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Abstract. Anonymous credentials (AC) have emerged as a promising privacy-preserving solu-
tion for user-centric identity management. They allow users to authenticate in an anonymous and
unlinkable way such that only required information (i.e., attributes) from their credentials are re-
vealed. With the increasing push towards decentralized systems and identity, e.g., self-sovereign
identity (SSI) and the concept of verifiable credentials, this also necessitates the need for suit-
able AC systems. For instance, when relying on existing AC systems, obtaining credentials from
different issuers requires the presentation of independent credentials, which can become cum-
bersome. Consequently, it is desirable for AC systems to support the so-called multi-authority
(MA) feature. It allows a compact and efficient showing of multiple credentials from different is-
suers. Another important property is called issuer hiding (IH). This means that showing a set of
credentials is not revealed which issuer has issued which credentials but only whether a verifier-
defined policy on the acceptable set of issuers is satisfied. This issue becomes particularly acute
in the context of MA, where a user could be uniquely identified by the combination of issuers in
their showing. Unfortunately, there are no AC schemes that satisfy both these properties simul-
taneously.
To close this gap, we introduce the concept of Issuer-Hiding Multi-Authority Anonymous Cre-
dentials (IhMA). Our proposed solution involves the development of two new signature primi-
tives with versatile randomization features which are independent of interest: 1) Aggregate Sig-
natures with Randomizable Tags and Public Keys (AtoSa) and 2) Aggregate Mercurial Signatures
(ATMS), which extend the functionality of AtoSa to additionally support the randomization of
messages and yield the first instance of an aggregate (equivalence-class) structure-preserving sig-
nature. These primitives can be elegantly used to obtain IhMA with different trade-offs but have
applications beyond.
We formalize all notations and provide rigorous security definitions for our proposed primi-
tives. We present provably secure and efficient instantiations of the two primitives as well as
corresponding IhMA systems. Finally, we provide benchmarks based on an implementation to
demonstrate the practical efficiency of our constructions.

1 Introduction

Authentication and authorization are essential and security-critical tasks in a digital world. They
are aimed to ensure that the communication partner is the one it claims to be and to enforce access
control to digital resources such as services. A central concept is that of a digital identity, which can
be seen as a collection of attributes (e.g., name, age, nationality, gender, etc.) representing a (real-
world) entity in the digital realm.

On the Internet, a widely adopted practice is to have centralized identity providers (IdP), e.g.,
Google or Meta, to maintain the digital identity of users. Other services can then simply rely on the
identity provided by the IdP. From a privacy perspective, however, this is problematic as users lose
control over their digital identity (all their attributes reside at the IdP), and the IdP learns all the
services a user consumes on the Internet (and data related to the use).
? First and corresponding author; remaining authors in alphabetical order.



Already in the 1980s, Chaum [26, 27] envisioned cryptographic techniques for creating more
privacy-friendly and user-centric solutions to authentication and authorization. They put users in
control of their identity and allow users to selectively reveal information (i.e., attributes) about their
digital identities in an unlinkable and thus untraceable way. Such techniques are commonly known
as anonymous credentials (ACs), and there is a vast body of research into different approaches to
construct such AC systems [14, 20, 21, 22, 3, 5, 19, 57, 34, 39, 59, 44, 29].

While early AC systems such as U-Prove [56] and Idemix [24] did not see a widespread adoption,
nowadays related techniques such as direct anonymous attestation (DAA) [15, 17] and Enhanced
Privacy ID (EPID) [16] are deployed in billions of devices. Most recently, ACs have seen adoption
within the popular Signal messenger to realize private groups [25]. They also see increasing popu-
larity in the form of anonymous tokens (with private or public metadata bit) [33, 49, 62]. Among the
applications are private browsing with DDoS protection being standardized by the IETF5 (Privacy
Pass [33] and Private Access Tokens [52]) or the PrivateStats proposal by Facebook6 to privately col-
lect client-side telemetry from WhatsApp.

Decentralized identity. Like with centralized IdPs, all AC solutions mentioned so far are in a cen-
tralized setting, i.e., a single party called the issuer is issuing credentials to users. Today we however
see a trend to move away from this centralized setting towards a decentralized identity. A popular
concept in the decentralized identity space is that of self-sovereign identity (SSI) with Sovrin7 being a
prominent example. In SSI users are collecting certified attributes (called verifiable credentials) from
different sources and then presenting (subsets of) verifiable credentials from this collection. There is
an increasing push towards standardization of this verifiable credentials concept within W3C8 and
large efforts such as the future European data infrastructure (Gaia-X)9 or the European Blockchain
Services Infrastructure (EBSI)10 are adopting this approach.

Within the verifiable credential initiative in W3C, it is also observed that privacy related fea-
tures are important. In particular well-known features from AC systems such as supporting selec-
tive disclosure and proving predicates about attributes11. To realize this functionality within W3C
it is intended to base this upon the BBS+ signature scheme12, a well-known building block for ACs
currently being standardized as the BBS variant [64] within the IETF13.

Privacy in a decentralized setting. The aforementioned approach allows to preserve privacy in a
setting where a user wants to show a single verifiable credential issued by a single party. However,
for a decentralized setting, where typically a subset of a collection of verifiable credentials from
different issuers needs to be shown, the problem of how to efficiently realize this arises. A naive
way is to conduct a parallel credential showing with all the required verifiable credentials. How-
ever, apart from reduced efficiency, this also has privacy implications. In particular, every verifiable
credential reveals the exact issuer providing a lot of contextual partial information, e.g., a passport
issued from a certain country or a driving license issued by a certain state reveals geographic infor-
mation. This can be highly privacy intrusive in many settings and undermining the very objective
of SSI systems [12]. Consequently, it would be desirable to be able to show a credential in a way
that it is only revealed that it comes from one of a larger set of issuers acceptable by a verifier. A set
of recent independent works introduced a property providing this features for AC systems, which
is called issuer-hiding [8, 29, 12]. While this is a step towards countering the above privacy issues,
these works only consider single issuers and are thus not yet suitable for a decentralized setting with
multiple issuers.

ACs in a decentralized setting. Before discussing the different approaches to tackle a decentralized
setting within ACs, it is important to recall that, generically, AC systems can be built from signature
schemes and non-interactive zero-knowledge (NIZK) proofs. Loosely speaking, an issuer produces
a signature on a list of attributes and a public-key of the user. The showing of a credential is repre-

5 https://datatracker.ietf.org/wg/privacypass/about/
6 https://research.fb.com/privatestats
7 https://sovrin.org/
8 https://www.w3.org/TR/vc-data-model/
9 https://gaia-x.eu/

10 https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home
11 https://www.w3.org/TR/vc-data-model/#privacy-considerations
12 https://w3c-ccg.github.io/ldp-bbs2020/
13 https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-signatures/
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sented by a NIZK proof that the user possesses a valid signature from the issuer on a public-key for
which it knows the corresponding secret key and that a certain predicate over the signed attributes
is valid, e.g., for the attribute age it holds that it is above 18.

Looking at existing AC solutions, Garman et al. [40] first introduced a solution with no credential
issuers and thus no signatures. Users make claims about their identity attributes in the form of
commitments, which are submitted to a public transaction ledger, i.e., a blockchain. These registered
commitments can then be used as a basis to compute NIZK proofs, representing showings. While
interesting, this cannot be considered a general solution as for many types of common credentials,
e.g., passports, driving licenses, and academic degrees; there is the need for explicit issuers.

Secondly, there is the concept of threshold issuance anonymous credentials, e.g., Coconut by Son-
nino et al. [63] or ones based on threshold BBS+ by Doerner et al. [35]. Such a system thresholdizes
a single issuer among a set of parties. While this helps to make AC systems more robust, it does not
efficiently support multiple issuers and also does not support issuer-hiding.

Thirdly, Rosenberg et al. [58] present a framework to build ACs from existing identity documents,
e.g., passports, and driving licenses, whose contents (attributes) are registered in lists of “issuers”.
In particular, they are represented as commitments organized in Merkle trees, and users obtain the
authentication paths to their credentials. Then, users can use succinct NIZK proofs (zk-SNARKs)
to prove statements about the attributes encoded in potentially multiple credentials. Here the zk-
SNARK proofs for the single credentials are linked via NIZK proofs. This approach is very generic
and avoids the lack of issuers in [40]. However, it is very complex, and their credentials showing due
to computing Merkle membership proofs and linking of zk-SNARKS via NIZK can add significant
costs (showing times in the order of seconds). Moreover, they require a dedicated infrastructure such
as a transparency log, a Byzantine system, or a blockchain.

Finally, and most related, we want to discuss the work by Hébant and Pointcheval [45]. The
authors introduced the concept of (traceable) Multi-Authority Anonymous Credentials (MA-ACs).
Loosely speaking, their approach to realize MA-ACs is based on so called aggregate signatures with
randomizable tags and allows to aggregate showings of credentials of different issuers (but with
respect to the same tag) into one compact showing. Due to randomizability of signatures and tags,
it is possible to produce unlinkable showings. Moreover, the tag component has a secret part repre-
senting the user secret. While this is an interesting concept, it does not provide an efficient way of
providing the issuer-hiding (IH) feature [8, 29, 12]. There is an obvious generic way to use a succinct
NIZK (i.e., a zk-SNARK) and prove that the aggregated signature verifies for the given attributes
under a subset of issuer keys without revealing which ones. While this can lead to an asymptotically
compact solution, the prover will concretely be very expensive due to the size of the verification
keys (they are of size G3+2n

2 each with n being the maximum number (types) of attributes) and the
complexity of the verification equation in [45] which is proven with a zk-SNARK. Switching to non-
succinct Schnorr-type NIZK obtained via Fiat-Shamir as done in [8] (in Construction 2), however,
will result in a non-compact showing of size O(n · K) with K being the number of issuers used in
the aggregated showing (even when ignoring the size of the proof corresponding to the non-shown
attributes).

In this paper, our goal is to efficiently combine these features and propose the first AC system
that is specifically designed to provide multi-authority and issuer-hiding features at the same time.

Aggregate signatures. Aggregate signatures, introduced by Boneh et al. in [11], allow to combine
multiple signatures σi for messages mi and associated public keys vki into a single signature σ, that
authenticates the entire set of messages w.r.t the set of public keys. Ideally, the aggregated signatures
is of length identical to a single signatures and thus allows to compress a set of signatures into a
single one.

This primitive is valuable in optimizing storage and bandwidth as well as minimizing crypto-
graphic overhead in scenarios such as compressing certificate chains or aggregating signatures in
blockchains. Many different variants have been proposed [55, 6, 10, 42] and we will briefly mention
some relevant schemes. Sequential aggregation, studied in [51], requires signers to interact sequen-
tially. Synchronized aggregation, examined in [2], assumes synchronization among signers such that
in every time period t each signer only contributes one signature at most. Indexed or tag-based ag-
gregated signatures, introduced in [45], allow aggregation of signatures for different messages under
different public keys if they share the same tag or index. These signatures are useful for constructing
an AC system.



Unfortunately, existing aggregate signature schemes do not explicitly possess properties to make
them amenable for the design of efficient decentralized AC systems with advanced properties. We
will close this gap by introducing aggregate (structure-preserving) signatures with the ability to
randomize signatures, tags, (messages,) and verification keys.

1.1 Our Contribution

Our contribution in this paper is twofold:

Aggregate signatures with randomization features. The key technique to achieve our goal is to in-
troduce tag-based aggregate signatures with randomizable tags and public keys. We further extend
them to additionally support randomization of messages resembling the functionality of equiva-
lence class signatures (SPSEQ) [39]. For both of these types of schemes we provide rigorous formal
security models as well as instantiations that are provably secure in this model. More precisely, we
introduce:

Aggregate signatures with randomizable keys and tags (AtoSa14 for short) where signatures are associ-
ated to tags (consisting of a private and a public part) and signatures with respect to the same tag
can be aggregated. Aside from signatures, erification keys and tags can be randomized. Tags and
verification keys are defined with respect to equivalence classes and randomization switches be-
tween representatives of these classes.15 Then existing signatures can be adapted to ones that verify
under the randomized public keys and tags. We provide an AtoSa scheme based on the well-known
Pointcheval-Sanders (PS) signatures [57]. PS signatures have already served as a basis for various
privacy-preserving primitives such as group signatures and anonymous credentials [57], redactable
[59, 60] or dynamically malleable signatures [7]. They are very efficient and have interesting features
such as support for blind signing, i.e., signing of committed (hidden) messages, and efficient ways
of proving their knowledge.

Aggregate Mercurial Signatures with Randomizable Tags (ATMS) extend the functionality of AtoSa to
support the randomization of messages, i.e., equivalence classes of messages similar to (SPSEQ).
This means that in addition to AtoSa existing signatures can be adapted to verify under random-
ized messages (i.e., other representatives of the message class). Consequently, we obtain a version
of mercurial signatures [32] that is both aggregatable and has randomizable tags. To the best of
our knowledge, this is the first instance of an aggregate structure-preserving signature (and, subse-
quently, SPSEQ). We provide an ATMS construction inspired by the message-indexed SPS in [31],
which on itself is a variant of Ghadafi’s SPS [41] scheme.

Restrictions of our Constructions. We should mention that in contrast to standard aggregate signatures,
our constructions 1) either require that all aggregated messages and corresponding verification keys
are known before requesting the first signature or 2) to make the same assumption as within syn-
chronized aggregate signatures [2, 46]. In particular, adapted to our setting, latter means that every
issuer ensures that for each tag only a single signature is issued. We will present our results based on
the first approach and discuss adaptions for the second (which do not change any of the interfaces
or security definitions and proofs). Since our main application is anonymous credentials, depending
on the concrete application scenario either the first or the second approach can be chosen. It remains
an interesting open question to get fully dynamic signatures without any of the above assumptions.

Like other types of signatures with randomization features, we also expect that our schemes will
find applications beyond the one presented here.

Issuer-Hiding Multi-Authority Anonymous Credentials. We present a rigorous formal model for
issuer-hiding multi-authority anonymous credentials (IhMA). Then we present two constructions
based on AtoSa (called IhMAAtoSa) and ATMS (called IhMAATMS) respectively, where both are con-
cretely very efficient but offer some trade-offs (as discussed below). Thus this represents an impor-
tant contribution to the field of ACs in that it provides a solution that addresses the challenges of

14 The (ancient) Greek transliteration of the old Persian name Utau`a. Atossa means “bestowing very richly” or
“well trickling” or “well granting”. It refers to an Achaemenid empress who was the daughter of Cyrus the
Great, and the wife of Darius the Great.

15 This can be seen as aggregate signatures with randomizable tags as introduced in [45] with the additional
features of randomizable keys with appropriate signature adaption.



user privacy and scalability in multi-authority (decentralizing) settings. In our constructions, ob-
taining a credential amounts to obtaining signatures on desired attributes from a set of issuers on
different attributes, but under the same tag (which can be thought of as the user’s identity in cre-
dential schemes). Showing simply amounts to randomizing signatures from issuers that should be
shown as well as the tags and aggregating them. Finally, one provides the aggregated signature and
either opens (subsets of) attributes or proves predicates over them along with proof of knowledge
of the secret tag part.

Supporting the issuer-hiding feature [29, 9] works roughly as follows: Each verifier generates a
so-called key-policy, which defines a set of issuers (via their verification keys) that the verifier would
accept an (aggregated) credential from. This policy is a collection of SPSEQ signatures on verification
keys of the AtoSa or ATMS scheme. Since the equivalence classes of the SPSEQ (the message space)
match with the key equivalence class of AtoSa and ATMS, showing a credential then works as above,
but all verification keys of the AtoSa or ATMS are randomized, and the respective SPSEQ signatures
in the key-policy are adapted accordingly.

For the IhMAATMS scheme, instead of directly signing attributes, we use the framework of Fuchs-
bauer et al. [39]. Here the signature scheme is used to sign set commitments to attribute sets. More-
over, in order to prove the anonymity of this construction as an additional contribution we introduce
a generalization of the decisional uber assumption family by Boyen [13] along with an interactive
version. Using this approach is however not straightforward as we have to make set commitments
compatible with the message space of our ATMS. While IhMAAtoSa and IhMAATMS share a common
aim, the differences in the constructions entail certain trade-offs in terms of functionality and effi-
ciency:

– Credential size: The IhMAATMS scheme can yield a fixed-sized credential, while the IhMAAtoSa
scheme does not achieve this without utilizing Zero Knowledge Proof of Knowledge (ZKPOK) of
signatures.

– Efficiency: The IhMAATMS scheme is more efficient at showing and verifying credentials compared
to the IhMAAtoSa scheme.

– Need for a trusted party: The IhMAATMS scheme requires a trusted party, while the IhMAAtoSa
scheme does not. This is because IhMAATMS relies on a trusted party to hold a trapdoor to generate
set commitments, whereas IhMAAtoSa does not require such a trusted party.

– Expressiveness: The IhMAATMS supports revealing a subset of attributes from a set of attributes per
issuer, i.e., selective disclosure per issuer. The IhMAAtoSa scheme only supports a single attribute
for each credential. Consequently, it only supports selective disclosure over all issuers. However,
both schemes allow for proving arbitrary predicates over signed messages.

Overall, the choice of the concrete construction depends on the specifics of the use case or application
and priorities set in the overall system.

1.2 Comparison of IhMA with Previous Work

We have already discussed that there is only one dedicated MA-AC scheme [45]. This is however
not issuer-hiding (IH) and as mentioned, adding IH comes with a significant overhead. In Table
1, we compare our IhMA approaches to other schemes in the literature that provide the IH feature
[8, 12, 29] and for comparison we use the naive approach to achieve MA, i.e., parallel showings
of single credentials, which we indicate by ≈. We compare them in terms of the size of credential
|Cred|, communication cost of showing |Show|, and computational cost of showing Show for user
(P) and verifier (V). We provide concrete analysis for our schemes’ communication cost in Appendix
A.
To ensure a fair comparison between the schemes, we consider a typical case where k out of n at-
tributes come from K out of N issuers where n is the total number of attributes given to the user by
N issuers, and k is the number of attributes involved in the showing (and K the number of issuers
indicated in the showing).

With respect to credential size |Cred|, the naive approach to MA leads to O(K) complexity. Our
IhMAATMS scheme maintains a constant credential size even when there are K > 1 issuers, while our
IhMAAtoSa scheme has O(K) credentials. However, we can aggregate credentials and then during
showing apply a ZKPOK of a PS signature, which allows us to reduce the credential size to a constant
size. In contrast, others have a credential size linear in the number of issuers K.



Table 1: Comparison of AC schemes in MA setting (n: Attributes; k: Disclosed attributes, u: Undis-
closed attributes, N: Total issuers in policy, K: issuers in showing)

[29] ‡ [12]?? [8]?? IhMAAtoSa IhMAATMS

IH X X X X X
MA ≈ ≈ ≈ X X

|Cred| O(N) O(N) O(N) O(N)? O(N)?

|Show| O(K · N) O(k · K) O(k · 2K) O(K) O(K)
Show (P) O(KuN) O(k · K) O(k · 2K) O(K)† O(u · K)
Show (V) O(KkN) O(k · K) O(k · 2K) O(k) O(k · K)

? We present the scheme in a way that supports ad-hoc attribute/issuer aggregation, but for fixed signatures, a constant size
credential is achievable. For ATMS we will show how to achieve this in Section 5.3.

?? K refers to proving knowledge of K credentials and K signatures of key policy in Showing.
† Since the ad-hoc aggregation cost is negligible, it is skipped here. Also, without considering IH, it becomes O(1).
‡ This scheme uses standard assumptions in the ROM while other schemes use the GGM.

In terms of communication cost in showing (|Show|), our schemes require sending the random-
ized vks of the K issuers, along with two signatures (one for the credential and one for the key policy),
overall giving O(K). In [8], the communication size is based on sending K blinded credentials and K
blinded signatures in the key policy and provide a ZKPOK of having correctly done so. The scheme
in [12] is similar to [8], but the size of the policy is fixed. Finally, in the scheme described in [29], one
needs to prove knowledge of K out of N verification keys (a linear sized OR statement) and sends
them along with K credentials. Note that the size of ZKPOK includes many group elements and
significantly more than only transferring K verification keys, as it is the case for our constructions.

When it comes to the computational cost of showing, i.e., Show (P) and Show (V), our IhMAAtoSa
scheme has a minimal computational cost for provers as they only need to perform a small/constant
number of operations for aggregation, along with K exponentiations for randomizing the verifica-
tion keys vk. Our IhMAATMS scheme involves additional computation in the creation of a witness for
set commitments corresponding to undisclosed attributes (a multi-exponentiation of O(u)). In [8],
this cost includes proving knowledge of k signatures (in the key policy), K credentials, and k dis-
closed attributes. Similarly, [12] requires the computation of generating witness for their aggregator
(accumulator) on K credentials, proving knowledge of k credential, but it does not need to prove
knowledge of signatures in the policy. Moreover, in [29], proving knowledge of K-out-of-N verifica-
tion keys is necessary, along with the computation of generating witness on undisclosed attributes
for set commitments on K credentials. Again, the cost of ZKPOK for credentials or committed at-
tributes is significantly more expensive than in our case, which is needed only to prove a secret key
and some multi-exponentiation for creating witness. We should mention here that by leveraging
ZKPOK, arbitrary relationships can be proved on attributes.

In summary, while the efficiency of different schemes may appear to be close asymptotically,
our IhMA approaches are significantly more efficient than existing approaches while providing both
properties simultaneously. Indeed, we only need group operations on Gi at the cost of O(k). In
contrast, other schemes require proving knowledge of signatures or keys, which is significantly more
expensive.

2 Preliminaries

Notation. We use BG = (p, G1, G2, GT , e, P, P̂) ← BGGen(1λ) to denote a bilinear group generator
for asymmetric type 3 groups, where p is a prime of bitlength λ. When applying a scalar a com-
ponentwise to a vector T ∈ Gn

1 we write Ta = (Ta
1 , Ta

2 , . . . , Ta
n). We write [x]R to denotes denote

representative x of the equivalence class for given relation R. Given a finite set S, we denote by
x ← S or x $← S the sampling of an element uniformly at random from S. For an algorithm A,
let y ← A(x) be the process of running A on input x with access to uniformly random coins and
assigning the result to y. With AB we denote that A has oracle access to B. We use 〈O〉 to denote
oracles defined in games and use ε to indicate a negligible function. We assume all algorithms are
polynomial-time (PPT) unless otherwise specified and public parameters are an implicit input to all
algorithms in a scheme.



Diffie-Hellman Message Space. Over an asymmetric bilinear group, a pair (M, N) ∈ G1 × G2 is
called a Diffie-Hellman (DH) message MDH [1] if there exists m ∈ Zp s.t. M = Pm and N = P̂m.
One can efficiently verify whether (M, N) ∈ MDH by checking e(M, P̂) = e(P, N). Thus, the mes-
sage space is a vector of Diffie-Hellman pairs (M, N) = (M1, . . . , Mn, N1, . . . , Nn) s.t. for all i ∈ [n],
(Mi, Ni) = (Pmi , P̂mi ) ∈ MDH for mi ∈ Zp. Crites et al. [31] adapt the DH message spaceMDH to
a tuple (id, M, N) ∈ I ×G1 ×G2 called Indexed Diffie-Hellman message spaceMH

iDH, which uses a
random basis h ∈ G1 computed using a random oracle H instead of P, as follows:

Definition 1 (Indexed Diffie-Hellman Message SpaceMH
iDH [31]). Given a bilinear group (G1, G2,

GT , p, e, g, ĝ) ← BGGen(1λ), an index set I , and a random oracle H : I → G1, MH
iDH is an indexed

Diffie-Hellman (DH) message space if MH
iDH ⊂ {(id, M̃) | id ∈ I , m ∈ Zp, M̃ = (H(id)m, ĝm) ∈

G1 ×G2} and the following index uniqueness property holds: for all (id, M̃) ∈ MH
iDH, (id′, M̃′) ∈ MH

iDH,
id = id′ ⇒ M̃ = M̃′. One can define the equivalence class for each message M̃ = (M, N) ∈ M̃H

iDH, as
EQiDH(M, N) = {(Mr, N) | ∃ r ∈ Zp}.
Note that one can efficiently decide subset membership by checking e(M, P̂) = e(h, N). The unique-
ness property guarantees that no two messages use the same index, which needs to be ensured by
signers.

Camenisch and Stadler Notation. We use the common notation due to Camenisch and Stadler [23]
for ZKPOK (or NIZK) as follows:

ZKPOK
{
(α, β) : y = Pα ∧ z = Pβ · hα

}
,

which denotes an (non-) interactive proof of knowledge of discrete logarithms (α, β) (the witness)
satisfying the right-hand side statement about the public values y, P, z, h.

2.1 Digital Signatures

Pointcheval-Sanders (PS) Signatures. The PS signature [57] works on an asymmetric bilinear groups.
It is EUF-CMA-secure under the PS assumption (cf. Def. 31). For a single scalar message it is defined
as follows:

Setup(1λ): Take the security parameter λ as input and return the public parameters pp = (p, G1,
G2, GT , e, P, P̂), where P and P̂ are randomly picked generators.

KeyGen(pp): Take pp as input, sample two randoms (x, y) $← Z∗p, and return the verification key
vk = (X̂ = P̂x, Ŷ = P̂y) and the secret key sk = (x, y).

Sign(sk, m) : Take the secret key sk and a message m ∈ Zp as input. Sample r $← Z∗p uniformly at
random and then compute σ = (h, s) = (Pr, hx+my) and return the signature σ as output.

Verify(vk, σ, m): To verify a signature σ, this algorithm takes the verification key vk and message m
as input. If h 6= 1 and the pairing product equation e(h, X̂ · Ŷm) = e(s, P̂) holds, then it returns 1
(accept), otherwise 0 (reject).

Ghadafi SPS. Structure-preserving signatures (SPSs) [1] are signatures where public keys and the
signatures are source group elements of a bilinear group, and verification will be done only us-
ing group-membership tests and pairing-product equations. We recall the SPS scheme by Ghadafi
[41] which is a structure-preserving variant of PS signatures [57]. Ghadafi’s SPS construction over a
Diffie-Hellman message spaceMDH is defined as follows:

Setup(1λ): Generates a bilinear group pp = (p, P̂, P, G1, G2, Gt, e) and outputs parameters pp.
KeyGen(pp): Takes pp as input, chooses two randoms (x, y) $← Z∗p, and returns the verification key

vk = (P̂x, P̂y) and the secret key sk = (x, y).
Sign(sk, (M, N)) : Takes the sk and DH message (M, N) ∈ MDH such that e(M, P̂) = e(P, N) as

input. Samples r $← Z∗p and computes the signature as

σ = (R, S, T) = (R = Pr, S = Mr, T = Rx · Sy)

Verify(vk, σ, (M, N)): Takes pp, vk, a signature σ = (R, S, T) and a message (M, N) ∈ MDH. If the
following equations hold, returns 1 and 0 otherwise:

e(R, N) = e(S, P̂) ∧ e(T, P̂) = e(R, X̂)e(S, Ŷ) ∧ h 6= 1



Message-Indexed Ghadafi SPS. To construct our schemes, we use the version that is presented in
[31] for signing elements of an Indexed Diffie-Hellman message spaceMH

iDH (cf. Def. 1):

Setup(1λ): Let pp = (p, P̂, P, G1, G2, Gt, e). Output parameters pp.
KeyGen(pp): Choose two random (x, y) $← Z∗p, returns the verification key as vk = (P̂x, P̂y) and the

secret signing key sk = (x, y).
Sign(pp, sk, (id, M, N)) : On input sk and (id, M, N) ∈ MH

iDH such that e(M, P̂) = e(h, N), where
h = H(id) = Pr. Computes the signature as σ = (h, s) = (h, s = hx ·My).

Verify(pp, vk, σ, (M, N)): Check if the following equations hold, returns 1 (verify a signature σ),
otherwise it returns 0 as: e(h, N) = e(M, P̂) ∧ e(s, P̂) = e(h, X̂)e(M, Ŷ) ∧ h 6= 1.

Equivalence Class Signatures. Structure-preserving signatures on equivalence classes SPSEQ [39,
43] allows to efficiently and jointly randomize messages and signatures in public, where the message
space consists of group-element vectors. Indeed, messages with representatives of projective equiv-
alence classes defined on the projective space underlying G` (for ` > 1 and some prime-order group
p). Based on such classes, a signature allows the randomization of both messages and signatures via
a change of representatives and a matching signature update. More precisely, it is used the following
equivalence relation to partition (G∗)` into classes:

R =
{
(M, N) ∈ (G∗)` × (G∗)`

∣∣ ∃ ∈ Z∗p : N = s ·M
}
⊆ (G∗)2`

We recall the SPS-EQ scheme from [39]:

BGR(1λ): This algorithm on input of a security parameter λ outputs a bilinear group BG.
KeyGen(BG, `): This algorithm on input of a bilinear group BG and a vector length ` > 1 outputs a

key pair (sk, vk) as sk← (xi)i∈[`], and the public key vk← (X̂i)i∈[`] = (P̂xi )i∈[`].
Sign(sk, M): This algorithm on input a representative M ∈ (G∗i )

`and a secret key sk outputs a

signature σ for the equivalence class [M]R as σ = (Z ← (∏i∈[`] Mxi
i )y, Y ← P

1
y , Ŷ ← P̂

1
y ).

ChangRep(M, σ, µ, vk): This algorithm on input of a representative M ∈ (G∗i )
` of class [M]R, a

signature σ for M, a scalar µ and a public key vk returns an updated message-signature pair
(M′, σ′), where M′ = Mµ is the new representative and σ′ its updated signature as follow pick
r $← Z∗p and return σ′ ← (Zrµ, Y

1
r , Ŷ

1
r ).

Verify(M, σ, vk): This algorithm on input of a representative M ∈ (G∗i )
`, a signature σ and a public

key vk outputs a bit b ∈ {0, 1} if ∏i∈[`] e(Mi, X̂i) = e(Z, Ŷ) ∧ e(Y, P̂) = e(P, Ŷ).

Mercurial Signatures. Mercurial signatures [32] (which is an extensions of SPSEQ) and signatures
with flexible public keys (SFPK) [4], receptively that allow signatures to be adapted not only to mul-
tiples of the signed message but also to multiples of the verification key (provide relations [vk]R
on public keys). Mercurial signatures additionally support randomization of the messages such as
SPSEQ and we use the formalization from mercurial signatures throughout the paper. The combi-
nation of randomizing message spaces and public keys allows an anonymous credential scheme to
delegate signing to intermediate signers such that, if a user receives a credential from an intermedi-
ate signer, a verifier determine which intermediate signer issued the credential [32]. The additional
property compare to SPSEQ is called public key class-hiding and states that it is hard to distinguish
if a random public key is in relation to a different public key. The space of public keys, similar to
the message space in [39], consist of vectors of group elements from G∗2 and so we can define the
following equivalence relations as follows:

Rvk = {(vk′, vk) ∈ (G∗2)
` × (G∗2)

`|∃ω ∈ Z∗p st. vk′ = vkω}

Rsk = {(sk, sk′) ∈ (Z∗p)
` × (Z∗p)

`|∃ω ∈ Z∗p st. sk′ = ω · sk}
Formally, in addition to the SPSEQ algorithms, we also require the following algorithms, which for
the scheme in [32] (which extends the SPSEQ scheme from [39] presented above) are as follows:

ConvertSK(sk, ω) → sk′: On input sk and a key converter ω ∈ Z∗p, output a new secret key sk′ =
ω · sk.



ConvertVK(vk, ω) → vk′: On input vk = (X̂i)i∈[`] and a key converter ω ∈ Z∗p, output a new public
key vk′ ∈ [vk]Rvk

as vk′ = vkω (guarantee if vk corresponds to sk, then vk′ corresponds to sk′).
ConvertSig(vk, m, σ, ω) → σ′: On input vk, a message m ∈ Z∗p, a signature σ = (Z, Y, Ŷ), and key

converter ω ∈ Zp, pick r $← Z∗p, this probabilistic algorithm returns a new signature σ′ such

that Verify(vk′, m, σ′) = 1 as: σ′ ← (Zrω, Y
1
r , Ŷ

1
r ).

A mercurial signature is origin-hiding if in addition to the origin-hiding of ChangRep (cf. Def. 15) the
following property holds:
Definition 2 (Origin-hiding of ConvertSig [32]). For all λ, for all pp ∈ Setup(1λ), for all vk, for all M,
σ, if Verify(vk, M, σ) = 1, if ω ← Zp , then ConvertSig(vk, M, σ, ω) outputs a uniformly random σ and
ConvertVK(vk, ω) outputs a uniformly random element of [vk]R.

2.2 Set Commitments

The notion of a set commitment SC with subset openings has been introduced in [39]. SC allows
committing to a set S ⊂ Zp by committing to a monic polynomial whose roots are the elements of S
and supports openings for sets T ⊆ S.

Set Commitment Construction of [39]. To simplify our description, we ignore the case that a set S
contains the trapdoor α. For a non-empty set S, [39] defines the polynomials fS(X) := ∏s∈S(X− s) =

∑
|S|
i=0 fi · Xi. Note that for P, since P fS(α) = ∏

|S|
i=0 P( fi ·αi), one can efficiently compute P fS(α) when

given
(

Pαi
)|S|

i=0
. We follow the definition given in [54], which makes the algorithm to randomize set

commitments and opening information RndmzC explicit.

SC.Setup(1λ, 1t) → ppSC: On input a security parameter λ and a maximum set cardinality t, run
BG = (p, G1, G2, GT , P, P̂, e)← BGGen(1λ), pick α← Zp and output ppSC ← (BG, (Pαi

, P̂αi
)i∈[t]),

which defines message space SppSC = {S ⊂ Zp|0 < |S| ≤ t}. ppSC will be an implicit input to all
algorithms.

SC.Commit(S) → (C, O): On input a set S ∈ SppSC , pick ρ ← Z∗p, compute C ← (P fS(α))ρ ∈ G∗1 and
output (C, O) with O← ρ.

SC.Commit2(Sj, α, Pρj) → (Cj, Oj): On input a set Sj ∈ SppSC , α, and Pρj : compute a commitment

Cj = (Pρj)
fSj

(α) ∈ G∗1 and output (Cj, Oj) with Oj ←⊥.
SC.Open(C, S, O) → 0/1: On input a commitment C, a set S, and an opening information O = ρ: if

C /∈ G∗1 or ρ /∈ Z∗p or S /∈ SppSC then return ⊥. Otherwise if O = ρ and C = (P fS(α))ρ, return 1;
else return 0.

SC.OpenSubset(C, S, O, T) → W: On input a commitment C, a set S, an opening information O
and a set T, if 0 ← SC.Open(C, S, O) or T 6⊆ S or T = ∅ then return ⊥. If O = ρ, output
W ← (P fS\T(α))ρ.

SC.VerifySubset(C, T, W) → 0/1: On input a commitment C, a set T and a witness W: if C /∈ G∗1 or
T /∈ SppSC , return 0. Else if W ∈ G∗1 ∧ e(W, P̂ fT(α)) = e(C, P̂), return 1; else 0.

SC.RndmzC(C, O, µ) → (C′, O′): On input a set commitment C, an opening information O and a
randomness µ ∈ Zp, output C′ = Cµ and O′ = µ ·O.

In [54] it is shown that one can batch different subset opening witnesses into one and to improve the
efficiency of the verification operation called as cross-set commitment aggregation. Therefore, two
additional algorithms to aggregate witnesses across k commitments and verify them are added:

SC.AggregateAcross({Cj, Tj, Wj}j∈[k]) → π. Takes as input a collection ({Cj, Tj}j∈[k]) along with the
corresponding subset opening witnesses {Wj}j∈[k] and outputs an aggregated proof π as follows:

π := ∏
j∈[k]

W
tj
j , where tj = H(j, {Cj, Tj}j∈[k]).

SC.VerifyAcross({Cj, Tj}j∈[k], π)→ b. Checks that the following equation holds:

∏
j∈[k]

e(Cj, P̂
tj ·ZS\Tj

(α)
) = e(π, P̂ZS(α))

where S =
⋃

j Tj, and ZS(α) = ∏i∈S(α− i).



3 Aggregate Signatures with Randomizable Keys and Tags

Now we introduce a novel primitive named AtoSa where one can aggregate signatures of different
messages under different keys only if they are associated with the same tag (consisting of a private
and a public part). Moreover, apart from allowing randomizing signatures, verification keys as well
as tags can be randomized. Unlike mercurial signatures, our ATMS scheme does not allow for ran-
domization of messages. Tags and verification keys are defined with respect to equivalence classes
and randomization switches between representatives of these classes. We introduce a comprehen-
sive formal model and a construction which as a starting point takes PS signatures [57]. For our
AtoSa scheme we show how to integrate tags into PS signatures, use the above discussed features
to make them aggregatable, and show that the key-randomization features of PS signatures (cf. [28]
with ∆2 = 0) applies to our modification.

3.1 Formal Definitions

The public key randomization is similar to that of mercurial signatures [32], which allow to define
equivalence classes on the key space [vk]Rvk

, [sk]Rsk
(cf. Section 2.1). Let a tag be (τ, T), where τ and T

are the secret and public parts of tag respectively. For the tag randomization, we define equivalence
classes [T]Rτ

([τ]Rτ
for secret parts) on the tag space T similar to [vk]Rvk

and [sk]Rsk
as:

Rτ =

{
(T′, T) ∈ (G∗1)

` × (G∗1)
`| ∃µ ∈ Z∗p : T′ = Tµ

(τ′, τ) ∈ (Z∗p)
` × (Z∗p)

`| ∃µ ∈ Z∗p : τ′ = τ · µ

}

We denote the space of all tags as T and the messages space is Zp. In contrast to SPSEQ (and mer-
curial) signatures, we do not consider equivalence classes on the message space for AtoSa.

Definition 3 (Aggregate Signatures with Randomizable Public Keys and Tag (AtoSa)). An AtoSa
for parameterized equivalence relationsRτ ,Rsk andRvk, consists of the following algorithms:

Setup(1λ)→ pp: On input the security parameter λ, output the public parameters pp.
KeyGen (pp)→ (sk, vk): On input the public parameters pp, output a key pair (sk, vk).
VKeyGen (sk): On input a secret key sk, output a verification key vk.
GenAuxTag(S) → ({auxj}j∈[n], (τ, T)): Given a message-key set S = {(mj, vkj)j∈[n]}, output auxil-

iary data {auxj}j∈[n] correlated to (vkj, mj) and a tag pair (τ, T), where all vkj should be distinct.
Sign(skj, τ, auxj, mj) → σj: On input a secret key skj, tag’s secret τ, auxiliary data auxj and message

mj ∈ Zp, output a signature σj for (τ, T) and mj under the verification key vkj.
Verify(vkj, T, mj, σj)→ {0, 1}: Given a verification key vkj, tag’s public T, message mj and signature

σj, output 1 if σj is valid relative to vkj, mj and T, and 0 otherwise.
AggrSign(T, {(vkj, mj, σj)}`j=1) → σ: Given ` signatures, (σj)j∈[`] for messages (mj)j∈[`] under ver-

ification keys, (vkj)j∈[`] on the same tag T, output an aggregate signature σ on all messages
M = (mj)j∈[`] under the tag T and aggregated verification key avk = (vkj)j∈[`].

VerifyAggr(avk, T, M, σ)→ {0, 1}: Given an aggregated verification key avk, tag T, messages M and
signature σ, output 1 if σ is valid relative to avk, M and T, and 0 otherwise.

ConvertTag(T, µ) → T′: On input a tag T and randomness µ, output a new randomized tag T′ ∈
[T]Rτ

.
RndSigTag(vk, T, m, σ, µ) → (σ′, T′): (Randomize Signature and Tag together) Given a signature σ

on a message m under tag T and vk, and randomness µ. Return a randomized signature and tag
(σ′, T′) s.t Verify(vk, T′, m, σ′) = 1, where T′ ← ConvertTag(T, µ).

ConvertSK(sk, ω)→ sk′: On input a sk and key converter ω, output a new secret key sk′.
ConvertVK(vk, ω)→ vk′: On input a vk and key converter ω, output a new public key vk′.
ConvertSig(vk, m, T, σ, ω)→ σ′: On input a vk, message m, tag T, signature σ, and key converter ω,

return a new signature σ′ s.t Verify(vk′, T, m, σ′) = 1, where vk′ ← ConvertVK(vk, ω).

We note that VKeyGen is only required in the security definition and is never used in the construction.
Although the signer receives the tag secret key τ, we replace this with a ZKP in our IhMA scheme.



3.2 Security Definitions

Correctness. As usual we require that honest signatures verify as expected, but need to consider all
the randomizations as well as the aggregation. We fomalize this in Appendix B.1.

Unforgeability. We model unforgeability following the ideas in the chosen-key model [11, 53], where
the adversary A is given a single public key vk′ and access to a signing oracle on the challenge
key. The adversary wins if the aggregate signature, σ, is a valid aggregate signature on a vector of
messages M = (m1, . . . , mn) under keys (vk1, . . . , vkn), and σ is nontrivial, i.e., the adversary did not
request a signature on a mj for vkj = vk′ or more precisely where vkj is in the same equivalence class
as the challenge key vk′. A has the power to choose all public keys except the challenger’s public
key vk′. For our instantiation, however, we have to work in a slightly weakened model which is
equivalent to the certified-keys model [50, 51]. In this setting the A registers pairs of (vk, sk) with
exception of the challenge key. To model this, we have the adversary output the secret keys of the
verification keys they provide in our security games. In the real world, such a key registration can
be realized by requiring issuers to prove knowledge of their sk, which in the formal analysis allows
a reduction to extract the secret key.

Definition 4 (Unforgeability). An AtoSa signature is unforgeable if for all PPT algorithms A having
access to the oracleOSign(), there exists a negligible function ε such that: Pr[ExpUnfAtoSa,A(λ) = 1] ≤ ε(λ)
where the experiment ExpUnfAtoSa,A(λ) is defined in Fig. 1 and Q is the set of queries that A has issued to
the OSign.

ExpUnfAtoSa,A(λ):

– Q := ∅; pp← Setup(1λ);
– (vk′, sk′)← KeyGen(pp);
– (j′, avk =

(
vkj

)
j∈[`]

, ask = (skj)j∈[`]\j′ , M∗ = (m∗j )j∈[`], (τ
∗, T∗), σ∗) ←

AO(pp, vk′)

– (vk∗j ) :=
(

VKeyGen
(

skj

))
j∈[`]\j′

,

return: 
VerifyAggr (avk, T∗, σ∗, M∗) = 1 ∧ ∀j ∈ [`], j 6= j′ :

[vk∗j ]Rvk
= [vkj]Rvk

∧ [vk′]Rvk
= [vkj′ ]Rvk

∧ ∀(m, T) ∈ Q : m 6= m∗j ∨ [T]Rτ
6= [T∗]Rτ



OSign(m, aux, (τ, T)):

– σ← Sign(sk′, τ, aux, m)
– Q = Q ∪ {m, T},

return σ

Fig. 1: Experiment ExpUnfAtoSa,A(λ)

Privacy guarantees. Similar to mercurial signatures [32], we define the following privacy notion for
randomized keys vk and tags:

Definition 5 (Public key class-hiding). For all PPT adversaries A, and pp ← Setup(1λ) there exists a
negligible ε such that:

Pr


(vk1, sk1)← KeyGen(pp); (vk0

2, sk0
2)← KeyGen(pp);

r $← Zp; vk1
2 = ConvertVK(vk1, r); sk1

2 = ConvertSK(sk1, r);

b← {0, 1}; b′ ← ASign(sk1,·),Sign(skb
2,·)(vk1, vkb

2) : b′ = b

 ≤ 1
2
+ ε(λ)

Definition 6 (Tag class-hiding). For all PPT adversaries A there is a negligible function ε(·) such that

Pr

[
b← {0, 1}, BG← BGGen(1λ), T← T , T(0) ← T ,

T(1) ← [T]R, b∗ ← A(BG, T, T(b)) : b∗ = b

]
− 1

2
≤ ε(λ)

The tag class-hiding property forRτ is implied by the DDH assumption.



The following definition guarantees that a signature with tag T on a message m under vk output
by ConvertSig and fed into RndSigTag produces a uniformly random signature under a uniformly
random tag (from the respective tag class) and uniformly random key (from the respective key class).

Definition 7 (Origin-hiding of ConvertSig). For all λ, and pp ∈ Setup(1λ), for all (vk, m, σ, T), if
Verify(vk, T, m, σ) = 1, and (ω, µ) ∈ Z∗p, then (σ′, T′)← RndSigTag(vk, T, m, ConvertSig(vk, m, T, σ, ω), µ)

outputs uniformly random elements in signature space and [T]Rτ
) such that Verify(vk′, T′, m, σ′) = 1, and

vk′
$← ConvertVK(vk, ω) is a uniformly random element of [vk]Rvk

.

We also require a similar definition for ConvertTag and the tag randomization:

Definition 8 (Origin-hiding of ConvertTag). For all λ, for all pp ∈ Setup(1λ), for all (vk, m, σ, T), if
Verify(vk, T, m, σ) = 1, and µ ∈ Z∗p, then (σ′, T′) ← RndSigTag(vk, ConvertTag(T, µ), m, σ, µ) outputs
uniformly random elements in the signature space and [T]Rτ

such that Verify(vk, T′, m, σ′) = 1.

3.3 Construction

We construct the AtoSa scheme based on the PS signature [57]. We can observe that to make PS
signatures (hi, si) aggregateable, we need the hi components to be identical for all signatures to
be aggregated. While in the original PS construction h is a random element independently chosen
during signing, this can be emulated in AtoSa by generating h for all signatures via a hash function
based on some common information embedded in aux. For example, aux, could be a concatenation
of all the messages and the tag. This technique was implicitly used in Coconut [63] and Camenisch
et al. [18], and has recently been formalized by Crites et al. in [31].

We note that we should be careful when computing h, i.e., in choosing aux, as in PS signatures
one can forge signatures when obtaining two signatures on two different messages with respect to
the same element h. To prevent forgeries when aiming to aggregate signatures, a unique base h for
a set of messages signed under the same tag is required. Therefore, we compute h as a hash of a
concatenation of the messages to be signed and corresponding verification keys, denoted as aux.
This approach ensures that every signer computes signatures on the same base h. We also introduce
a new definition and function:

Aux binding. To ensure this property of h while making our construction modular, we define a
straightforward property of GenAuxTag(S), i.e., no adversary can “open” an aux to two messages for
the same signer. This definition is paired with the function VerifyAux which is called by Sign.

Definition 9 (Aux binding). We split aux into a preimage and an opening: (c, o). For all PPT A, and
pp← Setup(1λ) and (sk, vk)← VKeyGen(1λ) there exists a negligible ε such that:

Pr


(h, aux = (c, o), aux = (c′, o′), τ, m, τ′, m′)← A(vk);
VerifyAux(sk, (c, o), τ, m) = 1

∧ VerifyAux(sk, (c′, o′), τ′, m′) = 1;

c = c′ ∧ ([τ]Rτ
6= [τ′]Rτ

∨m 6= m′)

 ≤ ε(λ)

We will then hash the preimage, c in our construction to reduce to the GPS assumption (Generalized
Pointcheval-Sanders assumption shown in Appendix C.2) effectively. The o value in this definition
may seem unnecessary, but it will become useful when we introduce our IhMA construction in Sec-
tion 5. We’ve left aux binding out of our definition and rather defined it in our construction in order
to make our definition more generic as aux binding is simply a property we use in the proof to en-
sure that our construction satisfies the definition of AtoSa.

Synchronicity assumption. We note that when we do not want to fix messages and verification keys
in aux beforehand, then we can make assumption as in synchronized aggregate signatures [2, 46] and
require each signer to only issue a single signature per tag. In this case aux only contains the tag and
in the construction below we set c = Pρ1 ||Pρ2 and Definition 9 is trivially satisfied.

We involve the tag in signatures by exponentiating the component h with the secret part of the
tag hρ and compute the component s using this value, which clearly can be checked via a pairing
with the tag’s public part and verified like a standard PS signature. Moreover, AtoSa allows the



randomization of tag, vk and signatures via a change of representatives tag and vk and a matching
signature update.

Our construction. The construction is as follows:

Setup(1λ): Run BG = (p, G1, G2, GT , P, P̂, e) ← BGGen(1λ) with a prime number order p, where P
is a generator of G1, P̂ a generator of G2. Pick H as a hash function: H : {0, 1}∗ → G1. Output
public parameters pp = {BG, H}.

KeyGen (pp): Choose (x, y1, y2)
$← Zp and set the secret key sk = (x, y1, y2) and verification key

vk = (Ŷ1 = P̂y1 , Ŷ2 = P̂y2 , X̂ = P̂x).
VKeyGen (sk): On input a secret key sk = (x, y1, y2), output vk = (Ŷ1 = P̂y1 , Ŷ2 = P̂y2 , X̂ = P̂x).
GenAuxTag(S): Given a set S = {(mj, vkj)j∈[`]}, choose (ρ1, ρ2)

$← Zp, set c = Pρ1 ||Pρ2 ||(mj, vkj)j∈[`].
Next set all auxj = (c,⊥). Compute h = H(c) and output aux and a tag pair (τ = (ρ1, ρ2), T =
(T1 = hρ1 , T2 = hρ2)).

VerifyAux(sk, aux, τ, mj) Parse aux as (c, o). Check that τ ∈ c (i.e., that c has the form Pρ1 ||Pρ2 ||...) and
(mj, vk) ∈ c where vk is a verification key related to sk (in the same equivalence class). Also check
that no other vkj in aux has the same equivalence class as sk. This can be done by checking that

Ŷ2 = Ŷ
y2
y1

1 and that X̂ = Ŷ
x

y2
2 . If these checks pass, it means that this is in the same equivalence

class as the verifier’s key. If the check doesn’t pass, it means the vkj is not in the same equivalence
class.

Sign(skj, τ, auxj, mj): Given a skj = (y1j, y2j, xj), τ, auxj and a message mj. If VerifyAux(skj, auxj,
τ, mj) 6= 1 return ⊥. Else, parse aux as (c, o) and compute h = H(c) and output:

σj =
(
h′, sj

)
=
(
h′ = hρ1 , sj = (hρ1)xj+y1j ·mj · (hρ2)y2j

)
Verify(vkj, T, mj, σj): Given a vkj, tag T = (T1, T2), message mj and signature σj, parse σj as

(
h′, sj

)
and return 1 if the following checks hold and 0 otherwise:

e(h′, X̂ · Ŷm1
1 )e(T2, Ŷ2) = (sj, P̂) ∧ T1 = h′ 6= 1G

AggrSign(T, {(vkj, mj, σj)}`j=1): Given ` valid signatures σj = (h′, sj) for mj under vkj and the same
tag T, where j ∈ [`], outputs an aggregate signature σ on the messages M = (mj)j∈[`] under the

tag T and aggregated verification key avk = (vkj)j∈[`] as: σ′ =
(

h′, s′ = ∏`
j=1 sj

)
.

VerifyAggr(avk, T, M, σ): Given an avk, tag T, messages M and aggregate signature σ = (h′, s), it
outputs 1 if the following checks holds and 0 otherwise:

e

h′, ∏
j∈[`]

X̂j · Ŷ
mj
1j

 e

hρ2 , ∏
j∈[`]

Ŷ2j

 = e
(
s, P̂
)
∧ T1 = h′ 6= 1G

ConvertTag(T, µ) → T′: On input a tag T and randomness µ, output a randomized tag T′ = Tµ =

(Tµ
1 , Tµ

2 ).
RndSigTag(vk, T, m, σ, µ) → (σ′, T′): Given a signature σ on message m under a valid tag T and vk,

and randomness µ. Return a randomized signature σ′ and a randomized tag:

σ′ =
(

h′µ, sµ
)

, T′ ← ConvertTag(T, µ)

where is a valid signature for a new tag representative T′ ∈ [T]Rτ
.

ConvertSK(sk, ω): On input sk and a key converter ω ∈ Z∗p, output a new secret key sk′ as sk′ =
sk ·ω.

ConvertVK(vk, ω): On input vk and a key converter ω ∈ Z∗p, output a new public key as vk′ = vkω.
ConvertSig(vk, m, T, σ, ω): On input a vk, message m, signature σ, tag T, and key converter ω ∈ Z∗p,

return a new signature σ′ s.t. Verify(vk′, T, m, σ′) = 1, where vk′
$← ConvertVK(vk, ω) as follows:

σ′ = (h′, s′ = sω).

The correctness of our construction follows from inspection. We formally show the unforgeability
and privacy notations.



Theorem 1 (Unforgeability). Our construction achieves the EUF-CMA security stated in Def 4, under
the hardness of GPS assumption, stated in Def. 31 in the random oracle model.

The proof of this theorem is provided in Appendix D.1.

Theorem 2 (Privacy). Our construction is origin-hiding of ConvertSig, origin-hiding of RndSigTag, tag
class hiding and has public key class-hiding based on Def. 7, Def. 8, Def. 6, and Def. 5, respectively.

The proof of Theorems 2 are provided in Appendix D.2.

4 Aggregate Mercurial Signatures With Randomizable Tags

We now present an aggregate mercurial signature with randomizable tags (ATMS). Similar to AtoSa,
(see Def. 3), one can aggregate mercurial signatures of different messages under different keys under
the same tag and randomize those signatures, public keys, and tags. ATMS differs from AtoSa by in
addition supporting equivalence classes on the message space. This further allows the randomiza-
tion of messages, leading to a feature known from structure-preserving signature on equivalence
classes (SPSEQ) and, more precisely, mercurial signatures.
To achieve the aggregation property, we follow the strategy presented by Crites et al. in context
of threshold SPS [31], where the authors define a so called Indexed Diffie-Hellman message space
MH

iDH. But the main problem with this approach, as it is defined over both groups, is that we
can not define indistinguishable equivalence classes over Gk

1 × Gk
2, since spanning both groups

makes DDH easy and would yield trivial linkability. Note that given both ((M1, M2), (N1, N2)) and
((M′1, M′2), (N′1, N′2)), one can easily link them together by checking e(M1, N′2) = e(M2, N′1) and
e(M′1, N2) = e(M′2, N1) holds. So we adaptMH

iDH and define a new message space called a Tag-based
DH message spaceMH

TDH and its corresponding EQ relation. We essentially define one equivalence
class per group and tie them together via the message, the tag, and an index obtained via some
auxiliary information (similar to the aux in the case of AtoSa). Indeed we adapt the Diffie-Hellman
message space MDH to a Tag-based DH message space MH

TDH for a tuple (aux, h, T, M, N), which
includes a tag T with auxiliary data aux (instead of the id).

This new message space then allows us to aggregate and define an equivalence (EQ) relation
which gives an indistinguishable message space.

4.1 Formal Definitions

We begin our definitions by introducing Tag-based DH message spaceMH
TDH and give an instantia-

tion in the random oracle model (ROM). Then we define a new EQ relation regarding this message
spaceMH

TDH, and finally, we define our new primitive ATMS.

A Tag-based DH message space. We adapt the message indexing technique introduced by [31] (cf.
Def. 1) to tags:

Definition 10 (A Tag-based DH message space (MH
TDH)). Let H be a random oracle. For the aux and

tag T = (hρi )i∈[k], we define MH
TDH as a tag based DH message space, if the following property hold: For

the messages vector (M, N) = (M1, . . . , Mk, N1, . . . , Nk) there exists mi ∈ Zp s.t. for each tuple (aux, Ti =

hρi , Mi = Tmi
i , Ni = P̂mi ), the following holds: e(Mi, P̂) = e(Ti, Ni).

We provide an instantiation in Fig. 2. Let us assume WLOG a message vector with the length k = 2
as m = (m1, m2), this can be generalized to any length k > 1.

Equivalence relations (EQ) over MH
TDH. Let the message space MH

TDH be defined as (M, N) =

(M1, . . . .Mk, N1, . . . , Nk) ∈ (G∗1)
k × (G∗2)

k such that for (h, T), and i ∈ [k]: e(Mi, P̂) = e(Ti, Ni). Now
we can define a family of equivalence relations IR` so that for any ` with 1 < k ≤ `. We define the
following equivalence relation RTDH ∈ IR` and the equivalence class [(M, N)]RTDH

of a message
vector with size k. More concretely, for a fixed bilinear group BG and (k, `), we define RTDH ∈ IR`

as follows:



MH
TDH(T = (hρ1 , hρ2 ), aux, m):

– h← H (aux)
– for i ∈ [2]:
• Mi ← hmiρi

• Ni ← P̂mi

– return (M, N)

H (aux):

– If QH [aux] =⊥:
– r $← Zp
– QH [aux]← Pr := h
– return QH [aux]

Fig. 2: Tag based Diffie-Hellman message space in ROM

Definition 11 (Equivalence relations of MH
TDH message spaces). If vectors of a pair (M, N) ∈

(G∗1)
k × (G∗2)

k is a message vector fromMH
TDH, then the equivalence relations [(M, N)]RTDH

defined as

RTDH =

{
(M, N), (M′, N′) ∈ (G∗1 ×G∗2)

k × (G∗1 ×G∗2)
k ⇔ ∃(µ, υ) ∈ Z∗p :

M′ = Mµυ, N′ = Nυ

}

Note that the EQ relation for an aggregate signature on a set of vectors M = ((Mj, Nj))j∈[`] is the
family (set) of relation as above, while all vectors use the same randomness M = ((Mµυ

j , Nυ
j ))j∈[`].

For instance, the j’th message vector (Mj, Nj) ∈ [(M, N)]Rj
TDH

is in the class Rj
TDH ∈ IR` and if one

more signature-message pair is added to the set, we have Rj+1
TDH ∈ IR`, where j + 1 < `. Moreover,

we consider the EQ relation for verification keys vk and Tag similar to AtoSa and indicate asRvk (see
Def. 2.1) and Rτ as stated in Def. 3.1. We again denote by T the space of all tags. We present our
ATMS scheme in Definition 12.

Definition 12 (Aggregate Mercurial Signatures with Randomizable Tag (ATMS)). An ATMS scheme,
associated with the parameterized equivalence relations IR`, RTDH, Rτ and Rvk, and also message space
MH

TDH consists of the algorithms:

Setup(1λ)→ pp: On input the security parameter λ, output the public parameters pp.
KeyGen (pp)→ (sk, vk): On input the public parameters pp, output a key pair (sk, vk).
VKeyGen (sk): On input a secret key sk, output a verification key vk.
GenAuxTag(S) → (auxj, (τ, T)): Given a set S =

((
Mj, Nj

)
, vkj

)
j∈[n] of messages and keys, output

auxiliary data auxj and a tag pair (τ, T) where τ is the secret part and T is the public part of tag
and all vkj should be distinct.

Sign(skj, τ, auxj, (Mj, Nj)) → σj: On input a secret key skj, tag’s secret τ, auxiliary data auxj and
message vector (Mj, Nj) ∈ MH

TDH, output a signature σj under the τ, vkj and (Mj, Nj).
Verify(vkj, T, (Mj, Nj), σj) → {0, 1}: Given a verification key vkj, tag’s public T, message vector

(Mj, Nj) and signature σj, output 1 if σj is valid relative to vkj, (Mj, Nj) and T, and 0 otherwise.
VerifyTag(T, τ, σ) → {0, 1}: Given a tag’s public T, tag’s secret signature σ, output 1 if T is valid

relative to σ, and τ, and 0 otherwise.
AggrSign(T, (vkj, (Mj, Nj), σj)

`
j=1)→ σ′ Given ` signed messages (Mj, Nj) in σj under vkj for j ∈ [`]

and the same tag T, output a signature σ on the messages M = ((Mj, Nj))j∈[`] under the tag T
and verification key avk = (vkj)j∈[`].

VerifyAggr(avk, T, M, σ)→ {0, 1}: Given a verification key avk, tag T, messages M and signature σ,
output 1 if σ is valid relative to avk, M and T, and 0 otherwise.

ConvertTag(T, µ) → T′: On input a tag T and randomness µ, output a randomized tag T′ ∈ [T]Rτ

(i.e., a new representative of tag).
ChangRep((M, N), σ, T, (µ, υ)) → (σ′, T′): On input a representative (M, N) ∈ [(M, N)]RTDH

, T ∈
[T]Rτ

, signature σ and randomness (µ, υ), return a new signature ((M′, N′), T′, σ′), where M′ =
Mµυ ∧N′ = Nυ ∈ [(M, N)]RTDH

and T′ ← ConvertTag(T, µ) are the new representatives and σ′

is valid for (M′, N′) and [T]Rτ
.

This will also apply for a set representative M such that one can get a new set representative M′

by scaling all message with the same (µ, υ).
ConvertSK(sk, ω)→ sk′: On input a sk and key converter ω, output a new secret key sk′.
ConvertVK(vk, ω)→ vk′: On input a vk and key converter ω, output a new public key vk′.



ConvertSig(vk, T, (M, N), σ, ω) → σ′: On input a vk, message vector (M, N), signature with tag
(σ, T), and key converter ω, return a new signature σ′ such that Verify(vk′, T, (M, N), σ′) = 1,
where vk′ ← ConvertVK(vk, ω).

The VerifyTag and VKeyGen are only used for the security game.

4.2 Security Definitions

Correctness. As usual we require that honest signatures verify as expected, but need to consider all
the randomizations as well as the aggregation. We formalize this in Appendix B.1.
Unforgeability. The unforgeability game follows the unforgeability definition of AtoSa (see Def. 4).
It is slightly modified to fit with our additional EQ relation (Def. 11), i.e., unforgeability is defined
with respect to message classes and in addition need to check VerifyTag.

Definition 13 (Unforgeability). An ATMS is unforgeable if for all PPT A having access to the oracle
OSign() there exists a negligible function ε s.t: Pr[ExpUnfATMS,A(λ) = 1] ≤ ε(λ) where the experiment
ExpUnfATMS,A(λ) is defined in Fig. 3 and Q is the set of queries that A has issued to OSign().

ExpUnfATMS,A(λ):

– Q := ∅; pp← Setup(1λ);
– (vk′ , sk′)← KeyGen(pp);
– (j′ , avk =

(
vkj
)

j∈[`] , ask = (skj)j∈[`]\j′ , M∗ = ((M∗
j , N∗j ))j∈[`] , T∗ , τ∗ , σ∗)← AO(pp, vk′)

– (vk∗j := VKeyGen(skj))j∈[`],j 6=j′ Return:


VerifyAggr (avk, T∗ , σ∗ , M∗) = 1 ∧VerifyTag(T∗ , σ∗ , τ∗) ∧ ∀j ∈ [`], j 6= j′ :

[vk∗j ]Rvk
= [vkj ]Rvk

∧ [vk′ ]Rvk
= [vkj′ ]Rvk

∧

∀((M, N), T) ∈ Q : [(M, N)]RTDH
6= [(M∗

j , N∗j )]RTDH
∨ [T]Rτ 6= [T∗ ]Rτ



OSign((τ, T), aux, (M, N)):

– σ← Sign(sk′ , τ, aux, (M, N))
– Q = Q ∪ {(M, N), T},

Return σ

Fig. 3: Experiment ExpUnfATMS,A(λ)

Privacy guarantees. Similar as in Section 3, we consider the privacy notations Origin-hiding of Con-
vertSig, and Public key class-hiding (it is the same as Def. 5). We note that all definitions can be updated
due toMH

TDH message space (receptively EQ relations ofMH
TDH) instead of the vector M. Origin-

hiding of ConvertSig definition can be updated straightforwardly as follows:

Definition 14 (Origin-hiding of ConvertSig for ATMS). For all λ, and pp ∈ Setup(1λ), for all (vk, (M, N),
σ, T), if Verify(vk, T, (M, N), σ) = 1, and (ω, υ, µ) ∈ Z∗p, then σ′ ← ChangRep((M, N), ConvertSig(vk, T, (
M, N), σ, ω), T, (υ, µ)) outputs a uniformly random in the respective spaces s.t. Verify(vk′, T′, (M′, N′), σ′) =

1, where vk′
$← ConvertVK(vk, ω) outputs a uniformly random element of [vk]Rvk

.

However, since this is a variant of SPSEQ we consider the adaption property similar to [39] below,
an additional property which guarantees that signatures from ChangRep and Sign are identically
distributed. This definition also covers Origin-hiding of ConvertTag.

Definition 15 (Perfect Adaption of Signatures). An ATMS scheme perfectly adapts signatures if for
all (vk, T, (M, N), σ, (µ, υ)) with (M, N) ∈ MH

TDH ∧ Verify(vk, T, (M, N), σ) = 1 ∧ (µ, υ) ∈ Z∗p we
have that the output of (σ′, T′) ← ChangRep(σ, (M, N), T, (µ, υ)) is a uniformly random element in the
respective space, conditioned on Verify(vk, Tµ, (Mµυ, Nυ), σ′) = 1.

4.3 Construction

Our construction is inspired by the message-indexed SPS by Crites et al. [31] (see Def. 2.1), which is a
variant of Ghadafi’s SPS [41] (see Def. 2.1). We use the tag-based message definitionMH

TDH (Def. 10)
instead of the message-indexed (Def. 1). For simplicity, we assume a message vector with the length
k = 2 as (M, N) = ((M1, M2), (N1, N2)), but this can be straightforwardly generalized to any length
k > 1. Similar to the construction in Section 3.3, we again need aux binding to make this particular
construction work.



Definition 16 (Aux binding for ATMs). We split aux into a preimage and an opening: (c, o). For all PPT
A, and pp← Setup(1λ) and (sk, vk)← VKeyGen(1λ) there exists a negligible ε such that:

Pr


(aux = (c, o), aux = (c′, o′), τ, (M, N), τ′, (M′, N′))← A(vk);

VerifyAux(sk, (c, o), τ, (M, N)) = 1

∧ VerifyAux(sk, (c′, o′), τ′, (M′, N′)) = 1∧
c = c′ ∧ (τ 6= τ′ ∨ (M, N) 6= (M′, N′))

 ≤ ε(λ)

Synchronicity assumption. Same as in Section 3.3, instead of fixing messages and verification keys
in aux, we can make same assumption as in synchronized aggregate signatures and simply set c =
Pρ1 ||Pρ2 in the construction below and Definition 9 is trivially satisfied.

Our construction. The construction is as follows:

Setup(1λ): Run BG = (p, G1, G2, GT , P, P̂, e) ← BGGen(1λ) with a prime number order p, where
P a generator of G1, P̂ a generator of G2 and H a hash function: H : {0, 1}∗ → G1, output
pp = (G1, G2, GT , P, P̂, H).

KeyGen(pp): Given pp, sample sk = (x, y1, y2, z1, z2)
$← (Z∗p)

5, and vk = (X̂ = P̂x, Ŷ1 = P̂y1 , Ŷ2 =

P̂y2 , Ẑ1 = P̂z1 , Ẑ2 = P̂z2).
VKeyGen (sk): Given sk = (x, y1, y2, z1, z2), return vk = (X̂ = P̂x, Ŷ1 = P̂y1 , Ŷ2 = P̂y2 , Ẑ1 = P̂z1 , Ẑ2 =

P̂z2).
GenAuxTag(S): Given a set S = {(Mj, Nj, vkj)j∈[n]}, choose (ρ1, ρ2)

$← Zp, set τ = (ρ1, ρ2), T =

(T1 = hρ1 , T2 = hρ2), and c =
(

Pρ1 ||Pρ2 ||(Nj, vkj)j∈[n]

)
, where h = H(c) and auxj = (c, o =⊥).

VerifyAux(sk, aux, (τ1, τ2), ((M1, M2), (N1, N2))) : Extract (T1, T2), parse aux as (c, o). Check that
((M, N), [VKeyGen(sk)]) ∈ aux (i.e., c = ...||((M, N), [VKeyGen(sk)])||...) s.t no other vk in aux
related to sk and check that (T1, T2) = (hτ1 , hτ2) . Compute h := H(c). Output

∧2
i=1 e(Mi, P̂) =

e(hτi , Ni).
Sign

(
skj, τ, auxj, (M, N)

)
: Given a skj, τ, auxj = (c,⊥), and message (M, N) = ((M1, M2), (N1,

N2)) ∈ MH
TDH. Parse τ as (ρ1, ρ2). Run VerifyAux(sk, aux, τ, (M, N)) and verify that this outputs

1. If so compute h = H(c) and output a signature as:

σ = (h, b = ∏
j∈[2]

hρj ·zj , s = (hx · ∏
j∈[2]

M
yj
j )).

Verify(vk, T, (M, N), σ): Given a vk, tag T = (T1 = hρ1 , T2 = hρ2), message (M, N) and signature
σ = (h, b, s) return 1 if the following holds and 0 otherwise:

e(h, X̂) ∏
j∈[2]

e(Mj, Ŷj) = e(s, P̂) ∧ e(b, P̂) = ∏
j∈[2]

e(Tj, Ẑj)

2∧
j=1

e(Tj, Nj) = e(Mj, P̂)

VerifyTag(T, τ, σ): Given τ = (τ1, τ2), σ = (h, b, s), output 1 if Ti = hτi for all i ∈ {1, 2}, and 0
otherwise.

AggrSign(T, (vki, (Mi, Ni), σi)
`
i=1): Given ` valid signatures σi = (h, bi, si) for (Mi, Ni) under vki

and the same tag T for i ∈ [`], return ⊥ if all h are not the same, else output a signature σ
on the messages M = ((Mi, Ni))i∈[`] under the tag T and aggregated verification key avk =

(vk1, . . . , vk`) as follows: σ =
(

h, b′ = ∏`
i=1 bi, s′ = ∏`

i=1 si

)
.

VerifyAggr(avk, T, M, σ): Given avk = (vk1, . . . , vk`), tag T = (T1 = hρ1 , T2 = hρ2), messages M and
signature σ = (h, b, s), check if the following checks holds and 0 otherwise:

∏
i∈[`]

e(h, X̂i) ∏
j∈[2]

e(Mij, Ŷij) = e(s, P̂) ∧ e(b, P̂) = ∏
i∈[`]

∏
j∈[2]

e(Tj, Ẑij)

∧
j∈[2]∧i∈[`]

e(Tj, Nij) = e(Mij, P̂)



ConvertTag(T, µ) → T′: On input a tag T and randomness µ, output a randomized tag T′ =
(hρ1µ, hρ2µ).

ChangRep(σ, (M, N), T, (µ, υ)): On input a representative (M, N) ∈ [(M, N)]RTDH
, T ∈ [T]Rτ

, sig-
nature σ = (h, b, s), and (µ, υ) ∈ (Z∗p)

2, output:

σ′ =
(
h′ ← hµυ, b′ ← bµ, s′ ← sµυ, T′ ← ConvertTag(T, µ)

)
,

which is a valid signature for new representatives (Mµυ = M′, Nυ = N′) ∈ [(M, N)]RTDH
and

T′ = (hρ1µ, hρ2µ) ∈ [T]Rτ
.

ConvertSK(sk, ω) → sk′: On input a sk and key converter ω ∈ Z∗p, output a new secret key as
sk′ = sk ·ω.

ConvertVK(vk, ω)→ vk′: On input a vk and key converter ω ∈ Z∗p, output vk′ = vkω = (X̂ω, Ŷω
1 , Ŷω

2 ,
Ẑω

1 , Ẑω
2 ).

ConvertSig(vk, (M, N), σ, T, ω) → σ′: On input a vk, message (M, N), signature σ with tag T, and
key converter ω ∈ Z∗p, returns a new signature σ′ as: σ′ = (h, bω, sω).

Note that one can reduce the number of paring operations in VerifyAggr by using batching verifica-
tion techniques (cf. [36]).

Theorem 3 (Privacy). Our construction is origin-hiding of ConvertSig (Def. 7), public key class-hiding
(Def. 5), and provides perfect adaption of signatures (Def. 15).

The proof of Theorem 3 is provided in Appendix D.3.

Theorem 4 (Unforgeability). Our construction is EUF-CMA secure regarding the definition 13 in the
generic group model for Type-III bilinear groups.

The proof of Theorem 4 is provided in Appendix D.6.

5 Application to AC

As our core application we present Issuer-Hiding Multi-Authority Anonymous Credentials (IhMA).
In a multi-authority setting [45], credentials come from `-different credential issuers. Naively, the
showing of credentials requires `-independent credentials to be shown. This can be overcome [45]
by leveraging aggregate signatures, obtaining a compact AC system with compact-size credentials,
and showing costs. However, verifying a user’s credentials needs knowledge of all issuers’ verifica-
tion keys, which might violate user privacy. Thus, in the vein of [8] we introduce the issuer-hiding
property for multi-authority credentials. We recall that here the verifier can define a set of accept-
able issuers in an ad-hoc manner. Then a user can prove that the subset of credentials shown were
issued by acceptable issuers without revealing which credential corresponds to which issuer. This is
an important feature, especially in multi-authority settings where disclosing issuer keys can reveal
too much information compared to a single issuer setting and already lead to identification of the
user.

5.1 Formal Definition

Our definition supports multiple users (uj)j∈[`] and multiple credential issuers (CIj)j∈[`]. An issuer
can generate a key pair of secret and verification keys (isk, ivk) via IKeyGen(). Similarly, users runs
UKeyGen() to generate a user key pair (usk, uvk). Each issuer can then issue a credential (cred) on
an attribute (a) or attribute-set (A) to a user who can verify the received credential locally. Indeed,
when we use AtoSa, we consider an attribute a (i.e., the attribute set includes only one attribute);
when we use ATMS, we consider an attribute set, A. We use the notation A, to define security and
formal definitions for consistency of definitions.

Users can then use the CredAggr algorithm to aggregate all credentials and create a single cre-
dential valid for all attributes and verification keys. To define the set of accepted issuers, a verifier
generates a key-policy pol using GenPolicies (it is known as Presentation policies in [8]), which can be
checked for well-formedness by everyone. Finally, with an aggregate credential (disclosing a subset
attributes D) and some key-policy pol from the verifier, a user uses Show to derive a proof, which a
verifier can verify.



Definition 17 (Issuer-Hiding Multi-Authority Credentials (IhMA)). An IhMA is defined by the follow-
ing algorithms/protocols:

– Setup: On input a security parameter λ, output public parameters pp (implicit input to all algo-
rithms) .

– IKeyGen: Generate a key pair (isk, ivk) for an issuer i.
– UKeyGen: Take a message-key set S, generate a user key pair (usk, uvk) which acts as user’s identity

and auxiliary data aux.
– Issuance: In this protocol, an issuer i associated to (isk, ivk) creates a credential cred on an attributes-

set A to a user u associated to (usk, uvk) as follows:

[CredObtain(usk, ivk, A)↔ CredIssue(isk, uvk, A)]→ cred

– CredAggr: Take as input a usk of user and a list of credentials (ivk, Ai, credi) for i ∈ [`] and output
an aggregated credential cred of attributes-set {Ai}i∈[`]:

CredAggr
(

usk, {(ivk, Ai, credi)}i∈[`]

)
→ cred

– GenPolicies: A verifier with the secret key vsk can define policies defining sets of issuers {ivk}i∈[n]
they are willing to accept for certain Show sessions, we have:

GenPolicy(vsk, {ivk}i∈[n])→ pol, where n ≤ `

Note that pol defines the sets of accepted issuers by a verifier, but not which attributes a verifier
needs to disclose. Thus, pol can be reused for multiple contexts, reducing the number of policies.

– Show: In this protocol, a user u with (usk, uvk) runs CredShow and interacts with a verifier running
CredVerify to prove that she owns a valid credential cred on disclosed attribute sets D ⊆ {Ai}i∈[`]
issued respectively by one or some credential issuers in pol:[

CredShow(usk, pol, {(ivk, Ai)}i∈[`], cred, D)↔
CredVerify(pol, (ivki)i∈[`], D)

]
→ (0, 1)

5.2 Security Definitions

We define our security model based on the game-based framework in [39, 45], with some modifica-
tions to harmonize their definition with the one on IhMA and consider the use of multi-authority and
issuer-hiding properties. The adversary A has access to the following oracles that describe the pos-
sible ways to interact with the IhMA. Moreover, we define some global lists that are shared among
oracles as HU a list of honest users and CU a list of corrupted users, similarly we define HCI
and CCI for the honest/corrupted credential issuers. Also, Luk stands for a list of user’s keys and
Lcred which is a list of user-credential pairs which includes issued credentials and corresponding
attributes and to which user they were issued. A credential in Lcred can be empty (⊥) if the user has
not received a credential on this attribute yet. For simplicity we assume a tag τ includes aux as well.

– OHCI(i): Create an honest credential issuer with identity i. If i already exists (i.e. i ∈ HCI ∪ CCI),
output ⊥. Otherwise, run (isk, ivk)← IKeyGen(i), add (i, isk, ivk) ∈ HCI , and return ivk.

– OCorruptCI(i): Corrupt a credential issuer i. If i does not exist yet (i.e. i /∈ HCI ∪ CCI), create a new
corrupted credential issuer by adding i to CCI . Otherwise, if i ∈ HCI , remove i from HCI , add
it to CCI and output isk. Note that A does not allow to corrupt the challenge key vk′.

– OUser(u, S): Take as input a user identity u and issuer/attributes pairs {(ai, vki)} ∈ S. If u ∈ HU or
u ∈ CU , return ⊥. Else, create a fresh entry u by running (usk, uvk, aux) ← UKeyGen and adding
u and (usk, uvk, aux) to the list HU and Luk, receptively. Then, for each (ai, vki) ∈ S, add LS[i].
Return uvk.

– OCorruptU(u): Take as input a user identity u and (optionally) a user public key uvk. If u /∈ HU ,
register a new corrupt user with public key uvk and add u ∈ CU . Else, move the entry correspond-
ing to u fromHU and add it to CU , output usk and all the associated credentials items (u, Ai, credi)
of Lcred[u].



– OObtIss(u, i, Ai): (Perform an honest issuing/obtaining) Take as input a user identity u, issuer iden-
tity i, and attribute(s) Ai. If u /∈ HU ∨ i /∈ HCI , return⊥. Else, find entries (usk ∈ Luk, isk ∈ HCI),
and run the issuing protocols:

[CredObtain(usk, ivk, Ai)↔ CredIssue(isk, uvk, Ai)]→ credi

and add the entry (u, Ai, credi) to Lcred, where credi includes auxi.
– OObtain(u, i, Ai): (Perform an honest obtaining of a credential with a malicious issuer) On input a

user identity u ∈ HU , issuer identity i ∈ CCI and attributes Ai. If u /∈ HU ∨ i /∈ CCI , return ⊥.
Else, find usk ∈ Luk, and run the Obtain protocol with A:

[CredObtain(usk, ivk, Ai)↔ A]→ credi

If credi =⊥, return ⊥. Else, append the resulting output (u, Ai, credi) to Lcred. This oracle is used
by A, whom it knows by ivk impersonating an issuer to issue a credential to an honest user u .

– OIssue(u, i, Ai): (Perform a malicious obtaining of a credential with an honest issuer) On input a
user identity u ∈ CU , issuer i ∈ HCI , and attributes Ai. If u /∈ CU ∨ i /∈ HCI , return ⊥. Else, find
entries isk ∈ HCI , and run Issuing with A:

[A ↔ CredIssue(isk, uvk, Ai)]→ credi

Append elements (u, Ai, credi) to Lcred. This oracle is used by a corrupted user u to get a credential
from a honest issuer.

– OCredShow(j, pol, D): On input an index of an issuance j, key-policy pol and attributes-subset D.
First parses Lcred[j] as (u, Ai, credi), where credi is the credential issued by an issuer ivk on Ai for a
user u during the i-th query to OObtIss or OObtain. If i /∈ HU return ⊥. Else, run:
CredShow(usk, pol, {(ivk, Ai)}i∈[`], cred, D)↔ A, with the adversary playing the role of verifier.

(OObtain) and (OIssue) are defined specifically for the anonymity ExpAno and the unforgeability
ExpUnf, respectively. The other oracles are common between ExpAno and ExpUnf.
Correctness We require that honestly issued credentials shown to honest verifiers always verify with
a caveat. If a user does not specify a particular issuer and attribute when User is called, then if that
issuer is called to issue that attribute to the user, it is allowed to fail. I.e.: the user must include pairs
for every attribute they wish to receive. Further, if the user specifies two attributes for the same is-
suer, we allow the scheme to return ⊥ during issuing. This limitation can be overcome practically
by having each issuer use a different key for each attribute.

Unforgeability. Unforgeability requires that no adversary can convince a verifier to accept a cre-
dential for a set of attributes for which he does not possess all the individual credentials from the
accepted issuers set I = {ivk}i∈[`]. A can obtain ivk ∈ I using OHCI(i) and OCorruptCI(i). Intuitively,
an adversary wins the unforgeability experiment if he is able to convince an honest verifier that
he satisfies a certain policy while does not have an appropriate credential. To make the game non-
trivial, we impose restrictions that for all corrupted users the disclosed attributes subset D should
not pass verification (satisfy attributes credentials).

Definition 18 (Unforgeability). An IhMA is unforgeable if, for all λ ∈ N and for any PPT adversary A,
there exists ε(λ) s.t Pr[ExpUnfIhMA,A(λ) = 1] ≤ ffl(λ), experiments are defined in Fig 4, where Aui means
the (set) attribute issued by the issuer ivk to u.

Anonymity. Anonymity requires that a malicious verifier cannot distinguish between two users.
Thus we allow the adversary to output two sets of credentials, attributes, as well as a key-policy pol,
attribute subset D, and issuers’ public keys (can be corrupted). The adversary has adaptive access
to an oracle that on the input of two distinct user indexes j0 and j1, acts as one of the two credential
owners (depending on bit b) in the verification. To make the game non-trivial, we impose restrictions
that the subset D is either satisfied or not by both credentials, i.e., D(A) = 1 ⇒ D ⊆ ∪i∈[`]Ai if
attributes in A satisfy D and D(A) = 0 ⇒ D 6⊆ ∪i∈[`]Ai otherwise. The essence of the game is
captured by the oracles OAnon

b in Fig 5.

Definition 19 (Anonymity). An IhMA is anonymous, if for λ ∈ N, any PPT adversary A there exists a
negligible function ε(λ) so that |Pr[ExpAno0

IhMA,A(λ) = 1]− Pr[ExpAno1
IhMA,A(λ) = 1]| ≤ 1

2 + ε(λ),
experiments are defined in Fig 5, respectively.



ExpUnf IhMA,A(λ):

– (pp)← Setup(1λ); I ← A<OCorruptCI,OHCI>(pp);
– (sk′, vk′)← IKeyGen(pp); I′ = I ∪ vk′;
– pol← GenPolicies(I′);
– (D, avk = (ivk)i∈[`])← A〈O〉(pol, vk′);
– b← (A ↔ CredVerify(pol, (ivk)i∈[`], D))

– if b = 1∧ ∃i ∈ [`] : [ivk] = [vk′] ∧ (ivk)i∈[`] ⊂ I′ ∧ D 6⊂ ⋃
i∈[`]

Aui, ∀u ∈ CU

return 1
– else return 0

Fig. 4: Experiment ExpUnfIhMA,A(λ)

ExpAnob
IhMA,A(λ):

– pp← Setup(1λ)
– (j0, j1, pol, (ivk)i∈[`])← A〈O〉(pp)

– b′ ← A〈O
Anon
b ,O〉(st)

– return(b = b′)

OAnon
b (j0, j1, D, pol):

– If j0 or j1 > |Lcred|, return ⊥.
– Else, parse Lcred[j0] as (u0, A0i, cred0i)i∈[`]

and Lcred[j1] as (u1, A1i, cred1i)i∈[`], such that ∀i,
credbi ← [CredObtain(uskb, ivk, Abi)↔ CredIssue(isk, uvkb, Abi)]

– If D(A0) 6= D(A1) ∨ (u0, u1) /∈ HU , return ⊥.
– Otherwise run:

CredShow(uskb, pol, {(ivk, Abi)}i∈[`], credb, D)↔ A, where

credb ← CredAggr
(

uskb, {(ivk, Abi, credbi)}i∈[`]
)

Fig. 5: Experiment ExpAnoIhMA,A(λ)

Issuer-hiding. Issuer-hiding indicates that a malicious verifier cannot distinguish if verification
key(s) belongs to the credential’s issuer. We allow the adversary to output a set of issuers, as well
as a key-policy pol. We consider key policies of the form {σi, ivk}i∈[n], where σi is a signature on a
given issuer’s public key ivk produced by the verifier. As a result, users can prove the correspon-
dence between a verification key (defined in the key-policy) and the credential verification under
that verification key. Note that we assume honest issuers in this definition.

Definition 20 (Issuer-Hiding). An IhMA supports issuer-hiding, if for all λ ∈ N, ` > 1, for all D 6⊆
∪i∈[`]Ai and (pp)

$← Setup(1λ) for any PPT adversary A, there exists a negligible function ε(λ) s.t:

Pr



(isk, ivk)i∈[`]
$← IKeyGen(pp);

(I0, I1, pol, D)
$← A〈O〉(pp, ivki∈[`]);

(usk, uvk)
$← UKeyGen(pp); b $← {0, 1};

∀ivk ∈ Ib : (credb,i, st) $← CredObtain(usk, ivk, Ai)↔
CredIssue(isk, uvk, Ai);
credb ← CredAggr

(
usk, {(ivk, Ai, credb,i)}i∈[`]

)
b∗ $← AOCredShow

(pol, Ib, D, Ai∈[`])

: b∗ = b


≤ ε(λ)

where both |I0| = |I1| and I0, I1 ⊆ ivki∈[`] are one or a set of selected issuer(s).

5.3 Constructions

Now we are ready to describes our two constructions of IhMA, the first being based on AtoSa (Def. 3)
and SPSEQ [39] and the second based on ATMS (Def. 12), a set commitment scheme SC (Def. 2.2),
and SPSEQ. To enhance users’ privacy and prevent issuers from learning attributes issued by other
issuers, we change how aux for the signatures is computed. In particular, we commit to the attributes
(messages) instead of including them in plaintext. For example, this can be achieved using a hash-
based commitment scheme, where a commitment value c is generated by computing c := H′(a, r)
with H′ being a hash function modeled as a random oracle, a being the attributing being committed



to, and r a sufficiently large random value. When issuing a credential, users can reveal the relevant
message (attribute) a, the opening o, and the commitment value c. The signer then verifies if the
c is correct for a and o before issuing the corresponding credential. We modify GenAuxTag(S) and
VerifyAux in AtoSa and ATMS as follows:

– GenAuxTag(S): Given S = {(mj, vkj)j∈[`]}, choose (ρ1, ρ2)
$← Zp, set c = Pρ1 ||Pρ2 ||(cmj ||vkj)j∈[`],

where cmj is a hash commitment to j’th message and all vk are distinct. Output aux = (c, oj) and
tag τ = ((ρ1, ρ2), (T1 = hρ1 , T2 = hρ2)) with h = H(c).

– VerifyAux(sk, aux, τ, mj) Parse aux as (c, o). Check that τ ∈ t (i.e., that c has the form: Pρ1 ||Pρ2 ||
...) check that cj exists such that (cj, vk) ∈ t and Open(cj, o, mj) = 1 where vk is a verification
key related to sk (in the same equivalence class). Also check that no other vk in aux has the same
equivalence class as sk.

In our IhMA schemes, tags are user identities and are used to verify the user before issuing attributes.

AtoSa based IhMA Construction in Fig. 6. Here, every issuer creates a credential (signature) σ1i on
an attribute ai for the user u with tag τ (and the respective aux) verified with ivk by the AtoSa scheme.
We cannot reveal the secret part of the tag to signers (issuers) as this would violate the security of
the user. To obtain a credential through the Issuing protocols, a user is required to disclose the public
parts of tag as identity to the issuer and then authenticate their identity via a ZKPOK.
Interactive signing. We can adapt the signing in a way that signers (issuers) don’t learn (ρ1, ρ2) as
follows:

– u sends (aux, (h, T), π), where aux = Pρ1 ||Pρ2 ||(cmi , vki)i∈[n] and
π = ZKPOK {(ρ1, ρ2) : T1 = hρ1 ∧ T2 = hρ2 ∧ u1 = Pρ1 ∧ u2 = Pρ2}.

– Signer (issuer) checks if proof π is valid and if so outputs
(h′ = hρ1 , s = (hρ1)xj+y1j ·mj · (hρ2)y2j)

We note that this interactive signing outputs signatures that are identical to that output by Sign and
this is used in Issuance.

For the Show protocol, we assume that verifier(s) have signed all accepted issuer keys using an
SPSEQ scheme [39]. A user u can take pol and the set of disclosed credentials D, aggregates the
respective credentials (signatures) and randomizes the aggregated signature and tag. We note that
alternatively, a user could already after Issuance aggregate all credentials to a constant-size (single)
credential and then in Show protocol can provide a ZKPOK of the signature and selectively disclose
the required attributes (as originally done for PS signatures in [57]). This also yields constant size
credentials as noted in Table 1. We stick with the former approach here as it is more efficient for
showing credentials, but one can easily switch to the other option. Moreover, In IhMAAtoSa, only
one attribute per vk can be issued. However, if an issuer needs to issue multiple attributes, they can
easily generate multiple vks.

To hide the issuer’s keys, u randomizes them using a random ω and adapts the signature for
these randomized keys using ConvertSig. So far, we have created a compact randomized credential
(proof) for attributes in D where issuer verification keys of this signature are hidden. The next step
is to show that these random verification keys correspond to those keys signed by the verifier (using
SPSEQ signatures) in pol. In this direction, u first collects signatures in pol according to issuer keys
that are needed in the proof. Then u runs ChangRep of SPSEQ to randomize messages (which are
issuer public keys) and signatures with the same randomness ω used in convert, i.e., randomized
keys. Randomized issuer keys in a credential match with the messages signed by verifier in pol.
Finally, u uses the randomized tag as a pseudonym for communication and provides a ZKPOK of
secret part of tag (secret keys and randomness) used in the credentials.

ATMS based IhMA Construction in Fig. 7. We use the framework in [39] in which one can combine
mercurial or SPSEQ with a set commitment such that a credential is a signature on set commit-
ment SC. One can then open a subset of messages from this commitment while randomizing both
set commitment and signature together. This provides unlinkability and selective disclosure at the
same time (see [39]). Unlike the previous construction, we can aggregate credentials immediately
after receiving them and have a constant-size credential but still avoid zero-knowledge proof of a



- Setup(1λ): Run ppAtoSa ← Σ1.Setup(1λ) ∧ ppSPSEQ ← Σ2.Setup(1λ), output pp = (ppAtoSa, ppSPSEQ). The
attribute space is Zp.

- UKeyGen(pp, S): Run ({auxj}, (τ, T))← GenAuxTag(pp, S), and return (usk = τ, uvk = T, {auxj}) to u.

- IKeyGen(pp): Generate (sk, vk)
$← Σ1.KeyGen(pp), return (isk = sk, ivk = vk) to an issuer i.

- Issuance: On input (T, auxi, ai), u and each issuer i act as follows for an attribute ai:
– u sends (T, auxi, π), to an issuer i, where π is a zero knowledge proof that the user knows the secret part

of the given tag.
– Issuer checks π is valid and runs σi ← Σ1.Sign(isk, T, auxi, ai) and outputs (σi, ai) to u or aborts if Sign

outputs ⊥.
– u takes (ivk, credi = (ai, σi))i∈[`], checks Σ1.Verify(ivk, ai, credi)i∈[`], and saves cred = {credi =

(σi, τ), A}i∈[`], where A = (ai)i∈[`].
- Gen-Policies: Generate a key pair (vsk, vpk)← Σ2.KeyGen(pp), run σ2i ← Σ2.Sign(vsk, ivk) for i ∈ I where ivk

is a message vector for SPSEQ, return pol = (vvk, (ivk, σ2i)i∈[I]).
- Show: On input cred = {(σi, τ, A)i∈[`]}, pol = (vvk, (ivk, σ2i)i∈[I]), an D (a set of attributes) from n ⊆ I issuers

(|D| = n), u prepares a proof for D as:
1. Run σ ← Σ1.AggrSign(T, (ivk, ai, σi))i∈[D] with avk = {ivk}i∈[D]. For ω ∈ Z∗p, run avk′ ←

Σ1.ConvertVK(avk, ω), σ′ ← Σ1.ConvertSig(avk, D, T, σ, ω), and randomize (σ′′, T′) ← Σ1.RandSign(vk,
T, m, σ′, υ) for υ ∈ Z∗p.

2. Run (σ′2i, avk′)
$← Σ2.ChangRep(Mi = vki, σ2i, ω)i∈[n] where avk′ is the same as avk′ ← Σ1.ConvertVK.

3. Prove in zero knowledge that the user knows the secret key for the tag T′, yielding π, send (σ′′, Nym =
T′, σ′2i, π)i∈[n] to a verifier V.

- CredVerify: Output 1, if π ∧ Σ1.VerifyAggr(avk′, T′, D, σ′) ∧ Σ2.Verify(vvk, M, σ′2) = 1, where M = avk′ and
T′ = Nym. Output 0 if this check fails.

Fig. 6: Our IhMA scheme (Σ1 and Σ2 denote AtoSa and SPSEQ [39], respectively)

signature in showing protocol (because of compatibility of EQ message relation of ATMS and SC
randomization).

In the Show protocol, similar to the previous construction, u first collects the signatures required
to prove the attributes D from pol. Then, for issuer-hiding similar to AtoSa it randomizes these
SPSEQ signatures using ChangRep of SPSEQ with ω. For preparing a proof for D, a user (u) random-
izes issuer verification keys in credentials using ConvertVK and converts the ATMS signature using
ConvertSig with ω. Subsequently, u randomizes the signature with a tag using ChangRep. Finally, u
opens a subset of attributes D from the set commitments. Now a verifier can check if these attributes
are in the set commitments signed by some issuers in pol. Same as in the first construction, since all
issuer keys are randomized due to the SPSEQ signature the issuers are hidden. We run a ZKPOK
to prove that u knows all secret values related to the randomized tag like before. The only point
left is the signing of set commitments, which is defined in one source group in [39], but we need
both groups. Subsequently, we show how one can combine set commitments with a tag-based DH
message space.

Set commitments forMH
TDH. The main point here is that we need to convert the set commitments

space toMH
TDH, which can be smoothly done as follows: In addition to credentials issuers, we also

define a Trusted Authority TA who holds the trapdoor α of the set commitment scheme and can
create commitments for the attributes of users who want to register in the system. WLOG, let us for
simplicity assume only one attribute set A = (A, η), where we have a fixed constant η which is never
opened in practice and it is the same for all (it is just required for anonymity). It works as follows:

– The user sends a tag T and aux to TA.
– TA computes a set commitment in both groups (C = (C1, C2), Ĉ = (Ĉ1, Ĉ2)) (i.e., (M, N)) with

tag, where (C2, Ĉ2) are dummy commitments for a fixed constant η and the other one for the (real)
attribute set A. More precisely: TA computes the commitment in G1 to base hρi and the one in
G2 in base P̂: C1 = (h fA(α))ρ1 , Ĉ1 = P̂ fA(α), C2 = (hη)ρ2 and Ĉ2 = P̂η such that such that we have∧

i∈[2] e(Ti, Ĉi) = e(Ci, P̂), where h = H(c), aux = (c, o), c = Pρ1 ||Pρ2 ||(cAi
||vkj)j∈[2], returns (C, Ĉ).

Note that cA := H′(A, r).

Note that α is a trapdoor kept by TA, but TA does not need to know (ρ1, ρ2) (e.g., Ci be computed
as (T1)

fA(α)). A multiparty computation protocol can also be used to hide other user details from



TA. A user can first randomize set commitment exactly like our tag-based message with (µ, υ) as
(Cµυ, Ĉυ) and use υ as opening information to open any subset values from Ĉ1 and still verify as
follows: verifying the OpenSubset works e(P, Ĉ1) = e(P fD(α), W). Consequently, we do not need any
fundamental change on SC construction, and it works as stated in 2.2. In our construction, we make
it explicit as:

– SC.Commit3(A, α, T, h)→ ((C, Ĉ), O): On input a set A = (A, η), T and h, compute a commitment:
C1 = (T fA(α)

1 ), Ĉ1 = P̂ fA(α), C2 = (Tη
2 ) and Ĉ2 = P̂η , output ((C, Ĉ), O) with O←⊥.

Now, we can use the same technique as AtoSa to not reveal (ρ1, ρ2) to issuers when signing the above
commitments (C, Ĉ) as follows:
Interactive signing. We can adapt the signing in a way that signers (issuers) don’t learn (ρ1, ρ2) as
follows:

– u sends (aux, T, (C, Ĉ), π), where
π = ZKPOK{(ρ1, ρ2) : T1 = hρ1 ∧ T2 = hρ2 ∧ u1 = Pρ1 ∧ u2 = Pρ2}, where Pρ1 and Pρ2 are in aux.

– Signer (issuer) checks if proof π is valid and if so outputs
(h = H(c), b = ∏ Tzi

i , s = (hx ·∏i∈[2](Ci)
yi )).

Again we note that this interactive signing outputs signatures that are identical to that output by
Sign and this is used in Issuance.
Achieving constant-size credentials. This can be achieved by following these steps: 1) Users can
obtain the (hαi ) values from the TA instead of the commitments. 2) During the issuing phase, users
can aggregate all the credentials received from issuers. 3) The commitments can then be recomputed
using randomness and the obtained information, eliminating the need to store them. Note that in
this case the size of the |Show| operation will become linear with respect to N instead of K.

Theorem 5. The above IhMA constructions in Fig. 7 and in Fig. 6 are correct, unforgeable, anonymous, and
issuer-hiding.

The proof is presented in Appendix D.4.
To prove the anonymity of ATMS, we need to define a variant of the uber assumption in the next
section.

5.4 Uber Assumption

In the anonymity proof of ATMS, we need to claim that two credentials are not distinguishable. Be-
cause we manipulate polynomials, a natural approach would be to use the uber-decisional assump-
tion defined by Boyen in [13]. This definition uses the Real-Or-Random paradigm, so we would like
to use this theorem to say that a first credential is indistinguishable from random elements and then
that these random elements are indistinguishable from a second credential. However, both creden-
tials have an internal structure contrary to the random elements. Indeed these credentials should be
publicly checkable. This shows the limit of the Real-Or-Random paradigm and the fact that it seems
more accurate to apply the Left-Or-Right paradigm.

Thus, we present a more general definition based on this more powerful paradigm. We give a first
attempt in the Figure 8. Similarly to the Real-Or-Random’s definition (and also the computational
definitions of the uber assumption), the uber problems will often be trivially solvable. So we need
to characterize the parameters for which it is not a hard problem. Thus, we need the following
definitions.

Definition 21. Let F be a field. Let R ∈ F(X1, . . . , Xm)r and W ∈ F(X1, . . . , Xm). We say that W is
linearly dependent on R if there exist coefficients {ai}r

i=1 ∈ Fm such that

W =
r

∑
i=1

aiRi.

We say that W is (linearly) independent from R if it is not linearly dependent on R.

Here, we define a generalization of the definition of [13].



- Setup(1λ): Run ppATMS ← Σ1.Setup(1λ) ∧ ppSPSEQ ← Σ2.Setup(1λ) ∧ ppSC ← SC.Setup, output pp =
(ppATMS, ppSPSEQ, ppSC).

- IKeyGen(pp): Generate (sk, vk)
$← Σ1.KeyGen(pp), return (isk = sk, ivk = vk) to an issuer i.

- UKeyGen(pp, S): Run ((τ, T), aux)← GenAuxTag(S), and return (usk = τ, uvk = T) to u.
Then, TA and u interact to computes ((Ĉi, Ci)i∈[`])← SC.Commit3(Ai, α, T), for all attribute sets.

- Issuance: The interaction between an issuer i and a user u for one attribute-set A ∈ Zp and (C, Ĉ) acts as
follows:

– u hands over (T, (C, Ĉ), auxi, π) to an issuer i, where π is zero knowledge proof the secret parts of the
tag.

– An issuer i checks that the proof is correct, then runs σ ← Σ1.Sign(isk, T, auxi, (C, Ĉ)), and outputs
(A, T, σ) = credi.

– u takes (ivk, credi) for i ∈ [`], checks Σ1.Verify(ivk, T, (Ci, Ĉi), σi)i∈[`] = 1, and outputs
{cred = (σi, τ), (Ai, Ci, Ĉi)i∈[`]}.

- Gen-Policies: Generate a key pair (vsk, vpk) ← Σ2.KeyGen(pp), run σ2i ← Σ2.Sign(vsk, ivk) for i ∈ I, return
pol = (vvk, (ivk, σ2i)i∈[I]).

- Show: On input cred = {(σi, usk, Ai)i∈[`]}, pol = (vvk, (ivk, σ2i)i∈[I]), and D ⊆ A from n ⊆ I issuers, u prepares
a proof for D as:

1. Run (σ′2i, avk′)← Σ2.ChangRep(Mi = vki, σ2i, ω)i∈[n] for ω ∈ Z∗p.
2. Run σ← Σ1.AggrSign(T, (ivk, (Ci, Ĉi), σi))i∈[n]. Convert credentials and issuer keys

avk′ ← Σ1.ConvertVK(avk, ω) and σ′ ← Σ1.ConvertSig(avk, (C, Ĉ), σ, T, ω).
3. Run (σ′, T′) $← Σ1.ChangRep(σ, (Mi, Ni)i∈[n], T, (µ, υ)) for (µ, υ), where (Mi, Ni) = (Ci, Ĉi), and σ′ is

valid for (C′i = Cµυ
i , Ĉ′i = Ĉυ

i )i∈[n]. Create witnesses for attributes Wj ← SC.OpenSubset(Ĉ1j, Aj, Oj, dj)

for j ∧ dj ∈ D. Aggregate witness W ← SC.AggregateAcross({Ĉ1j, dj, Wj}j∈[`]), randomize W ′ ←Wµυ.
4. Prove in zero knowledge that the user knows the secret key for the tag T′, yielding π, send

(σ′, W ′, T′, σ′2i, π, M = {(C′i , Ĉ′i)})i∈[n] to V.
- CredVerify: Output 1, if π ∧ Σ1.VerifyAggr(avk′, T′, M, σ′) ∧ Σ2.Verify(vvk, M, σ′2) ∧

SC.VerifySubset(C′, D, W ′) = 1, where M = avk′ is verified by vvk.

Fig. 7: Our IhMA scheme (Σ1 and Σ2 denote ATMS and SPSEQ [39], respectively)

Definition 22. Let F be a field. Let R, S, F be vectors of rational functions from F(X1, . . . , Xm) of length
r, s, f respectively. We call a type-1 (“bilinearly”) dependant-vector on (R, S, F) a vector(

(ai,k)1≤i≤r,1≤k≤s ,
(
bi,j
)

1≤i≤j≤r (ck,l)1≤k≤l≤s , (dk)1≤k≤ f

)
in Frs+ r(r+1)+s(s+1)

2 such that

0 =
r

∑
i=1

s

∑
j=1

ai,jRiSj +
r

∑
i=1

r

∑
j=i

bi,jRiRj +
s

∑
i=1

s

∑
j=i

ci,jSiSj +
f

∑
k=1

dkFk.

We say it is also a type 2 dependent-vector if all the bi,j = 0 for all i, j and a type 3 dependent vector if
bi,j = ci,j = 0 for all i, j. For all τ ∈ {1, 2, 3}, we define the τ-dependant set as the set of all τ-dependant
vectors.

Definition 23. Let Game be a decisional game parametrized by a group
groupdes. And A be a PPT adversary. We define the advantage of A in this game of such an adversary by:

A
(

GameAG

)
=

∣∣∣∣Pr
(

GameAG = 1
)
− 1

2

∣∣∣∣ . (1)

Definition 24. Let F be a field. Let (R, R′), (S, S′), (F, F′) be pair of vectors of rational functions from
F(X1, . . . , Xm) of length r, s, f respectively. Let τ ∈ {1, 2, 3}, we say (R, S, F), (R′, S′, F′) are τ-trivially
distinguishable, if their τ-dependent sets are distinct.

In our context, a static assumption is in fact not enough. Then we need to define an adaptative
version of the uber problems with the Figure 9. We prove this stronger version with the theorem 6
in the section D.5 for type 3. We claim, our result is easily generalizable for other types (but we only
need type 3 in our case).



(R0, S0, F0, R1, S1, F1)-uberAG :

– (g1, g2)← BG ; gT ← e(g1, g2)

– x := (x1, . . . , xm)
$← Zm

p

– b $←− {0, 1}

– U :=
(

gRb
1(x)

1 , . . . , gRb
r (x)

1

)
– V :=

(
gSb

1(x)
2 , . . . , gSb

s (x)
2

)
– W :=

(
gFb

1 (x)
T , . . . , g

Fb
f (x)

T

)
– b′ $← A (U, V, W)
– Return

(
b = b′

)
Fig. 8: Game for the uber assumption relatively to bilinear group G and adversary A, parametrized
by (vectors of) or polynomials R0, S0, F0, R1, S1 and F1

UberinteractiveAG

– (g1, g2)← BG ; gT ← e(g1, g2)

– b $←− {0, 1}
– x = (x1, . . . , xm)

$← Zm
p

– (R0
1, R0

2, R0
T , R1

1, R1
2, R1

T) := ([1], [1], [], [1], [1], [])

– b′ $← AO(g1, g2)
– If (R0

1, R0
2, R0

T , R1
1, R1

2, R1
T) is τ-trivial:

– Return a random bit
– Else Return

(
b = b′

)

O(t ∈ {1, 2, T}, R0, R1) :

– ∀b′ ∈ {0, 1} : Rb′
t := Rb′

t :: Rb′

– Return
(

gRb(x1,...,xn)
t

)

Fig. 9: Adaptative game for the uber assumption relatively to the bilinear group G and adversary A.

Theorem 6. Let A be a adversary that solves decisional uber in a bilinear generic group G of prime order p
of type 3, making at most (m1, m2, mT , mp) generic queries and (q1, q2, qT) and (d1, d2, dT) the cardinality,
and the upper bound on the degrees of (R1, R2, RT). Then

A
(

uberdecisionalAG
)
≤ 2

(
d1(q1 + m1)

2 + d2(q2 + m2)
2 + max(d1 + d2, dT)(qT + mT + mp)2

p

)
.

The proof is presented in Appendix D.5.

5.5 Additional Properties

We now discuss how additional features can be obtained via slight modifications of the so far pre-
sented approach.

Blind issuing credential for AtoSa. We note that our schemes can provide a blind issuing protocol in
which a user can receive credentials on blind attributes using the two-party computation technique
provided in PS and Coconut [63]. It works as follows:

– A user generates an El-Gamal key-pair (d1, D1 = Pd
1 ); pick a random k and compute an El-Gamal

encryption of m as below: c = Enc(m) = (a = Pk, b = Pk·d · (h′)m). Output (aux, h, D, c, π), where
π and h′ = hρ1 is defined by: π = NIZK{(d, m, k) : D = Pd ∧ c = (Pk, Dk · (h′)m)}

– A signer checks the π is correct, and generates blind signatures as follows: δ = (a′1 = ay1 =

Py1·k, b′ = (hρ2)y2 · (h′)x · by1 = Py1·k·d · (h′)y1·m+x · hy2·ρ2)
– The user decrypts/unblinds signature δ = (a′, b′) and gets h′y1·m+x · (hρ2)y2 as follows: (a′)d =

Py1·k·d and (h′)m·y1+x · (hρ2)y2 = b′
(a′)d .



As we showed in the IhMA, one can also hide the tag.

Multi-Message Signatures for AtoSa. One can extend this scheme to sign a message vector m rather
than a single m by extending a verification key vki = (X̂i, Ŷi1, . . . , Ŷin) regarding the number of mes-
sages. A signer i can sign a vector m = (m1, . . . , mn) as hxi+∑ yimi for mi ∈ m (see [57] for more
details).

Non-transferable Credentials. Often it is desirable to prevent users from easily sharing their creden-
tials with others. One common approach to deter such transfers is to leverage a valuable item, such
as a secret key, which would also need to be shared if a credential were to be shared [20]. We note
that schemes involve users proving their knowledge of tag’s secret that represents their identity. We
can now use the canonical representative (ρ1/ρ2) of the respective tag class as the valuable secret.
Then note that when sharing a credential even with a re-randomized tag (υρ1, υρ2), one can extract
the canonical representative and thus also shares the valuable secret. While this feature is important
for ACs, however, it is not always easily achievable in all AC systems. In fact, achieving this feature
can be quite challenging in some cases, especially in self-binding approaches such as SPSEQ or [29].

Proving Knowledge of AtoSa Signature. One can achieve the proving knowledge of a signature ex-
actly similar to PS. Assume AtoSa signature is σ = (h, s), we select random r, t ← Zp and compute
σ′ ← (hr, (s · ht)r). We send it to the verifier and carries out a zero-knowledge proof of knowledge
π (a Schnorr proof) of (m, ρ1, ρ2) and t for the signature on a single message: ZKPOK{(m, ρ1, ρ2, t) :
e(h′, X̂) · e(h′, Y1)

m · e(h′, Y1)
ρ1 · e(h′, Y2)

ρ2 · e(h′, P̂)t = e(s′, P̂)}. It can be extended straightforwardly
for multi messages (see [57] for more details).

6 Implementation and Evaluation

In the following we present our evaluation based on a Python library in which we implement our
primitives ATMS and AtoSa as well as our IhMA protocols (Fig. 7 and Fig. 6). Our implementation is
based upon the bplib library16 and petlib 17 with OpenSSL bindings18. We use the popular pairing
friendly curve BN256 which provides efficient type 3 bilinear groups at a security level of around
100 bits. Our measurements have been performed on an Intel Core i5-6200U CPU at 2.30 GHz, 16 GB
RAM running Ubuntu 20.04.3.

Benchmark of Primitives. Table 2 shows the mean of the execution time of each algorithm over 500
runs such that AggrSign and VerifyAggr are computed assuming two signers (n = 2); the other algo-
rithms are independent of n. ChR/Rnd stands for ChangRep and signature randomization (RandSign)
for the ATMS and AtoSa, respectively. PC stands for Pre-Computation, and in ATMS it includes con-
verting messages to the MH

TDH message space and generating tags. While in AtoSa, PC includes
generating tags and aux using Pedersen commitment, but note that one could also use a hash based
commitment instead. We can observe that signing is faster than verifying the signature – due to the
pairing operation in the latter. Moreover, verification of ATMS is slower than AtoSa because of addi-
tional pairing operations that are needed to check if messages are inMH

TDH. We increase the number

Table 2: Running times for ATMS and AtoSa (ms)
PC Sign Verify Convert ChR/Rnd AggrSign VerifyAggr

AtoSa 6 2,5 8,4 4 2,7 0.005 9

ATMS 8.6 3 33 5,4 7,4 0.01 72

(n) of signers from 2 to 10 and show the running time in Fig. 10. Since aggregation is almost free (for
n = 10 is 0.05 ms), we omit it. We should also note that the result are stated without considering
VerifyAux algorithm.

16 https://github.com/gdanezis/bplib
17 https://github.com/gdanezis/petlib
18 https://github.com/dfaranha/OpenPairing

https://github.com/gdanezis/bplib
https://github.com/gdanezis/petlib
https://github.com/dfaranha/OpenPairing


Fig. 10: Running times of VerifyAggr in ATMS & AtoSa (ms)

IhMA Benchmarks. IhMA is based upon Schnorr-style discrete logarithm ZKPOK. Our library sup-
ports Damgård’s technique [30] for obtaining malicious-verifier interactive zero-knowledge proofs
of knowledge during the showing and also NIZK obtained via the Fiat-Shamir heuristic. We interpret
signers as issuers here and also show n as a number of issuers involved in Showing. For example,
n = 2 means showing two credentials from 2 different issuers.
Issuing. This protocol does not depend on n, and results are as follows: 1) For IhMA based on AtoSa,
including generation of signature, tag, user keys, and aux, it takes 8 ms. 2) For IhMA based on AtoSa,
including generation of tag and encoding messages toMH

TDH, with two attributes in each credential
it takes 10 ms.

Showing. Fig. 11a shows the runtime of showing for IhMA based on AtoSa. In this experiment, we
increase the number of issuers n from 2 to 10 and assume that all attributes are disclosed during
verification (the worst-case scenario). Each issuer issues only one attribute, giving a total of n at-
tributes. Fig. 11b shows the time for showing a credentials of IhMA based on ATMS. Here, we have a
different setting; we can encode a set of attributes in a credential as we use set commitments. For our
evaluation, we have the following parameters: n represents the number of the issuer, t the number
of attributes in each set (each credential issued), d < t is the number of disclosed attributes from
each attribute set A in the respective commitment C. Here we increase n from 2 to 10, set t = 2, and
d = 1. The total disclosed attributes length |D| = d · n and the total attribute |A| = n · t range from
2 to 10 and 4 to 20, respectively.

(a) Running times of IhMAAtoSa (b) Running times of IhMAATMS

Fig. 11: Running times of IhMA (ms)



7 Conclusion and Open Questions

This paper introduces the Issuer-Hiding Multi-Authority Anonymous Credentials (IhMA). MA means
proving possession of attributes from multiple independent credential issuers requires the presenta-
tion of independent credentials. Meanwhile, Ih means verifying a user’s credential does not require
disclosing multiple issuers’ public keys.

Our proposed solution involves the development of two new signature primitives with versatile
randomization features which are independent of interest: 1) Aggregate Signatures with Randomiz-
able Tags and Public Keys (AtoSa) and 2) Aggregate Mercurial Signatures (ATMS), which extend the
functionality of AtoSa to support the randomization of messages additionally.

We formalize all notations and provide rigorous security definitions for our proposed primitives.
We present provably secure and efficient instantiations of the two primitives and corresponding
IhMA systems. Finally, we provide benchmarks based on implementation to demonstrate the practi-
cal efficiency of our constructions.

Open Questions and Future Work. Finally, we still have several open questions that merit further
investigation. 1) An interesting open question is whether it is possible to present constructions in
a fully dynamic setting, i.e., there are no assumptions about prior knowledge of messages and ver-
ification keys, nor requirement for a stateful issuer to keep track of the signed information aux. 2)
Revocation is another intriguing avenue for future work. While issuer revocation in our scheme
is straightforward, as revoked issuers can be excluded from the key policy, user revocation poses
greater challenges. Finding effective methods for user revocation within our framework, and for
issuer-hiding anonymous credentials in general, are an interesting future research direction.
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A Bandwidth Analysis of our IhMA Schemes

We present a concrete comparison of schemes in Table 3. We denote the size of zero knowledge
proof of the tag as ZKP which as we showed in Section 5, the statements are simple and can be done
efficiently with simple Schnorr proofs (the statements are presented in Section 5.3) .

Table 3: Communication complexity of our IhMA schemes (N: total issuers and K: issuers in show-
ing).

IhMAAtoSa IhMAATMS

|cred| 2NG1 + 2Zp 3NG1 + 2Zp

|show| 4G1 + 4KG2+
2KG1 + ZKP

6KG2 + 6G1+
2KG1 + ZKP

? We present the scheme in a way that supports ad-hoc attribute/issuer aggregation, but for fixed signatures, a constant size credential is
achievable.

B Additional Definitions

B.1 Correctness Definitions

Definition 25 (AtoSa correctness). An AtoSa is correct if it has the following three properties:

Basic signature correctness:
For all {ski, vki}i∈[`] ← (KeyGen(1k))n, {mi}i∈[`] ∈ Z∗p

`, (τ, {auxj}) = GenTagIdx(τ, {mi, vki}i∈[`])
j ∈ [`], we have that σ = Sign(skj, τ, auxj, mj) and Verify(vkj, T, mj, σ) = 1

Randomizable signature correctness:
For all (sk, vk, m, T, τ, β, ω, µ, σ′, vk′, σ∗, T∗, T†) such that Verify(vk, T, m, σ) = 1, β, ω ∈ Z∗p, σ′ =

ConvertSig(vk, σ, ω), vk′ = ConvertVK(vk, ω), sk′ = ConvertSK(sk, ω), (σ∗, T∗) = RndSigTag(vk′, T,
m, σ′, β), (T†) = ConvertTag(T, ω),
the following holds:
ConvertSig(vk, σ, ω) = Sign(sk′, aux, τ, m) (for a valid aux), Verify(vk′, T∗, m, σ∗) = 1 and
Verify(vk, T†, m, σ′) = 1.
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We’ve combined the definitions of all randomization functions (RndSigTag, ConvertTag, . . .) in
this definition, but for ensuring that use of a single randomization function is value, we can set the
other randomization factors (β, ω) to 1 indicating no randomization to see that all the randomization
functions are correct independent of each other.

Aggregatable signature correctness:
For all {ski, vki, mi, σi, T}i∈[`] such that ∀i, Verify(vki, T, mi, σi) = 1.

Then, the following holds:
σ′ = AggrSign(T, {vki, mi, σi}i∈[`]), VerifyAggr

(
avk, T, {mi}i∈[`], σ′

)
= 1, where avk = (vki)i∈[`].

Randomizable of Aggregatable signature correctness:
For all avk = (vki)i∈[`], T, {mi}i∈[`], σ and β, ω ∈ Z∗p such that VerifyAggr

(
avk, T, {mi}i∈[`], σ

)
= 1,

σ′ = ConvertSig(vk, σ, ω), i ∈ [`]: vk′i = ConvertVK(vki, ω), sk′i = ConvertSK(ski, ω) and
(σ∗, T∗) = RndSigTag(T, avk, (mi)i∈[n], σ′, β). (T†) = ConvertTag(T, ω),

Then the following holds:
VerifyAggr

(
avk′, T∗, {mi}i∈[`], σ∗

)
= 1 and VerifyAggr

(
avk, T†, {mi}i∈[`], σ′

)
= 1, where avk′ =

(vk′i)i∈[`].

Definition 26 (ATMs correctness). For all: S,λ,(M, N) ∈ MH
TDH such that:

pp← Setup(1λ)

aux, T, τ := GenAuxTag(S)

(σi)
`
i=1 = (Sign(ski, τ, aux, (Mi, Ni)))

`
i=1,

σ′ := AggrSign(T, (vkj, (Mj, Nj), σj)
`
j=1)

Then: ∧̀
i=1

Verify(vki, T, (Mi, Ni), σ′i ) = 1.

VerifyAggr(avk, T(Mi, Ni)
`
i=1, σ′)

Further, for randomization, if ∀ τ secret part of the tag, (m(1)
1 , m(1)

2 )`i=1 ∈ Z2`
p , keys honestly generated

(ski, vki)
`
i=1 and for all randomness (γ, β, ω), for all σ, {σi}i∈[`], T, if

∧̀
i=1

Verify(vki, T, (Mi, Ni), σi) = 1.

VerifyAggr(avk, T, (Mi, Ni)
`
i=1, σ)

(σ′i , T′)`i=1 = (ChangRep(vki, T, (Mi, Ni), (γ, β)))`i=1,

(vk′i)
`
i=1 := (ConvertVK(vki, ω))`i=1

(σ′′i )
`
i=1 := (ConvertSig(vki, (Mi, Ni), T′, σ′i , ω))`i=1

(T†
i ) := ConvertTag(T, ω)

σ∗ := AggrSign(T′, (vkj, (Mj, Nj), σ′′j )
`
j=1)

then

VerifyAggr(avk, T′, (Mi, Ni)
`
i=1, σ∗)

VerifyAggr(avk, T†, (Mi, Ni)
`
i=1, σ∗)

∧̀
i=1

Verify(vk′i, T′, (Mi, Ni), σ′i ) = 1.

∧̀
i=1

Verify(vki, T†, (Mi, Ni), σ′′i ) = 1.



Also ∀(sk, vk) honestly generated T and (M, N) then
ChangRep(vk, T, (M, N), σ, ·) is a group morphism from Z∗2p to SIG, moreover, we have

ω 7→
(

ConvertSK(sk, ω), ConvertVK(vk, ω),

ConvertSig(vk, (M, N), T, σ′i , ω)

)

is a group morphism from Z∗2p to SK × VK× SIG

C Additional Preliminaries

C.1 Zero-Knowledge Proofs of Knowledge

We define zero-knowledge proofs of knowledge (ZKPOK) and discuss non-interactive versions thereof
(NIZK). In our IhMA, we require protocols to prove knowledge of discrete logarithm relations. This
can be efficiently realized by relying on Sigma protocols (i.e., three-round public-coin honest-verifier
zero-knowledge proofs of knowledge). Sigma protocols are efficient instantiations of ZKPOK which
can be converted to (malicious-verifier) zero-knowledge proofs of knowledge, using Damgård’s
Technique [30] and made non-interactive using different techniques (discussed below).

ZKPoK. Let LR = {x | ∃w : (x, w) ∈ R} ⊆ {0, 1}∗ be a formal language, where R ⊆ {0, 1}∗×{0, 1}∗
is a binary, polynomial-time (witness) relation. For such a relation, the membership of x ∈ LR can
be decided in polynomial time (in |x|) when given a witness w of length polynomial in |x| certifying
(x, w) ∈ R. We assume an interactive protocol (P ,V) between a prover P and a PPT verifier V and
denote the outcome of the protocol as (·, b) ←

(
P(·, ·),V(·)

)
where b = 0 indicates that V rejects

and b = 1 that it accepts the conversation with P . We require the following properties:

Definition 27 (Completeness). We call an interactive protocol (P ,V) for a relation R complete if for all
x ∈ LR and w s.t (x, w) ∈ R we have (·, 1)←

(
P(x, w),V(x)

)
with probability 1.

Definition 28 (Zero knowledge (ZK)). An (P ,V) for a language L is ZK if for any (malicious) verifier
V∗ , there exists a PPT algorithm S (the simulator) such that:

{S(x)}x∈L ≈ {< (P ,V?)(x) >}x∈L,

where (P ,V∗)(x) shows the transcript of communication between P and V? on the common input x.

Definition 29 (Knowledge soundness). We say that (P ,V) is a proof of knowledge (PoK) relative to an
NP relation R if for any malicious prover P∗ such that (·, 1)←

(
P∗(x),V(x)

)
with probability greater than

ε there exists a PPT knowledge extractor K (with rewinding black-box access to P∗) such that KP
∗
(x) returns

a value w satisfying (x, w) ∈ R with probability polynomial in ε.

If all properties hold, then we denote this interactive protocol as a zero-knowledge proofs of knowl-
edge (ZKPOK).

Non-Interactive Zero-Knowedge Proofs (of Knowledge). One can use the Fiat-Shamir heuristic to
transform any Sigma protocol into a non-interactive zero-knowledge proof of knowledge (NIZK).
Whenever one requires multiple-extractions in a security proof, a standard measure is to opt for in-
teractive NIZK. We however note that when willing to pay some extra costs, one could instead use
straight-line extractable NIZK, e.g., obtained via Fischlin’s transformation [37].

C.2 Assumptions

PS assumptions. The PS assumption is an interactive assumption, defined by Pointcheval and
Sanders [57] to construct a short randomizable signature known as PS signature.

Definition 30 (PS Assumption [57]). The PS assumption holds if no PPT adversary A, who takes asym-
metric pairing (p, G1, G2, GT , P.P̂, e), a tuple (Px, P̂y) ∈ G2

2 where x and y are random scalars in Zp, and
unlimited access to PS oracle OPS(m) s.t. on input m ∈ Z∗p that chooses a random h ∈ G1 and outputs
the pair (h, hx+my), can efficiently generate a tuple (h∗, s∗, m∗) ∈ Gn

2 ×Zp such that (1) h∗ 6= 1G1 (2)
s∗ = hx+ym∗ , (3) m∗ /∈ Q, where Q is the list of queried messages to the OPS(m) oracle.



The validity of the PS assumption tuple (h∗, s∗, m∗) can be checked as: e(s∗, P̂) = e(h∗, P̂x(P̂y)m∗).

Generalization of the PS assumption (GPS). GPS was introduced by Kim et al. [47], and splits the
PS oracle into two: the first oracle provides basis h sampled uniformly at random and the second
oracle takes the message and h as inputs and generates the PS tuple.

Definition 31 (Generalized PS Assumption [47]). Given a tuple (Px, P̂y) ∈ G2
2 and two oraclesOGPS

0 ()

and OGPS
1 (m, h) such that: OGPS

0 () → h, where h ∈ G1 is uniformly distributed OGPS
1 (m, h) → s, where

h ∈ G1, m ∈ Zp, and s = hx+ym ∈ G1 as output and if h /∈ Q0 ∨ (h, ?) ∈ Q1 return ⊥. The GPS
assumption holds if no PPT adversary, A, can find a tuple (h∗, s∗, m∗) ∈ G2

1 ×Zp such that, (1) h∗ 6= 1G1 ,
(2) s∗ = (h∗)x+ym∗ , (3) m∗ /∈ Q, where Q1 = Q1 ∪ (h, m) is the list of queried to OGPS

1 oracle by the
adversary.

Authors of [48] expanded the GPS assumption in way that all scalars values are replaces by source
group elements, called GPS2. Additionally, authors of [31] follow up this assumption and define
the GPS3 assumption contains indexed Diffie-Hellman message spaces (cf. Def 1). In particular, they
modify the oracle OGPS2

0 such that it generates a basis h by taking an index id as input and also acts
as answer to RO.

Definition 32 (GPS3 Assumption [31]). Given (Px, P̂y) ∈ G2
2 and two oraclesOGPS3

0 (id) andOGPS3
1 (h,

M, N) such that OGPS3
0 (id) → h, where a basis h is generated by taking a tag id as input as follows: if

Q0[id] =⊥, else pick r $← Zp and compute Q0[id] ← h = Pr: return Q0[id], where Q0 is the list of queried
messages to OGPS3

0 . For OGPS3
1 (h, M, N) → s, where h ∈ G1, (M, N) ∈ G1 ×G2, if h /∈ Q0 ∨ h ∈ Q1

return ⊥ else sets s = hx My ∈ G1 as output only if h was provided by OGPS3
0 (id). The GPS3 assumption

holds if no PPT adversary, A, can find a tuple (h∗, M∗, N∗, s∗) such that, (1) h∗ 6= 1G1 and N∗ 6= 1G2 ,
(2) s∗ = (h∗)x · (M∗)y, (3) dlogh∗(M∗) = dlogP̂(N∗) (4) (M∗, N∗) /∈ Q, where Q is the list of queried
messages to OGPS3

1 oracle by the adversary.

The validity of a solution to GPS3 assumption can be checking by two pairing product equations:
e(h∗, N∗) = e(M∗, P̂) ∧ e(h∗, P̂x)e(M∗, P̂y) = e(s∗, P̂). Here, similar to [31], we consider the oracle
OGPS

0 as a RO such thatOGPS
0 (aux)→ h generates a basis h by taking aux as input s.t,: if Q0[aux] =⊥,

else pick r $← Zp and compute Q0[aux]← h = Pr: return Q0[aux], where Q0 is the list of queried mes-
sages toOGPS

0 . Note that the condition 3 as dlogh∗(M∗) = dlogP̂(N∗) will be dlogh∗(M∗) = dloĝ̂τ(N∗)
regarding to tag based DH message space (Def. 10) that can be checked e(h∗, N∗) = e(M∗, T̂).

D Proofs

D.1 Proof of Theorem 1

To simplify our proof and make it more readable, we split our proof via two lemmas such that
Lemma 1 indicates that the aggregate signature with a randomizable tag is secure in the RO model
(without considering randomizable keys). Lemma 2 stands for randomizable verification keys prop-
erty and shows that if the aggregate signature with a randomizable tag is secure, meaning lemma 1
is correct, we can achieve an aggregate signature with randomizable verification keys. WLOG, we
assume the game only outputs one if the forgery is on the honest signer’s exact key vk′ = vkj′ for an
index j′.

Lemma 1 (Aggregate Signatures with Randomizable Tags). Let A be an adversary against the EUF-
CMA security of the aggregate signature scheme (Def. 4). If GPS assumption holds, then our construction in
Section 3.3 is unforgeable whenA outputs a forgery on an exact honest verification key instead of an equivalent
one. This means that after interacting with the EUF-CMA challenger, no PPT adversary can produce (avk =
(vkj), ask = (skj), M∗ = (m∗i ), τ̂∗, σ∗)j∈[`] s.t:

An adversary interacting with the EUF-CMA challenger produces: (j′, avk =
(
vkj
)

j∈[`] , ask = (skj)j∈[`]\j′ ,

M∗ = (m∗j )j∈[`], (τ
∗, T∗), σ∗) That adversary has defeated the EUF-CMA game if their output satis-



fies: 
VerifyAggr (avk, T∗, σ∗, M∗) = 1 ∧
∀j ∈ [`], j 6= j′ : [vk∗j ]Rvk

= [vkj]Rvk
∧

[vk′]Rvk
= [vkj′ ]Rvk

∧ ∀(m, τ) ∈ Q : m 6= m∗j ∨ [T∗] 6= [T]


Proof. We construct a reduction B using A against the GPS assumption (Def. 31). The challenger of
latter game will be denoted by C. We answer to the random oracle H(c) by calling OGPS

0 (c) to gen-
erate base h where c is part of aux from Definition 9. This is a similar call to OGPS3

0 (id) in Definition
C.2 but replacing id with c.

The reduction will continue by using the given challenge key from the GPS challenger to sign
either messages or tags. The insight for why this proof works comes from the fact that our signature
is exactly a multi-message signature (from [57]) on m and ρ2

ρ1
randomized by ρ1. Our proof of security

will be similar to the proof of multi-message security in [57].

Setup: B receives from C values (X̂ = P̂x, Ŷ = P̂y) and pp of BG. B then computes α1, β1, α2, β2
and values: Ŷ1 = Ŷα1 P̂β1 , Ŷ2 = Ŷα2 P̂β2 . B then computes the challenge key for AtoSa as vk′ =
(X̂, Ŷ1, Ŷ2) and gives this to the adversary.

Queries: When A asks a signature query on a tag τ, m, aux = (c, o), s.t VerifyAux(sk, aux, τ, m) = 1,
B computes a signature as follows:
1. B first requests from C a base h = H(c), by calling h← OGPS

0 (c) which is also a RO response.

C (or RO) response as follows: if Q0[c] =⊥, pick r $← Z∗p and compute Q0[c]← h = Pr: return
Q0[c], where Q0 is the list of queried messages toOGPS

0 (or RO). Note that if h ∈ Q1 we return
⊥.

2. B requests from C to compute s for a message m† = α1m + α2
ρ2
ρ1

by calling s ← OGPS
1 (m†, h).

C computes this as s = hx+(α1m+α2
ρ1
ρ2
)y. B then computes

σ =

(
h′ = hρ1 , s′ =

(
s ∗ hβ1m+β2

ρ2
ρ1

)ρ1
)

and returns this to the adversary. We can see that this

verifies with the vk′ we gave the adversary earlier.

σ =

(
h′ = hρ1 , s′ =

(
hρ1(x+(α1ym+α2

ρ2
ρ1
)y+β1m+β2

ρ2
ρ1
)
))

Using the equations from Sign (removing the degeneracy check):

e(h′, X̂ ∗ Ŷm
1 )e(T2, Ŷ2) = e(s′, P̂)

= e(hρ1 , P̂x ∗ P̂(α1y+β1)m)e(hρ2 , P̂α2y+β2) = e(s′, P̂)

= e(h, P̂)ρ1∗(x+(α1y+β1)me(h, P̂)ρ2∗(α2y+β2) = e(s′, P̂)

= e(h, P̂)ρ1∗(x+(α1y+β1)m)+ρ2∗(α2y+β2) = e(s′, P̂)

= e(h, P̂)ρ1∗(x+mα1y+mβ1m+
ρ2
ρ1

α2y+ ρ2
ρ1

β2) = e(s′, P̂)

If we rearrange s′ we can see this is the same so the signature verifies correctly:

e(s′, P̂) = e(h, P̂)ρ1(x+α1ym+β1m+α2
ρ2
ρ1

y+β2
ρ2
ρ1
)

3. A then repeats a polynomial number of signing queries adaptively.
Output: Eventually, A outputs a forgery as (j′, h′∗, s∗, τ∗ = (ρ∗1 , ρ∗2 , hρ∗1 , hρ∗2 )) on messages M∗ =

(m∗1 , . . . , m∗n) under the keys (sk1, . . . , skn) and (vk1, . . . , vkn). From the definition, we know that
for an index j′, a tuple (m∗j′ , σ∗j′) should be the new signature-message pair under vkj′ = vk′ that
is aggregated in σ∗ such that A has never queried both m∗j′ and τ∗ together. The adversary has
also output all other secret keys except for the challenge key. This allows us to isolate this key:



1. B cancels the tag out from the aggregate signature which is a new tuple as:

σ∗j′ =

h∗, s∗j′ =
s∗

∏j∈[`]\j′(h
∗)

xj+y1jmj+y2j
ρ∗2
ρ∗1

(h∗)−∑ β jm∗j


This signature should now satisfy: e(h∗, X̂Ŷ

α1m∗j′+α2
ρ∗2
ρ∗1 ) = e(s∗j′ , P̂).

Send (σ∗j′ = (h∗, s∗j′), α1m∗j′ + α2
ρ∗2
ρ∗1
) under vk = (X̂, Ŷ) as a valid GPS response to C.

Because this verifies on the challenge key for a message α1m∗j′ + α2
ρ∗2
ρ∗1

, it will be a valid forgery

if this message were never queried previously. We can see that, after fixing a challenge key Ŷ, then
∀α1, α2, Ŷ1, Ŷ2 ∈ G2, ∃β1, β2 s.t. Ŷ1 = Ŷα1 P̂β1 , Ŷ2 = Ŷα2 P̂β2 . This can be seen by setting P̂β1 to be
Ŷ−1Ŷ1 (and similar for P̂β2 ). This value for β1 isn’t possible to compute in polynomial time, but it
still exists and each choice of β1 is just as likely to be chosen via random coins as any other element.
Further, the distribution of vk values resulting from the choice of β1, β2 is uniform. Thus, because of
β1 and β2, the adversary’s view is independent of α1 and α2. In the space of message/tag pairs, we

have only p3 sets of pairs ((m, ρ2
ρ1
), (m′, ρ′2

ρ′1
)) that satisfy this equation:

α1m + α2
ρ2

ρ1
= α1m′ + α2

ρ′2
ρ′1

(2)

(where p is the order of the group). This is because for each combination of m, ρ2
ρ1

, m′, there is a spe-

cific value for ρ′2
ρ′1

that completes the set. Thus there are only p3 distinct sets that meet Equation 2.

Notice that there are p4 of these sets without the restriction in Equation 2. The adversary samples
these sets at random when issuing queries since their view is independent of the chosen α1, α2. In
the end, the reduction will only fail if a we find a set that satisfies Equation 2 in the adversary’s sig-
nature queries. Note that the adversary cannot entirely benefit from his or her polynomial number
of queries since the pair must contain the adversary’s outputted forgery and the adversary’s view
is independent of α1, α2 so their choice of which message to output must be random. Thus, the ad-
versary outputs a forgery m∗j′ , τ∗ which forms a pair with each q query issued previously (where q is
the polynomial number of signing queries). Thus, the chance that our adversary outputs a forgery
that meets Equation 2 with a previous query (which would mean our reduction does not consti-

tute a forgery) is p3∗q
p4 which is negligible since p is exponential and q is polynomial in the security

parameter.
Note that we never ask OGPS

1 for a second signature on any given h. This is because of Aux
binding (Definition 9). The value we pass to OGPS

0 is based on the messages and tags we sign. Thus,
if the adversary asks for a second signature on a particular message/tag pair, the resulting h will
either be the same (meaning we can simply return the previous signature) or be a fresh result from
OGPS

0 , meaning that this h has not been seen before.

Lemma 2 (Aggregate Tag based Signatures with randomizable Keys). An adversary cannot produce
a valid forgery in Definition 18 without querying the corresponding randomization of the challenge verification
key, vk′, thus allowing a reduction to extract this randomization and de-randomize the signature to verify with
this key.

To prove the randomization (flexible) public keys property, we follow proof of convert Mercurial sig-
nature [32]. Assume there exists a generic group, PPT algorithm A that can break the unforgeability
of aggregate signature scheme randomizable tag and public keys; that is, when given an honest ver-
ifier key, vk′, A is able to produce a forgery (avk = {vk∗i }, ask, τ∗, M∗, σ∗) that satisfies the following
conditions with non-negligible probability:

[vk′]Rvk
= [vk∗1 ]Rvk

∧ ∀m ∈ Q, m∗1 6= m∧
VerifyAggr(avk, T∗, M∗, σ∗) = 1



Where WLOG, vk∗1 is in the same equivalence class as vk′ (with this construction, the adversary’s
forgery can always be rearranged to produce a forgery like this). The fact that vk∗1 belongs to the
same equivalence class as vk′ implies that there exists some α ∈ Z∗p such that vk′ = vkα

1 . We can
construct a PPT reduction, B that creates a forgery for an aggregate tag based signature scheme using
A, then use Lemma 1 to prove our construction secure. The challenger C in the tag based signature
unforgeability game for B chooses values (x, y1, y2)

$← Z∗p, sets vk′ = (X̂, Ŷ1, Ŷ2) = (P̂x, P̂y1 , P̂y2),
and forwards vk′ to B.

On input vk′, B operates as follows:

– B forwards vk′ to A and runs A(vk′). B forwards A’s signature queries to the AtoSa (with in-
flexible public keys) challenger and forwards the results to A. B also services and records A’s
GGM queries.

– B obtains A ’s forgery (avk = {vk∗i }, M∗ = {m∗i }, σ∗, τ∗).
– If, via this process, it is possible forB to obtain α,B can remove α and outputs (avk′ = {(vk∗i )

α}, M∗,
σ′ = (h, (s∗)α), τ∗) as his forgery; else, B outputs ⊥.

Now, let us analyze this reduction. One of these vk∗i is in the same equivalence class as vk′. WLOG,
we’ll say this is vk∗1 .

Claim 61 If [vk′]Rvk
= [vk∗1 ]Rvk

, then the generic group model reduction B can obtain α ∈ Z∗p such that
vk′ = (vk∗1)

α.

Proof. Initially, before any queries are made, the elements of G2 that A has seen are P̂ and vk′ =
(X̂, Ŷ1, Ŷ2). Any output in G2 by the adversary must be from a GGM query of the form:

Pα1 ∗ X̂αx ∗ Ŷ
αy1
1 ∗ Ŷ

αy2
2

Where α1, αx, αy ∈ Zp. We can rewrite this as:

Pα1+xαx+y1αy1+y2αy2

This must be the form of the adversary’s output, vk∗1 = X̂∗1 , Ŷ∗1 .

X̂∗1 = Pα
(X̂∗)
1 +xα

(X̂∗)
x +y1αy1

(X̂∗)+y2αy2
(X̂∗)

Ŷ∗1,1 = Pα
(Ŷ1
∗)

1 +xα
(Ŷ1
∗)

x +y1αy1
(Ŷ1
∗)+y2αy2

(Ŷ1
∗)

Ŷ∗2,1 = Pα
(Ŷ2
∗)

1 +xα
(Ŷ2
∗)

x +y1αy1
(Ŷ2
∗)+y2αy2

(Ŷ2
∗)

Where, for example, α
(X̂∗)
y1 is the adversary’s coefficient for the secret value, y1, when computing

their forgery verification key, X̂∗. We want to prove that α
(X̂∗)
1 , α

(Ŷ1
∗
)

1 , α
(Ŷ2
∗
)

1 , α
(Ŷ1
∗
)

x , α
(Ŷ2
∗
)

x , α
(Ŷ2
∗
)

y1 ,

α
(X̂∗)
y1 , α

(X̂∗)
y2 , and α

(Ŷ∗1 )
y2 are zero and α

(X̂∗)
x is equal to α

(Ŷ1
∗
)

y1 and α
(Ŷ2
∗
)

y2 . If so, we will know that α
(X̂∗)
x =

α
(Ŷ1
∗
)

y1 = α
(Ŷ2
∗
)

y2 = α and we can compute the forgery for the AtoSa game. We can think of the
exponents as polynomials:

p∗
X̂
(x, y) = α

(X̂∗)
1 + xα

(X̂∗)
x + y1α

(X̂∗)
y1 + y2α

(X̂∗)
y2 ,

p∗
Ŷ1
(x, y) = α

(Ŷ1
∗
)

1 + xα
(Ŷ1
∗
)

x + y1α
(Ŷ1
∗
)

y1 + y2α
(Ŷ1
∗
)

y2 ,

p∗
Ŷ2
(x, y) = α

(Ŷ2
∗
)

1 + xα
(Ŷ2
∗
)

x + y1α
(Ŷ2
∗
)

y1 + y2α
(Ŷ2
∗
)

y2 ,
Signatures are exclusively in G1, so the adversary does not learn any more elements in G2. If the

adversary outputs a vk∗1 where α
(X̂∗)
1 6= 0, α

(X̂∗)
y1 6= 0, or α

(X̂∗)
y2 6= 0, then X̂∗1 and X̂′ (in vk∗1 and vk′)

are the result of queries to the GGM of distinct polynomials in Zp[x, y1, y2] where p is the size of the
groups of the bilinear pairing. There is a similar arguement for Ŷ∗1,1 and Ŷ∗2,1. Thus, according to the
Schwartz-Zippel lemma, the chance that these two polynomials evaluate to the same value when
x, y are chosen randomly, is negligible. Thus, if we have B output random encodings independent
of x, y1, y2 and later define x, y1, y2, there is a negligble chance that A can compute a non-zero value



for α
(X̂∗)
1 , α

(Ŷ1
∗
)

1 , α
(Ŷ2
∗
)

1 , α
(X̂∗)
y1 , α

(X̂∗)
y2 , α

(X̂∗)
y1 , α

(Ŷ2
∗
)

y1 , α
(X̂∗)
y2 , or α

(Ŷ1
∗
)

y2 where the resulting vk∗1 is still in the
equivalence class of vk′. This proves claim 1.

After proving that only α
(X̂∗)
x , α

(Ŷ1
∗
)

y1 and α
(Ŷ2
∗
)

y2 are non-zero, it holds that α
(X̂∗)
x = α

(Ŷ1
∗
)

y1 =

α
(Ŷ2
∗
)

y2 = α as, otherwise, [vk∗1 ]R 6= [vk′]R.
We can see from the Verify algorithm that, if the reduction can recover α such that vk∗1 = (vk′)α,

and (avk, m∗, σ∗, τ∗) is a valid forgery for our AtoSa scheme with randomizable public keys, then
(avk′, m∗, σ′, τ∗) is a valid forgery for our AtoSa scheme without randomizable public keys:

avk = {X̂j, Ŷ1,j, Ŷ2,j},

avk′ = {X̂
1
α
j , Ŷ

1
α

1,1, Ŷ
1
α

2,1},
e(h, ∏

i∈[`]
X̂j ∗ Ŷm

1,j)e(h
ρ2 , ∏

j∈[n]
Ŷ2,j) = e(s, τ̂∗),

e(h, ∏
i∈[`]

X̂
1
α
j ∗ Ŷ

1
α m

1,j )e(hρ2 , ∏
j∈[n]

Ŷ
1
α

2,j) = e(s
1
α , τ̂∗),

We know that (vk∗1)
1
α = vk′ and so we can use Lemma 1 with avk† = avk

1
α , σ† = (h, s

1
α ) to reduce

this to breaking the GPS.

D.2 Proof of Theorem 2

The proof of tag class-hiding follows exactly from the message class hiding of the FHS scheme in [39].

Public key class-hiding proof for AtoSa. To simplify things, whenever the adversary makes a query
to either of their oracles, we’ll assume the adversary makes a query to both simultaneously. After
one query, the ggm adversary in the public-key class-hiding game has elements: X̂0, Ŷ1,0, Ŷ2,0, X̂1+b,
Ŷ1,1+b, Ŷ2,1+b, h1,0 = Pr1 , s1,0 = Pr1(x0+y1,0m1), h1,1 = Pr1 , s1,1 = Pr1(x1+y1,1+bm1). Here we’ve com-
pacted the notation from the public-key class-hiding game by making vk0

2 equal to (X̂1, Ŷ1,1, Ŷ2,1)

and vk1
2 equal to (X̂2, Ŷ1,2, Ŷ2,2). Rewriting this with discrete log, the adversary sees encodings of

the polynomials: x̂0, ŷ1,0, ŷ2,0, x̂1+b, ŷ1,1+b, ŷ2,1+b, dlogP(h1,0) = r1, dlogP(s1,0) = r1(x0 + y1,0m1),
dlogP(h1,1) = r1, dlogP(s1,1) = r1(x1 + y1,1+bm1). Where x∗, y∗, and r∗ are variables. Because the mes-
sage space of this signature is in Z∗p, the adversary cannot base future signatures on previous group
elements. Thus, each future query looks as such: x̂0, ŷ1,0, ŷ2,0, x̂1+b, ŷ1,1+b, ŷ2,1+b, dlogP(hi,0) = ri,
dlogP(si,0) = ri(x0 + y1,0mi), dlogP(hi,1) = ri, dlogP(si,1) = ri(x1 + y1,1+bmi).

When b = 1, we know that these are related by some randomization factor α as : x̂0, ŷ1,0, ŷ2,0, αx̂0,
αŷ1,0, αŷ2,0, dlogP(hi,0) = ri, dlogP(si,0) = ri(x0 + y1,0mi), dlogP(hi,1) = ri, dlogP(si,1) = ri(αx0 + αy1,0mi).

When b = 0, they are not: x̂0, ŷ1,0, ŷ2,0, x̂2, ŷ1,2, ŷ2,2, dlogP(hi,0) = ri, dlogP(si,0) = ri(x0 + y1,0mi),
dlogP(hi,1) = ri, dlogP(si,1) = ri(x2 + y1,2mi).

We can see that these are made up of distinct polynomials (as long as each mi 6= 0) and thus
the encodings will never collide when making queries and thus all encodings will look random
regardless of the choice of b. No ri is reused for a different mi due to auxiliary binding in Definition
9. This means that any signatures on the same message will be identical and thus each distinct
signature will have a new ri and are thus independent.

Origin-hiding proof for AtoSa. Origin-hiding of ConvertSig is straightforward and clear that outputs
of ConvertSig looks like a fresh signature σ′ in G∗1 × G∗1 as: For ω ∈ Z∗p, ConvertSig(vk, m, T, σ, ω)

outputs (h′, sω), which is a valid signature for vk′
$← ConvertVK(vk, ω) (a uniformly random element

of [vk]Rvk
). Next, for υ ∈ Z∗p, RndSigTag(vk, T, m, (h′, sω), υ), output the randomized signature and

tag: σ′ = (h′υ, sυ), and T′ = Tµ, which are uniformly random elements in the respective space
satisfying Verify(ConvertVK(vk, ω), T′, m, σ′) = 1. So the output is distributed the same as the output
of Sign (h′, s) for tag T and vk.

Origin-hiding of RndSigTag is similar to the above, one can simply do the randomization of
tag/signature for υ ∈ Z∗p as RndSigTag(vk, Tµ, m, (h′υ, sυ), υ), output the randomized signature/tag:
σ′ = (h′υ, sυ), and T′ = Tµ = (Tµ

1 , Tµ
2 ), which are uniformly random elements in the respective

space satisfying Verify(vk, T′, m, σ′) = 1.



D.3 Proof of Theorem 3

Public key class-hiding proof for ATMs. First, we need to prove that no message signed in either of
the oracles can include group elements from a previous signature. We can see that this condition is
enforced by looking at the tag-based DH message space in Definition 10. If an adversary receives
a signature from the signing oracle, then, to include it in a newMH

TDH message, they must ensure
that:

e(Mi, P̂) = e(Ti, Ni) (3)

The adversary must also know the discrete log between h and Ti, which can be checked using
VerifyTag, which verifies that Ti = hτi for all i ∈ {1, 2}. Thus we have that:

e(Mi, P̂) = e(hτi , Ni) (4)

This means that Mi must be computed on h. But h must not have been used in a distinct signature
query before because h is always computed on (M, N) and thus, changing (M, N) even by random-
izing it to another equivalence class ensures that h changes. There is a similar argument with T that
ensures two queries on the same h means they must have the exact same message and tag.

This means that a generic (GGM) adversary must know the discrete log between h and Mi.
Now, because of Equation 3 and the fact that Ti is computed on h, we know that dlogh(Mi) =

dlogh(Ti)dlogP(Ni) and these values are in Z∗p, we can simply compute: dlogh(Mi)
dlogh(Ti)

= dlogP(Ni). Thus,
the adversary must know the discrete log of Ni.

We can now analyse the adversary’s queries in the GGM knowing that the adversary must know
the discrete logs of the messages they send to the signing oracle, similar to EUF-CoMA definition
in [38]. Similar to our proof of public-key class-hiding for AtoSa, we’ll simplify things by giving the
adversary signatures from both oracles whenever the adversary makes a query to either of their
oracles.

So, when the adversary begins the public-key class-hiding game, they will receive two public
keys. The first will be random elements: X̂0, Ŷ1,0, Ŷ2,0, Ẑ1,0, Ẑ2,0 and the second we’ll label: X̂1+b,
Ŷ1,1+b, Ŷ2,1+b, Ẑ1,1+b, Ẑ2,1+b Where: X̂1 = αX̂0, Ŷ1,1 = αŶ1,0, Ŷ2,1 = αŶ2,0, Ẑ1,1 = αẐ1,0, Ẑ2,1 = αẐ2,0
and: X̂2, Ŷ1,2, Ŷ2,2, Ẑ1,2, Ẑ2,2 is another random key. The adversary can now make a number of signing
oracle queries, receiving signatures from both keys simultaneously. Because we’ve established that
these cannot depend on previous signature queries, we can predetermine the set of messages the
adversary wants to sign. Below we show the structure of the signatures received from each oracle.
σi,0 is the signature received from the first oracle in query i both when the secret bit b = 0 and b = 1.
σi,1 is the signature retrieved from the second oracle when b = 0. σi,2 is the signature retrieved from
the second oracle when b = 1. hi,∗, bi,∗, si,∗ are notated similarly where the second subscript denotes
which oracle and secret challenger bit this is retrieved from. Thus, on each query, the adversary
receives:

σi,0 =

(
hi,0 = Pri,0 , bi,0 = Pri,0ρiz1,0+ri,0ρiz2,0 ,

si,0 = Pri,0x0+mi,0y1,0+mi,1y2,0

)
and either:

σi,1 =

(
hi,1 = Pri,1 , bi,1 = Pri,1ρiαz1,0+ri,0ρiαz2,0 ,

si,1 = Pri,1αx0+mi,0αy1,0+mi,1αy2,0

)
or:

σi,2 =

(
hi,2 = Pri,2 , bi,2 = Pri,2ρiz1,2+ri,2ρiαz2,2 ,

si,2 = Pri,2x2+mi,0y1,2+mi,1y2,2

)
We can look at the discrete logs of these:

dlogP(σi,0) =
(
ri,0, ri,0ρiz1,0 + ri,0ρiz2,0, ri,0x0 + mi,0y1,0 + mi,1y2,0

)
and either:
dlogP(σi,1) =

(
ri,1, ri,1ρiαz1,0 + ri,0ρiαz2,0, ri,1αx0 + mi,0αy1,0 + mi,1αy2,0

)
or:
dlogP(σi,2) =

(
ri,2, ri,2ρiz1,2 + ri,2ρiαz2,2, ri,2x2 + mi,0y1,2 + mi,1y2,2

)
Depending on the challenger secret bit, b.



We can see that these are formally distinct polynomials as long as the user provided values are
non-zero which can be checked during signing. Thus, their encoding in the GGM are distinct and the
adversary will never be able to match values. In G2, the advesary only ever receives the verification
keys, which they cannot use to distinguish without guessing the randomization of the equivalence
class, α, which is from an exponential space, Z∗p. The adversary can attempt to use the pairing op-
eration to distinguish the games. This allows the adversary to multiply these polynomials with the
secrets x, y1, y2, z1, z2 of the issuer keys. Leading to the following values in GT :

So, in the case of b = 0, the adversary can compute elements in GT with the discrete log: Here,
we’re zero indexing all arrays (notably, elements in public keys like Ŷ1, Ŷ2 which are now Ŷ0 and Ŷ1)
to make things simpler). We have

dloge(P,P̂)(e(h
ηL
i bβL

i,0 sδL
i,0, (X̂0)

χL(Ŷ0,0)
γ0,L(Ŷ1,0)

γ1,L(Ẑ0,0)
ζ0,L(Ẑ1,0)

ζ1,L).

σ = (h, b = ∏
j∈[2]

hρjzj , si,0 = (hx ∏
j∈[2]

M
yj
j )).

σ = (hi = Pri , bi,0 = Priρ0z0,0+riρ1z1,0 , si,0 = Prix0+riρ0m0y0,0+riρ1m1y0,0).

= (riηL+ βLriρ0z0,0 + βLriρ1z1,0 + δLrix0,0 + δLriρ0m0y0,0 + δLriρ1m1y1,0) ∗ (x0,0χ+ y0,0γ0,L+ y1,0γ1,L+
z0,0ζ0,L + z1,0ζ1,L)

We’ll do the same for queries in the right oracle when b = 0: = (riηR+ βRriρ0αz0,0 + βRriρ1αz1,0 +
δRriαx0,0 + δRriρ0m0αy0,0 + δRriρ1m1αy1,0) ∗ (αx0,0χ + αy0,0γ0,R + αy1,0γ1,R + αz0,0ζ0,R + αz1,0ζ1,R)

And right oracle queries when b = 1: = (riηR+ βRriρ0z0,2 + βRriρ1z1,2 + δRrix0,2 + δRriρ0m0y0,2 +
δRriρ1m1y1,2) ∗ (x0,2χ + y0,2γ0,R + y1,2γ1,R + z0,2ζ0,R + z1,2ζ1,R)

Now, we add the elements to determine exactly what the adversary can compute. In b = 0:
(riηL+ βLriρ0z0,0 + βLriρ1z1,0 + δLrix0,0 + δLriρ0m0y0,0 + δLriρ1m1y1,0 + riηR+ βRriρ0αz0,0 + βRriρ1αz1,0 +
δRriαx0,0 + δRriρ0m0αy0,0 + δRriρ1m1αy1,0) ∗ (x0,0χ+ y0,0γ0,L+ y1,0γ1,L+ z0,0ζ0,L+ z1,0ζ1,L+ αx0,0χ+
αy0,0γ0,R + αy1,0γ1,R + αz0,0ζ0,R + αz1,0ζ1,R) (5)

And in b = 1:
(riηL+ βLriρ0z0,0 + βLriρ1z1,0 + δLrix0,0 + δLriρ0m0y0,0 + δLriρ1m1y1,0 + riηR+ βRriρ0z0,2 + βRriρ1z1,2 +
δRrix0,2 + δRriρ0m0y0,2 + δRriρ1m1y1,2) ∗ (x0,0χ+ y0,0γ0,L+ y1,0γ1,L+ z0,0ζ0,L+ z1,0ζ1,L+ x0,2χ+ y0,2γ0,R+
y1,2γ1,R + z0,2ζ0,R + z1,2ζ1,R) (6)

These are not idential polynomials in both cases, so we haven’t proven this to be indistinguish-
able yet. We’ll label the case where b = 0 as game 1 and the case where b = 1 as game 2. The
adversary can only distinguish the two games if they can find ρ∗, m∗, η∗, β∗, δ∗, ζ∗, η′∗, β′∗, δ′∗, ζ ′∗ such
that the two equations are exact in one game and distinct in the other game. We can think of com-
paring two equations as subtracting one from the other and seeing if the resulting polynomial is
the zero polynomial. This can only be done by canceling out terms. We will look at the terms in
which the computed polynomials in G2 diverge. Any polynomial an adversary could create with
two sets of chosen values, they can compute with one, thus, we can ignore the η′∗, β′∗, δ′∗, ζ ′∗ values.
Thus, we investigate ways that the adversary can create zero polynomials in both games and they
to determine if there is a zero polynomial in one game that is not identically zero in the other.

After expanding out Equations 5 and 6, we can use automated proving to find that if: βL =
0, βR = 0, δL = 0, χ = 0, δR = 0 then these games always result in the same polynomial. Thus, we do
not need to consider other values. We will iterate through the cases where each of these is non-zero
to prove that these polynomials are always distinct with the same chosen values in both games. We
will use an automated proving script to prove claims about zeroing out polynomials. We’ll call the
list of these variables, V.

We can ensure that ρ∗ and m∗ are non zero (and not equal to each other) during signing by
checking if their corresponding elements are equal to 1 ∈ G1.



We will now step through individual terms in the expansion of Equations 5 and 6 and analyze
them to tell when an adversary can obtain zero polynomials. The full polynomial can be computed
using a script and is omitted from this appendix.

If χ is not equal to zero, we can look at the following terms to conclude that all the other values
must be zero:
In game 1: ((βLχρ0)rix0,0z0,0).
In game 1: ((βLχρ1)rix0,0z1,0).
In game 1: ((χδL)rix0,0x0,0).
In game 1: ((χδLρ0m0)rix0,0y0,0).
In game 1: ((χδLρ1m1)rix0,0y1,0).
In game 1: ((βRχρ0)ααrix0,0z0,0).
In game 1: ((βRχρ1)ααrix0,0z1,0).
In game 1: ((χδR)ααrix0,0x0,0).
In game 1: ((χδRρ0m0)ααrix0,0y0,0).
In game 1: ((χδRρ1m1)ααrix0,0y1,0).
In game 2: ((βLχρ0)rix0,0z0,0).
In game 2: ((βLχρ0)rix0,2z0,0).
In game 2: ((βLχρ1)rix0,0z1,0).
In game 2: ((βLχρ1)rix0,2z1,0).
In game 2: ((χδL)rix0,0x0,0).
In game 2: ((χδLρ0m0)rix0,0y0,0).
In game 2: ((χδLρ0m0)rix0,2y0,0).
In game 2: ((χδLρ1m1)rix0,0y1,0).
In game 2: ((χδLρ1m1)rix0,2y1,0).
In game 2: ((βRχρ0)rix0,0z0,2).
In game 2: ((βRχρ0)rix0,2z0,2).
In game 2: ((βRχρ1)rix0,0z1,2).
In game 2: ((βRχρ1)rix0,2z1,2).
In game 2: ((χδR)rix0,2x0,2).
In game 2: ((χδRρ0m0)rix0,0y0,2).
In game 2: ((χδRρ0m0)rix0,2y0,2).
In game 2: ((χδRρ1m1)rix0,0y1,2).
In game 2: ((χδRρ1m1)rix0,2y1,2).
We can see that all the values in V are must be zero if χ is non-zero, since if any are non-zero, we do
not obtain the zero polynomial.

We can now look at the distinct combinations of adversarially chosen values including χ in the
games:

In game 1 but not game 2: ((βLχρ0 + βRχρ0)αrix0,0z0,0).
In game 1 but not game 2: ((βLχρ1 + βRχρ1)αrix0,0z1,0).
In game 1 but not game 2: ((χδLρ0m0 + χδRρ0m0)αrix0,0y0,0).
In game 1 but not game 2: ((χδLρ1m1 + χδRρ1m1)αrix0,0y1,0).
Because ρ0 6= 0, ρ1 6= 0 and ρ0 6= ρ1, this ensures that these polynomials are non-zero when all other
values besides χ in V are 0. Thus, the adversary cannot zero out a term in any of these cases. Thus, in
the adversary’s assumed query which allows them to distinguish, if χ is non-zero, another variable
in V besides χ must be non-zero. But, we previously proved that if χ is non-zero, all the other values
must be zero, thus we have a contradiction if χ 6= 0, and so χ must be zero in this distinguishing
polynomial.

If δR is non-zero, we can see that γ∗ must be zero because of the following terms:
In game 1: ((δRγ0,Lρ0m0)αriy0,0y0,0).
In game 1: ((δRγ0,Rρ0m0)ααriy0,0y0,0).
In game 1: ((δRγ1,Lρ1m1)αriy1,0y1,0).
In game 1: ((δRγ1,Rρ1m1)ααriy1,0y1,0).
In game 2: ((δRγ0,L)rix0,2y0,0).
In game 2: ((δRγ1,L)rix0,2y1,0).
In game 2: ((δRγ0,Rρ0m0)riy0,2y0,2).
In game 2: ((δRγ1,Rρ1m1)riy1,2y1,2).



Through automated proofs, we can see that when γ∗ are all zero, we have that all terms with δR
in them are identical. This implies that if δR is non-zero, another value in V must be non-zero.

We have a symmetric case for δL, implying that if δL is non-zero, another value in V must be
non-zero:
In game 1: ((δLγ0,Lρ0m0)riy0,0y0,0).
In game 1: ((δLγ0,Rρ0m0)αriy0,0y0,0).
In game 1: ((δLγ1,Lρ1m1)riy1,0y1,0).
In game 1: ((δLγ1,Rρ1m1)αriy1,0y1,0).
In game 2: ((δLγ0,R)rix0,0y0,2).
In game 2: ((δLγ1,R)rix0,0y1,2).
In game 2: ((δLγ0,Lρ0m0)riy0,0y0,0).
In game 2: ((δLγ1,Lρ1m1)riy1,0y1,0).

If βR is non-zero, we again get that the γ values are non-zero:
In game 1: ((βRγ0,Lρ0)αriy0,0z0,0).
In game 1: ((βRγ1,Lρ0)αriy1,0z0,0).
In game 1: ((βRγ0,Rρ0)ααriy0,0z0,0).
In game 1: ((βRγ1,Rρ0)ααriy1,0z0,0).
In game 2: ((βRγ0,Lρ0)riy0,0z0,2).
In game 2: ((βRγ1,Lρ0)riy1,0z0,2).
In game 2: ((βRγ0,Rρ0)riy0,2z0,2).
In game 2: ((βRγ1,Rρ0)riy1,2z0,2).

But, different from the δ∗ values, if the γ values are non-zero, we still could have a distinct poly-
nomial if only βR is non-zero:
In game 1 but not game 2: ((βRρ0ζ1,L + βRρ1ζ0,L)αriz0,0z1,0).
In game 2 but not game 1: ((βRρ0ζ1,L)riz0,2z1,0).
In game 2 but not game 1: ((βRρ1ζ0,L)riz0,0z1,2).

The adversary could get a zero polynomial if ρ0ζ1,L + ρ1ζ0,L = 0, which implies that either ζ1,L
is non-zero or ζ0,L is non-zero. In both cases, we have that βR is zero, since we have the following
terms:
In game 1: ((βRρ0ζ1,L)αriz0,0z1,0).
In game 2: ((βRρ0ζ1,L)riz0,2z1,0).
Or:
In game 1: ((βRρ0ζ0,L)αriz0,0z0,0).
In game 2: ((βRρ0ζ0,L)riz0,0z0,2).

Thus, this leads to a contradiction, so we can’t have either of these be non-zero.
If they’re both zero (ζ0,L and ζ1,L), we find that no term with βR is distinct in the polynomial of

game 1 or game 2, implying that another variable in V must be non-zero.
If βL is non-zero, we again find that the γ values must be zero to cancel the following terms out:

In game 1: ((βLγ0,Lρ0)riy0,0z0,0).
In game 1: ((βLγ1,Lρ0)riy1,0z0,0).
In game 1: ((βLγ0,Rρ0)αriy0,0z0,0).
In game 1: ((βLγ1,Rρ0)αriy1,0z0,0).
In game 2: ((βLγ0,Lρ0)riy0,0z0,0).
In game 2: ((βLγ1,Lρ0)riy1,0z0,0).
In game 2: ((βLγ0,Rρ0)riy0,2z0,0).
In game 2: ((βLγ1,Rρ0)riy1,2z0,0).

Thus, we get the following distinct terms:
In game 1 but not game 2: ((βLρ0ζ1,R + βLρ1ζ0,R)αriz0,0z1,0).
In game 2 but not game 1: ((βLρ0ζ1,R)riz0,0z1,2).
In game 2 but not game 1: ((βLρ1ζ0,R)riz0,2z1,0).



Like in the case with βL, the adversary could get a zero polynomial if ρ0ζ1,R + ρ1ζ0,R = 0, which
implies that either ζ1,R is non-zero or ζ0,R is non-zero. In both cases, we have that βL is zero, since
we have the following terms:
In game 1: ((βLρ0ζ0,R)αriz0,0z0,0).
In game 2: ((βRρ0ζ0,R)riz0,2z0,2).
In game 1: ((βRρ0ζ1,R)ααriz0,0z1,0).
In game 2: ((βRρ0ζ1,R)riz0,2z1,2).

If they’re both zero (ζ0,R and ζ1,R), we find that no term with βL is distinct in the polynomial of
game 1 or game 2, implying that another variable in V must be non-zero.

Thus, we must have that some pair in βL, βR, δL, δR must be non-zero.
When βL, βR are both non-zero, we get that all γ∗ ζ∗ are zero (from combinations of previous

results). When we zero all these out, (including χ) we find that the polynomial are identical.
When βL, δR are both non-zero, we get that all γ∗ values are zeto and all ζ∗,R are zero. We know

from previous results that this means all terms with βL and δR are identical in game 1 and 2, so in
this case, we need another value. There is a symmetric argument for βL, δR.

When δL, δR are both non-zet, we get that all γ∗ are zero, implying that all terms with δ∗ are
identical. This, we need another value in V to be non-zero.

As we keep adding more non-zero values in V, we can only ensure that more single sum terms
must be zero. Thus, we always zero out the possibilities for both polynomials.

Because the adversary cannot create a identically zero polynomial in one game when in the other
game, the polynomial is no identically zero, they cannot find two distinct polynomials that match in
one game but not the other. Thus, they cannot distinguish the two games.

Origin-hiding proof. We provide proof of perfect adaption of signatures as: Let (M, N) ∈ (G∗2)
2 ×

(G∗1)
2, vk ∈ (G∗2)

4 and sk = (yi, x)i∈[3] ∈ Z∗p. A signature and tag (h, b, s, T) ∈ G∗1 ×G∗1 ×G∗1 × (G∗2)
2

satisfying Verify(vk, (M, N), T, (h, b, s)) = 1 is of the form (h = Pr, h∑ ρi .zi , hx ·∏ Myi
i , (hρ1 , hρ2)) for

r ∈ Z∗p regarding to RO. ChangRep((M, N), σ, T, (µ, υ)) for (µ, υ) ∈ Z∗p, outputs(
h′ ← hµυ, b′ ← bµ, ŝ′ ← ŝµυ, T′ ← Tµ

)
, which are uniformly random elements conditioned Verify(vk, Tµ, (Mµυ, Nυ), σ′) = 1.

Note that as clear from the definition, ChangRep not only generates a new representative for the
message but also produces a new representative for the tag that ensures the adapted signature is
valid for both the new tag representative and the new message representative.

D.4 Proof of Theorem 5

We provide proof for the first and second constructions.

Lemma 3 (Unforgeability construction). Let ZKPOK be a simulation-sound extractable ZKPoK, and
SPSEQ be unforgeable signature, if AtoSa is unforgeable, then the IhMA construction Fig 6 is unforgeable.

Proof. Intuitively, A has a potential ways of breaking unforgeability: if he can forge a AtoSa signa-
ture on the challenge public key (that is, A does not possession proper attributes, but it can perform
verification by forging credentials). We show that if an adversaryA can win the unforgeability game
(Def. 18) with non-negligible probability. We then construct an adversary (reduction) B that breaks
the unforgeability of AtoSa (Def. 4). Note that we can extract witness from ZKPOK and assume this
will only fail with negligible probability. Lets us assume that Ai = ai is an attribute for simplicity,
now we show this reduction as follows:

Reduction. The reduction is straightforward. B interacts with a challenger C in the unforgeabil-
ity game of AtoSa and B simulates the IhMA-unforgeability game for A. B receives from C values
(X̂ = Px, Ŷ1 = P̂y1 , Ŷ2 = P̂y2) and public parameters pp of BG. Next, B sets vk′ = (X̂, Ŷ1, Ŷ2) as
the challenge key and sends (pp, vk′) to A. All oracles are executed as in the real game, except for
following ones which use the signing oracle in AtoSa instead of using the challenge signing key sk′:

OUser(u): B takes as input a user identity u. If u ∈ HU or u ∈ CU , return ⊥. Else, create a fresh
entry u by running (usk, uvk) ← UKeyGen but create aux using commitments, adding u and
(usk, uvk, aux) to the listHU and Luk, receptively. Return uvk.



OObtIss(i, u, Ai): If u /∈ HU ∨ i /∈ HCI ∪ vk′, return ⊥. Else if ivk 6= vk′, find entries ((usk =
τ, aux) ∈ Luk, isk ∈ HCI), and compute σi ← Sign(isk, τ, aux, Ai) (note that with knowledge of
isk, B can compute a signature on it’s own). Else ivk = vk′, asks the query σi ← OSign(Ai, aux, τ)
of AtoSa, which the oracle runs Sign(sk′, τ, aux, Ai), adds the entry (u, Ai, credi) to Lcred, where
credi = (σi, τ).

OIssue(i, u, Ai): If u /∈ CU ∨ i /∈ HCI ∪ vk′, it returns⊥. Else, if ivk 6= vk′, compute σi ← Sign(isk, τ, aux,
Ai). Else ask the query σi ← OSign(Ai, aux, τ) of AtoSa, add the entry (u, Ai, credi) to Lcred, where
credi = (σ, τ).

Obviously, B handles any oracle query and never aborts (assuming a simulated ZKPOK for issu-
ing and showing protocols). Thus, at the end of the game, B simulates all oracles perfectly for
A who is able, with some probability, to prove possession of a credential on attributes D. To do
this, B interacts with A as verifier in a showing protocol. If A outputs a valid showing proof as
(avk, σ∗ = (h∗, s∗), D, Nym∗ = T∗) and conducting π = ZKPOK(Nym∗) then B extracts from the
proof of knowledge contained in the Show, lets called the value (ρ∗1 , ρ∗2) related to the Nym∗ (the tag
tuple (T∗, (ρ∗1 , ρ∗2))) and stores all elements. Moreover, no credentials owned by corrupt users can
be valid on this set of messages D (as A can win the unforgeability game). This means that, for all
credentials credui on Aui and (usk) with u ∈ CCU , we have D 6⊆ ∪i∈[`]Aui. From the definition we
have that at least one of the key in vkj ∈ avk should be the challenge key [vkj]R = [vk′]R such that
the related attribute is in the set Aj ∈ D. Finally we can find all isk ∈ HCI ∪ CCI corresponding to
[ivk]R ∈ I′ for all i ∈ [`], and output ask = (isk)i∈[`]. Note that even if adversarial keys are random-
ized, we can output initial secret keys registered in the list and reduction still works for the AtoSa
scheme because of keys class [vk]R. In all cases, this means that (avk, (τ∗, T∗), D, ask, σ∗) is a valid
forgery against our signature scheme, B breaks thus unforgeability of AtoSa which concludes our
proof, assuming SPSEQ is unforgeable.

Lemma 4. Let ZKPOK be a simulation-sound extractable ZKPoK, if AtoSa is origin-hiding of ConvertSig
and public key class-hiding, SPSEQ is perfect adaption, then the IhMA construction in Fig 6 is anonymous
and issuer hiding.

Since these properties follow almost immediately from the zero-knowledge property and the pri-
vacy notions of the underlying signature AtoSa (Def. 2).

Anonymity. From the randomization (unlinkability) of the AtoSa signature, a tuple (σ = (h′, s), T =
(T1, T2)) can be hidden by randomizing them with secret randoms µ ∈ Z∗p as (σ = (h′µ, sµ), Tµ),
where does not leak any information about the initial tag/signature (tag acts as pseudonym in the
interaction). In addition, in the Show protocol, the proof of knowledge of the witness (tag’s secret
part) is zero-knowledge. This also does not leak any information about secrets either. Consequently,
a credential does not leak any information about usk or uvk. Note that the Anonymity experiment
guarantees that the witnesses used when computing π are valid for both b = 0 and b = 1 and also
the signature/tag is randomized correctly. This means that the Anonymity experiment is computa-
tionally indistinguishable from one where the ZKPOK simulator creates π. In the end, the view ofA
is independent of b. More formally we provide proof as follows:

Proof. The proof follows a sequence of games until a game where answers for the query to OAnon
b is

independent of the bit b. Let S be the event, and for i = 1, . . . , n, the construction defines an event Si
in Gamei. In Game1 we simulate all ZKPoKs. In Game2 we replace all ConvertTag and ConvertSig calls
with freshly generated signatures and In Game3 we replace the T with a representative element of
the same class.

Game0: The original game as given in Definition 19.
Game1: As Game0, except that the experiment runs OAnon

b as follows: All proofs NIZK(Nymp) in
CredShow and Obtain respectively, are simulated.
Game0 → Game1: By perfect zero-knowledge of NIZK, we have that

Pr[S1] = Pr[S0]

Game2: As Game1, except for the following changes. Let qu be (an upper bound on) the number
of queries made to OUser. At the beginning Game, picks w ← [qu] (it guesses that the user
that owns the jb-th credential is registered at the w-th call to OUser). Runs OUser, OCorruptU and
OAnon

b (j0, j1, D) as follows:



– OUser(u, S): As in Game1, but if this is the w-th call then, setting u∗ ← u.
– OCorruptU(u): If u ∈ CU or u ∈ OAnon

b , it returns ⊥ (as in the previous games). If u = u∗ then

the experiment stops and outputs a random bit b′ $← {0, 1}. Otherwise, if u ∈ HU , it returns
user usk and credentials and moves u fromHU to CU .

– OAnon
b (j0, j1, D): As in Game2, except that if u∗ 6= Lcred[jb], the experiment stops outputting

b′ $← {0, 1}.
Game1 → Game2: By assumption, OAnon

b is called at least once with some input (j0, j1, D) such
that u0 ← Lcred[j0], u1 ← Lcred[j1] ∈ HU . If u∗ = ub then OAnon

b does not abort and neither
does OCorruptU (it cannot have been called on ub before that call to OAnon

b (otherwise ub /∈ HU );
if called afterwards, it returns ⊥, where u∗ ∈ OAnon

b ). Since u∗ = [ub] with probability 1
qu

, the

probability that the experiment does not abort is at least 1
qu

, and thus

Pr[S2] ≥ (1− 1
qu

)
1
2
+

1
qu
· Pr[S1]

Game3: As Game2, except OAnon
b (j0, j1, D): pick a random T ← T and performs the showing with

D = (di)i∈[k]. The only difference is the choice of T.

Game2 → Game3: The difference between two games is that we use the tag class hiding Def. 6,
which indirectly implies DDH. Indeed, the reduction accepts T, Tb from the tag class-hiding chal-
lenger and uses these for users. The oracles are simulated as in Game2, except for the subsequent
oracles, which are simulated as follows:

– OUser(u, S): As in Game1, but if this is the w-th call then, setting u∗ ← u it sets usk[u] ←⊥
and uvk← T.

– OAnon
b (j0, j1, D): As in Game2, except that for u∗ = Lcred[jb], the experiment run show for Tb

which is either T(0) $← T or T(1) $← [T]Rτ
. Picks b and sends (Tb, σb, π) to A, and receives b′

form A. Return b′ as answer to the tag class-hiding game. We thus have:

|Pr[S2]− Pr[S3]| ≤ εDDH(λ) + (1 + 2ql)
1
p

Game4: As Game3, except that the experiment runs OAnon
b as follows: Like in Game3, but for µ, υ ∈

Z∗p, all executions of RndSigTag and ConvertSig for the credential and tag (ub, A′, σb) ← Lcred[jb]
are replaced by freshly generated signatures (note that we can randomize signatures and output
uniformly random elements in the respective spaces and we know the related secret keys). So,
oracles are simulated as in Game3.

Game2 → Game3: By Origin-hiding (ConvertSig) and (ConvertTag), signatures obtained from
RndSigTag and ConvertSig are identically distributed for all (A, T, vk, σ). We thus have

Pr[S3] = Pr[S4]

At the end, OAnon
b returns a fresh signature σ on a random tag and a simulated proof; the bit b is

thus information-theoretically hidden from A. probability analysis is similar to [39, 54].

Proof of issuer-hiding for IhMAAtoSa. We can reduce issuer hiding (Definition 20) to public-key
class hiding (Definition 5) by constructing a number of hybrids and games, 2` hybrids where ` is the
number of issuers in the issuer-hiding game.

We’ll quickly give an overview of the proof, starting with an explanation of hybrid scheme 0 then
explaining each subsequent hybrid. We let hybrid 0 be the original issuer-hiding game where we fix
b = 0. In hybrid 1, we replace the second ivk with a key of the same equivalence class as the first (still
keeping b = 0). As we look at higher number hybrids (2, 3, 4, ...) they each replace more random keys
with keys in the same equivalence class as the first. We will use public key class hiding (Definition 5)
to prove that these are indistinguishable. We keep replacing ivk keys until hybrid ` where all the keys
are in the same equivalence class. We can then make hybrid `+ 1 switch the bit, b, to be b = 1 (while
still keeping all the ivks in the same equivalence class). When all the issuer keys are in the same



equivalence class, we know that the difference between b = 0 and b = 1 is indistinguishable because
of origin-hiding (Definition 15). We then let hybrid ` + 2 introduce back a new distict verification
key (so that all the verification keys are in the same equivalence class except for one). As the hybrids
continue increase beyond ` we keep replacing our keys in the same equivalence class with distinct
ones and reduce to public key class-hiding to prove indistinguishability. We define hybrids above `
this way (all with b = 1) until we get to hybrid 2` where all the verification keys are distinct again,
but the bit has been flipped b = 1. We can see that hybrid 0 is the case where b = 0 in the original
issuer hiding game and hybrid 2` is the case where b = 1 in the game, so if we can prove that all
of these hybrids are indistinguishable from eachother, we will have proven issuer hiding. We show
these hybrids in Definition 33.

Definition 33 (Hybrid j).

– If j ≤ `, let k = j and if j > `, let k = 2` − j. Generate the first issuer key: vk0
$← IKeyGen(pp). Let

(vki)i∈[k−1] be randomizations of vk0 and generate the rest randomly (storing all secret keys for issuing
later).

– (I0, I1, pol, D)
$← A〈O〉(pp, {vki}i∈[`]);

– (sku, vku)
$← UKeyGen(pp); If j ≤ `, let b = 0 and if j > `, let b = 1

– Run the CredIssue function using our stored secret keys:
∀ivk ∈ Ib :
(credb,i, st) $← CredObtain(sku, vki, Ai)↔ CredIssue(ski, vku, Ai);

– credb ← CredAggr
(

usk, {(ivk, Ai, credb,i)}i∈[`]

)
– b∗ $← AOCredShow

(pol, Ib, D, Ai∈[`])

To reduce to class or origin hiding, we define 2` games. Let’s first define game j where j ≤ `.
In game j (where j ≤ `), we fix b = 0, and the reduction uses the first public key given to it by
the public-key class-hiding challenger vk1 (from Definition 5) for the first j keys (using different
randomizations in the same equivalence class). Game j then uses vkbPK-chall

2 for the j + 1 key (where
bPK-chall is the secret bit of the public-key class-hiding challenger). Game j then uses IKeyGen to
generate the rest of the keys after j + 1. We can see these games in Definition 34.

We can see that for game j (where j ≤ `), the adversary’s view appears as hybrid j in the case
that the public-key class-hiding challenger’s secret bit is bPK-chall = 0 and we appear as hybrid
j + 1 if the secret bit is bPK-chall = 1. This is because the public-key class-hiding challenger’s secret
bit determines whether vkbPK-chall

2 is in the same equivalence class as vk1 and the only difference
between the hybrids for the game is whether the key j + 1 is in the same equivalence class as j.
Thus, because the challenger’s secret bit determines which hybrid this reduction appears as, if our
signature scheme has public-key class-hiding, each step between hybrids are indistinguishable (for
hybrids up to `).

Now let’s define the rest of the games (after `). For game `+ j, we set b = 1 and it uses random-
izations of the challenger key, vk1 for most of the issuer keys that we give to the adversary (2`− j of
the keys). This means for j = ` all the keys are in the same equivalence class (which is indistinguish-
able because of origin-hiding, which we mentioned while describing the hybrids). Game `+ j then
uses vkbPK-chall

2 for one of the issuer keys and generates the rest of the keys on its own.
We can see for these games where j > `, we appear as hybrid j if the secret bit is bPK-chall = 0 and

as hybrid j + 1 if the secret bit is 1 instead. Thus, each step in this hybrid chain is indistinguishable
as well.

Definition 34 (Game j).

– Reduction receives vk1, vkbPK-chall
2 from the challenger.

– If j ≤ `, let k = j and if j > `, let k = 2` − j. Let (ivk)i∈[k−1] be randomizations of vk1 and (kvk) be

vkbPK-chall
2 . Generate the rest with IKeyGen.

– (I0, I1, pol, D)
$← A〈O〉(pp, ivki∈[`]);

– (usk, uvk)
$← UKeyGen(pp); If j ≤ `, let b = 0 and if j > `, let b = 1



– Run the CredIssue function using the correct signing oracle from the challenger for issuers keys up to k and
use our generated secret keys for the rest:
∀ivk ∈ Ib :
(credb,i, st) $← CredObtain(usk, ivk, Ai)↔ CredIssue(isk, uvk, Ai);

– credb ← CredAggr
(

usk, {(ivk, Ai, credb,i)}i∈[`]

)
– b∗ $← AOCredShow

(pol, Ib, D, Ai∈[`])
– This is a hybrid adversary, so they are trying to guess if they’re in hybrid j or hybrid j + 1. The reduction

guesses b∗ for the public-key class-hiding game.

Thus, by hybrid argument, we find that the adversary’s view in the issuer-hiding game is the
same when b = 0 and b = 1, thus, if our signature scheme has public-key class-hiding, then our
IhMA scheme has issuer hiding. The reduction can answer all of the adversary’s queries using the
signing oracles given to it by the public-key class-hiding oracle which signs messages for each of the
public keys.

Lemma 5 (Unforgeability of construction in Fig 7). Let ZKPOK, SC, and SPSEQ be a simulation-sound
extractable ZKPoK and a binding commitment and unforgeable signature receptively, if ATMS is unforgeable,
then the IhMA construction in Fig 7 is unforgeable.

Proof. Similar to Lemma 3, we show that if an adversaryA can win the unforgeability game (Def. 18)
with non-negligible probability. We then construct an adversary (reduction) B that breaks the un-
forgeability of ATMS (Def. 13). Assume that we can extract witness from ZKPOK. It follows the same
reductions as AtoSa, so we only show the differences here as follows:

Reduction. B interacts with a challenger C in the unforgeability game of ATMS and B simulates the
IhMA-unforgeability for A.

– B receives from C values (X̂ = Px, Ŷ1 = P̂y1 , Ŷ2 = P̂y2) and public parameters ppATMS. Then, it
sets vk′ = (X̂ = Px, Ŷ1 = P̂y1 , Ŷ2 = P̂y2) as the challenge issuer key, ppSPSEQ ← Σ2.Setup(1λ)

and pick α and create set commitment public parameters ppSC ← SC.Setup(1λ, α) and send vk′

and pp = (ppATMS, ppSC, ppSPSEQ) to A.
– As shown in Lemma 3, B handles any oracle query and simulates all oracles perfectly for A

similar to Lemma 3, and never aborts, we skip to mention them here.
– If A ’s winning condition is not fulfilled, B aborts.
– Otherwise,A is able, with some probability, to prove possession of a credential on attributes D∗.

So B interacts with A as verifier in a showing protocol. If A outputs a valid showing proof as
(avk, (C∗, Ĉ∗), σ∗, D∗, W∗, Nym∗ = T̂∗) and conducting π = NIZK(Nym∗) then B extracts from the
proof of knowledge contained in the Show, called the value τ∗ = (ρ∗1 , ρ∗2) related to the Nym∗ and
stores all elements. Also, we know that no credentials owned by corrupt users can be valid on this
set of messages D∗ (asA can win the unforgeability game). This means that, for all credentials credui
on (usk) with u ∈ CCU , we have (D∗ 6⊆ A). From the definition we have that at least one of the
key in vkj ∈ avk should be the challenge key vkj = vk′ such that the related attribute is in the set
Aj ∈ D∗. Find all isk ∈ HCI ∪ CCI corresponding to [ivk]R ∈ [`]. Finally, with all these cases,
we conclude that (avk, ask, (τ∗, T̂∗), D∗, σ∗, (C∗, Ĉ∗)) is a valid forgery against our signature scheme,
where (C∗, Ĉ∗) = (M∗, N∗). So B breaks unforgeability of ATMS which concludes our proof. Note
that we also assume SC is a binding and hiding commitment and SPSEQ is unforgeable, so A can
not forge proof by breaking binding of SC or unforgeability of SPSEQ.

Lemma 6. Let ZKPOK be a simulation-sound extractable ZKPoK, ATMS is origin-hiding of ConvertSig and
ChangRep and public key class-hiding, and SPSEQ is perfect adaption, then the IhMA construction in Fig 6
is anonymous and issuer hiding.

Proof. The argument follows the one in Lemma 4 except that we replace privacy notations of AtoSa
by ATMS and show that a new uber assumption holds 6 for the randomization set commitments and
tag. The proof follows a sequence of games until a game where answers for the query toOAnon

b is in-
dependent of the bit b. In Game1 we replace all ChangRep and ConvertSig calls with freshly generated
signatures. In Game2 we simulate all ZKPoKs and In Game3 we replace the respective commitment
vectors C with a represantive element of the same class.



Game0: The original game as given in Definition 19.
Game1: As Game0, except that the experiment runs OAnon

b as follows: Like in Game0, but for µ, υ ∈
Z∗p, all executions of ChangRep and ConvertSig for the credential and tag (ib, A′, σb) ← Lcred[jb]
are replaced by randomized signatures (note that we can randomize signatures and output uni-
formly random elements in the respective spaces). So, oracles are simulated as in Game1.

Game1 → Game0: By Origin-hiding (ConvertSig), adapted privacy (ChangRep) signatures ob-
tained from ChangRep and ConvertSig are identically distributed for all (A, T, vk, (C, Ĉ)). We thus
have

Pr[S0] = Pr[S1]

Game2: As Game1, except that the experiment runs OAnon
b as follows: All proofs NIZK(Nymp) in

CredShow and ObtIss respectively, are simulated.
Game2 → Game3: By perfect zero-knowledge of NIZK, we have that

Pr[S1] = Pr[S2]⇒ Pr[S0] = Pr[S1] = Pr[S2]

Game3: As Game2, except that for OAnon
b (j0, j1, D): it replaces all (Ci, Ĉi) and T with another vectors

in the same equivalence class and performs the showing with D = (di)i∈[k] and Wi ← fdi
(a)−1 ·

Ĉ1i. The only difference is the computation of (Ci, Ĉi); while all Wi are distributed as in Game4,
in particular, they are unique elements satisfying VerifySubset.

Game2 → Game3: The difference between two games is that we use the uber assumption Def. 6
to create set commitments. Oracles are simulated as in Game4, except for the following oracles
as:

– OObtain(u, i, Ai): As in Game2, except for the computation of following values: compute the
polynomials f1 = FAi

(α) · ρ1 · r, f2 = ρ2 · r · η, f̂1 = FAi
(α), and f̂2 = η, where r $← Zp is for h

and come from RO and η is a constant and same for all commitments. Then for i ∈ [2] it calls
Ci ← Ouber(1, fi, fi) and Ĉi ← Ouber(2, f̂i, f̂i) (all Ci and Ĉi are distributed as in the original
game.)

– OCredShow(j, pol, D): As in Game2, it computes the witness Wi ← fdi
(α)−1 · Ĉ1i (Wi is thus

distributed as in the original game and D = (di)i∈[k].)
– OAnon

b (j0, j1, D): As in Game4, with the following difference. For two honest users u ←
Lcred[j0] and u′ ← Lcred[j1], first parses Lcred[jb] as (u, Ai, credi) and (u′, A′ i, cred′i).
Compute polynomials for each set Ai as f1i = FAi

(α) · ρ1 · r, f2i = ρ2 · r · η, f̂1i = FAi
(α), and

f̂2i = η.
Compute polynomials for each set A′i as f ′1i = FA′ i (α) · ρ

′
1 · r′, f ′2i = ρ′2 · r′ · η, f̂ ′1i = FA′ i (α),

and f̂ ′2i = η.
Compute polynomials for the tags T and T′ as f ′t1 = ρ′1 · r′, f ′t2 = ρ′2 · r′, ft1 = ρ1 · r, and
ft2 = ρ2 · r.
Then it calls C1i ← Ouber(1, f1i, f ′1i) and C2i ← Ouber(1, f2i, f ′2i), same for Ĉ1i ← Ouber(2, f̂1i, f̂ ′1i)

and Ĉ2i ← Ouber(2, f̂2i, f̂ ′2i). Also, to compute tags, it calls
T1 ← Ouber(1, ft1, f ′t1) and T2 ← Ouber(1, ft2, f ′t2).
It sends (Ci, Ĉi) and T to A, and receives b′ form A.

|Pr[S2]− Pr[S3]| ≤ εuber(λ)

Return b′ as answer to the uber assumption. Apart from an error event happening with neg-
ligible probability, we have simulated Game2 if the uber assumption was “real” and Game3
otherwise.

D.5 Proof of theorem 6

Preliminary notations. We call ∆ the statistical distance between two algorithm (interpreted here as
distribution of their output). We call ztot = m1 + m2 + mT + mp + q1 + q2 + qT . Because some vari-
ables (the j’s and the q’s are dynamical), we add an entry to precise the temporality of the variable.
To be more precise ∀z ∈ {2, ztot} we write j1[z] the value of j1 after the zth call to ENC. When we do
not precise any entry, it means it is the value of the variable at the end of the game.



Game1, Game2 , Game3 , Game4

x := (x1, . . . , xn)

(j1, j2, jT) := (1, 1, 0) ; (q1, q2, qT) := (1, 1, 0)

b $←− {0, 1} ; b′′ $←− {0, 1} ; (P1, P2, PT) := ([1], [1], ∅)(
R1, R2, RT , R′1, R′2, R′T

)
:= ([1], [1], ∅, [1], [1], ∅)

b′ ← ACHAL,GCMP(ENC(1), ENC(2))

if
(

R1, R2, RT , R′1, R′2, R′T
)

is trivial

return b′′

else return b = b′

Oracle CHAL(t, P0, P1)

jt := jt + 1 ; qt := qt + 1

Pt,jt := Pb

Pt,jt := P(1−b)

Rt,qt := P0 ; R′t,qt
:= P1

return ENC(t)

Oracle PAIRING(ξ1, ξ2)

if (ξ1, ξ2) /∈ {ξ1
i }i∈[0,j1] × {ξ

2
i }i∈[0,j2]

then return ⊥
i1 := min{k ∈ [1, j1] | ξ1 = ξ1

k}
i2 := min{k ∈ [1, j2] | ξ2 = ξ2

k}
jT := jT + 1

PT,jT := P1,i1 (X) · P1,i2 (X)

return ENC(T)

ENC(t) // outputs ξ j which encodes Pj

// Bad Event in Game1,Game4 only

if ∃i ∈ [1, jt − 1] : Pt,jt (x) = Pt,i(x)

and Pt,jt 6= Pt,i

then ξt
jt := ξt

i

if ∃i ∈ [0, jt − 1] : Pjt = Pi

then ξt
jt := ξt

i

else

ξt
jt ←$ {0, 1}log(p) \ {ξt

i}i∈[1,jt−1]

return ξt
j

Oracle GCMP(ξ, ξ ′, t)

if ξ /∈ {ξt
i}i∈[0,jt ] or ξ ′ /∈ {ξt

i}i∈[0,jt ]

then return ⊥
i := min{k ∈ [1, jt] | ξ = ξt

k}
i′ := min{k ∈ [1, jt] | ξ ′ = ξt

k}
jt := jt + 1

Pt,jt := Pt,i + Pt,i′

return ENC(t)

Fig. 12: .

Game1 to Game2. We now compare Game1 to Game2. The only difference between the two is when
bad event happens in Game1 in the procedure ENC()

∃k ∈ {2, ztot}, ∃t ∈ {1, 2, T}, ∃i ∈ [1, jt[k]− 1] such that Pt,jt [k](x) = Pt,i(x) and Pt,jt [k] 6= Pt,i.

We call this family of disjoint events {Fk}k∈{2,ztot}. let call (d′1, d′2, d′T) an upper bound on the degree
of the polynomials in (P1, P2, PT) :

∆ (Game1A, Game2A) ≤ Pr[tk∈{2,ztot}Fk]

≤ ∑
t∈{1,2,T}

Pr[∃i, j ∈ [1, jt]2 such that ∧ Pt,j (x) = Pt,i(x) and Pt,jt 6= Pt,i

≤
j21d′1 + d′2 j22 + d′T j2T

p
.

The last equality comes from the Schwartz-Zippel lemma.



We first upperbound for i ∈ {1, 2} : ji = (qi + mi) , because we can create also new elements
in GT by using PAIRING. then jT ≤ (qT + mT + mp). There is no way to create elements in Gi with
degree greater than di for i ∈ {1, 2}. Then d′i ≤ di. But in GT , we can create element of degree d1 + d2
by using PAIRING. Then

∆ (Game1A, Game2A) ≤
d1(q1 + m1)

2 + d2(q2 + m2)
2 + max(d1 + d2, dT)(qT + mT + mp)2

p
. (7)

Game2 to Game3. To simplify the analysis and without any loss of generality, we determinize the
adversary and the games itself (when it picks a random string in ENC, we use the same randomness
in both games).

The only gap between the two games appears if the condition in the if of ENC is verified in one
game and not in the other one.

Let’s suppose the first divergence happens in the kth call to ENC. Because the adversary and both
games are determinic, we know all the queries are the same until this kth call (included). We suppose
an equality is verified in Game2. Let call (P2

jt , P2
i ) the corresponding pair of polynomials and (P3

jt
, P3

i )

the analog pair in the Game3 (in the if condition).
Without any loss of generality we suppose P2

jt = P2
i and P2

jt 6= P2
i ).

Case 1, t = 1 By looking in details all the queries made by the adversary we can deduce an integer
n := q1[k], and coefficients (ai)1≤i≤n, (bi)1≤i≤n such that P2

jt = ∑n
i=1 ai(R1)i, and P2

i = ∑n
i=1 bi(R1)i.

Morever, because the behavior of the game was completely analog in both game before this call,
we deduce also : P3

jt
= ∑n

i=1 ai(R2)
′
i, and P3

i = ∑n
i=1 bi(R′1)i.

Then by noticing 1 ∈ R2 and 1 ∈ R′2, and (P2
jt − P2

i ) = 0 and (P3
jt
− P3

i ) 6= 0, we deduce that
(R1, R2, RT , R′1, R′2, R′T) is trivial, then the output will be a random bit in both games (then it will not
appear in ∆).

Case 2, t = 2 It is completely analog to the previous case.

Case 3, t = T By looking in details all the queries made by the adversary we can deduce the exi-
tence of coefficients (au,h)1≤u≤q1[k],1≤h≤q1[k], (bi)1≤i≤qt [k](cu,h)1≤u≤q1[k],1≤h≤q1[k], (di)1≤i≤qt [k] s.t. P2

jt =

∑
q1[k]
u=1 ∑

q2[k]
h=1 au,h(R1)i · (R2)h + ∑

qT [k]
j=1 bj(RT)j, and P2

i = ∑
q1[k]
u=1 ∑

q2[k]
h=1 cu,h(R1)u · (R2)h + ∑

qT [k]
j=1 dj(RT)j,

Morever, because the behavior of the game was completely analog in both game before this call,
we deduce also : P3

jt
= ∑

q1[k]
u=1 ∑

q2[k]
h=1 au,h(R1)u · (R2)h + ∑

qT [k]
j=1 bj(RT)j, and P3

i = ∑
q1[k]
u=1 ∑

q2[k]
h=1 cu,h(R1)u ·

(R2)h + ∑
qT [k]
j=1 dj(RT)j, Then by noticing (P2

jt − P2
i ) = 0 and (P3

jt
− P3

i ) 6= 0, we deduce that
(R1, R2, RT , R′1, R′2, R′T) is trivial, then the output will be a random bit in both games. We finally

deduce:

∆ (Game3A, Game4A) = 0. (8)

Game3 to Game4. We use exactly the same reasoning as in the comparison between Game1 and Game2
to deduce :

∆ (Game3A, Game4A) ≤
d1(q1 + m1)

2 + d2(q2 + m2)
2 + max(d1 + d2, dT)(qT + mT + mp)2

p
. (9)

By combining (7), (8), (9), we can conclude. ut

D.6 Proof of Theorem 4

We prove that our scheme satisfies unforgeability (Def. 3) in the generic group model [61] for asym-
metric (“Type-3”) bilinear groups (for which there are no efficiently computable homomorphisms
between G and Ĝ). In this model, the adversary is only given handles of group elements, which are
just uniform random strings. To perform group operations, it uses an oracle to which it can submit
handles and is given back the handle of the sum, inversion, etc of the group elements for which it
submitted handles. In this proof we use additive notations, and without any loss of generality we
suppose that the j∗ in the game is equal to 1 in the game 3.



Theorem 7. If H′ is collision resistant, and H is considered as a random oracle, a generic Adv that computes
at most

(
qG, qG2 , qGT

)
group operations and makes up to k queries to signature oracle, and k′ queries to H

cannot win the game of the figure 3 with probability greater than
3((2k+k′+qG1

+1)(5+qG2)+qGT )
2

p−1 .

Proof. We consider an adversary that only uses generic group operations on the group elements it
receives. After getting the public parameters:

(
G, Ĝ

)
, a verification key (X̂ = xĜ, Ŷ1 = y1Ĝ, Y2 =

y2Ĝ, Ẑ1 = z1Ĝ, Ẑ2 = z2Ĝ), hashes (Hauxi )i∈[k′ ] computed on queries (aux1, aux2, . . . , auxk′) and sig-

natures
(

Hauxki
, Bi, Si

)k

i=1
computed on queries,

(
τ
(i)
1 , τ

(i)
2 , auxi,

((
M(1,i), M(2,i)

)
,
(

N(1,i), N(2,i)
)

, ω(i)
))k

i=1
,

(without any loss of generality, we can suppose the message are inMH
TDH) the adversary outputs

verification keys
(

X̂(i), Ŷ(i)
1 , Ŷ(i)

2 , Ẑ(i)
1 , Ẑ(i)

2

)
1≤i≤`

, messages and public tag(((
M(1,∗,i), M(2,∗,i)

)
,
(

N(1,∗,i), N(2,∗,i)
)

1≤i≤`
, T(∗)

1 , T(∗)
2

))
, tag’s secrets (τ∗1 , τ∗2 ), signing keys((

ς
(2)
x , ς

(2)
y1 , ς

(2)
y2 , ς

(2)
z1 , ς

(2)
z2

)
, . . . ,

(
ς
(`)
x , ς

(`)
y1 , ς

(`)
y2 , ς

(`)
z1 , ς

(`)
z2

))
, (H∗, B∗, S∗) for them. We call I :=

{
auxj

}
1≤j≤k′ ,

and I′ := I \
{

auxkj

}
1≤j≤k

.

As it must compute any new group element by combining received group elements, it must
choose coefficients:((

µ(1,i),
(

µ
(1,i)
h,a

)
a∈I

,
(

µ
(1,i)
B,j , µ

(1,i)
s,j

)
1≤j<i

)
,(

µ(2,i),
(

µ
(2,i)
h,a

)
a∈I

,
(

µ
(2,i)
B,j , µ

(2,i)
s,j

)
1≤j<i

)
,(

ν(1,i), ν
(1,i)
x , ν

(1,i)
y,1 , ν

(1,i)
y,2 , ν

(1,i)
z,1 , ν

(1,i)
z,2

)
,
(

ν(2,i), ν
(2,i)
x , ν

(2,i)
y,1 , ν

(2,i)
y,2 , ν

(2,i)
z,1 , ν

(2,i)
z,2

))
1≤i≤k

,(
µ(1,∗,i),

(
µ
(1,∗,i)
h,a

)
a∈I

,
(

µ
(1,∗,i)
B,j , µ

(1,∗,i)
s,j

)
1≤j≤k

)
,(

µ(2,∗,i),
(

µ
(2,∗,i)
h,a

)
a∈I

,
(

µ
(2,∗,i)
B,j , µ

(2,∗,i)
s,j

)
1≤j≤k

)
,(

ν(1,∗,i), ν
(1,∗,i)
x , ν

(1,∗,i)
y,1 , ν

(1,∗,i)
y,2 , ν

(1,∗,i)
z,1 , ν

(1,∗,i)
z,2

)
,
(

ν(2,∗,i), ν
(2,∗,i)
x , ν

(2,∗,i)
y,1 , ν

(2,∗,i)
y,2 , ν

(2,∗,i)
z,1 , ν

(2,∗,i)
z,2

)
,(

ζ(1,∗,i), ζ
(1,∗,i)
x , ζ

(1,∗,i)
y,1 , ζ

(1,∗,i)
y,2 , ζ

(1,∗,i)
z,1 , ζ

(1,∗,i)
z,2

)
,
(

ζ(2,∗,i), ζ
(2,∗,i)
x , ζ

(2,∗,i)
y,1 , ζ

(2,∗,i)
y,2 , ζ

(2,∗,i)
z,1 , ζ

(2,∗,i)
z,2

)
,

(
χ, χx, χy,1, χy,2, χz,1, χz,2

)
,
(

χ(i), χ
(i)
x , χ

(i)
y,1, χ

(i)
y,2, χ

(i)
z,1, χ

(i)
z,2

)
2≤i≤`

,(
ι(1), ι

(1)
x , ι

(1)
y,1 , ι

(1)
y,2 , ι

(1)
z,1 , ι

(1)
z,2

)
,
(

ι(2), ι
(2)
x , ι

(2)
y,1 , ι

(2)
y,2 , ι

(2)
z,1 , ι

(2)
z,2

))
,(

τ(1),
(

τ
(1)
h,u

)
u∈I

,
(

τ
(1)
B,j , τ

(1)
s,j

)
1≤j≤k

)
,(

τ(2),
(

τ
(2)
h,u

)
u∈I

,
(

τ
(2)
B,j , τ

(2)
s,j

)
2≤j≤k

)
,(

η, (ηh,u)u∈I ,
(
ηB,j, ηs,j

)
1≤j≤k

)
,(

β, (βh,u)u∈I ,
(

βB,j, βs,j
)

1≤j≤k

)
,
(

σ,
(

σh,j

)
j∈I

,
(
σB,j, σs,j

)
1≤j≤k

)



which define

M(t,i) = µ(t,i)G + ∑
a∈I

(
µ
(t,i)
h,a Ha

)
+

(i−1)

∑
j=1

(
µ
(t,i)
B,j Bj + µ

(t,i)
s,j Sj

)
, ∀t ∈ {1, 2}, ∀i ∈ {1, . . . , k}

N̂(t,i) = ν(t,i)Ĝ + ν
(t,i)
x X̂ + ν

(t,i)
y,1 Ŷ1 + ν

(t,i)
y,2 Ŷ2 + ν

(t,i)
z,1 Ẑ1 + ν

(t,i)
z,2 Ẑ2, ∀t ∈ {1, 2}, ∀i ∈ {1, . . . , k}

M(t,∗,i) = µ(t,∗,i)G + ∑
a∈I

(
µ
(t,∗,i)
h,a Ha

)
+

k

∑
j=1

(
µ
(t,∗,i)
B,j Bj + µ

(t,∗,i)
s,j Sj

)
, ∀(t, i) ∈ {1, 2} × {1, . . . , `}

N̂(t,∗,i) = ν(t,∗,i)Ĝ + ν
(t,∗,i)
x X̂ + ν

(t,∗,i)
y,1 Ŷ1 + ν

(t,∗,i)
y,2 Ŷ2 + ν

(t,∗,i)
z,1 Ẑ1 + ν

(t,∗,i)
z,2 Ẑ2, ∀(t, i) ∈ {1, 2} × {1, . . . , `}

X̂(1) = χĜ + χxX̂ + χy,1Ŷ1 + χy,2Ŷ2 + χz,1Ẑ1 + χz,2Ẑ2,

Ŷ(1)
t = ι(t)Ĝ + ι

(t)
x X̂ + ι

(t)
y,1Ŷ1 + ι

(t)
y,2Ŷ2 + ι

(t)
z,1Ẑ1 + ι

(t)
z,2Ẑ2, ∀t ∈ {1, 2}

X̂(i) = χ(i)Ĝ + χ
(i)
x X̂ + χ

(i)
y,1Ŷ1 + χ

(i)
y,2Ŷ2 + χ

(i)
z,1Ẑ1 + χ

(i)
z,2Ẑ2, ∀i ∈ {2, . . . , `}

Ŷ(i)
t = ι(i,t)Ĝ + ι

(i,t)
x X̂ + ι

(i,t)
y,1 Ŷ1 + ι

(i,t)
y,2 Ŷ2 + ι

(i,t)
z,1 Ẑ1 + ι

(i,t)
z,2 Ẑ2, ∀t ∈ {1, 2}, ∀i ∈ {2, . . . , `}

Ẑ(1)
t = ζ(t)Ĝ + ζ

(t)
x X̂ + ζ

(t)
y,1Ŷ1 + ζ

(t)
y,2Ŷ2 + ζ

(t)
z,1Ẑ1 + ζ

(t)
z,2Ẑ2, ∀t ∈ {1, 2}

Ẑ(i)
t = ζ(i,t)Ĝ + ζ

(i,t)
x X̂ + ζ

(i,t)
y,1 Ŷ1 + ζ

(i,t)
y,2 Ŷ2 + ζ

(i,t)
z,1 Ẑ1 + ζ

(i,t)
z,2 Ẑ2,

∀(t, i) ∈ {0, 1} × {2, . . . , `}

T∗1 = τ(1)G + ∑
a∈I

(
τ
(1)
h,a Ha

)
+

k

∑
j=1

(
τ
(1)
B,j Bj + τ

(1)
s,j Sj

)
T∗2 = τ(2)G + ∑

a∈I

(
τ
(2)
h,a Ha

)
+

k

∑
j=2

(
τ
(2)
B,j Bj + τ

(2)
s,j Sj

)
H∗ = ηG + ∑

a∈I
(ηh,a Ha) +

k

∑
j=1

(
ηB,jBj + ηs,jSj

)
B∗ = βG + ∑

a∈I
(βh,a Ha) +

k

∑
j=1

(
βB,jBj + βs,jSj

)
S∗ = σG + ∑

a∈I
(σh,a Ha) +

k

∑
j=1

(
σB,jBj + σs,jSj

)
Notice that without any loss of generality, the sum is over all the H’s19.
Using this, we can write, for all 1 ≤ i ≤ k, the discrete logarithms hi, bi, si in basis G of the

elements Hi, Bi = ∑2
j=1 zjτ

(i)
j Hauxki

, Si =
(
x · Hauxki

+ y1M(i)
1 + y2M(i)

2
)

from the oracle answers.
Then:

bi =
2

∑
j=1

zjτ
(i)
j · hauxki

(10)

si =

(
xhauxki

+
2

∑
b=1

yb

(
µ(b,i) + ∑

a∈I

(
µ
(b,i)
h,a ha

)
+

(i−1)

∑
j=1

(
µ
(b,i)
B,j bj + µ

(b,i)
s,j sj

)))
(11)

We interpret these values as multivariate polynomials in variables x, y1, y2, z1, z2, (hu)u∈I .
First we have to notice

Lemma 7. In the (GGM + ROM), if the i signing query is valid and if Hauxki
= Hauxki′

, then the i′ is also
valid and Sauxki

= Sauxk′i
.

19 We know that in some case, there is constraint in the order which force some coefficients to be zero, but we
will use that later



First, notice that because Hauxki
= Hauxki′

, it implies

auxki
= auxki′

. (12)

Then because
(

Gτ
(i)
1 , Gτ

(i)
2

)
is the first coordinate of auxki

, and because
(

Gτ
(i′)
1 , Gτ

(i′)
2

)
is the first

coordinate of auxki′
, we deduce:

(
Gτ

(i)
1 , Gτ

(i)
2

)
=

(
Gτ

(i′)
1 , Gτ

(i′)
2

)
, (13)

then:

(
τ
(i)
1 , τ

(i)
2

)
=
(

τ
(i′)
1 , τ

(i′)
2

)
, (14)

and with the same reasoning we that the vector of keys is the same for both aux.
First we notice Index(auxki

) is well defined because by assumption of the lemma the query num-
ber i is valid.

We deduce also from auxki
= auxki′

that :

vk′Index(auxki
) = vkIndex(auxki

). (15)

Then by definition of Index(auxki
), we deduce: vk′Index(auxki

) = vk.

Because by definition of Index
(
auxki

)
, we know that ∀j 6= Index(auxki

) : vkj 6= vk, we deduce
from (15) that: ∀j 6= Index

(
auxki

)
: vk′j 6= vk.

Then it implies Index
(

auxki′

)
is well defined and equals to Index

(
auxki

)
.

Then with the same reasoning we deduce about H:(
N(1,i), N(2,i)

)
=
(

N(1,i′), N(2,i′)
)

. (16)

We deduce from (14), (16), and also the fact that Hauxki
= Hauxki′

, and the e
(

T(i)
j , ·

)
are injectives:(

M(1,i), M(2,i)
)
=
(

M(1,i′), M(2,i′)
)

. (17)

We finally deduce from (12), (14), (16), (17): Ski
= Sk′i

.
ut

Then without any loss of generality we can suppose all the (ki)’s are distincts, and then

All the h
Index

(
auxki

) are distinct. (18)

A successful forgery (H∗, B∗, S∗) on(((
X̂(1), Ŷ(1)

1 , Ŷ(1)
2 , Ẑ(1)

1 , Ẑ(1)
2

)
, . . . ,

(
X̂(`), Ŷ(`)

1 , Ŷ(`)
2 , Ẑ(`)

1 , Ẑ(`)
2

))
,

((
ς
(2)
x , ς

(2)
y,1 , ς

(2)
y,2 , ς

(2)
z,1 , ς

(2)
z,2

)
, . . . ,

(
ς
(`)
x , ς

(`)
y,1, ς

(`)
y,2, ς

(`)
z,1 , ς

(`)
z,2

))
,(((

M(1,∗,i), M(2,∗,i)
)

,
(

N(1,∗,i), N(2,∗,i)
))

1≤i≤`
,
(

T(∗)
1 , T(∗)

2

)))
satisfies the verification equations

∏
j∈[`]

e(H∗, X̂(j)) ∏
i∈[2]

e(M(i,∗,j), Ŷ(j)
i ) = e(S∗, Ĝ) ∧ e(B∗, Ĝ) = ∏

j∈[`],i∈[2]
e(T∗i , Ẑ(j)

i )

∧
i∈[2]∧j∈[`]

e(T∗j , N(i,∗,j)) = e(M(i,∗,j), Ĝ)



Using the coefficients defined above and considering the logarithms in basis e(P, P̂), we obtain:(
η + ∑

a∈I
(ηh,aha) +

k

∑
j=1

(
ηB,jbj + ηs,jsj

)) (
χ + χxx + χy,1y1 + χy,2y2 + χz,1z1 + χz,2z2

)
+

∑
t∈[2]

(
µ(t,∗,1) + ∑

a∈I

(
µ
(t,∗,1)
h,a ha

)
+

k

∑
j=1

(
µ
(t,∗,1)
B,j bj + µ

(t,∗,1)
s,j sj

))(
ι(1,t) + ι

(1,t)
x x + ι

(1,t)
y,1 y1 + ι

(1,t)
y,2 y2 + ι

(1,t)
z,1 z1 + ι

(1,t)
z,2 z2

)

+ ∑
2≤i≤`

((
η + ∑

a∈I
(ηh,aha) +

k

∑
j=1

(
ηB,jbj + ηs,jsj

)) (
χ(i) + χ

(i)
x x + χ

(i)
y,1y1 + χ

(i)
y,2y2 + χ

(i)
z,1z1 + χ

(i)
z,2z2

)
+

∑
t∈[2]

(
µ(t,∗,i) + ∑

a∈I

(
µ
(t,∗,i)
h,j ha

)
+

k

∑
j=1

(
µ
(t,∗,i)
B,j bj + µ

(t,∗,i)
s,j sj

))(
ι(i,t) + ι

(i,t)
x x + ι

(i,t)
y,1 y1 + ι

(i,t)
y,2 y2ι

(i,t)
x x + ι

(i,t)
z,1 z1 + ι

(i,t)
z,2 z2

))
(19)

=

(
σ + ∑

a∈I
(σh,aha) +

k

∑
j=1

(
σB,jbj + σs,jsj

))
(

β + ∑
a∈I

(βh,aha) +
k

∑
j=1

(
βB,jbj + βs,jsj

))

= ∑
t∈{0,1}

(
τ(t) + ∑

a∈I

(
τ
(t)
h,a ha

)
+

k

∑
j=1

(
τ
(t)
B,j bj + τ

(t)
s,j sj

))(
ζ(1,t) + ζ

(1,t)
x x + ζ

(1,t)
y,1 y1 + ζ

(1,t)
y,2 y2 + ζ

(1,t)
z,1 z1 + ζ

(1,t)
z,2 z2

)
(20)

+ ∑
i∈[2;`],t∈{0,1}

(
τ(t) + ∑

a∈I

(
τ
(t)
h,a ha

)
+

k

∑
j=1

(
τ
(t)
B,j bj + τ

(t)
s,j sj

))(
ζ(i,t) + ζ

(i,t)
x x + ζ

(i,t)
y,1 y1 + ζ

(i,t)
y,2 y2 + ζ

(i,t)
z,1 z1 + ζ

(i,t)
z,2 z2

)
∀i ∈ {1, . . . , `}, ∀t ∈ {1, 2} : (21)(

τ(t) + ∑
a∈I

(
τ
(t)
h,a ha

)
+

k

∑
j=1

(
τ
(t)
B,j bj + τ

(t)
s,j sj

))(
ν(t,∗,i) + ν

(b,∗,i)
x x + ν

(t,∗,i)
y,1 y1 + ν

(t,∗,i)
y,2 y2 + ν

(t,∗,i)
z,1 z1 + ν

(t,∗,i)
z,2 z2

)
(22)

=

(
µ(b,∗,i) + ∑

a∈I

(
µ
(b,∗,i)
h,a ha

)
+

k

∑
j=1

(
µ
(b,∗,i)
B,j bj + µ

(b,∗,i)
s,j sj

))

We can use also the second winning condition (i.e. [vk′i]Rvk
= [vki]Rvk

) is verified.
It implies ∃u ∈ Z∗p such that:

χĜ + χxX̂ + χy,1Ŷ1 + χy,2Ŷ2 = uX̂ (23)

∀t ∈ {1, 2} :ι(t)Ĝ + ι
(t)
x X̂ + ι

(t)
y,1Ŷ1 + ι

(t)
y,2Ŷ2 + ι

(t)
z,1Ẑ1 + ι

(t)
z,2Ẑ2 = uŶt (24)

∀t ∈ {1, 2} :ζ(t)Ĝ + ζ
(t)
x X̂ + ζ

(t)
y,1Ŷ1 + ζ

(t)
y,2Ŷ2 + ζ

(t)
z,1Ẑ1 + ζ

(t)
z,2Ẑ2 = uẐt (25)

and:
∀i ∈ [2; `] : ∃u(i) ∈ Z∗p such that:

χ(i)Ĝ + χ
(i)
x X̂ + χ

(i)
y,1Ŷ1 + χ

(i)
y,2Ŷ2 = u(i)ς

(i)
x Ĝ (26)

∀t ∈ {1, 2} :ι(i,t)Ĝ + ι
(i,t)
x X̂ + ι

(i,t)
y,1 Ŷ1 + ι

(i,t)
y,2 Ŷ2 + ι

(i,t)
z,1 Ẑ1 + ι

(i,t)
z,2 Ẑ2 = u(i)ς

(i)
y,tĜ (27)

∀t ∈ {1, 2} :ζ(i,t)Ĝ + ζ
(i,t)
x X̂ + ζ

(i,t)
y,1 Ŷ1 + ζ

(i,t)
y,2 Ŷ2 + ζ

(i,t)
z,1 Ẑ1 + ζ

(i,t)
z,2 Ẑ2 = u(i)ς

(i)
z,t Ĝ (28)

Using the coefficients defined above and considering the logarithms in base Ĝ, we obtain:



∀t ∈ {1, 2} :yt

(
χ + χxx + χy,1y1 + χy,2y2 + χz,1z1 + χz,2z2

)
= (29)

x
(

ι(t) + ι
(t)
x x + ι

(t)
y,1y1 + ι

(t)
y,2y2 + ι

(t)
z,1z1 + ι

(t)
z,2z2

)
∀t ∈ {1, 2} :zt

(
χ + χxx + χy,1y1 + χy,2y2 + χz,1z1 + χz,2z2

)
= (30)

x
(

ζ(t) + ζ
(t)
x x + ζ

(t)
y,1y1 + ζ

(t)
y,2y2 + ζ

(t)
z,1z1 + ζ

(t)
z,2z2

)
∀i ∈ [2; `] :χ(i) + χ

(i)
x x + χ

(i)
y,1y1 + χ

(i)
y,2y2 + χ

(i)
z,1y1 + χ

(i)
z,2y2 = u(i)ς

(i)
z (31)

∀i ∈ [2; `], ∀t ∈ {1, 2} :ι(i,t) + ι
(i,t)
x x + ι

(i,t)
y,1 y1 + ι

(i,t)
y,2 y2 + ι

(i,t)
z,1 z1 + ι

(i,t)
z,2 z2 = u(i)ς

(i)
y,t (32)

∀i ∈ [2; `], ∀t ∈ {1, 2} :ζ(i,t) + ζ
(i,t)
x x + ζ

(i,t)
y,1 y1 + ζ

(i,t)
y,2 y2 + ζ

(i,t)
z,1 z1 + ζ

(i,t)
z,2 z2 = u(i)ς

(i)
z,t . (33)

We follow the standard proof technique for results in the generic group model and now consider an

“ideal” game in which the challenger treats all the (handles of) group elements as elements of
Zp[x, y1, y2, z1, z2, haux1 , . . . , hauxk ], that is, polynomials whose indeterminates represent the secret

values chosen by the challenger.
We first show that in the ideal game if the adversary’s output satisfies the verification equations,

then the third winning condition, [(M, N)]R 6= [(M∗j , N∗j )]R, ∀(M, N) ∈ Q, is not satisfied, which
demonstrates that the ideal game cannot be won. We then compute the statistical distance from the
adversary’s point of view between the real and the ideal game at the end of the proof.

In the ideal game we thus interpret the two equalities (19), (20), (22) as polynomial equalities
over the ring Zp[x, y1, y2, z1, z2, haux1 , . . . , hauxk ]. By identifying coefficients of (29), and (30)

∀t ∈ {1, 2} :χ = ι(t) = ι
(t)
x = ι

(1−t)
y,t = ζ

(1−t)
z,t = χy,t = χz,t = 0, (34)

χx = ι
(t)
y,t = ζ

(t)
y,t . (35)

Because X̂∗ 6= 0, we deduce

χx 6= 0 (36)

From (31), (32), (33), we deduce:

∀i ∈ [2; `], ∀t ∈ {1, 2} :ι(i,t) = u(i)ς
(i)
y,t, ζ(i,t) = u(i)ς

(i)
z,t , χ(i) = u(i)ς

(i)
x . (37)

∀i ∈ [2; `], ∀t ∈ {1, 2} :χ(i)
y,1 = χ

(i)
y,2 = χ

(i)
x = ι

(i,t)
x = ι

(i,t)
y,1 = ι

(i,t)
z,1 (38)

=ι
(i,t)
y,2 = ι

(i,t)
z,2 = ζ

(i,t)
x = ζ

(i,t)
y,1 = ζ

(i,t)
z,1 = ζ

(i,t)
y,2 = ζ

(i,t)
z,2 = 0.

Then if we apply (34), (35),(37) (38) the equation (19) becomes:

(
η + ∑

a∈I
(ηh,aha) +

k

∑
j=1

(
ηB,jbj + ηs,jsj

))
χxx+

∑
t∈[2]

(
µ(t,∗,1) + ∑

u∈I

(
µ
(t,∗,1)
h,u hu

)
+

k

∑
j=1

(
µ
(t,∗,1)
B,j bj + µ

(t,∗,1)
s,j sj

))
χxyt+

∑
2≤i≤`

((
η + ∑

a∈I
(ηh,aha) +

k

∑
j=1

(
ηB,jbj + ηs,jsj

))
u(i)ς

(i)
x +

∑
t∈[2]

(
µ(t,∗,i) + ∑

a∈I

(
µ
(t,∗,i)
h,a ha

)
+

k

∑
j=1

(
µ
(t,∗,i)
B,j bj + µ

(t,∗,i)
s,j sj

))
u(i)ς

(i)
yt

)
(39)

=

(
σ + ∑

a∈I
(σh,aha) +

k

∑
j=1

(
σB,jbj + σs,jsj

))



Now we look this equation modulo (y1, y2, z1, z2) (remark that (sj, bj) =
(

xhauxkj
, 0
)

in this quotient

ring):

(
η + ∑

a∈I′
(ηh,aha) +

k

∑
j=1

(
ηs,auxkj

hauxkj
+ ηs,jxhauxkj

))
χxx+

∑
2≤i≤`

((
η + ∑

a∈I
(ηh,aha) +

k

∑
j=1

(
ηs,jxhauxj

))
χ
(i)
x +

∑
t∈[2]

(
µ(t,∗,i) + ∑

a∈I

(
µ
(t,∗,i)
h,a ha

)
+

k

∑
j=1

(
µ
(t,∗,i)
s,j xhauxkj

))
ι
(i,t)
y,t

)
(40)

=

(
σ + ∑

a∈I
(σh,aha) +

k

∑
j=1

(
σs,jxhauxj

))

If we look the coefficients of x2hauxkj
, we deduce:

∀j ≤ k : ηs,jχx = 0 (41)

And from equation (36)and property (18) we deduce:

∀j ≤ k : ηs,j = 0 (42)

Then if we use (42), the equation (40) becomes:

(
η + ∑

u∈I
ηh,uhu

)
χxx + ∑

2≤i≤`

((
η + ∑

u∈I
ηh,uhu

)
χ
(i)
x +

∑
t∈[2]

(
µ(t,∗,i) + ∑

a∈I
µ
(t,∗,i)
h,a ha +

k

∑
j=1

(
µ
(t,∗,i)
s,j xhauxj

))
ι
(i,b)
y,b

)
(43)

=

(
σ + ∑

u∈I
(σh,uhu) +

k

∑
j=1

(
σs,jxhauxj

))

then, we look the coefficients of the monomial x, in (43) we deduce:

χxη = 0 (44)

And from equation (36) we deduce:

η = 0 (45)

We apply (34), (35),(37) (38) in (20). And it becomes:(
β + ∑

a∈I
(βh,aha) +

k

∑
j=1

(
βB,jbj + βs,jsj

))

= ∑
t∈{1,2}

(
τ(t) + ∑

a∈I

(
τ
(t)
h,a ha

)
+

k

∑
j=1

(
τ
(t)
B,j bj + τ

(t)
s,j sj

))
χxzt (46)

+ ∑
i∈[2;`],t∈{1,2}

(
τ(t) + ∑

a∈I

(
τ
(t)
h,a ha

)
+

k

∑
j=1

(
τ
(t)
B,j bj + τ

(t)
s,j sj

))
ζ(i,t)

Now we look this equation modulo (y1, y2, h1, . . . , hk′) (remark that (sj, bj) = (0, 0) in this quotient
ring):



β = ∑
t∈{1,2}

τ(t)χxzt + ∑
i∈[2;`],t∈{1,2}

τ(t)ζ(i,t) (47)

It implies by looking z monomials

∀t ∈ {1, 2} : τ(t)χx = 0

And from equation (36) we deduce:

∀t ∈ {1, 2} : τ(t) = 0 (48)

Then (47) becomes

β = 0 (49)

Now let consider (51) by using (49) and (48):(
∑
a∈I

(βh,aha) +
k

∑
j=1

(
βB,jbj + βs,jsj

))

= ∑
t∈{1,2}

(
∑
a∈I

(
τ
(t)
h,a ha

)
+

k

∑
j=1

(
τ
(t)
B,j bj + τ

(t)
s,j sj

))
χxzt (50)

+ ∑
i∈[2;`],t∈{1,2}

(
τ(t) + ∑

a∈I

(
τ
(t)
h,a ha

)
+

k

∑
j=1

(
τ
(t)
B,j bj + τ

(t)
s,j sj

))
ζ(i,t)

Then, we look this equation modulo (y1, y2) (remark that sj = xhauxj in this quotient ring):(
∑
a∈I

(βh,aha) +
k

∑
j=1

(
βB,jbj + βs,jxhauxj

))

= ∑
t∈{1,2}

(
∑
a∈I

(
τ
(t)
h,a ha

)
+

k

∑
j=1

(
τ
(t)
B,j bj + τ

(t)
s,j xhauxj

))
χxzt (51)

+ ∑
i∈[2;`],t∈{1,2}

(
∑
a∈I

(
τ
(t)
h,a ha

)
+

k

∑
j=1

(
τ
(t)
B,j bj + τ

(t)
s,j xhauxj

))
ζ(i,t)

We look monomials of degree 2 in z1, z2, and we deduce:

∑
t∈{1,2}

k

∑
j=1

τ
(t)
B,j bjzt = 0

Then, because all the bj’s are independant (because the h’s involved are all distinct, we deduce:

∀t ∈ {1, 2}∀j ∈ {1, . . . , k} : τ
(t)
B,j = 0 (52)

Now we look in the same equation monomials in ztxht′ :

0 = ∑
t∈{1,2}

k

∑
j=1

(
τ
(t)
s,j xhauxj

)
χxzt

With the same reasoning of previously (independancy of the ztxht′ , we deduce:

∀t ∈ {1, 2}∀j ∈ {1, . . . , k}τ(t)
s,j χx = 0 (53)



Because (36), we deduce:

∀t ∈ {1, 2}∀j ∈ {1, . . . , k} : τ
(t)
s,j = 0 (54)

Now we apply (48), (52) and (54) in (22):

∀i ∈ {1, . . . , `}, ∀t ∈ {1, 2} : (55)(
∑
a∈I

(
τ
(t)
h,a ha

))(
ν(t,∗,i) + ν

(t,∗,i)
x x + ν

(t,∗,i)
y,1 y1 + ν

(t,∗,i)
y,2 y2 + ν

(t,∗,i)
z,1 z1 + ν

(t,∗,i)
z,2 z2

)
(56)

=

(
µ(t,∗,i) + ∑

a∈I

(
µ
(t,∗,i)
h,a ha

)
+

k

∑
j=1

(
µ
(t,∗,i)
B,j bj + µ

(t,∗,i)
s,j sj

))

By looking constant coefficients, we deduce:

∀i ∈ {1, . . . , `}, ∀t ∈ {1, 2} : µ(t,∗,i) = 0 (57)

Now we look equation (43) with the knowledge of (45), (57):

(
∑
u∈I

ηh,uhu

)
χxx + ∑

2≤i≤`

((
∑
u∈I

ηh,uhu

)
χ
(i)
x +

∑
t∈[2]

(
∑
a∈I

µ
(t,∗,i)
h,a ha +

k

∑
j=1

(
µ
(t,∗,i)
s,j xhauxj

))
ι
(i,b)
y,b

)
(58)

=

(
σ + ∑

u∈I
(σh,uhu) +

k

∑
j=1

(
σs,jxhauxj

))

By looking constant coefficients, we deduce:

σ = 0 (59)

Now let’s look (56), by using the knowledge (57).

∀i ∈ {1, . . . , `}, ∀t ∈ {1, 2} :(
∑
a∈I

(
τ
(t)
h,a ha

))(
ν(t,∗,i) + ν

(t,∗,i)
x x + ν

(t,∗,i)
y,1 y1 + ν

(t,∗,i)
y,2 y2 + ν

(t,∗,i)
z,1 z1 + ν

(t,∗,i)
z,2 z2

)
(60)

=

(
∑
a∈I

(
µ
(t,∗,i)
h,a ha

)
+

k

∑
j=1

(
µ
(t,∗,i)
B,j bj + µ

(t,∗,i)
s,j sj

))

We look (39) by using (42), (45), (59), (67), (59),(
∑
a∈I

(ηh,aha) +
k

∑
j=1

(
ηB,jbj

))
χxx+

∑
t∈[2]

(
∑
u∈I

(
µ
(t,∗,1)
h,u hu

)
+

k

∑
j=1

(
µ
(t,∗,1)
B,j bj + µ

(t,∗,1)
s,j sj

))
χxyt+

∑
2≤i≤`

((
η + ∑

a∈I
(ηh,aha) +

k

∑
j=1

(
ηB,jbj

))
u(i)ς

(i)
x +

∑
t∈[2]

(
∑
a∈I

(
µ
(t,∗,i)
h,a ha

)
+

k

∑
j=1

(
µ
(t,∗,i)
B,j bj + µ

(t,∗,i)
s,j sj

))
u(i)ς

(i)
yt

)
(61)

=

(
∑
a∈I

(σh,aha) +
k

∑
j=1

(
σB,jbj + σs,jsj

))



We look this equation modulo (y1, y2) :(
∑
a∈I

(ηh,aha) +
k

∑
j=1

(
ηB,jbj

))
χxx+

∑
2≤i≤`

((
η + ∑

a∈I
(ηh,aha) +

k

∑
j=1

(
ηB,jbj

))
u(i)ς

(i)
x +

∑
t∈[2]

(
∑
a∈I

(
µ
(t,∗,i)
h,a ha

)
+

k

∑
j=1

(
µ
(t,∗,i)
B,j bj + µ

(t,∗,i)
s,j xhauxj

))
u(i)ς

(i)
yt

)
(62)

=

(
∑
a∈I

(σh,aha) +
k

∑
j=1

(
σB,jbj + σs,jxhauxj

))
We look all monomials of degree 3, and the equation become:(

k

∑
j=1

(
ηB,jbj

))
χxx = 0

We use still the fact all the hauxj are distinct and (36) to deduce:

∀j ∈ {1, . . . , k} : ηB,j = 0 (63)

Now, we can use the fact all queries are well formed, it means:

∀i ∈ {1, . . . , k}, ∀t ∈ {1, 2} : e
(

τ
(i)
t Hauxi , N(t,i)

)
= e

(
M(t,i), Ĝ

)
(64)

Then in terms of polynomials:

∀i ∈ {1, . . . , k}, ∀t ∈ {1, 2} :(
µ(t,i) + ∑

u∈I

(
µ
(t,i)
h,u hu

)
+

(i−1)

∑
j=1

(
µ
(t,i)
B,j bj + µ

(t,i)
s,j sj

))
(65)

= τ
(i)
t hauxki

(
ν(t,i) + ν

(t,i)
x x + ν

(t,i)
y,1 y1 + ν

(t,i)
y,2 y2 + ν

(t,i)
z,1 z1 + ν

(t,i)
z,2 z2

)
We look this equation modulo (y1, y2), it becomes:

∀i ∈ {1, . . . , k}, ∀t ∈ {1, 2} :(
µ(t,i) +

k

∑
u∈I

(
µ
(t,i)
h,u hu

)
+

i−1

∑
j=1

(
µ
(t,i)
B,j bj + µ

(t,i)
s,j xhauxj

))
(66)

= τ
(i)
t hauxki

(
ν(t,i) + ν

(t,i)
x x + ν

(t,i)
z,1 z1 + ν

(t,i)
z,2 z2

)
By looking the constant coefficient and the coefficients of the monomials hauxki

, xhauxki
, hauxki

zt, zt

and x:

∀i ∈ {1, . . . , k}, ∀t ∈ {1, 2} :

µ(t,i) = 0 (67)

∀u 6= auxki
: µ

(t,i)
h,u = 0 (68)

∀j 6= i : µ
(t,i)
s,j = 0 (69)

∀j 6= i : µ
(t,i)
B,j = 0 (70)

ν(t,i)τ(i) = µ
(t,i)
h,auxki

(71)

τ
(i)
t ν

(t,i)
x = τ

(i)
t ν

(t,i)
z,1 = τ

(i)
t ν

(t,i)
z,2 = 0 (72)



Then by applying (67), (68),(69), (70), (71) we deduce:

∀t ∈ {1, 2}, ∀i ∈ {1, . . . , k′} : M(t,i) = ν(t,i)τ(i)Hauxki
(73)

Because τ
(i)
t 6= 0, we deduce from (72):

∀i ∈ {1, . . . , k}, ∀t ∈ {1, 2} : ν
(t,i)
x = ν

(t,i)
z,1 = ν

(t,i)
z,2 = 0 (74)

Then by applying (67), (68),(69),(70), (74) to (65):

∀i ∈ {1, . . . , k}, ∀t ∈ {1, 2} :(
µ
(t,i)
h,auxki

hauxki

)
= τ

(i)
t hauxki

(
ν(t,i) + ν

(t,i)
y,1 y1 + ν

(t,i)
y,2 y2

)
(75)

We deduce form this equation by looking degree 2 monomials

ν
(t,i)
y,1 = ν

(t,i)
y,2 = 0 (76)

From (74), and (76), we deduce:

∀t ∈ {1, 2}, ∀i ∈ {1, . . . , k′} : N̂(t,i) = ν(t,i)Ĝ (77)

Then, by applying (67),(68), (69), (70) the equation (11) can be rewritten:

si =

(
xhauxki

+
2

∑
t=1

ybµ
(t,i)
h,auxki

hauxki

)
(78)

Now, let reuse the equation (61) with the knowledge of (63),(??).

(
∑
a∈I

(ηh,aha)

)
χxx+

∑
t∈[2]

(
∑
u∈I

(
µ
(t,∗,1)
h,u hu

)
+

k

∑
j=1

(
µ
(t,∗,1)
B,j bj + µ

(t,∗,1)
s,j sj

))
χxyt+

∑
2≤i≤`

((
∑
a∈I

(ηh,aha)

)
u(i)ς

(i)
x +

∑
t∈[2]

(
∑
a∈I

(
µ
(t,∗,i)
h,a ha

)
+

k

∑
j=1

(
µ
(t,∗,i)
B,j bj + µ

(t,∗,i)
s,j sj

))
u(i)ς

(i)
yt

)
(79)

=

(
∑
a∈I

(σh,aha) +
k

∑
j=1

(
σB,jbj + σs,jsj

))

And if we look degree 3 monomials of this equation by having in mind (10), (78), we deduce:

∑
t∈[2]

k

∑
j=1

(
µ
(t,∗,1)
B,j bj + µ

(t,∗,1)
s,j sj

)
χxyt = 0

k

∑
j=1

hauxkj

 ∑
t∈[2]

µ
(t,∗,1)
B,j τ

(j)
t zt + χxytµ

(t,∗,1)
s,j

(
x +

2

∑
t=1

ybµ
(t,j)
h,auxki

) = 0

Because si 6= 0, (from (78)) and (36), and also because all the hauxkj
’s are distinct, we deduce:

∀t ∈ [2]∀j ∈ {1, . . . , k} : µ
(t,∗,1)
s,j = 0 (80)



And because the τ
(j)
t ’s are non zero, we deduce:

∀j ∈ {1, . . . , k}, ∀t ∈ {1, 2} : µ
(t,∗,1)
B,j = 0 (81)

Then we use (81) and (80) in (60) for i = 1

∀t ∈ {1, 2} :(
∑
a∈I

(
τ
(t)
h,a ha

))(
ν(t,∗,1) + ν

(t,∗,1)
x x + ν

(t,∗,1)
y,1 y1 + ν

(t,∗,1)
y,2 y2 + ν

(t,∗,1)
z,1 z1 + ν

(t,∗,1)
z,2 z2

)
(82)

= ∑
a∈I

(
µ
(t,∗,1)
h,a ha

)
And by looking degree 2 monomials and arguing the Tt are non zero, we deduce:

∀t ∈ {1, 2} : ν
(t,∗,1)
x = ν

(t,∗,1)
y,1 = ν

(t,∗,1)
y,2 = ν

(t,∗,1)
z,1 = ν

(t,∗,1)
z,2 = 0 (83)

It means

∀t ∈ {1, 2} : N̂(t,∗,1) = ν(t,∗,1)Ĝ (84)

Now we can use the fact, VerifyTag output 1. It implies

∀t ∈ {1, 2} : T∗t = τ∗t H∗ (85)

Then:

∀t ∈ {1, 2} : ∑
a∈I

(
τ
(t)
h,a ha

)
= τ∗t

(
∑
a∈I

(ηh,aha)

)
It implies by using the non equality between the h:

∀t ∈ {1, 2}∀a ∈ I : τ
(t)
h,a = τ∗t ηh,a (86)

We apply (80),eq:mubjzero, (86) to (79):

∑
a∈I

τ
(t)
h,a

τ∗t
ha

 χxx + ∑
t∈[2]

(
∑
u∈I

(
µ
(t,∗,1)
h,u hu

))
χxyt+

∑
2≤i≤`

((
∑
a∈I

(ηh,aha)

)
u(i)ς

(i)
x +

∑
t∈[2]

(
∑
a∈I

(
µ
(t,∗,i)
h,a ha

)
+

k

∑
j=1

(
µ
(t,∗,i)
B,j bj + µ

(t,∗,i)
s,j sj

))
u(i)ς

(i)
yt

)
(87)

=

(
∑
a∈I

(σh,aha) +
k

∑
j=1

(
σB,jbj + σs,jsj

))

We only look degree two monomials in this equation modulo (z1, z2) (to erase the b’s) by recalling
(78):

∑
a∈I

τ
(t)
h,a

τ∗t
ha

 χxx + ∑
t∈[2]

(
∑
u∈I

(
µ
(t,∗,1)
h,u hu

))
χxyt+

∑
2≤i≤`

∑
t∈[2]

k

∑
j=1

µ
(t,∗,i)
s,j sju(i)ς

(i)
yt =

k

∑
j=1

(
σs,jsj

)



Now we use (36): ∑
a∈I

τ
(t)
h,a

τ∗t
ha

 x + ∑
t∈[2]

(
∑
u∈I

(
µ
(t,∗,1)
h,u hu

))
yt

=
k

∑
j=1

1
χx

 ∑
2≤i≤`

∑
t∈[2]

σs,j − µ
(t,∗,i)
s,j u(i)ς

(i)
yt

 sj (88)

We define:

∀j ∈ {1, . . . , k} : αj :=
1

χx

 ∑
2≤i≤`

∑
t∈[2]
−µ

(t,∗,i)
s,j u(i)ς

(i)
yt + σs,j

 (89)

By using (78), we deduce:

∀u ∈ I′ :
τ
(t)
h,u

τ∗t
= µ

(t,∗,1)
h,u = 0 (90)

Then applying (89), (90) on (88):

k

∑
j=1

hauxkj


τ

(t)
h,auxkj

τ∗t

 x + ∑
t∈[2]

µ
(t,∗,1)
h,u yt

 =
k

∑
j=1

αjsj

We use now (78) in this equation:

k

∑
j=1

hauxkj


τ

(t)
h,auxkj

τ∗t

 x + ∑
t∈[2]

µ
(t,∗,1)
h,auxkj

yt

 = (91)

k

∑
j=1

αj

(
xhauxki

+
2

∑
t=1

ybµ
(t,j)
h,auxkj

hauxkj

)
We deduce:

∀j ∈ {1, . . . , k}∀t ∈ {1, 2} :
τ
(t)
h,auxkj

τ∗t
= αj (92)

µ
(t,∗,1)
h,auxkj

= αjµ
(t,j)
h,auxkj

(93)

Now we apply (83), (90), (92), (93) to (82)

∀t ∈ {1, 2} :
k

∑
j=1

αjν
(t,∗,1)τ∗t hauxkj

=
k

∑
j=1

αjµ
(t,j)
h,auxkj

hauxkj
(94)

Let’s define

K = {i ∈ {1, . . . , k}|αi 6= 0}. (95)

Because H∗ 6= 0 is non zero we deduce:

K 6= ∅. (96)



Now, by combining (93), (95) we deduce:

∀j 6∈ K : µ
(t,∗,1)
h,auxkj

= 0 (97)

And by applying (95) in (94):

∀t ∈ {1, 2} :

∑
j∈K

τ∗t ν(t,∗,1)hauxkj
= ∑

j∈K
µ
(t,j)
h,auxkj

hauxkj

Then :

∀t ∈ {1, 2}∀j ∈ K : ν(t,∗,1) · τ∗t = µ
(t,j)
h,auxkj

(98)

Then, we deduce, by applying (67), (68), (69), (70), (98) :

∀t ∈ {1, 2}, ∀j ∈ K : M(t,j) = ν(t,∗,1) · τ∗t Hauxkj
(99)

Now we apply (48), (52), (54), (92), (95) in (50):(
∑
a∈I

(βh,aha) +
k

∑
j=1

(
βB,jbj + βs,jsj

))

= ∑
t∈{1,2}

(
∑
j∈K

τ∗t αjhauxkj

)
χxzt (100)

+ ∑
i∈[2;`],t∈{1,2}

(
∑
j∈K

τ∗t αjhauxkj

)
ζ(i,t)

We look monomials non-constant in z1 or z2 and by recalling (10) and (78), we deduce:

k

∑
j=1

βB,j ∑
t∈{1,2}

ztτ
(t)
j

= ∑
t∈{1,2}

(
∑
j∈K

αjhauxkj

)
χxτ∗t zt (101)

We deduce, because the τ
(t)
j ’s are non zero:

∀j 6∈ K : βB,j = 0 (102)

∀j ∈ K, ∀t ∈ {1, 2} : βB,jτ
(t)
j = αjχxτ∗t (103)

It means, because (36) and the τ
(t)
j ’s are non zero:

∀j ∈ K :
βB,j

αjχx

(
τ
(1)
j , τ

(2)
j

)
= (τ∗1 , τ∗2 ) (104)

It implies, by non-zeroness of τ∗1 and τ∗2 ):

∀j ∈ K : βB,j 6= 0. (105)

If we synthetize our knowledge ((84),(85), (99)) we obtain:

(N∗, M∗, T∗) (106)

=
((

ν(1,∗,1)Ĝ, ν(2,∗,1)Ĝ
)

,
(

ν(1,∗,1)τ∗1 H∗, ν(2,∗,1)τ∗2 H∗
)

, (τ∗1 H∗, τ∗2 H∗)
)

(107)



Let i ∈ K (such an i exists from (96)). By using (73), eq:Nchapeaudevoile, and (104)

(Ni, Mi, Ti) (108)

=
( (

ν(1,∗,1)P̂, ν(2,∗,1)P̂
)

,
(

ν(1,∗,1)τ∗1 Hauxki
, ν(2,∗,1)τ∗2 Hauxki

)
, (109)

βB,i

αiχx

(
τ∗1 Hauxki

, τ∗2 Hauxki

) )
(110)

And because (105), we deduce the forgery doesn’t check the final winning condition. So the
scheme is secure.

Difference between ideal and real game We start with upper-bounding the degree of the polynomials
that can be generated by the adversary. We first remark by combining (10), and (78), that the maxi-
mum degree of the elements in G1 is 2 and 1 in G2. Now, we can count the number of elements used
by the adversary, there is

(
2k + k′ + qG1 + 1

)
elements in G1, and

(
5 + qG2

)
in G2.

So it implies there is at most
(
2k + k′ + qG1 + 1

) (
5 + qG2

)
+ qGT elements of degree 3 in GT .

The “ideal” model and the generic group model differ if and only if two elements are distinct
as polynomial but identical as (handle of a) group element. That is, if we evaluate two different
polynomials corresponding to the group GT at scalar values x, y1, y2, z2, z2h1, . . . , hk′ and obtain the
same result after pairings. Then by applying Schwartz-Zippel lemma, we deduce the following up-

perbound
3((2k+k′+qG1

+1)(5+qG2)+qGT )
2

p−1 .
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