
State Machines across
Isomorphic Layer 2 Ledgers ?

Maxim Jourenko1,2 and Mario Larangeira1,2

1 Department of Mathematical and Computing Sciences,
School of Computing,

Tokyo Institute of Technology. {jourenko.m.ab@m, mario@c}.titech.ac.jp
2 Input Output Global.

mario.larangeira@iohk.io

http://iohk.io

Abstract. With the ever greater adaptation of blockchain systems, smart
contract based ecosystems have formed to provide financial services and
other utility. This results in an ever increasing demand for transactions
on blockchains, however, the amount of transactions per second on a
given ledger is limited. Layer-2 systems attempt to improve scalability
by taking transactions off-chain, with building blocks that are two party
channels which are concatenated to form networks. Interaction between
two parties requires (1) routing such a network, (2) interaction with and
collateral from all intermediaries on the routed path and (3) interactions
are often more limited compared to what can be done on the ledger.
In contrast to that design, recent constructions such as Hydra Heads
(FC’21) are both multi-party and isomorphic, allowing interactions to
have the same expressiveness as on the ledger making it akin to a ledger
located on Layer-2. The follow up Interhead Construction (MARBLE’22)
further extends the protocol to connect Hydra Heads into networks by
means of a “virtual” Hydra Head construction. This work puts forth an
even greater generalization of the Interhead Protocol, allowing for inter-
action across different Layer-2 ledgers with a multitude of improvements.
As concrete example, our design is modular and lightweight, which makes
it viable for both full virtual ledger constructions as well as straightfor-
ward one-time interactions and payments systems.

Keywords: Blockchain, State Channel, Channel Network.

1 Introduction

Blockchain technology as introduced by Nakamoto [19] was a breakthrough in
scaling byzantine consensus to a point where operation of decentralized ledgers
among a large number of mutually distrustful parties became viable. While Bit-
coin, Nakamoto’s implementation of a decentralized ledger, remains one of the

? This work was supported by JST CREST Grant Number JPMJCR2113, Japan.

http://iohk.io

2 Jourenko et al.

largest blockchain implementations by market capitalization 3 to date further
blockchains such as Ethereum and Cardano expanded on the technology by en-
abling arbitrary smart contracts and state machines. This improved the utility
of their ledgers which facilitated the creation of financial ecosystems. However,
albeit blockchain’s ability to scale to a seemingly arbitrary amount of users, the
amount of transactions that can be performed on their ledgers is limited [5]. If
there are more transactions being committed to a blockchain than its consensus
mechanism can handle, transaction issuer can include a fee to their transactions
to increase their priority. At times of high demand this can result in unfeasible
high fees for an average transaction. One approach to mitigate this are Layer-2
protocols [21,20,6,4] such as Bitcoin’s payment channel network Lightning [21].
Parties can move their coins into a Layer-2 structure which locks these coins
on the ledger. Then, they can interact and perform payments with other par-
ties that participate in the Layer-2 structure offchain, i.e. without requiring any
transactions on the ledger itself. Only at the end, when a party wishes to move
their coins back and unlock on the ledger another transaction is committed to
the ledger that summarizes the transactions that occurred offchain. However, a
common drawback of Layer-2 protocols is a lack of expressiveness of the inter-
actions that can occur on Layer-2. For instance, payment channel networks are
restricted to simple payments. State Channels [7,8] improve on that by allowing
execution of smart contracts. Moreover, earlier versions of Layer-2 protocols op-
erate on channels between two parties which can be concatenated by means of
Hash Timelocked Contracts (HTLCs) [21] to perform payments or two parties in
the network can connect by means of virtual channels [7,8,12,13], i.e. a channel
that is created on Layer 2 instead of the ledger. This can be impractical since
if two parties want to interact with another, it requires the intermediaries, i.e.
the parties on the path between them, to lock away a large amount of collateral
which ensures security of these protocols, however, such a path might not exist.
Other approaches attempt to connect multiple parties, for instance Rollups – al-
beit not entirely Layer-2 as they require a small amount of data to be committed
to the ledger per transaction – can directly connect an arbitrary amount of par-
ties, however, making the expressiveness of interactions on Rollups on par to the
ledger is ongoing research. Hydra [4] is a Layer-2 protocol that forms an isomor-
phic state channel called Hydra Head for an arbitrary amount of parties which
allows interaction to have the same expressiveness as on the ledger itself. This
makes Hydra Heads akin to a ledger located in Layer-2. However, while inter-
action between different Hydra heads by utilizing intermediaries is possible it is
either limited to payments (HTLCs) or requires iterative construction of virtual
Hydra heads [14], which construction is heavy as it requires partial execution of
the Hydra Head state machine. Moreover, the construction is complex making it
difficult to verify its security and also making it prone to implementation errors.
It is inflexible because all UTxO that are available on the Interhead have to be
moved into it at the very beginning of the protocol. Since it is tightly related to
the Hydra State Machine construction, adaptation of any changes to the Hydra

3 https://coinmarketcap.com

State Machines across Isomorphic Layer 2 Ledgers 3

State Machine would require additional work and careful consideration to ensure
security of the Interhead construction.

Our Contributions. The aim of this work is to create a lightweight ad-hoc ledger
to enable arbitrary interactions between parties on separate Layer-2 ledgers, i.e.
Layer-2 structures containing an arbitrary amount of parties and which have the
same expressiveness as a smart-contract capable ledger. Our work is based on the
Interhead [14] construction and in fact is a generalized version of it. Similarly we
assume two Layer-2 ledger based on the Unspent Transaction Output (UTxO)
paradigm and utilize a set of intermediaries, i.e. parties that participate in both
Layer-2 ledgers, to facilitate payments as well as execution of arbitrary state
machines. However, in addition to the previous work our construction provides
a multitude of improvements: (1) There is no time limit to the ad-hoc ledger,
(2) setup is done only once and can be reused for future interactions, (3) UTxO
can be moved between Layer-2 ledgers and the ad-hoc ledger at any time com-
pared to only at the beginning and the end of the Interhead construction making
the ad-hoc ledger more flexible, (4) disputes are local only affecting individual
UTxO instead of the whole structure, (5) a modular and therefore significantly
simpler construction. (6) While we present the core of our construction in this
work, we also present multiple potential extensions to further improve on the
scalability of the construction. Additionally, as with the Interhead construction,
collateral does not need to be paid by single individual intermediaries but in-
stead any collateral can be paid by multiple intermediaries. Although a tradeoff
of our construction is that we require interaction with all intermediaries for each
transaction on the ad-hoc ledger, we are able to execute the Hydra Head state
machine within it creating a virtual Hydra Head where interaction with the in-
termediaries is no longer necessary. This gives us the same function and benefits
as the Interhead allowing our construction to be both a generalization of the
Interhead construction as well as the Hydra Head construction. While our work
assumes a UTxO based ledger we argue that any Layer-2 ledger that can imple-
ment an adaptation of the state machine presented in this work can execute our
construction thus it is not limited to be used with Hydra Heads alone, but aims
to enhance interoperability between any Layer-2 ledgers.

Related Work. Layer 2 or offchain structures are scalability solutions for ledgers.
Early approaches are payment channels [20,6] where two parties, first, lock coins
on the ledger via a transaction and then perform an offchain protocol to per-
form payments between another without requiring to commit any further trans-
actions. Only at the very end, one last transaction is committed to the ledger
that summarizes all payments and unlocks the two parties’ coins. Protocols such
as Hash Timelocked Contracts (HTLCs) [21] enable payments across multiple
adjacent channels allowing for the formation of payment channel networks. An
efficiency requirement for Layer 2 structures and protocols is that when perform-
ing O(n), n ∈ N transactions then only O(1) transactions are committed to the
ledger. More recent approaches such as Hydra [4] allow for an arbitrary amount
of parties to interact offchain with the same expressiveness as on the ledger itself

4 Jourenko et al.

instead of being limited to simple payments, effectively forming a sub-ledger on
Layer 2. Another notable approach are Rollups 4 where an arbitrary amount of
parties can interact offchain with a few caveats: To our knowledge, rollups based
on Zero-Knowledge proofs do not yet support full expressiveness of the ledger
although there is active research to achieve this. Moreover, for reasons of data
availability, each transaction within a rollup produces some data that has to be
committed to the ledger therefore it is akin to a Hybrid protocol rather than a
full Layer 2 protocol. The Interhead [14] allows parties across two Hydra Heads
to interact with another with the aid of intermediaries, i.e. parties participating
on both Hydra Heads, by creation of a virtual Hydra head. Our work aims to
provide a lightweight, flexible and modular generalization to the Interhead con-
struction not only allowing for the creation of a virtual Hydra Head, but also
providing a low-overhead framework for brief interactions.

2 Background

Notation. In this work we consider structured data. If we assume a value β ∈ B
of form (β0, . . . , βn), n ∈ N, then β.βi is the value of β with label βi, i ∈ N,
0 ≤ i ≤ n. Moreover, parties within a protocol are denoted using P. Lastly H
denotes a cryptographic hash function.

Signatures. We assume a cryptographic signature scheme [9,10,1] with existen-
tial unforgeability under a chosen message attack (EU-CMA) consisting of algo-
rithms (key gen, verify, sign). Then key gen(1λ) = (vk, sk) generates a verification
key vk and a private key sk using security parameter 1λ, sign(sk, m) = σ takes
sk and a message m ∈ {0, 1}∗ as input and creates a signature σ ∈ {0, 1}∗ and
verify(vk, m′, σ′) takes vk, a message m and a signature σ′ as input and outputs
1 on successful verification and 0 otherwise. We assume a secure multisigna-
ture scheme [11,18] with algorithms (ms setup, ms key gen, ms agg vk, ms sign,
ms agg sign, ms verify). Algorithm ms setup(1λ

′
) = Π creates public parame-

ters Π, algorithm ms key gen(Π) = (vk, sk) creates a new set of verification key
vk′ and private key sk, algorithm ms agg vk(Π,V) = vkagg takes Π and a set
of verification keys V as input and outputs an aggregate verification key vkagg,
algorithm ms sign(Π, sk, m) = σ creates a signature σ on message m, algorithm
ms agg sign(Π, V , S, m) = σagg aggregates a set of signatures S on message m
to an aggregate signature σagg and lastly ms verify(Π, m′, vkagg, σagg) verifies
an aggregate signature on a message to a aggregate verification key where it
outputs 1 upon success and 0 otherwise.

The UTxO Ledger and Extensions. In UTxO based ledgers such as Bitcoin [19]
coins that are in circulation are represented using a tuple (b, ν) where b ∈ N is an
amount of coins and ν is a verification script that evaluates to a value in {0, 1}
such that the coins within a UTxO can be spent if presented a witness w where
ν(w) = 1. The ledger’s state is represented as a set U of all currently circulating

4 https://ethereum.org/en/developers/docs/scaling/zk-rollups/

State Machines across Isomorphic Layer 2 Ledgers 5

Signed k

(r𝗆𝗂𝗇, r𝗆𝖺𝗑)

S0
val0 ∪ 𝖳𝗈𝗄𝖾𝗇

u0,0𝗂𝗇0,0

𝗂𝗇0,n

S1
val1 ∪

(𝖳𝗈𝗄𝖾𝗇∖{t3}) ∪ {t2}

i
𝖺𝗎𝗑

Forge {t0} :: cid0
Burn {t1} :: cid1

u0,m

…

𝖽𝖺𝗍𝖺0 𝖽𝖺𝗍𝖺1

…

Signed k′

(r′ 𝗆𝗂𝗇, r′ 𝗆𝖺𝗑)

u1,0𝗂𝗇1,0

𝗂𝗇1,n′ u1,m′

… …

Forge {t2} :: cid2
Burn {t3} :: cid3

Fig. 1: A general state machine transition moving it from state S0 to S1 on input
symbol i and auxiliary input data aux. Each state is represented by a UTxO on
the ledger, in the case of S0 with data field data0, coins val0 and (non-) fungi-
ble token Token. The box below a state represents constraints to transactions
creating that UTxO. The left-hand side contains UTxO inputs that are spent
and the right-hand side UTxO outputs that are created. The transaction is valid
only in time (rmin, rmax), burns token t1 while minting token t0 and is signed
corresponding to public verification key k.

UTxO. Transactions can be used to spend UTxO and thereby perform a state
transition on the ledger. A transaction is of form (In,Out, t) where In is a set
of tuples of form (ref, w) where ref is a pointer to an UTxO that exists on the
ledger and w is a witness as above, Out is a list of new UTxO and timelock
t ∈ N is a point in time such that a transaction can be applied on the ledger
only after time t. A transaction is included in the ledger after being submitted
after at most time ∆ ∈ N. Note that even though UTxO might be similar, the
ledger ensures that all UTxO are unique by assigning them unique addresses. The
Extended UTxO model [2] adds an arbitrary data field δ ∈ {0, 1}∗ to UTxOs.
Moreover, the verification script ν is extended to additionally receive δ as well
as a context ctx ∈ {0, 1}∗ consisting of the transaction that creates the UTxO
as well as the UTxO that are referenced within the transaction’s inputs. Doing
so ν can enforce constraints on transactions. Lastly, timelocks are extended to
form time ranges [r0, r1], r0, r1 ∈ N where a transaction can be committed onto
the ledger within this time range. It has been shown [2] that there exists a weak
bi-simulation between Constraint Emitting Machines (CEM), which are state
machines derived from Mealy automata, such that it is possible to execute state
machines defined as CEMs as in Figure 1 on EUTxO based ledgers. Further
work [3] adds multi-asset support such that they not only contain coins, but
also fungible and non-fungible token. In this work we consider EUTxO with
multi-asset support, but for simplicity refer to them as UTxO.

3 Overview

We assume two layer 2 ledgers L2
0 and L2

1 created on a common ledger L. Let
parties Pb = {Pb,0, . . . , Pb,i} . . . ,Pb,nb

for b ∈ {0, 1} be an arbitrary, non-empty

6 Jourenko et al.

subset of the parties who participate in ledgers L2
0 and L2

1 respectively and
P = P0 ∪ P1, where |P | = n, |P0| = n0 and |P1| = n1 i, n, n0, n1 ∈ N. Let Pint

= P0 ∩ P1 6= ∅ with |Pint| = nint, nint ∈ N be the set of intermediaries.

Communication Model and Time. We assume synchronized communication be-
tween parties which happens in rounds such that, if a message is send within
one round it is available to the recipient at the beginning of the next round. We
assume a relation between communication rounds and time [15,16,17].

Adversarial Model. We assume an malicious adversary A who can statically
corrupt n−1 out of n parties where n ∈ N. Corrupted parties leak their internal
state including their secret keys to the adversary and communication from and A
receives all communication from and to that party. A can dictate the corrupted
party’s behaviour and make them deviate from the protocol arbitrarily.

Layer 2 Ledgers. We assume the existence of a Layer 2 ledger construction for a
UTxO based ledger. Moreover, we assume that the Layer 2 ledger can implement
CEMs or allows for execution of state machines with sufficient expressiveness.
As is the case with regular ledgers, we assume that all UTxO on the Layer 2
ledger are unique. Moreover, if a Layer 2 ledger L2 is instantiated on a UTxO
based ledger L, then there exists ∆L2 ∈ N such that any UTxO can be moved
from L2 to L within time t ∈ N with t ≤ ∆L2 . We note that a construction that
fulfills these requirements is Hydra [4].

Semantic UTxO Equality. Any well defined ledger makes sure that each UTxO
is unique by assigning unique addresses to each newly created UTxO. In our
construction we are considering multiple instances of the same UTxO where
two UTxO are semantically equal if they are equal except for their address. For
instance, we consider two UTxO that each award 5 coins to a party P to be
semantically equal even though their addresses are distinct.

3.1 The Goal

The aim of this work is to allow interaction between an arbitrary set of parties
P with the same expressiveness as on any Layer 2 ledger. In the following we
denote interaction between parties in P as interaction on an ad-hoc ledger LP .
We define the properties we desire in our construction consistent with related
work as follows.

Definition 1 (Offchain Efficiency). No transactions are committed to L ex-
cept in the case of dispute where O(1) transactions are committed to L.

Definition 2 (Liveness). There exists t ∈ N such that upon a party’s request
any UTxO in LP can be made available on L or L2

0 and L2
1 after at most time

t. If there exists a honest intermediary the same holds true for collateral.

Definition 3 (Balance Security). Any honest party loses access to their col-
lateral and UTxO without their consent at most with negligible probability.

State Machines across Isomorphic Layer 2 Ledgers 7

Layer-2
Ledger ℒ20

Ledger ℒ
 Replica 0ℒP

Synchronous
Execution:

State transitions
happen on both or no

replica
merged

Layer-2
Ledger ℒ21

Wrap()u0
Wrap ()un

Wrap ()ui

Wrap()u0
Wrap ()un

Wrap ()ui…
UTxO ui UTxO ui

wrap / collateralize
de-wrap / -collateralize

ci,m…

Collateral UTxO ci,0

Collateral UTxO

wrap / collateralize

ci,m…

Collateral UTxO ci,0

Collateral UTxO

de-wrap / -collateralize

dispute

dispute

UTxO ui

 Replica 1ℒP

Dispute State Space

Collateral UTxO

Collateral UTxO ci,m

ci,0

Disputed ()ui

Disputed ()ui

merge

merge

punish

UTxO ui

punish

…

…

……

Fig. 2: Overview of our Setting with two Layer-2 ledger L2
0, L2

0 and the ledger L
they are created on all separated using dashed lines. We display the lifecycle of
a UTxO ui which is moved into replicas of the ad-hoc ledger LP and which can
either be moved out of it regularly or through dispute.

Consensus. If a UTxO can be spent by two different transactions, then these
transactions are in conflict as any UTxO can only be spent once. In the remainder
we assume a mechanism that decides which transactions to perform, e.g. a leader-
based approach as in approach in Hydra [4]. If we relax security by allowing
the adversary to corrupt only less than a third of participants, then another
approach are byzantine consensus protocols as HotStuff [22]. However, this is an
orthogonal problem to our work and we do not further address it in this work.

3.2 Approach

The construction consists of three components. (1) UTxOs are moved into and
out of LP . (2) Perform arbitrary transactions that consume and create UTxOs in
LP . (3) Any UTxO in LP can be disputed and made available on the underlying
ledger L or in L2

0 and L2
1. Recall that in the EUTxO model, coins, (non-) fungible

token as well as CEMs, i.e. state machines, are represented as UTxO such that
showing the above steps for any UTxO is sufficient to show that it is not only
possible to perform payments but also to execute CEMs on LP .

Wrapped UTxO. Figure 2 illustrates the lifecycle of any UTxO in LP . Each
ledger Lb maintains a replica Rb – a copy – of LP . In the following we look at
the example of moving a UTxO from L2

0 to LP . We consider a UTxO to be in
LP by wrapping it inside a CEM that (1) makes sure that if a UTxO is moved
into LP on legder L2

i , i ∈ {0, 1}, then it is moved into LP on L2
1−i by collecting

collateral from a subset of the intermediaries Pi ⊆ Pint on L2
1−i. (2) Likewise it

can be de-wrapped and moved into L2
j , j ∈ {0, 1} by returning the collateral to

the intermediaries on L2
1−j .

Dispute Mechanism. Correctness is facilitated through collaboration with the in-
termediaries in Pint. If any intermediary in Pint misbehaves or fails to collaborate,

8 Jourenko et al.

a UTxO can be disputed by any participating party. A dispute has two outcomes:
(1) If there is at least one honest intermediary they move both instance of the
wrapped UTxO from L2

0 and L2
1 respectively and onto the underlying ledger L.

Afterwards, they can use both UTxO as input into a merge transaction which
has the original UTxO in its outputs as well as all collateral that was committed
with it. (2) If no intermediary is honest such that none perform the steps in
(1), then after a timeout enforced through a timelock, two semantically equal
instances of the UTxO are moved into both L2

0 and L2
1 using the collateral of the

intermediaries to finance it and in the process punish the intermediaries. This
ensures that the UTxO is always available to their owners independent on which
Layer 2 ledger they participate in.

Atomic Transactions. Intermediaries collaborate to perform transactions on LP
atomically, meaning it is performed on both or on no replica. Otherwise, if a
UTxO is spent on R0 but not on R1, it can be spent by a different transac-
tion on R1 effectively double spending the UTxO in which process the collateral
of the intermediaries is implicitly consumed and lost. Atomic transactions have
to be performed for spending already wrapped UTxO, as well as for wrapping
and de-wrapping of UTxO. Transactions are performed atomically by splitting
them into two steps, where each step is performed by a dedicated transaction.
(1) First, we verify that the transactions can be performed through the verify-
transaction. The verify-transaction collects all the (wrapped) UTxOs on both
replica as well as any witnesses, and forges token if necessary. Moreover it evalu-
ates the UTxOs verification scripts. Note that this step is reversible, i.e. we can
create another transaction that re-creates all input UTxOs by creating semanti-
cally equal ones within its outputs and burns all forged tokens. This transaction
requires an aggregate signature signed by all intermediaries. We proceed only if
this transaction has been performed on both replica. (2) Only afterwards we can
be sure that the transaction can be done on both replica ensuring it is atomic.
This is done through a perform transaction that creates all UTxO within its out-
puts and burns any token if required. To ensure that any honest intermediary
can prevent wrongful execution of the perform transaction, i.e. before the replica
are synchronized, we require an aggregate signature signed by all intermediaries
to create the perform transaction. This aggregate signature is the only witness
required to perform the transactions. This step is irreversible, we might not be
able to create a transaction that can reforge burned token, or claim all UTxO
we created as input as they might be spent by different transactions by then.

We can resolve disputes through a merge-transaction, (1) either if the UTxO
in both replica are in the same state, (2) one replica has performed only the verify-
transaction while the other hasn’t since we can revert this step by outputting the
UTxO in the merge transaction’s outputs and (3) if the perform transaction was
performed on one replica while only the verify-transaction was performed on the
other replica since we have the required witness, i.e. the aggregate signature,
to do the perform transaction bringing the UTxO of both replica into the same
state. Acting as mentioned above any honest intermediary can ensure that a
merge-transaction can be performed on disputed UTxO.

State Machines across Isomorphic Layer 2 Ledgers 9

Si

val ∪ 𝖳𝗈𝗄𝖾𝗇

u1,0

Forge {t2} :: cid2
Burn {t3} :: cid3

Signed k′

(r𝗆𝗂𝗇, r𝗆𝖺𝗑)

Si+1

𝗂𝗇𝗉𝗎𝗍
𝖺𝗎𝗑

u1,n′

u1,0𝗂𝗇1,0

𝗂𝗇1,n′
u1,m′

𝖽𝖺𝗍𝖺i 𝖽𝖺𝗍𝖺i+1

… ……

val′ ∪ 𝖳𝗈𝗄𝖾𝗇′

(a) The original transaction.

val ∪ 𝖳𝗈𝗄𝖾𝗇

Forge {t2} :: cid2
Signed k′

Sb
i,i+1

val + valin ∪
𝖳𝗈𝗄𝖾𝗇 ∪ {t2}

𝗏𝖾𝗋𝗂𝖿𝗒(𝗂𝗇𝗉𝗎𝗍)
𝖺𝗎𝗑, σ𝒢

w(𝗂𝗇1,0)

w(𝗂𝗇1,n′)

Si

𝖽𝖺𝗍𝖺i, 𝖼𝗈𝗅
Si+1

𝖽𝖺𝗍𝖺i+1, 𝖼𝗈𝗅′ ′

Burn {t3} :: cid3

w(u1,0)

w(u1,m′)

𝗉𝖾𝗋𝖿𝗈𝗋𝗆
σ′ 𝒢

𝖻𝗈𝖽𝗒i+1

… …

(r𝗆𝗂𝗇, r𝗆𝖺𝗑)

w(u1,0)

w(u1,n′)

…

val′ ∪ 𝖳𝗈𝗄𝖾𝗇′

(b) Atomic transaction on each replica.

Fig. 3: Derivation of a atomic two-step transaction in Figure 3b from an arbitrary
transaction in Figure 3a.

Limitations. We require UTxO that are moved to LP to be collateralized, i.e. the
intermediaries have to commit collateral equal to the number of coins and token
present. This limits us to UTxO that contain coins or fungible token, however,
we cannot move non-fungible token into LP without any additional workaround.

4 The Ad-Hoc Ledger State Machine

In the following we give a description of the state machine that governs the
lifecycle of each UTxO within an ad-hoc ledger LP between parties P . Note
that while we do not specify the exact storage of data, however, to reduce the
size of UTxO a potential data structure are Patricia Merkle trees5.

4.1 Setup

Recall that we aim to setup an ad-hoc ledger between parties P with the help
of intermediaries Pint. For setup, each party P creates an individual key pair
(vkP , skP). Moreover, the parties collaborate to setup public parameter ΠP and
use them to create aggregate verification key VP where (skP,P , vkP,P) are the
individual keys of P. Analogously the intermediaries collaborate to setup public
parameter Πint to create aggregate verification key Vint where (skint,P′ , vkint,P′)
are the individual keys of P ′ ∈ Pint. Then, the parties sample a random nonce r
∈ N and negotiate a dispute time td ≥ ∆L2 + ∆. This data is stored within the
data field of each wrapped UTxO. A cryptographic hash hMP of the execution
parameters, public keys and nonce r serves to bind them to the ad-hoc ledger
and in addition they are used as a unique identifier for the ad-hoc ledger itself.

4.2 Atomic Transactions

Transactions are executed on all replica atomically, i.e. they are executed ei-
ther on all or none, by splitting them up into two transactions, (1) the verify-
transaction verifying that the transaction can be executed on each replica and

5 https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-
merkle-trie/

10 Jourenko et al.

wrap

w(u)
Ø𝗏𝖺𝗅(u)

input_buffer

𝗐𝗋𝖺𝗉
σ𝒢

u

(a)

un-

w(u)
Ø𝗏𝖺𝗅(u)

output_buffer
𝗎𝗇𝗐𝗋𝖺𝗉

σ𝒢
H𝗂𝖽

u

𝗉𝖾𝗋𝖿𝗈𝗋𝗆
H𝗂𝖽, σ𝒫, σ𝒢S
𝗏𝖺𝗅(u)

wrapped

(b)

wrap Ø

𝗐𝗋𝖺𝗉
σ𝒢

input_buffer

𝖼𝗈𝗅n

…

𝗏𝖺𝗅(u)
𝖼𝗈𝗅0 w(u)

(c)

𝖼𝗈𝗅n

…

𝖼𝗈𝗅0w(u)
𝗏𝖺𝗅(u)

output_buffer
𝗎𝗇𝗐𝗋𝖺𝗉

σ𝒢
H𝗂𝖽

𝗉𝖾𝗋𝖿𝗈𝗋𝗆
H𝗂𝖽, σ𝒫, σ𝒢S
𝗏𝖺𝗅(u) Ø

un-
wrapped

(d)

Fig. 4: Illustration of wrapping a UTxO in figures 4a and 4c and unwrapping in
figures 4b and 4d.

(2) the perform-transaction which executes the transaction. This is illustrated in
Figure 3b where the original-transaction depicted in Figure 3a is executed atom-
ically. These transactions are executed on all replica to keep their states equal.
Both transactions require an aggregate signature corresponding to verification
key Vint. (1) The first transaction is labeled verify(input) where input is the label
of the original-transaction that should be performed. The transaction collects all
UTxO that are required for the transaction in its inputs while verifying their val-
idator scripts and forges all token that are required. It verifies the validator script
of the input transition using auxilliary information aux. However, note that since
the verify-transaction does not contain the outputs of the original-transaction, we
cannot directly verify the transaction constraints that are required by the val-
idator. Instead, we store the body of the original-transaction that we perform
in the bodyi+1 verify that it confirms the constraints and that the inputs of
the verify-transaction confirm with the original-transaction. (2) After the verify-
transaction is performed on each replica we proceed with the perform-transaction.
This transaction burns all required token and creates the UTxO outputs of the
original-transaction. We use bodyi+1 that is available through Sbi,i+1’s data field to
verify that the perform-transaction is consistent with the original-transaction. The
field col stores how the coins and tokens associated with that UTxO val∪Token
are collateralized by the intermediaries as discussed in Section 4.4.

4.3 Wrapping UTxO

All UTxO that are used within LP are wrapped using a state machine that has
two purposes. (1) It manages the lifecycle of the UTxO as shown in Figure 2
and ensures it is only spent through verify-/ and perform-transactions and (2)
it ensures sufficient collateral was committed as well as it tracks how much
collateral was committed by the individual parties. Figures 4a and 4c depicts how
UTxO are wrapped and made available on LP wheres figures 4b and 4d depict

State Machines across Isomorphic Layer 2 Ledgers 11

how they are unwrapped and moved out of LP back into either L2
0 or L2

1. All
operations have to be done atomically and thus are executed using the framework
described in Section 4.2. When wrapping a UTxO u, it is committed into the
input-buffer transaction on the ledger it originates from, whereas for the other
replica the intermediaries Pint,0, . . . , Pint,nint commit collateral col0, . . . , colnint

respectively such that val(u) ≤
∑nint

i=0 coli where val(u) is the amount of coins
and token in u. Only after the input buffer transaction has been committed to
both replica, the intermediaries collaborate to create the wrap-transactions which
are analogous to the perform-transaction in Section 3b and make the wrapped
UTxO available in LP . Lastly, each wrapped UTxO contains a nonce uid that is
unique to LP to make it uniquely identifiable, however, which is equal for the
same wrapped UTxO on each replica. Unwrapping of a UTxO is analogous with
a few differences. For one, we require that the unwrap-transaction in addition
contains information Hid which designates that the UTxO will be moved to L2

Hid

as depicted in Figure 4b and the collateral associated with it is released on the
other layer 2 ledger as depicted in Figure 4d. Moreover, to trigger unwrapping of
a UTxO we additionally require a group signature corresponding to the aggregate
verification key of all participants VP of the message (unwrap, uid, Hid).

4.4 Collateral

The wrapping itself is a unique UTxO living in L2
0 and L2

1. It’s datafield contains
the amount of collateral committed by each intermediary. Let col(P, w(u)) be the
collateral intermediary P has contributed to wrapped UTxO w(u). If a trans-
action consumes wrapped UTxOs win(u0), . . . , win(un), and creates wrapped
UTxOs wout(u0), . . . , wout(um) n,m ∈ N, then for each intermediary Pi, 0 ≤
i ≤ nint holds that the sum of their committed collateral does not change, i.e.∑n
j=0 col(win(uj)) =

∑m
l=0 col(win(ul)). It has to hold that each wrapped UTxO

remains sufficiently collateralized, i.e. the inequation val(u) =
∑nint

i=0 coli holds.
How collateral is distributed within the new UTxOs is to be negotiated between
the intermediaries. In Layer-2 protocols intermediaries receive a fee for locking
their collateral. While not addressing it in detail we argue that we can adapt the
handling of fees from the Interhead [14] where intermediaries receive fee propor-
tional to the collateral locked whereas parties pay out a fee to the intermediaries
proportional to the value of UTxO they request moving to LP .

4.5 Dispute

Dispute resolution is similar to Interhead Hydra [14]. At any point, any party can
create a transaction that consumes a wrapped UTxO and outputs a semantically
equal UTxO to which a dispute flag is added. A dispute might be required if the
intermediaries fail to perform a transaction atomically on all replica, or if the
intermediaries stop collaborating to perform any further transaction which is
required to ensure liveness.. A UTxO with such a flag can be spent in two ways.
(1) As depicted in Figure 5a a merge-transaction consumes one instance of the

12 Jourenko et al.

Sd

𝖽𝖺𝗍𝖺

Sd

𝖽𝖺𝗍𝖺

S
𝖽𝖺𝗍𝖺

w(u)

w(u)

𝖼𝗈𝗅t0

𝖼𝗈𝗅tm

…w′ (u)

u

w′ (u)
𝗆𝖾𝗋𝗀𝖾

𝗆𝖾𝗋𝗀𝖾

(a)

Sd

𝖽𝖺𝗍𝖺
w(u) w(in) u

S
𝖽𝖺𝗍𝖺

𝗉𝗎𝗇𝗂𝗌𝗁

(t1 + Δℒ2 + Δ, r𝗆𝖺𝗑)(t0, t1)

(b)

Fig. 5: Figure 5a shows dispute resolution through merge of its two wrapped
UTxO instances. Figure 5b shows timeout and punishment of the intermediaries.

wrapped UTxO from each replica and outputs the UTxO as well as all collateral
associated with it. This requires moving the flagged UTxO out of L2

0 and L2
1 and

to the underlying ledger which can be done by any party which takes at most
time ∆L2 . Recall that committing any transaction on the ledger takes time ∆.
Therefore any intermediary can perform this within time ∆L2 + ∆. However,
the above dispute resolution requires that both wrapped UTxO are available. If
dispute is triggered while a UTxO is involved in a atomic transaction it might be
only available on one replica. Recall the atomic transaction in Figure 3b where a
UTxO is first in state Si, then a verify-transaction moves it to a buffer state Sbi,i+1

and lastly the UTxO is moved with a perform-transaction to state Si+1. Since
the intermediaries synchronize after each transaction as mentioned in Section
4.2 and described in Section 5 the states can only diverge by one state transition
and we can proceed as follows. If both states are at least in state Sbi,i+1 we
already verified on all replica that the original-transaction can be performed thus
the merge-transaction outputs a UTxO in state Si and burning token as well as
outputting wrapped UTxO on the ledger consistent to bodyi+1. Otherwise one
UTxO is in state Si while the other is in state Sbi,i+1. Then the merge transaction
outputs a UTxO in state Si while reversing the verify-transaction, i.e. it for each
UTxO in the verify-transaction’s inputs it outputs semantically equal wrapped
UTxO on the ledger, as well as it burns all token that were forged in that
transaction. (2) As shown in Figure 5b a timelock expires after time ∆L2 + ∆
which allows the flagged UTxO to be spent by a transaction that consumes it
and outputs the UTxO directly and without outputting any collateral. Note that
if a UTxO is in state Sbi,i+1 the UTxO that will be output is in state Si+1.

4.6 Extensions

Batch Transaction. To improve efficiency of the construction multiple wrap and
de-wrap transactions could be batched into one transaction. Moreover, instead
of requiring wrapped UTxO as input, a sync-transaction can take UTxO and
collateral as input and implicitly wrapping the UTxO in the same step.

State Machines across Isomorphic Layer 2 Ledgers 13

Multiple Replica. Our construction can be extended to n ≥ 2, n ∈ N replica. As
in the case of n = 2 all replica require to synchronize at sync-transactions and
merge-transactions have to be adapted to merge not two but n disputed UTxOs.
However, this naive extension to multiple replica requires that the collateral
committed by each intermediary for each UTxO in each replica is equal. The
option of having variable collateral is left as an open question.

Recovery from Disputes. If UTxOs are disputed within each replica, but are
either in the same state or can be brought into the same state through reversing
a sync-transaction or doing a perform transaction they could be moved back into
their respective replicas and thus into LP thus resolving the disupte. However,
to ensure correctness and liveness, we require an aggregate signature of the
intermediaries as well an aggregate signature of all remaining parties, i.e. all
parties must verify and consent to recover from a dispute as otherwise corrupted
parties might prevent a correct dispute resolution.

Virtual Ledgers. Since our construction requires interaction with all intermedi-
aries in P for each transaction it cannot be considered a virtual ledger. However,
layer 2 ledger constructions such as Hydra [4] can be performed within our frame-
work effectively creating virtual ledgers.

5 The Protocols

We require that all transactions performed on LP are either performed on all
replica or on none which is ensured through ATOMIC TRANSACTION protocol
shown in Algorithm 1 which is executed by the intermediaries. This protocol
is executed for general transactions and (un-) wrapping of UTxOs. If this fails,
there would be UTxO that are on only one replica, i.e. UTxO are not spent on the
replica that did not perform the transaction, whereas new UTxO are created only
on the replica that did perform the transaction. Any UTxO that exists on only
one replica can be claimed by their owner by setting a dispute flag on the UTxO
which allows it to be claimed directly after time ∆L2 +∆. A dispute might also be
triggered to ensure liveness, if the intermediaries stop collaboration to perform
further transactions. However, if a disputed UTxO exists on all replica, the
intermediaries can perform the DISPUTE UTXO protocol shown in Algorithm 2
to move the UTxO out of LP and into the common ledger L.

Atomic Transactions. Algorithm 1 describes how all Intermediaries collaborate
to perform a transaction atomically on all replica. Whenever a participant of
LP requests a transaction to be performed they submit the original transaction
tro. First, we verify whether tro is a valid transaction in lines 2 and 3 tro and
terminate if this is not the case. In line 4 we derive the verify − transactions
trv,0 and trv,1 for the replicas in L2

0 and L2
1 respectively and in line 5 we derive

the perform− transactions trv,0 and trv,1. In lines 6 - 8 the intermediaries col-
laborate to create group signatures for the verify − transactions, commit them

14 Jourenko et al.

Algorithm 1 Transaction Protocol

1: function
ATOMIC TRANSACTION(tro)

2: if ¬VERIFY(tro) then return
3: end if
4: (trv,0, trv,1) ← VRFY TR(tro)

5: (trp,0, trp,1) ← PRFRM TR(tro)

6: AGGREGATE SIG(Vint, trv,0, trv,1)
7: COMMIT((L2

0, trv,0), (L2
1, trv,1))

8: WAIT COMITTED(trv,0, trv,1)
9: AGGREGATE SIG(Vint, trp,0, trp,1)

10: COMMIT((L2
0, trp,0), (L2

1, trp,1))
11: WAIT COMITTED(trp,0, trp,1)
12: end function

Algorithm 2 Dispute Protocol

1: function DISPUTE UTXO(u)
2: if ¬DISPUTED(u) then return
3: end if
4: DECOMMIT(L2

0, u)
5: DECOMMIT(L2

1, u)
6: WAIT DECOMMITTED(u)
7: trm ← MERGE TX(u)
8: COMMIT(L, trm)
9: end function

Fig. 6: Algorithm 1 is executed by intermediaries to perform transactions whereas
Algorithm 2 is done by any one intermediary to resolve a dispute.

and wait until they are confirmed by the respective layer 2 ledgers. In line 6,
AGGREGATE SIG takes an aggregate verification key and two transactions as
input and outputs aggregate signatures for both transactions corresponding to
that verification key. Then, COMMIT takes tuples of form (L, tr) as input and
commits transaction tr onto (layer 2) ledger L. In line 8 WAIT COMMITTED
takes a list of transactions as input and makes the protocol participants wait
until these transactions are processed on their respective ledgers. After this is
done the same is repeated for the perform− transactions in lines 9 - 11.

Dispute. Algorithm 2 describes how a dispute can be resolved by any one in-
termediary without them losing their collateral. This algorithm can only be
executed if a disputed UTxO is present on all replica. The algorithm takes a
wrapped UTxO as input. First, the intermediary checks whether the UTxO’s
dispute flag is set in lines 2 - 4 and terminates the algorithm otherwise. If the
UTxO is disputed the wrapped UTxOs are decommitted from L2

0 and L2
1 respec-

tively and moved to the common ledger L within time ∆L2 . Then, in line 6 the
intermediary observes L and waits until both replica of the UTxO are present on
L after which in line 7 a merge− transaction for the disputed UTxO is created
that takes the decommitted wrapped UTxOs and outputs the UTxO as well as
all collateral that is associated with it as depicted in Figure 5a. Lastly in line 8
the merge− transaction is committed to L and is processed within time ∆.

6 Analysis

Theorem 1 (Offchain Efficiency). If L2 can de-commit a UTxO to the ledger
in O(1) transactions, LP has offchain efficiency.

State Machines across Isomorphic Layer 2 Ledgers 15

Proof. The only occasion in which UTxO are committed to L is when an in-
termediary executes DISPUTE UTXO in Algorithm 2. In that case the disputed
UTxO is de-commited from both, L2

0 and L2
1 which happens inO(1) transactions.

Afterwards one merge-transaction is committed to the ledger.

Theorem 2 (Liveness). LP has the liveness property.

Proof. At any point within a UTxOs lifecycle within LP including during wrap-
ping and unwrapping it can be disputed by any party including any intermediary.
If there is a honest intermediary, they will proceed to make the UTxO and the
associated collateral available on the ledger by executing Algorithm 2. This hap-
pens within time ∆L2 + ∆. Otherwise, at time ∆L2 + ∆ a semantically equal
UTxO is available in Layer 2 ledgers L0 and L1 respectively.

Theorem 3 (Balance Security). LP has the balance security property.

Proof. In the following we assume that all UTxO are well formatted, i.e. a owner
of a UTxO has given consent to spent the UTxO to any computationally polyno-
mially bound party that can compute a valid witness for the UTxO. Moreover,
in the following we consider a honest party P and a UTxO u that is present in
LP and either P can spend u by computing a witness within polynomial time, or
u contains P’s collateral. A honest party can lose access to their coins either (1)
by having a UTxO and its associated collateral be locked within LP indefinitely
such that the party cannot move it to L0, L1 or L, or (2) if a party without
consent to spend can use the UTxO as input in a transactions spending it in
the process. Note that since by construction, if a UTxO is spent in any way on
LP its collateral is moved to another UTxO. Thus, to show balance security for
collateral we need to show that case (1) cannot occur. To show balance security
for the coins in u itself we have to show that (1) cannot occur and that (2)
can only occur with negligible probability. Since LP has the liveness property,
case (1) cannot occur. In the following, we assume that there exists a computa-
tionally polynomially bound party that attempts to spend u without receiving
consent. This requires creation of a witness for u. As they have no consent to
spend the UTxO they cannot compute a witness within polynomial time, thus
the probability they can spend it is negligible.

7 Conclusion

In this work we presented a means for parties on two Layer-2 ledgers to inter-
act with another ad-hoc and with little in advance setup. We showed properties
balance security, liveness and offchain efficiency hold in the presence of a ma-
licious adversary corrupting all but one parties. While we presented only the
core of the construction, we proposed multiple potential extensions as improv-
ing efficiency through batching of transactions, recovery from disputes, creation
of virtual ledgers and connecting more than two Layer-2 ledgers. We argue that
the construction can be used as a framework for secure interaction and individual
uses cases can be optimized to facilitate low-overhead interactions.

16 Jourenko et al.

References

1. Canetti, R.: Universally composable signature, certification, and authentication.
In: Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004. pp.
219–233. IEEE (2004)

2. Chakravarty, M.M., Chapman, J., MacKenzie, K., Melkonian, O., Jones, M.P.,
Wadler, P.: The extended utxo model. In: 4th Workshop on Trusted Smart Con-
tracts (2020)

3. Chakravarty, M.M., Chapman, J., MacKenzie, K., Melkonian, O., Müller, J., Jones,
M.P., Vinogradova, P., Wadler, P.: Native custom tokens in the extended utxo
model. In: International Symposium on Leveraging Applications of Formal Meth-
ods. pp. 89–111. Springer (2020)

4. Chakravarty, M.M., Coretti, S., Fitzi, M., Gazi, P., Kant, P., Kiayias, A., Rus-
sell, A.: Hydra: Fast isomorphic state channels. In: International Conference on
Financial Cryptography and Data Security. Springer (2021)

5. Croman, K., Decker, C., Eyal, I., Gencer, A.E., Juels, A., Kosba, A., Miller, A.,
Saxena, P., Shi, E., Sirer, E.G., et al.: On scaling decentralized blockchains. In:
International Conference on Financial Cryptography and Data Security. pp. 106–
125. Springer (2016)

6. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In: Symposium on Self-Stabilizing Systems. pp.
3–18. Springer (2015)

7. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: Virtual payment hubs
over cryptocurrencies. In: Perun: Virtual Payment Hubs over Cryptocurrencies.
IEEE (2017)

8. Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. pp. 949–966. ACM (2018)

9. Goldwasser, S., Micali, S., Rivest, R.L.: A ”paradoxical” solution to the sig-
nature problem. In: Proceedings of the 25th Annual Symposium OnFounda-
tions of Computer Science, 1984. p. 441448. SFCS ’84, IEEE Computer Soci-
ety, USA (1984). https://doi.org/10.1109/SFCS.1984.715946, https://doi.

org/10.1109/SFCS.1984.715946

10. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281308 (apr 1988).
https://doi.org/10.1137/0217017, https://doi.org/10.1137/0217017

11. Itakura, K.: A public-key cryptosystem suitable for digital multisignatures. NEC
J. Res. Dev. 71 (1983)

12. Jourenko, M., Larangeira, M., Tanaka, K.: Lightweight virtual payment channels.
Cryptology ePrint Archive, Report 2020/998 (2020), https://eprint.iacr.org/
2020/998

13. Jourenko, M., Larangeira, M., Tanaka, K.: Payment trees: Low collateral payments
for payment channel networks. In: International Conference on Financial Cryptog-
raphy and Data Security. Springer (2021)

14. Jourenko, M., Larangeira, M., Tanaka, K.: Interhead hydra: Two heads are better
than one. In: The 3rd International Conference on Mathematical Research for
Blockchain Economy (2022)

15. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous
computation. In: Theory of Cryptography Conference. pp. 477–498. Springer
(2013)

https://doi.org/10.1109/SFCS.1984.715946
https://doi.org/10.1109/SFCS.1984.715946
https://doi.org/10.1109/SFCS.1984.715946
https://doi.org/10.1109/SFCS.1984.715946
https://doi.org/10.1137/0217017
https://doi.org/10.1137/0217017
https://doi.org/10.1137/0217017
https://eprint.iacr.org/2020/998
https://eprint.iacr.org/2020/998

State Machines across Isomorphic Layer 2 Ledgers 17

16. Kiayias, A., Litos, O.S.T.: A composable security treatment of the lightning net-
work. IACR Cryptology ePrint Archive 2019, 778 (2019)

17. Kiayias, A., Zhou, H.S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: Fischlin, M., Coron, J.S. (eds.) Advances in Cryp-
tology – EUROCRYPT 2016. pp. 705–734. Springer Berlin Heidelberg, Berlin,
Heidelberg (2016)

18. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures. In: Pro-
ceedings of the 8th ACM Conference on Computer and Communications Security.
pp. 245–254 (2001)

19. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
20. PDecker, C., Russel, R., Osuntokun, O.: eltoo: A simple layer2 protocol for bitcoin.

See https://blockstream.com/eltoo.pdf (2017)
21. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-

ments. See https://lightning. network/lightning-network-paper. pdf (2016)
22. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: Hotstuff: Bft consen-

sus with linearity and responsiveness. In: Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing. pp. 347–356 (2019)

	State Machines acrossIsomorphic Layer 2 Ledgers

