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Abstract—With the growing number of decentralized finance (DeFi)
applications, transaction fairness in blockchains has gained much
research interest. As a broad concept in distributed systems and
blockchains, fairness has been used in different contexts, varying from
ones related to the liveness of the system to ones that focus on the
received order of transactions. In this work, we revisit the fairness
definitions and find that existing fairness definitions are not adapted to
blockchains with multiple DApps. We then provide a more generic one
called verifiable fairness. Compared with prior definitions, our notion has
two unique features: (i) it relaxes the ordering rules to a predicate; (ii)
it enables users to independently verify if their transactions comply with
the predicate for concrete applications. We also provide a scheme that
achieves verifiable fairness, leveraging trusted hardware. Unlike prior
works that usually design a dedicated consensus protocol to achieve
fairness, our scheme can be integrated with any blockchain system.
Our evaluation results on Amazon EC2 using up to 120 instances
across different regions show that our construction imposes only minimal
overhead on existing blockchain systems.

1 INTRODUCTION

Conventional consensus protocols [1], [2] in
blockchains only guarantee that honest nodes reach
an agreement on the order of transactions but do not
care about the actual ordering of the transactions. With
the growing interest in decentralized finance (DeFi),
fairness of the transactions has gained research interest
in recent years [3]-[8]. In DeFi applications, the lack of
transaction fairness may lead to severe consequences,
such as Maximal Extractable Value [9], transaction
censorship [10], and consensus destabilization [11]
(more damages refer to Appendix F).

Fairness in distributed systems and blockchains is a
broad concept and a long-standing topic. It has been
used in different contexts in the literature. For example,
in 1978, Lamport first introduced causal order [12],
where it claimed that a transaction that could have
caused another transaction should always be committed
first. In 2001, Cachin, Kursawe, Petzold, and Shoup
introduced block delivery fairness. The notion requires
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that a transaction seen by a sufficiently large fraction
of honest nodes will eventually be committed. This
definition is directly related to the liveness of the protocol
and is often embedded in the security properties of the
protocol. Recently, in 2020, Kelkhar, Zhang, Goldfeder,
and Jules introduced order fairness. It shows that the
ordering of transactions received by a sufficiently large
fraction of honest nodes should be preserved.

It is evident that the above definitions share two
common principles. (1) The outcomes of each definition
are deterministic, meaning that the ordering results can
be verified by any honest nodes. (2) Each definition
is distinctly crafted, with a precise focus on a specific
consensus protocol or distributed system. For example,
consider a scenario where block delivery is established as
a fundamental rule, perceived as equitable. In this case,
every transaction within the blockchain would adhere
to this predetermined sequence. This method inherently
relies on the premise that a single definition can be
universally applicable across the entire system.

Challenges in applying existing definitions to
blockchains. Existing definitions face difficulties when
implemented in real-world blockchain systems. Firstly,
the ordering results in blockchain systems may not
always be deterministic, and thus not verifiable. As
summarized in the result verifiability column in Table 1,
the order of transactions in 87% of our reviewed
projects can not be verified. For instance, Dogecoin,
Avalanche, and Monero order the transactions based
on their age, i.e., the time a transaction enters a node’s
mempool. This makes it extremely challenging (if not
impossible) to verify the ordering. Secondly, in the
real-world setting, a blockchain may support a variety
of applications, each with distinct transaction ordering
needs. Take Ethereum as an example, where numerous
diverse contract applications coexist, each demanding
unique transaction sequencing. Specifically, in DeFi
applications, the order of transactions is crucial due to
the timing sensitivity of financial operations. Conversely,
DID (Decentralized Identity) applications can operate
with a more flexible ordering, like causal order, which
prioritizes the relationships between transactions rather
than their strict sequence. Therefore, it is challenging to
devise a single fairness rule that can adequately satisfy
the varied requirements of all these applications.



TABLE 1: Transaction ordering in mainstream blockchain
projects. TxFee orders the transactions according to the paid
transaction fees. Age orders transactions based on the time
they enter the mempool, sorted from the oldest to the
newest. Locality prioritize transactions with local addresses.
Address orders transactions by addresses; the transactions from
the same address are ordered randomly. Nonce denotes a
transaction counter for each sender’s address. TxHash orders
transactions by their hash values. Valid time refers to the period
during which transactions remain valid; the transactions are
discarded after the timer expires.

Project Sequencing rules On‘!er Ver?fy I'{esu!t.
algorithm algorithm  verifiability
Bitcoin Core TxFee miner.cpp:292 N/A X
Ethereum (Geth) Locality + TxFee + Nonce worker.go:1056 N/A X
Ripple Address + Nonce + TxHash ~ CanonicalTXSet.cpp:25 Code v
Fgecoin Age + TxFee miner.cpp:425, 555 N/A X
Substrate TxFee + Valid time ready.rs:54 N/A X
LiteCoin TxFee miner.cpp:351 N/A X
Avalanche Age mempool.go:115, 226 N/A X
Monero TxFee + Age tx_pool.cpp:1484 N/A x
Tendermint Priority + Age mempool.go:297 N/A X
Ethereum Classic Locality + TxFee + Nonce worker.go:1074 N/A x
Stellar Address(random) + Nonce TxSetFrame.cpp: 408 N/A X
Bitcoin Unlimited TxHash miner.cpp: 268 Code 4
Go-Algorand Age transactionPool.go N/A X
Lotus Locality + TxFee selection.go: 42 N/A x
Thor TxFee tx_object.go: 95 N/A X

Our fairness definition. Fundamentally, the challenges
mentioned above stem from the inapplicability of pre-
set deterministic rules to specific applications. A natural
solution is to allow each application to define its own
ordering rules. This leads to our concept of verifiable
fairness. Our definition does not aim to provide a new
fairness rule. Instead, we introduce one feature unique to
the fairness definition. First, our definition relaxes the
sequencing rules that are embedded in prior fairness
definitions. We generalize the sequencing rules to a
predicate that is known to the public. Second, It empowers
conventional fairness definitions with a new verifiability
feature, where nodes can individually verify whether
their transactions comply with the predicate. Under
this definition, we can build one blockchain system
accommodating the following scenarios: User A defines
a time-reversed order for their DeFi application; User B
defines a fee-based order for their DeFi application; User
C defines an age-based order for their DeFi application.
Each user — A, B, and C- can learn independently
whether their transactions adhere to their specified rules
in their DeFis.

Our fairness solution. We propose a solution that
satisfies our new fairness definition. Instead of being a
tailored solution that modifies the underlying consensus
protocol, our method is a dedicated ordering protocol
that can be integrated with any blockchain system.
At the heart of our solution lies the utilization of
a trusted execution environment (TEE) [13]-[15] to
securely operate the mempool. Here, running a mempool
inside a TEE brings several immediate benefits. First,

sequencing algorithms are coded into TEEs, making
them compatible with arbitrary rules. Second, our
solution ensures that once a transaction enters the TEE,
it is faithfully ordered according to predefined rules
no matter who defines them. Third, transactions are
encrypted and not revealed before they are proposed in
a block, preventing front-running attacks at the stage of
transaction submission.

While using a TEE-based mempool seems to be an
intriguing idea to address the fairness issues, there are
still several technical challenges when building a fully-
fledged solution. Indeed, the TEE-based mempool is
maintained by a blockchain node, also known as a TEE
host. The TEE host is not assumed to be trustworthy
and can behave arbitrarily. A malicious TEE host can
still manipulate the order before transactions enter the
mempool or simply discard the transactions. In fact,
such behaviors cannot even be verified. We address
the challenges by making the TEE host accountable for
its misbehavior. In particular, by requesting a receipt
from the TEE host, with overwhelming probability, a
transaction sender can learn whether the TEE host
misbehaves. We provide formal proof of our solution
under the assumption that TEEs are trusted.

Practical contribution. We implement a functional
prototype by leveraging the mainstream open-source
project Go Ethereum (Geth) and OpenSGX [16]. To
gauge the effectiveness of our solution, we evaluate its
throughput and latency and compare it with Geth. Our
evaluation with up to 120 nodes (deployed worldwide
on AWS) shows that our TEE-based construction is
only marginally slower than Geth. In particular, with 20
nodes, the throughput of our system is only 7% lower
than that of Geth. With 120 nodes, the throughput of
our system is 27% lower than that of Geth.

2 SYSTEM MODEL AND PRELIMINARIES

Blockchain system model. We consider a blockchain
system, an append-only ledger maintained by a group
of nodes (also called miners or replicas). Let N' =
{Po,P1,P2;---,P.—1, P, } be the set of 141 nodes. A typical
blockchain system works as follows. Initially, a client
(e.g., denoted as c) creates a transaction ¢tz and sends
it to a blockchain node p; (0 <i<:). Upon receiving
a transaction tz, p; adds it to its local mempool P;,
where the mempool is a buffer of pending transactions.
Then, nodes reach an agreement on the order of the
transactions via a consensus protocol. In each epoch
of the consensus protocol, nodes agree on one block of
transactions. The block is usually proposed by some
node. When the node creates a block proposer, it selects a
set of transactions from its mempool and packs them into
the block. After an agreement is reached, the transaction
is committed on-chain.

We assume a computationally bounded adversary that
can corrupt a fraction of nodes. A corrupt node behaves
arbitrarily (also known as Byzantine failures [17]). We
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also assume that all the nodes are rational: they seek to
maximize their profits. We assume the blockchain system
follows the standard assumption [18], which satisfies
consistency and liveness. Generally, consistency ensures
that honest nodes reach an agreement on the order of the
transactions committed on-chain. The liveness property
guarantees that all honest nodes will eventually reach an
agreement on a valid transaction.

Trusted hardware. Trusted hardware is a broad term.
This paper primarily focuses on the Trusted Execution
Environment (TEE), a specialized and isolated hardware
designed specifically for safeguarding sensitive code and
data. Many TEE products such as Intel Software Guard
Extensions (SGX) [13], ARM TrustZone [14], RISC-V
Keystone [15] have been released. In this paper, we
use Intel SGX as the TEE instance to illustrate TEE’s
key features: runtime isolation and attestation. Runtime
isolation guarantees that the code execution is isolated
from untrusted memories, while attestation is to prove
that the application is running on trusted hardware. To
capture the main functionalities of TEEs, we borrow
the notion provided in prior works [19] and define the
procedure of running algorithms within TEEs as a black-
box. In particular, a TEE host first sets up a TEE and loads
a program prgm into an enclave (secure and isolated
execution unit). The program securely operates within
such protected enclaves, ensuring the integrity of the
execution. The enclave produces verifiable attestation
to provide tangible evidence of the executed results.
Subsequently, an external party can engage with an
attestation service to validate the origin and authenticity
of the generated outcomes. The abstraction for our
trusted hardware HW is defined as follows.

— HW.Setup(1*): It takes as input a secure parameter
A. Upon setup, HW generates a key pair (skquote,
vkquote) for signing and verifying quotes, and public
parameters pms for initializing enclaves.

— HW.Init(pms, prgm): It takes as input public
parameters pms, a program prgm and outputs a
program handle hdi. The handle corresponds to a
running instance of the program. The instance state is
stored by trusted hardware and can be retrieved via
the handle.

— HW.Run(hdl, in): It runs the underlying instance of the
program prgm via the handle hdl with an input in and
outputs the execution result out.

— HW.Run&Quote(hdl, in): It runs the program based on
the handle hdl and input in and outputs a quote =
(hdl, tagprgm, in,out,0), in which o is a signature
generated by skqyote (regarding hdl), which proves that
the result out is produced by hdl whose underlying
program is prgm (identified by tagpem), with input in.

— HW.VerifyQuote(guote): This is the quote verification
algorithm. It verifies whether a given quote is valid
by outputting b, where b € {0,1}. Here, 1 is
on success or 0, and vice versa. In practice, this
algorithm usually requires additional service (e.g., Intel

Attestation Server for SGX users), and here we omit it

for simplicity.

We assume HW achieves execution integrity and
remote-attestation-unforgeability (formal definitions are
provided in Appendix B). Informally speaking, the
execution integrity property ensures that a correct
program is executed. Meanwhile, the remote-attestation-
unforgeability property is achieved if an adversary
cannot (equiv. with a negligible probability) forge a
quote passing the verification. We assume that the public
parameters pms are known to all entities upon setup,
and HW.Run&Quote can always be invoked by the public
parameters corresponding to quote.

Cryptographic primitives. Our system relies on standard
cryptographic primitives such as public key encryption
scheme PKE and signature scheme S. We provide the
details of these algorithms in Appendix B.

3 MANY FACES OF FAIRNESS DEFINITIONS

The notion of fairness has been used in different
contexts in the literature of distributed systems and
blockchain. We briefly summarize them into the
following categories.

The notion was introduced by Reiter and Birman back in
1994 [20], later refined by Cachin, Kursawe, Petzold, and
Shoup (CKPS) [21] and Duan, Reiter, and Zhang [22].
The causality relation requires that the system should
preserve the standard notion of causal order introduced
by Lamport [12]. Put it into the blockchain term, the
definition is shown below.

Definition 1 (Causality). The transactions from an honest
node should be committed in the order they are issued. If
a transaction tx, from an honest node could have caused
the transaction txo from another honest node, txy should be
committed before tx,.

Reiter and Birman considered a scenario of trading
stocks. When a node issues a transaction ¢z, to purchase
stock shares, a faulty node may collude with other nodes
to issue a derived request tx, for the same stock. If txs is
committed before ¢z, tz2 may adjust the demand for the
stock and the service may raise the price to the honest
client. To preserve causality, the majority of existing
solutions require that the transactions or proposals be
encrypted so that the adversary cannot learn the contents
to manipulate the order [20]-[22].

The notion of block delivery fairness was first formally
introduced by CKPS [21] in 2001. The definition
(rephrased) is shown below.

Definition 2 (Block delivery fairness). If the majority of
honest nodes have received a transaction txq, then tx, is
committed within a uniformly bounded time by honest nodes.

The definition above is closely related to the liveness
of the system. Namely, if an honest client submits a
transaction to the system, the transaction will eventually



be committed, and the client will receive a reply. The
term is sometimes used interchangeably with censorship
resilience [23]. The block delivery fairness assures fairness
between the nodes. To achieve the fairness goal, the
protocol essentially needs to ensure that the proposal
by honest nodes will eventually be committed within a
bounded amount of time.

Kelkar, Zhang, Goldfeder, and Jules (KZGJ]) [3]
introduced the notion of order fairness, aiming to
capture the order of transactions received by the nodes.
In particular, if a sufficiently large fraction of nodes
receive a transaction tz; before another transaction tzs,
tr1 should be committed before t¢x,. Unfortunately,
this property cannot be achieved in practice due to
the Condorcet paradox problem [24]. Namely, consider
three nodes, X, Y, and Z, and three transactions a, b, and
c. X receives them in the order [a, b, c], Y in the order
[b, ¢, a], and Z in the order [c, a, b]. In this scenario, a
majority of nodes have received (x before y), (y before
z), and (z before x). This cyclic dependency makes it
impossible to achieve order fairness. KZG]J thus relaxes
the notion to block order fairness, as defined below.

Definition 3 (Block order fairness). If at least ~y-fraction
nodes receive a transaction txy before txo, then the block that
consists of txy will not be committed before the block that
consists of txy.

The notion above allows tz; and tzy to be included
in the same block, ie. the transactions with cyclic
dependencies are ordered at the same height. To achieve
block order fairness, a tailored consensus protocol is
proposed that involves all-to-all communication.

In a concurrent work, Kursawe [4] proposed relative order
fairness and defined timed relative fairness. Timed relative
fairness is weaker than block order fairness and thus
the protocol can be much easier to build. The related
definition is shown below.

Definition 4 (Timed relative fairness). If there is a time T
such that all honest nodes saw (according to their local clock)
transaction tx, before T and transaction txo after T, then txq
must be committed before txs.

To achieve timed relative fairness, the protocol requires
the nodes to maintain synchronized local clocks. All-to-
all communication among the nodes is also required for
the order in a proposed block to be validated. In another
concurrent work, Zhang, Setty, Chen, Zhou, and Alvisi
(ZSCZA) [5] proposed ordering linearizability.

Definition 5 (Ordering linearizability). If the highest
timestamp that any node assigns to a transaction txz, is lower
than the lowest timestamp that any honest node assigns to
txo, then txy is committed before tx;.

To achieve ordering linearizability, ZSCZA proposed
a protocol that has a dedicated ordering phase. The
phase involves two all-to-all communication steps. The
order is determined according to the median timestamp

included in two-thirds replicas, the value of which can
be manipulated by an adversary [6].

Meanwhile, Cachin, Micic, Steinhauer, and Zanolini [7]
refined the notion by KZG]J and proposed differential order
fairness.

Definition 6 (Differential order fairness). Comnsider a
system with n > 3 f 41 nodes where f can be Byzantine (that
fail arbitrarily). If the number of honest nodes that broadcast a
transaction txq before txo exceeds the number that broadcast
txo before txy by more than 2f + k, for some k > 0, then the
protocol must not commit txo before txy.

The protocol that achieves differential order fairness is
much simplified compared to that by KZGJ, but still
requires all-to-all communication.

Summary. It is evident that the fairness notion in
existing definitions varies by context. In fact, building
systems with a tailored fairness notion brings two
drawbacks we seek to address in this work. First, existing
definitions can only capture deterministic ordering rules.
Unfortunately, this is often not the case in practical
systems. For example, Dogecoin, Avalanche, and Monero
order the transactions based on the time each transaction
enters the mempool (i.e., age). There is no guarantee that
the order of the transactions is deterministic. Second,
to the best of our knowledge, all known solutions that
achieve existing fairness notions are based on specific
rules and require a dedicated (sometimes expensive)
consensus protocol. However, in real-world systems, the
rules are shaped by the requirements of higher-level
applications, and existing rules may not simultaneously
suit the needs of concrete applications running on the
same blockchain.

4 A NeEw FAIRNESS DEFINITION

In this section, we introduce a new fairness definition
called wverifiable fairness. The notion aims to be generic,
capturing most fairness notions known so far. Building
upon the notions of conventional fairness definitions, our
definition has two advantages: (i) It allows fairness to be
defined according to an arbitrary sequencing rule. (ii) It
empowers conventional fairness definitions with a new
verifiability feature, where nodes can individually verify
whether their transactions comply with the rule.

4.1 Abstraction of Fairness Notion

We abstract away the notion of fairness and define a

generic sequencing rule R. The rule allows a node to
determine the order of transactions based on the concrete
application. We require that R is known by any nodes
in the system. We define three algorithms for nodes to
achieve fairness: Select, Order, and Verify. Select is queried
by any node p; (a prover) when it selects a batch of
transactions from its mempool P;. Here, all transactions
in P; form a universal set called I'p,. The Order algorithm
orders transactions. Verify allows any node (the verifier)



to verify whether the order of the transactions is valid.

Formal definitions are shown below.

— Select(I'p,): This algorithm is run by a prover that
holds a mempool of transactions. The algorithm
selects transactions from a transaction set I'p, from
its mempool, where we assume the size of I'p, is (.
The algorithm then takes as input I'p, and outputs
a transaction list I = [txo, tz1,...,tx;_1,tz,]|. Ideally,
¢ =7, i.e., the algorithm selects all transactions in I'p,
and puts them into I.

— Order(l, ST, R): This algorithm is run by the prover.
The algorithm takes as input a transaction list I
(output of the Select algorithm), current blockchain
state ST, a rule R, and outputs an ordered sequence
of transactions r.

— Verify(auz, r, R): This algorithm is run by a verifier
who receives an ordered sequence of transactions r
from the prover. The algorithm checks whether the
transactions in r are sorted according to rule R. It
takes as input the auxiliary data aux, r, R, and outputs
true or false. Here, true meansNthe prover orders the
transactions in r according to R.

Our abstraction of the algorithms can cover all the
protocols we are aware of that achieve the fairness
notions in Section 3. Indeed, all the protocols known
so far hold an implicit assumption that the verification
of the ordered transactions by an honest node is consistent
among all honest nodes. Take the Aequitas protocol by
KZGJ as an example, the protocol involves a gossip and
broadcast phase dedicated for Order and Verify. The rule
R is aligned with block order fairness in Definition 3.
In particular, each node broadcasts the transactions in
its mempool in the same order as they are received.
In this way, each node builds the local state S7T" about
available transactions and the order received by other
nodes. Each node then proposes a batch of transactions
using the Order algorithm based on the rule R. Given the
proposal by any node p;, nodes start a binary Byzantine
agreement (BA) protocol [25], [26] to agree on whether
a proposal should be committed. Namely, if an honest
node receives the proposal from p;, it verifies whether
the order is valid. If so, the node votes for 1 in BA and
0 otherwise. Finally, transactions in proposals where the
corresponding BA outputs 1 are committed.

4.2 Defining Verifiable Fairness

In our definition, verifiable fairness means any node
(transaction sender) can learn whether his transactions
have been re-ordered or dropped (deviated from rules).
Here, we define the transaction sender as the verifier
and the transaction receiver as the prover (see Figure 1).
Ideally, a verifier can check the transaction order without
learning additional information from other nodes except
the ordered result r. Consider that an ordering rule R is
publicly available to all nodes. An ideal fairness notion
should guarantee that a verifier can verify whether the

prover has re-ordered the transaction set I'p, or dropped
any transactions (i.e., by not including the transactions
in T'p,). Notably, here and in the rest of the paper, re-
order refers to arbitrary deviations from the established
rules in transaction sequencing. We define the following
definition to formally capture our expectation for an
ideal verifiable fairness definition.

Definition 7 (Ideal verifiable fairness, IV-fairness). A
system achieves IV-fairness if the following holds. Given an
arbitrary sequencing rule R, the prover p; queries r <
Order(l;, ST, R) to obtain r, where l; < Select(I'p,). The
verifier can verify whether the prover has re-ordered or dropped
transactions from T'p, by querying Verify(T,,r, R). The Verify
function returns true if r < Order(l;, ST, R).

Unfortunately, ideal verifiable fairness is impractical.
Determining whether a transaction has been dropped or
re-ordered requires the verifier to possess knowledge of
transactions in the prover’s mempool P;. Unfortunately,
the verifier may not be able to access this list, as the
mempool is stored locally by the prover and may vary
at different nodes (namely, I'p, # I'p, for i # j).

Arbitrary Tx

Verifier s Prover
(Node) < (Node)
— oa
7 ) Sequenced Tx 5 )
() /=0= (r) ==

Fig. 1: Model sketch.

Then, we relax the definition and present another
attempt. In this attempt, a verifier can submit an arbitrary
set of transactions of its choice (e.g., ). We additionally
require that the verification algorithm outputs a
deterministic result (Appendix C) for a transaction-
ordered list produced by Order(l, ST, R). The idea is
that honest provers will always generate consistent
verification results, regardless of the sequencing rules. It
will thus be easy to build a protocol achieving fairness
definitions while the ordering rules can be defined by
concrete applications.

Attaining this property in practice is challenging.
For instance, even if the sequencing rule incorporates
non-deterministic elements, e.g. randomly sorting a
transaction list, honest nodes may not generate consistent
verification results. We thus continue to relax the
definition and require each rule to be deterministic
without any random elements, as in Definition 8.

Definition 8  (Deterministic verifiable fairness,
DV-fairness). A blockchain system achieves DV-fairness if
the following holds. Given a deterministic sequencing rule R,
a verifier provides a list of transactions | to the prover. The
prover p; queries r <— Order(l, ST, R) and returns r to the
verifier. The verifier verifies whether the prover has re-ordered
transactions in | or dropped transactions from I, by querying
the Verify(l,r, R) function. The Verify function returns true



if r < Order(l, ST, R).

Unfortunately, such a definition is still not generic and
cannot fully capture all the requirements. In real-world
scenarios, the order of transactions from a prover often
needs to be verified by multiple verifiers. It is thus
too expensive for the prover to handle many verifiers
concurrently, as the list [ provided by the verifiers might
be different. For instance, consider the scenario that the
prover is already processing the request from a verifier
p; with list [ as input. Another verifier p; now submits
another request with list I’ = {U{m} as input. The prover
must also add m to its mempool to handle the request
from p;. If the two requests are processed concurrently,
the verification of the result of the order might not be
correct anymore.

Our final attempt seeks to achieve a trade-off between
Definition 7 and Definition 8. In this new attempt, the list
of transactions [ is not provided by the verifier anymore.
Instead, the prover selects and orders transactions based
on its mempool. This change requires each verifier to
verify independently whether the prover intentionally
drops or re-orders its transactions. The verification of
other verifiers is irrelevant.

Definition 9 (Individual  verifiable  fairness,
IDV-fairness). A blockchain system achieves IDV-fairness
if the following holds. Given an arbitrary sequencing rule
R, the prover queries r < Order(l;, ST, R) to obtain r,
where 1; « Select(I'p,). A verifier can verify whether its
transaction tx has been re-ordered or dropped from r by
querying Verify(tx,r, R). The Verify function returns true if
r < Order(l;, ST, R) where tx € T'p,.

Our IDV-fairness covers most fairness notions known
so far, especially order-related fairness definitions.
Namely, given an arbitrary rule R, any honest client can
learn whether a node has faithfully ordered transactions
according to the rule.

5 SECURE CONSTRUCTION IN IDV-FAIRNESS

In this section, we propose a construction that satisfies
IDV-fairness. Our construction is a dedicated protocol for
ordering transactions, leveraging TEEs. It aims to make
a verifier learn whether the prover has re-ordered or
dropped his transactions. We first delve into the technical
challenges and then present our proposed approach.

Threat model. We require blockchain nodes to be
equipped with TEEs, and assume TEEs are secure. Also,
we follow the standard assumption of the blockchain
system, where a threshold number of blockchain nodes
is Byzantine, and these Byzantine nodes (TEE hosts) are
not trusted and can behave maliciously.

Technical challenges. A native solution can be built

as follows. The ordering rule R is first compiled as a
program and loaded into a TEE, where the TEE hosts the
mempool P; for each node. Then, a client ¢ (a verifier)

encrypts a transaction tx and obtains the ciphertext ct,
and sends ct;, to a node p; (a prover). Then, p; broadcasts
ctyy to other nodes and meanwhile transfers ct;, to its
mempool P;. Next, P; decrypts ct;, obtains ¢z, and
appends tr to its secure memory. After that, P; signs
tx as a receipt repy,, and returns repy, to the client. The
transaction tx is later processed on-chain according to the
specification of blockchain. The transaction ¢z is removed
from the mempool if tx is committed on-chain.

Intuitively, the above approach already allows the
client to verify whether its transaction ¢{xr has entered
a TEE-based mempool and is correctly ordered.
Unfortunately, there are still a few challenges when
building a provably secure approach, even assuming
TEEs are fully trusted. We consider two cases: after c
submits tx to p;, p; fails to return rep;, within a bounded
amount of time; and p; returns repy,. Verifiability in
the first case is straightforward. Indeed, if rep:, is not
received, the TEE host misbehaves, e.g., the TEE host
fails to transfer ¢tz to its mempool or it has not broadcast
tx to other nodes.

The second case is much trickier. Even if a TEE host
returns repy, to c, it does not necessarily follow the
specification of the protocol. In particular, a malicious
TEE host may (i) not broadcast cti, to other nodes;
(ii) maliciously drop tz after ¢tz has been added to the
mempool. In this way, the TEE host tricks the TEE to
generate a correct receipt and then disobey the protocol,
so tz might never be committed on-chain.

In fact, if tx is submitted to only one node p; in a
blockchain system, the fact that tz might never been
committed on-chain is already a challenge in blockchain
systems that is impossible to address, regardless of
whether TEE-based mempool is used or not. Indeed, as p;
might be malicious, it can simply drop ¢z so tz will never
be processed on-chain. In practice, the client ¢ can simply
send ¢z to another node. If one honest node receives tz,
the liveness property of the blockchain ensures that tz
will eventually be committed on-chain.

Our solution takes a step further by reducing the
second case to the first case. In particular, we provide two
crucial components: trusted broadcast and trusted refresh.
Trusted broadcast requires that a TEE-based mempool
only accepts a transaction tx only after the TEE host
has provided proof that txr has been sent to a set of
randomly selected nodes by the TEE. As the set of nodes
is randomly selected by the TEE, with high probability,
at least one honest node has received tx. A nice feature
of this approach is that after c receives the receipt repy.,
tz will eventually be committed on-chain. Meanwhile,
trusted refresh requires that the TEE host provides a
piece of evidence that ¢z has been committed before ¢z is
removed from the mempool. By using trusted broadcast
and trusted refresh altogether, we know that if the client
does not receive a receipt, the TEE host must misbehave.



5.1 Overview of the Construction

At a high level, our construction works as follows
(as illustrated in Figure 2). Initially, nodes set up their
TEEs and load mempool into the TEEs. Then, a client
¢ encrypts transaction ¢tx and obtain the ciphertext ct,,
and then sends ct;, to a node p;. ©® Upon receiving ct;,,
p; selects some peers which are randomly supplied by
the TEE, and then sends ct;, to these peers. When a
node receives such a request, it returns a receipt comy,
to pi where com,, can simply be a digital signature. @
When p; receives receipts comy, from a sufficiently large
number of peers, p; forwards ct;; and the receipts to
the mempool P;. If comy, is valid, P; accepts ctiy. @
After P; accepts cti, the TEE decrypts cty, and appends
tr to the mempool. Then P; generates a signature (a
receipt rep;;) on tx. Here, rep, is used to prove that
tz has been included in the mempool and has been
broadcast to other nodes. ® When p; needs to select a set
of transactions from the mempool (e.g., when preparing
a block proposal), it queries P;. P; orders the transactions
and obtains a list of ordered transactions r. The TEE
also creates an attestation o, for the verification of the
order in r. Upon receiving the block proposed by p;,
other honest nodes verify whether the order is valid by
verifying the attestation o,. ® After ¢tz is committed on-
chain, p; queries P; to remove tz. P; verifies whether
tx has indeed been committed on-chain (the verification
algorithm depends on the concrete blockchain system).
Finally, P; removes tx from the mempool. Notably, steps
®- @ are procedures for trusted broadcast, and ® is the
procedure for trusted refresh.
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Fig. 2: System overview.

Our solution satisfies Definition 9. First, the
sequencing rule is left as a predicate to the system.
Indeed, the sequencing rule is programmed into TEE, so
any rule can be implemented. Second, any verifier ¢ can
verify whether his transaction tx has been re-ordered or
dropped. To be specific, if p; does not return a receipt
rep;, to ¢ within a bounded amount of time, ¢ knows
that p; misbehaves. On the contrary, if p; returns the
receipt repy, to ¢, ¢ knows that ¢z will eventually be

committed on-chain. Namely, after ¢ receives the receipt,
tz must have been broadcast to a sufficiently large
number of nodes in the system. Since the list of nodes
is randomly selected by the TEE, the only thing left is
to ensure that the list is large enough so that at least
one honest node receives tz. The liveness property of
the blockchain thus ensures that ¢z will eventually be
committed on-chain.

Our approach enjoys two immediate benefits. First, our
approach provides a solution where the re-ordering or
dropping of transactions can be detected and verified.
In blockchain systems, transaction fairness is involved
in multiple procedures (see Table 2). As transaction
ordering is usually under the control of individual nodes,
one malicious node can re-order or drop transactions.
Furthermore, other nodes are unable to differentiate this
situation from that the transaction is simply not received.
Our approach thus takes a step further by allowing the
client to be aware of whether its transactions have been
re-ordered or dropped.

TABLE 2: Comparison of Ethereum and our construction.

‘ Ethereum Ours
‘ Prevention  Awareness ~ Prevention — Awareness
= @ p; rejects to broadcast tx X X X v
é @ p;j rejects to send tx into P; X X X v
_E ® p; maliciously re-orders tax X X v v
< ® p; maliciously removes tx from P; X X v v
@ p; faithfully broadcasts ta X 4
é @ p; faithfully sends tz into P; X v
E ® p; faithfully orders ta X v
® p; faithfully removes tx from P; X 4

Second, our solution can be integrated with any
blockchain system, gaining flexibility (of the sequencing
rule) and modularity. Our TEE-based construction is an
independent protocol that can be integrated with any
existing blockchain systems we are aware of. We briefly
discuss the compatibility with Ethereum 2.0 (Eth2) as
an example. Eth2 now adopts Proof-of-Stake (PoS) as
the consensus mechanism. With PoS, each node (equiv.
validator) takes a certain amount of tokens to be able
to vote. Validators order the transactions in their block
proposals. To use our solution, validators need to install
TEE-based mempools. Before a validator proposes a
block, it selects the transactions from its TEE-based
mempools. Other validators vote for the block only if

the order is verified.
Meanwhile, our solution is compatible with the

different blockchain architectures today, as shown in
Figure 3. Existing architectures can be categorized into
three types. The first type involves a direct connection
between users and the validator’s mempool. The second
type uses synchronized nodes as intermediate relays to
reduce the workloads of the validators. The last type
relies on MEV-boost-relays to separate the packing of
transactions (used for block proposals) from actual block
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proposals [27]. Our solution can be applied to all these
architectures, replacing the mempool functions at the
validators, sync nodes, and MEV-relays in the three
architectures, respectively. In fact, our solution can make
also MEV-relays accountable, which is a desirable feature
for today’s MEV [28].

5.2 Detailed Protocol

The protocol consists of two major stages: the setup
stage and the interaction stage. The pseudocode is shown
in Figure 4. Without loss of generality and for ease of
presentation, when we present the trusted broadcast, the
prover only needs to obtain one receipt from other nodes.
In practice, this can be set up as a system parameter.

Setup stage. The setup stage (or S in short) aims to
initialize the TEE-based mempool.

S1: Rule establishing. This stage establishes the sequence
rule R for ordering transactions. R defines transaction
admission, eviction, ordering, and dropping (customized
by algorithms Select and Order in Section 4.1). Next,
nodes compile R into a program and load them into TEE
their enclaves.

52: Key negotiation. Two key pairs are set up for each
TEE. As TEE key management is not the main focus
of our work, we assume that all TEEs share the same
key. First, an arbitrary node pg is selected as an initial
node, whose mempool P is responsible for generating
the key pairs (pkix, skix) and (vkist, skise) by calling
HW.Run&Quote(hdlp,, “InitKeyGen”). Next, any other
node p; (0 < i <) initializes its mempool P; in the TEE.
In particular, the TEE fetches the key pairs from P,
via remote attestation: PP; generates a temporary public-
private key pair (pkp,,skp,) and a quote by calling
HW.Run&Quote(hdlp,, “TempKeyGen”). After that, P;
sends pkp, and quote to Py. After receiving the message,
po calls HW.Run&Quote(hdlp,, (“KeyEnc”, pk, quote)) in
its TEE. The TEE (i) confirms that pkp, indeed comes
from a valid enclave by verifying quote, and (ii) confirms
that p; is a valid node, and (iii) encrypts skiis; and sk as
cty, using pkp,. (lines 41-48 in Figure 4). Finally, po sends
cty; to pi, which transfers ct; to P;. P; decrypts ct, and
stores skiist, Skix in its local memory.

S3: Peer setup. po retrieves a list of IP addresses in the
network from the bootnode. Then, these addresses are
loaded into enclaves via remote attestation.

Interaction stage. There are five sub-algorithms in this
stage (T in short), shown as follows.

T1: Tx submission. Client c verifies pky by querying
HW.Verify(quotepy). This ensures that pky is indeed
generated in a valid enclave. Then, c uses pk to encrypt
a transaction tx and sends corresponding ct;, to p;.

T2: Trusted broadcast. Upon receiving cty, p;i calls P; to
fetch a list of addresses. Here, P; randomly selects a
set of nodes from N and returns the addresses of the
nodes to the TEE host. Then, p; sends ct;, to the chosen
addresses. Upon receiving such a message, each node
creates a signature and sends a confirmation message
comy, to p;. After p; collects at least one confirmation
comy,, from one of the selected nodes, p; transfers comy,
and cty, to its mempool P;.

T3:Tx merge. p; calls HW.Run(hdip,, (“Merge”, cty;)) to
perform the following operations (lines 59-63): (i) it
verifies comy,; (ii) it verifies the signature of tx. If the
verification succeeds, the following steps are executed
sequentially: (iii) P; decrypts cty, using sk to obtain
the transaction tx; (iv) p; appends ¢z to its mempool, i.e.,
I'p, = I'p, U{tz}; (v) p: generates a receipt rep,, proving
that ¢z has been merged into I'p,. Here, the proof repy,
is in the form of (H(tx), o), where o is a signature of tx.
Next, P; sends the receipt repy, to c.

T4: Ordering & consensus. When p; needs to order the
transactions (e.g., during block proposal), it queries
HW.Run(hdip,, “TxRetrieval”) (lines 64-70) to perform
the following operations. (i) P; queries Select and Order
to obtain a sorted transaction list . (ii) P; creates a
signature for r using its secret key skjis; and obtains a
signature o,. Here, o, proves that r is generated and
ordered by a secure mempool. (iii) P; returns r and o,
to pi. Also, P; sets the variable ordered and rejects all the
following order requests from p;, before new transactions
are committed on the blockchain. This prevents p; from
repeatedly querying its secure mempool to obtain biased
ordered transactions. Now, if p; needs to create a block
proposer, it adds r to its block. When it broadcasts
the block, it includes o, in the block as well. Other
nodes can verify whether the sorted transaction list r is

generated according to the rule R by querying whether
S.Verify, .. (r,0.) returns 1.

T5: Trusted refresh. Transactions committed on-chain
must be removed from the mempools. When a new
block is committed, p; sends the block to its mempool
P;. Meanwhile, a piece of evidence that the block
is committed is also provided to P;. Upon receiving
the block and a proof, P; checks the proof, and
removes the corresponding transactions from its TEE-
based mempool. In permissioned blockchains, proof can
involve signatures from a consensus node quorum. For
instance, in Proof-of-Work (PoW)-based blockchains, the



Mempool Setup

Node py: Initialization

1: pmsy < HW. Setup(1*)

2: hdlp, < HW. Init(pmso, P)

3:

(Pkix, vKist ), quotepk < HW. Run&Quote
(hdlp, , “InitKeyGen”)

Node p; (¢ > 0): Initialization

4: pms; < HW. Setup(1*)

5: hdlp, < HW. Init(pms;, P)

6: pkp, , quotep, < HW. Run&Quote
(hdlp,, “TempKeyGen”)

7: Send pkp, and quote to py

Node pj: KeyEncryption

8: Receive pkp, and quotep, from p;

9: ct, quotecy, < HW. Run&Quote
(hdlp,, (“KeyEnc”, pkp, , quotep, ))

10: Send ct;, and quote., to p;

Node p; (¢ > 0): KeyDecryption

11: Receive cty and quote., from pg
12: 1+ HW.Run
(hdlp,, (“KeyDec”, cty, quote,, )

Transaction Submission

(Node c: TxEncryption

13: Receive quotepy from a node p;
14: Assert HW. VerifyQuote(quotepi) = 1
15: Parse quotep = (hdlp, ,tagp, ,in, out, o)
16: Assert tagp, = tagp and

in = “InitKeyGen” and out = (pkix, -)
17: ¢ty < PKE. Encyy,, (tz)
18: Send cty; to a node p;

Node p;: TxBroadcast

19: Receive cty, from c
20: (prg,...,Pry)

HW. Run(hdl, “GetPeers”)
21: Send cty, to peers pry, ..., P,

Node pr;: ReceiveConfirmation

22: Receive cty, from p;
23: com,, < S.Signy,, (ctia)

24: Send comi,, to p;

Node p;: TxMerge

25: Receive comy, = (com?,, ..., com®)
from remote peers

26: repy; < HW. Run
(hdlp,, (“Merge”, ctis, comyy))

27: Send repy; to

Transaction Commitment

Node p;: BlockProposing

28: 7,0, < HW. Run(hdlp,, “TxRetrieval”)
29: Propose a block B with transaction list 7
30: Broadcast block B along with signature o

Node p;: BlockVerification

31: Receive block B and signature 0.
Extract transaction list 7 from B.

32: Accept block B only if

33: S.Verify,, (r,o:)=1

Enclave Calls

procedure HW. Run&Quote(hdl, “InitKeyGen”)

34: pkix, skix < PKE. Gen(1*)

35: vkyst , Skiisy < S. Gen(l)‘)

36: Generate quotep to prove the correct generation of the
public-private key pairs

37: Return (pkex, vkis; ), quotepi

procedure HW. Run&Quote(hdl, “TempKeyGen”)

38: pk, sk « PKE. Gen(1*)

39: Generate quote to prove the correct generation of the
public-private key pair

40: Return pk, quote

procedure
HW. Run&Quote(hdl, (“KeyEnc”, pk, quote))

41: b := HW. VerifyQuote(quote)

42: If b = 0 then

43:  Return L

44: Parse quote = (hdl, tag, in, out, o)

45: If not (tag = tagp and in = “TempKeyGen” and
out = pk) then

46: Return L

47: m := (pkix, Skix, Vkist , SKiist )

48: cty, < PKE. Encyi(m)

49: Generate quote,y, to prove the correct encryption
of the key pairs

50: Return cty, quote,;,

procedure HW. Run(hdl, (“KeyDec”, cti, quote,y, ))

51: b := HW. VerifyQuote(quote, )

52:1f b = 0 then

53:  Return L

54: Parse quote = (hdl, tag, in, out, o)

55:If not (tag = tagp and in = “KeyEnc” and
out = cty,) then

56: Return L

57: (pkix, Skix, kit , skuist ) < PKE. Decg (ctr)

58: Return

procedure HW. Run(hdl, (“Merge”, ctt, , comy;))

59: If no receipt in comy, is valid or tz € I" then

60: Return L

61: te := PKE. Decgy,, (ctiz)

61:T :=T U {tz}

62: o < S.Sign,,  (H(tz)) > H(tz) denotes the hash of the
transaction

63: Return H(tz), o

procedure HW. Run(hdl, “TxRetrieval”)

64: If ordered = true then > ordered indicates whether
transactions have been ordered or not, initially set to false
65: Return L

66: | + Select(T")

67: 7 < Order(l, ST, R)

68: g, < S.Signg, (r)

69: ordered := true

70: Return r, o,

procedure HW. Run(hdl, (“TxUpdate”, B))

71: If B is invalid then

72: Return L

73: Retrieve the list of committed transactions / in B
74: For each transaction ¢tz in [ do

75: T':=T\{tz}

76: orderd := false

77: Return

procedure HW. Run(hdl, “GetPeers”)

78: Randomly select peers (pry, . .., pra) frompg,...,p,

79: Return pry, ..., pr,

Fig. 4: Our protocol that satisfies IDV-fairness.
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proof can be achieved by adopting a proof-of-publication
protocol as mentioned in [29].

Notably, if TEEs are compromised, the system fails
to achieve IDV-fairness. However, other properties of
the blockchain (i.e., consistency and liveness) are not
violated (see our discussion in Appendix D).

6 SECURITY ANALYSIS

Theorem 1. If HW satisfies the security requirements
outlined in Definition 12 and attains remote attestation
unforgeability, as specified in Definition 13, and provided that
PKE offers IND-CCA2 security while S is EUF-CMA secure,
there exists a negligible probability that an honest verifier fails
to detect that an adversarial node re-orders the transactions
submitted by that verifier.

Proof. We prove this theorem by contradiction.
Assuming that an adversarial node A can re-order a
transaction ¢tz sent by an honest verifier, then we can
use A’s abilities to break our assumptions. The fact
that A successfully re-orders tz without being noticed
indicates the occurrence of two events: tx has been
re-ordered; a valid rep;, is generated. We define them
as E'§oder, and E™, respectively. We first examine
probability of that E§°" occurs. The sequence result is
derived from the execution of Order and Select. The fact
E$oer occurs implies that a compromised TEE exists.
In particular, A has manipulated the execution of either
Select or Order, a violation of the execution integrity
property of the TEE, as defined in Definition 12. Namely,
Pr [}%jﬁder] < Pr [Exec-integrity 4 yw(A) = 1].

We then examine the probability of that E'y“"* occurs.
In our solution, rep;, represents a signature on tz. We
consider two possible cases: (Case-1) the private key
was not compromised; (Case-2) the private key was
compromised.

Case-1: A does not possess the private key. However, A
generates a new signature, a violation of the EUF-CMA
security defined in Definition 11.

Case-2: The private key has been compromised. Here,
there are two sub-cases. First, A interacts with a
mempool P; that has been successfully established. To
make P; transmit the key pairs to A4, A must forge
the quote quotep, such that tagp, = tagpgm. This
action violates the unforgeability of remote attestation,
as specified in Definition 13. Second, .A does not
interact with the mempool. In this scenario, A acquires
knowledge of the key pairs from the ciphertext
transmitted between the mempools. This violation
corresponds to IND-CCA2 security of PKE scheme, as
described in Definition 10.

Thus, the probability that A re-orders transaction
tr sent by an honest verifier while not detected, is
negligible. O

Theorem 2. If HW satisfies the security requirements
outlined in Definition 12, and provided that S is EUF-CMA
secure, there exists a negligible probability that an honest
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verifier will fail to detect that an adversarial node drops the
transactions submitted by that verifier.

Proof (sketch). Suppose that an honest verifier fails to
detect an adversarial node A dropping its transaction,
then we can transform A’s ability to generate a valid
receipt repy, for the verifier. We define this event as
]Ei{°p. When a verifier receives a valid receipt repy,
for transaction ¢z, P; must have had accepted comi,.
From line 59 in Figure 4, we know that P; accepts
comy, only if its signature is successfully verified. Thus,
to make com:, be accepted, A must either forge a
signature or manipulate the programs running in a TEE.
However, the former case violates the unforgeability of
a secure signature, while the second case breaks the
execution integrity of TEE as defined in Definition 12.
The probability that any case occurs is negligible. Thus,
we conclude that Pr[E%], the probability that the
verifier fails to detect that its transaction is dropped by
A, is negligible.

7 IMPLEMENTATION

We build a prototype! in Golang and C. We use Go
Ethereum (Geth) as the blockchain. For TEE, we use both
OpenSGX [16] as the TEE instance and Intel SGX SDK.
Geth is the most widely used Golang implementation
of Ethereum while OpenSGX emulates Intel SGX. To
implement our system architecture shown in Figure 2,
we use different modules in Geth for different purposes.
In particular, we use the miner module and the worker
module as the nodes in our protocol, and extend the
API module to implement the clients. For the consensus
protocol, we use Clique in the consensus module of
Geth. We split the mempool module from Geth into
an independent process and disable the corresponding
functionalities from the original mempool module in
Geth. We run the mempool inside SGX to implement our
TEE-based mempool. We specify the sequencing rule R
as follows: Upon receiving a transaction, the TEE inserts
the transaction into the mempool at a random position.
To guarantee that p; broadcasts ct;, received from a
client, p;’s TEE mempool P; randomly selects 3 nodes
for p;, and only when P; verifies the receipt signed by
one of them, P; accepts the received transaction cty,.

To enhance the efficiency of cryptographic
primitives, we employ a hybrid encryption scheme
for implementing the public key encryption scheme.
This scheme is utilized for both transaction encryption
(line 17) and key distribution (line 48), as depicted in
Figure 4. The underlying concept of hybrid encryption
is to utilize a public key scheme to share a symmetric
key, which is subsequently employed for encrypting
the message. Our implementation incorporates AES-
GCM [30] for symmetric key encryption and RSA-OAEP
for public key encryption. Additionally, we utilize

1. https://anonymous.4open.science/r/SecureMempool-5703.


https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum/blob/master/miner/miner.go
https://github.com/ethereum/go-ethereum/blob/master/miner/worker.go
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https://github.com/ethereum/go-ethereum/blob/master/consensus/clique/clique.go
https://github.com/ethereum/go-ethereum/blob/master/core/tx_pool.go
https://www.rfc-editor.org/rfc/rfc8017
https://anonymous.4open.science/r/SecureMempool-5703

RSA-PSS in conjunction with SHA-256 for digital
signature generation. Also, to ensure robust security,
we set the AES key length to 128 bits and the RSA key
length to 2048 bits. In our implementation, we employ
the Go standard library® for cryptographic operations
conducted outside mempools. These operations are
written in Golang and provide a reliable foundation. For
cryptographic operations within mempools, we utilize
Mbed TLS®. This library, written in C, offers optimized
cryptographic functions.

8 EVALUATION

We evaluate the performance of our protocol and
compare it with Geth. Our evaluation aims to examine
the overhead created by running a separate mempool
process inside TEEs. We focus on the throughput and
latency. Unless otherwise mentioned, the evaluation
results in this section are conducted using OpenSGX as
the TEE instance.

Experimental settings. We evaluate our protocol using
virtual machines (VMs) deployed on Amazon EC2. We
use both t2.medium and t3.medium and they have two
vCPUs and 4GiB memory. Each VM hosts an Ethereum
full node that stores full blockchain data, serving as
both a client and a node in our system. In throughput
and latency tests, we use 20 full nodes using t2.medium
instances to evaluate the protocol performance. Each full
node is randomly connected to 3 peers, and every node
proposes a block every 5 seconds. In scalability tests,
we expand the experiment to include up to 120 full
nodes, using a combination of t2.medium and t3.medium
instances. In these experiments, every node proposes
a block every 20 seconds. Throughout experiments,
unless otherwise specified, all transactions have no actual
payload, allowing us to focus solely on evaluating the
protocol’s performance in processing transactions.

Throughput. We evaluate the throughput of our protocol
and Geth. We vary the number of transactions each
client submits to the protocol, denoted as send rate in the
figures. As shown in Figure 5(d), when the rate is lower
than about 30tx/s, the performance of the two systems is
almost identical. As the submission rate grows to 46tx/s,
both systems reach their peak throughput, where Geth
consistently outperforms our protocol. This is expected,
as running mempools inside TEEs incur additional costs.
We find that the peak throughput of our protocol is about
80% of that in Geth.

Latency. We evaluate the latency of our protocol and
Geth. We measure two types of latency: end-to-end
latency (measured in ps) and propagation latency (in
ms). End-to-end latency is the window from the time a
node submits its transaction to the time the transaction
enters a node’s mempool. The propagation latency, i.e.

2. https://github.com/golang/go/tree/master/src/crypto
3. https://github.com/Mbed-TLS/mbedtls
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the time used for transactions/blocks to be broadcast to
distributed nodes.

We vary the transactions’ size by changing the payload
length of each transaction and evaluating performance.
As shown in Figure 5(e), the end-to-end latency in Geth
and our system remains about 30ms as the payload
grows. Our protocol has around 9% higher latency than
that for Geth. Figure 5(f) provides an overview of the
propagation latency. We conducted an experiment to
measure the time required for transactions or blocks
to propagate to varying numbers of nodes. The results
show a clear trend: as the number of nodes increases,
the propagation latency also increases. This outcome
is anticipated, as transmitting transactions or blocks
to more nodes requires more hops. On average, our
protocol exhibits a propagation time approximately 73%
longer than that of Geth for transaction propagation and
about 25% longer for block propagation, reaching the
majority of nodes.

To further understand the overhead of our protocol,
we assess the latency breakdown by evaluating the
latency in different stages in our protocol. We show
the results for mempool setup, transaction submission, and
transaction confirmation in Figure 5(a)-5(c), respectively.
As shown in Figure 5(a), the time it takes for a
node to join the network is noticeably higher (146ms)
than that in Geth. This is due to the TEE-based
mempool setup, e.g., the mutual attestation process
involves additional interactions between different TEEs,
and requires cryptographic operations. Fortunately, this
step only needs to be conducted once for each
node. Additionally, for the latency of the transaction
submission and transaction confirmation procedures, the
latency of our protocol is marginally higher than that in
Geth. The additional overhead caused by our protocol is
mainly due to the decryption of transactions and signing
ordered transactions inside TEEs (which incurs more
than 50% higher latency in our protocol). In contrast,
in Geth, no expensive procedures are involved. We
observed that the overhead inside TEE may degrade
the performance, as shown in Figure 5(j). We further
report the latency of decryption and digital signatures
in Figure 5(k), which justifies that the overhead of our
protocol is mainly created by cryptographic operations.

Performance with different parameters. We vary the
intervals of block proposals (denoted as block time) and
the payloads to assess the performance of the system.
As in Figure 5(h) and Figure 5(i), with longer block time
or larger transaction payloads, the throughput of both
protocols degrades. In our experiments, the performance
of our protocol is slightly lower than that of Geth.

Scalability. We also evaluate the scalability of our
protocol by varying the number of nodes. We gradually
increase the number of nodes by deploying up to 120 full
nodes. As shown in Figure 5(g), as the number of nodes
grows, the throughput decreases. This is expected as the
network bandwidth consumption grows as the number
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of nodes grows. In all our experiments, the performance
of our protocol is only slightly lower than that of Geth.
When the number of nodes is 120, the throughput of our
protocol reaches 73% of Geth.

Performance with Intel SGX SDK implementation.
So far, we have focused on our evaluation using
OpenSGX. To have a better understanding of the protocol
performance when instantiated on the real SGX platform,
we also build a mempool pool using Intel SGX SDK. We
compare the performance using Intl SGX implementation
with that using OpenSGX. Our results show that the
Intel SDK-based transaction pool is 28 times faster than
the one on OpenSGX. This implies that in real-world
systems, our scheme can achieve greater efficiency. The
details are provided in Appendix E.

9 RELATED WORK

Comparison with concurrent studies. MEV services like
Flashbots rely on off-chain nodes, known as relays to
determine the transaction order for Ethereum. Instead
of maintaining their own mempool, blockchain nodes
rely on relays to maximize their profit. SUAVE [31]
and PROF [28] are two early-stage prototypes that use
TEE for MEV relays. Specifically, SUAVE uses TEE to
ensure that the relays follow the specifications of the
platform and behave honestly, including but not limited
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to obeying the auction rules. PROF utilizes TEE to force
miners/relays to follow an arbitrary fair-ordering rule.
Our solution also utilizes TEE to order the transactions.
However, our work is fundamentally different from
SUAVE and PROF in that our work focuses on capturing
the concept of transaction fairness. Our TEE-based
solution aims to demonstrate the feasibility of achieving
our verifiable fairness notion. Also, from an architectural
standpoint, our solution possesses the advantage of
being adaptable to other blockchain systems beyond
Ethereum (as illustrated in Section 5.1), particularly those
that do not necessitate the use of MEV relays.

TEE for blockchains. Our discussion develops from the
ways of integration between TEE and blockchain.

DApps. Tesseract [32] is a decentralized application
built on TEEs. Tesseract implements a real-time
cryptocurrency exchange that can facilitate secure
communication among users while enabling atomic
cross-chain transaction orders (namely, all-or-nothing
settlement). TEE-backed Tesseract can mitigate the
influence of powerful network adversaries who have
the capability to eclipse [33] the host. Similarly, the
utilization of transparent TEE enclaves can also be
used to create new cryptographic functionalities such
as sealed-glass proofs (SGPs) [34] and its combination
with smart contracts can further build knowledge


https://ethstaker.cc/mev-relay-list

marketplaces. Additionally, TEE-based works such as
establishing a mixer for Bitcoin have been independently
proposed, e.g., Obscuro [35].

Interface. Town Crier (TC) [36] serves as an authenticated
data feed for TEE-based smart contracts. TC acts as a
trusted bridge between Ethereum and existing HTTPS-
enabled data websites, which can securely retrieve data
from public interfaces and relay concise data information
(e.g. prices) to smart contracts. Notably, the inclusion of
TEE-protected interfaces and associated communication
channels is occasionally incorporated into the system
design. The importance of securing these channels has
been also acknowledged in [32], [37].

Smart contracts. Ekiden [29] implements a TEE-
based platform for private off-chain smart contract
executions. It dissects the consensus functionalities
and state operations for both high scalability and
enhanced privacy (backed by SGX-enabled machines).
CONFIDE [37] supports on-chain confidential contract
executions. It builds a TEE-based secure data
transmission protocol and data encryption protocol
to guarantee confidentiality in the transaction life
cycle. Besides most efforts dedicated to Ethereum,
Fastkitten [38] enables smart contract execution over
Bitcoin. TZA4Fabric [39] utilizes ARM Trustzone [14]
for the secure execution of smart contracts over
Hyperledger Fabric. Secret Network is a TEE-based
smart contract platform with active applications [40].
Notably, transactions on Secret Network, such as those
for Sienna Swap, have fairness in the sense of being
front-running resistant, as they are encrypted.

TABLE 3: TEE adoption in blockchain.

&
O ) &

S & 4 .

S & & o
S & EA

Usage Project <© i i

DAPP Exchange and market [32], [34] v N/A X
Interface Data oracle [36], [37] v N/A X
Smart contract Confidential states [29], [371-[39] v 4 X
Consensus Trust, resilience [41]-[47] v 4 X
Mempool ‘ Fair DeFi products [28], [31], Ours ‘ v - v

Consensus. Using trusted hardware to improve the
resilience of Byzantine fault-tolerant (BFT) protocols (i.e.,
permissioned blockchains) is a conventional topic in the
literature [48]-[53]. It was found that instead of requiring
n > 3f + 1, trusted hardware-based BFT only requires
n > 2f + 1, where n is the number of nodes and
f is the number of Byzantine failures. This is mainly
because the trusted hardware does not allow faulty nodes
to send inconsistent messages to different nodes. Some
of the approaches build the trusted hardware using
TEEs [41], [45], [47]. In the permissionless blockchain
setting, REM [43] proposes a method to reduce the
waste of mining energies in PoW while providing the
same security grantees. REM enforces miners to submit
trustworthy reports for useful work via the design of
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hierarchical attestations of TEEs. Hybster [42] presents a
hybrid state-machine replication protocol with improved
performance that is built on Intel SGX. Meanwhile, TEEs
have also been used to improve security and prevent
attacks on consensus protocols.

10 CONCLUSION

In this paper, we present a generic fairness definition,
a useful notion for the actual transaction order in
blockchains. Our definition weakens previous fairness
definitions and leaves the choice of the sequencing rules
to the concrete applications. With this definition, one can
decouple the order of transactions from the correctness of
the blockchain (and consensus protocol). We then present
a dedicated protocol that achieves verifiable fairness
from trusted hardware. Our evaluation results built on
OpenSGX/Intel SGX SDK and Go Ethereum (Geth) show
that our protocol only achieves marginal performance
degradation on top of Ethereum.
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A. VERIFICATION VIOLATION IN TABLE 1

Our study reveals that the overwhelming majority of
in-use systems (87%, 13 out of 15) can not guarantee
transaction orders. These systems incorporate ordering
algorithms with varying sequencing rules but LACK
explicit verification procedures (denoted by X). This gap
opens the door to potential attacks, including order
manipulation and malicious censorship. We analyzed
transaction ordering based on the real-world mined
block to provide a clear understanding of the negative
consequences of missing verification.

In the case of Bitcoin, we randomly selected block
#block795221, minted on June 21, 2023, and then
examined its actual transaction orders. Our investigation
demonstrated that the actual orders, as indicated by their
transaction 1Ds, differed from the expected results based
on transaction fees. Specifically, the actual transaction
order in this block for ID1-ID3 was 3930-7fb8, b722-
dadd, and 5cl19-e66e, but their fees are 70.1K Sats,
104.3K Sats and 58.2K Sats, respectively. Additionally,
similar contradictory results have been observed in other
blockchains. For example, we examined #block17525100
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in Ethereum and #block2495711 in Litecoin, both of
which were random blocks minted on the same day. The
evidence supports discrepancies between the predefined
rules (e.g., transaction fees) and the actual ordering
results within the blocks.

B. BUILDING BLOCKS

Cryptographic primitives. We present them as follows.
Public key encryption. A public key encryption scheme

PKE includes a tuple of probabilistic polynomial-time
(PPT) algorithms (PKE.Gen, PKE.Enc, PKE.Dec). PKE.Gen
takes as input a secure parameter A and outputs a
public-private key pair (pk,sk), written as (pk,sk) <«
PKE.Gen(1*). PKE.Enc takes as input a public key pk
and a message m and outputs a ciphertext ct, denoted as
ct < PKE.Enc,;(m). PKE.Dec takes as input the private
key sk and the ciphertext ct and outputs a message m,
written as m < PKE.Dec(ct).

Definition 10. A public key encryption scheme PKE is
Indistinguishability under adaptive chosen ciphertext attack
(IND-CCA2) secure if, for all PPT adversaries A, there exists
a negligible function negl such that

PrPubKSHR(N) = 1] < 5 + negl().
where PubK%éﬁE(/\) is an experiment defined as below:

- Run S.Gen(1%) to obtain a key pair (pk, sk).

- A s given pk and access to a decryption oracle
OPKEDecsr () - A outputs a pair of messages mq and my
of the same length

- Choose b wuniformly from {0,1},
PKE.Encpi(ms), and give ct to A.

- A can continue to access OPKE-Decsk () but with a
restriction that ct cannot be the input of the oracle.
Eventually, A outputs a bit b'.

- The output of the experiment is 1 if satisfying b =/, and
0 otherwise. If the output is 1, we say that A succeeds.

compute ct <

Signature scheme. A signature scheme S consists of three
PPT algorithms (S.Gen,S.Sign,S.Verify). S.Gen takes as
input A and outputs a key pair (vk,sk), written as
(vk, sk) < PKE.Gen(1%). S.Sign takes as input a private
key sk and a message m and outputs a signature o,
written as o < S.Sign,;, (m). The deterministic algorithm
S.Verify takes as input a verification key vk, a message
m, and a signature o. It outputs 1 if the signature is valid
and 0 otherwise, written as b < S.Verify, ;. (m, o).

Definition 11. A signature scheme S is existential
unforgeability under chosen message attack (EUF-CMA)
secure if for all PPT adversaries A, there exists a negligible
function negl such that

Pr[Sig- forgeCMA()\) = 1] < negl(A),

where Sig- forgeCMA()\) is an experiment defined as below:
o Run S.Gen(1*) to obtain a key pair (vk, sk).
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e A is given vk and access to a signature oracle O5-S€"x (.
and OSVeiui(.). Then A outputs a legal message m
with a signature o.

o Let Q denote the set of messages queried by A via the
oracle O5-S€sk (.). The experiment’s output is 1 if
S.Verify, . (m,o) =1 and m ¢ Q, and 0 otherwise.

Trusted hardware properties. A trusted hardware
scheme guarantees that loaded programs correctly
generate their outputs. Meanwhile, the quotes generated
by the scheme should be correctly verified and cannot
be forged. Inspired by [19], these properties of a trusted
hardware scheme are formally defined as follows:

Definition 12. A trusted hardware scheme HW satisfies the
security of execution integrity if for any PPT adversaries A,
there exists a negligible function negl such that

Pr[Exec-integrity 4 yw () = 1] < negl()),

where Exec-integrity 4 yw(A) is an experiment defined as:

- Run pms + HW.Setup(1*) and initialize O := .
Run hdlpgm < HW.Init(pms, prgm).
- Run output <~ HW.Run(hdlprgm, in).
A is given hdlygm and a valid input in. Each time A
runs HW.Run(hdlprgm, in) and gets an output, and then
adds output to O.
The experiment returns 1 if there exists an output’ where
output’ € O and output’ # output, and 0 otherwise.

Definition 13. A trusted hardware scheme HW achieves
remote-attestation-unforgeablility, if for all PPT adversaries
A, there exists a negligible function negl such that

Pr[Quote-forge 4 yw(\) = 1] < negl(})

where Quote-forge 4 (M)

defined as below:

e Run pms « HW.Setup(1*) and initialize O := ().

o A is given pms. Each time A queries HW.Run&Quote
and gets a quote (hdl, tagprgm, in, out, o), add
(hdl, tagp,gm,z'n out) to O. Finally, A outputs a
quote’ = (hdl',tagym, in’, out’, o).

o It outputs 1 zfsatzsﬁjmg HW. Verlnyuote(quote’) =1
and quote’ ¢ O, and 0 otherwise.

represents an experiment

C. DISCUSSION

The impact of compromised TEE. In our solution, TEE
ensures that the user-defined rule R can be securely
applied to any transactions. Essentially, the verifiability
of R is ensured by generating a cryptographic proof
using the “quote” by the TEEs. When the TEEs
produce ordered results and the corresponding quote is
successfully verified, these ordered results are considered
fair. However, TEEs suffer from vulnerabilities such as
Foreshadow [54], Plundervolt [55], and AEPIC [56]. In
our system, we use TEE to build a dedicated protocol
to ensure the fairness of transactions. However, even if
TEEs are compromised, our solution can fall back to


https://blockchair.com/litecoin/block/2495711

a plain mode, where the mempool is maintained by
each node. In this way, the system fails to achieve IDV-
fairness. However, other properties of the blockchain
(i.e., consistency and liveness) are not violated.

TEE key management. To ensure the privacy of
transactions and the consistency of blockchain services,
our system requires all TEE-based mempools to share
the decryption key and the signing key via remote
attestation. The major drawback is that if one of the TEEs
leaks keys (e.g., caused by side-channel attacks [57]), all
transactions sent to the nodes are no longer confidential.
Below, we discuss alternative key management options.

A threshold cryptosystem with distributed key
generation (DKG) [58] is a possible way to mitigate this
problem. In a group using a threshold cryptosystem
and t-secure DKG, the mempools {P;};co,) hosted by
a group of nodes, generate a public key pk and a set of
secret keys {sk;};c[0,], Where pk is public and sk; is kept
by mempool P;. Clients can encrypt their transactions
with pk and send them to mempools. Then, P; decrypts
the ciphertext using its secret key sk; to obtain a share
of transactions o;. Finally, transactions are recovered by
combining t + 1 shares of transactions from different
mempools. The drawback of this approach is that it
involves additional communication between TEEs, so the
performance may be degraded. Additionally, if nodes
leave the system, DKG needs to be executed again, which
is expensive, especially when the group size is large.

Another option is that each TEE sets up its key pairs
and makes the public keys available to all nodes in
the system. When a client needs to communicate with
some TEE, the client obtains the public keys of the TEE
for corresponding cryptographic operations. The same
applies to the communication between TEEs. Such an
approach requires the participants to verify public keys
of any TEE whenever some interactions are needed.

D. DETERMINISTIC VERIFICATION ALGORITHMS

Theorem 3. For any transaction list | with the ordering result
r, if a majority of (at least 51%) nodes reach an agreement
on the ordering rule R, the verification algorithm outputs a
deterministic result with an overwhelming probability.

We prove Theorem 3. If a majority of (at least
51%) nodes reach an agreement on the ordering rule
R, there exists a verification algorithm that outputs
a deterministic result. We prove this theorem by
contradiction. Namely to prove that if the verification
algorithm is probabilistic, there is a negligible probability
for the system to achieve the consensus.

Proof. The verification algorithm provides two distinct
output scenarios: (i) probabilistic and (ii) deterministic.
In the probabilistic scenario, the algorithm generates
results that are uncertain and selected randomly from
the set of possible outcomes: {true, false} on each
run. This randomness introduces variability, and the
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specific outcome cannot be predicted beforehand. On the
other hand, in the deterministic scenario, the algorithm
consistently produces fixed results that are always either
true or false whenever it is executed. This deterministic
behavior ensures a consistent and predictable output
every time the algorithm is run.

The probability of scenario-(i) occurring, where the
verification algorithm randomly outputs either true or
false, is negligible. In other words, it is highly unlikely
that a majority of nodes (51%) would reach a consensus
on the sequence based on these random outputs. When
querying the verification algorithm, it produces true with
a 50% probability or false with a 50% probability. This
behavior follows a binomial distribution [59].

To further analyze this, we can model the number
of true outputs in a sample of size k drawn from
a population of size n. The cumulative distribution
function of this distribution can be expressed as follows:

3 (?)pi(l —p)"

>
Pr(X >k)=1-Pr(X <k).

=0

By considering larger values of n, the probability of a
majority of nodes (at least 51%n) reaching a consensus
based on these random outputs becomes increasingly
small, and close to 0, and thus proves Theorem 3. O

Pr(X < k)

E. SGX PERFORMANCE COMPARISONS

As our demonstration is done with OpenSGX (an
emulation of hardware enclave) and may not fully reflect
the real performance, we also build a mempool using
Intel SGX SDK and compare its performance with the
mempool built with OpenSGX (Table 4). In particular,
we keep sending the transactions into two mempools,
and evaluate the throughput under different transaction
payloads, on an 8-core 1.6GHz local machine with Intel
SGX support.

TABLE 4: Throughput comparison of mempools

Payload | OpenSGX (tx/s) | Intel SGX (tx/s)

No payload | 2159 | 61576

200 bytes | 1950 | 58173

Our results reveal that when transactions have no
payload, the mempool built with Intel SGX SDK can
handle 61576 transactions per second (ITPS), while the
mempool built with OpenSGX can only handle 2159 TPS.
In the case where transactions have a 200-byte payload,
the mempool running on real SGX hardware reaches a
throughput of 58173 TPS, while the mempool built with
OpenSGX has a throughput of 1950 TPS. Overall, SGX
SDK-based mempool has a performance 28 times better
than the one on OpenSGX-based mempool. This implies
that in real-world systems, our solution can achieve
greater efficiency and enhanced feasibility.



F. UNFAIRNESS DAMAGE

Extracting profits in DeFi products. We use the
sandwich attacks in Uniswap to illustrate unfairness
damage to decentralized applications. Uniswap is a well-
known trading system. It works based on a constant-
function automated market maker (AMM) that ensures
the balance of trading pairs. The token price in Uniswap
is determined by the ratio of tokens in the pool, which
is affected by every buying or selling operation.

Adversary'’s Logic —> Contract’s Core Function

Func Swap(amtX, amtY,
PoolAmtX, PoolAmtY)

- Insert Transfer(Tx_a) with amtX

- Increase PriceX to PriceX’ with amtY’

- Wait victim's trading by increasing if
PriceX’ to PriceX’

- Sell all amtX’ at the PriceX”

- Gain profits (PriceX”-PriceX) *amtY’

amtY >= slippage
then
{ PoolAmtX’ = PoolAmtX + amtX
amtY = PoolAmtY -
(Pool AmtY*Pool AmtX)/Pool AmtX’

Victim Account
Spend extra prices by
(PriceX’-PriceX)
Attacker Account

No change on amtX but extract
(PriceX"-PriceX)*amtY’

Fig. 6: Sandwich attack in Uniswap

In Uniswap’s contact (Figure 6), supposing a client
intends to purchase token Y using token X, a set of
related variables are: PoolAmtX, PoolAmtY stating the
amounts of token pair. Upon detecting this transaction,
an adversarial node initiates a transaction 7, to purchase
token Y ahead of the client. This results in an artificial
increase in demand for token Y, leading the client to
receive fewer token Y for the same amount of token
X. The price of token Y rises even further, allowing the
adversarial node to sell token Y at a profit, acquiring
more token X than they spent initially. The adversarial
node benefits from sandwiching the client’s transaction,
manipulating the market to its advantage while causing
harm to the client, especially an increase in transaction
costs for pair-trading users. We provide an abstract
mathematical model for analysis being aligned with [60].

o Modeling Uniswap’s AMM. We assume that different

stakeholders have tokens X and Y (exchanging in
pool as X = Y), with respective reserves z; and y;
at time t. The constant value is K where z; -y; = K.
A trader who intends to exchange 6, tokens of X
at time ¢ will receive J, tokens of Y. For simplicity,
we consider the transaction fees and base fees to be
zero. The output of token Y is

Tt - Yt

_ — yt(sw
xre + 5m

xt+5x

61/ =Yt

o Modeling transaction. A transaction tx to exchange
0, tokens X entering the mempool at time ¢ is
identified as tx = (zo, yo, to). As time advances, the
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transactions at time ¢,y are
ta" = (z1,y1,11); o™ = (22,2, t2).

e Modeling attack. In a sandwich attack, a victim
normally submits a transaction tx, expecting to
swap J, tokens Y at time tq. The adversary executes
the frontrunning transaction ¢z, exchanging 4.
token X for §,, token Y at time ¢; and a
corresponding backrunning transaction at time t,.
As a result, the adversary’s profit is the gap between
two sandwiching transactions.

A, =03" — 6", where
ZoYo
out __ T2 5”1/ _ ToL" 51
[ - i .
Y2 + 51)y T+ (;(ZLZ + 57

Conversely, the victim will lose

A, =0, —d,,, where
5, = yo — Lo Yo _ Yol
Y To + 69: To + 69:’
T 5111 _ 1300052/;(; : 51
vy T +(5vz T +6zlz7i +(Sz

Another case is the impact on BRC-20, an experimental
fungible token standard for creating new assets on
Bitcoin. It embeds JSON data into ordinal inscriptions to
enable users to mint, and transfer tokens, and the specific
order of transactions has direct financial implications.
However, since users input transaction fees based on
their preferences, transactions for minting tokens can
be front-run. The case will occur when an adversarial
user increases their fees to overtake the transaction. Also,
if the token is 100% distributed before users complete
minting, users will lose the token alongside the gas fees.

Breaking stability. Unfair opportunities cause system
instability, especially during consensus procedures [61],
[62]. As different nodes form a competitive relationship
on the extractable value of transactions, we present our
theoretical analyses based on game theory.

The consensus process involves selecting and
organizing transactions within a specific time, defined
as the block time (be.p). We consider a set of players
(i.e., nodes) N participating in our model. Clients send
transactions to the system at a fixed rate of f per
second, and only a percentage p% of these transactions
can be extracted, and each extracted transaction yields
a value of v. In real-world scenarios, an adversarial
node may introduce intentional delays between blocks,
represented as A. Consequently, the actual block time
becomes breq; = besp + A. Also, each node has some
strategies for node selecting transactions:

o Strategy so: Nodes collect f - by, transactions within

the expected block time b.,, without employing



manipulative tactics. This strategy has an MEV
(Miner Extractable Value) of 0.

o Strategy si: Nodes collect f - by, transactions within
the expected block time b, while incorporating
manipulative tactics to increase profits. This strategy
results in an MEV of f - beyyp - p% - 0.

e Strategy s»: Nodes intentionally delay their mining
to the practical block time b,.q4, collecting f - byeq
transactions. This strategy results in an MEV of f -
breal : p% - .

e Strategy s3: Nodes intentionally delay their mining
to their round time, which includes the practical
block time b, and the delay A. Nodes collect
f + brear - p% transactions, resulting in an MEV
of f - breai - p% - v. Here, the node is prone to
making a high-quality block by abandoning the non-
extractable transactions.

We consider a continuous game where each player, p;,
repeatedly selects a strategy s; € {so,s1,52,s3} in a a
fixed timeframe D. Specifically, during mining time, each
node can implement its strategy and inform other nodes
of its choice. This process continues with subsequent
players, pit1, pi+2, and so on. We assume the payoff
function for each node is w;(s;, s—;), and s_; denotes the
N — 1 strategies of all the players except p;.

In blockchain ecosystems, the value from transaction
extraction is fixed in a specific timeframe, denoted
as D. As other nodes extract transactions with high
rewards, adversarial nodes experience a decrease in their
payoffs, prompting them to adapt. Surprisingly, our
analysis demonstrates that rational players consistently
choose strategy s3, regardless of whether preceding or
subsequent nodes have already extracted transactions.
This strategic choice is driven by their pursuit
of maximizing their own interests. Consequently, a
dominant strategy s; emerges, specifically ss3, where
ui(sh,s—i) > ui(si,s—;) holds for all combinations of
s; € S; and s_; € S_;. This dominance establishes a
stable equilibrium where neither party has the incentive
to deviate from this strategy [63].

Under this equilibrium, we examine the throughput
of nodes under different scenarios. We refer O, to the
expected throughput when honest nodes operate and
Orear as the practical throughput when malicious nodes
adopt the dominant strategy. Thus, we have

Oezp - f - bea:p = f (la)
bexp
brea
Ot = P08 o qab)
real

Now, we analyze the stability impact when all nodes
always select a dominant strategy. We consider two
intervals, [Ti,ﬂ_;'_l} and [Tj,Tj+1], where E+1 — Tz =
Tj41 — T = D > brear- Thus, we have
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(Ti41—T4) (Tj4+1—T5)
beap real
Z 1% Oe.’rp > 1% Oreal
1=1 1=1
T T
T3, Tisa] (T3, Tj1]

The presence of throughput fluctuations observed
during these two intervals indicates that unfairness
undermines the stability of the consensus mechanism.

O
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