation. The bit-reverse function reverses the bits of the
coefficient index. However, the bit-reverse permutation can be
skipped by using CT butterfly for NTT and GS for INTT [17].
Fig. 2 shows the data flow for an NTT computation of an 8-
point polynomial using CT butterfly operation.

Algorithm 1 In-Place NTT Algorithm Based on Cooley-Tukey
Butterfly [18]
Require: a(x) ∈ Rq, ωn ∈ Zq, n = 2l

Ensure: â(x) = NTT (a) ∈ Rq

1: â← bit−reverse(a)
2: for i from 1 to l do
3: m = 2l−i

4: for j from 0 to 2i−1 − 1 do
5: W ← ω1+j

n

6: for k from 0 to m− 1 do
7: U ← â[2jm+ k]
8: V ← â[2jm+ k +m] mod q
9: T ← V ·W

10: â[2jm+ k] = U + T mod q
11: â[2jm+ k +m] = U − T mod q
12: end for
13: end for
14: end for
15: return â(x) ∈ Rq
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- ×
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Fig. 1. Different Butterfly Configurations
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Fig. 2. Data flow of 8-point CT butterfly configuration of NTT

C. Kyber Algorithm

Kyber is an IND-CCA2-secure key encapsulation scheme
[19]. It has three principal algorithms: key generation, encryp-
tion, and decryption. The algorithm samples s from B, and A
from U during key generation, where B and U are binomial
and uniform distributions, respectively. It computes the public
key pk as A · s + e in the NTT domain, where e is noise.
In encryption, the algorithm encodes m as a polynomial and
samples r from B. It computes v = pk · r+m and u = A · r
in the normal domain. Then, it compresses u and v to form
ciphertext ct. In decryption, the algorithm decompresses u and
v and decodes m from v − sk · u in the NTT domain.

All polynomials in Kyber have 256 coefficients over k-
dimensional vectors and prime modulus q = 3329, where
k = 2, 3, 4 denotes the three security levels, including Kyber-
512 with 128-bit security, Kyber-768 with 192-bit security,
and Kyber-1024 with 256-bit security. Kyber uses these poly-
nomial functions to construct a CPA-secure PKE scheme and
applies a modified Fujisaki-Okamoto transformation [20] to
obtain a CCA-secure KEM.

A coefficient-wise multiplication in Kyber includes 128
modular polynomial multiplications of degree 2, such
that: (â2i + â2i+1X) · (b̂2i + b̂2i+1X) = (â2ib̂2i +

â2i+1b̂2i+1ω
2br7(i)+1
n )+(â2ib̂2i+1+ â2i+1b̂2i)X mod (X2−

ω
2br7(i)+1
n ), where br7 is the bit reversal function.

III. PROPOSED ALGORITHM AND ARCHITECTURE

The most computationally intensive low-level operation in
lattices is NTT. By transforming polynomials and utilizing the
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Fig. 3. Multi-level optimization of the accelerated NTT design: (a) the NTT operations in three levels, including butterfly core, stage, and polynomial levels,
and (b) the proposed NTT architecture using the pipelined poly, interleaved stage architecture, and reconfigurable butterfly core.

convolution theorem, we can achieve more efficient polyno-
mial multiplication. In this section, We first describe our pro-
posed scalable NTT design and then our Kyber architecture.
Note that we use the term NTT to refer to both NTT and INTT
operations for simplicity.

A. Proposed Scalable NTT Architecture

An NTT operation can be regarded as an iterative operation
by applying a sequence of butterfly operations on the input
polynomial coefficients. A butterfly operation is an arithmetic
operation that combines two coefficients to obtain two outputs.
By repeating this process for different pairs of coefficients,
the NTT operation can be computed in a logarithmic number
of steps. Fig. 3 presents the high-level architecture of our
proposed NTT to take advantage of FPGA-based architectural
designs exploiting the multi-level of parallelism. The parallel
architecture ultimately leads to improvements in the perfor-
mance and efficiency of the computation. As one can see, the
required operations are categorized into three levels, including
butterfly core level, stage level, and polynomial level from
inner to outer, respectively. We optimize each level with a
different technique as follows:

1) Butterfly Core Level: A reconfigurable butterfly core is
proposed to support both CT and GS operations, which are
needed for NTT and INTT respectively, in order to employ
resource-sharing techniques and avoid the bit-reverse cost
in polynomial multiplication. To perform an NTT over a
polynomial of degree n, n/2 independent butterfly operations
per stage is required. These butterfly cores can be performed
parallel to accelerate NTT operations; however, that would be
challenging due to the memory access pattern, particularly, for
resource-constrained platforms.

Our proposed design can be configured to set the required
number of butterfly cores. This flexibility is offered by the
utilization of HLS techniques. With this strategy, we involve
the users in the decision-making for the trade-offs between

the required resources and performance based on the target
applications.

The proposed butterfly core employs three registers corre-
sponding to each required input and also buffers the results in
two output registers. Hence, the latency of the butterfly core,
presented by tcore, is 2 cycles.

2) Stage Level: The NTT computation of a polynomial of
degree n consists of log n stages, shown by nstage, each of
which requires the output of the preceding stage as its input.
Therefore, memory access is the most crucial bottleneck in
stage level implementation because the memory access pattern
varies for each stage. However, NTT has an aligned access
pattern, which means the number of consecutive accesses to
the polynomial remains constant.

The throughput of the stage level is proportional to the
number of butterfly cores. Let ncore be the number of imple-
mented butterfly cores in the stage level. Given full utilization
of butterfly cores, 2ncore coefficients are transformed in tcore.
To design an interleaved stage architecture, we utilize parallel
register banks embedded into the butterfly core which avoids
memory access limitations during stage iterations. Since all
butterfly arithmetic is modular mod q, the total memory size
to buffer these 2ncore coefficients in the stage architecture
would be 2ncore×log q bits. That amount would be also equal
to the throughput of this level. Simultaneously, the reordering
operation needs to be performed at the stage level. We utilize
an optimal multiplexer structure to pass the coefficients to the
next stage. However, these multiplexers result in increasing
resource consumption due to the route and placement com-
plexity of the design.

To reduce the required hardware resources, We reuse the
stage architecture to compute each stage. Hence, we feed the
polynomial coefficients into butterfly cores in the first stage,
and the results will be stored after tstage cycles. Eq. 5 shows



Rejection

CBD

Keccak f[1600]
seed

Poly. 
Mult.

sk

pk

Keygen

NTT
n, q, k

Public 

Parameters

q

k

n

Rejection

CBD

Keccak f[1600]
coin

Poly. 

Mult.

Encaps

NTT

Poly. 

Mult.

INTT

INTT
pk

ct
Compress

Decompress +
message

H
ss

NTT

Decompress
ct

Poly. 

Mult.

ss

Decaps

INTT

sk

-

Compress H

Alice

Bob

pkAlice

ct

q

k

n

q

k

n

Fig. 4. High-level Kyber architecture, including our proposed scalable NTT core, coefficient-wise polynomial multiplier, Keccak-f [1600], CBD sampler,
rejection sampler, and compress/decompress units (Some units are duplicated for the sake of data flow clarity, but only one set of units is implemented to
support KEM operations, i.e., Keygen, Encaps, and Decaps operations.)

the required latency for each stage iteration:

tstage =
n · tcore
2ncore

(5)

Then, the coefficients stored in register banks will be fed
again into butterfly cores in the second stage, and so on. Hence,
the computation of an NTT takes tNTT based on Eq. 6:

tNTT = nstage × tstage =
n · log n · tcore

2ncore
(6)

3) Polynomial Level: Most of the lattice-based application
requires performing NTT computation of a vector/matrix of
polynomials. These operations can be performed indepen-
dently. While most existing implementations use an iterative
process to compute npoly polynomials, we propose an optimal
pipelined architecture to enhance our design from a utilization
factor perspective. Using the pipelined design ensures we fully
utilize stage architecture by feeding each polynomial at the last
stage of the previous one. Hence, NTT computation of npoly

polynomials can be performed based on Eq. 7:

tpoly = npoly × tNTT =
npoly · n · log n · tcore

2ncore
(7)

B. Proposed Kyber Architecture

The high-level data flow of Kyber architecture is pre-
sented in Fig. 4. This architecture includes NTT operation,
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Fig. 5. Implementation results of our proposed NTT core and comparison
with previous works in terms of throughput

coefficient-wise polynomial multiplier, Keccak-f [1600], bi-
nomial centered distribution (CBD), rejection sampler, and
compress/decompress units. Due to the similarity of required
computation in Keygen, Encaps, and Decaps operations, we
implement only one set of units to support all these three op-
erations. Using these operations, Alice and Bob can generate a
shared secret key, shown by ss. Based on Kyber specification,
four different configurations of Keccak are required, including
SHA3-256, SHA3-512, SHAKE-128, and SHAKE-256. These
functions are implemented using a configurable Keccak core
providing 1600-bit output in 24 cycles in 64-bit data width.



TABLE I
IMPLEMENTATION RESULTS OF OUR PROPOSED KYBER-512 ARCHITECTURE AND COMPARISON WITH PREVIOUS WORKS

work Platfrom Design Resources Freq Keygen Encaps Decaps
[MHz] [CCs] [CCs] [CCs]

[12] Virtex-7 HLS 1,977,896 LUTs/ 194,126 FFs 67 - 31,669 43,018
[14] Artix-7 RTL 7,412 LUTs/ 4,644 FF/ 2,126 Slices/ 2 DSPs/ 3 BRAMs 161 3,768 5,079 6,668
[13] Artix-7 RTL 18,000 LUTs/ 5,000 FFs/ 6 DSPs/ 15 BRAMs 161 4,000 7,000 10,000
[15] Artix-7 RTL 9,347 LUTs/ 8,186 FFs/ 4 DSPs/ 6 BRAMs 220 2,100 3,300 4,500
[10] Artix-7 RTL 10,502 LUTs/ 9,859 FFs/ 3,547 Slices/ 8 DSPs/ 13 BRAMs 200 1,882 2,446 3,754

This work (64 core) Stratix-10 HLS 204,474 ALUTs/ 118,654 ALMs/ 78 DSPs/ 1,860 M20Ks 241 1,793 2,904 3,973
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Fig. 6. Implementation results of our proposed Kyber-512 architecture and comparison with previous works in terms of performance

Our proposed NTT core is embedded into the architecture
to speed up Kyber computation. Since the number of butter-
fly cores is configurable, the performance of Kyber can be
adjusted based on the application requirement. For example,
we implement two different parameter sets for the NTT core,
i.e., ncore = 64, 128. Furthermore, to speed up the polynomial
multiplication in the case of Kyber computation, we perform
NTT separately for odd and even coefficients due to the Kyber
NTT definition.

IV. IMPLEMENTATION RESULTS AND
COMPARISON

Our proposed architecture is implemented on an Intel
Stratix-10 FPGA device. The diversity of platforms and uti-
lized resources used in the implementations complicate a fair
and meaningful discussion or comparison of different designs
and implementations with previous work. However, we attempt
to put our results in the context of existing implementations
to provide the reader with a quick overview of other designs
and architectures.

A. Implementation Results of NTT Core

Fig. 5 depicts the implementation results of our proposed
scalable NTT core for a polynomial of degree 256, i.e., n =
256. To have a fair comparison, we report the performance
in terms of throughput in MB/s to consider different datapath
widths.

We set ncore = 128 in our implementation that results in
tstage = 2 cycles based on Eq. 5. Hence, an NTT computation

takes only 14 cycles, i.e., tNTT = 14 based on Eq. 6.
The results show our proposed NTT architecture achieves a
throughput of 11,771 MB/s using 128 butterfly cores, while
each core provides 92 MB/s on average. Our proposed HLS-
based butterfly core performance results are comparable to the
hand-optimized core proposed in [15], while can outperforms
other architectures in [10], [13], and [14]. Compared to HLS-
based NTT design in [6], ours achieves almost 3× speedup
per core.

Taking advantage of an optimized and scalable NTT core
with multi-level parallelism, our proposed design shows a
significant improvement. We achieve 11× more throughput at
the cost of around 4× resources compared to [6]. Hence, our
architecture approximately improves 63% efficiency for NTT
computation. For hand-optimized RTL design, the most high-
performance design is presented by Bisheh-Niasar et. al. in
[10] with a merged NTT layer, while our proposed architecture
outperforms that design by almost 46× speedup.

B. Implementation Results of Kyber

Table I lists the detailed resource consumption and perfor-
mance results for Kyber-512. We also present our results in
Fig. 6 to visualize our performance results and comparison
to state-of-the-art implementations in terms of the number of
operation execution per second. Our proposed design employ-
ing 64 butterfly cores performs Keygen, Encaps, and Decaps
operations in 7.4, 12.0, and 16.4 us, respectively. By increasing
the number of cores to 128 butterfly cores, these operations
take 7.0, 11.6, and 15.6 us, respectively.



TABLE II
DESIGN EFFORT AND COMPLEXITY RESULTS OF OUR PROPOSED ARCHITECTURE AND COMPARISON WITH PREVIOUS WORKS

Architecture Design method Man-Hour Consideration

NTT

Manual RTL design [6] 450 Suffered of the re-design requirement for the memory structure and the control unit for changing
polynomial degree and the coefficient size.

RISC-V [6] 290 Long environment setup process to build the RISC-V tool-chains and simulation environment,
and limitation of the software platform.

HLS [6] 60 Limited capacities for exploring larger design space due to memory partitioning issue (manual
memory partitioning may be required).

Ours 80 Provided a unique degree of flexibility that can be readily adjusted for various applications for
large-scale deployment of privacy-preserving computation in clouds.

Kyber
Manual RTL design [13] 410 Utilized 2 butterfly cores
Manual RTL design [10] 550 Utilized 4 butterfly cores
Ours 320 Scalable architecture using up to 128 butterfly cores

As the number of utilized butterfly cores increases from 64
to 128, the latency improves around 3− 6% at the expense of
more hardware resources. This result also presents an analysis
of the trade-off between resource consumption and time per-
formance for scaling the butterfly cores. Fig. 6 indicates that
scaling the butterfly cores to a higher number would reduce
the NTT operation time, but increase the hardware resource
usage. It also implies that this trade-off would vary depending
on the application constraints, such as the time-criticality.

The work in [10] presents a high-speed architecture of
Kyber using 4 butterfly cores in 2×2 arrangement using hand-
optimized RTL method. Their design performs 32,258 KEMs
per second, including Encaps and Decaps operations assuming
Keygen is performed offline. Our proposed Kyber architecture
with 128 cores executes 36,575 KEMs per second while
improving the performance by 33%, 5%, and 20% for Keygen,
Encaps, and Decaps operations, respectively. However, this
improvement is achieved at the cost of significant resource
consumption due to using the HLS method. Next, we discuss
the detailed comparison with other HLS implementations, fol-
lowed by a discussion about the design effort and complexity
of our scalable design compared to manual RTL coding.

Although our architecture requires more resources com-
pared to [10]. [15], and [13], we list the resource and perfor-
mance results of Basu et. al. [12] as another HLS-based design
to have a better comparison. As one can see, the required
resources in terms of LUT and FF are reduced, while the
performance is improved by a factor of 38×. Note that each
logic in Artix-7 and Virtex-7 slice contains four 6-input LUTs
and eight flip-flops. However, each ALM contains a variety
of LUT-based resources that can be divided between two
combinational adaptive LUTs (ALUTs), a two-bit full adder,
and four registers.

C. Design Effort and Complexity

HLS needs more resources and generates larger architecture
than manual RTL coding, especially for complex designs
that involve memory access. However, HLS also offers some
advantages such as faster development time, a higher level of
abstraction, and easier verification.

Fig. 7 depicts the conceptual difference in FPGA design
flow using RTL and HLS methods. Although the software

Software model

Hardware Design

Optimization

Verification

Software model

Hardware Design

Optimization

Verification

RTL Design Flow

HLS Design Flow

Time

Fig. 7. FPGA design flow comparison in terms of design effort and complexity
between RTL and HLS methods

model is an independent process from the implementation
method, HLS can significantly reduce the required time for
the hardware design, development, and verification processes.
It also provides more flexibility to have a scalable architecture.
For example, changing the butterfly cores in NTT operation is
very challenging in manual RTL coding since it needs to re-
design of the memory structure and the control unit of the NTT
architecture. However, HLS provides a flexible NTT generator
design that takes a few minutes to adjust the parameters and
synthesize the design with desired parameter set.

We report the development time of our proposed NTT de-
sign and Kyber architecture in Table II in terms of man-hours.
Mert et. al. in [6] also list the required time for three different
development methods, including manual RTL design, RISC-V-
based architecture, and HLS. As one can see, HLS takes less
time to develop, i.e., 60-80 man-hours, to explore different
optimizations and provide a parametric design framework.
However, as mentioned in [6], their framework had a limited
capacity to explore design space with more than 8 cores, or
when the polynomial has a degree greater than 1,024.

We also report the design effort for developing an entire Ky-
ber architecture supporting all KEM operations. The authors in
[10] and [13] provided us with their development time. As one
can see, the Kyber design with 2 butterfly cores takes 410 man-
hours. However, by increasing the number of cores to 4, the
design is more complex and takes 550 man-hours. In contrast,
our scalable design takes 320 man-hours providing flexibility



to users for the trade-offs between the required resources and
performance.

V. CONCLUSION

This paper proposes an HLS approach to design a pure
hardware NTT architecture over the cloud, which can offer
more speed and flexibility. HLS enables us to use high-level
imperative programming to design a hardware architecture
that can be optimized and mapped to FPGA and ASIC
platforms. Our proposed framework also allows us to utilize
the scalable NTT architecture to develop a high-performance
Kyber architecture targeting cloud services. To the best of our
knowledge, this is the first work that implements Kyber on
hardware for the cloud platform. We tackle the challenges of
performance, complexity, and design time by introducing a
new framework for PQC cloudization. Our framework aims to
design and implement a scalable and highly parallel framework
based on NTT/INTT that can speed up lattice-based PQC
algorithms, particularly Kyber KEM. Our results show that our
proposed framework can achieve up to 11× speedup compared
to existing NTT architectures while keeping high security and
scalability. Our implementation is constant-time by design;
however, we aim to investigate the possibility of side-channel
analysis attacks in our future work, as well as optimize other
units to be closer to RTL implementations from a resource
usage point of view.
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