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Abstract. Since the pioneering work of Gentry, Halevi, and Smart in 2012
[18], the state of the art on transciphering has moved away from work on AES
to focus on new symmetric algorithms that are better suited for a homomor-
phic execution. Yet, with recent advances in homomorphic cryptosystems, the
question arises as to where we stand today. Especially since AES execution is
the application that may be chosen by NIST in the FHE part of its future call
for threshold encryption. In this paper, we propose an AES implementation
using TFHE programmable bootstrapping which runs in less than a minute
on an average laptop. We detail the transformations carried out on the original
AES code as well as the optimized FHE operators we developed to lead to a
more efficient homomorphic evaluation. We also duly give several execution
times on different machines, depending on the type of execution (sequential or
parallelized). These times vary from 4.5 minutes (resp. 54 secs) for sequential
(resp. parallel) execution on a standard laptop down to 28 seconds for a
parallelized execution over 16 threads on a multi-core workstation.

Keywords: AES, Fully Homomorphic Encryption, Transciphering, TFHE, Pro-
grammable Bootstrapping.

1 Introduction

With recent advances in FHE, is a homomorphic AES still as impractical as it was
ten years ago? The work of Gentry, Halevi, and Smart [18] in 2012 pushed research
towards new symmetric cryptosystems designed primarily to be faster to evaluate over
FHE. Indeed, they performed an AES-128 homomorphic evaluation with BGV using
HElib, with now obsolete parameters that did not allow bootstrapping. They then
obtained an execution time of 4.1 minutes, but without allowing further operations
on the final ciphertext. With bootstrapping, thus allowing further calculations after
the homomorphic execution of the AES, their runtime grew to 17.5 minutes. So
neither of these two approaches could be used in practice. Since transciphering
(the ability to homomorphically turn low overhead symmetrically encrypted data
⋆ This paper will appear in the proceedings of WAHC’23.
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into homomorphically encrypted ones) is an important issue for FHE practicality,
several teams then decided to create new symmetric cryptosystems, whose encryption
operations were specifically chosen to be more rapidly executed in the homomorphic
domain. As of today, there are many proposals, from block ciphers (LowMC [1],
PRINCE [6], CHAGHRI [2]) to stream ciphers (Elisabeth [15], PASTA [17], Kreyvium
[8]). Each comes with its pros and cons. For instance, PRINCE [6] is a block
cipher especially created to be lightweight and, although it was initially proposed
independently of Gentry’s breakthrough on FHE, has a number of desirable properties
with respect to homomorphic execution: a moderate number of rounds, small depth
(for a block-cipher) and a low gate count/footprint of the decryption and encryption
functions. PRINCE was one of the first symmetric algorithms for which an FHE
execution attempt was done [21]. LowMC [1], on the other hand, is the first block
cipher explicitly designed with FHE and MPC in mind. Although demonstrating
competitive FHE execution performances at the time of proposal, its design was
intrinsically bit-oriented while the FHE state of the art has moved away from bit-
level FHE operations due to the relative inefficiency of this latter approach. In
2022 Ashur et al. presented CHAGHRI [2], an FHE-friendly block cipher enabling
efficient transciphering in BGV-like schemes. A complete CHAGHRI circuit can be
implemented using 16 multiplications, 48 Frobenius automorphisms, and 32 rotations.
The authors implemented it with HElib in order to compare it with Gentry et al.
work on AES. Although their implementation is claimed to be 63% faster than
[18], an attack on CHAGHRI has recently been proposed [22]. Also introduced in
2022, Elisabeth is a family of stream ciphers especially designed to be efficient for
Hybrid Homomorphic Encryption (HHE). The authors use TFHE and propose a
Rust implementation (using the Concrete library) of Elisabeth-4, that is to say,
a cryptosystem in which inputs are on 4 bits. So it would take 32 executions of the
cipher to obtain a 128-bits ciphertext. Before Elisabeth, the PASTA cryptosystem,
implemented with BGV/BFV proposed an optimized cipher for integer HHE use
cases. They also benchmark several HHE schemes, using the HElib library. But
the use of a non-bootstrapping-able scheme limits the number of operations to be
further performed on the ciphertexts. Kreyvium is a stream cipher, which is a variant
of Trivium [7] (a stream cipher belonging to the eSTREAM portfolio). The main
motivation for introducing Kreyvium was to propose an FHE-friendly symmetric
primitive with 128-bits of security, based on the sound design rationals of Trivium.
Additionally, the state of the art also includes homomorphic evaluation of several
variants of the Grain-128 stream cipher by means of TFHE either in gate-bootstrapping
mode or exploiting its functional bootstrapping capabilities [4, 3]. Often compared to
the homomorphic execution times of AES as a guarantee of efficiency, none of these
cryptosystems has been standardized (with the notable exception of Grain-128, which
was a finalist in the recent NIST competition on lightweight cryptography). Yet, an
“efficient-by-FHE-standards” homomorphic AES execution remains interesting for
the research community working on transciphering, even if it does not bring any
revolution. This is especially so, since AES execution may be the application chosen
by NIST in the FHE part of its future call for proposals on threshold encryption1.

1 https://csrc.nist.gov/Projects/threshold-cryptography.



AES implementation using TFHE 3

Contribution– In this paper, we propose an AES implementation using TFHE
programmable bootstrapping, which runs in less than a minute on a standard laptop
PC. We first detail the modifications carried out on the original AES code as well
as the optimized FHE operators we developed to lead to an efficient homomorphic
evaluation of the algorithm. Then we give details about the benchmark made to de-
termine which decomposition basis to use to have a faster evaluation of the algorithm.
We finally provide experimental execution times on different machines, depending
on the type of execution (sequential or parallelized).

Paper Ogranization– This paper is organized as follows: Section 2 reviews the
basics of the TFHE cryptosystem and gives the necessary details of the tree-based
method for bootstrapping with multi-input ciphertexts and its optimization with multi-
value bootstrapping. Section 3 gives a brief reminder on the AES. Section 4 provides
a detailed exposition of our approaches to transform the original AES code and
implement the most optimized and efficient version of it with TFHE programmable
bootstrapping. Section 5 presents the performances and results of our methods.

2 TFHE Preliminaries

2.1 Notations

Let T=R/Z be the real torus, that is to say, the additive group of real numbers
modulo 1 (R mod 1). We will denote by TN [X]n the set of vectors of size n whose
coefficients are polynomials of T[X] mod(XN+1). N is usually a power of 2. Let
B={0,1}. ⟨ , ⟩ denotes the inner product.

2.2 TFHE Scheme

The TFHE scheme is a fully homomorphic encryption scheme introduced in 2016
in [10] and implemented as the TFHE library 2. TFHE defines three structures to
encrypt plaintexts, which we summarize below as fresh encryptions of 0:

– TLWE sample: A pair (a,b)∈Tn+1, where a is uniformly sampled from Tn and
b=⟨a,s⟩+e. The secret key s is uniformly sampled from Bn, and the error e∈T
is sampled from a Gaussian distribution with mean 0 and standard deviation σ.

– TRLWE sample: A pair (a,b)∈TN [X]k+1, where a is uniformly sampled from
TN [X]k and b=⟨a,s⟩+e. The secret key s is uniformly sampled from BN [X]k,
the error e∈T is a polynomial with random coefficients sampled from a Gaussian
distribution with mean 0 and standard deviation σ. One usually chooses k=1;
therefore, a and b are vectors of size 1 whose coefficient is a polynomial.

– TRGSW sample: a vector of (k+1)l TRLWE fresh samples.

Let M denote the discrete message space (M∈TN [X] or M∈T). To encrypt
a message m∈M, we add what is called a noiseless trivial ciphertext (0,m) to a
fresh encryption of 0. We denote by c=(a,b)+(0,m)=(a,b+m)∈T(R)LWEs(m) the

2 https://tfhe.github.io/tfhe/
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T(R)LWE encryption of m with key s. A message m∈Z[X] can also be encrypted
in TRGSW samples by adding m·H to a TRGSW sample of 0, where H is a gadget
decomposition matrix. As we will not explicitly need such an operation in this paper,
more details about TRGSW can be found in [10].

To decrypt a ciphertext c, we first calculate its phase ϕ(c)= b−⟨a,s⟩=m+e.
Then, we need to remove the error, which is achieved by rounding the phase to the
nearest valid value in M. This procedure fails if the error exceeds half the distance
between two elements of M.

2.3 TFHE Bootstrapping

Bootstrapping is the operation that reduces the noise of a ciphertext, thus allowing
further homomorphic calculations. It relies on three basic operations, which we briefly
review in this section.

– BlindRotate: rotates a polynomial encrypted as a TRLWE ciphertext by an
encrypted index (under the form of a TLWE encryption).
It takes several inputs: a ciphertext c∈TRLWEk(m), a vector (a1,···,ap,b) where
∀i,ai∈Z2N , and a TRGSW ciphertext encrypting the secret key s=(s1,···,sp).
It returns a ciphertext c′∈TRLWEk(m·X⟨a,s⟩−b). This paper will refer to this
algorithm as BlindRotate.

– TLWE Sample Extract: extracts a coefficient of a TRLWE ciphertext and
converts it into a TLWE ciphertext. It takes as inputs both a ciphertext
c ∈ TRLWEs(m) and an index p ∈ {0, ··· ,N − 1}. The result is a TLWE ci-
phertext c′ ∈TLWEs(mi) where mi is the ith coefficient of the polynomial m.
This paper will refer to this algorithm as SampleExtract.

– Public Functional Keyswitching: allows the switching of keys and parameters
from p ciphertexts ci∈TLWEk(mi) to one c′∈T(R)LWEs(f(m1,···,mp)) where f
is a public linear morphism between Tp and TN [X]. That is to say, this operation
not only allows the packing of TLWE ciphertexts in a TRLWE ciphertext, but
it can also evaluate a linear function f over the input TLWEs. This paper will
refer to this algorithm as KeySwitch.

It is important to note that, during a BlindRotate operation, an excessive noise level
in the input TLWE ciphertext (the encrypted index which we use to rotate the polyno-
mial) can lead to errors in the bootstrapping output resulting in incorrect ciphertexts
(i.e., ciphertext which does not decrypt to correct calculation results). This has impli-
cations for parameters and data representation choices (number of digits and basis).

Algorithm 1 shows the TFHE Gate Bootstrapping [10], which aims to evaluate
a binary gate operation homomorphically and reduce the output ciphertext noise
at the same time. To that end, 0 and 1 are respectively encoded as 0 and 1

2 over
T. The first step of this algorithm consists of selecting a value m̂∈ T, which will
be used afterward to compute the coefficients of the polynomial, which will rotate
during the BlindRotate. We call this polynomial testv as seen in Step 3. Note that
for any p∈J0,2NK (where J0,2NK corresponds to the set of integers {0,···,2N}), the
constant term of testv·Xp is m̂ if p∈KN2 ,

3N
2 K and −m̂ otherwise. Step 4 returns an
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accumulator ACC∈TRLWEs′(testv·X⟨a,s⟩−b). Indeed, the constant term of ACC
is −m̂ if c is an encryption of 0 and m̂ if c is an encryption of 1

2 . Then step 5 creates
a new ciphertext c by extracting the constant term in position 0 from ACC and
adding (0,m̂). Thus, c corresponds to an encryption of 0 if c is an encryption of 0 and
m otherwise. On the other hand, if c is an encryption of 1

2 and if we choose m= 1
2 ,

the algorithm returns a fresh ciphertext of 1
2 , that is to say the encoding of 1.

In Fig. 1, we present an example of TFHE gate bootstrapping algorithm with
Z4={0,1,2,3} as input space. The outer circle in Fig. 1 corresponds to the plaintext
encoding in T as {0,14 ,

2
4 ,

3
4}. Meanwhile, the inner circle sets the coefficients of the

test polynomial testv to 1, i.e., m̂= 1
4 . Then, we rotate the test polynomial during

the bootstrapping by the phase ϕ(c0) of the input ciphertext c0. In our example, we
obtain as bootstrapping output either an encryption of the encoding of 1 for positive
inputs {0,14}, or an encryption of the encoding of −1 for negative inputs {2

4 ,
3
4}.

Algorithm 1 TFHE gate bootstrapping [10]

Require: a constant m ∈ T, a TLWE sample c = (a,b) ∈ TLWEs(x · 12) with x ∈ B, a
bootstrapping key BKs→s′ =(BKi ∈TRGSWS′(si))i∈J1,nK where S′ is the TRLWE
interpretation of a secret key s′.

Ensure: a TLWE sample c∈TLWEs(x.m)
1: Let m̂= 1

2
m∈T (pick one of the two possible values)

2: Let b=⌊2Nb⌉ and ai=⌊2Nai⌉∈Z,∀i∈J1,nK
3: Let testv :=(1+X+···+XN−1)·X

N
2 ·m̂∈TN [X]

4: ACC←BlindRotate((0,testv),(a1,...,an,b),(BK1,...,BKn))
5: c=(0,m̂)+SampleExtract(ACC)
6: return KeySwitchs′→s(c)

2.4 TFHE Functional Bootstrapping

We can use Look-Up Tables to compute functions during the bootstrapping operation.
To do so, we replace the coefficients of the test polynomial testv with the correspond-
ing values of the LUT. Let us assume that we want to evaluate the function fT via a
LUT. Then, if we retrieve the ith coefficient of testv, we actually get fT(mi) where mi

is the encrypted input to the bootstrapping. We refer to this idea by programmable
or functional bootstrapping [11, 20, 25, 12, 14].

In Fig. 1, we give an example of functional bootstrapping with Z4={0,1,2,3} as
input space. We encode the images of {0,14} by fT as coefficients of the test polynomial
(in the inner circle). Meanwhile, we deduce the images of {2

4 ,
3
4} by negacyclicity.

Indeed, in T, we can encode negacyclic functions, i.e., antiperiodic functions with
period 1

2 (verifying fT(x)=−fT(x+
1
2)), where [0,0.5[ corresponds to positive values

and [0.5,1[ to negative ones. In our example, if we encrypt one of the following values
{0,14 ,

2
4 ,

3
4} and we give it as input to the functional bootstrapping algorithm, we get

{fT(0),fT(1),−fT(0),−fT(1)}, respectively.
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TFHE gate booststrapping

before bootstrapping

before bootstrapping

after bootstrapping

after bootstrapping

TFHE functional booststrapping

Fig. 1: TFHE Bootstrapping examples: the outer circles describe the inputs to the
bootstrapping (i.e., ciphertexts over T). Meanwhile, the inner circles represent the
coefficients of the test polynomial testv. One of these coefficients is extracted as the
output of the bootstrapping after the BlindRotate.

Almost all of the functional bootstrapping methods from state of the art ([11, 20,
25, 12, 14]) take as input a single ciphertext. In 2021, Guimarães et al., [19] discussed
two methods for performing functional bootstrapping with larger plaintexts. They
combine several bootstrappings with different encrypted inputs by using a tree or
a chain structure. The ciphertexts are encryptions of digits that come from the
decomposition of plaintexts in a certain basis B.

2.5 Tree-based Method

Let B,B′,d∈N∗ and m be an integer message. B and B′ are the basis on which to
decompose the message. We then have m=

∑d−1
i=0miB

i, with mi∈J0,B−1K. From this
decomposition, we obtain d TLWE encryptions (c0,c1,···,cd−1) of (m0,m1,···,md−1)
on half of the torus T. We denote f :J0,B−1Kd→J0,B′−1K the target function and
define g as the following bijection:

g : J0,B−1Kd → J0,Bd−1K
(a0,a1,···,ad−1) 7→

∑d−1
i=0 ai·Bi
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We then encode a LUT for f under the form of Bd−1 TRLWE ciphertexts. Each of
these ciphertexts encodes a polynomial Pi such that:

Pi(X)=

B−1∑
j=0

N
B−1∑
k=0

f◦g−1(j ·Bd−1+i)·Xj·NB+k

Then, we apply the BlindRotateAndExtract (the BlindRotate directly followed
by the SampleExtract in position 0) to each test polynomial testv=TRLWE(Pi)
with c0 as a selector. We obtain Bd−1 TLWE ciphertexts, each corresponding to the
encryption of f◦g−1(md−1·Bd−1+i), for i∈J0,Bd−1−1K.

Finally, we use the KeySwitch operation from TLWE to TRLWE to gather them
into Bd−2 encrypted TRLWE, corresponding to the LUT of h, with:

h : J0,B−1Kd−1 → J0,B′−1K
(a0,a1,···,ad−2) 7→ f(a0,a1,···,ad−2,md−1)

We then repeat this operation, using the ciphertext ci at step i, until we obtain a
single TLWE ciphertext of f(m0,m1,··· ,md−1). Note that the tree-based method
must be run independently as many times as the number of digits in the output.

2.6 Multi-Value Bootstrapping

Multi-Value Bootstrapping (MVB) [9] refers to the method for evaluating k different
LUTs on a single input with a single bootstrapping. MVB factors the test polynomial
Pfi associated with the function fi into a product of two polynomials v0 and vi,
where v0 is a common factor to all Pfi. In practice, we have:

(1+X+···+XN−1)·(1−X)≡2 mod (XN+1)

Now by writing Pfi in the form Pfi =
∑N−1

j=0 αi,jX
j with αi,j ∈Z, we get from

the previous equation:

Pfi =
1

2
·(1+X+···+XN−1)·(1−X)·Pfi mod (XN+1)

=v0·vi mod (XN+1)

where:

v0=
1

2
·(1+X+···+XN−1)

vi=αi,0+αi,N−1+(αi,1−αi,0)·X+···
+(αi,N−1−αi,N−2)·XN−1

This factorization makes it possible to compute many LUTs using a unique bootstrap-
ping. Indeed, it is enough to initialize the test polynomial testv with the value of v0
during bootstrapping. Then, after the BlindRotate operation, one has to multiply
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Fig. 2: Illustration of the MVB optimization. (a) represents the classic method to
process several bootstrapping, while (b) represents the MVB optimization. As seen
here, it reduces the number of BlindRotate operations, which is the most expansive
one of the bootstrapping.

the obtained ACC by each vi corresponding to the LUT of fi to get ACCi. Figure
2 illustrates the advantage of this method.

This optimization reduces the number of bootstrapping required for an operation
and, thus, the overall computation time.

3 A Short Reminder on the AES

Advanced Encryption Standard (AES) is the name given to the Rijndael algorithm,
the winner of the NIST standardization competition in 2000 [16]. It is a symmetric
block cipher, defined to work with different key sizes. Several rounds are applied to
the original message to obtain an encrypted message. Each round consists of the same
operations performed in the same order. We chose to work on the 128-bits AES, which
uses 10 rounds. The ciphertext is composed of 16 bytes such as c=c0c1···c15∈(F28)

16

and is encoded in what we call a state matrix in the following way:
c0 c4 c8 c12
c1 c5 c9 c13
c2 c6 c10 c14
c3 c7 c11 c15


The round operations affect this matrix as follows:

– SubBytes: the SubBytes operation is the only non-linear transformation of the
cipher. It is a permutation consisting of an S-box applied to the bytes of the
state matrix. As it acts on the individual bytes of the state, it can be parallelized
for efficient execution.

– AddRoundKey: before the encryption, the secret key is "expanded" into several
round keys. The encryption process relies only on these round keys and not the
initial secret key. In this transformation, the state is modified by combining it
with a round key with the bitwise XOR operation. Of course, to do so, the size
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of each round key is equal to the size of the ciphertext (in our case, 128 bits
encoded in a round key matrix to match the state matrix). That is to say, we
have at round i∈{0,···,9}:


c0 c4 c8 c12
c1 c5 c9 c13
c2 c6 c10 c14
c3 c7 c11 c15

⊕


ki,0 ki,4 ki,8 ki,12
ki,1 ki,5 ki,9 ki,13
ki,2 ki,6 ki,10 ki,14
ki,3 ki,7 ki,11 ki,15

=


c0⊕ki,0 c4⊕ki,4 c8⊕ki,8 c12⊕ki,12
c1⊕ki,1 c5⊕ki,5 c9⊕ki,9 c13⊕ki,13
c2⊕ki,2 c6⊕ki,6 c10⊕ki,10 c14⊕ki,14
c3⊕ki,3 c7⊕ki,7 c11⊕ki,11 c15⊕ki,15


– ShiftRows: the ShiftRows step is a byte transposition that cyclically shifts the

rows of the state over different offsets. For AES-128, row 0 is shifted over 0 bytes,
row 1 over 1 byte, row 2 over 2 bytes and row 3 over 3 bytes. As this operation only
alters the position of the bytes in the state matrix, it does not require a homomor-
phic equivalent (instead of shifting regular bytes, we shift homomorphic bytes).

– MixColumns: the MixColumns step is operating on the state column by column
via matrix multiplication. However in practice, the authors do not implement the
naive matrix product but work with each byte of the state matrix individually.
They use a mix of scalar GF(256) multiplication and XOR, as visible in the
original code. Therefore, this operation can be parallelized.

A typical execution of the 128-bits AES begins with the first AddRoundKey
directly followed by the first iteration of the rounds. Each round proceeds as follows:

1. SubBytes
2. ShiftRows
3. MixColumns
4. AddRoundKey

Except for the last round, which does not require the MixColumns step.

About the Key Expansion– Key expansion is an operation that may be
performed once and for all, from the secret key. Indeed, from the 128-bit key are
derived eleven 128-bit round keys, which are used in the AddRoundKey operation.
As a result, to evaluate the AES encryption or decryption algorithm, a server only
needs to know the round keys. This operation, consisting of XOR and GF(256)
multiplication, is expensive in the homomorphic domain. It is therefore more efficient
for a client to generate its own key, derive the round keys, and then homomorphically
encrypt them. Sending these eleven homomorphically encrypted round keys is faster
than creating the initial key, encrypting it in homomorphic, and sending it to a server
to perform the Key Schedule in the homomorphic domain. For these reasons, we
remove the key schedule from the encrypted-domain computations.
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4 AES goes homomorphic

To use the full potential of programmable bootstrapping, we aim to transform the
AES algorithm into a succession of LUT evaluations. The permutation given by the
Sbox is already in LUT form, so all that remains is to modify the multiplication in
GF(256) and XOR operations. These are binary operations, which are not immediate
to put into LUT form. Indeed, evaluating a LUT is like dereferencing an array from an
encrypted index. The LUT evaluation operator, therefore, takes only one input: this
encrypted index. If possible, these operations should thus be transformed into unary
table indirection operations. Since AES works on a byte-by-byte basis, LUTs must
take 8-bits encrypted indexes and return an evaluation of this index on 8 bits. In this
section, we explain the various steps involved in transforming the original code into
the sequence of 8-bits-to-8-bits LUTs required for efficient homomorphic execution.

4.1 Optimizing the Original AES Code

The first step towards the homomorphization of a symmetric cryptosystem is to look
at the original code for small changes that would ease the transition. AES makes no
exception. However, we quickly observed that the proposed C++ implementation
(given by the creators of the AES in [16]) is only "pseudo" 8-bits, as a carry that
requires an additional ninth bit is necessary for specific bytes operations.

Indeed, this occurs during the GF(256) multiplication of two integers (see Fig.
3). To compute this operation efficiently, the authors use a generator α=X+1 of
the message space GF(256)∼=F2[X]/⟨X8+X4+X3+X+1⟩. From this, they construct two
tables of 256 elements. The first one is Logtable, defined such as Logtable[αi]=i.
The second is Alogtable where Alogtable[i]=αi. Then, instead of a naive GF(256)
multiplication, the result is obtained with a simple sum of logs and two table
indirections. Consequently and as seen in Figure 3, when the mul(word8 a, word8 b)
function is called, two 8-bits integers representing the logs are added together. And this
sum may exceed 255, which is why the authors apply a %255 to the result. We must
change the whole function structure to avoid this overhead and have an actual 8-bits
implementation. But it also implies some more profound changes in the entire code.

word8 mul(word8 a, word8 b) {
/* multiply two elements of GF(256)
* required for MixColumns and InvMixColumns
*/
if (a && b) return Alogtable[(Logtable[a] + Logtable[b])%255];
else return 0;

}

Fig. 3: The original GF(256) multiplication implementation given in [16]. The sum of
Logtable[a] + Logtable[b] may exceed 255. Therefore, this operation requires
more than 8 bits in practice, which is unsuitable for a homomorphic evaluation with
an 8-bits processor.
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We deal with this issue by observing that there are only a few calls to the mul
function throughout the algorithm. During these calls, the parameter a only takes
six different values. Indeed, a careful reading of the code shows that a∈{2,3,9,b,d,e}.
This means that we can separate the mul(a,b) function into six mul_a(b) functions,
with a∈{2,3,9,b,d,e} by removing the variable a of the parameters and just encoding
the correct values in the corresponding new functions. Then, to work around the prob-
lematic addition of two 8-bits integers, we compute and hardcode six tables Tlog_a
such that Tlog_a[b]=(Logtable[a]+Logtable[b])%255. This pre-calculation of the
tables enables us to eliminate the problem of the "pseudo" 8-bits implementation. At
the same time, this allows us to avoid an explicit modulo operation, which is difficult
to efficiently perform in the homomorphic domain. To optimize a step further and
reduce the number of tables indirections per encrypted index, we finally consider
the six new T_a tables such that T_a[b] =Alogtable[Tlog_a[b]] and use them
directly into our implementation.
We now have six functions of the following form:

word8 mul_a(word8 b) {
if (b) return T_a[b];
else return 0;

}

It is a simple function, but regarding a homomorphic evaluation, we want our
function to be as light as possible regarding the number of operations performed. This is
why, to avoid an explicit evaluation of the if condition on b (which should be performed
via a conditional assignment as FHE disallows branching for obvious reasons), we
modified the T_a tables so that they consider the case where b=0. That is to say,
for every a∈{2,3,9,b,d,e}, T_a[0]=0. So our final implementations of the GF(256)
multiplications are straightforward and only require one indirection, as seen in Figure 4.

word8 mul_a(word8 b) {
return T_a[b];

}

Fig. 4: Our final GF(256) multiplication operator. The new multiplication functions
are very simple and easy to execute in the homomorphic domain, thanks to
pre-calculation and table hardcoding.

Therefore, this work on the multiplication functions allows us to operate with
only one indirection instead of three indirections, an addition, a modulo operation,
and an if condition in the original code version. These changes allow us to convert
the initial binary GF(256) multiplication operator into several unary ones, which is
ideal for a LUT transformation.

When looking for other possible optimizations, we realized we achieved an optimal
or nearly optimal form regarding LUT factorization and, thus, LUT-based homo-
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morphic evaluation (at least when starting from the standard AES implementation).
Indeed, the structure of the MixColumns instructions prevent further factorization.
For example, if one considers the following instructions (in MixColumn):

b[0][j] = mul_2(a[0][j]) ^ mul_3(a[1][j]) ^ a[2][j] ^ a[3][j];
b[1][j] = mul_2(a[1][j]) ^ mul_3(a[2][j]) ^ a[3][j] ^ a[0][j];
b[2][j] = mul_2(a[2][j]) ^ mul_3(a[3][j]) ^ a[0][j] ^ a[1][j];
b[3][j] = mul_2(a[3][j]) ^ mul_3(a[0][j]) ^ a[1][j] ^ a[2][j];

where a denotes the state matrix, then, although the mul_2 and mul_3 LUTs could
directly embed the Sbox LUT (assuming the indices are made consistent with the
effect of ShiftRows) the two last terms cannot (since they do not require any GF(256)
multiplication, hence there is no LUT to factor the Sbox LUT with). For instance,
a[0][j] is used via mul_2 in b[0][j] calculations and then as is for the others
(b[1][j], b[2][j], b[3][j]). Finally, as an additional optimization, we have merged
the AddRoundKey function with the SubBytes one, as the first always precedes the
second one, for increased parallelism efficiency.

4.2 And Finally Going Homomorphic for Real

To make the most of TFHE programmable bootstrapping, we implement all oper-
ations (XOR, Sbox, GF(256) multiplication) via LUT evaluations. As we now have
a ciphertext-by-cleartext GF(256) multiplication function that is performed only by
means of a unique indirection, this causes no issue. And by definition, the Sbox is
a LUT. So, the actual work here is to transform the XOR into a LUT. The XOR
is a binary operation in which, in our case, inputs are bytes. That means we need a
256×256 table to encode our XOR. As it is a binary operation, we must either use the
tree-based method (recalled in Sect. 2.5) or the chaining method, both introduced in
[19], which allows bootstrapping with several entries. Table 1 compares the parameters
needed depending on the method. In this table, Bg and l denote the basis and levels
associated with the gadget decomposition, BKS and t denote the decomposition basis
and the precision of the decomposition of the KeySwitch. Finally, q denotes the size
of the used plaintext size (meaning that the torus is discretized on q values), and
ϵ is the error probability of one MVB evaluation or one evaluation of the chaining
method. We also give the noises associated with the TRLWE and TLWE ciphertexts.
Note that these parameters are not universal; other parameters with another error
probability could also work. Given a message space of size B, the chaining method
requires using a plaintext space of size 2B2 (instead of only 2×B for the tree-based
method). As such, the size of the parameters dramatically increases as the basis B
increases. This growth of parameters jeopardizes the other speed improvements that
could come with the chaining method. Relying on this comparison, we chose to work
with the tree-based method, which is thus more efficient in our case.

On top of this, the MVB optimization (Sect. 2.6) allows us to evaluate a LUT
with two input digits and one output digit in only two bootstrappings. Still, as the
parameters needed for calculation in basis 256 are significantly larger (we have to
work on the discretized torus on 512 values, using only the positive half), it will not be
efficient. Indeed, we need to use the cyclotomic polynomial X32768+1, which results
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Table 1: Parameter sets depending on the LUT evaluation method and the chosen
decomposition basis (λ≈128).

basis n N l Bg BKS t q ϵ TRLWE noise TLWE noise
4 850 2048 2 2048 1024 2 32 2−32 9.6×10−11 1.27×10−6

chaining method 8 1024 8192 1 268435456 1024 2 128 2−27 10−45 5.6×10−8

16 1100 32768 1 4294967296 8192 2 512 2−30 1.4×10−8 10−248

4 700 1024 5 16 1024 2 8 2−30 5.6×10−8 1.9×10−5

tree-based method 8 700 2048 2 2048 1024 2 16 2−23 9.6×10−11 1.9×10−5

16 1024 2048 3 256 1024 2 32 2−23 9.6×10−11 6.5×10−8

in a very slow bootstrapping and a non-implementable small variance (still for 135 bits
of security according to the lattice-estimator). Recall that the parameter sets given
for the chaining method are for illustration purposes as we do not use that method
in the paper and just aim at showing that the tree-based method is more practical
for basis 16. This makes it interesting to break down the messages into smaller bases
and to use the tree-based method for every LUT evaluation. For example, in order
to perform an indirection into a 256 8-bits entries LUT, when working in basis 16,
we have to split the original table into two 256 4-bits entries. For each of these two
tables, we apply a two levels tree-based method where, as illustrated by Figure 5
with the LUT of the identity function, the first level extracts one encrypted 4-bits
value from each block of 16 values (assuming, as we do, that the first digit contains
the least significant 4 bits) in the original table. This leads to a 16 (encrypted) 4-bits
entries table, and the second level extracts the encrypted 4-bits value from the latter.

Fig. 5: Illustration of the tree_based method on the identity function. The message
is m=9=1·40+2·41 and its encryption is c=(c0,c1)=([1],[2]). Red arrows indicate
bootstrappings.

More generally, the number Nboot of bootstrapping needed with the tree-based
method increases with the number of input digits d and the number of output digits d′
as well as the basis B chosen for the decomposition. In fact, for a complete evaluation
of a LUT via the classic tree-based method, we have Nboot=d′×

∑d−1
i=0B

i and with
the MVB, we have NB′

boot = d′×(1+
∑d−2

i=0 B
i). Table 2 provides the number of
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bootstrapping per operation (256×8bits LUT dereferencing and 8-bits-by-8-bits XOR)
depending on the decomposition basis for the ciphertexts (using the MVB-optimized
tree-based method).

Table 2: Number of bootstrapping for one XOR or one LUT evaluation (using MVB)
depending on the decomposition basis.

basis # XOR # LUT
256 2 1
16 4 4
8 6 30
4 8 88

Although the tree-based method requires more operations, the smaller the de-
composition basis, the smaller the parameters to be used. Small ciphertext sizes
allow small parameters and, therefore, faster operations. A tradeoff must therefore
be achieved between the number of bootstrapping operations performed and the
parameters’ size. For this reason, we produce a benchmark of the execution time of
LUT evaluation depending on the ciphertext decomposition.
We consider the following different decompositions:

– basis 256: it is not a decomposition per se, but we have to be sure that this basis
is not the most advantageous one

– basis 16: the message is decomposed into two digits in basis 16 (4 bits per digit)
– basis 8: the message is decomposed into three digits in basis 8 (3 bits per digit,

but only 2 bits for the most significant digit)
– basis 4: the message is decomposed into four digits in basis 4 (2 bits per digit)

For this, we first implemented an efficient homomorphic operator to evaluate any
LUT using TFHE programmable bootstrapping and MVB. We then used it with
our different decompositions and their associated parameter sets. The results of
this experiment are given in Table 3. It is thus clear that basis 16 is the optimal
choice regarding the execution time per LUT evaluation as well as for a full AES
execution (as the overall number of LUT evaluations is independent of the basis
choice). Note that there is no linearity between the timings due to the number of
multiplications involved by the MVB during the first bootstrapping. Additionally,
Table 4 provides the number of bootstrapping needed with the MVB optimization for
a full AES evaluation, depending on the decomposition basis. We now have everything
needed to obtain homomorphic versions of the mul_a functions. To do so, as already
emphasized, we decompose every table T_a into two tables of 256 basis 16 digits,
i.e., one per digit of the decomposition. We do the same with the Sbox table. Finally,
we use a similar approach to create the 4-bits-by-4-bits XOR operator. We do so by
means of a 16×16 table with 4-bit entries, which is much easier to handle than a
256×256 (with 8-bits entries) needed without the decomposition (yet another pro
for the basis 16 decomposition). This being done, we now have duly "translated" our
optimized-for-FHE version of the AES code into a real homomorphic one.
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Table 3: Unitary timings for bootstrapping and full LUT evaluation depending on
basis and parameter choices (λ≈128).

basis single boot. complete
LUT eval.

n N

256 1.5s 1.5 s 1024 32768
16 0.029s 0.3 s 1024 2048
8 0.015s 1.4 s 700 2048
4 0.007s 2.0 s 700 1024

Table 4: Number of operations and the corresponding number of bootstrapping
depending on decomposition basis. Readers are reminded that AES-128 consists of
a RoundKey, followed by 9 classic rounds and a final round that does not include
the MixColumns operation.

basis function # XOR # LUT # Boot
AddRoundKey 16 0 32
SubBytes 0 16 16

256 MixColumns 48 32 128
Round 64 48 176
Full AES 608 448 1664
AddRoundKey 16 0 64
SubBytes 0 16 64

16 MixColumns 48 32 320
Round 64 48 448
Full AES 608 448 4224
AddRoundKey 16 0 96
SubBytes 0 16 480

8 MixColumns 48 32 1248
Round 64 48 1824
Full AES 608 448 17088
AddRoundKey 16 0 128
SubBytes 0 16 1408

4 MixColumns 48 32 3200
Round 64 48 4736
Full AES 608 448 44288

4.3 Details about the Homomorphization of the XOR Operator

Following the previous section, we give details about our homomorphic XOR operator,
which is a relevant concrete example of our tree-based method approach. On the
one hand, we have to transform the classic 8-bits-to-8-bits XOR operator to fit the
chosen decomposition basis, and on the other hand, we have to transform it so we
can evaluate it via a LUT. As already emphasized (Table 3), basis 16 is the best
one for our AES homomorphic execution attempt. This means that we decompose
our messages on the following form m=m0+m1 ·16 and that the corresponding
ciphertext is a vector of the form c=(c0,c1)=([m0],[m1]). So, to compute the XOR
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of two ciphertexts c and c′ in basis 16, we have to compute:

c⊕c′=(c0,c1)⊕(c′0,c
′
1)=(c0⊕c′0,c1⊕c′1)

We thus have to evaluate a 4-bits-by-4-bits XOR on the ciphertexts. For this, we
dereference the double input table of 4-bits XOR, which has size 16×16. The tricky
part is to choose the correct way to construct the test polynomials from this table
for the tree-based method. Indeed, on the first step of the tree-based method, we
have 16 test polynomials. Each one must encode the coefficient of a unary XOR.
That is to say, the first polynomial P0 encodes the values of the unary operation
xor_by_0(i) such that for i∈{0,1,···,15} xor_by_0(i)=i⊕0, the second polynomial
P1 encodes xor_by_1, etc. So when applying the bootstrapping on these polynomials
with selector c0=[m0], we obtain 16 new ciphertexts encoding xor_by_m0 that we
put together on a polynomial Pfinal. We then apply the bootstrapping on the new
polynomial Pfinal with selector c′0=[m′

0], and we obtain the final results, which is
an encryption of c0⊕c′0. The method is illustrated in Fig. 6.

Fig. 6: The principle of the tree-based method applied to the XOR with basis 16.
The green color indicates that the content of the box is encrypted.

By using the same method, we can easily compute c1⊕c′1, and thus obtain the
vector c⊕c′=(c0⊕c′0,c1⊕c′1) encoding m⊕m′.

4.4 Remarks and Perspectives on LUT Evaluated Operations

In this section, we briefly present our various operations in a unified way and illustrate
that it allows to express more general operations than needed for our AES execution
attempt. A distinction must be made between ciphertext-ciphertext binary operators
and cleartext-ciphertext binary operators. The latter is the case of the GF(256)
multiplication operator in the AES algorithm, which we turned into several unary
operators (the mul_a functions, which could easily have been as many as 256 if it
had been required). Regarding the case of ciphertext-ciphertext operators, we can
divide them into two types: the bitwise ones and the others.

Bitwise ciphertext-ciphertext operator - The AES implementation requires
an XOR operation, which can finally be implemented using the same tool as for
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the unary functions (Sbox, mul_a). Slightly loosely speaking, let us say that our
8-bits-to-4-bits table dereferencing tool takes the following form LUT(c0,c1,table) and
in basis 16 LUT(c0,c1,table) = table[c0+c1·16]. To evaluate the unary operator of
the Sbox (or mul_a), one must call LUT(c0,c1, Sbox_0) and then LUT(c0,c1, Sbox_1),
where Sbox_0 and Sbox_1 respectively denote the LSB and MSB of Sbox, to obtain
the two result digits and reform Sbox[c0+c1·16] (respectively LUT(c0,c1, mul_a_0)
and LUT(c0,c1, mul_a_1)). But for XOR, we use LUT(c0,c′0, XOR) and then LUT(c1,c′1,
XOR) as explained above. In the first case, we use the same ciphertexts on different
tables; in the second case, we use different ciphertexts on the same table. This means a
binary bitwise homomorphic operator is as easy (and costly) to implement as a unary
non-bitwise operator. Furthermore, such a binary operator can easily be adapted to
any bitwise operation (AND, NOR, etc.) or unary operation by modifying the initial
polynomials accordingly.

Non-bitwise ciphertext-ciphertext operator - Although not needed for AES,
the case of non-bitwise ciphertext-ciphertext operators is a bit more involved. Let
us take the example of the addition of two encrypted basis 256 messages c and c′

decomposed in basis 16. Two different tables with 256 4-bits entries then come into
play: ADD, which encodes the addition of two digits, and CAR, which handles the carry.
So, using the same dereferencing tool as above, a simple addition over Z256 can be
broken down into 4 invocations of the operator:

where res0+res1 ·16= c+c′. The basic dereferencing tool is the same for all
of these cases and is, in essence, universal, although on a case-by-case basis, there
might be more optimized methods for certain operations (e.g., by combining the
tree-based and chain-based methods, the latter being, for example, more efficient for
carry computations). This gives interesting perspectives for building a more general
optimized “instruction set”.

5 Experimental results

5.1 TFHE Library Implementation

We worked with TFHElib3 using the parameters given in Table 1 for the tree-based
method with basis 16. As a reminder, we take Bg=256 and l=3 as the basis and levels
associated with the gadget decomposition. For the KeySwitch, we take BKS=1024

3 https://tfhe.github.io/tfhe/
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and t=2 as the decomposition basis and the precision of the decomposition. Finally,
as we work with a plaintext space of size 16, we work on the discretized torus on
q=32 values. We chose these parameters specifically to enable MVB evaluation with
error probability ϵ=2−23. According to the lattice estimator4, these give us at least
128 bits of security. The first step was to implement the tree-based method and its
MVB optimization. Indeed, none of these methods are part of the TFHE library.
Furthermore, we had to adapt the code to be able to use vectors of TLWE and
TRLWE samples (as our ciphertexts are decomposed into 2 digits in basis 16, we put
them in vectors of 2 elements). Then, we modified the MVB operator to turn it into a
generic LUT evaluation tool. This new operator takes as input a vector of ciphertexts,
the number d of input digits, the number d′ of output digits, the decomposition basis
B and the LUT to be evaluated. Depending on how it is called, this operator can
perform our XOR as well as our GF(256) multiplications and Sbox.

5.2 Parallelization

The purpose of transciphering is to avoid transferring large ciphertexts. Since a server
has more computing power than a client, it can efficiently exploit several cores to
parallelize computations and optimize execution times. With that respect, AES is
naturally parallelizable up to a certain degree: within each round step, operations
can be performed simultaneously on each byte of the state matrix (except for the
ShiftRows step). This is why, in continuing our work, we use the OpenMP library
to parallelize our code and optimize the execution times of our homomorphic AES.
We run our tests on two machines. The first one is a 12th Gen Intel(R) Core(TM)
i7-12700H CPU (using six cores) laptop with 64 Gib total system memory with an
Ubuntu 22.04.2 LTS server. The second is an AMD EPYC 7702P 64-cores Processor
server with an Ubuntu 20.04.6 LTS server. In the following sections, we will refer to
them respectively as i7-laptop and AMD-server.

Table 5: Our execution times compared to the state of the art (the "i7-server"
time corresponds to an extrapolation of the speedup observed with 16 threads on the
AMD-server from the i7-laptop sequential time as we did not have an i7-based
server to perform experiments).

execution time time ratio
i7-laptop (1 thread) 4.5 mins = 270 secs 9. 4
i7-laptop (6 threads) 54.31 secs 1.9
AMD-server (1 thread) 5.7 mins = 342 secs 11.9
AMD-server (16 threads) 36.39 secs 1.3
"i7-server" (16 threads) 28.73 secs 1
Gentry et al. [18] (1 thread) 18 mins 37.6
Mella and Susella [23] (1 thread) 22 mins 45.9
Stracovsky et al. [24] (16 threads) 4.2 mins = 252 secs 8.8

4 https://github.com/malb/lattice-estimator
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Using the OpenMP library, we first parallelize onto the six cores on the i7-
laptop. As it is a standard laptop, it is interesting to see how a partially parallelized
homomorphic AES can work. Indeed, it gives a reasonable hint of the potential
of a larger scale parallelization. That is why we parallelize every round function,
except for the ShiftRows one, as it only involves ciphertexts reorganization within
the state matrix. Still, thanks to OpenMP, we could use 16 cores for a larger-scale
parallelization on the AMD-server (which hosts 64 cores in total). As the server
has less powerful cores, it is slower than the i7-laptop in sequential time. But,
by running a sequential execution and a full parallelized one, we can measure the
speedup factor induced by parallelization. For instance, the execution parallelized on
16 cores is 9.5 times faster than the sequential one on the AMD-server. Results can
be found in Table 5. The last column of this table indicates the ratio between the
(fastest) "i7-server" time and the other (slower) ones.

A perspective is to go further in the parallelization of the AES evaluation. Indeed,
we can also parallelize the tree-based method and execute the computation of each
decomposition digit at the same time. This method will need 32 cores, but it can
divide the execution time almost by 2.

5.3 Computation Times

This section summarizes the results of our implementations in Table 5. Even if our
measured speedups are not linear in the number of cores, we improve the state of
the art as the so far best-known implementation runs in 4.2 minutes with 16-thread
parallelization [24] using the standard programmable bootstrapping in base 16 as
implemented in Zama’s Concrete 5. However, note that no implementation details
were provided (to the best of our knowledge) beyond a poster presented by Stracovsky
et al. at FHE.org 2022 [24]. In [18], Gentry et al. use a packed implementation with
BGV so that each slot can hold a state byte. The round operations are computed
as single linear transformations over GF(28)16. These linear transformations combine
several permutations that are computed via automorphism evaluation and additions.
In [23], Mella and Susella improve these latter results by using an optimized data
representation to further factor some of these operations in ciphertext slots. As they
relied heavily on batching, these works focused primarily on optimizing the amortized
time metric which is relevant only when one has to perform many independent AES
executions in parallel. As Table 5 shows, we obtain a sequential time comparable
to [24] on i7-laptop and a very improved one with parallel execution. Indeed, our
parallelized version on i7-laptop is 4.6 times more efficient than Stracovsky et al.’s
[24] and almost 20 times more efficient than Gentry et al.’s. [18] in terms of latency.
Furthermore, our parallelized version on AMD-server is almost 7 times faster than
[24] and 30 times faster than [18] as it only takes 3% of its execution time.

5 https://github.com/zama-ai/concrete
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6 Conclusion

In this paper, we have proposed a homomorphic AES implementation relying on two
encrypted-domain “instructions”, a unary 256-by-8 bits table indirection, and a binary
8-bit XOR instruction, both running over encryptions of nibbles (the cute name for
hex digits) and relying on functional bootstrapping for efficiency. Our work illustrates
that, even when starting from the standard AES implementation, this approach signif-
icantly improves the state of the art of homomorphic AES execution timings. In terms
of perspectives, beyond improved parallelism, it would be interesting to consider other
non-standard forms for the AES as a starting point in a search for ones that may lead
to smaller numbers of homomorphic operations (i.e., in fine, fewer bootstrapping). For
example, a non-public implementation optimized for constrained embedded systems by
inlining, loop unrolling, and careful instructions reorganization was brought to our at-
tention. In our terms, such an implementation would lead to 68 XOR and 32 LUT per
AES round (vs. 64 XOR and 48 LUT when starting from the standard implementation
as we did). Although we do not expect to gain one or more orders of magnitude, this
could lead to an additional 10% performance improvement, at least in the sequential
execution times we report in this paper (as this version appears more difficult to par-
allelize at first glance). We could also try to exploit the emerging full-Torus functional
bootstrapping methods, such as ComBo [13], which may allow smaller parameters and,
thus, faster bootstrapping evaluations. Another approach that could potentially lead
to further timing improvements would be to investigate how the techniques introduced
in [5] may help to either or both increase the basis size or factor larger portions of
the AES algorithm in single WoP-PBS operator evaluations. Yet another interesting
perspective would be, as hinted in Sect. 4.4, to extend the embryonic “instruction set”
defined in this paper in order to apply this approach to other algorithms more easily.
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