
Practical Preimage Attack on 3-Round
Keccak-256

Xiaoen Lin1, Le He2, and Hongbo Yu3(�)

1 Department of Computer Science and Technology, Tsinghua University, Beijing,
China, lxe21@mails.tsinghua.edu.cn

2 Department of Computer Science and Technology, Tsinghua University, Beijing,
China, he-l17@mails.tsinghua.edu.cn

3 Department of Computer Science and Technology, Tsinghua University, Beijing,
China, yuhongbo@mail.tsinghua.edu.cn

Abstract. This paper combines techniques from several previous pa-
pers with some modifications to improve the previous cryptanalysis of
3-round Keccak-256. Furthermore, we propose a fast rebuilding method
to improve the efficiency of solving equation systems. As a result, the
guessing times of finding a preimage for 3-round Keccak-256 are de-
creased from 265 to 252, and the solving time of each guess is decreased
from 29 3-round Keccak calls to 25.3 3-round Keccak calls. We identify
a preimage of all ‘0’ digest for 3-round Keccak-256 to support the effec-
tiveness of our methodology.

Keywords: Keccak · SHA-3 · Preimage attack · Linear structure.

1 Introduction

The Keccak function, designed by Bertoni et al. [1], is a family of cryptographic
functions, which was submitted to the public competition held by NIST (Na-
tional Institute of Standards and Technology) in 2008. In 2015, it was standard-
ized as Secure Hash Algorithm 3 (SHA-3) [2]. Up to now, plenty of research has
been conducted by public community.

On collision attacks, Naya-Plasencia et al. obtained practical collision on 2-
round Keccak-224/256 using low hamming weight differential paths [3]. Dinur
et al. proposed a target difference algorithm by connecting a 2.5-round differ-
ential trail with a 1.5-round connector [4]. They found practical collisions on
4-round Keccak-224/256. Later, they give attacks on 5-round Keccak-256 and
other variants using generalized internal differentials [5]. Qiao et al. extended the
connector by one more round and gave attack on 5-round Keccak-224 [6]. Song
et al. saved more degrees of freedom and found practical collision on 5-round
Keccak-224 [7]. Guo et al. further improved the connector and the differential
trail so that practical collision on 5-round Keccak-256 was detected [8].

On distinguishing attacks, Naya-Plasencia et al. put forward a practical dif-
ferential distinguisher on 4-round Keccak-256/224 [3]. Das et al. found distin-
guishers on 6-round Keccak-224 [9]. Dinur et al. first introduced the cube attacks

2 Xiaoen Lin, Le He, and Hongbo Yu

on Keccak, and they gave practical distinguishing attacks for 6-round Keccak
on different variants [10]. Using cube attacks, Huang et al. developed a new
type of distinguisher named conditional cube tester in 2017 [11]. This technique
improved the results significantly and gave practical distinguishing attacks for
7-round Keccak on different variants.

On preimage attacks, Naya-Plasencia et al. gave practical preimage attacks
on 2-round Keccak-224/256 [3]. Then, Guo et al. developed a technique named
linear structure and gave preimage attacks on different variants for up to 4
rounds [12]. For round-reduced Keccak-224/256, Li et al. used the allocating
approach and gave practical preimage attack on 3-round Keccak-224 [13]. Their
attacks also improved the results on 3-round Keccak-256 and 4-round Keccak-
224/256. Lin et al. further refined the results on 3-round Keccak-224/256 by
using the 5-for-3 strategy and the iterating strategy [14]. Pei et al. let the linear
structure satisfied probabilistically, and make improvement on the result on 3-
round Keccak-256 [15]. For 4-round Keccak-224/256, He et al. [16], Dinur [17],
and Wei et al. [18] gave further attacks by using different techniques including the
freedom reuse strategy, the polynomial method, and the Crossbred algorithm.
For round-reduced Keccak-384/512, Kumar et al. demonstrated better results on
2-round Keccak-384 with high required memory [19]. Rajasree allowed non-linear
parts on linear structure and improved the results on round-reduced Keccak-
384/512 for up to 3/4 rounds [20]. Liu et al. continued to enhance the results by
making full use of the linear relations [21]. The results of preimage attacks on
Keccak-224/256 are summarized in Table 1.

Table 1. Summary of preimage attacks on 3-round Keccak-224/256.

Instance Guessing Times a,b Solving Time a Total Complexity Reference
Keccak-256 2192 26 2198 [12]
Keccak-256 281 29 290 [13]
Keccak-256 265 c 29 274 [14]
Keccak-256 264.79 29 273.79 [15]
Keccak-256 252 29 261 Section 4
Keccak-256 252 25.3 257.3 Section 5
Keccak-224 297 26 2103 [12]
Keccak-224 238 c 29 247 [13]
Keccak-224 232 c 29 241 [14]
Keccak-224 231 25.3 236.3 Appendix A

a Unit: equivalent 3-round Keccak calls.
b The solving time in Section 5 is the actual running time. Other solving times are
our estimated results according to the rest degrees of freedom for comparisons
(similar to [21]).

c According to their experimental results, the actual running time is around 212−
214 3-round Keccak calls.

Practical Preimage Attack on 3-Round Keccak-256 3

Our contribution. In this paper, we combine techniques from several pre-
vious papers and bring up a modified linear structure. There are two advantages.
The first one is that the modified linear structure leaves more degrees of free-
dom. The second one is that we change the values of some constant bits so that
the difficulty of matching the starting state can be solved. Although this struc-
ture will generate quadratic bits and result in quadratic equations, only a small
number of quadratic bits will appear. We then solve the linear equations and
leave the quadratic equations to be satisfied randomly. In addition, we propose a
technique to rebuild and solve the equation system faster. In each guess, we only
change some constants instead of randomizing all of them. When some values
of constant bits vary, only a small number of linear equations will be changed.
Then we rebuild the equation system faster and solve it hierarchically. With these
techniques, the guessing times of finding a preimage for 3-round Keccak-256 are
decreased from 265 to 252, and the solving time of each guess is decreased from
29 3-round Keccak calls to 25.3 3-round Keccak calls. Moreover, we demonstrate
the first practical preimage attack on 3-round Keccak-256.

Organization. In Section 2, we give some preliminaries and notations about
Keccak. The related work and literature review are discussed in Section 3. Section
4 explains the improved attack with the modified linear structure. Section 5
presents the fast rebuilding method to improve the efficiency of solving equation
systems. The experimental results and the conclusion of this paper are provided
in Section 6 and Section 7, respectively.

2 Preliminaries

2.1 Sponge Construction

The sponge construction is a mode of operation which builds a sponge function
[22]. The sponge function is a generalization of hash functions. As shown in Fig.
1, the sponge construction operates on a state of b = r + c bits where the state
is initially set to all ‘0’ initial value. In the absorbing phase, the message M is
padded until its length is a multiple of r. Then the padded input message is
divided into several r-bit message blocks. Each time the state absorbs a message
block, the first r bits of the state are XORed by the r-bit message block. After
that, the state will be operated by the Keccak-f permutation. In the squeezing
phase, the state squeezes every r bits by outputs the first r bits of the state until
the length of the output is greater or equal to the required length `. Similar to the
absorbing phase, each time the state squeezes r bits output, the state is operated
by the Keccak-f permutation. At last, the digest is obtained by truncating the
output to the required length `.

2.2 Keccak-f Permutation

The state size b can be chosen from {25, 50, 100, 200, 400, 800, 1600}, while NIST
selects the value 1600 for b as SHA-3 standard. In this paper, we focus on the

4 Xiaoen Lin, Le He, and Hongbo Yu

Fig. 1. The sponge construction [23].

Fig. 2. The Keccak-f state.

case b = 1600. As shown in Fig. 2, the 1600-bit state can be described as 5× 5
64-bit lanes. The state can be denoted as Ax,y,z, where 0 ≤ x, y ≤ 4, 0 ≤ z ≤ 63.

The permutation Keccak-f [1600] consists of 24 round functions which only
differ in the round-dependent constant. The round function R has 5 steps R =
ι ◦ χ ◦ π ◦ ρ ◦ θ, where:

θ : Ax,y,z = Ax,y,z ⊕
⊕

i=0∼4
(Ax−1,i,z ⊕Ax+1,i,z−1)

ρ : Ax,y,z = Ax,y,(z−rx,y)

π : Ax,y,z = Ax+3y,x,z

χ : Ax,y,z = Ax,y,z ⊕ (Ax+1,y,z ⊕ 1) ·Ax+2,y,z

ι : A0,0,z = A0,0,z ⊕RCz

In the formulas above, “ ⊕ ” denotes the bit-wise XOR, and “ · ” denotes the
bit-wise AND. x and y are taken modulo 5, and z is taken modulo 64. rx,y is
a constant shown in Table 2, and RCz is a round-dependent constant. We omit
the constants RC because their values do not affect our attack.

2.3 SHA-3 Standard

There are four SHA-3 versions standardized by NIST [2]. The parameters are
r = 1600− 2` and c = 2`, where ` ∈ {224, 256, 384, 512}. The difference between

Practical Preimage Attack on 3-Round Keccak-256 5

Table 2. The offsets of ρ.

x = 0 x = 1 x = 2 x = 3 x = 4
y = 0 0 1 62 28 27
y = 1 36 44 6 55 20
y = 2 3 10 43 25 39
y = 3 41 45 15 21 8
y = 4 18 2 61 56 14

Keccak and SHA-3 is the padding rule. The message M is padded with “10∗1”
and “0110∗1” in Keccak and SHA-3, respectively. This paper gives cryptanal-
ysis results for Keccak. When we apply the same cryptanalysis to SHA-3, the
complexity will be 4 times higher.

2.4 Notations

We use capital Greek letters Θ,P,Π,X, I with a superscript number (from 0 to 2,
and 0 represents the first round) to represent the state before the corresponding
step is executed. Besides, we use three indices in subscript to express the bit (or
bits) in the inner state. We use “ ∗ ” to indicate the union of all values, and we
use x, y, and z to indicate a specific value. For example, Θ0

∗,y,z is a row, Θ0
x,∗,z

is a column, Θ0
x,y,∗ is a lane and Θ0

∗,∗,z is a slice.

3 Related Work

In this section, we review the previous work, including the techniques using the
linear structures [12], the allocating approach [13], the iterating strategy and the
5-for-3 strategy [14] and the technique of linearizing quadratic equations [21].

3.1 The Linear Structures

Guo et al. develop the linear structures to linearize the permutation of round-
reduced Keccak [12]. When used in 3-round Keccak-256, the technique is shown
in Fig. 3. The black lanes mean that these bits are all 1, while the white lanes
indicate that these bits are all 0. The yellow lanes imply that these bits are
linear. The grey lanes suggest that some of these bits are 0, and the others are 1.
To prevent the diffusion of the variables in the θ operation, they add 128 and 192
linear equations on Θ0 and Θ1 so that the sum of each column will be constant.
Then, the state stays linear for up to 2.5 rounds.

There are 6 × 64 = 384 variables and 128 + 192 = 320 linear equations, so
there are 384 − 320 = 64 degrees of freedom left which can be used to restrict
the output bits. For the property of χ operation, four given output bits can be
restricted by four linear equations. Thus, the 64 degrees of freedom can be used
to restrict 64 output bits, and there are 256− 64 = 192 unrestricted output bits
left. By varying the constants on Θ0

0,3,∗, Θ0
1,2,∗, and Θ0

3,0,∗ for 2192 times, it is
expected to obtain a preimage with guessing times of 2192.

6 Xiaoen Lin, Le He, and Hongbo Yu

𝜃 𝜋 ∘ 𝜌

𝜃 𝜋 ∘ 𝜌

𝜃 𝜋 ∘ 𝜌

linear

1

0

unconcerned

Θ𝑖𝑟

const

Ρ𝑖𝑟 Χ𝑖𝑟

𝑖𝑟 = 0

𝑖𝑟 = 1

𝑖𝑟 = 2

fixedχ

𝜒−1

I𝑖𝑟

χ

𝜄

𝜄

𝜄−1

digest

Fig. 3. The linear structure used in 3-round Keccak-256 [12].

3.2 The Allocating Approach

Li et al. put forward the allocating approach to divide the whole attack into two
easier tasks [13]. They find a new linear structure that provides more degrees of
freedom. However, the linear structure requires the following assumptions [13]:

Restriction_I: Θ0
x,3,z = Θ0

x,4,z ⊕ 1 (2 ≤ x ≤ 4, 0 ≤ z ≤ 63)

Restriction_II:
⊕

0≤x≤4,0≤z≤63

Θ0
x,4,z = 0

Besides, to satisfy the padding rule, there is an extra restriction:

Restriction_III: Θ0
1,3,63 = Θ0

1,4,63

Hence, they add another message block using linear structure in [12] to satisfy
the assumptions. Satisfying the assumptions is the first stage, and the second
stage is to meet the output bits with the new linear structure. The complexity
of both stages is lower than finding a preimage in one message block directly.

The first stage is shown in Fig. 4. Because the ι operation in the third round
only affects the lane I20,0,∗, the restrictions on the Θ0 of the second message block
are equivalent to these restrictions on the I2 of the first message block (replacing
Θ0 with I2):

Restriction_I: I2x,3,z = I2x,4,z ⊕ 1 (2 ≤ x ≤ 4, 0 ≤ z ≤ 63)

Restriction_II:
⊕

0≤x≤4,0≤z≤63

I2x,4,z = 0

Restriction_III: I21,3,63 = I21,4,63

Using linear structure in [12], they conclude that there are 64 degrees of freedom
left. With the χ operation: Ix,y,z = Xx,y,z ⊕ (Xx+1,y,z ⊕ 1) ·Xx+2,y,z, they add

Practical Preimage Attack on 3-Round Keccak-256 7

𝜃 𝜋 ∘ 𝜌

𝜃 𝜋 ∘ 𝜌

𝜃 𝜋 ∘ 𝜌

Θ𝑖𝑟 Ρ𝑖𝑟 Χ𝑖𝑟

𝑖𝑟 = 0

𝑖𝑟 = 1

𝑖𝑟 = 2

restricted
χ

I𝑖𝑟

linear
1
0
const
unconcerned

𝜄

𝜄

χ

𝜄χ

Fig. 4. The first stage of the allocating approach [13].

every 4 linear equations on X2 to satisfy 2 Restriction_I (so-called the 4-for-2
strategy in [14]):

X2
0,3,z = c0

X2
0,4,z = c1

X2
3,3,z ⊕ c0 ⊕ c0X2

4,3,z ⊕X2
3,4,z ⊕ c1 ⊕ c1X2

4,4,z = 1
X2

4,3,z ⊕X2
1,3,z ⊕ c0X2

1,3,z ⊕X2
4,4,z ⊕X2

1,4,z ⊕ c1X2
1,4,z = 1

where c0 and c1 are arbitrary constants to linearize the four bits I3,3,z, I4,3,z,
I3,4,z and I4,4,z. Therefore, there are 64 ÷ 4 × 2 = 32 Restriction_I satisfied
in total. To satisfy another 192 − 32 = 160 Restriction_I, together with Re-
striction_II and Restriction_III, they need to vary the column sums on Θ1 and
constants c0 and c1 2160+1+1 = 2162 times to obtain the first message block.

The second stage is shown in Fig. 5. There are 10 × 64 = 640 variables
and they add 5 × 64 + 2 × 64 − 2 = 446 linear equations to control the sum
of each column on Θ0 and Θ1 (2 equations are linear dependent). There are
640 − 446 = 194 degrees of freedom left. Note that the column sums on Θ0

should be fixed so that every bit on P 0
∗,4,∗ can be equal to “1”, while the column

sums on Θ1 can be arbitrary constants. They vary the column sums on Θ1 for
2256−194 = 262 times to get the second message block.

Additionally, they find a way to balance the complexity of the two stages. For
an ideal state P 0, it satisfies that P 0

x,3,z = 0 and P 0
x,4,z = 1. As shown in Fig. 6,

every unsatisfied Restriction_I or Restriction_III will cause P 0
x,3,z = P 0

x,4,z = 0
or P 0

x,3,z = P 0
x,4,z = 1 which results in extra linear bit on I0 and extra quadratic

bit (or bits) on I1. However, the effect of every unsatisfied Restriction_I or
Restriction_III can be eliminated by using 1 degree of freedom to restrict the
affected bit to constant (in Fig. 6, the affected bit is I01,1,z, and other types
of effects are similar). If there exists some unsatisfied Restriction_I or Restric-
tion_III, Restriction_II can always be adjusted to satisfy by eliminating appro-
priate type of effect (P 0

x,3,z = P 0
x,4,z = 0 or P 0

x,3,z = P 0
x,4,z = 1). As a result,

by allowing nI = 19 Restriction_I or Restriction_III not to be satisfied, the

8 Xiaoen Lin, Le He, and Hongbo Yu

𝜃 𝜋 ∘ 𝜌

𝜃 𝜋 ∘ 𝜌

𝜃 𝜋 ∘ 𝜌

Θ𝑖𝑟 Ρ𝑖𝑟 Χ𝑖𝑟

𝑖𝑟 = 0

𝑖𝑟 = 1

𝑖𝑟 = 2

fixed

I𝑖𝑟

χ

χ

𝜄

𝜄

linear
1
0
const
unconcerned

𝜒−1 𝜄−1

digest

Fig. 5. The second stage of the allocating approach [13].

guessing times of the first stage are 2160+1

C
nI
160+1

≈ 280.06, and the guessing times of

the second stage are 262+nI = 281.

𝜃 𝜋 ∘ 𝜌

𝜃 𝜋 ∘ 𝜌

Θ𝑖𝑟 Ρ𝑖𝑟 Χ𝑖𝑟

𝑖𝑟 = 0

𝑖𝑟 = 1 quadratic

special: the background color represents the bits on most of slices,
and the central color represents the bit (bits) on a (some)
corresponding slice (slices)

We will omit the explanation of special grids in the following pictures.

I𝑖𝑟

χ

χ

𝜄

linear

1

0

const

Fig. 6. The effect of unsatisfied restriction [13].

3.3 The 5-for-3 Strategy/The Iterating Strategy

Lin et al. propose the 5-for-3 strategy and the iterating strategy to improve the
preimage cryptanalysis on 3-round Keccak-224/256 [14].

The 5-for-3 strategy is used for adding linear equations on X2 to satisfy Re-
striction_I more efficiently. As introduced in Section 3.2, the original strategy
uses every 4 degrees of freedom to satisfy 2 Restriction_I, namely the 4-for-2
strategy. By choosing appropriate constants and adding another linear equation,

Practical Preimage Attack on 3-Round Keccak-256 9

the 5-for-3 strategy can use every 5 degrees of freedom to satisfy 3 Restriction_I.
Within the same degrees of freedom, the 5-for-3 strategy can satisfy more Re-
striction_I, and provide a better state for the second stage. The linear equations
of the 5-for-3 strategy are listed as follows [14]:

X2

0,3,z = 1
X2

0,4,z = 1
X2

2,3,z ⊕X2
2,4,z ⊕X2

3,3,z = 0
X2

3,3,z ⊕X2
3,4,z = 0

X2
4,3,z ⊕X2

4,4,z = 1

The iterating strategy is also used in the first stage to provide a better state
for the second stage. The first stage can be improved by using multi message
blocks instead of only one message block. The goal of each message block is pro-
viding a better state (the better means satisfying more Restriction_I). When a
better state is generated, the next message block will have more degrees of free-
dom than the previous message block, because the better starting state requires
fewer degrees of freedom to eliminate the effects of unsatisfied restrictions. Thus,
the next message block is more likely to generate a state better than before. It-
eratively, a good-enough state can be generated eventually.

In summary, the attack of the first stage is an iterating process. The number
of unsatisfied Restriction_I decreases when a new message block is found (the 5-
for-3 strategy makes finding each message block efficient). When using the best
starting state still can not generate a better state within acceptable guessing
times, the iterating process ends with a good-enough state. An iterating process
can be expressed by a table where k and k′ represent the number of unsatisfied
Restriction_I before and after the current message block, respectively. Their it-
erating process of preimage attack on 3-round Keccak-256 is shown in Table 3.
For example, the starting state of the first message block is all ‘0’ initial value
which does not satisfy any of 192 Restriction_I, so the k of the first message
block is 192. The first stage finally provides a state satisfying 189 Restriction_I,
so the k′ of the last message block is 192−189 = 3. The guessing times are calcu-
lated as follows. There are 194 degrees of freedom, they use k degrees of freedom
to eliminate the effects of unsatisfied restrictions. For the rest 194−k degrees of
freedom, they use the 5-for-3 strategy to satisfy

⌊
194−k

5

⌋
× 3 Restriction_I. The

remaining 192−
⌊
194−k

5

⌋
×3 Restriction_I are supposed to be satisfied randomly,

and the probability of generating a state with at most k′ unsatisfied Restric-
tion_I is Ck′

192−b 194−k
5 c×3

÷ 2192−b
194−k

5 c×3. Taking Restriction_II into account,

the overall expected guessing times are 21×(2192−b
194−k

5 c×3)÷(Ck′

192−b 194−k
5 c×3

).

Afterward, with k′ = 3, they construct the last message block with guessing
times of 2256−(194−k

′) = 265 at the second stage. Hence, the overall guessing
times are around max{262.78+1, 265} = 265 (the extra 1 is due to the padding
rules).

10 Xiaoen Lin, Le He, and Hongbo Yu

Table 3. The iterating process of 3-round Keccak-256 [14].

message block id k k′ guessing times
1 192 91 25.49

2 91 48 211.97

3 48 41 28.31

4 41 37 210.23

5 37 35 210.80

6 35 33 212.65

7 33 32 212.38

8 32 31 213.40

9 31 30 214.49

#10 30 27 218.18

#11 27 25 219.32

#12 25 21 225.67

#13 21 10 248.62

#14 10 5 260.12

#15 5 4 261.33

#16 4 3 262.78

3.4 Linearizing Quadratic Equations

Liu et al. present a way to make cryptanalysis on round-reduced Keccak-384/512
by linearizing quadratic equations [21]. In this section, we only introduce their
attack on 2-round Keccak-512. Their idea of solving quadratic equation systems
(adding new variables to replace the quadratic terms) can be used in our attacks.

As shown in Fig. 7, the 8 yellow lanes on Θ0 are set as variables. And they
add 4× 64 = 256 linear equations on Θ0 to control the sum of each column. By
simplifying the variables with the 256 equations, there remain 8 × 64 − 256 =
256 variables. After executing the χ operation in the first round, there remain
3 × 64 = 192 quadratic terms on I0. They use another 192 variables to replace
these quadratic terms. Hence, the state X1 is linear with 256 + 192 = 448
variables. To match the output bits, it requires 448 linear equations and 64
quadratic equations. They construct a linear equation system with 448 linear
equations on 448 variables, and it is expected to have one solution. They use
this solution to get the corresponding message and check the output bits. When
considering the padding rule, they can get a preimage by varying the column
sums on Θ0 and constants on Θ0

4,0,∗ for 2192+64+2 = 2258 times on average.
In summary, when the number of linear equations is larger than the sum

of the number of variables and quadratic terms, it is possible to linearize the
quadratic equations by adding variables replacing the quadratic bits.

Practical Preimage Attack on 3-Round Keccak-256 11

𝜃 𝜋 ∘ 𝜌

𝜃 𝜋 ∘ 𝜌

linearΘ𝑖𝑟

const
Ρ𝑖𝑟 Χ𝑖𝑟

𝑖𝑟 = 0

𝑖𝑟 = 1

unconcerned
quadratic

fixed

χ

𝜒−1

𝜄

I𝑖𝑟

𝜄−1
digest

Fig. 7. Preimage attack on 2-round Keccak-512 [21].

4 Improved Attack on 3-Round Keccak-256

The preimage cryptanalysis of 3-round Keccak-256 is presented in this section.
We first give an overview of our techniques. Then, we show the details of each
stage respectively. It is expected that the guessing times of finding a preimage
for 3-round Keccak-256 are 252.

4.1 Overview of Our Attack

Before introducing our attack, we review the three types of restriction defined
in Section 3.2 which will be discussed frequently in this section.

Restriction_I: I2x,3,z = I2x,4,z ⊕ 1 (2 ≤ x ≤ 4, 0 ≤ z ≤ 63)

Restriction_II:
⊕

0≤x≤4,0≤z≤63

I2x,4,z = 0

Restriction_III: I21,3,63 = I21,4,63

Restriction_I and Restriction_II are the prerequisites of the linear structure
(proposed in [13]). Restriction_III is the prerequisite for the last message block
so that the padding rule can be satisfied.

To improve the attack, we are facing two difficulties:

- The unsatisfied Restriction_I cost some degrees of freedom to eliminate the
effects. However, if we want to reduce the number of unsatisfied Restric-
tion_I, the complexity of the previous stage grows explosively. For example,
we can calculate that (as introduced in Section 3.3) if we only require that
the number of unsatisfied Restriction_I is no more than 10, the guessing
times of the previous stage is around 244. If we require that the number of
unsatisfied Restriction_I is no more than 3, the guessing times of the pre-
vious stage is around 263 which is marginally unpractical. Furthermore, if
we require that the starting state satisfy all the Restriction_I, the guessing
times of the previous stage is around 279.

- Even if we get a starting state satisfying all the restrictions, the number of
degrees of freedom is only 194 (as introduced in Section 3.2). To match the

12 Xiaoen Lin, Le He, and Hongbo Yu

output bits, we need to repeat trying different values of constants 2256−194 =
262 times which is still unpractical.

To solve these difficulties, we modify the linear structure proposed in [13]. We
discover that there exists a delicate modification which solves these difficulties at
the same time. After modification, the prerequisites become a subset of previous
prerequisites, and now the starting state satisfying all the prerequisites can be
obtained within acceptable guessing times. Besides, the modified linear structure
leaves more degrees of freedom which makes matching the output bits practical.
The only negative effect of the modified linear structure is that it produces a
small number of quadratic terms. However, the problem of these quadratic terms
can be solved using the technique introduced in Section 3.4 [21] without extra
costs.

Our attack includes three stages. The first two stages produce a particular
starting state satisfying the prerequisites. At the third stage, we use the modified
linear structure to match the output bits.

More specifically, at the first stage, we use the technique proposed in [14] as
described in Section 3.3. We will get a good state which satisfies Restriction_II
and 184 Restriction_I with guessing times of around 247.10.

At the second stage, with a good starting state, there are 194 − (192 −
184) = 186 degrees of freedom left. We use 3 degrees of freedom on each slice
and set restrictions on 62 slices. With these restrictions, we can satisfy some
restrictions on each slice with a certain probability. After many guesses, we
will get a particular state satisfying Restriction_III and all those Restriction_I
except at most 13 Restriction_I of type x = 4. The guessing times of the second
stage are around 251.52. More details of the second stage will be discussed in
Section 4.3.

At the third stage, with the particular starting state, we can use the modified
linear structure that has more degrees of freedom. Using this modified linear
structure, we can match the output bits and obtain the last message block with
guessing times of 252. More details of the third stage will be discussed in Section
4.4.

The first and the second stages introduced in this section match the attack
we present in the experiment. However, the guessing times of the first and the
second stages can be further decreased to 243.67 and 248.48, respectively. More
details will be introduced in Appendix A. The bottleneck of the whole attack is
still the third stage.

4.2 The First Stage

The first stage is almost the same as [14]. The only difference is that the state
we require is more achievable (the number of required satisfied restrictions is
fewer).

The target of the first stage is generating a state which satisfies Restriction_II
and at least 184 Restriction_I.

Practical Preimage Attack on 3-Round Keccak-256 13

As introduced in Section 3.3, we construct message blocks iteratively to ob-
tain such a state. We list the iterating process in Table 4. After the 24-block
iteration, we find an available state achieving the target. With this state, we
have enough degrees of freedom for the next stage.

Table 4. The iterating process to get a state with only 8 unsatisfied Restriction_I.

message block id k k′ guessing times
1 192 85 26.93

2 85 67 24.97

3 67 57 24.82

4 57 48 26.18

5 48 44 26.66

6 44 42 26.95

7 42 41 27.48

8 41 37 210.23

9 37 36 29.97

#10 36 30 215.91

#11 30 29 215.65

#12 29 28 215.39

#13 28 26 217.94

#14 26 25 219.33

#15 25 22 223.96

#16 22 21 223.80

#17 21 20 225.53

#18 20 19 227.36

#19 19 18 227.26

#20 18 16 231.28

#21 16 14 235.74

#22 14 12 238.32

#23 12 9 246.58

#24 9 8 247.10

4.3 The Second Stage

The second stage builds a bridge between the first stage and the third stage.
The first stage gives a good state which provides many degrees of freedom. The
third stage requires a particular starting state (the motivation of this particular
starting state will be introduced in Section 4.4). It should satisfy Restriction_III
and all the Restriction_I of type x = 2 and x = 3. Furthermore, it should satisfy

14 Xiaoen Lin, Le He, and Hongbo Yu

at least 51 Restriction_I of type x = 4. Therefore, the target of the second stage
is generating a required particular state with the provided degrees of freedom.

Because of the independence between different slices, we only consider the
case in one slice. Note that the non-linear operation χ can be regarded as ap-
plying a 5-bit Sbox on each row. We focus on the property of the Sbox on two
rows (X2

∗,3,z and X2
∗,4,z). If we add the following three linear equations,

X2
3,3,z ⊕X2

0,4,z ⊕X2
3,4,z = 1

X2
4,3,z ⊕X2

4,4,z = 1
X2

2,3,z ⊕X2
3,3,z ⊕X2

2,4,z = 0

it yields that the probability of satisfying Restriction_I of type x = 2 and x = 3
is 0.625 and the probability of satisfying Restriction_I of type x = 2, x = 3 and
x = 4 is 0.4375.

For example, if the inputs of the two 5-bit Sboxes are 00001 and 01010, the
inputs satisfy the three linear equations. The outputs of the two 5-bit Sboxes are
00101 and 00011. The outputs satisfy Restriction_I of type x = 2 and x = 3,
but they do not satisfy Restriction_I of type x = 4. After statistics, there are
25×25 = 1024 kinds of inputs of two 5-bit Sboxes while 1024÷23 = 128 of them
satisfy the three linear equations. Among these 128 kinds, 80 of them satisfy
Restriction_I of type x = 2 and x = 3, and 56 of them satisfy Restriction_I of
type x = 2, x = 3 and x = 4. If we suppose every kind of input occurs randomly,
the probability of satisfying corresponding restrictions will be 80÷ 128 = 0.625
and 56÷ 128 = 0.4375, respectively.

We add linear equations on 186 ÷ 3 = 62 slices and regard the bits on the
rest 2 slices as random values. To get the result, we need to ensure that the
Restriction_I of type x = 2 and x = 3 are all satisfied. In addition, we need
to ensure that Restriction_III and at least 51 Restriction_I of type x = 4
are satisfied. The probability of satisfying all Restriction_I of type x = 2 and
x = 3 is 0.62562 × 0.52×2 ≈ 2−46.04. When the Restriction_I of type x = 2
and x = 3 are satisfied, the conditional probability of satisfying 3 types of
Restriction_I in one slice is 0.4375÷0.625 = 0.7. Finally, taking the padding rules
(Restriction_III) into account, the probability of getting an available message
block is 2−1 × 2−46.04 ×

∑
i+j>=51(C

i
620.7

i(1− 0.7)62−i ×Cj
20.5

j(1− 0.5)2−j) ≈
2−51.52.

4.4 The Third Stage

At the third stage, we use a modified linear structure to construct the last
message block with the particular starting state (for convenience, we suppose
there are exactly 51 Restriction_I of type x = 4 satisfied). The modified linear
structure is shown in Fig. 8.

Here we introduce the motivation of the modified linear structure.
Above all, we need to increase the degrees of freedom. There are several

possibilities. We can cut down some of the 128 linear equations (controlling
column sums) on Θ1 to save some degrees of freedom. We can also add extra

Practical Preimage Attack on 3-Round Keccak-256 15

𝜒−1𝜃−1
𝜌−1 ∘ 𝜋−1

𝜃 𝜋 ∘ 𝜌 χ

𝜃 𝜋 ∘ 𝜌

linear
1
0

Θ𝑖𝑟

const

Ρ𝑖𝑟 Χ𝑖𝑟 I𝑖𝑟

𝑖𝑟 = 0

𝑖𝑟 = 1

𝑖𝑟 = 2

unconcerned
fixed
quadratic
special
(defined in Fig. 6)

𝜄−1

𝜄

𝜄−1𝜒−1

digest

Fig. 8. The modified linear structure.

variables on different places to increase some degrees of freedom. As introduced
in Section 3.4 [21], the number of produced quadratic terms must be less than
or equal to the number of redundant linear equations. Thus, we need to choose
the way producing minimal number of quadratic terms. Cutting down every
linear equation (controlling column sums) on Θ1 is not a good choice because
some columns on Θ1 turn from constant to variables which leads to tens of
quadratic terms. Adding an extra variable on the first round is also not a good
choice because a great number of quadratic terms are produced after two rounds.
Adding an extra variable on Θ1

3,∗,∗ or Θ1
4,∗,∗ is still not a good choice because

a column on Θ1 turns from constant to variables which causes many quadratic
terms similarly. Among all choices, adding extra variables on Θ1

1,∗,∗ is the best
choice because every extra variable only produces 4 quadratic terms.

On the other hand, we want to reduce the cost of matching the starting
state. We need to ensure that the 6 lanes P 0

x,y,∗(2 ≤ x ≤ 4, 3 ≤ y ≤ 4) are
constants. Among them, the relation (equal or opposite) of each bit pair P 0

x,3,z

and P 0
x,4,z needs to be the same with the relation of corresponding bit pair on

the starting state. As shown in Fig. 9, to control the required constants on P 0,
we need to control some constants on X0. Thus, we need to decide the type of
the setting of each row on Θ1. For each row, 2 types of settings satisfy that all
bits are linear with 2 degrees of freedom, and 2 types of settings satisfy that
there are at most 4 kinds of quadratic terms (2 quadratic terms appear on X0

and the others appear on I1) with 3 degrees of freedom. Among them, only the
first type of setting satisfies that the bit X0

4,y,z is constant, and its value is 1.
Therefore, the rows of Θ1

∗,0,z, Θ1
∗,1,z and Θ1

∗,3,z must be the first type. After that,
2 lanes (a′ = P 0

2,3,∗ and b′ = P 0
3,3,∗) will be constant 0, and 3 lanes (x′ = P 0

2,4,∗,
y′ = P 0

3,4,∗ and z′ = P 0
4,4,∗) will be constant 1. However, the rows of Θ1

∗,2,z can be
set to any type (while the number of quadratic terms produced by the third type
and the fourth type must be under the limit of linearizing the quadratic equation
systems). Thus, some bits on lane c′ = P 0

4,3,∗ can be constant 1 and others will
be constant 0. As a result, we require that the particular starting state obtained

16 Xiaoen Lin, Le He, and Hongbo Yu

by the second stage satisfies Restriction_I except at most 13 Restriction_I of
type x = 4. With a particular starting state, we are able to match the starting
state without extra cost by carefully selecting the types of settings on Θ1

∗,2,z.

?

𝜒−1 quadratic

𝜒−1

𝜒−1

vu

𝜒−1

𝜒−1 ∘ 𝜄−1

b’’ c’’a’’
y’’ z’’x’’

b’ c’a’
y’ z’x’

x
c

b z

a y

𝜃−1 𝜌−1 ∘ 𝜋−1

Θ𝑖𝑟 Ρ𝑖𝑟 Χ𝑖𝑟 Θ𝑖𝑟+1

𝑖𝑟 = 0

The two quadratic bits 𝑢 and 𝑣 have the same quadratic term.

①

②

③

④

requirement:
𝑎’𝑖 ⊕𝑥’𝑖 = 𝑐𝑜𝑛𝑠𝑡2,𝑖 = 𝑎"𝑖 ⊕𝑥"𝑖
𝑏’𝑖 ⊕𝑦’𝑖 = 𝑐𝑜𝑛𝑠𝑡3,𝑖 = 𝑏"𝑖 ⊕𝑦"𝑖
𝑐’𝑖 ⊕ 𝑧’𝑖 = 𝑐𝑜𝑛𝑠𝑡4,𝑖 = 𝑐"𝑖 ⊕ 𝑧"𝑖

linear
1
0
const
unconcerned

Fig. 9. Controlling the constants.

Then we give a detailed description of the modified linear structure. The
variables are set on Θ1. Except for the original 640 variables (Θ1

0,∗,∗ and Θ1
2,∗,∗),

we add 13 more variables on Θ1
1,2,∗. The 13 bits are selected according to the

13 unsatisfied Restriction_I in the particular starting state and the operation ρ.
Besides, on the slice (13 in total) where corresponding bit Θ1

1,2,z is chosen, the
bit Θ1

3,2,z is set as constant 1. Other bits on Θ1
1,∗,∗ and Θ1

3,∗,∗ are set as constant
0, and the bits on Θ1

4,∗,∗ are set as constant 1.
On the one hand, we invert the state Θ1 one round backward. The inverse

of the χ operation can be written as:
X0

0,2,z = I00,2,z ⊕ (I01,2,z ⊕ 1) · (I02,2,z ⊕ (I03,2,z ⊕ 1) · I04,2,z)
X0

1,2,z = I01,2,z ⊕ (I02,2,z ⊕ 1) · (I03,2,z ⊕ (I04,2,z ⊕ 1) · I00,2,z)
X0

2,2,z = I02,2,z ⊕ (I03,2,z ⊕ 1) · (I04,2,z ⊕ (I00,2,z ⊕ 1) · I01,2,z)
X0

3,2,z = I03,2,z ⊕ (I04,2,z ⊕ 1) · (I00,2,z ⊕ (I01,2,z ⊕ 1) · I02,2,z)
X0

4,2,z = I04,2,z ⊕ (I00,2,z ⊕ 1) · (I01,2,z ⊕ (I02,2,z ⊕ 1) · I03,2,z)

For the 13 selected rows, substituting the value 1 for I03,2,z and I04,2,z, we have:
X0

0,2,z = I00,2,z ⊕ (I01,2,z ⊕ 1) · I02,2,z
X0

1,2,z = I01,2,z ⊕ I02,2,z ⊕ 1
X0

2,2,z = I02,2,z
X0

3,2,z = 1
X0

4,2,z = 1⊕ (I00,2,z ⊕ 1) · (I01,2,z ⊕ I02,2,z ⊕ 1)

Practical Preimage Attack on 3-Round Keccak-256 17

So for each selected row, there are two quadratic bits X0
0,2,z and X0

4,2,z, two
linear bits X0

1,2,z and X0
2,2,z and a constant bit X0

3,2,z. Similar to the technique
in [21], we introduce 2× 13 new variables to replace these quadratic bits. After
that, the state develops as Fig. 8 shows till P 0. To match the starting state,
we add 320 equations to restrict the state so that bits on Θ0

∗,4,∗ are satisfied.
Due to the property of θ operation and the satisfaction of Restriction_I and
Restriction_III (and the 13 changed constants on P 0

4,3,∗), the state will match
the starting state successfully.

On the other hand, we develop the state Θ1 two rounds forward. Similar
to the original linear structure, we set 128 restrictions on Θ1 to control the
column sums and prevent the diffusion of the variables. Then the linear structure
produces 2×13 quadratic bits on I10,3,∗ and I11,3,∗. Similarly, we introduce another
2×13 new variables to replace these quadratic bits. And the state develops as Fig.
8 shows till X2. To restrict the 256 output bits, we have to add 256 equations.

In summary, the third stage consists of six steps.

- Construct the state Θ1 by setting bits on Θ1
0,∗,∗ and Θ1

2,∗,∗ as variables, bits
on Θ1

1,∗,∗ and Θ1
3,∗,∗ as 1, and bits on Θ1

4,∗,∗ as 0.
- Determine which 13 rows on Θ1 should be changed (change Θ1

1,2,z from 0
to variable and change Θ1

3,2,z from 0 to 1) according to the 13 unsatisfied
Restriction_I.

- Invert the state Θ1 one round backward (introduce 2× 13 new variables to
replace the quadratic bits) and add 320 equations to satisfy the particular
starting state.

- Add 128 linear equations on Θ1 to control the column sums and prevent the
diffusion of the variables.

- Develop the state Θ1 two rounds forward (introduce another 2 × 13 new
variables to replace the quadratic bits) and add 256 equations to meet the
output bits.

- Construct an equation system with 320 + 128 + 256 = 704 linear equations
on 640 + 13 + 2× 13 + 2× 13 = 705 variables.

However, the 2 × 13 + 2 × 13 = 52 new variables are not independent of
the original 640 + 13 = 653 variables because each new variable is equal to
the expression of the replaced quadratic bit. Thus, the equation system also
contains 52 quadratic equations, which must be satisfied randomly. So we need
to vary the column sums on Θ1 213×2+13×2 = 252 times and solve the equation
systems repeatedly, hoping to get an assignment of the variables that satisfies
all quadratic equations at the same time.

5 Fast Rebuilding Method

In Section 4, we have introduced the preimage attack on 3-round Keccak-256,
which requires building and solving the equation system and verifying the so-
lution 252 times. However, dealing with each guess is troublesome and time-
consuming. In this section, we propose a technique named the fast rebuilding
method to make it easier to rebuild and solve the equation system.

18 Xiaoen Lin, Le He, and Hongbo Yu

5.1 The Bottleneck of Previous Method

As introduced in Section 4, in each guess, we vary the column sums and construct
an equation system with 320+128+256 = 704 linear equations and 52 quadratic
equations on 705 variables. The first 320 linear equations are added to satisfy the
starting state, the 128 linear equations are added to control the column sums,
and the last 256 linear equations are added to meet the output bits. Among them,
the first 320 linear equations are easy to deal with because the varied column
sums are not involved with these equations. We can simplify the equation system
with these equations before guessing the column sums. The following 128 linear
equations are not too difficult to deal with because the varied column sums are
not involved with the coefficients of variables. But it is hard to deal with the last
256 linear equations because the varied column sums are deeply involved with
these equations. Therefore, we have to determine all the column sums at once to
deduce the coefficients of the 256 equations and solve the equation system after
that.

Rebuilding and solving an equation system with at least 256 variables and
verifying the 1600-bit solution are time-consuming. Thus, we hope to find a
method which determines the coefficients of a small number of equations and
solves the equation system with a small number of variables for each guess. In
Section 5.2, we will introduce our fast rebuilding method which varies constants
on Θ1

1,4,∗ instead of column sums. As a result, it is possible to rebuild and solve 10
equations on 61 variables and verify a 61-bit solution for each guess on average.

5.2 Vary Constants on Θ1
1,4,∗

Before introducing the fast rebuilding method, we present the motivation for
this technique.

The first difference is that, by varying constants on Θ1
1,4,∗ instead of the

column sums, we are able to do some useful preprocessing. We first regard the
bits on Θ1

1,4,∗ as variables. Similar to Section 4, these bits produce some quadratic
bits (introducing some new variables to replace these quadratic bits) and result
in some quadratic equations. After introducing some new variables, we will get
some new linear equations and some quadratic equations about the new variables
and the replaced quadratic bits. We simplify the equation system with the new
linear equations, and we determine the constant value of the bits on Θ1

1,4,∗ later.
The second difference is that, after preprocessing, we can solve the equation
system hierarchically. We determine the constant value of the bits on Θ1

1,4,∗
which we regard as variables just now. Then, the quadratic equations will return
to linear. Furthermore, now every equation only depends on the constant value
of a bit on Θ1

1,4,∗ instead of all the bits on Θ1
1,4,∗. In other words, when we vary

the value of every constant bit, only a small number of linear equations will be
changed.

The comparison of the two methods are shown as follows.

Practical Preimage Attack on 3-Round Keccak-256 19

Algorithm 1 Previous method.
build an equation system.
For each guess:

Determine all the varied constants.
Generate the linear equations.
Solve the equation system and verify the quadratic equations.

Algorithm 2 Fast rebuilding method.
Build an equation system.
Do some preprocessing.
For each guess:

Undo the simplification of a small number of linear equations.
Determine a small number of varied constants (others keep unchanged).
Generate a small number of linear equations.
Simplify and solve the equation system and verify the quadratic equations.

𝜃 𝜋 ∘ 𝜌

𝜃 𝜋 ∘ 𝜌

Θ𝑖𝑟 Ρ𝑖𝑟 Χ𝑖𝑟

𝑖𝑟 = 0

𝑖𝑟 = 1

𝑖𝑟 = 2

𝜃−1
𝜌−1 ∘ 𝜋−1 𝜒−1

χ

𝜒−1

𝜄−1

𝜄

linear
1
0
const
unconcerned
fixed
quadratic
special
(defined in Fig. 6)

𝜄−1

digest

I𝑖𝑟

Fig. 10. Vary the constants on Θ1
1,4,∗.

Then we give a detailed description of the fast rebuilding method. As shown
in Fig. 10, we vary the constants on Θ1

1,4,∗ instead of the column sums on Θ1 to
improve the attack. Note that when we set some bits on Θ1

1,4,∗ as constant 1, the
previous round is also linear, and the bits on P 0

1,4,∗ do not affect the restrictions
on the starting state. Moreover, we determine the value of Θ1

1,4,∗ later, and we
regard these bits as variables first, as shown in Fig. 11.

For the analysis in Section 4, every bit on Θ1
1,4,∗ results in 3+2 = 5 quadratic

bits on X0 and I1. However, 2 of the 3 quadratic bits on X0 (X0
2,4,z and X0

4,4,z)
have the same quadratic term. So we introduce 64× (5− 1) = 256 new variables
to replace these quadratic bits. Then we build an equation system with 704
linear equations on 705 + 64 + 64 × (5 − 1) = 1025 variables. Besides, we have
52 + 256 = 308 quadratic equations that must be satisfied.

Because we will vary constants on Θ1
1,4,∗ later instead of column sums, the

704 linear equations are fixed during different guesses. Therefore, we can simplify

20 Xiaoen Lin, Le He, and Hongbo Yu

𝜃 𝜋 ∘ 𝜌

𝜃 𝜋 ∘ 𝜌

Θ𝑖𝑟 Ρ𝑖𝑟 Χ𝑖𝑟

𝑖𝑟 = 0

𝑖𝑟 = 1

𝑖𝑟 = 2

𝜃−1
𝜌−1 ∘ 𝜋−1 𝜒−1

χ

𝜒−1

I𝑖𝑟

𝜄−1

𝜄

linear
1
0
const
unconcerned
fixed
quadratic
special
(defined in Fig. 6)

𝜄−1

digest

Fig. 11. Regard bits on Θ1
1,4,∗ as variables.

the equation system with these 704 linear equations before varying the constants
on Θ1

1,4,∗. After that, the equation system consists of 1025 − 704 = 321 free
variables with no linear equation and 308 quadratic equations. We hope to find
an assignment of these 321 variables satisfying all 308 quadratic equations at the
same time. It seems that the current situation is worse than before. However,
these changes make it possible to solve the equation system hierarchically.

Next, it is the time to assign values for Θ1
1,4,∗. Every time we assign a value

for a bit Θ1
1,4,z, 4 quadratic equations will become linear because the quadratic

bits caused by this bit are originally linear. Including assigning value for the bit
Θ1

1,4,z, there are 5 linear equations that can be added in total. If we vary the
values of 64 bits in order (0...0000, 0...0001, 0...0010, 0...0011, 0...0100,),
then for some continuous guesses, the first few bits keep unchanged, and the
corresponding linear equations keep unchanged. With this idea, we do not assign
values for all 64 bits at once. Instead, every time we value some bits, we simplify
the equation system with the corresponding linear equations.

For example, consider that the values of the first 52 bits will not change
for some continuous guesses. We assign value for the first 52 bits and use the
(1+4)×52 = 260 linear equations to simplify the equation system. The equation
system consists of 308 − 4 × 52 = 100 quadratic equations on 321 − 260 = 61
variables. Then, we assign value for the rest 12 bits one by one, but this time we
only simplify the added linear equations (rather than the whole equation system,
including the quadratic equations) while adding every 5 × 1 linear equations.
After all bits are valued, we will get a simplified (solved) equation system with
61-bit solution and 100 − 4 × 12 = 52 quadratic equations, which need to be
verified.

Note that we explain the following four points.

- We value the first 52 bits at once because the rest 61 variables can be ex-
pressed by a 64-bit word easily, and the simplification is not the bottleneck.
The process of valuing 52 bits can be divided into more than one step if
necessary.

Practical Preimage Attack on 3-Round Keccak-256 21

- We can use some linear expressions (concatenated by AND or XOR) to
express a quadratic equation so that the quadratic equation is easier to be
simplified or verified.

- We do not simplify the quadratic equations when there remains only a small
number of variables because the simplification costs more time than the gain
of reducing the number of variables.

- There are 5 × 12 = 60 linear equations on 61 variables, which means there
is 1 degree of freedom left. There are many ways to make use of this degree
of freedom. We can get two solutions of linear equations on average (but we
still need to verify each of them), or we can add another linear equation to
slightly improve the probability of a quadratic equation, or we can just add
an independent linear equation (such as let a variable be 0) for convenience.

As a result, usually for a new guess, we need to undo the last 2 × 5 = 10
added linear equations on average (because the last 2 valued bits changed on
average) and add another 2×5 = 10 linear equations. Then we simplify the linear
equations and get the solution of linear equations. Last we verify the quadratic
equations with the solution. In most cases, we deal with a small number of linear
equations on 61 variables, and it is very fast. Although the preprocessing (value
the 52 bits and simplify the equation system) is time-consuming, it happens every
212 guesses. With these techniques, we can guess around 1.01 million times per
second on a personal computer.

6 Experiments

In this section, we introduce our experimental results. The experiments are run-
ning on Sunway TaihuLight supercomputer which provides more than ten thou-
sand nodes. All these experimental results are finished within half a week. The
running time and the running speed of each stage are shown in Table 5. The
whole input message blocks (26 in total) and the state after finishing each stage
are shown in Appendix B.

22 Xiaoen Lin, Le He, and Hongbo Yu

Table 5. The runing time of each stage.

stage
arunning
time

bsolving
speed

expected
guessing times

actual
guessing times

cexpected
complexity

cactual
complexity

the first stage 83 d1.79 246.9 248.9 253.77 255.80

the second stage 30 6.50 251.5 249.3 256.51 254.33

the third stage 360 e5.43 252.0 252.6 257.27 257.92

a Unit: 1000 nodes · hour.
b Unit: million guesses / (second · node).
c Unit: equivalent 3-round Keccak calls.
d The solving speed of the first stage is slower because we need to calculate the number
of satisfied restrictions, while at the other two stages, we just need to check whether
restrictions are all satisfied.

e It is able to run the third stage with 1.01 million guesses per second on a personal
computer. So we think the speed of a node is around 5.43 ÷ 1.01 ≈ 5.38 times faster
than a personal computer.

7 Conclusion

In this paper, we propose two techniques to improve the preimage attack of
3-round Keccak-256.

The first technique is a modified linear structure. Based on the linear struc-
ture proposed in [13], we select some extra bits on Θ1

1,2,∗ as variables, so that
more degrees of freedom will be left. However, these variables generate some
quadratic bits which result in quadratic equations. We use the technique lin-
earizing quadratic equations in [21] to solve the equation system. By selecting
the 13 extra bits carefully, we can deal with the unsatisfied restrictions while
minimizing the number of generated quadratic equations. Using this technique,
we are able to decrease the guessing times of preimage attack of 3-round Keccak-
256.

The second technique is a fast rebuilding method to speed up the construc-
tion of equation systems. If we regard the varied constants as variables, the
equation system can be further simplified. The change of each constant bit only
causes a small number of linear equations to vary. By guessing the constant bits
hierarchically, we only need to deal with a small number of linear equations for
each guess on average. With this technique, the solving time for each guess will
decrease.

As a result, the guessing times of finding a preimage for 3-round Keccak-256
are decreased from 265 times to 252 times, and the solving time of each guess
decreases from 29 3-round Keccak calls to 25.3 3-round Keccak calls. Moreover,
we find a preimage of all ‘0’ digest for 3-round Keccak-256. It is noted that our
cryptanalysis is still far from threatening the security of full-round Keccak.

Practical Preimage Attack on 3-Round Keccak-256 23

References

1. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: The Keccak reference, 2011.
2. Dworkin, M.: SHA-3 Standard: Permutation-Based Hash and Extendable-Output

Functions, 2015.
3. Naya-Plasencia, M., Röck, A., Meier, W.: Practical Analysis of Reduced-Round

Keccak. In: Bernstein, D.J., Chatterjee, S. (eds) Progress in Cryptology – IN-
DOCRYPT 2011. LNCS vol. 7107, pp. 236–254. Springer, Berlin, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25578-6_18

4. Dinur, I., Dunkelman, O., Shamir, A.: New Attacks on Keccak-224 and Keccak-
256. In: Canteaut, A. (eds) Fast Software Encryption. FSE 2012, LNCS vol. 7549,
pp. 442–461. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34047-5_25

5. Dinur, I., Dunkelman, O., Shamir, A.: Collision Attacks on Up to 5 Rounds of
SHA-3 Using Generalized Internal Differentials. In: Moriai, S. (eds) Fast Software
Encryption. FSE 2013, LNCS vol. 8424, pp. 219–240. Springer, Berlin, Heidelberg
(2013). https://doi.org/10.1007/978-3-662-43933-3_12

6. Qiao, K., Song, L., Liu, M., Guo, J.: New Collision Attacks on Round-Reduced Kec-
cak. In: Coron, JS., Nielsen, J. (eds) Advances in Cryptology – EUROCRYPT 2017,
LNCS vol. 10212, pp. 216–243. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-56617-7_8

7. Song, L., Liao, G., Guo, J.: Non-full Sbox Linearization: Applications to Collision
Attacks on Round-Reduced Keccak. In: Katz, J., Shacham, H. (eds) Advances in
Cryptology – CRYPTO 2017, LNCS vol. 10402, pp. 428–451. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0_15

8. Guo, J., Liao, G., Liu, G., Liu, M., Qiao, K., Song, L.: Practical Collision
Attacks against Round-Reduced SHA-3. In: J Cryptol 33, pp. 228–270 (2020).
https://doi.org/10.1007/s00145-019-09313-3

9. Das, S., Meier, W.: Differential Biases in Reduced-Round Keccak. In: Pointcheval,
D., Vergnaud, D. (eds) Progress in Cryptology – AFRICACRYPT 2014, LNCS vol.
8469, pp. 69–87. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-
6_5

10. Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Practical Complex-
ity Cube Attacks on Round-Reduced Keccak Sponge Function. In: IACR Cryptol.
ePrint Arch, pp. 259 (2014). https://ia.cr/2014/259

11. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional Cube Attack on
Reduced-Round Keccak Sponge Function. In: Coron, JS., Nielsen, J. (eds) Advances
in Cryptology – EUROCRYPT 2017. LNCS vol. 10211, pp.259–288. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56614-6_9

12. Guo, J., Liu, M., Song, L.: Linear Structures: Applications to Cryptanalysis of
Round-Reduced Keccak. In: Cheon, J., Takagi, T. (eds) Advances in Cryptology
– ASIACRYPT 2016. LNCS vol. 10031, pp. 249–274. Springer, Berlin, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53887-6_9

13. Li, T., Sun, Y.: Preimage Attacks on Round-Reduced Keccak-224/256 via an
Allocating Approach. In: Ishai, Y., Rijmen, V. (eds) Advances in Cryptology
– EUROCRYPT 2019. LNCS vol. 11478, pp. 556–584. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4_19

14. Lin, X., He, L., Yu, H.: Improved Preimage Attacks on 3-Round Keccak-224/256.
In: IACR Transactions on Symmetric Cryptology 2021, Issue 3, pp. 84–101 (2021).
https://doi.org/10.46586/tosc.v2021.i3.84-101

24 Xiaoen Lin, Le He, and Hongbo Yu

15. Pei, J., Chen, L.: Preimage attacks on reduced-round Keccak hash
functions by solving algebraic systems. IET Inf. Secur. 1–13 (2022).
https://doi.org/10.1049/ise2.12103

16. He, L., Lin, X., Yu, H.: Improved Preimage Attacks on 4-Round Keccak-224/256.
In: IACR Transactions on Symmetric Cryptology 2021, Issue 1, pp. 217–238 (2021).
https://doi.org/10.46586/tosc.v2021.i1.217-238

17. Dinur, I.: Cryptanalytic Applications of the Polynomial Method for Solving Mul-
tivariate Equation Systems over GF(2). In: Canteaut, A., Standaert, FX. (eds)
Advances in Cryptology – EUROCRYPT 2021. LNCS vol. 12696, pp. 374–403.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_14

18. Wei, C., Wu, C., Fu, X., Dong, X. He, K., Hong, J., Wang, X.: Preimage Attacks on
4-round Keccak by Solving Multivariate Quadratic Systems. In: Cryptology ePrint
Archive (2021). https://ia.cr/2021/732

19. Kumar, R., Mittal, N., Singh, S.: Cryptanalysis of 2 Round KECCAK-384. In:
Chakraborty, D., Iwata, T. (eds) Progress in Cryptology – INDOCRYPT 2018.
LNCS vol 11356, pp.120–133. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-05378-9_7

20. Rajasree, M.S.: Cryptanalysis of Round-Reduced Keccak Using Non-linear Struc-
tures. In: Hao, F., Ruj, S., Sen Gupta, S. (eds) Progress in Cryptology –
INDOCRYPT 2019. LNCS vol. 11898, pp. 175–192. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-35423-7_9

21. Liu, F., Isobe, T., Meier, W., Yang, Z.: Algebraic Attacks on Round-Reduced
Keccak. In: Baek, J., Ruj, S. (eds) Information Security and Privacy. ACISP 2021.
LNCS vol. 13083, pp. 91–110. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-90567-5_5

22. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: Cryptographic sponge functions,
2011.

23. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponge func-
tions. (January 2011) http://sponge.noekeon.org/CSF-0.1.pdf

A The Further Improved First Two Stages

As introduced in Section 4.3, the target of the second stage is generating a state
satisfying Restriction_I and Restriction_III except at most 13 Restriction_I
of type x = 4. We use 186 degrees of freedom on some linear equations to
satisfy these restrictions with a certain probability. However, based on the 4-
for-2 strategy, if we set the two constants (c0 and c1) as opposite values instead
of random values, the results will be better. Here we compare four strategies
of setting restrictions on X2. Similar to Section 4.3, we only focus on two 5-bit
Sboxes (X2

∗,3,z and X2
∗,4,z). The equations of these strategies are listed as follows.

Strategy A:
X2

0,3,z = 1
X2

0,4,z = 1
X2

2,3,z ⊕X2
2,4,z ⊕X2

3,3,z = 0
X2

3,3,z ⊕X2
3,4,z = 0

X2
4,3,z ⊕X2

4,4,z = 1

Practical Preimage Attack on 3-Round Keccak-256 25

Strategy B:
X2

4,3,z = 0
X2

4,4,z = 1
X2

2,3,z ⊕X2
2,4,z ⊕X2

3,4,z = 0
X2

0,3,z ⊕X2
3,3,z ⊕X2

3,4,z = 1

Strategy C:
X2

3,3,z ⊕X2
4,3,z ⊕X2

3,4,z = 0
X2

4,3,z ⊕X2
4,4,z = 0

X2
2,3,z ⊕X2

4,3,z ⊕X2
2,4,z = 1

Strategy D:
X2

3,3,z ⊕X2
0,4,z ⊕X2

3,4,z = 1
X2

4,3,z ⊕X2
4,4,z = 1

X2
2,3,z ⊕X2

3,3,z ⊕X2
2,4,z = 0

We use some symbols to express some points to compare. For one strategy,
it uses every d degrees of freedom to add d linear equations on X2. Then the
probability of satisfying Restriction_I of type x = 2 and x = 3 is pa, and the
probability of satisfying all 3 types of Restriction_I is pb. We restrict r slices,
and there are u = 64 − r slices unrestricted. So we use D = r × d (within 186)
degrees of freedom in total. After that, the probability of getting a message block
satisfies Restriction_I of type x = 2 and x = 3 is Pa = pra × 2−2×u. When the
Restriction_I of type x = 2 and x = 3 are satisfied, the conditional probability
of satisfying Restriction_I of type x = 4 is Pb =

∑
i+j>=51 C

i
r(pb/pa)

i(1 −
pb/pa)

r−i × Cj
u(1/2)

j(1− 1/2)u−j . At last, considering the Restriction_III, the
overall probability of getting an available message block is P = 2−1 × Pa × Pb.
The comparison of these strategies is listed in Table 6.

Among these strategies, Strategy D is introduced in Section 4.3. Besides,
Strategy B shows the best result, although we do not make use of it while doing
the experiments.

By using Strategy B, we only require 184 degrees of freedom. In other words,
the first stage needs to provide a state satisfying Restriction_II and only 182
Restriction_I instead of 184 Restriciton_I. The bottleneck of the first stage is
constructing a message block with k = 11 and k′ = 10. And the guessing times
of constructing this message block are 243.67. As a result, we can decrease the
guessing times of the first two stages to around 243.67 and 248.48, respectively.

Note that Strategy C has the best Pa, which can be used in preimage attack
on 3-round Keccak-224. In [14], by iterating the first stage for 10 message blocks,
they get a state satisfying 126 Restriction_I (type x = 3 and x = 4) with
guessing times of 225.87. Based on this state, we construct another message block
using Strategy C′ (Strategy C moving a step to the right).

Strategy C′:
X2

4,3,z ⊕X2
0,3,z ⊕X2

4,4,z = 0
X2

0,3,z ⊕X2
0,4,z = 0

X2
3,3,z ⊕X2

0,3,z ⊕X2
3,4,z = 1

26 Xiaoen Lin, Le He, and Hongbo Yu

Table 6. Comparison of different strategies.

Strategy A Strategy B Strategy C Strategy D

d 5 4 3 3

r 37 46 62 62

u 27 18 2 2

D 185 184 186 186

pa 32/32 64/64 96/128 80/128

pb 32/32 40/64 40/128 56/128

Pa 2−54.00 2−36.00 2−29.73 2−46.04

Pb 2−1.00 2−11.48 2−30.31 2−4.48

P 2−56.00 2−48.48 2−61.04 2−51.52

Using 194− (128− 126) = 192 degrees of freedom, we add restrictions on all 64
slices. The probability of satisfying all Restriction_I (type x = 3 and x = 4)
is p64a ≈ 2−26.56. Considering Restriction_II and Restriction_III, the guessing
times of constructing this message block are around 228.56. After that, the second
stage is the same with [14]. The results of preimage attack on 3-round Keccak-224
are shown in Table 7. Our fast rebuilding method can also be used for preimage
attack on 3-round Keccak-224.

Table 7. The detailed results of preimage attack on 3-round Keccak-224.

First Stage Second Stage Overall Guessing Times Reference

– – 297 [12]

266 231 266
[13]

235.62 238 238

233 231 233
[14]

228 232 232

228.56 231 231 This paper

B An Instance of Preimage of 3-Round Keccak-256

The instance of preimage of 3-round Keccak-256 is shown in table 8.

Practical Preimage Attack on 3-Round Keccak-256 27

Table 8: An instance of preimage of 3-round Keccak-256 (in big-
endian order).

the 1st message block
b37313233b373133 5555555555555555 aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa cc4c8cecc4c8cecd
ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff
19d9b989919d9b99 ffffffffffffffff ffffffffffffffff ffffffffffffffff 9919d9b9919d9b98
ffffffffffffffff ffffffffffffffff 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 2nd message block
673fd6621904c5d4 c3cabb7867a65d30 8ff3b33ccae1b20d a351c99bc0bd1a7b 0d22cf2e21c47bfe
48b8605866ddd794 b7b016f753eafc76 e2a72433a1de16eb c5b77a83b99a4631 5ad7b7c347b83b0a
d2e3796fd0061aea 40a3ec9b7c8f1edb a8044a16da4e35e4 24e2753d38030867 00989952ab6b66e7
e63843f8ce001643 107a40611e7f7b98 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 3rd message block
52e2cac588dee9fe d5276803a3b8acef e78ad424128b6cbb f27c0bfd6bb3ea82 e116a542a5335bff
cdcc9bcd253a6fc9 8fa64585abb8dbef 7201c2c7e974f73d cb0d7080c315c4f1 a424bba861d56df4
493126dc26070589 8293b4dbe162b665 ff1106edc2035d0b 90c6d779b7cc43a1 5d237e29860042d8
d15c9df5c0a777bf 926c87b5dcb1685e 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 4th message block
157c8c05aaaa492b bc1a97672988816c 3de7e1c9452c9248 d97e56828795edbb 7c6f5bc91f53272c
ee4edd50c5b9662e 8e3864fb2c7dd15d 02c01a547b30f5ed b735d6bbbca3167c d4bafe63f322f89a
5aea022c2111eeb8 01d2a0445bf11961 72c22a10f7250601 2501e88923728778 2b8aa27721c9545b
5712af5c13567857 13f5ad228c093f73 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 5th message block
cbf72d75c71e5b43 c8d9cf65a00b7f1c 1437205506f22845 248af05bd3ed53f2 9945cd9c5af8aa6f
c68d43517a3a147b 39792961700804bc 0eed56f50ad29f67 90f50893c88c1347 615167dc6e81956e
4c88f8cdfdb0fe34 ca810a19281e15f4 8eb245291c783975 4418f699495b5320 82104b0a0acd1ba4
cd0962f74574bfa6 fcd0cabf4aab7de6 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 6th message block
0bbf8d72bdef5c0c 336d8e97bd32c874 13d271488d3378ee 5406ea75de2457b3 12517a561e92b75c
4c2a88ed00888fc9 f30baa06130bb284 5b17117860b7f544 4d4213363d858801 937944066cb9f5e9
086c178c9bc40d39 9162327ca8758466 6a3b2947134c2cfa d92f33aece39b658 8ef518fc5b5c56f7
a906ebbec99f6945 26f579be884fe099 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 7th message block
ef87b752d3da4f5e 14476a96f4fdfb3f 1011c947493e62b1 6c6098539711bf18 69a7dcfe84a2604a
5dce33448829d83d fe63fcd82f8a2bfd 2695088161e57899 50ab4559d5fa5aba acdef158d0873b14
bdbe87c3beb786a1 8a6708c21bf3826a 7ca9deabc01b4ac0 f3a5d6c14dfd4c92 87974f43c468d186
942dffa0a3ee75a5 42de16335da1d72d 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

28 Xiaoen Lin, Le He, and Hongbo Yu

the 8th message block
10b20df59b980828 f83f31894599cc75 0d21d228382322b2 02be27186c2bfb9c 82d9c11eb4ec2f3b
2e2640f216db8ee4 9f4313f2f74a24ee 1ed0f4ea04f34a02 9b164ad04fd76b74 678effbcf2ed0ea0
dc070aae098d8fef cf7186039aba338d dd2ba62247b6de33 2488f4e83d639a3f 7060d8a0f74a50cc
2e597fd3ec4fd07e 7c1c55f96e8c9da8 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 9th message block
af42ed15a74f5230 21c36f088e0c99f5 d772187d68f55f41 67120ad709a9c72a 64f1735265a2e261
1cea3adbfd461622 ec46ba5013f35b01 4cbb2b5c847f6da2 d1fe597844a076a9 e99914c4b423a1a1
1e2e4d5d31812963 a602c428bedaf9a4 17c1dcdfb1e433e0 31cfc8e6ae88bca7 3ed473c8cdc5682f
9b44a41e3dd6d46e ad60e342064c98be 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 10th message block
b3ac5b4e443fc7b1 27678230d925bfde 559415437ff8ef0b 226460c2517587af 78a65f11879d4349
6661b06a19f0e57f 512cebce2bc08e9b 3493ae909047e8c9 176807105e558612 303720b31558c933
c1a0184a7a2b1162 ed6ceb30acd1cce0 f177cd65554610df fcf6ae8ca520e1a6 aea4e94843f71e42
b54f7f090e1dfc72 c3971c7c2609a38b 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 11th message block
f4f7b1904308b12d 86c5e19b42015969 10d0e3a53817567e 3a238e14d4197799 4e3d746c0601b274
746c501e430512d8 b6174a5d33f32292 7395112085c75ed0 9989f62d02acfd24 e4888fc2b536c9cd
49d3ea243de4bcd6 2e60ec0942ca343b 4f1e30f103bdbabf c5289c52486654b4 5172b85107091490
b8a27f7f60fdd837 6e6a457edbd51b25 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 12th message block
bff58bb4668a1769 ed767a519c636835 9162f0cff40338ab 22cb7d6247c01890 5489b7f129ace874
053eaaeab7328636 6a133c2f7a90d569 9673f98fb2594d32 8605e5cb4a97e173 ddda14f4daf7faa3
2770269f0beb47c5 247ba9c42c701aeb 1f66825de19c7209 8fea7fb94cf366e2 985739388d19a616
e25ddb2559b5ab9f b34a532dee346cc3 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 13th message block
f17454aaf03b4b64 4193c95ad351809a c2412fbc53f69c0d 88cb87d86bdd44fe 645b0eaf7c59a06b
9a392c1ee040d397 2d209b3fadf188c3 c551b4f208f670c8 e508216c92418d53 1ca714044770a1f3
72398f7b14d059cc 0895d6ae4c555437 cb69f9abf697023d d74f502fc91fb37e f6bd04bfda371855
2a33d37a42e5fdf7 5b84e2ebb6bbb83a 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 14th message block
3284e7ce5d8633f7 532cd6dc071ff777 7ccafd3d5b565e12 84a6c00b3045328d 5b8e1d2f57f217ab
b5437acc9d8b2e4b d7bab63f968afad3 21ba3782d3413c54 fcf5d3429dc9b263 2f1d54ad3cfadad0
28d1acbc1f72c7ca 7f4023b0c468a000 0007def828359bf6 d0de41cfc7416ab6 4a4a43b1de3eb074
4274ac0db96edde8 a7b515a4b08543dc 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 15th message block
1aef05eab8208394 ba3864046462d17f c6beb1b1763733c4 872120212dfa094f b05b20a21c70ba41

Practical Preimage Attack on 3-Round Keccak-256 29

b019241583274fe6 98cc13d6ff996bb8 c2bea1d48afa4c4e 417ea34eb2754bf9 ef31d0730d2b79c2
a1b3f7639b13eeda 146f6670bcda6e18 012312bdef3ef43b 89b395294b8f1aae f948a05519405544
77a874dd44ef2119 f45e17d8dbea0655 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 16th message block
74c66ef88b2b4168 be5372c2b6b7ee4d 6664096c043abcac 617a90ee574b0ca2 a3cb5cb0007cff6f
c9abfeec68ce240f a720bcea8050bba3 320eaa769487f4cd a01561e3b9f0c7d6 c0588d89eab44ec0
cf9ab13c8529ad9c fe059b52b372e45d 9cb74d3b5e9e54a9 66238a7191961d1e 9f886318ef485f83
bc7efc3c0c66b25e f11cf52ba9fbaeaa 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 17th message block
702523782bf27f28 0d2d11db773286aa 14258b2c80bd4265 176bc38ddc9ffd4d e52d5cdb4c42cad4
319ca089d3bc82c6 b1da456c04898151 48fcd328946f20af 71fe1738cf330fa3 0d839e27de510434
8c296a263644966b dec4b376c9f51e2c e7a798e2a368d632 2bf44c727667a616 c3a78947b82ee2df
432c5faa2467e91c 8e28558373f2ccab 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 18th message block
bdbd2ec0173d12e2 8127e99e1e68ac01 6aed746a37ec37e1 b6acabe2e5205f78 08dd2692cd23e449
c35bab2509daad65 66c07eb0f26d4ad0 66c6c2f858690f88 1db47b83b690ca3a e844051c319613b2
2c8fb88df528784d 588c19ccf589437c 95569822ca90dbc0 e30f8fb10c3c4e3e 5c3fe40fff6e4031
01cebf41f465991b 272d3d4934ab211a 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 19th message block
857821d22905540b c91119948f4d1f84 276c9be260ef9b1e f0bae5eab0b3fe3e f57a494425fdccbc
702dc15fddefa613 6e8812bbb041aa5d 41f7482b072fb4fb 48c9617858bcfc72 4e22da96b1403036
811b165a23a9990e f29d56d160c5d1f4 066ab1d95aa25b22 f1128c74a8daf545 a10b6c8186bd68f9
165af8be7f09def5 9fe3cc9f68c347b8 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 20th message block
1070470238f83d8c f9cb66ff16662c4e 417fca6cf9317681 9d61e9facc0f7020 c789407b23c8e36a
f33acfb05a173c15 d098a5bb77c1437d 577ca0e67db1e8d2 39ecd0c3a0dd5a81 fcc90cec19ac1e43
b7c7b06ce385d0a2 58369aa97e72bb65 030a784e8325be06 45a786d3b1fe323c e31a648ee8967318
0d1eff874f84ac9f b79ec22290b02473 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 21st message block
116b68b605184cb7 a192c9a2d9aa150b aea88b4a7d0e5178 5ab675b1d8511278 7159f23b66a4f188
440a652226bf8f99 6e3b0e860fdc99e7 0a59992c8a68dc10 c1faaa6c40db9a6f f3cb579b9b86beff
c89fe6f93dad9680 b7d360b638e2bdc7 fe91812de7e38586 71b9b20325c5e541 119e0a287a54ce05
3eaf427da45496fb 81866c0f1a40928a 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 22nd message block
a0f3738f6aeeccbe 9120a472e84f68f0 8c6940ddcc7c9ee1 1bb88438e71ffd55 af492b1447a50e09
de6f4948cfd162e0 4386b55d47c1dbcb 08d34730280926fd 4a0a0674a4c23142 d2ea9a30db4108ba
6b34cb5abc6a6e13 d8aa92e41f2576b5 4597a65bcdaac7f6 3de783ff4bc3feea 82141a8262689299
04c5d5c9df0bd71a 192332928d0188fa 0000000000000000 0000000000000000 0000000000000000

30 Xiaoen Lin, Le He, and Hongbo Yu

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 23rd message block
eeff1728343ebd82 69baaddf82153598 5a3af1eea558c47c 8344bef775da1646 29b87f96982738c1
d3e7b22bdb5f40b5 300ed144acf6bf7f cd6de082fb5e6cd5 7965200f0b08279a 9ed9b7e3ada25b32
5b9b5d794569bd67 714816b864e114ef 214d3ed5be2592eb c199d4e4f557713c 12033da2d7b07c81
03cfe69aaed6dc7c a079305b3ecf8b96 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the 24th message block
9fb4ab0a18ff198c b6b26934534e6a1f 3f8270bfe9307d70 8cc2f3d05bc097af 364e5af73ec63613
05beab7cddc18bf0 323fe5e345103d25 bccb06af4244d312 db713d6b9e6fea01 0725ec27b96a1a86
2003f682a1cf5b05 bcd0dd1a4781fee0 98aeaa1bcead1a79 bada8cf402143ec8 43090b5c2830ee64
2754e09f7dffcc75 90a6e3ee492bd82f 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the state after the first stage
3d99e3864dd978a7 60373513737dad0d f979bbe6c728af9d 15e42f9fd704d3f8 ed0b9f1898371841
ed0fa702f897b231 3d386c110829eeeb 17a11ff1a7a75bc9 66dc2fae30780caa f3418af070433128
03d15d5a9d12d422 03f2032b3ab8fc82 2cc7f5a6122a7646 f0fee590a8d5b7f9 b0d697274be5aff8
ea0fceb7f3f7cfe7 55e0f8617153ce65 b06128f02c49bc1e cf9860c288fcad15 39bc989909a4eb23
39330abeaf39ba5f 9ff28abe0328b25f 5ffed70fd3b643e1 30779d3d770352ea c6536e66f65b14dc

XOR values of Restriction_I
ef9fffffffffffff ffeffdffffffffff ffeff6ffffffffff

the 25th message block
b1adf08a211d6d0d 11f90ac31b2801f1 38c7d0d4afd7b5fd 0488b6216e6620c3 72b994921e5ca1e2
2bc35243a851f791 5d7511d23c7e36c3 b7a037018beee7d7 6cb07a0aae79c9bd caed1b6979e7da0b
21994d3c6bb02703 63aa9ad7bbb8fb2b d966739029e76db9 0323564413532ca0 332357afbfe97532
2cc33bf6a3318a47 35ad85a24504164d 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the state after the second stage
26f6b72f64c7a017 904944b040829111 66bf3559df68f59e 08a764ce5bef39f5 663f9898bf40b461
c8bc323ea04684a7 3df4e9b993e3fea5 956263eb51febd9f 3cfa16d9554f8461 a105f32f994d27be
8051093937899dc8 78e471aa3ec14b76 7f146246fc095604 63313678fc6db963 fcabeefb6454ddc4
7cf1199b99f90719 907969a13f49db6d d684663e6cab54fa f27dbd3b15a57fda 7fef1fdb19e90f9a
af7d47dcf3e24ebf c99bead4c54adef7 297b99c19354ab05 0d8242c4ea5a8025 c012a804cc129041

XOR values of Restriction_I
ffffffffffffffff ffffffffffffffff bffdb7dfd5fb9fdb

the 26th message block
4609b0573539b4c1 5fcf06c9ff60e4d3 1f474596b8cdae7c cbc2c23e89cb4884 9b1fdf168988b62d
912e8a1dac5bb4e7 0f98d492841cc3ad 43e605d5354569f4 8fc78a891508739c 9ee8a4d4aaa04800
61773534510b59ad 6d36e2685d6213f5 21f3ab896958f7f0 8e335d8f2b2193b6 ff9787ac8a80f8c1
2563a1b895e43759 a215548a28b6e665 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

the final state
0000000000000000 0000000000000000 0000000000000000 0000000000000000 80e171e3611cc7f1
e28c9fbe1b6a1374 7860b435de30e34b aeb784f6d747cbb3 12ea874996aaf826 c37af932b711fb86
2adce91fe7865ac2 29743ce03dea5172 0575f66fe6f4570c 22d91197c038438c 9075e1e53959830c

Practical Preimage Attack on 3-Round Keccak-256 31

0c5aa5f2f4ba2607 7bd2c4c129b5f319 c3ac95e3aef8a884 755eacf9401d8879 c71817c519df211a
f28db1602f43a61d 39070676354565be 7117cc77c82348dc 4c8feae15571e374 4f8b1c9b9294d282

3-round digest
0000000000000000 0000000000000000 0000000000000000 0000000000000000

	Practical Preimage Attack on 3-Round Keccak-256

