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Abstract. This paper introduces arithmetic sketching, an abstraction
of a primitive that several previous works use to achieve lightweight,
low-communication zero-knowledge verification of secret-shared vectors.
An arithmetic sketching scheme for a language L ⊆ Fn consists of (1)
a randomized linear function compressing a long input x to a short
“sketch,” and (2) a small arithmetic circuit that accepts the sketch if
and only if x ∈ L, up to some small error. If the language L has an
arithmetic sketching scheme with short sketches, then it is possible to test
membership in L using an arithmetic circuit with few multiplication gates.
Since multiplications are the dominant cost in protocols for computation
on secret-shared, encrypted, and committed data, arithmetic sketching
schemes give rise to lightweight protocols in each of these settings.
Beyond the formalization of arithmetic sketching, our contributions are:
– A general framework for constructing arithmetic sketching schemes

from algebraic varieties. This framework unifies schemes from prior
work and gives rise to schemes for useful new languages and with
improved soundness error.

– The first arithmetic sketching schemes for languages of sparse vectors:
vectors with bounded Hamming weight, bounded L1 norm, and
vectors whose few non-zero values satisfy a given predicate.

– A method for “compiling” any arithmetic sketching scheme for a
language L into a low-communication malicious-secure multi-server
protocol for securely testing that a client-provided secret-shared
vector is in L.

We also prove the first nontrivial lower bounds showing limits on the
sketch size for certain languages (e.g., vectors of Hamming-weight one)
and proving the non-existence of arithmetic sketching schemes for others
(e.g., the language of all vectors that contain a specific value).

1 Introduction

In many cryptographic protocols, a server holds an encoding of a large client-
provided vector. To protect against client misbehavior, the server must test
whether the vector satisfies a simple predicate. For example:



– In private ad measurement [29, 48], an aggregation server holds a linearly
homomorphic encryption of a client-provided vector; the server must test
that the encrypted vector is zero everywhere except with a “1” at a single
location.

– In PIR writing [42] and private messaging [1, 17, 24], a set of servers holds
additive secret shares of a client-provided vector; the servers must test that
the secret-shared vector is zero everywhere except that it contains an arbitrary
value at a single location.

– In private-aggregation [10,16,20,36,45], a set of servers holds a secret-sharing
of a large client-provided vector; the server must test whether the vector has
bounded Hamming weight.

– In e-voting schemes [31], a tally server holds a linearly homomorphic encryp-
tion of a vector representing a ballot; the server must test that the vector
has non-negative entries and bounded L1 norm.

– In verifiable distributed multi-point functions [21], a set of servers holds
(compressed) additive secret shares of a client-provided vector; the servers
must test whether the vector has Hamming weight exactly w.

– In protocols for malicious-secure OT and MPC [19], a verifier holds a linearly
homomorphic commitment to a prover-provided vector; the verifier must test
whether the vector has bounded Hamming weight.

Each of these prior works gives a clever special-purpose protocol for its particular
property-testing problem. And each scheme has the desirable feature that in the
most important complexity measure—typically server-to-server communication
or proof size—the server’s cost is sublinear in the input size.

At the same time, each of the state-of-the-art schemes has at least one of three
shortcomings: dependence on proofs, limited extensibility, and unclear optimality
of their complexity measures. In particular, many of these protocols [10, 16,
17,19,24,31] require the client to provide some auxiliary information (“proof”)
about the vector to the servers/verifier to perform the validity check, or even
require interaction with the client [9,19]. This dependence on the client precludes
important use cases such as distributing the client, e.g. in an MPC protocol, or
accepting the aggregate contribution of multiple clients. Also, in some applications,
the servers must check a property on a subset of the vector that only the servers
know [10]. So even if there is a single client, the client may not know what
exactly it needs to prove. In addition, these protocols are purpose-built to test
specific properties required for their applications, without necessarily considering
extensions or generalizations. For example, testing that a vector has a single
non-zero location is useful for different applications, but the set of authorized
non-zero payloads might change between applications. Making these tools most
broadly useful requires generalizing and unifying these constructions. Finally, in
each of these protocols, it is not clear whether the known schemes are the best
possible, in terms of the key complexity metrics.

In this work, we introduce arithmetic sketching schemes, giving a general
framework for constructing protocols that enable testing simple properties on
large vectors. Our schemes resolve the main shortcomings of those in prior work:
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they require no auxiliary “proof” information from the client in the secret-shared
setting, they are extensible, and in certain cases they match new efficiency lower
bounds that we prove. The general framework provides simple, concretely efficient
protocols for each of the aforementioned applications.

Formalization of arithmetic sketching. The first contribution of this paper is
the definition of arithmetic sketching schemes. The purpose of an arithmetic
sketching scheme for a language of vectors L ⊆ Fn, over a finite field F and input
size n ∈ N, is to test whether a given input x ∈ Fn is in the language L. Typically,
the languages L we consider are “simple” ones, such as the language of vectors of
Hamming-weight one, of bounded-L1 norm, etc.

More precisely, an arithmetic sketching scheme for a language L is a pair of
algorithms: a sketching algorithm and a decision algorithm.

– The sketching algorithm is a randomized procedure that outputs a matrix
Q ∈ F`×n. The number of rows in the matrix ` (the “sketch size”) is typically
small—constant in the input length n.

– The decision algorithm, takes as input ` values, corresponding to the matrix-
vector product of the sketching matrix Q ∈ F`×n with the input vector x ∈ Fn.
The decision algorithm must accept all x ∈ L and, with high probability,
reject all x 6∈ L. Furthermore, the decision algorithm must be arithmetic,
in the sense that it is computed by an arithmetic circuit over the field F,
with size independent of the field size |F| and the input length n. Here, we
interpret an output of “0” as accepting and a nonzero output as rejecting.

We can think of the vector (Q · x) ∈ F` as a succinct “sketch” of the large input
x ∈ Fn, since these `� n values contain enough information to decide whether or
not x ∈ L. While all of the algorithms we construct are computationally efficient,
when defined relative to infinite families of languages {Ln}∞n=1, computational
efficiency plays no role in our definitions—an arithmetic sketching scheme is a
purely information-theoretic object.

While linear sketching is a staple of data-structure and algorithm design [2,
15,41], the key distinction here is the requirement for the decision predicate to
be a small arithmetic circuit. Removing this arithmetic requirement trivializes
the problem: as we discuss in Section 2.2, every sparse-enough language has a
simple non-arithmetic sketching scheme with a small sketch size (albeit with a
computationally inefficient decision procedure). The arithmetic requirement we
place on the decision predicate limits the power of the sketches we consider: they
cannot, say, test predicates of very large algebraic degree. At the same time, as
we now discuss, arithmetic sketching schemes are a natural fit for cryptographic
applications.

Applications of arithmetic sketching. Whenever verifiers can inexpensively apply
linear functions to a large input x, arithmetic sketches yield asymptotically
and concretely efficient protocols for testing properties on the input x. For
example, consider a set of verifiers who hold linear secret shares of a large
vector x, as is the case in multiparty computations [6] and many practical
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protocols [1,9,10,16,17,20,21,23,24,42], and who want to test whether x ∈ L.
An arithmetic sketching scheme for L gives a very simple multiparty protocol for
this problem: The verifiers can use shared randomness to generate the sketching
matrix Q ∈ F`×n and can locally compute secret shares of the “sketch” Q ·x ∈ F`.
Then, the verifiers can run the decision procedure on these ` values in a small
multiparty computation to determine whether x ∈ L. The fact that the decision
procedure is arithmetic and of small size (independent of |F| and n) ensures that
this last step is inexpensive, even in the multiparty setting.

Analogously, consider a server who holds the encryption of a client-provided
vector x ∈ Fn under a linearly homomorphic encryption (or commitment) scheme
E(·), as is the case in a number of protocols [19,29,31,45,48]. In this case, the
server can unilaterally compute the sketch under encryption: E(Q · x) using
random coins it shares with the client. The client can then convince the server
that x ∈ L using a small zero-knowledge proof—again, whose size is independent
of F and n. While general-purpose succinct zero-knowledge techniques [8] can
of course achieve the same goal, arithmetic sketching schemes can yield simpler
protocols under simpler assumptions.

Efficiency metrics. When using arithmetic sketching schemes in cryptographic
protocols, there are three main complexity metrics of interest:

– The sketch size dictates the computation required to evaluate the sketch.
Since computing the sketch is the only part of the computation that depends
on the (large) input length n, minimizing the sketch size—down to the
constant—is crucial for concrete efficiency.

– The algebraic degree of the decision procedure dictates the round complexity
of a multiparty computation for evaluating the sketch. Or, when s servers
evaluate the sketch in a non-interactive multiparty computation, a sketch of
degree d dictates the collusion threshold t < s/d—the number of colluding
servers that the protocol can tolerate.

– The number of multiplication gates in the arithmetic circuit representing the
decision procedure dictates the communication complexity of evaluating the
sketch in a multiparty computation. Or, when the sketch is used to construct
zero-knowledge proof, the gate count determines the size and time cost of
generating and verifying the proof.

With an eye towards building the most concretely efficient multiparty protocols,
our constructions aim to minimize these costs, which may each form a bottleneck
in natural application scenarios.

1.1 Our contributions

We now summarize our technical contributions.

New framework for sketching weight-one vectors. Our first contribution is a
new framework for constructing arithmetic sketching schemes for languages of
vectors L ⊆ Fn with at most one non-zero entry, where the non-zero entry
must lie in a certain set B ⊆ F. Such languages feature prominently in schemes
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for PIR writing [1,17,24,42], private ad-measurement systems [29,48], private
telemetry applications [10, 20], and two-party ORAM schemes [23]. Our new
view of arithmetic sketching schemes for weight-one vectors yields the first
asymptotically optimal arithmetic sketching schemes for weight-one vectors with
B = F and B = {−1, 0, 1} (for “like/abstain/dislike” voting), and also gives a
clean and unified derivation of existing schemes.

Our approach works in three steps:

1. In Section 3.1, we define algebraic manipulation detection distributions (“AMD
distributions”), a new object inspired by the earlier notion of AMD codes [18]
that may be of independent interest. For B ⊆ F`, a B-multiplicative AMD
distribution is a distribution D over codewords in F`, along with a verifier.
For a word sampled from D, verification succeeds if a “permitted” affine
transformation F` → F` has been applied to the word, and verification fails
(with high probability) otherwise. More precisely, the verifier must accept all
words in the support of D scaled by any value in B. The verifier must reject,
with high probability, all affine functions on words in the support of D that
fall outside of this “permitted” set.

2. In Section 3.2, we show that any B-multiplicative AMD distribution gives a
simple arithmetic sketching scheme for the language of vectors of weight at
most one, whose non-zero element lies in B. The size ` of the sketch is equal
to the length of codewords in the AMD distribution.

3. Finally, in Section 3.3, we show that pairs of polynomials over F whose zeros
satisfy certain conditions yield AMD distributions.

Putting these three components together gives both a recipe for constructing
new arithmetic sketching schemes for weight-one vectors, and a characterization
of existing schemes for testing properties of weight-one vectors [14].

The first arithmetic sketching schemes for low-weight vectors. In Section 4, we
use new techniques to construct arithmetic sketching schemes for vectors of
various form with bounded weight. Here we consider a more refined version of the
above notion of arithmetic sketching in which the decision algorithm is split into
two parts: a private part, which is a randomized arithmetic circuit computing
a “sanitized” version of the sketch, and a public part, which is a (possibly non-
arithmetic) predicate deciding whether to accept or reject the sanitized sketch.
The sanitized sketch computed by the private part should reveal nothing about
an input x ∈ L except for the fact that it is in L. Thus, in applications, we only
need to securely evaluate the private part of the decision algorithm.

First, in Section 4.2, we show how to repurpose existing algorithms for black-
box testing of sparse polynomials [30] to construct an arithmetic sketching
scheme for vectors in Fn of Hamming weight w, where the non-zero entries can
be arbitrary in F.

Our idea is to view the input vector x ∈ Fn as the coefficients of a polynomial
fx ∈ F[Z] of degree at most n−1. Now, the input x has Hamming weight w if and
only if the polynomial fx has w non-zero coefficients. Prior work [30] shows that
O(w) polynomial-evaluation queries are enough to test whether a polynomial has
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w non-zero coefficients. Furthermore the decision procedure for this test can be
made arithmetic. With a single linear combination of the elements of x, of the
form (1, r, r2, r3, . . . , rn−1) ∈ Fn, we can compute an evaluation of fx on r. So,
we obtain an O(w)-size sketch for the language of weight-w vectors.

Next, in Section 4.3, we construct an arithmetic sketching scheme for vectors
in Fn whose non-zero components are in the set {0, . . . , w} and sum to exactly w
(i.e., the “L1-norm” is w). This language comes up in voting applications, where
a client may cast w votes for n candidates, and may vote multiple times for the
same candidate. Our technical idea is to construct a low-degree multivariate
polynomial whose coefficients are determined by the input vector x ∈ Fn, such
that the polynomial is (a) identically zero whenever the vector x has L1-norm
w and is (b) non-zero otherwise. We construct this polynomial via Newton’s
identities. Then, we show that it is possible to evaluate this polynomial at a
random point using w + 1 queries to the input vector.

As a final arithmetic sketching scheme for the bounded-weight case, we
show in Section 4.4 how to sketch for vectors Fn of weight w whose non-zero
elements satisfy an arbitrary arithmetic circuit C : F→ F, where the size of C
is independent of F. To do so, we first use the aforementioned results to test
that the input vector x has Hamming weight w. We next use linear queries to
partition the input vector at random into w2 chunks of size n/w2, and to sum
the values in each chunk. We then accept if either (a) the vector has Hamming
weight < w, in which case two non-zero elements were hashed to the same chunk
or (b) the sums all satisfy the circuit C, which happens whenever the vector is
valid and there are no collisions. (By the birthday bound, the latter happens
with constant probability.) This basic scheme has large correctness error, so we
drive the correctness error down using a careful repetition of these steps.

We summarize our new sketch constructions in Table 1.

From sketching to malicious-secure client-server multiparty protocols. As we have
discussed, arithmetic sketching schemes naturally give rise to protocols that a
set of servers can use to check that a client-provided secret-shared vector x lies
in a language L. In essentially all applications, x ∈ L if the client is honest, and
x 6∈ L otherwise. To recall: the servers, each holding additive shares of x, use
shared randomness to generate the sketching matrix, they compute shares of
the sketch locally, and then run a multiparty computation to run the decision
procedure on these answers.

This simple protocol is not maliciously secure: any one of the servers can
shift their share of the input x ∈ Fn by an additive offset ∆ ∈ Fn. If the client is
honest (x ∈ L), the sketch should always accept and the servers learn nothing
about x apart from the fact that x ∈ L. However, once the malicious server has
shifted its input by ∆, the output of the decision procedure reveals whether
(x+∆) ∈ L, which could reveal one bit of information about x. (In an e-voting
setting, for example, this bit could reveal which candidate the client voted for.)

In Section 5, we give a general method for augmenting sketch-based client-
server protocols of this form with malicious security at minimal cost. So, we show
that any good arithmetic sketching scheme for a language L yields a malicious-
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Table 1. Our new sketch constructions and their relation to prior work. Here, we
assume that the sketch is over a finite field F of characteristic greater than two and the
soundness error is O(|F|−1), unless otherwise noted. The note “Requires proof” indicates
that the scheme is a fully linear probabilistically checkable proof [9] (see Section 5),
rather than an arithmetic sketching scheme. The note “Only for DPF” indicates that
the sketch only applies in the context of a specific secret-sharing scheme and ω < 2.38
is the matrix-multiplication constant.

Our sketch

Language Result Size Deg. Muls. Notes

Weight at most one, non-zero value in B. . .
. . . with B = {0, 1} n/a 2 2 1  From BGI [14]. . . with B = {−1, 1} n/a 2 2 1
. . . with B = {1} n/a 2 2 1
. . . with B = F Thm. 13 3 2 2 Requires proof [14]
. . . with B = {−1, 0, 1} " 2 3 2 " "
. . . with B = {0, 1} Thm. 16 3 2 2 Soundness err. O(|F|−2)

Weight at most w, non-zero values in B. . .
. . . with B = F Cor. 23 2w + 1 3 wO(1) Requires proof [19]
. . . with B = {0, . . . , w},

entries sum to ≤ w
Thm. 26 w + 1 w + 2 O(w2) " "

" " " " 3 wO(1) " "

Weight exactly w, non-zero values in B. . .
. . . with B = F Thm. 22 2w + 1 3 O(wω) Only for DPF [21]
. . . with B = {0, 1} Cor. 28 3w + 2 3 O(wω) Requires proof [19]

secure client-server protocol of this type for L. The technique is to have the
client provide a randomized encoding of its input to the servers, using a flavor of
algebraic manipulation detection distributions (as in Section 3). Our construction
generalizes beyond arithmetic sketching schemes to also provide malicious-secure
client-server protocols for languages with “fully linear probabilistically checkable
proofs” [9].

Limits of arithmetic sketching schemes. Our final contributions are to give lower
bounds on the efficiency and power of arithmetic sketching schemes.

In Section 6, we use an algebraic argument to show that any arithmetic
sketching scheme for vectors in Fn of weight at most one (B = F) with sketch size `
and a decision predicate of degree d has soundness error at least

(
(d+1) |F|`−2

)−1.
This establishes that our arithmetic sketching scheme of Section 3 with sketch size
` = 3 is essentially optimal in terms of its sketch size, providing an unexpected
separation from the case of unit vectors in Fn (B = {0, 1}), in which sketch size
` = 2 is enough for O(1/|F|) soundness error.
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In Section 7, we use lower bounds from communication complexity to show
that certain languages cannot have arithmetic sketching schemes. For example,
define the Lp-norm of x = (x1, . . . , xn) ∈ Fn, for p relatively prime to |F| − 1, as
the scalar (xp1 + · · ·+ xpn)

1/p ∈ F. In Section 4, we give a arithmetic sketching
scheme for the language of vectors of L1 norm w, with entries in {0, . . . , w}. It is
something of a surprise then that, as we show, there are no analogous arithmetic
sketching schemes the language of vectors with Lp-norm, for any p > 1. For any
B ⊆ F, we also rule out arithmetic sketching schemes for the language of vectors
that are all zeros with a contiguous run of values in B of arbitrary length, and the
language of vectors that contains one value in B and arbitrary values elsewhere.

1.2 Related work

Boyle, Gilboa, and Ishai [14] implicitly constructed arithmetic sketching schemes
for languages of vectors in Fn of Hamming weight one, where the non-zero element
is in B ⊆ F, for B = {0, 1}, {−1, 1}, {1}. They also presented a solution for the
case of an unrestricted payload (i.e., B = F), but their approaches required
auxiliary proof information from the client. A variant of this construction that
avoids the extra proof was given in the Blinder system [1].

Distributed point functions [14, 28] (DPFs) give a compressed representation
of additive secret shares of a weight-one vector in Fn. A work of de Castro and
Polychroniadou [21] gives a technique that two parties, each holding a DPF
key, can use to verify that their keys together indeed represent a vector of
Hamming-weight one (B = F in our notation). When their protocol applies, it is
extremely efficient. However, their protocol only applies to a specific tree-based
DPF construction, thus not applying to input vectors that are secret-shared
directly or encrypted. Moreover, their protocol cannot check further properties
of the non-zero element (i.e., B = {0, 1}), which is critical for many applications.

Arithmetic sketching schemes are closely related to fully linear probabilistically
checkable proofs [9] (FL-PCPs). Essentially an FL-PCP for a language L ⊆ Fn is
a Merlin-Arthur analogue of arithmetic sketching scheme. In an FL-PCP, the
verifier’s queries compute an inner product with the input x concatenated with a
proof string π, whose length may grow with the input length n. (The number
of queries is typically constant in n.) If x ∈ L, there is a proof π that causes
the verifier to accept. If x /∈ L the verifier almost always rejects. Arithmetic
sketching schemes are thus FL-PCPs with an empty proof string. FL-PCPs are
more powerful than arithmetic sketching schemes—given a large enough proof,
they can check whether the input satisfies an arbitrary arithmetic circuit. Yet
FL-PCPs require additional proof, which can be costly in communication or
infeasible when there is no one party that knows the full input.

Traditional sketching data structures [2, 15, 41], which summarize a large
data stream in small space, inspire our approach. As we discuss in Section 2,
the arithmetic nature of our sketches means that most traditional sketching
techniques do not naturally apply in our setting.

Our sketches for low-weight vectors (Section 4) view the secret-shared vector
as coefficients of a polynomial and then use polynomial-sparsity testing [30] to test
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that the coefficient vector has low weight. Ghosh and Simkin [27] use polynomial-
sparsity testing as a low-weight test in the setting of private set intersection.
There, each of two parties holds a set—represented as its characteristic vector—
and they view the difference of their vectors as the coefficients of a polynomial.
This coefficient vector will be sparse if and only if the input sets differ in few
elements.

Finally, the combination of secure computation and sketching was previ-
ously considered in the context of sublinear-communication secure computation
protocols for approximations [25, 32, 35]. Since the focus of these works was
on crude asymptotic efficiency rather than concrete efficiency, they could rely
on traditional (non-arithmetic) linear sketching. Moreover, in contrast to the
approximate sketching problems considered in these works, here we consider
arithmetic sketching schemes that yield the exact output except with negligible
failure probability.

Notation. For a finite set S, we use x←R S to denote a uniformly random sample
from S. We use x =def 3 to note definition and 〈·, ·〉 to denote inner product. For a
finite field F, when |F| > n we use 1, 2, 3, . . . , n to denote distinct non-zero field
elements.

2 A Formalization of Arithmetic Sketching Schemes

We characterize our goal by the following notion of an arithmetic sketching
scheme. Our definition (Section 2.2) is roughly analogous to the definition of fully
linear PCPs [9], with the role of the witness and prover removed.

2.1 Overview

We define arithmetic sketching schemes with respect to a finite field F, a dimension
n ∈ N, and a language L ⊆ Fn. For a given input x ∈ Fn, the task is to determine
whether x ∈ L given only the output of a linear function applied to the input
vector x. That is, in a arithmetic sketching scheme with sketch size `, we consider
a verifier who uses randomness to produce a sketching matrix Q ∈ F`×n. The
verifier receives the matrix-vector product of the sketching matrix Q with the
input vector x: that is, Q · x ∈ F`. The verifier decides whether to accept (x ∈ L)
or reject (x 6∈ L) by running a decision algorithm D on the vector Q · x.

All of the specific languages L we will consider in this work are simple, and can
be decided in linear time in the input size. What makes constructing arithmetic
sketching schemes non-trivial is that (1) the decision algorithm takes as input
a small linear sketch of the (large) input vector and (2) the decision algorithm
must be a small arithmetic circuit, as we discuss now.

Arithmetic verifier. We will typically consider infinite families of languages L,
parameterized by the field F and input length n. For example, we could consider
the family of all unit vectors in Fn. We will require our arithmetic sketching
constructions to have an arithmetic verifier : that is, the decision algorithm D

9



applies an arithmetic circuit to the sketch, and accepts if and only if the cir-
cuit outputs the all-zeros vector in F. Restricting the decision circuit to being
arithmetic means that it is possible to compute with good concrete efficiency
in a secure multi-party computation, as in our motivating applications. (Later,
in Section 4.1, we will also consider relaxed arithmetic sketching schemes with
partially arithmetic decision predicates.)

Universal family of sketching schemes. We require by default that the family be
universal in the sense that both the sketch size ` and the decision algorithm D
are independent of the field F and input size n.

Complexity measures. In our constructions, we will aim to minimize the sketch
size ` (influencing the computation time), the algebraic degree of D (influencing
the round complexity or security threshold), and the multiplicative size of D
(number of multiplication gates, influencing communication complexity).

2.2 Formal definitions
We now formalize the above discussion.

Definition 1 (Arithmetic sketching scheme: Syntax). Let F be a finite field.
A arithmetic sketching scheme for a language L ⊆ Fn with sketch size ` ∈ N
consists of a pair of algorithms (S,D):

– S()→ Q ∈ F`×n. The randomized sketching algorithm outputs a query matrix
Q ∈ F`×n. (We also refer to Q as the “sketching matrix.”)

– D(a)→ y ∈ Fm. The decision algorithm takes as input a sketch vector a ∈ F`
and outputs a vector y ∈ Fm. (To enable stronger security, we will later allow
the decision algorithm D to be randomized, taking random field elements
r1, . . . , rk as additional inputs.)

We assume by default that the decision algorithm D is implemented by an
arithmetic circuit over F, consisting of addition, subtraction and multiplication
gates, as well as a unit gate outputting the constant 1 ∈ F. We measure the
complexity of D by its algebraic degree and multiplicative size (counting the
number of multiplication gates).

A arithmetic sketching scheme as above must satisfy the following properties.

Definition 2 (Completness and soundness). A arithmetic sketching scheme
(S,D) for a language L ⊆ Fn is

– Complete if, for all x ∈ L, the verifier accepts:

Pr[D(Q · x) = 0m : Q← S()] = 1.

(If this probability is at least 1−ε, we say that the arithmetic sketching scheme
has completeness error ε.)

– Sound with soundness error ε if, for all x 6∈ L, the acceptance probability, as
in the completeness definition, is at most ε.

A few remarks on the definition of arithmetic sketching schemes:
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Linear decision not interesting. The decision algorithm D must contain at least
one multiplication gate. If not, the arithmetic sketching accepts the vectors in
the kernel of a linear map and thus can only test linear predicates.

Non-arithmetic sketching. We restrict the decision algorithm D to have low
arithmetic complexity. Without this restriction, any language L ⊆ Fn can be
decided using a sketch of size ` = O(log |L|). The sketch, given input x ∈ Fn, just
computes a random linear combination r ← R(x) ∈ F` of the input vector. The
decision predicate searches—via brute-force search—for a value x′ ∈ L such that
R(x′) = r and accepts if, and only if, one exists. Since a random linear code has
good distance, the sketch will be sound. When the decision predicate must be a
small arithmetic circuit, constructing arithmetic sketching schemes is non-trivial,
even in the information-theoretic setting.

2.3 Zero knowledge

In the context of cryptographic applications, it is important that if x ∈ L,
then the sketching-based verification reveal nothing beyond the fact that x ∈ L.
For the above notion of arithmetic sketching, this zero-knowledge property is
automatically guaranteed by the completeness requirement if we use a secure
computation protocol to compute the output of the decision algorithm D. Indeed,
for x ∈ L, the output of D is always 0m. However, some applications motivate
a stronger notion of two-sided zero knowledge, requiring that the output of the
decision algorithm D hides all information about the input x apart from whether
x ∈ L. To this end, we allow the decision algorithm D to be randomized, taking
secret random field elements as additional inputs.

Definition 3 (Two-sided zero knowledge). We say that an arithmetic sketch-
ing scheme has δ-two-sided zero knowledge if there exists a simulator Sim such
that for all x ∈ Fn, the following distributions are δ-close in statistical distance:

Dideal = Sim(1{x ∈ L}) // Sim gets the bit indicating whether x ∈ L

Dreal =


(
Q, v

)
:

Q← S()

r ←R Fk

v ← D
(
Q · x; r

)
 .

If δ = 0, we say that the scheme satisfies perfect zero knowledge.

An arithmetic sketching scheme may not necessarily satisfy two-sided zero
knowledge. In particular, if x 6∈ L the output of D could leak additional informa-
tion about the input x. But the following generic transformation, whose proof
we give in Appendix A, uses a standard random-linear-combination technique to
modify any arithmetic sketching scheme into one with two-sided zero knowledge
at a small additional cost:

Fact 4. It is possible to modify any arithmetic sketching scheme over finite
field F with decision predicate D : F` × Fk → Fm to satisfy perfect two-sided zero
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knowledge by allowing D to use m secret random field elements. This modification
increases the multiplicative size of D by m, the algebraic degree of D by 1, and
the soundness error by 1/ |F|.

3 Sketching via Algebraic Manipulation Detection

We will be particularly interested in languages consisting of vectors whose Ham-
ming weight is at most 1, possibly with additional restrictions on the nonzero
entry. (For simplicity, in the following we will sometimes use “weight 1” to refer
to weight at most 1.) In this section, we present a new framework for construct-
ing arithmetic sketching schemes for such languages. The framework captures
several existing ad-hoc constructions in a unified way and gives rise to efficient
new constructions. The central tool is a new object that we call an algebraic
manipulation detection (AMD) distribution. This notion is inspired by the notion
of AMD codes of Cramer et al. [18], extending it to provide limited forms of
targeted malleability [11].

Background: AMD codes. An AMD code gives a (randomized) way to encode a
message into a codeword in a way that allows detection of “additive tampering”
of the encoded message. In particular, an AMD code consists of a randomized
encoder Enc : Fn → F` and decoder Dec : F` → Fn such that:

– it is possible to recover the message from the codeword: for all messages
m ∈ Fn, Pr[m = Dec(Enc(m))] = 1, and

– the codeword shifted by any additive offset either decodes to the correct
message m or a failure symbol ⊥: for all messages m ∈ Fn and ∆ ∈ F `,

Pr
[
Dec(Enc(m) +∆) 6∈ {m,⊥}

]
≤ ε,

where the probability is taken over the randomness of Enc and ε is some
small value ε ≈ 1/ |F|.

Our notion: AMD distributions. Our notion of AMD distributions differs from
standard AMD codes in three ways:

1. First, there is no encoder and no message to be encoded. Instead we define a
sampling algorithm SAMD that outputs, effectively, a random codeword r.

2. Second, we demand that attempting to decode a codeword r that has been
shifted by a non-zero additive offset results in a decoding failure with high
probability. (In traditional AMD codes, a shifted codeword may decode to the
failure symbol ⊥ or to the original message.) This stronger AMD requirement
appears in several works on secure computation [26].

3. Third, and most important, we demand that the manipulation-detection
property of the coding scheme holds even for affine tampering: that is, taking
r to βr + ∆ for nonzero scalar β and vector ∆. (Traditional AMD codes
detect only additive shifts.) In some cases, we allow decoding to succeed if the
codeword r is multiplied by an “allowable” value β ∈ B, for some prespecified
set B ⊆ F. We call these “B-multiplicative” AMD distributions.

12



Looking ahead, we will show that any B-multiplicative AMD distribution
yields a sketching scheme for the language of vectors of weight one whose payload
is in the set B.

3.1 Definition

We now make our notion of AMD distributions formal.

Definition 5 (AMD Distribution). An algebraic manipulation detection (AMD)
distribution over finite field F with codeword length ` ∈ N and error ε is given by
a pair of procedures:

– SAMD()→ r ∈ F`. A randomized algorithm that samples a codeword r.
– VAMD(r) → y ∈ F. A verification algorithm, represented as an arithmetic
circuit, that accepts a vector r ∈ F` and outputs an element y ∈ F. We
interpret the output as accepting if y = 0 and rejecting otherwise.

These procedures must satisfy the following properties:

– Nontriviality: The distribution of SAMD is supported by at least two vectors.
– Completeness: We have that:

Pr[VAMD(r) = 0 : r ← SAMD()] = 1.

– Affine manipulation detection: For every scalar β ∈ F and additive offset
∆ ∈ F` with β 6= 0 and ∆ 6= 0`, it holds that

Pr[VAMD(βr +∆) = 0 : r ← SAMD()] ≤ ε.

Remark. In Section 3.5, we will consider a more refined notion of AMD distribu-
tions, requiring that the decoder detect any nontrivial linear combination of two
or more (distinct) random samples from SAMD with high probability.

For our applications, we will often need AMD distributions that satisfy forms
of targeted malleability. That is, for some set B ⊆ F, we would like the AMD
decoder to accept codewords that have been scaled by a constant β ∈ B and to
reject, with high probability, all codewords scaled by constants β′ ∈ F \B.

Note that the completeness requirement implies that 1 ∈ B. In the context of
the sketching application this is without loss of generality, since for any β ∈ B\{0}
scaling the queries by β effectively converts B to β−1 ·B.

The following definition captures the above notion of targeted malleability:

Definition 6 (B-Multiplicative AMD Distribution). Let F be a finite field and
let B ⊆ F such that 1 ∈ B. We say that an AMD distribution (SAMD, VAMD)
over F and with error ε is B-multiplicative if it additionally satisfies the following
properties:

– For every β ∈ B, it holds that Pr[VAMD(βr) = 0 : r ← SAMD] = 1.
– For every β′ ∈ F \B, it holds that Pr[VAMD(β

′r) = 0 : r ← SAMD] ≤ ε.
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We will need the following lemma:

Lemma 7. Let (SAMD, VAMD) be an AMD distribution with codeword length `
over finite field F, where |F| > 2, with error ε. Then for all r0 ∈ F`, we have
Pr[SAMD = r0] ≤ ε.

Proof. Towards a contradiction, assume Pr[SAMD = r0] > ε. If r0 = 0, then we
can set β = 1 and ∆ to be any non-zero vector accepted by VAMD, which exists by
the non-triviality requirement. Otherwise, if r0 6= 0, pick any β ∈ F \ {0, 1}, and
let ∆ = −(β−1)r0 ∈ F`. Note that β 6= 0 and ∆ 6= 0. Then we have the following,
where the probabilities are all taken over the random choice of r ← SAMD:

Pr[VAMD(βr +∆) = 0]

≥ Pr[VAMD(βr +∆) = 0 | r = r0] · Pr[r = r0]

≥ Pr[VAMD(βr0 − (β − 1)r0) = 0 | r = r0] · Pr[r = r0]

≥ Pr[VAMD(r0) = 0 | r = r0] · Pr[r = r0]

> 1 · ε.

We derive the last line by invoking (a) the completeness of the AMD distribution
and (b) our initial assumption. This contradicts the AMD property of the
distribution.

3.2 From AMD distributions to sketching schemes

We now use AMD distributions to construct arithmetic sketching schemes for the
language of vectors of Hamming weight (at most) one, whose non-zero entry lies
within a specific set B. For our discussion, the following notation will be useful:

Definition 8 (Language LB). For a finite field F, dimension n ∈ N, and set
B ⊆ F , we define the language LB to be the set of B-multiples of unit vectors in
Fn. That is, LB = {β · ei | i ∈ [n], β ∈ B}, where ei ∈ Fn is the vector of zeros
with a single one at coordinate i.

The following construction shows that B-multiplicative AMD distributions
immediately give rise to arithmetic sketching schemes for the language LB .

Construction 9 (Sketch for Hamming-weight one from AMD distributions).
The construction is parameterized by a finite field F, an input size n ∈ N, a set
B ⊆ F such that 1 ∈ B, and a B-multiplicative AMD distribution (SAMD, VAMD)
with codeword length ` ∈ N. The arithmetic sketching scheme (S,D) is over the
field F, has sketch size `, and is defined as follows:

– S()→ Q ∈ F`×n.
• For i ∈ [n], compute ri ←R SAMD() ∈ F`.
• Output the matrix Q ∈ F`×n whose columns are (r1, . . . , rn).

– D(a)→ y ∈ Fm.
• Output VAMD(a).
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Theorem 10. If (SAMD, VAMD) is a B-multiplicative AMD distribution over
finite field F (|F| > 2) with codeword length ` and error ε then, for all n ∈ N,
Construction 9 instantiated with (SAMD, VAMD) is an arithmetic sketching scheme
for the language LB ⊆ Fn (as in Definition 8) with soundness error 2ε.

Proof. To show completeness: We can write any valid input x ∈ LB as x = βei
for some β ∈ B and i ∈ [n]. Then, for sketching query matrix Q ← SAMD(),
we have that a = Q · x = Q · (βei) ∈ F`; i.e., the i-th column of the query
matrix multiplied by the scalar β. By construction, the i-th column of the matrix
Q is computed as (ri1, . . . , ri`) ← SAMD(). So the sketch decision procedure
outputs D(βri1, . . . , βri`) = VAMD(βri1, . . . , βri`). This value is always 0 by the
B-multiplicative property of the AMD distribution (SAMD, VAMD), so the verifier
always accepts.

To show soundness: Let x′ /∈ LB . There are two cases.

– Case 1: x′ = β′ei for some i ∈ [n], β′ /∈ B.
By the B-multiplicative property of the AMD distribution:

Pr [D(Q · x′) = 0 : Q← S()]

= Pr [VAMD(β
′ri1, . . . , β

′ri`) = 0 : (ri1, . . . , ri`)← SAMD()]

≤ ε.

– Case 2: x′ has Hamming weight k ≥ 2. Letting Q be the random `× n query
matrix, we can write the answer vector a = Q · x′ as a linear combination
of k ≥ 2 independent samples ri from the AMD distribution SAMD. Namely,
a =

∑k
i=1 βir

i for nonzero βi ∈ F. Letting ∆ =
∑k
i=2 βir

i, we can now write:

Pr [D(a) = 0] = Pr
[
VAMD(β1r

1 +∆) = 0
]

≤ Pr [∆ = 0] + Pr
[
VAMD(β1r

1 +∆) = 0 |∆ 6= 0
]

≤ ε+ ε = 2ε,

where the last inequality follows from Lemma 7 and the affine manipulation
detection property of SAMD.

3.3 Constructing AMD distributions from algebraic varieties

We now show how to construct AMD distributions based on algebraic varieties.
These AMD distributions, via Theorem 10, give rise to practical arithmetic
sketching schemes for useful instances of the Hamming-weight one languages LB
that minimize the relevant complexity measures.

Construction 11 (AMD distribution from varieties). The construction is param-
eterized by a finite field F, randomness complexity k ∈ N, a codeword size ` ∈ N,
an arithmetic AMD sampler, defined by a polynomial map g : Fk → F`, and an
AMD verifier, defined by a polynomial f ∈ F[R1, . . . , R`]. The construction is
then:

– SAMD()→ r ∈ F`:
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• Sample a random vector (s1, . . . , sk)←R Fk.
• Output r ← g(s1, . . . , sk) ∈ F`.

– VAMD(r1, . . . , r`)→ y ∈ F: Output y ← f(r1, . . . , r`) ∈ F.

The following theorem follows almost immediately by construction:

Theorem 12. When instantiated with a polynomial map g : Fk → F` with total
degree deg g and polynomial f ∈ F[R1, . . . , R`] with total degree deg f , Construc-
tion 11 is a B-multiplicative AMD distribution, in the sense of Definition 6, with
soundness error (deg f · deg g)/ |F| when:
(1) [for completeness] the polynomial f ◦ g ≡ 0 ∈ F[S1, . . . , Sk],
(2) [for AMD] for all non-zero β ∈ F and non-zero ∆ ∈ F`, the formal polynomial

f ◦ (βg +∆) 6≡ 0 ∈ F[S1, . . . , Sk], and
(3) [for B-multiplicativity] it holds that f ◦ βg ≡ 0 if and only if β ∈ B.

Proof. For completeness: By property (1), VAMD(SAMD) = f(g(s1, . . . , sk)) = 0.
For AMD: When at least one of β ∈ F and ∆ ∈ F` is non-zero, we have:

Pr[VAMD(βr +∆) = 0: r ← SAMD()] = Pr[f(βg(s) +∆) : s←R Fk].

By property (2), f ◦ (βg +∆) ∈ F[S1, . . . , Sk] is a non-zero polynomial, and its
total degree is at most deg f · deg g. Then by the Schwartz-Zippel Lemma, the
probability that a random point in Fk is a zero is at most (deg f · deg g)/ |F|.

For B-multiplicativity: we invoke property (3). When β ∈ B, the argument
is the same as for completeness. When β 6∈ B, the argument is the same as for
AMD.

If the pair (f,g) satisfy properties (1) and (2) of Theorem 12, we can use the
theorem to characterize the B-multiplicativity properties of the AMD distribution
resulting from Construction 11. In particular, when f has monomials of only two
degrees, we have the following:

– One degree: Suppose f is homogeneous; i.e., every monomial of f has the
same total degree d ≥ 0. Then the pair (f,g) give a B-multiplicative AMD
distribution for B = F. That is because, since for all β ∈ F,

f ◦ βg = βd · (f ◦ g) ≡ 0,

where the final step holds by the completeness guarantee f ◦ g ≡ 0.
– Two degrees: Suppose f(R1, . . . , R`) = f1(R1, . . . , R`) + f2(R1, . . . , R`),

where f1, f2 6≡ 0 and every monomial of f1 (respectively, f2) has total degree
d1 + d2 (resp, d2), where d1 > 0, d2 ≥ 0. Then

f ◦ βg = f1 ◦ βg + f2 ◦ βg
= βd1+d2 · (f1 ◦ g) + βd2 · (f2 ◦ g)
= βd2(1− βd1) · (f2 ◦ g),

where the final step holds since f1◦g ≡ −f2◦g by the completeness guarantee.
Since f2 6≡ 0, this polynomial is the zero polynomial precisely for values of β
which annihilate the prefixed multiplicative term. Depending on the choices of
d1, d2, this directly corresponds to the sets B = {1}, {0, 1}, {−1, 1}, {−1, 0, 1}.
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3.4 New sketching schemes for vectors of weight one (or at most one)

We now consider several useful instantiations of Construction 11, including both
new sketching schemes and abstractions of existing ones.

New instantiations. Our characterization also yields useful new arithmetic
sketching schemes for the case char(F) > 2:

B = {−1, 0, 1} : f(r1, r2) = r31 − r2 g(s) = (s, s3)

B = F : f(r1, r2, r3) = r1r2 − r23 g(s1, s2) = (s21, s
2
2, s1s2).

Constructions from [14]. The following sketching schemes from [14] fit directly
into the characterization above, yielding a simple unified derivation based on
Theorem 12:

B = {0, 1} : f(r1, r2, r3) = r3 − r1r2 g(s1, s2) = (s1, s2, s1s2)

B = {0, 1} : f(r1, r2) = r21 − r2 g(s) = (s, s2)

B = {1} : f(r1, r2) = (r1 + 1)2 − r2 g(s) = (s, (s+ 1)2),

where the last two schemes require char(F) > 2.

We illustrate checking the conditions of Theorem 12 for the case B = F:

– Completeness: f ◦ g = s21s
2
2 − (s1s2)

2 ≡ 0.
– AMD: for β ∈ F and ∆ = (∆1, ∆2, ∆3) ∈ F3, we have f ◦ (βg +∆)(s1, s2) =
β∆2s

2
1+β∆1s

2
2−2β∆3s1s2+(∆1∆2−∆2

3). For any non-zero β and non-zero∆,
this polynomial in (s1, s2) is not identically zero.

– B-multiplicative: Since f is homogeneous of degree two, it holds by the
completeness property that f ◦ βg ≡ 0 for all β ∈ F.

We summarize the above by the following theorem.

Theorem 13 (Arithmetic sketching with a single decision polynomial).
Let n be a positive integer and F be a finite field with char(F) > 2. There are
arithmetic sketching schemes for the language LB ⊆ Fn (as in Definition 8), with
soundness error O(1/|F|) and a single decision polynomial f , for the following
choices of B.

– B = {0, 1}: sketch size 2, f of degree 2 and multiplicative size 1;
– B = {1}: sketch size 2, f of degree 2 and multiplicative size 1;
– B = {−1, 0, 1}: sketch size 2, f of degree 3 and multiplicative size 2;
– B = F: sketch size 3, f of degree 2 and multiplicative size 2.

Jumping ahead, in Theorem 30 we will show that the extra query required for
the case B = F is not an artifact of our construction, and it is in fact necessary
even if a decision algorithm D consisting of multiple decision polynomials fi is
allowed.
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Remark (General LB). An arithmetic sketching scheme for LB with an arbitrary
B ⊂ F of size k can be reduced to the case of LF by adding the single additional
query q0 = (1, 1, . . . , 1) and another decision polynomial of degree k, checking
that a0 = 〈x, q〉 ∈ B. However, this general solution is significantly less efficient
than the sketching schemes from Theorem 13.

3.5 A sketch with 1/ |F|2 soundness for binary weight at most 1

In Section 3.2 we used AMD distributions to construct sketching schemes for the
language LB ⊆ Fn (Definition 8) for certain sets B ⊆ F. When char(F) > 2, the
sketch from Section 3.2 for L{0,1} contains two elements and has soundness error
O(1/ |F|).

In this section we construct a sketch for L{0,1} that contains three elements
and has soundness error O(1/ |F|2). One can repeat the sketch for L{0,1} from
Section 3.2 twice to obtain the same soundness level, however the resulting sketch
would have length four, whereas our sketch has length three.

The previous notion of AMD distributions is insufficient for this purpose.
First, the verification algorithm VAMD(r) outputs only a single field element,
which is insufficient to achieve soundness error ε < 1/|F|. More inherently, the
failure probability ε must be bigger than the inverse of the support size of SAMD,
since a successful additive attack can be based on a guess of the codeword r. In
the following, we will modify original notion of AMD distributions (Definition 5)
to address both limitations. Concretely, the new notion allows VAMD(r) to output
multiple field elements, and requires detection of linear combinations of two or
more distinct samples from SAMD. Somewhat surprisingly, the latter requirement
will allow us to break the inverse-support-size barrier.

Definition 14 (Low-Error AMD Distribution). A low-error AMD distribution
with error ε is defined similarly to a standard AMD distribution from Definition 5,
with the following modified syntax and detection property.

– Syntax: VAMD(r)→ y ∈ Fm, namely the verification circuit outputs m field
elements. We interpret the all-0 output as accepting.

– Completeness: Pr
[
VAMD(r) = 0m : r ← SAMD()

]
= 1.

– Detection: Let S be the support size of SAMD and let n ∈ N satisfy 2 ≤ n < S.
Let S(n)

AMD denote the probability distribution of n independent samples from
SAMD, conditioned on all samples being distinct. Then for all (β1, . . . , βn) in
Fn \ L{0,1} it holds that

Pr
[
VAMD(β1r

(1) + . . .+ βkr
(n)) = 0m : (r(1), . . . , r(n))← S

(n)
AMD

]
≤ ε. (1)

A low-error AMD distribution as above naturally gives rise to an arithmetic
sketching scheme detecting inputs in L{0,1}, as in Construction 9. The only
difference is that instead of sampling the columns of the sketching matrix uni-
formly at random from SAMD, their choice is now conditioned on the distinctness
requirement. We next show how to instantiate this approach with SAMD that
samples powers of a random field element.
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Construction 15 (A low-error AMD distribution). The construction is pa-
rameterized by a codeword length ` ∈ N, a finite field F, and a polynomial map
f : F` → Fm. The construction is then:

– SAMD()→ r ∈ F`:
• Sample a random s←R F∗.
• Output r ← (s, s2, . . . , s`) ∈ F`

– VAMD(r1, . . . , r`)→ y ∈ Fm: Output f(r1, . . . , r`) ∈ Fm.

The next theorem shows that instantiating this construction with ` = 3,
which implies a sketch of size three, gives a low-error AMD distribution with
error ε = O(1/ |F|2).

Theorem 16. Let n ∈ N and let F be a field where |F| > n2. Then the SAMD in
Construction 15, instantiated with ` = 3, m = 2, and the polynomial map

f(r1, r2, r3) =
(
r21 − r2, r3 − r1r2

)
∈ F2

is a low-error AMD distribution (as in Def. 14) with error ε ≤ 6e/(|F|2 − 3 |F|).

Proof idea. We give the full proof in Appendix B. Completeness follows directly
from the construction. To prove the detection property defined in (1), we have two
cases: First, suppose the input vector has weight 1 but that its non-zero element u,
say in position i, is not in {0, 1}. Then u2 6= u and therefore (siu)2 6= s2iu because
si ∈ F∗. This means that r21 − r2 6= 0 as required. Second, suppose that the input
vector β has weight w greater than one. Define the set (F6=)n as the set of all
n-tuples in (F∗)n whose elements are pairwise distinct. Then for the sketch to
fail, the random vector s ∈ (F6=)n, whose elements are pairwise distinct, must lie
on the intersection of the two n-variate polynomials

〈X, β〉2 = 〈X2, β〉 and 〈X3, β〉 = 〈X, β〉 · 〈X2, β〉. (2)

For a fixed β of weight at least two, we will appeal to Bézout’s theorem to argue
that the intersection contains at most 6 |F|n−2 points s ∈ (F 6=)n. Given that, we
can bound the detection error as required.

In this subsection we used sketching matrices that are restricted to contain
distinct non-zero columns. This restriction can also be applied to the sketches in
Theorem 13. For example, for the B = {0, 1} sketch of Theorem 13, whose exact
soundness error can be shown to be about 2/|F|, the soundness error can be
reduced by about a factor of two by ensuring that the sampled sketching matrix
contains distinct non-zero columns, as we do in this section.

4 Sketching for Low-Weight Vectors

In this section, we construct sketching schemes for languages of vectors of low
Hamming weight.
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Throughout this section, when working with input vectors of dimension n, we
assume that the finite field F over which we work contains an element of order
at least n. If the field F is too small for such an element to exist, we can lift
the input vector to an extension K/F such that |K| ≥ n. When working with a
secret-shared input vector, this lifting requires no communication between the
verifiers. Using such an extension increases the communication cost, in terms of
bits, by at most a multiplicative dlog2 ne factor.

4.1 Refined definitions: Arithmetic sketching with private decision

In this section, we give refined definitions of arithmetic sketching schemes, which
give more efficient constructions when implementing the decision predicate in a
multiparty computation (as in many applications). In particular, we now split
the decision predicate D into two parts: a private predicate Dpriv and a public
predicate Dpub:

– The private predicate, Dpriv, operates on the verifier’s sketch of the input
vector x and evaluates a (typically small) randomized arithmetic circuit on
the sketch. The output of Dpriv is essentially a “sanitized” version of the
sketch—the sanitized sketch leaks nothing about the input x, in a sense that
we will define shortly. In applications, we will typically evaluate Dpriv via
secure multiparty computation.

– The public predicate, Dpub, takes the “sanitized” sketch as input and deter-
mines whether the verifier will accept or reject. The public predicate may
compute a complicated high-degree function of its inputs. Since the inputs to
Dpub leak nothing about the instance x, in applications, it is safe to publish
these values and compute Dpub in the clear.

The refined syntax is then:

– S()→ Q. The sketching algorithm outputs a query matrix Q ∈ F`×n.
– Dpriv(a, (r1, . . . , rk)) → y ∈ Fm. The private decision algorithm takes as

input the sketch a = Q · x ∈ F` and random field elements r1, . . . , rk, and
outputs a vector y ∈ Fm.

– Dpub(y) → {0, 1}. The public decision algorithm takes as input a vector
y ∈ Fm and outputs an accept/reject bit.

Completeness and soundness are as in the standard definition of arithmetic
sketching schemes (Definition 2) with the combined decision algorithm Dpub ◦
Dpriv replacing the single algorithm D. For zero knowledge, we require that the
output of the private decision algorithm leak nothing about the input x apart
from the fact that x ∈ L.

Definition 17 (Zero knowledge with split decision predicate). We say that an
arithmetic sketching scheme (S,Dpriv, Dpub) for a language L ⊆ F satisfies δ-zero
knowledge if there exists a simulator Sim such that for all x ∈ L, the following
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distributions are δ-close in statistical distance:

Dideal = Sim()

Dreal =

{ (
Q, Dpriv

(
Q · x, r

))
:
Q← S()

r ←R Fk

}
.

If an arithmetic sketching scheme has δ-zero knowledge for δ = 0, we say that
the sketch has perfect zero knowledge.

Our notion of zero knowledge is analogous to the notion of strong zero-
knowledge in the setting of zero-knowledge proof systems on secret-shared data [9].

Fact 4 shows that when the decision algorithm is a single arithmetic circuit, it
is easy to modify any arithmetic sketching scheme to satisfy the stronger notion
of two-sided zero knowledge (Definition 3) by augmenting the decision algorithm
with a bit of additional randomness. Since the decision routine here may have a
non-algebraic (high-degree) public predicate, it is no longer always easy to add
two-sided zero knowledge to such arithmetic sketching schemes.

4.2 Weight-w vectors with arbitrary payload
We first give a linear sketch-verification scheme that recognizes vectors of Ham-
ming weight w with arbitrary payload.

Given an input vector x = (x0, . . . , xn−1) ∈ Fn, we view the vector x as
holding the coefficients of the polynomial p(Z) =

∑n−1
i=0 xiZ

i ∈ F[Z]. Notice
that the number of non-zero coefficients of the polynomial p is exactly equal
to the number of non-zero elements of the input vector x. Furthermore, for
all r ∈ F, it is possible to compute the evaluation of the polynomial p at the
point r by taking a single linear combination of the elements of x, of the form
(1, r, r2, . . . , rn−1) ∈ Fn. So, if we can test whether a polynomial p has w non-zero
coefficients using ` polynomial-evaluation queries to p, we can test whether the
input vector x has w non-zero coefficients using a linear sketch of size `. By
applying existing algorithms for testing whether a polynomial’s coefficient vector
is sparse [30], we thus construct linear sketch-verification schemes for low-weight
vectors.

The sketch-verification schemes in this section rely on the following lemma,
which appears in a similar form in the work of Grigorescu, Jung, and Rubin-
feld [30]:

Lemma 18 (Ben-Or and Tiwari [7]). Let F be a finite field, let p ∈ F[U ] be a
polynomial, and let ` be a non-negative integer. Then for any u ∈ F, define the
Hankel matrix Hp(u) as:

Hp(u) =
def



p(1) p(u) p(u2) . . . p(u`)

p(u) p(u2) p(u3) . . . p(u`+1)

p(u2) p(u3) p(u4) . . . p(u`+2)
...

...
. . .

...
p(u`) p(u`+1) p(u`+2) . . . p(u2`)

 ∈ F(`+1)×(`+1).
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Then for a polynomial p with w non-zero cofficients,

– if w > `, the determinant det(Hp(U)) is a non-zero polynomial in U of degree
at most 2

(
`+1
2

)
deg(p), and

– if w ≤ `, the determinant det(Hp(U)) ≡ 0, as a polynomial in U .

In particular, if the polynomial p of Lemma 18 has more than ` non-zero
coefficients, then for a random u←R F, the matrix Hp(u) will be full rank and its
determinant det(Hp(u)) will be non-zero with high probability. Moreover, if the
polynomial p has w ≤ ` non-zero coefficients, the matrix Hp(u) will be of rank w,
with high probability over the random choice of u←R F. We prove the following
in Appendix D:

Corollary 19. Let F be a finite field, let p ∈ F[U ] be a polynomial, and let ` be
a non-negative integer. If p has ` non-zero coefficients then, if we sample u←R F,
for the matrix Hp(u) ∈ F(`+1)×(`+1) defined in Lemma 18, it holds that:

Pr
[
rank(Hp(u)) = ` : u←R F

]
≥ 1− 2

(
`

2

)
deg(p)

|F|
.

We will also need the following standard fact, proven in Appendix D:

Fact 20. Let F be a finite field and let n be a positive integer. Then the probability
that a random matrix R←R Fn×n is full rank is at least 1

|F|−1 .

Construction 21 (Sketching for Hamming weight w). The construction is
parameterized by a finite field F, and integers w and n with w < n < |F|. The
sketch accepts the language of vectors in Fn of Hamming weight exactly w. The
scheme has sketch size ` = 2w + 1, completeness error 2/(|F| − 1) soundness
error O(w2n/ |F|), and a decision algorithm implementable by an arithmetic
circuit with O(wω) multiplication gates, where ω < 2.38 is the (algebraic) matrix-
multiplication constant.

– S()→ Q.
• Sample a random value u←R F.
• Return

Q =



1 1 1 1 . . . 1

1 u u2 u3 . . . u(n−1)

1 u2 u4 u6 . . . u2(n−1)

...
...

...
...

. . .
...

1 u`−1 u2(`−1) u3(`−1) . . . u(`−1)(n−1)

 ∈ F`×n.

– Dpriv(a, (r1, . . . , rk))→ y ∈ Fm.
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• Use the sketch a ∈ F` of size ` = 2w + 1 to form a Hankel matrix H:

H =



a1 a2 a3 . . . aw+1

a2 a3 a4 . . . aw+2

a3 a4 a5 . . . aw+3

...
...

. . .
...

aw+1 aw+2 aw+3 . . . a2w+1

 ∈ F(w+1)×(w+1).

• Use the k = 2(w + 1)2 random values r1, . . . , rk ∈ F given as input to
sample two square matrices R1, R2 ∈ F(w+1)×(w+1).
• Compute the matrix-matrix product R1 ·H ·R2 ∈ F(w+1)×(w+1).
• Output this product as a vector of dimension m = (w + 1)2.

– Dpub(y) → {0, 1}. Interpret the input y ∈ Fm as a matrix Y of dimension
(w + 1)× (w + 1). Accept if and only if rank(Y ) = w.

Theorem 22. Construction 21 has completeness error 2
|F|−1 , soundness er-

ror O(w2n/ |F|), and δ-zero knowledge, in the sense of Definition 17, for δ =
O(w2n/ |F|).

Proof of Theorem 22. For completeness: By Corollary 19, when the input vector x
has Hamming weight w, the matrix H will have rank w with probability 1 −
O(w2n/|F|). Then provided that the random matrices R1 and R2 that Dpriv

samples are of full rank, the matrix R1 ·H ·R2 will have rank w and the verifier
will accept. By Fact 20 and the union bound, the probability that either matrix
fails to be invertible is 2/(|F| − 1).

For soundness: When the input vector x has Hamming weight w′ < w, the
matrix H has rank w′ < w (by Lemma 18), so the matrix H ·R has rank at most
w′ and the verifier will always reject. When the input vector x has Hamming
weight w′ > w, again by Lemma 18, the determinant is a polynomial in u of
degree O(w2n). So in this case the determinant is non-zero, and the verifier will
accept with probability O(w2n/|F|).

For zero knowledge: The simulator takes a fixed matrix M ∈ F(w+1)×(w+1) of
rank w and outputs R1 ·M ·R2 for random matrices R1, R2 ∈ F(w+1)×(w+1). To
explain why the simulation is correct, if x has Hamming weight w, the matrix H
has rank w with probability 1−O(w2n/ |F|), by Corollary 19. (If rank(H) 6= w,
the simulation fails.) Multiplying a rank-w matrix M on the left and right by
random matrices is always distributed in the same way, regardless of the choice
of the rank-w matrix M [33].

Bounded weight. Construction 21 accepts vectors of Hamming weight exactly w. In
some applications, we want to accept the language L×≤wB of vectors of Hammming
weight at most w. We prove the following in Appendix D:

Corollary 23. There is an explicit arithmetic sketching scheme for the language
of vectors in Fn of Hamming weight at most w. The scheme has sketch size 2w+1,
completeness error 2/(|F| − 1) soundness error O(w2n/ |F|), δ-zero knowledge,
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in the sense of Definition 17, for δ = O(w2n/ |F|), and has a private decision
predicate that can be implemented using an arithmetic circuit of poly(w) gates
and degree three.

4.3 Sketching for vectors with L1 norm w

Let w and n be a positive integers, and let F be a finite field of characteristic
greater than wn. In this section we give a linear sketch-verification scheme that
recognizes vectors of a bounded L1 norm, specifically the set

L(=w)
1 =def

{
(x1, . . . , xn) ∈ Fn :

n∑
i=1

xi = w, xi ∈ {0, . . . , w}

}
. (3)

This sketch is useful for voting or private-telemetry applications in which each
client casts w votes for n candidates, while allowing the client to vote for the
same candidate multiple times.

To outline the main technical idea: given an input vector x = (x1, . . . , xn) ∈
Fn, the sketch chooses a random vector (r1, . . . , rn) ∈ Fn and evaluates the power
sums

pj =
def

n∑
i=1

xi · rji ∈ F, for j = 1, . . . , w + 1 (4)

using a total of w + 1 linear queries to x (i.e., using a sketch of size w + 1). To
decide whether or not to accept the vector x, we apply the Newton identities
(Theorem 24) to the sketch (p1, . . . , pw+1) to obtain the quantities ew and ew+1

in F. Then the decision algorithm accepts the instance x if ew+1 = 0 and ew 6= 0.
The sketch can be adapted to test membership in L(≤w)

1 where the equality
in (3) is changed to

∑n
i=1 xi ≤ w. The only modification to the sketch is that x

is accepted whenever ew+1 = 0 (we drop the check that ew 6= 0).

To explain why this approach is sound, let us first review the Newton identities.
For w ≥ 0

– let Pw(X1, . . . , Xn) be the w-th power sum polynomial defined as
Pw(X1, . . . , Xn) =

∑n
j=1X

w
j .

– Let Ew(X1, . . . , Xn) be the w-th symmetric polynomial, defined as
Ew(X1, . . . , Xn) =

∑
1≤j1<j2<···<jw≤nXj1Xj2 . . . Xjw .

The Newton identities relate these two families via a recurrence relation.

Theorem 24 (Newton identities [39]). For all finite fields F and integers
k, n ∈ N with k ≤ n:

k · Ek(X1, . . . , Xn) =

k∑
i=1

(−1)i−1 · Ek−i(X1, . . . , Xn) · Pi(X1, . . . , Xn).
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The recurrence lets us express Ek purely in terms of P1, . . . , Pk. For example

E1 = P1, 2E2 = P 2
1 − P2, 6E3 = P 3

1 − 3P1P2 + 2P3, (5)

and so on. In other words, for every k > 0 there is a polynomial Nk such that
Ek = Nk(P1, . . . , Pk). This Nk has total degree k.

Now, observe that if (r1, . . . , rn) ∈ Fn is a vector that has w or fewer non-zero
entries, then Ew+1(r1, . . . , rn) = 0. However, if a random vector (r1, . . . , rn) ∈ Fn
has more than w non-zero entries, then Ew+1(r1, . . . , rn) is very likely to be
non-zero. With this in mind, we can present the sketch.

Construction 25 (Sketching for L1 weight w). The construction is parameterized
by integers w and n and a finite field F of characteristic greater than nw. The
sketch accepts the language of vectors L(=w)

1 in Fn. The scheme has sketch
size w + 1, soundness error (w + 1)/ |F|, and a decision predicate with O(w2)
multiplication gates.

– S()→ (q1, . . . , qw+1).
• Sample random values r1, . . . , rn ←R F.
• Return

Q =


r1 r2 r3 r4 · · · rn
r21 r

2
2 r

2
3 r

2
4 · · · r2n

...
...

. . .
...

r`1 r
`
2 r

`
3 r

`
4 · · · r`n

 ∈ F`×n.

– Dpriv
(
(p1, . . . , pw+1), (d1, d2)

)
→ y ∈ F2.

• Use the ` = w + 1 sketch values (p1, . . . , pw+1) to compute the quanti-
ties ew and ew+1 using (5), namely, ew = Nw(p1, . . . , pw) and ew+1 =
Nw+1(p1, . . . , pw+1).

• Use the two random values d1, d2 ∈ F to blind ew and ew+1 by computing
êw = ew · d1 and êw+1 = ew+1 · d2.

• Output y = (êw, êw+1) ∈ F2.
– Dpub(y)→ {0, 1}. Parse y = (êw, êw+1) ∈ F2. Accept if and only if êw 6= 0
and êw+1 = 0. (Completeness fails when d1 = 0.)

Theorem 26. Construction 25 is complete (with completeness error 1/ |F|),
sound, and δ-zero knowledge, in the sense of Definition 17, for δ = (w + 2)/ |F|.
Moreover, the scheme has a private decision predicate that can be implemented
using either:

– an arithmetic circuit of size O(w2) and of degree w + 2, or
– an arithmetic circuit of size poly(w) and of degree 3.

Zero knowledge when x ∈ L(=w)
1 is immediate. To obtain the degree-three

circuit computing the decision predicate, we apply standard results on randomized
encodings [34]. All that remains it to prove completeness and soundness of the
construction, which we do with the following theorem, proved in Appendix D.1:
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Theorem 27. Let F be a finite field of characteristic greater than nw. Then the
following holds for all x = (x1, . . . , xn) ∈ Fn. Sample a random (r1, . . . , rn) ∈ Fn,
compute the power sums p1, . . . , pw+1 ∈ F as in (4), and use (5) to compute
ew+1 ∈ F as ew+1 = Nw+1(p1, . . . , pw+1). Then

– if x ∈ L(≤w)
1 then Pr[ew+1 = 0] = 1,

– if x 6∈ L(≤w)
1 then Pr[ew+1 = 0] ≤ (w + 1)/ |F|.

Here the probability is over the random choice of (r1, . . . , rn) in Fn.

Construction 25 uses Theorem 27 twice: once to prove that x ∈ L(≤w)
1 and

once to prove that x 6∈ L(≤w−1)
1 . Together this proves that x is in L(=w)

1 .

Binary vectors of Hamming weight w. By combining Construction 21 and
Construction 25 we obtain a sketch that accepts vectors x ∈ Fn that (i) have
Hamming weight w and (ii) are in L(=w)

1 . The only such vectors are vectors in
{0, 1}n that have Hamming weight w. We have:

Corollary 28. There is an arithmetic sketch for binary vectors of Hamming
weight w; the cost is that of running both Construction 21 and Construction 25.

Vectors of Hamming weight w with equal non-zero entries. To test if a
vector is of Hamming weight w with all non-zero entries equal to one another,
the verifier can apply a sketch vector of the form (1, 1, 1, . . . , 1) to the input to
compute the sum σ ∈ F of the entries of the input vector. If the input vector
x ∈ Fn is well formed, then the value σw−1 ∈ F is the value of the non-zero
entries. Then the vector (w ·σ−1)x ∈ Fn is a binary vector of Hamming weight w
if and only if x ∈ Fn is a vector of Hamming weight w with equal non-zero entries.
The verifier can then test that the vector (w · σ−1)x ∈ Fn is a binary vector of
Hamming weight w. If so, the verifier can conclude that x is of Hamming weight
w with equal non-zero entries.

More generally, the verifier can apply an arbitrary arithmetic circuit C : F→ F
to σw−1 ∈ F, such as a bounds check, to ensure that all of the non-zero entries
are equal and satisfy circuit C.

4.4 Bounded-weight vectors with arbitrarily restricted payloads

In this section, we construct arithmetic sketching schemes for vectors in Fn with
exactly w non-zero entries and where each non-zero entry satisfies a arithmetic
circuit C : F → F. (We assume that C(0) 6= 0 ∈ F. Otherwise we can use the
remark below to sketch for the langauge of vectors of Hamming weight at most
w whose non-zero entries satisfy C.) We have:

Theorem 29. For all λ,w, n ∈ N with w ≤ n1/2 < |F|, and arithmetic circuits
C : F→ F (with size independent of F), there is a arithmetic sketching scheme
for the language of vectors in x ∈ Fn of Hamming weight w such that each
non-zero element satisfies C. The scheme (Construction 46) has completeness
error ε = 4/(|F| − 1) + 2−λ, soundness error O(w2n/ |F|), sketch size O(wλ) and
δ-zero knowledge, in the sense of Definition 17, for δ = O(w2n/ |F|) + 2−λ.
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Proof idea. The full proof appears in Appendix D.2. This sketch has two parts:

– First, we check that the input vector has Hamming weight exactly w, using
Construction 21.

– Next, we repeat the following test λ times and accept if all accept:
• Hash the n components of the vector down into w2 “bins.” That is, we

partition the n components of the input vector into w2 chunks at random
construct a test vector t = (t1, . . . , tw2) ∈ Fw2

where ti is the sum of the
entries of x in chunk i.

• Let C ′(z) =def z ·C(z) ∈ F be circuit that accepts all inputs that C does in
addition to the value 0 ∈ F.

• Accept if t ∈ Fw2

has Hamming weight less than w (i.e., two non-zero
elements of x landed in the same bucket) OR if, for the circuit C ′,
C ′(t1) = C ′(t2) = · · · = C ′(tw2) = 0 ∈ F.

The first check ensures an upper bound on the Hamming weight of the vector.
The second check ensures that all of the non-zero entries of the vector satisfy the
circuit C.

Remark. The same arithmetic sketching construction as in Theorem 29 serves to
check that a vector in Fn has at most w non-zero entries and where each non-zero
entry satisfies an arithmetic circuit C : F → F. To do so, we change only the
first step: just check that the input vector has at most w non-zero entries, using
Corollary 23, instead of checking that the input vector has Hamming weight
exactly w.

5 From Arithmetic Sketching to Client-Server Protocols

As discussed, a natural motivating application scenario of our arithmetic sketching
schemes is in a client-server setting, where a client secret shares a sensitive vector
across servers, and the servers must verify that the shared vector has a proper
form. The linear nature of the sketching scheme enables the servers to individually
compute shares of the sketch of the input. The low arithmetic complexity of
the decision algorithm D means that servers can securely secure evaluate D
on their shares of the sketch using a via multi-party computation (MPC). If
the arithmetic sketching scheme satisfies the property of zero knowledge from
Definition 17, then the corresponding client-server verification scheme further
provides zero-knowledge guarantees against semi-honest servers. We refer the
reader to prior work [9] for a detailed treatment of this transformation in the
semi-honest model. Indeed, our arithmetic sketching schemes can be seen as a
special case of fully linear probabilistically checkable proofs (FL-PCP) from prior
work [9], without a Prover procedure.

However, note that the properties of the arithmetic sketching scheme do not
directly give any guarantees against a potentially adversarial verifier. Indeed, in
the solutions thus far, a malicious server may be able to reveal information about
the input. In what follows, we analyze this more adversarial setting, and provide
general techniques for achieving privacy against malicious verifiers.
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We give the technical details on our client-server schemes in Appendix C, and
we give an overview of the results here.

Auxiliary client information required. We first observe that, in general, achieving
security against a malicious verifier/server requires the client to send additional
information to the servers, beyond simply its secret shared vector. In particular,
without some form of auxiliary client information π, the scheme will inevitably
be subject to a selective-failure attack. Consider, for example, the language
L{0,1} ⊆ Fn of binary vectors of weight at most 1. Given only secret shares of
x, a malicious server can learn whether x is the all-zero vector, by adding +1
offset to one position of his secret share, and seeing if the resulting vector is
accepted (or whether the vector is any other particular unit vector, by analogous
adjustments).

Given this state of affairs, we thus turn back to the more general notion of fully
linear PCPs from [9], incorporating also a procedure for the client to generate
auxiliary information to provide to the servers. We provide a formal definition
in Section C.1. Note that in the definition of FL-PCP, queries are restricted to
make linear access to both the input x and the auxiliary proof material π, i.e.,
in our notation the sketch is computed as Q · (x‖π) for sketching matrix Q over
F. Requiring the sketch to be a linear function of the proof π is not inherent,
but will be convenient for us. In particular, the client can send the auxiliary
information π to the servers in additive secret-shared form, meaning that we can
include sensitive information within π to aid in authentication without revealing
it to malicious servers.

Toward malicious security. We next observe that a malicious-secure protocol
must enforce the correct execution of the sketching algorithm S and private
decision algorithm D, even in the presence of malicious servers. We can achieve
this using malicious-secure multiparty computation protocols. Given the low
arithmetic complexity of the decision algorithm D, this resulting overhead will
be minimal. In most cases, to run the sketching algorithm S in a multiparty
computation, the verifiers may simply run a coin tossing protocol to sample the
randomness for query generation.

Privacy against additive attacks. At this point, only one attack surface remains:
incorrectly performing query evaluation. Equivalently, the adversary’s remaining
power is to submit improper inputs to the secure computation protocol for the
decision algorithm D. Recall the inputs to the execution of D are (allegedly) each
server’s additive share of the query answers. Since the verifiers only hold additive
secret shares of both the input x and proof material π by design, the adversarially
chosen input must be independent of these secret values; this corresponds to an
arbitrary fixed additive offset attack on the combined value. That is, a malicious
verifier can learn the output of D on the shifted vector a+∆ ∈ F` where a ∈ F`
is the honest sketch value and ∆ ∈ F` is an adversarially chosen additive offset.

This kind of additive attack can reveal sensitive information, as the selective-
failure attack discussed above demonstrates. Even with auxiliary proof material
π, one must be careful. Suppose, for example, the value of π for x depends only on
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the product of two symbols xixj and not on the symbols themselves; a malicious
verifier can then learn whether xi = 0 for a secret input x by adding a garbage
offset to his share of xj and seeing if the value is still accepted.

We formulate a notion of additive-attack privacy for the FL-PCP, strengthening
zero knowledge by requiring no information is revealed even in the face of additive
attacks. Utilizing an FL-PCP with this extra property, together with MPC secure
against malicious parties for jointly executing the sketching algorithm S and
decision algorithm D suffices to yield a secure client-server protocol in the manner
described above.

Privacy against additive attacks via AMD distributions. As the final step, we
develop a general approach for obtaining this notion of additive-attack privacy.
This will be done by once again making use of algebraic manipulation detection
(AMD) distributions, as put forth in Section 3. We show that if the distribution
of (honestly generated) FL-PCP query and answer values satisfies a form of AMD
guarantee, then the FL-PCP indeed provides privacy against additive attacks.
Then, we provide general transformations for “hardening” general FL-PCPs to
ones providing this additional AMD property, with mild overhead.

In the general case, the additional authentication values introduced in our
approach result in a constant multiplicative overhead above the secret sharing
of the vector x. However, this approach is particularly useful for the setting of
sparse vectors x (as is predominantly the focus of this paper), in which the cost
of secret sharing the additional proof information adds little overhead beyond
secret sharing the input itself. See also the discussion in Section C.2.

6 Lower Bound on Sketch Size

In this section we establish a lower bound on the sketch size of an arithmetic
sketching scheme for weight-one vectors using an algebraic argument. We show
that the soundness error of an arithmetic sketching scheme for this language
depends on its sketch size. More precisely, the soundness error is at least 1

(d+1)|F|`−2

if the sketch size is ` and the algebraic degree of the decision algorithm is d.
Consequently, any arithmetic sketching scheme with sketch size only two has
constant soundness error. This bound proves that the positive result of Section 3
constructing a scheme for weight-one vectors with sketch size ` = 3 is optimal for
any scheme with soundness error of the form f(n)

|F| for some function f .
In the rest of the section we slightly abuse the terminology and say that

any scheme with soundness error larger than f(n)
|F| is not an arithmetic sketching

scheme, instead of stating the exact error. Additional terminology and notation
follow. Let LF be the language of vectors of weight at most 1 and length n ≥ 1
over a field F. That is, LF = {βei : i ∈ [n], β ∈ F} ⊂ Fn for unit vectors ei ∈ Fn.
Recall that the decision predicate D : F` → Fm is arithmetic and therefore
D(a1, . . . , a`) = (z1, . . . , zm) can be represented as m polynomials D1, . . . , Dm

over F such that Dj(a1, . . . , a`) = zj .
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Theorem 30 states the main result of this section, which bounds the soundness
error of an arithmetic sketching scheme for LF as a function of its sketch size.
We prove Theorem 30 in Appendix E.

Theorem 30. Let (S,D) be a arithmetic sketching scheme for the language LF.
If the sketch size of the scheme is `, and the algebraic degree of D is d then the
soundness error of the scheme is at least 1

(d+1)|F|`−2 .

Proof idea. The full proof appears in Appendix E. The proof proceeds in three
steps. First, we prove in Lemma 47 that any polynomial Dj is a sum of homoge-
neous polynomials that all vanish on any possible column of the sketching matrix.
Then, we prove that the set of roots of a homogeneous polynomial over a field
is a union of a bounded number of linear subspaces of F` that are of dimension
1 or 0. Finally, we use the fact that each column in the sketching matrix must
necessarily be a root of Dj to prove that the decision procedure will accept a
vector with two non-zero locations if the associated columns of the sketching
matrix happen to be part of the same linear subspace. The probability of that
event occurring is too high if the sketch size is low.

Corollary 31. Any arithmetic sketching scheme (S,D) for LF with sketch size
two has soundness error at least 1

d+1 . Therefore, any arithmetic sketching scheme
for LF with O(|F|−1) soundness error must have sketch size at least three.

7 Languages Without Arithmetic Sketching Schemes

Consider two parties, one holding an input x ∈ Fn, and the other holding an
input y ∈ Fn who wish to determine if (x, y) ∈ L′ for some language L′ ⊆ (Fn)2,
using public coins. Let R(L′) denote the minimal communication complexity to
decide whether (x, y) ∈ L′ for all x, y with probability bounded away from 1/2.

An arithmetic sketching scheme for the language L = {x+ y | (x, y) ∈ L′}
induces an instance of a protocol that decides L′ in two steps. First, the two
parties derive the sketching matrix from the public random coins, and locally
compute shares of the sketch on x+ y using linearity. Then, the parties use an
interactive protocol to compute the decision on the sketch.

The communication complexity of this type of scheme depends only on the
decision algorithm D. However, since the families of sketching schemes we consider
are universal, D is independent of F and n, i.e. the communication complexity of
the scheme is O(1).

In this section, we use known lower bounds on the communication complexity
of any protocol that computes a language L′ to derive lower bounds on the size of
a decision circuit D in an arithmetic sketching scheme for the associated language
L. Indeed, we show that several natural languages L do not have a universal
family of arithmetic sketching scheme by proving that their decision circuits must
depend on n or on F.

The communication complexity lower bounds we use are on the problems of
Set Disjointness (DISJ) and Greater Than (GT). In Set Disjointness the inputs
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x, y are subsets of a universe {1, . . . , n}, and the goal is to decide the language
LDISJ = {(x, y) ⊆ {1, . . . , n} | x∩ y = ∅}. A series of works [5,37,46] established
that R(DISJ) = Θ(n). The inputs x, y in the problem of Greater Than are the
binary representation of two non-negative integers, and the goal is to decide the
language LGT = {(x, y) | x > y}. Viola [49] proved that R(LGT ) = Ω(log n).

7.1 Lp norm

An arithmetic sketch for the language of vectors with L1 norm equal to some
w is presented in Section 4.3. It is natural to ask whether this construction can
be generalized to an arithmetic sketch for Lp such that p > 1 is a constant
integer. Even though Lp is not necessarily a norm over the field, computing it as
a function is interesting and useful.

Previous work [3, 38] on computing moments in the streaming model [2] with
low space complexity is sufficient to establish that arithmetic sketching schemes
for the Lp norm are impossible. In this model there are n real-valued changes to
a given vector of real numbers, and the goal is estimate the Lp norm of the vector
with small error and minimal space. Translating the bounds on space complexity
from the streaming model to sketch size in an arithmetic sketching shows that
` = Ω(log n) for L2 and ` = Θ(n1−2/p log n) for p > 2. However, the streaming
model accepts a decision algorithm that is not necessarily arithmetic.

In this section we show a tighter bound for arithmetic sketching schemes via
a communication complexity argument. Specifically, we show that the decision
algorithm for Lp, p > 1, is of multiplicative size Ω(n) via a reduction of a general
protocol for DISJ to an arithmetic sketching for Lp.

More formally, for an integer p ≥ 2 and a field F such that p and |F| − 1

are co-prime let L(=w)
p =def

{
(x1, . . . , xn) ∈ Fn : (

∑n
i=1 x

p
i )

1/p
= w

}
. This def-

inition of Lp restricts the field to ensure that a p-th root exists for every
field element. For L2, which is the most useful case of Lp, we also consider
the norm squared, which can be defined for all fields. Define the language
L2(=w)
2 =def

{
(x1, . . . , xn) ∈ Fn :

∑n
i=1 x

2
i = w

}
.

The proof of the following theorem appears in Appendix F:

Theorem 32. Let n, p ≥ 2 be integers, p ≥ 2, let F be a finite field such that
|F| − 1 and p are co-prime, and let E be a finite field, |E| > 2. If wf ∈ F and
we ∈ E then the decision algorithm for any arithmetic sketching scheme for the
languages L(=wf )

p over F or L2(=we)
2 over E is of multiplicative size Ω(n).

7.2 Specified value in arbitrary vector

In Section 3 we construct arithmetic sketching schemes for the language LB of
B-multiples of unit vectors, i.e. vectors in which all entries are 0, except for one
entry which is in the set B ⊆ F. It seems natural to ask whether there is an
arithmetic sketching scheme for the language of all vectors in which one entry
is in B, while all other entries are arbitrary elements in F. The next theorem
proves that this language, namely LB,F =def {(x1, . . . , xn) ∈ Fn | ∃i, xi ∈ B }, has
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no arithmetic sketching scheme for B that is not too large, via a reduction from
DISJ. We prove the following theorem in Appendix F:

Theorem 33. Let n ≥ 2 be an integer, let F be a field, and let B ⊆ F such that
|B|
|F| ≤

1
3n . Then, the language LB,F has no arithmetic sketching scheme.

7.3 Intervals

Shared vectors that are all zero, except for a secret interval [a, b], 1 ≤ a ≤ b ≤ n
on which their value is some constant β ∈ B have several different applications,
e.g. [12,14]. An arithmetic sketching scheme for B = {−1, 0, 1} was presented
in [14]. The more natural setting of B = {0, 1}, i.e. accepting either the all zero
vector or a vector with an interval of 1, was considered in that work though
without giving a arithmetic sketching scheme for the language.

At first glance the difference between B = {−1, 0, 1} and B = {0, 1} seems
to be minor, and constructing an arithmetic sketching scheme for intervals with
B = {0, 1} should be achievable with the correct technical approach. However,
we show in this section that such an arithmetic sketching scheme is impossible
via a reduction from the Greater Than (GT) problem using the lower bound on
its communication complexity.Let

Lint,B =def

{
(x1, . . . , xn) ∈ Fn : ∃ 1 ≤ a ≤ b ≤ n, ∃β ∈ B ∀a ≤ i ≤ b xi = β,

∀ (i < a ∨ i > b) xi = 0

}
.

We prove the following theorem in Appendix F:

Theorem 34. If B = {0, 1} then there does not exist an arithmetic sketching
scheme for the language Lint,B.

8 Open Questions

Our results leave several natural open questions. A broad question is to obtain
a tight understanding of the achievable tradeoffs between sketch size, decision
degree, and soundness error for languages of interest. Even for the simple “weight-
1” languages covered by Theorem 13, where our sketching schemes are optimal
with respect to both sketch size and decision degree, the soundness error we
obtain is only optimal up to a constant factor.

The gaps are bigger for more complex languages. For example, in the case of
vectors of Hamming weight at most w (Corollary 23), the number of multiplication
gates required by the decision algorithm is polynomially bigger than in the case
of Hamming weight exactly w (Theorem 22), and even the latter may not be
asymptotically optimal.

Finally, it may be useful to extend the scope of arithmetic sketching to capture
approximate computations, which are commonly considered in the algorithmic
literature on (insecure) sketching and streaming.
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A Deferred proofs from Section 2

Proof of Fact 4. The idea is to augment the decision predicate D with additional
randomness that masks the output in the case that its output is non-zero
(i.e., when x /∈ L). More precisely, if the decision predicate has the form
D : F` → Fm, we define an augmented decision predicate D′ that takes m
additional random values (r1, . . . , rm) ∈ Fm as input: D′(a1, . . . , a`, r1, . . . , rm).
The new predicate D′ first computes the output of the original decision predicate
(v1, . . . , vm)← D(a1, . . . , a`) and then outputs a random linear combination of
the blinded values:

∑m
i=1 viri ∈ F. Whenever x ∈ L, the decision predicate D′

outputs zero, as before. But now whenever x 6∈ L the output of the decision
predicate D′ is distributed uniformly at random over F—the output leaks nothing
about the input x. In either case, the output of the decision predicate is now
easy to simulate. This transformation increases the probability that the verifier
incorrectly accepts by 1/ |F|.

We note that by using a simple generalization of the above transformation, we
can increase the soundness error by only 1/ |F|d by increasing the multiplicative
size of D by dm and the algebraic degree of D by 1.

B Deferred proofs from Section 3

Proof of Theorem 16. Completeness follows directly from the construction. To
prove the detection property defined in (1), fix some β 6∈ L{0,1}. It is convenient
to define the set (F 6=)n be the set of all n-tuples in (F∗)n whose elements are
pairwise distinct. We need to show that for a random vector s sampled from
(F 6=)n, if we define zi as the inner product zi = 〈β, si〉 for i = 1, 2, 3 then

Pr
[
f(z1, z2, z3) = (0, 0)

]
≤ ε

for the ε in the theorem statement.
There are two cases. First, suppose β = uei for u 6∈ {0, 1}. Then u2 6= u and

therefore (siu)
2 6= s2iu because si ∈ F∗. This means that z21 − z2 6= 0 as required.

Second, suppose β has weight w greater than one. Then for the sketch to fail,
the random vector s ∈ (F6=)n must lie on the intersection of the two n-variate
polynomials

〈X, β〉2 = 〈X2, β〉 and 〈X3, β〉 = 〈X, β〉 · 〈X2, β〉. (6)

For a fixed β of weight at least two, we will argue that the intersection contains
at most 6 |F|n−2 points s ∈ (F6=)n. Given that, we can bound the detection error
as

ε ≤ 6 |F|n−2

|(F6=)n|
≤ 6 |F|n−2∏n

i=1(|F| − i)
≤ 6

(|F| − 1)(|F| − 2)
·
(
|F|
|F| − n

)n−2
≤ 6

|F|2 − 3 |F|
·
(
1− 1

n

)−(n−2) ≤ 6e

|F|2 − 3 |F|
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as required. The third inequality follows from the assumption that |F| ≥ n2, and
therefore n/ |F| ≤ 1/n.

It remains to show that when the weight of β is two or more, the intersection
in (6) contains at most 6 |F|n−2 points in (F6=)n. First, consider the case when
β ∈ Fn has weight exactly two. Say, its first two positions, β1, β2 are the non-zero
positions. Then a direct calculation shows that the resultant of the two equations
in (6) with respect to X1 is zero when X2 is zero, or β1 = 1, or β2 = 1, or
β1 + β2 ∈ {0, 1}. In all four cases the points (s1, s2) ∈ F2 that satisfy (6) also
satisfy s1 = 0 or s2 = 0 or s1 = s2. Hence, there are no points (s1, s2) ∈ (F 6=)2
that satisfy (6) when β has weight exactly two.

Second, let us consider the case when β ∈ Fn has weight three or more. Ob-
serve that there are exactly |F| triples (u1, u2, u3) ∈ F3 such that f(u1, u2, u3) =
(0, 0), namely u21 = u2 and u3 = u1u2. This is because once u1 is chosen, u2 and
u3 are determined. Hence, it suffices to show that for all u1, u2, u3 ∈ F3 and all
β ∈ Fn of weight three or more, the following system

〈X, β〉 = u1 and 〈X2, β〉 = u2 and 〈X3, β〉 = u3 (7)

has at most 6 |F|n−3 solutions in (F6=)n. By symmetry, we can assume that the
first three positions in β, namely β1, β2, β3, are non-zero. Next, let’s fix the
variables X4, X5, . . . , Xn ∈ F arbitrarily. Then (7) becomes a system in the
three variables X1, X2, X3 of the same shape as (7). It remains to show that
for all β1, β2, β3 ∈ F∗ and u1, u2, u3 ∈ F, this system of three equations in three
variables has at most six solutions in (F 6=)3. This will prove that (6) has at most
6 |F|n−2 solutions in (F6=)n, as required.

There are two cases. First, if βi + βj 6= 0 for all 1 ≤ i < j ≤ 3 and
β1 + β2 + β3 6= 0 then the three equations in (7) are algebraically independent,
and therefore the intersection of these three surfaces in F3 contains only six
points by Bézout’s theorem. Second, if β1 + β2 = 0, then by linearity we can
assume that β1 = 1 and β2 = −1. Then (7) becomes

X1 −X2 + βX3 = u1, X2
1 −X2

2 + βX2
3 = u2, X3

1 −X3
2 + βX3

3 = u3,

where β 6= 0. In this case the intersection of the three surfaces can have |F| or
more points in F3. However, once we exclude the points in the intersection where
X1 = X2, then the intersection contains at most six points in (F6=)3. Finally,
when β1 + β2 + β3 = 0 the intersection of the three surfaces can also have |F|
or more points in F3. However once we exclude the points in the intersection
where X1 = X2 = X3, then again the intersection contains at most six points in
(F 6=)3. Hence, for all β1, β2, β3 ∈ F∗, the intersection contains at most six points
in (F 6=)n, as required.

C Deferred material from Section 5

In this section we make formal the definitions and constructions outlined in
Section 5.
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C.1 Client-Server Verification via Additive-Attack Security

We begin with the definition from [9] of a fully linear PCP (FL-PCP); the
arithmetic sketching schemes of the present work are a special simplified case
of FL-PCPs with the absence of a prover algorithm and proof π. In particular,
the “queries” in the FL-PCP correspond to the sketching matrix in a arithmetic
sketching scheme and the “query answers” in the FL-PCP correspond to the
sketch in a arithmetic sketching scheme.

Definition 35 (FL-PCP [9]). Let F be a finite field. A fully linear probabilis-
tically checkable proof (FL-PCP) scheme for a language L ⊆ Fn with query
complexity ` ∈ N consists of algorithms (PPCP, QPCP, DPCP):

– PPCP(x)→ π. The randomized prover algorithm takes as input x ∈ Fn and
outputs auxiliary proof information π ∈ Fh.

– QPCP() → (q1, . . . , q`). The randomized query algorithm outputs queries
q1, . . . , q` ∈ Fn × Fh.

– DPCP(a1, . . . , a`) → y ∈ Fm. The randomized decision algorithm takes as
input the query answers ai = 〈(x||π), qi〉 ∈ F, for i ∈ [`], and outputs a vector
y ∈ Fm.

We consider the following completeness and soundness properties of the algorithms
(PPCP, QPCP, DPCP):

– Completeness. For all x ∈ L, the verifier accepts a valid proof:

Pr

[
DPCP

(
〈(x||π), q1〉, · · · , 〈(x||π), q`〉

)
= 0 :

π ← PPCP(x);

(q1, . . . , q`)← QPCP(1
n)

]
= 1.

– Soundness with soundness error ε holds if for every x∗ /∈ L and for all false
proofs π∗ ∈ Fh, the probability that the verifier accepts is at most ε:

Pr
[
DPCP

(
〈(x∗||π∗), q1〉, · · · , 〈(x∗||π∗), q`〉

)
= 0 : (q1, . . . , q`)← QPCP(1

n)
]
≤ ε.

As discussed, we consider a strengthened notion of “additive-attack” privacy,
an extension of zero knowledge that requires no information be revealed even
to an adversary who can introduce additive offsets to the inputs to DPCP and
learns the corresponding output y.

Definition 36 (Additive-Attack Privacy). We say that an FL-PCP (PPCP, QPCP, DPCP)
for language L ⊆ Fn further satisfies δ-additive-attack privacy if every adversary
A there exists a simulator SPCP such that for all x ∈ L the following distributions
are δ-close:

SPCP() ≈δ


(
(q1, . . . , q`), y

)
:

π ← PPCP(x)

(q1, . . . , q`)← QPCP()

(v1, . . . , v`)← A(q1, . . . , q`)
∀j ∈ [`], aj = 〈(x||π), qj〉

y ← DPCP
(
a1 + v1, . . . , a` + v`

)


.
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As the final item in this subsection, we provide a more formal description of
the client-server protocol given such an FL-PCP with additive-attack privacy.

Construction 37 (Client-server verification protocol). The construction is
parameterized by finite field F, an input size n ∈ N, a language L ⊆ Fn, and
an FL-PCP (PPCP, QPCP, DPCP). The parties involved are a single client and
k ∈ N servers. The client-server verification protocol Πcs for verifying the servers
hold secret shares of x ∈ L is defined as follows:

– Input: The client holds vector x ∈ Fn.
– Client shares: The client samples auxiliary information π ← PPCP(x), and
generates and distributes additive secret shares (x(i), π(i)) ∈ Fn × Fh of x, π
to each server i ∈ [k].

– Generate query: The servers jointly execute the randomized algorithm Q()
to generate and reveal a set of public queries q1, . . . , q` ∈ Fn+h, via MPC.

– Answer query: Each server i ∈ [k] locally computes its contribution a(i)j =

〈(x(i)||π(i)), qj〉 to each (linear) query response, j ∈ [`].
– Decision: The servers execute an MPC which takes as input (a

(i)
j )j∈[`]

from each server i, combines the contributions as aj =
∑
i∈[k] a

(i)
j , evaluates

y ← DPCP(a1, . . . , a`), and outputs the resulting vector y ∈ Fm. Each server
accepts iff y = 0 is the all-0 vector.

Claim 38. If the underlying k-party MPC protocol is secure against t mali-
cious corruptions (for t < k), and the FL-PCP satisfies ε-soundness error and
δ-additive-attack security, then the protocol Πcs above provides the following
guarantees:

– Completeness: That is, for every x ∈ L, then an honest execution of Πcs

results in accepting x.
– Soundness against malicious client. That is, for every x∗ /∈ L, and any false

proof π∗ ∈ Fh, then the (honest) servers accept with probability bounded above
by ε.

– Zero knowledge against t malicious servers. That is, for any malicious
adversary A controlling up to t of the k servers, there exists a simulator S
such that for every input x ∈ L, the view of A within execution of Πcs on input
x is within δ distance of the simulated view S(1n). (This distance is statistical
if the MPC provides statistical security, and computational otherwise.)

Proof. Completeness and soundness against a malicious client follow directly
by the corresponding properties of the FL-PCP, together with correctness of
the MPC protocol. (Note that these follow as in the semi-honest server case
given in [9]). Consider zero knowledge against t malicious servers T ⊂ [k]. By
the t-malicious-party security of the underlying MPC protocol, for any t-server-
corrupting adversary A, the view of A within the two MPC protocols can be
simulated given their respective corrupt-party inputs and outputs. These input
and output values correspond to precisely: (1) the queries q1, . . . , q`, and (2) the
final output y ← DPCP(a

′
1, . . . , a

′
`) evaluated on the potentially malicious values
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a′j , defined by the honest parties’ shares of each aj combined with the corrupt
servers’ contributions, as a function of values seen thus far: in particular, of the
queries (q1, . . . , q`). This corresponds exactly to the distribution simulatable by
the definition of δ-additive-attack security of the FL-PCP. Zero knowledge thus
follows.

Note that the framework extends in a straightforward way to more general
secret sharing schemes, beyond additive sharing, with a linear reconstruction
procedure.

C.2 Generic Approach: Additive-Attack Security via AMD
Distributions

As a central tool, we once again make use of algebraic manipulation detection
(AMD) distributions, as put forth in Section 3. We consider a stronger version of
AMD distributions than in Definition 5. Here, the distribution output contains
a public and private portion, and additive-attack detection must succeed even
when the additive offset may depend on the public part of the given sample. In
our setting, the public portion will correspond to the queries that servers will see
in the clear, and the private portion will correspond to the query answers.

Definition 39 (Public ((F`pub ,F`priv), ε)-AMD Distribution). A public ((F`pub ,F`priv), ε)-
AMD distribution is given by a pair of procedures:

– SAMD()→ (rpub, rpriv) ∈ F`pub × F`priv : A randomized sampling algorithm that
outputs a vector (rpub, rpriv) ∈ F`pub × F`priv .

– VAMD(v) → y ∈ F: A verification algorithm, represented as an arithmetic
circuit, which accepts a vector v ∈ F`pub × F`priv and outputs an element y ∈ F
(interpreted as accept if y = 0 and reject if y 6= 0). As before, we sometimes
consider y ∈ Fm, where acceptance corresponds to y = 0.

satisfying the following properties:

– Completeness: Pr[VAMD(rpub, rpriv) = 0 : (rpub, rpriv)← SAMD()] = 1.
– AMD: For every adversarial strategy A, the following holds:

Pr

[
(∆1, ∆2) 6= 0

VAMD(rpub +∆1, rpriv +∆2) = 0
:
(rpub, rpriv)← SAMD()

(∆1, ∆2)← A(rpub)

]
≤ ε.

In some sense, a public ((F`pub ,F`priv), ε)-AMD distribution directly captures
the necessary property of additive-attack privacy: namely, any fully linear PCP
whose (honestly generated) queries and answers form a public ((F`pub ,F`priv), ε)-
AMD distribution together with verification algorithm DPCP already satisfies
this stronger privacy guarantee. We now formalize precisely this statement.

Claim 40 (Additive-Attack FL-PCP). Suppose (PPCP, QPCP, DPCP) is a fully
linear PCP for the language L, with DPCP : F` → Fm and soundness error
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ε, such that for any valid x ∈ L it holds that the distribution SAMD defined by
honestly generated queries/answers:

SAMD :=

(rpub = (q1, . . . , q`), rpriv = (a1, . . . , a`)) :

π ← PPCP(x,w),

(q1, . . . , q`)← QPCP(1
n)

∀j ∈ [`], aj = 〈(x||π), qj〉

 ,

together with VAMD given by DPCP, form a public ((F`pub ,F`priv), ε)-AMD distribu-
tion. Then (PPCP, QPCP, D

′
PCP) satisfies ε-additive-attack privacy, where D′PCP

is a modified algorithm D′PCP = ReRand ◦DPCP, where ReRand on input y ∈ Fm
samples random r ← Fm and outputs the linear combination

∑
yiri.

Proof. First note that completeness of the FL-PCP is preserved. Soundness
is preserved up to an additive |F|−1 error, since a nonzero vector y ← DPCP
in the underlying scheme will revert to a false positive only with probability
|F|−1 via the random linear combination of Rerand. For privacy against additive
attacks, consider the following simulator. The simulator SPCP first honestly
samples queries (q1, . . . , q`)← QPCP and runs the adversary on these values to
identify an additive attack offset vector v := (v1, . . . , v`)← A(q1, . . . , q`). It then
outputs ((q1, . . . , q`), 0) if v = 0, or ((q1, . . . , q`), r) for a random element r ← F
if v 6= 0. Note that v = 0 corresponds to a lack of attack, in which case SPCP
properly simulates acceptance. On the other hand, by the AMD property of the
corresponding (SAMD, VAMD) pair, any offset v 6= 0 will result in VAMD = DPCP
rejecting (i.e., outputting y 6= 0) except with probability ε. This means that SPCP
properly simulates a random field element output as the result of Rerand.

It thus suffices to provide a general transformation from any fully linear PCP
to one whose queries and answers satisfy the above public ((F`pub ,F`priv), ε)-AMD
property. We next develop a sequence of claims toward this goal, beginning with
constructions of AMD distributions following from the literature.

Claim 41 (AMD Distribution Construction [18]). Let F such that char(F) > 2,
and k ∈ N. Then for any v = (v1, . . . , vk) ∈ Fk, the following corresponding pair
(SAMD, VAMD) is a public ((Fk,Fk+1), ε = |F|−1)-AMD Distribution:

– SAMD(): Sample r ← F, and output ((v1, . . . , vk), (v1r + r2, . . . , vkr + r2, r)).
– VAMD((v1, . . . , vk), (vk+1, . . . , v2k+1)): Output 0 iff for every j ∈ [k], (vk+j −
v22k+1 − v2k+1vj) = 0.

Remark (Alternative AMD Constructions).

– For char(F) = 2, this construction can be replaced by replacing each of the
coordinates k + 1 through 2k of the form (air + r2) instead with the value
(air + r3) for similar parameters at slightly greater computational cost [18].

– For non-zero inputs (a1, . . . , ak) ∈ (F\{0})k, it suffices to just give (a1, . . . , ak,
a1r, , akr, r) for random r ∈ F, with corresponding verifications.

41



– Cramer et al. [18] gave a construction with better output length given
by AMD′(a1, ..., ak) = (a1, ..., ak,

∑k
i=1 r

iai + ri+1, r) ∈ Fk+2 for randomly
sampled r ← F. However, although this gives a shorter output length, to
support its evaluation in a fully linear manner will require greater overhead
in the proof size, as ri(x||π) must be appended for every value i ∈ [k].

We present a compiler making use of the AMD distribution construction
from Claim 41. The compiler modifies an underlying FL-PCP by incorporating
extra auxiliary proof elements π′ which enable the linear queries to compute
AMD-authenticated versions of the underlying x, π. Concretely, in addition to
giving out secret shares of x, π, for a random “MAC” r ∈ F it will also give
shares of the r-scaled vector r(x||π), as well as shares of r and r2. These can
be used to augment the underlying query and decision process with additional
authentication queries, computing rai + r2 for each answer value ai.

Plugging in alternative AMD distribution constructions (e.g., from Remark C.2)
will yield analogous versions of the following theorem with different parameter
tradeoffs.

Theorem 42 (Generic Compiler: Protecting Against Additive Attacks).
Suppose (PPCP, QPCP, DPCP) is an `-query fully linear PCP for the language
L ⊆ Fn with auxiliary proof size s. Then there exists a fully linear PCP with
|F|−1-additive-attack privacy with auxiliary proof size (n+ 2s+ 2), with (2`+ 1)
queries, and comparable arithmetic decision complexity.

Proof. Consider the following modified fully linear PCP:

– P ′PCP(x):
1. Sample π ← PPCP(x).
2. Sample r ← F.
3. Output π′ = (π, r(x||π), (r, r2)) ∈ Fs × Fn+s × F2.

– Q′PCP(): Recall the output vectors q′j ∈ F2n+2s+2 define linear queries to be
made to (x||π′).
1. Sample (q1 . . . , q`)← QPCP(), where each qj ∈ Fn+s.
2. For each j ∈ [`], let q′j := qj ||(0, . . . , 0)||(0, 0) ∈ F2n+2s+2.
3. For each j ∈ [`], let q′`+j := (0, . . . , 0)||qj ||(0, 1) ∈ F2n+2s+2.
4. Let q′2`+1 = (0, . . . , 0)||(0, . . . , 0)||(1, 0) ∈ F2n+2s+2.

– (DPCP)
′(a1, . . . , a2`+1):

1. For j ∈ [`], let yj = a`+j − a22`+1 − a2`+1aj ; i.e., verifying the AMD
authentication relation.

2. Compute y`+1 = DPCP(a1, . . . , a`).
3. Output (y1, . . . , y`+1).

Note that completeness and soundness are preserved from the underlying FL-PCP
(in particular, the new D′PCP rejects if the original DPCP rejects).

It remains to show that the distribution of honestly generated queries and
answers

SAMD := ((q′1, . . . , q
′
2`+1), (a

′
1, . . . , a

′
2`+1))
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together with decision function D′PCP form a public ((F`pub ,F`priv), ε)-AMD dis-
tribution, where (q′1, . . . , q

′
2`+1) ∈ F`pub = (F2n+2s+2)2`+1 and (a′1, . . . , a

′
2`+1) ∈

F`priv = F2`+1.
Note that q′`+1, . . . , q

′
2`+1 are determined completely given q′1, . . . , q′`. Further,

as D′PCP applies only to the answer portion of the SAMD vector, applying additive
offsets to the query portion of irrelevant for acceptance. Now, by construction,
the honest answer distribution portion of SAMD has structure

a′ := (a1, . . . , a`, ra1 + r2, ra2 + r2, . . . , ra` + r2, r),

corresponding to the AMD distribution structure from Claim 40, meaning
that even given the values of (a1, . . . , a`), (in particular, given just the queries
q1, . . . , q`), then an adversary cannot choose additive offsets for the vector a′
such that it will satisfy the AMD verification tests with probability greater than
|F|−1 over the random choice of r. The claim follows.

For arbitrary statements, the overhead of this AMD encoding approach corre-
sponds to essentially doubling the amount of secret shared material. However, for
useful special cases, much of this overhead is redundant. An interesting example
is when the vector x already has some form of AMD robustness, e.g. when proving
well-formedness of authenticated Beaver triples. (The corresponding distribution
on statement x which the parties hold additive secret shares of consists of a
global random ∆ together with many instances of the form (a, b, ab, a∆, b∆, ab∆)
for random a, b ∈ F.)

Optimizing for sparse vectors x. Another particularly useful example is applying
the above ideas to the sketching schemes for sparse vectors x, as is a focus of this
work. We observe that the additional proof elements corresponding to rx (where
r ∈ F is random and x ∈ Fn is an input of low Hamming Weight) will itself be a
vector of low Hamming weight with the same support. In applications such as
proving on secret-shared data, this means this supplementary proof information
can be secret-shared together with x in an efficient fashion. For example, existing
constructions for distributed point functions [13,14,28] enable secret-sharing a
vector v ∈ (Fd)n of Hamming Weight 1 at cost scaling with (n+ d) instead of nd.
Interpreting the pair (x, rx) as a single secret vector in (F2)n thus has minimal
additive cost over secret sharing x itself, and not twice the cost.

D Deferred proofs from Section 4

Proof of Corollary 19. We first show that rank(Hp(u)) ≥ ` with high probability
over the random choice of u. Let H ′p(U) ∈ F`×` be the `-by-` submatrix formed
from the first ` rows and ` columns of Hp(U). Notice that H ′p(U) has exactly the
same structure as Hp(U), except with smaller dimension. Therefore, we can apply
Lemma 18 to H ′p(U). In particular, if the polynomial p has ` non-zero coefficients,
then detH ′p(U) is a non-zero polynomial of degree at most d = 2

(
`
2

)
deg(p). For a
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random u← F, the probability that H ′p(u) is full rank is then at least 1−d/ |F| as
required. Since H ′p(u) is a submatrix of Hp(u), this implies that rank(Hp(u)) ≥ `
with high probability as well.

To complete the proof, we show that rank(Hp(u)) < ` + 1. By Lemma 18,
det(Hp(u)) = 0. Therefore Hp(u) cannot be of full rank.

Proof of Fact 20. Let q = |F|. Consider the process of sampling the rows of R
one at a time from qn. The probability that ith row is in the span of the first
(i− 1) rows is at most qi−1/qn = qi−1−n. Then the probability that all rows are
linearly independent is at least pgood =

∏n
i=1(1−qi−1−n) =

∏n
i=1(1−q−i). Then

pgood ≥
∏∞
i=1(1− q−i) ≥ 1− q−1− q−2(1− q−3)(1− q−4) · · · ≥ 1−

∑∞
i=1 q

−i [43].
We conclude that pgood ≥ 1− 1

q−1 .

Proof sketch for Corollary 23. The construction is very similar to that of Con-
struction 21. The only difference is that the decision procedure directly computes
the determinant of the w × w matrix Hn formed from the first w rows and w
columns of H. The sketch accepts if the output of the decision predicate is zero.
By Lemma 18, it holds that det(Hn) ≡ 0 if and only if the input x has Hamming
weight at most w. We can express the determinant computation as an arithmetic
branching program and then use standard results on randomized encodings [34]
to represent the private portion of the decision computation as a degree-three
arithmetic circuit of size poly(w).

There are more efficient algorithms for computing the determinant of a Hankel
matrix than the ones we use in the proof of Corollary 23 [4]. However, those
faster algorithms are not algebraic (i.e., they degree that depends on the field
size) so they do not yield improved arithmetic-sketching schemes.

An alternative approach for computing the determinant in the proof of
Corollary 23 is to directly represent the determinant computation as an arithmetic
circuit of of size O(w4 logw) and degree O(w) [44]. Yet another option is to use a
special-purpose multiparty computation protocol, such as the one of Mohaseel and
Weinreb [40], that requires only O(w2+ε) communication, for small ε > 0. This
latter protocol does not strictly fit into our framework, since the decision predicate
is a multi-round protocol rather than a single arithmetic circuit. At the same
time, when implementing the decision predicate in a multiparty computation,
this interactive variant may be preferable.

D.1 Proof of Theorem 27

Proof of Theorem 27. First, consider a vector (x1, . . . , xn) ∈ Fn where xi ∈
{0, 1, . . . , w} for i = 1, . . . , n. Let us treat x1, . . . , xn as integers in [0, w]. Then,
for (r1, . . . , rn) ∈ Fn the Newton identities for k = w + 1 imply that ew+1 in the
statement of the theorem satisfies

ew+1 =
∑

(y1,...,yn)∈Zn∑n
i=1 yi=w+1
0≤yi≤xi

ry11 · · · rynn . (8)

44



Now, to prove the first part of the theorem, let x = (x1, . . . , xn) ∈ L(≤w)
1 and

let (r1, . . . , rn) ∈ Fn. Because x ∈ L(≤w)
1 , the sum in (8) is over an empty set,

and therefore ew+1 is zero, as required.
To prove the second part of the theorem recall that ew+1 = Ẽx(r1, . . . , rn)

where Ẽx(R1, . . . , Rn) is the polynomial

Ẽx(R1, . . . , Rn) = Nw+1

(
n∑
i=1

xiRi,

n∑
i=1

xiR
2
i , . . . ,

n∑
i=1

xiR
w+1
i

)
. (9)

We show that if x 6∈ L(≤w)
1 then Ẽx(R1, . . . , Rn) is a non-zero polynomial of total

degree w + 1. Now the theorem follows by the Schwartz-Zippel lemma.
By construction, we know that Ẽx has at most total degree w+ 1. It remains

to prove that Ẽx is not the zero polynomial for all x = (x1, . . . , xn) 6∈ L(≤w)
1 . We

argue this in two steps.

– First, suppose that there is some i ∈ [n] for which xi 6∈ {0, 1, . . . , w}. Then
Lemma 43 shows that the coefficient of Rw+1

i in Ẽx(R1, . . . , Rn) is not zero,
which proves that Ẽx is not the zero polynomial.

– Second, suppose that xi ∈ {0, 1, . . . , w} for all i ∈ [n]. In this case (8) shows
that we can write Ẽx explicitly as

Ẽx(R1, . . . , Rn) =
∑

(y1,...,yn)∈Zn∑n
i=1 yi=w+1
0≤yi≤xi

Ry11 · · ·Rynn .

Since x 6∈ L(≤w)
1 this sum is over a non-empty set, again proving that Ẽx is

not the zero polynomial.

Either way, Ẽx is not the zero polynomial, which completes the proof of the
theorem.

Lemma 43. Let (x1, . . . , xn) ∈ Fn and let Ẽx(R1, . . . , Rn) be the polynomial
defined in (9). Then for all j ∈ [n], the coefficient of the monomial Rw+1

j in Ẽx
is xj(xj−1)···(xj−w)

(w+1)! ∈ F. In particular, if xj 6∈ {0, 1, . . . , w} then the coefficient of
Rw+1
j in Ẽx is non-zero.

Proof of Lemma 43. By symmetry, it suffices to prove the lemma for j = 1,
namely prove that the coefficient of Rw+1

1 in Ẽx satisfies the lemma. We prove
the lemma by induction on w. When w = 0 we have that Ẽx(R1, . . . , Rn) =∑n
i=1 xiRi and the lemma holds.
Next, assume the lemma holds for all 0 ≤ w′ < w and we prove it for w. The

Newton identity (Theorem 24) implies the following recurrence on Nk:

k ·Nk(Z1, . . . , Zk) =

k∑
i=1

(−1)i−1 ·Nk−i(Z1, . . . , Zk−i) · Zi
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where N0 = 1. We use the recurrence for k = w+1. Plugging in Zj =
∑n
i=1 xiR

j
i

for j = 1, . . . , w + 1, and using the inductive hypothesis, we obtain that the
coefficient of Rw+1

1 in the polynomial Ẽx(R1, . . . , Rn) = Nw+1(Z1, . . . , Zw+1) is

1

w + 1

[
(−1)wx1 +

w∑
i=1

(−1)i−1 ·
[x1(x1 − 1) · · · (x1 − w + i)

(w + 1− i)!

]
· x1

]

This simplifies to x1(x1−1)···(x1−w)
(w+1)! , as required.

D.2 Proof of Theorem 29

Our construction uses the following sketch as a subroutine:

Construction 44 (Sketch for all non-zero elements satisfying predicate). The
construction is parameterized by a finite field F, integers n and w with w ≤ n1/2,
and an arithmetic circuit C : F→ F (of size independent of |F|) with C(0) 6= 0 ∈ F.
The sketch accepts the language of vectors in x ∈ Fn such that either:

– each non-zero element xi of x is such that C(xi) = 0 ∈ F, OR
– the vector has Hamming weight strictly less than w.

The construction makes use of the zero-knowledge sketch (S′, Dpriv′, Dpub′)
of Corollary 23 for vectors in Fn and Hamming weight at most w − 1.

– S()→ Q ∈ F(`′+n)×n.
• Run Q′ ← S′() ∈ F`′×n.
• Output the matrix Q ∈ F(n+`′)×n formed by the n× n identity matrix in
F stacked on top of the matrix Q′.

– D(a, r1, . . . , rn)→ y.
• Let (a1, . . . , an) ∈ Fn be the first n elements of a and let a′ be the rest.
• Compute y′ ← D(a′).
• For i ∈ [n], compute yi ← ai · C(ai) ∈ F.
• Return y ← y′ (

∏n
i=1 riyi ∈ F).

Lemma 45. Construction 44 has the same completeness and soundness error as
Corollary 23. The construction has perfect zero knowledge. The sketch size is
2w + n+ 1.

Proof. For correctness: If the input vector x has weight strictly less than w, then
y′ = 0 with probability at least 1− 2/(|F| − 1), by Corollary 23 and then y = 0.
If each non-zero element of the input vector x is either 0 or satisfies C, then
xi · C(xi) = 0 for all i ∈ [n]. So then

∏n
i=1 riyi = 0 for all (r1, . . . , rn) and the

output y = 0.
For soundness: If the input vector has weight at least w, then y′ 6= 0 with

probability 1−O(w2n/ |F|). If the input vector has some non-zero element xi such
that C(xi) 6= 0, then yi = xiC(xi) 6= 0 and the vector (y1, . . . , yn) 6= 0n ∈ Fn.
The decision predicate outputs a random linear combination of the elements in
this non-zero vector, which is non-zero with probability 1 − 1/ |F|. Then the
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output is the product of two non-zero elements of F, except with probability
O(w2n/ |F|).

For zero knowledge: If the input is in the language, the decision predicate
outputs zero always. If the input is not in the language, the output is a uniform
random value over F.

Construction 46 (Sketch for bounded Hamming weight satisfying predicate).
The construction is parameterized by a finite field F, integers w and n with
w < n < |F|, and an arithmetic circuit C : F → F (of size independent of |F|),
and a statistical security parameter λ ∈ N. The sketch accepts the language of
vectors in x ∈ Fn of Hamming weight w such that each non-zero element xi of x
is such that C(xi) = 0 ∈ F.

The construction makes use of:

– the sketch (Qw, Dpriv
w, Dpub

w) of Construction 21 for vectors in Fn of Ham-
ming weight w and

– the sketch of (QC , Dpriv
C , Dpub

C) Construction 44 for vectors in Fw2

that
either have Hamming weight < w or whose whose non-zero elements satisfy
a circuit C : F→ F, of size independent of |F|.

We describe the construction informally:

– Use Construction 21 to check that the input vector has Hamming weight
exactly w.

– Repeat for i ∈ [λ]:
• Partition the input vector x ∈ Fn into w2 chunks, then sum up the values
in each chunk to form a test vector ti ∈ Fw2

. We can form the vector t
using w2 linear combinations of the input.
• Apply the sketch of Construction 44 to test whether the test vector ti
is either (a) of Hamming weight < w or (b) has all non-zero elements
satisfying C.
• Call the output of this sketch yi.

– The private decision predicate outputs the output of Dpriv
w and y =

∏λ
i=1 yi ∈

F.

Now we return to prove the main theorem:

Proof of Theorem 29. Construction 46 proves the theorem. We must show that
for all λ ∈ N, Construction 46 has completeness error ε = 4/(|F| − 1) + 2−λ,
soundness error O(w2n/ |F|) and ε-zero knowledge.

Let L ⊆ Fn be the language of vectors of Hamming weight w whose non-zero
components satisfy C : F→ F.

To show completeness: When the input x ∈ L, the sketch of Construction 21
accepts with all but probability 2/(|F| − 1). Then the sketch accepts whenever∏λ
i=1 yi = 0, which happens when at least one value yi ∈ {y1, . . . , yλ} is zero.
This is happens with the probability that when we throw w balls independently

at random in to w2 < n bins, each ball lands in a distinct bin. The probability
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of a collision is at most
(
w
2

)
(1/w2) ≤ 1/2. The probability that each of the λ

runs has a collision is then at most 2−λ. For any run without a collision, the
probability that Construction 44 rejects is at most 2/(|F| − 1). So the overall
completeness error is at most 4/(|F| − 1) + 2−λ.

For soundness:

– If the input vector has Hamming weight not equal to w, Construction 21 will
accept with probability at most O(w2n/ |F|).

– If the input vector has Hamming weight equal to w but one of its non-zero
elements does not satisfy C, then Construction 44 will accept with probability
at most O(w2n/ |F|).

For zero knowledge: We invoke the zero-knowledge property of Construction 21
and the fact that y = 0, except with probability 4/(|F| − 1) + 2−λ when x is well
formed.

E Proof of Theorem 30

We begin with two technical lemmata and then prove Theorem 30.

Lemma 47. Let (S,D) be an arithmetic sketching scheme for the language LF
and let D = (D1, . . . , Dm) for `-variate polynomials Dj , 1 ≤ j ≤ m, of degree
at most d. Then, for every 1 ≤ j ≤ m there exist at most d + 1 homogeneous,
`-variate polynomials, pj,0, pj,1, . . . , pj,d such that Dj =

∑d
k=0 pj,k, and every

column of the matrix generated by S is a root of pj,k for all 0 ≤ k ≤ d.

Proof. Let pj,k be the sum of all monomials of Dj that have degree k. Then,
obviously pj,k is homogeneous for all k and furthermore Dj =

∑d
k=0 pj,k.

Let (r1, . . . , r`) be the i-th column of the sketching matrix generated by
S for some 1 ≤ i ≤ n. On input vector ei we have that Dj(a1, . . . , a`) =
Dj(r1, . . . , r`) = 0, since ei ∈ LF and due to completeness. For every β ∈ F
we have that βei ∈ LF and again due to completeness Dj(β · r1, . . . , β · r`) =∑d

k=0 pj,k(β · r1, . . . , β · r`) = 0. It follows that
∑d
k=0 β

k · pj,k(r1, . . . , r`) = 0
since pj,k is homogeneous of degree k.

Regard Dj(β · r1, . . . , β · r`) as a univariate polynomial in β, while (r1, . . . , r`)
is constant. This is a degree d polynomial, which evaluates to 0 on every field
element β. Since a non-zero, degree-d univariate polynomial over a field has
at most d roots, and since (S,D) is universal which means that |F| could be
larger than d, it follows that Dj must be the zero polynomial and therefore
pj,k(r1, . . . , r`) = 0 for all j, k and every column (r1, . . . , r`) of the sketching
matrix generated by S.

We next prove an algebraic lemma on the distribution of roots of multivariate,
homogeneous polynomials.

Lemma 48. Let f be an `-variate and homogeneous polynomial of degree d > 0
over a field F that is not identically zero. Then, the set of roots of f is a union
of at most (d+ 1)|F|`−2 linear subspaces of F` of dimension at most 1.
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Proof. The proof proceeds by induction on `. In the base case, ` = 1, a homoge-
neous polynomial of degree d is of the form f(x) = axd, for a ∈ F, and it has a
single root at x = 0, which forms a linear subspace of dimension 0.

Assuming that the statement is true for ` − 1, partition the roots of an
`-variate polynomial f(x1, . . . , x`) into two sets: all the roots in which x` 6= 0,
and the roots in which x` = 0.

Since f is homogeneous of degree d, every monomial in f is of the form
xi11 · · ·x

i`
` , where i1, . . . , i` are non-negative integers, and

∑`
j=1 ij = d. Let

I = {I = (i1, . . . , i`) | 0 ≤ i1, . . . , i`,
∑`
j=1 ij = d}. Then, f can be represented

as f(x1, . . . , x`) =
∑
I∈I aI · x

i1
1 · · ·x

i`
` , such that aI ∈ F for all I.

Consider the `−1 variables yj = xj/x`, j = 1, . . . , `−1, and let g(y1, . . . , y`−1) =∑
(i1,...,i`)∈I aI ·y

i1
1 · · · y

i`−1

`−1 . Then, it holds that f(x1, . . . , x`) = xd` ·g(y1, . . . , y`−1)
on any (x1, . . . , x`) ∈ F`−1 × (F \ {0}).

Any point (x1, . . . , x`) ∈ F`−1×F\{0} is a root of f if and only if
(
x1

x`
, . . . , x`−1

x`

)
∈

F`−1 is a root of g. Furthermore, if (y1, . . . , y`) is a root of g, then all points
(y1 · x`, . . . , y`−1 · x`, x`) are roots of f , forming exactly a dimension-1 linear
subspace of F`, i.e. a line. The number of roots of g is at most d|F|`−2 by
the Schwartz-Zippel lemma [22, 47, 50], since g is an (` − 1)-variate, degree-d
polynomial. Therefore, the roots of f such that x` 6= 0 are arranged in at most
d|F|`−2 linear subspaces of dimension 1.

Restricting f to the set of points such that x` = 0 consider two cases. If f
on this set is the zero polynomial then this set contributes |F|`−1 points to the
set of roots of f , and they can be regarded as forming |F|`−2 dimension-1 linear
subspaces of |F|`. If f on this set is not identically zero then its restriction to
this set is an (`− 1)-variate and homogeneous polynomial and by the induction
all of its roots are in a union of linear subspaces of dimension at most 1. The
number of these subspaces is less than |F|`−2, which is the total number of
dimension-1 linear subspaces in the set. In both cases, all the roots of f lie in at
most (d+ 1)|F|`−2 linear subspaces of F` which have dimension at most 1.

We now prove the main result of Section 6:

Proof of Theorem 30. Consider a vector z ∈ Fn \ LF which is 1 in two ran-
dom locations i, i′ and is 0 anywhere else. Assume that the answers to the
queries of S are a = (a1, . . . , a`). Recall that D is a sequence of m polynomials
(D1, . . . , Dm),m ≥ 1, and D accepts z if and only if Dj(a) = 0 for all 1 ≤ j ≤ m.

For every j = 1, . . . ,m, the polynomial Dj is an `-variate polynomial over F
of degree at most d. By Lemma 47, Dj =

∑d
k=0 pj,k, all pj,k are homogeneous,

and any column of the sketching matrix is a root of all pj,k.
By Lemma 48, the roots of pj,k form a union of at most (d+ 1)|F|`−2 linear

subspaces of F`. Since any column of the sketching matrix is a root of all pj,k
it follows that all the columns of the sketching matrix are in the union of at
most (d+ 1)|F|`−2 linear subspaces. If the i-th and i′-th columns of the matrix
are sampled from the same linear subspace then their sum is also in the same

49



subspace and is thus a root of pj,k for all j, k. In this case, the sum, and therefore
z, will be accepted by D. The probability of both columns being sampled from
the same linear subspace leading to erroneously accepting z is at least the inverse
of the number of these subspaces, i.e. 1

(d+1)|F|`−2 .

F Deferred proofs from Section 7

Remark (Consequences of Theorem 32). Consider the language L(∈B)
p that in-

cludes all vectors in which the Lp norm is in a set B. For example, this language
could include all vectors with Lp norm smaller than some bound. Theorem 32
generalizes to preclude an arithmetic sketching scheme for this language if B
is not too large, more specifically if |B| ≤ c|F|

p−1 for a constant c < 1/2. That

is, any arithmetic sketching scheme for L(∈B)
p must have a decision algorithm

with super-constant multiplicative size. By repeating the proof of Theorem 32,
sets x, y are used to construct vectors vx, vy over a field such that if the sets are
disjoint then vx + vy always has a fixed norm, which can be programmed to be
in B, while if the sets are not disjoint then the probability of the norm being in
B is (p− 1)|B|/|F ≤ c. This induces a protocol for DISJ, which contradicts the
existence of an arithmetic sketching scheme for L(∈B)

p . A similar generalization
of Theorem 32 holds for the language L2(∈B)

2 that includes all vectors whose L2

norm squared is in B for |B| ≤ c|F|.

Proof of Theorem 32. Assume that (Sp, Dp) for is an arithmetic sketching scheme
for L(=wf )

p . Let x, y be subsets of {1, . . . , n} with one party holding each set. To
decide whether they are disjoint the parties locally construct vectors vx, vy ∈ Fn+2.
The first n entries of each vector are an indicator vector for the respective sets with
set members represented by random field elements. That is, vx[i] = αi for all i ∈ x,
where αi ∈ F is a random and independently chosen field element, and vx[i] = 0
for all i ∈ {1, . . . , n} \ {x}. Similarly vy[i] = βi for all i ∈ y, such that βi ∈ F is
sampled randomly and independently, and vy[0] for all i ∈ {1, . . . , n} \ {y}. The
last two entries of the vectors are defined by: vx[n+1] = (wp−

∑n
i=1 α

p
i )

1/p, vx[n+
2] = 0 for w = wf , and vy[n+ 1] = 0, vy[n+ 2] = (−

∑n
i=1 β

p
i )

1/p.
If x and y are disjoint then (vx+ vy)[i] = vx[i] or (vx+ vy)[i] = vy[i] for every

1 ≤ i ≤ n+ 2. Therefore, the Lp norm of vx + vy is

(
n+2∑
i=1

(vx + vy)[i]
p

)1/p

=

(
n∑
i=1

vx[i]
p +

n∑
i=1

vy[i]
p + vx[n+ 1]p + vy[n+ 2]p

)1/p

= w

If x and y are not disjoint then there exists some j ∈ x∩y. Let s = x∩y \{j},
and let c =

∑
i∈s(vx+vy)[i]

p−vx[i]p−vy[i]p. In this case the Lp norm of vx+vy
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is (
n+2∑
i=1

(vx + vy)[i]
p

)1/p

=

wp + ∑
i∈x∩y

(vx + vy)[i]
p − vx[i]p − vy[i]p

1/p

=
(
wp + (αj + βj)

p − αpj − β
p
j + c

)1/p
The expression (αj + βj)

p − αpj − β
p
j + c is a degree p− 1 polynomial in αj , βj .

By the Schwartz-Zippel lemma the probability that this polynomial has a root
for a random choice of αj , βj is at most p−1

|F| . Therefore, the probability that the
Lp norm of vx + vy is w is at most p−1

|F| .
DISJ can therefore be decided by locally computing vx and vy and then

running the arithmetic sketching scheme on vx + vy. If the sets are disjoint then
the sketching scheme always accepts, and if they are not disjoint the sketching
scheme only accepts with probability p−1

|F| . Since the communication induced by
the arithmetic sketching scheme is the multiplicative size of Dp that size is also
Ω(n).

Proving the second part of the theorem uses a similar strategy to prove
that the decision algorithm of any arithmetic sketching scheme for L2(=we)

2 over
some finite field E, |E| > 2 has multiplicative size Ω(n). The difference from
the previous case is that field elements are not necessarily quadratic residues,
and thus may not have quadratic roots. To get around this problem recall the
well-known fact that every element in a finite field is the sum of two quadratic
residues.

Given sets x, y ⊆ {1, . . . , n} held respectively by two parties. Each party
locally constructs vx, vy ∈ Fn+4 such that the first n entries of vx and vy are the
same as in the previous construction. Let q1, q2 be two quadratic residues in F
such that q1+q2 = w−

∑n
i=1 α

2
i , and let q3, q4 be two quadratic residues in F such

that q3+q4 = −
∑n
i=1 β

2
i . Complete vx by setting vx[n+1] = q

1/2
1 , vx[n+1] = q

1/2
2

and vx[n+ 3] = vx[n+ 4] = 0. Complete vy by setting vy[n+ 1] = vy[n+ 2] = 0

and vx[n+ 3] = q
1/2
3 , vx[n+ 4] = q

1/2
4 .

Repeating the previous analysis shows that if x and y are disjoint then the
L2 norm squared of vx + vy is always w, while if x and y are not disjoint then
the L2 norm squared of vx + vy is w with probability at most 1/|E|. The Ω(n)
lower bound on the communication complexity of disjointness again proves the
same Ω(n) lower bound on the multiplicative size of the decision algorithm.

Proof of Theorem 33. Assume towards a contradiction that (S,D) is an arith-
metic sketching scheme for LB,F. Let β be a fixed element in B.

Let x, y ⊆ {1, . . . , n} be two subsets that are each held by a different party.
The party holding x constructs vx ∈ Fn by setting vx[i] = β if xi = 1, and
samples vx[i] ∈ F randomly if xi = 0. The party holding y constructs vy by
defining vy[i] = 0 if yi = 1, and samples vy[i] ∈ F randomly if xi = 0.

If x and y are disjoint then every entry in vx + vy is random in F. Therefore,
the probability that a specific entry is in B is |B|/|F|. By the union bound the

51



probability that some entry of vx + vy is in B is at most n|B|/|F| = 1/3. If x
and y are not disjoint then i ∈ x ∩ y for some 1 ≤ i ≤ n and by construction
(vx + vy)[i] = β ∈ B.

The two parties decide DISJ by locally constructing vx, vy, and accepting if
and only if (S,D) rejects vx + vy. This protocol has an error of at most a third,
and therefore its communication complexity, and thus the multiplicative size of
D is Ω(n) contradicting the assumption that (S,D) is an arithmetic sketching
scheme.

Proof of Theorem 34. Assume towards a contradiction that there exists an arith-
metic sketching scheme (S,D) for Lint,B. Let n be a natural number, and Let
0 ≤ x, y < 2n be two integers, each held by a different party. The parties wish to
decide whether x > y. To do so they first choose a field F, |F| > 2. Then, the
first party constructs vx ∈ F2n such that vx[i] = −1 for all i ≤ x, and vx[i] = 0
for all i > x. The second party constructs vy ∈ F2n such that vy[i] = 1 for all
i ≤ y, and vy[i] = 0 for all i > y. The two parties then invoke (S,D) on vx + vy
and accept (x, y) if and only if (S,D) rejects vx + vy.

If x > y then vx + vy is a vector of zeroes, except for the interval [y + 1, x]
which is all −1. Therefore, (S,D) rejects vx+vy and the two parties accept (x, y).
If x ≤ y then either x = y and vx+ vy is a vector of zeroes or x < y in which case
the vector includes an interval of 1 in [x+ 1, y]. In either case vx + vy ∈ Lint,B ,
and (S,D) accepts the vector leading to the parties rejecting (x, y).

Since GT can be reduced to an arithmetic sketching scheme for Lint,B with
the same communication complexity as the multiplicative size of D, and due to
the lower bound R(GT ) = Ω(log n), there does not exist an arithmetic sketching
scheme for Lint,B .
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