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ABSTRACT
Circuit-based Private Set Intersection (circuit-PSI) refers to cryp-

tographic protocols that let two parties with input set 𝑋 and 𝑌

compute a function 𝑓 over the intersection set 𝑋 ∩ 𝑌 , without re-
vealing any other information. The research efforts for circuit-PSI

mainly focus on the case where input set sizes |𝑋 | and |𝑌 | are simi-

lar so far, and they scale poorly for extremely unbalanced set sizes

|𝑋 | ≫ |𝑌 |. Recently, Lepoint et al. (ASIACRYPT’21) proposed the

first dedicated solutions for this problem, which has online cost

only linear in the small set size |𝑌 |. However, it requires an ex-

pensive setup phase that requires huge storage of about 𝑂 ( |𝑋 |) on
the small set holder side, which can be problematic in applications

where the small set holder is assumed to have restricted equipment.

In this work, we suggest new efficient proposals for circuit-PSI

tailored for unbalanced inputs, which feature zero small set holder

side storage, and comparable online phase performance to the pre-

vious work. At the technical core, we use homomorphic encryption

(HE) based plain PSI protocols of Cong et al. (CCS’21), with several

technically non-trivial arguments on algorithm and security.

We demonstrate the superiority of our proposals in several input

set sizes by an implementation. As a representative example, for

input sets of size 2
24

and 2
12
, our proposals require zero storage on

the small set holder whereas Lepoint et al. requires over 7GB. The
online phase remains similar; over LAN network setting, ours takes

7.5 (or 20.9s) seconds with 45MB (or 11.7MB) communication, while

Lepoint et al. requires 4.2 seconds with 117MB communication.
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1 INTRODUCTION
In a two-party functionality called private set intersection (PSI),

two parties having respective input sets 𝑋 and 𝑌 compute the

intersection 𝑋 ∩𝑌 without revealing any other information beyond

the original set cardinality |𝑋 | and |𝑌 | to each other. However, PSI

alone cannot solve problems where a party only wants to obtain

only fractional information about the intersection or some function

evaluation on the intersection set instead of the intersection set

itself. We call this sort of protocol by PSI with computation that

computes 𝑓 (𝑋 ∩ 𝑌 ) for some target function 𝑓 rather than the

intersection set 𝑋 ∩ 𝑌 .
As a base notion for PSI with computation, circuit-based PSI

(circuit-PSI) [15, 30, 33] that outputs the intersect information in

secret-shared form has been studied. Informally, for each 𝑦 ∈ 𝑌 ,
it outputs two random-looking bits 𝑟 and 𝑠 respectively to each

party such that 𝑟 ⊕ 𝑠 = 1 if and only if 𝑦 ∈ 𝑋 ∩ 𝑌 . Note that the

shares provide no information about the intersection to each party.

It can be used as a general-purpose preprocessing for PSI with

computation, in the sense that two parties use the secret shares to

perform further computation on the intersection. The most typical

example would be the so-called PSI Cardinality which only reveals

the cardinality of the intersection, or PSI Threshold which only

reveals whether the cardinality exceeds some input threshold.

State-of-the-art circuit-PSI constructions are based on oblivious

programmable PRF (OPPRF) [5, 10, 20, 30, 33], and have been rapidly

improved to have both computational and communication cost

linear in input set size. However, such linear dependency lies on

both input sets, and hence this protocol poorly scales when two

input sets have extremely unbalanced size.

The unbalanced case has already received much interest in PSI

field [6, 7, 22, 32], since this case also finds useful real-world applica-

tions such as password breach check [19] or contact discovery [13].

However, most of the works only focused on the plain PSI function-

ality, although PSI with computation also deserves to be studied.

Contact tracing for pandemic diseases would be a notable example.

One party (typically a government institution) stores a geological

database and moving routes of confirmed cases, and the other party

can be each individual who has its moving routes locally. In this

case, it is strongly desirable to inform only the fact of contact since

detailed contact information may lead to privacy violations.

To the best of our knowledge, only one work [24] explicitly tack-

les this problem with dedicated protocols and sound analysis. By

writing the large set size by 𝑛𝑥 and the small set size by 𝑛𝑦 , the first

has a highly efficient online phase whose cost only depends linearly

on 𝑛𝑦 . However, such an efficient online phase comes from an ex-

pensive setup phase cost, which consists of𝑂 (𝑛𝑥 ) preprocessing on
the large set side, and then transmission of the𝑂 (𝑛𝑥 ) preprocessed
data to the small set side. Note that although this 𝑂 (𝑛𝑥 ) data can
be sent to the small side before the actual protocol starts, i.e., in

the offline phase, the small side has to hold that storage during

the whole online phase. The concrete amount of 𝑂 (𝑛𝑥 ) storage
is greater than 7 GB for 𝑛𝑥 = 2

24
, which is strongly prohibitive

for applications where the small set holder could be lightweight

devices with limited storage space, such as mobile.

In this regard, [24] also proposed another solution that runs

without any offline preprocessing, which does not require 𝑂 (𝑛𝑥 )
storage burden on the small set holder. This comes at only a small

overhead in the communication cost𝑂 (𝑛𝑦 log(𝑛𝑥/𝑛𝑦)), but an over-
head on the computation is devastating; asymptotically it grows to

𝑂 (𝑛𝑥 ). To say concrete timing, it requires over 8 hours of online

running time with the large set size 𝑛𝑥 = 2
24
. This leads to a natural

question:
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𝑛𝑦 = 2
12 𝑛𝑥 Ours 1 Ours 2 PJC 1 PJC 2

Online

Time (sec)

2
20

4.85 2.59 4.22 2,134

2
24

20.9 7.54 4.22 33,997

Comm. (MB)

2
20

8.1 12.2 117 213

2
24

11.7 45.2 117 256

Offline

Time (sec) 2
20

5.4 3.8 137 0

(Large-side Setup) 2
24

465 68 2,207 0

Comm. (MB) 2
20

0 0 465 0

(Small-side Storage) 2
24

0 0 7,440 0

Table 1: Comparison with previous work PJCs [24]. Timings are
measured over a LAN network. For all protocols, the offline timing
is dominated by large set side-alone setup timing, and the whole
offline communication leads to small set side storage. For detailed
explanations, see §6 and Table 4.

Is it possible to achieve sublinear complexity with respect to the large
set size 𝑛𝑥 without requiring any storage in the small set holder?

1.1 Our Contribution
This work proposes new circuit-PSI protocols tailored for extremely

unbalanced input sets, affirmatively answering the question above.

In particular, they require zero storage in the small set holder while

providing efficient online performance sublinear to the large set

size 𝑛𝑥 . Our proposals consist of two constructions that provide

computation-communication trade-offs to each other, whose un-

derlying technique can be another interest.

The improvement in concrete performance is significant, as Ta-

ble 1 shows some examples. Our proposals remove 𝑂 (𝑛𝑥 ) storage
requirement of the first protocol (PJC 1) of [24] while achieving

similar online performance. Compared to the previous approach

(PJC 2) of [24] that does not require small-side storage, our construc-

tions show significantly faster performance. It is true that ours still

needs some offline time, whereas PJC 2 removes the entire offline

phase. However, the offline computations can be locally done on

the server-side alone and hence much less problematic than offline

communication that results in the storage burden on the client side.

Moreover, our performances are more efficient than PJC 2 even

considering the total time; offline plus online time for ours and

online time for PJC 2.

Technical Overview. At the technical core of our constructions,
we use homomorphic encryption (HE), which is well known to

imply efficient HE-based plain PSI protocols [6–8] tailored for un-

balanced input. Toward HE-based circuit-PSI, we first revisit a sim-

ple conversion illustrated in [6] that attaches the post-two-party

computation (2PC) stage after the main HE phase. This idea was

provided in a rather abstract sense, and our first contribution is a

completion of this idea with a rigorous analysis of several optimiza-

tion techniques proposed in the previous HE-based plain PSI [6–8].

As the most interesting one, we argue that oblivious pseudo-random
function (OPRF) preprocessing, which provided several benefits,

including malicious security in plain PSI cases, provides almost no

benefit on circuit-PSI. Thenwe show that noise flooding [7] is rather

suitable to achieve security and complete the protocol against the

semi-honest adversary. This may seem to be degraded from the

previous PSI works [6, 8] of malicious security, but we stress that

all state-of-the-art circuit-PSIs [5, 24, 33] also assume semi-honest

adversary. In the asymptotic view, this protocol requires 𝑂 (𝑛𝑥 )
precomputation of the large set holder without any communication

in the offline phase, and 𝑂 (√𝑛𝑥𝑛𝑦) non-scalar HE multiplications

and𝑂 (𝑛𝑦) 2PC-based equality test, and𝑂 (𝑛𝑦 log(𝑛𝑥/𝑛𝑦)) commu-

nication in the online phase.

As the second contribution, we propose an efficient trade-off be-

tween communication and computation of the first protocol. In fact,

there is a well-known trade-off from HE literature, which requires

zero non-scalar HE multiplications while increasing communica-

tion to𝑂 (√𝑛𝑥𝑛𝑦). It works well for the plain PSI protocol [8], which
consists only of the HE phase, but not for our circuit-PSI protocol,

which has an additional 2PC phase. This naive trade-off leads to

unsatisfactory performance, as it increases the post 2PC phase to

𝑂 (√𝑛𝑥𝑛𝑦), which was only 𝑂 (𝑛𝑦) before the trade-off. To over-

come this, we suggest a novel method that recursively applies the

HE phase to end with 𝑂 (𝑛𝑦) 2PC phase. This leads to our second

protocol of zero non-scalar HE multiplications with 𝑂 (𝑛𝑦) 2PC
phase and 𝑂 (√𝑛𝑥𝑛𝑦) communication in the online phase.

1.2 Further Related Work
The early proposal of plain PSI is based on Diffie-Hellman (DH) [27],

and this still serves as a basis for modern PSIs with considerably

low communication cost but high computational cost. Many recent

plain PSI proposals have been based on OPRF [28, 33], and it has a

significantly low computational cost but a higher communication

burden than DH-based PSI.

Unbalanced Input Sets. OPRF-based plain PSI protocols enjoy

relatively fast online performance for the unbalanced set that only

depends on the small set size 𝑛𝑦 , assuming heavy offline prepro-

cessing of cost linear in the large set size 𝑛𝑥 . The research efforts

are put to reduce the offline preprocessing [22, 32], but it still has an

asymptotically linear cost. Another line of plain PSI protocols based

on HE [6–8] achieves sublinear complexity, especially the logarith-

mic communication cost on the large set size 𝑛𝑥 . The two protocols

proposed in [24] can be understood as the first step toward both

directions in the circuit-PSI functionality; the first achieves 𝑂 (𝑛𝑥 )
offline and 𝑂 (𝑛𝑦) online, and the second achieves communication

cost 𝑂 (𝑛𝑦 log(𝑛𝑥/𝑛𝑦)) but computational cost still 𝑂 (𝑛𝑥 ).

Other PSI-with-computation. [16] provides a protocol for PSI

with computation in name Private Join & Compute based on Diffie-

Hellman (DH). It aims for a specific functionality that computes

the cardinality of the intersection and sums all associated values

of the intersection sets. Subsequently, [4] further developed this

into a protocol that provides two parties additive shares of the

intersected elements between the two parties to support general

computation over the intersection set. However, it has a drawback

that unavoidably leaks the cardinality of the intersection. The more

generalized concept of circuit-PSI was first proposed by [15], and

then continuous improvements have been reported until OPPRF-

based protocols [5, 10, 30, 33].
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1.3 Roadmap
First, we provide some preliminaries in §2. Then in §3, we review

the previous HE-based plain PSI protocol due to [6–8]. After then,

in §4, we describe our first circuit-PSI protocol that attaches the

2PC phase after the plain PSI protocol of [8], with an argument

of the irrelevance of OPRF preprocessing. In the following §5, we

propose our second circuit-PSI protocol, which provides a trade-off

between computation and communication with respect to our first

proposal, whose technical core is a recursive call of the HE phase.

Finally, we provide experimental results and comparisons in §6.

2 BACKGROUNDS
The 𝑖-th component of a vector ®𝑣 is denoted by 𝑣𝑖 . For an integer

𝑘, the set {1, · · · , 𝑘} is denoted by [𝑘]. The logarithm function

log is assumed to have a base 2. For a set 𝑆, we denote a uniform

distribution over 𝑆 by U(𝑆), and denote sampling an element 𝑠

from the uniform distribution over 𝑆 by 𝑠 ← 𝑆 . For any statement

𝑇 that can be determined by true or false (Boolean), we denote 1(𝑇 )
as the true value of the equality, that is, it is 1 if𝑇 is true and 0 else.

For a field F, we denote Fx := F \ {0}.

2.1 Semi-honest Security
We use a standard notion of security against semi-honest adver-

saries and provide a simplified description for the 2-party case. For

a detailed explanation, we refer [25]. Consider a two-party protocol

Π that computes an ideal functionality 𝑓 (𝑥1, 𝑥2) where the party
𝑃𝑖 has input 𝑥𝑖 . For each party 𝑃𝑖 , define view𝑖 (𝑥1, 𝑥2) as the view
of party 𝑃𝑖 during the execution of Π on input 𝑥1, 𝑥2. Specifically,

it consists of input 𝑥𝑖 , messages that are sent or received, random

tape during the execution of the protocol, and the output of the

protocol Π .

Definition 2.1. We say that a (two-party) protocol Π for 𝑃1 and

𝑃2 computes 𝑓 against a semi-honest adversary, if there exist simu-

lators Sim1 and Sim2 such that, for any inputs 𝑥1, 𝑥2 and 𝑖 = 1, 2,

Sim𝑖 (𝑥𝑖 , 𝑓 (𝑥1, 𝑥2)) �𝑐 view𝑖 (𝑥1, 𝑥2),

where �𝑐 represents computational indistinguishability.

2.2 Homomorphic Encryption
Homomorphic Encryption (HE) is an encryption scheme that allows

arithmetic operations in an encrypted state without decrypting the

ciphertexts. More precisely, for each arithmetic operation on the

plaintext, there is a corresponding operation on HE ciphertexts that

outputs a ciphertext of the arithmetic operation result.

In this paper, we especially focus on a variant of BFV scheme [3]

that supports a plaintext space
1R𝑡 := Z𝑡 [𝑋 ]/(𝑋𝑁 +1) for a power-

of-two 𝑁 and a prime modulus 𝑡 , and the ciphertext space is R2𝑞
for a modulus 𝑞 ≫ 𝑡 . To correctly evaluate an arithmetic circuit of

multiplicative depth 𝐿, the ciphertext modulus 𝑞 is chosen so that

log𝑞 ≈ (𝐿 + 1) log 𝑡 . Below, we provide some properties of BFV

required to understand our work.

1
Actually BFV scheme supports more general plaintext, but we only focus on this one

which is widely used in the real world.

Batching. BFV scheme can support a batching property on ci-

phertexts, which encrypts multiple messages as a vector over some

field F in one ciphertext and supports slot-wise addition and mul-

tiplication in F in an encrypted state. To be precise, it exploits an

isomorphism

R𝑡 = Z𝑡 [𝑋 ]/(𝑋𝑁 + 1) ≃ Z𝑁𝑡
which holds when 𝑡 = 1 mod 2𝑁 . Then the BFV scheme can

encrypt 𝑁 elements in Z𝑡 in one ciphertext using this map, and

support slot-wise addition andmultiplication on Z𝑁𝑡 in an encrypted

state.

Operations and Their Costs. More precisely, the BFV scheme

supports slot-wise addition and multiplications between two ci-

phertexts or a ciphertext and plaintext in Z𝑁𝑡 . A homomorphic

addition can be operated in a significantly shorter time than multi-

plication. A multiplication between ciphertext and plaintext, which

we callscalar multiplication is much faster than a multiplication be-

tween ciphertexts, say non-scalar multiplication. The performance

difference depends on underlying parameter selection, but in our

HE parameter choice, non-scalar multiplication takes at least 10x

time of scalar multiplication. We refer to [21] for a detailed asymp-

totic cost of each operation.

Security Notions. BFV ciphertext is indistinguishable from a ran-

dom distribution under the hardness assumption of Ring-Learning

with Errors (RLWE) [26], and this ensures the IND-CPA security

of the scheme. Furthermore, we consider a function privacy which

requires that the output ciphertext of any homomorphic operations

along with the decryption oracle leaks nothing but the inside mes-

sage, in particular information about the operations processed on

the ciphertext.

Although the underlying RLWE assumption naturally achieves

IND-CPA, it is rather complicated to achieve the function privacy for

BFV. We follow the previous approach based on re-randomization
and noise flooding [2]. As the theoretic explanation requires further

details of the BFV, we simply provide the resulting modifications

here. To achieve function privacy, we have to prepare a marginal ci-

phertext modulus of 𝜎 bits where 𝜎 is a statistical security bit. After

then, by adding encryption of zero having sufficiently large noise,

one can convert any ciphertext to a function-privacy ciphertext

that gives no more information than the internal plaintext when

decrypted.

2.3 Two Party Computations
There are two popular approaches for two-party computation (2PC)

provided as Boolean circuits with semi-honest security. The first one

stems from Yao’s garbled circuit (GC) protocol that has a strength

in the number of rounds independent of the input circuit depth.

The state-of-the-art protocol [36] for GC performs XOR gate with

no cost and one AND gate with two symmetric-key ciphertexts

communication that takes 2_ = 256 bits communication. The other

stems from GMW protocol [12] that also computes the XOR gate

for free and one AND gate with two oblivious transfers (OT) [17]. It

requires logarithmic rounds of input circuit depth, but the AND gate

evaluation can be done with much lower communication cost, less

than 2 bits, thanks to recent improvements on OT extensions [9, 35].

In this work, we implicitly consider the GMW protocol for 2PC as
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the gain on communication is considered much bigger than the

loss on the number of rounds. However, we also remark that the

proposed circuit-PSI protocol can also be realized with GC.

2.4 Definition of Circuit-based PSI
Circuit-based PSI (circuit-PSI) is a formal and flexible definition

of PSI with computation that generates Boolean additive shares

of the intersection information. More precisely, for input sets 𝑋

and 𝑌 , it outputs Boolean additive shares of 1(𝑦 ∈ 𝑋 ∩ 𝑌 ) for each
𝑦 ∈ 𝑌 . They can be used for the desired function evaluation by other
cryptographic primitives, typically generic 2PC. Typical examples

of target functions are the cardinality (size) function, threshold

function, summation of associated values, and inner product of

associated values from both sides. The formal definition is given as

Figure 1. The table size 𝑇 and the index function ] are somewhat

nonintuitive, but it is required to capture the cuckoo hashing tech-

nique, which is commonly used for current circuit-PSI protocols.

As a direct consequence of circuit-PSI, one can achieve PSI Car-

dinality by computing Hamming distance circuit, PSI Threshold,

by further augmenting arithmetic comparison to PSI Cardinality.

Parameters: Set sizes 𝑛𝑥 and 𝑛𝑦 , and output size𝑇

Input: 𝑋 of size 𝑛𝑥 from one party, and 𝑌 of size 𝑛𝑦 from the other

party.

Functionality: The functionality samples a random vector ®𝑠𝑥 ∈
{0, 1}𝑇 , and a random injective function ] : 𝑌 → [𝑇 ]. Then it de-

fines a vector ®𝑠𝑦 ∈ {0, 1}𝑇 by such that

𝑠𝑥,𝑖 ⊕ 𝑠𝑦,𝑖 =
{
1(]−1 (𝑖) ∈ 𝑋 ∩𝑌 ) if 𝑖 ∈ ] (𝑌 )
0 otherwise.

It sends ®𝑠𝑥 to the 𝑋 holder, and ®𝑠𝑦 and the index function ] to the 𝑌

holder.

Figure 1: (Ideal) Functionality of the circuit-PSI

3 REVIEW OF PREVIOUS HE-BASED PSIS
In this section, we review a plain PSI protocol based on homomor-

phic encryption (HE) [7], along with the optimization techniques

proposed in the following works [6, 8]. Let us denote one input set

𝑋 with size 𝑛𝑥 and another input set by 𝑌 with size 𝑛𝑦 . It is widely

known that HE-based PSI protocols show strength when input sizes

are highly unbalanced, and hence we assume that 𝑛𝑥 ≫ 𝑛𝑦 .

The small set holder 𝑆 constructs a hash table C from 𝑌 with

𝑛′𝑦 := (1 + 𝜖) · 𝑛𝑦 bins so that each bin contains at most one item

𝑦 ∈ 𝑌 . This can be done by a cuckoo hashing with several hash

functions 𝐻1, · · · , 𝐻ℎ (typically ℎ = 3), which inserts each element

𝑦 ∈ 𝑌 into the 𝐻𝑖 (𝑦) -th bin C[𝐻𝑖 (𝑦)] for some 𝑖 so that each bin

of C contains at most one item. Meanwhile, the large set holder

𝐿 constructs another hash table S with 𝑛′𝑦 bins by inserting each

𝑥 ∈ 𝑋 into 𝐻𝑖 (𝑥)-th bin S[𝐻𝑖 (𝑥)] for all 𝑖 ∈ [ℎ]. We call C by the

cuckoo table and S by the simple table. Then each bin of S contains

𝛽 = 𝑂 (𝑛𝑥/𝑛𝑦) items with high probability. The intersection can

then be derived from the union of all bin-wise intersections:

𝑋 ∩ 𝑌 =
⋃
𝑘

{C[𝑘] ∩ S[𝑘]}.

Since C[𝑘] is a singleton set, the goal is reduced to the membership

check problem C[𝑘] ∈ S[𝑘] . Note that this cuckoo hashing routine
(with several hash functions) instead of the regular hashing routine

(with only one hash function) is essential to reduce the original

problem into this smaller membership check problem C[𝑘] ∈ S[𝑘];
if one uses the regular hashing routine (with only one hash func-

tion), the small set side table C is not guaranteed to have a single

element in each bin.

Now, we focus on one bin and write the cuckoo bin element by 𝑦

and the simple bin set by 𝐵. The key idea is to check whether 𝑦 ∈ 𝐵
by evaluating a polynomial

𝐹 (𝑦) = 𝑐 ·
∏
𝑥 ∈𝑆
(𝑥 − 𝑦) =

𝛽∑︁
𝑖=0

𝑎𝑖 · 𝑦𝑖

with a random multiplicative mask 𝑐 ← Fx where F is a base finite
field. Note that the result is equal to 0 if 𝑦 is in 𝐵, or a random

element in Fx. For a private evaluation of the polynomial, the small

set holder uses homomorphic encryption (HE) to encrypt 𝑦 and

sends it to the large set holder. Then the large set holder evaluates

𝐹 (𝑦) and sends back the resulting ciphertext to the small set holder.

Finally, the small set holder decrypts the ciphertext and checks

whether the decrypted value is 0 or not, which corresponds to

𝑦 ∈ 𝐵 or 𝑦 ∉ 𝐵 respectively.

3.1 Optimizations
There have been proposed several optimization techniques in [7, 8]

on this idea. We introduce some techniques required to understand

the main body of our paper.

Noise Flooding and OPRF. When decrypted, the noise term in

the ciphertext may reveal some information about the large set

holder item not in the intersection. Then the noise term should

be flooded by a much larger error to prevent this leakage, and the

original PSI proposal [7] achieved semi-honest security from this

so-called noise flooding. Subsequently, [6] showed that such noise

flooding could be removed and further achieves malicious small

set holder security, with oblivious pseudo-random function (OPRF)

preprocessing. OPRF is a two-party functionality that outputs a PRF

key 𝑠𝑘 to the large set holder and PRF𝑠𝑘 (𝑌 ) to the small set holder

of input 𝑌 while the large set holder without any knowledge of 𝑌

other than 𝑛𝑦 and the small set holder without any knowledge of 𝑠𝑘 .

To achieve malicious security, the large set holder randomizes items

with PRF𝑠𝑘 so that any information leakage about non-intersect

items is at most the PRF value of the large set holder item, which

is random in the view of the small set holder. As a downside, this

requires the large set holder to spend 𝑂 (𝑛𝑥 ) offline time for com-

puting OPRF. However, it can be acceptable, as it has to be done

only once and can be reused for multiple small set holder sets, while

𝑋 remains static
2
.

Batching and Handling Long Input. One can check the mem-

bership 𝑦 ∈ 𝐵 on several hash table bins at once using batching

property of BFV. The most naive application would be letting the

small set holder pack each cuckoo bin element into each slot of

2
This property is only valid for Diffie-Hellman based OPRF [18], and not for OT based

OPRFs.
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plaintext and the large set holder can also evaluate the polynomial

in a slot-wise manner.

Meanwhile, to deal with an input of arbitrary length, it is com-

mon to compress input into some collision-resistant length using

a public hash function in the general context of PSI [6, 31]. The

concrete length is roughly 𝜎 + log𝑛𝑥 + log𝑛𝑦 for statistical security

parameter 𝜎 , and it can be slightly reduced to ℓ = 𝜎 + log𝑛𝑥 thanks

to the permutation-based hashing [29]. Then in order to embed one

item into one HE plaintext slot, HE plaintext slot field F should be

larger than 2
ℓ
. One can use algebraic extension fields of small char-

acteristic [6, 14], or huge prime field Z𝑡 [34]. However, algebraic
extension fields come at an expensive computational cost, and a

huge prime field has some inconvenience in implementation on a

64-bit processor.

In this regard, [8] observed that OPRF preprocessing provides

another benefit on this issue, as it allows a long item 𝑦 to be split

into 𝑑 pieces 𝑦1, · · · , 𝑦𝑑 of small modulus 𝑡 ≈ 2
ℓ/𝑑

. The red dashed

line in Figure 2 shows this concept. Then the inclusion polynomial

is evaluated on each split, and the small set holder concludes that

𝑦 ∈ 𝐵 if all polynomial evaluations are zero. This requires 𝑑 times

as many ciphertexts to encrypt the same number of items, but

the smaller choice 𝑡 brings a benefit on computational cost. On

the downside, this introduces a chance of false positives, whose

details are provided in Appendix E. Also, note that this split is

insecure without OPRF preprocessing, as it leaks partial matching

information with non-negligible probability (about 𝑂 (1/𝑡)).

𝑦𝑘

𝑦𝑘,1

.

.

.

𝑦𝑘,𝑑

𝐵𝑘,1 𝐵𝑘,𝛼· · ·
Enc(𝑦𝑘,1) , Enc(𝑦2

𝑘,1
) , · · ·

Enc(𝑝𝑘,1,1), · · · , Enc(𝑝𝑘,𝛼,1)

Enc(𝑦𝑘,𝑑 ) , Enc(𝑦2

𝑘,𝑑
) , · · ·

Enc(𝑝𝑘,1,𝑑 ), · · · , Enc(𝑝𝑘,𝛼,𝑑 )

Figure 2: Figure shows 𝑘-th bins with item splits and bin partition.
A cuckoo bin item 𝑦𝑘 is split into 𝑑 short items (red dash). A simple
bin 𝐵𝑘 is divided into 𝛼 partitions (blue dash), and each element is
also split into 𝑑 pieces (red dash).

Lowering Depth. As mentioned in Section 2.2, the ciphertext

modulus𝑞 of the BFV scheme is chosen linearly in themultiplicative

depth 𝐿 of the target computation, precisely log𝑞 ≈ (𝐿 + 1) log 𝑡 .
Since large 𝑞 has a devastating effect on performance, it is crucial to

lower the depth of target computation. Several techniques for this

goal have been reported, and they significantly contribute to the

high performance of HE-based PSI protocol. We provide only the

necessary information and refer to previous works for the details.

The most important one to understand in this paper is bin par-
titioning that divides 𝐵 into 𝛼 partitions 𝐵𝑖 and evaluates 𝛼 poly-

nomials for each set 𝐵𝑖 . The blue dashed line in Figure 2 shows

this concept. As a result, the small set holder obtains 𝛼 polynomial

evaluations and concludes that 𝑦 ∈ 𝐵 if one of the decryption re-

sults 𝑝𝑖 equals 0. Although this increases the number of returning

ciphertexts by 𝛼 times, this changes one polynomial evaluation of

degree 𝛽 into 𝛼 polynomial evaluations of degree 𝛽/𝛼 .
The second is (a variant of) Paterson-Stockmeyer algorithm [8]

that significantly improves HE polynomial evaluation. Compati-

ble with the bin partition technique, it evaluates all 𝛼 inclusion

polynomials of degree 𝛽/𝛼 with 𝑂 (
√︁
𝛽) non-scalar multiplications,

surprisingly regardless of partition number 𝛼 . Note that this tech-

nique enables one to take relatively small 𝛼 without increasing

computational cost.

The last technique allows the small set holder to send more pow-

ers of 𝑦 so that the large set holder can evaluate the polynomial

𝐹 (𝑦) = ∑𝛽

𝑖=0
𝑎𝑖 ·𝑦𝑖 with lower depth. The early idea called window-

ing [7] sends the word powers, for example 𝑦,𝑦2, · · · , 𝑦2𝑘 , but this
is improved with the use of extremal postage-stamp bases [8].

4 A CIRCUIT-PSI EXTENSION
Using the same notation with Section 3, circuit-PSI is achieved by

generating Boolean shares of 1(𝑦 ∈ 𝐵) for each cuckoo bin element

𝑦 and simple bin 𝐵. For this, [6] illustrated a simple modification of

the plain PSI protocol in Section 3. It follows the same procedure

until the large set holder computes the polynomial evaluations

𝑝1, · · · , 𝑝𝛼 on each bin partition 𝐵𝑖 , but then it tweaks the protocol

by letting the large set holder adds random masks 𝑟𝑖 ← F to each

𝑝𝑖 so that the small set holder obtains 𝑝 ′
𝑖
= 𝑝𝑖 +𝑟𝑖 . Then there exists

at least one match 𝑝 ′
𝑖
= 𝑟𝑖 if and only if 𝑦 ∈ 𝐵. In other words, it

converts the original private membership test (PMT) 𝑦 ∈ 𝐵 to 𝛼

instances of the private equality test (PEqT) problem 𝑝 ′
𝑖
= 𝑟𝑖 . For

the final circuit-PSI output, two parties privately generate Boolean

shares of 1(𝑝 ′
𝑖
= 𝑟𝑖 ) for 1 ≤ 𝑖 ≤ 𝛼 and XOR all shares. PEqT is

typically done by two-party computation (2PC) protocols such as

GMW protocol. The idea is illustrated in Figure 3.

𝑦 · · · 𝐵𝛼𝐵1

Enc(𝑦)

Enc(𝑝1) · · · Enc(𝑝𝛼 )
+ +
𝑟1 · · · 𝑟𝛼

Enc(𝑝′
𝑖
)

= Enc(𝑝𝑖 + 𝑟𝑖 )
𝑝′
1

𝑝′𝛼· · ·

𝑦 ∈ 𝐵 ? ⇒ ∃𝑖 s.t. 𝑝 ′
𝑖
= 𝑟𝑖 ?

Figure 3: An illustration of extension with random mask

This idea was proposed only with an abstract description in [6],

and a detailed analysis was missing. In this section, we discuss it

in more depth toward a complete protocol, especially with argu-

ments about (the irrelevance of) OPRF preprocessing and further

consequences.

4.1 Revisiting OPRF and Noise Flooding
Recall from Section 3 that OPRF preprocessing provides several nice

properties for plain PSI purposes. The most appealing one would

be secured against the malicious small set holder, and the next

would be secure item splits. However, we argue below that for the

illustration above of the circuit-PSI, OPRF preprocessing provides

no help on security even against a semi-honest adversary, and
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rather noise flooding is mandatory. We also discuss other benefits

of OPRF preprocessing almost vanish, and finally, there is a slight

advantage to spending long offline time on OPRF preprocessing in

circuit-PSI extension.

Irrelevance of OPRF on Security. We first explain that OPRF pre-

processing is irrelevant to the security requirement of the circuit-

PSI. For that, we review how OPRF provides the security of the

plain PSI. Recall that in the OPRF preprocessing phase, the sender

obtains 𝐹𝑠𝑘 (𝑋 ) and the receiver obtains 𝐹𝑠𝑘 (𝑌 ) where the corre-
sponding PRF key 𝑠𝑘 is only known to the sender. Then as the

core argument, observe that even if the receiver knows the whole

sender OPRF values, 𝐹𝑠𝑘 (𝑋 ), it does not lead to any information

leakage with the plain PSI respect: The sender only knows PRF key

𝑠𝑘 , and hence the PRF value 𝐹𝑠𝑘 (𝑥) for a non-matching 𝑥 ∈ 𝑋\𝑌
is totally randomized in the view of the receiver. In short, OPRF

preprocessing ensures that the receiver has no further knowledge

than the intersection 𝑋 ∩ 𝑌 .
We stress that this argument is valid only when the intersection

set 𝑋 ∩ 𝑌 is not considered as an information leakage. This is

quite a natural requirement for the plain PSI, but the circuit-PSI

definition even prohibits the knowledge of the intersection to none

of the two parties; In circuit-PSI, two parties should learn only

Boolean vectors that secret-share the matching result. As the OPRF

preprocessing argument cannot prevent the receiver from knowing

the intersection set, we conclude that OPRF preprocessing has

nothing with the security of our circuit-PSI protocol.

Other Benefits of OPRF. Although the largest benefit of OPRF

(malicious security) turns out to be vain for circuit-PSI, other bene-

fits of OPRF may still be valid. However, we explain that most of

the other benefits of OPRF also vanish due to the additive mask

𝑟𝑖 on polynomial evaluations. First, OPRF helped to remove the

multiplicative random mask 𝑐𝑖 in 𝐹𝑖 (𝑦) = 𝑐𝑖 ·
∏

𝑥 ∈𝐵𝑖
(𝑥 − 𝑦). Sec-

ond, OPRF made it secure to split an item into several HE slots by

making partial matching irrelevant to the original input item.

Meanwhile, in our protocol, additive mask 𝑟𝑖 perfectly hides

polynomial evaluation and blocks the small set holder from recog-

nizing such partial leakage, even without OPRF. The only remaining

benefit of OPRF processing is to remove the necessity of padding

dummy elements on each simple bin. This is still valid even with an

additive mask and noise flooding, but this benefit is too marginal

to spend a significant time on OPRF processing.

Revival of Noise Flooding. What we explain above is the irrel-

evance of OPRF to circuit-PSI security. To complete the security

argument, it remains to explain how our construction hides each

matching result. Recall that the polynomial evaluation 𝑝𝑖 corre-

sponds to the matching result in our construction. Since we add

random mask 𝑟𝑖 for each 𝑝𝑖 , it may seem that the evaluations 𝑝𝑖
are perfectly hidden, and hence the receiver learns nothing from

the received ciphertext Enc(𝑝 ′
𝑖
). However, it implicitly assumes

that the resulting HE ciphertext only reveals the inner message

when decrypted. For example, the ciphertext decryption procedure

may reveal some information about the coefficients of the inclu-

sion polynomial 𝑝𝑖 . This translates into the underlying HE scheme

should provide function privacy, which can be concretely achieved

by noise flooding for RLWE-HE schemes.

4.2 Protocol Description
Summarizing the arguments of the previous section, we describe the

circuit-PSI protocol with additive mask and noise flooding in Figure

4. Other techniques such as batching, extremal postage-stamp bases,

and the Paterson-Stockmeyer method are not presented for simplic-

ity. However, we emphasize that these techniques are essential for

efficiency and are indeed applied in our implementation in Section

6.

Inputs: A set 𝑋 ⊂ {0, 1}∗ of size 𝑛𝑥 from one party 𝐿 and a set

𝑌 ⊂ {0, 1}∗ of size 𝑛𝑦 from the other party 𝑆 .

Protocol:
1. [Offline Phase] 𝐿 performs the followings. This can be done before-

hand 𝑆 is determined.

(1) Initial hashing 𝑋 to 𝑋 ′ ⊂ {0, 1}ℓ that provides 2
−𝜎

false

positive.

(2) Construct simple hash table S of size 𝑛′𝑦 = 𝑂 (𝑛𝑦 ) with input

𝑋 ′.
(3) Choose number of partitions 𝛼 and item splits 𝑑 . Then for

each simple table bin S[𝑘 ] = 𝐵𝑘 :

- Divide𝐵𝑘 into𝛼 partitions𝐵𝑘,𝑖 . Then split each item of𝐵𝑘,𝑖
into 𝑑 pieces of the same bit-length to have 𝐵𝑘,𝑖,𝑗 . Finally

compute and store the coefficients of inclusion polynomial

𝐹𝑘,𝑖,𝑗 (𝑦) :=
∏

𝑥∈𝐵𝑘,𝑖,𝑗
(𝑥 − 𝑦) .

2. [Online HE Phase] Two parties execute a HE-based polynomial

evaluation and obtain PEqT instances.

(1) 𝑆 performs initial hashing 𝑌 to 𝑌 ′ ⊂ {0, 1}ℓ .
(2) 𝑆 constructs cuckoo hash table C of size 𝑛′𝑦 = 𝑂 (𝑛𝑦 ) with

input 𝑌 ′.
(3) For each cuckoo bin item C[𝑘 ] = 𝑦𝑘 :

- Split 𝑦𝑘 into 𝑑 pieces of the same bit-length 𝑦𝑘,𝑗 . For each

piece 𝑦𝑘,𝑗 , encrypt and send to𝐿 homomorphic encryptions

of some powers of 𝑦𝑘,𝑗 .

(4) 𝐿 evaluates inclusion polynomial 𝐹𝑘,𝑖,𝑗 (𝑦𝑘,𝑗 ) of simple bin

𝐵𝑘 , to have HE encryptions of results {𝑝𝑘,𝑖,𝑗 }𝑖∈[𝛼 ], 𝑗∈[𝑑 ] .
(5) 𝐿 samples random mask 𝑟𝑘,𝑖 ∈ {0, 1}ℓ , split it into 𝑑 pieces

and mask encryptions of 𝑝𝑘,𝑖,𝑗 using them.

(6) 𝐿 adds an encryption of zero having sufficiently large noise to

the resulting ciphertexts, in order to provide function privacy.

(7) 𝐿 sends back the resulting ciphertexts to 𝑆 , and 𝑆 decrypts

the received ciphertexts and restore 𝑝′
𝑘,𝑖
∈ {0, 1}ℓ .

3. [Online 2PC Phase] For each hash bin index 𝑘 :

- Two parties execute 2PC-based PEqT to generate Boolean

share of 1(𝑝′
𝑘,𝑖

= 𝑟𝑘,𝑖 ) . Then each party locally XORs all 𝛼

Boolean shares to output the result.

Figure 4: Circuit-PSI protocol with random masks

Correctness and Security. The correctness (false positive rate) is
exactly the same as the base plain PSI protocol [8], assuming that

the 2PC phase has no false positive. For completeness, we provide

the details in Appendix E.

The following theorem shows the security argument. Note that

the protocol description of Figure 4 has no OPRF preprocessing

phase, but has a noise-flooding procedure in Step 2-(6). In this

respect, the core of the following theorem is to argue that noise-

flooding is sufficient for semi-honest security.
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Due to the space limit, we place the proof in Appendix F.

Theorem 4.1. The protocol in Figure 4 realizes circuit-PSI func-
tionality against a semi-honest adversary, assuming a semi-honest
secure 2PC protocol.

Remark on Item Splits 𝑑 . The use of noise flooding introduces

another consideration on the choice of the number of the item

splits 𝑑 , which was not in the previous work [8]. More precisely,

when encrypting the same length item with 𝑑 splits, it takes a total

of 𝑑 · 𝜎 bits of ciphertext modulus overhead due to noise flooding.

Moreover, considering the false positive probability of item splitting

(see Appendix E), smaller split 𝑑 leads to a smaller total item length.

Therefore, it is definitely better to take 𝑑 as small as possible when

noise flooding is applied. However, we also note that it is not always

possible to take 𝑑 = 1 due to HE parameter constraints, especially

batching slots 𝑛 and the ciphertext modulus 𝑞.

Handling Associated Values. There are many applications of PSI-

with-computation where intersection target sets 𝑋 and 𝑌 are a sort

of identifiers, and each identifier has an additional associated value.

Notable examples would be PSI-Sum [16] that outputs the total sum

of associated value over intersected identifiers, or more generally,

one can compute the inner product of associated values from both

sides over intersection [24]. Our protocol can be easily extended to

handle associated value using known techniques, whose details in

Appendix A.

5 TRADE-OFF FROM HE RECURSION
In this section, we propose another circuit-PSI protocol, which pro-

vides a trade-off between computation and communication com-

pared to the protocol of the previous section.

We first review the naive trade-off for the plain PSI. There is

an easy way to reduce the computational burden by evaluating

inclusion polynomials with only scalar multiplications. This clearly

increases communication costs because it requires the small set

holder to send HE encryptions of all powers. It is asymptotically

optimal to divide one simple bin of size 𝛽 into 𝛼 = 𝑂 (
√︁
𝛽) partitions,

and let the small set holder send 𝛽/𝛼 = 𝑂 (
√︁
𝛽) powers. As the plain

PSI only consists of HE phase, this really works and provides an

efficient trade-off between computation and communication.

However, such an advantage becomes useless for circuit-PSI due

to the post-2PC phase, which takes 𝑂 (𝛼) cost. When non-scalar

multiplications are allowed, 𝛼 can be taken by 𝑂 (1) (less than 10)

thanks to Paterson-Stockmeyer strategy. However, when the naive

(all-power-sending) trade-off is applied, we have 𝛼 = 𝑂 (
√︁
𝛽) and

hence 2PC phase cost becomes much larger than this trade-off. This

leads to poor trade-off efficiency.

To solve this problem, we observe that the HE phase can be

tweaked to a procedure that reduces the set size of the private mem-

bership test (PMT). Then the main protocol recursively applies the

HE subroutine from the initial PMT (from cuckoo/simple hashing),

which enables one to end with the 𝑂 (1) 2PC phase. In the rest of

this section, we provide the details of tweaks to the HE phase and

discuss the total cost of such a recursive call.

5.1 HE Subroutine with Identical Mask
Recall that the HE phase of the previous protocol adds the result-

ing ciphertexts of 𝑝𝑖 with independently sampled random mask

𝑟𝑖 to end with 𝛼 equality check instance, whose security is quite

straightforward. We consider a variant where the large set holder

adds identical random mask 𝑟 ← F to all ciphertexts of 𝑝𝑖 . Then the

small set holder obtain 𝑡𝑖 := 𝑝𝑖 + 𝑟 and then it holds that 𝑦 ∈ 𝐵 if

and only if 𝑟 ∈ 𝑇 := {𝑡1, · · · , 𝑡𝛼 }. As a result, the output of the HE
phase becomes one instance of PMT for 𝛼 size set (say 𝛼-PMT), not

𝛼 instances of private equality test (PEqT). The idea is illustrated

in Figure 5, whose correctness is immediate. However, we need

two slight modifications to 𝑝𝑖 for the security proof, which are

elaborated on below.

𝑦 · · · 𝐵𝛼𝐵1

Enc(𝑦)

Enc(𝑝1) · · · Enc(𝑝𝛼 )
+ +
𝑟 · · · 𝑟

Enc(𝑡𝑖 )

= Enc(𝑝𝑖 + 𝑟 )
𝑡1 𝑡𝛼· · ·

𝑦 ∈ 𝐵 ? ⇒ 𝑟 ∈ 𝑇 ?

Figure 5: An illustration of the HE subroutine with identical mask

First, we have to ensure that there is at most one item in 𝐵

equals to 𝑦, which implies there exists at most one 𝑖 such that

𝑝𝑖 = 0. We remark that this property, which we call the unique
intersection property, is naturally ensured when the entire item is

inserted into one slot, that is, 𝑑 = 1, since the large set holder can

eliminate duplication when constructing a simple table. However,

for the 𝑑 > 2 case, the unique intersection property should be

valid for each HE plaintext slot split rather than the entire items,

but this duplication cannot be easily removed anymore, since each

duplicated split comes from a different item
3
. Thus, we assume that

this protocol always uses parameterization with 𝑑 = 1.

Second, we modify the protocol to sample the multiplicative

mask 𝑐𝑖 in the polynomial 𝑝𝑖 = 𝑐𝑖 ·
∏(𝑥 −𝑦) from F, rather than Fx.

This makes the nonzero 𝑝𝑖 is uniformly distributed over F, which
makes the distribution of

{𝑝1, · · · , 𝑝𝛼 } ∼
{
{0} × U(F𝛼−1) if 𝑦 ∈ 𝐵
U(F𝛼 ) if 𝑦 ∉ 𝐵,

up to re-ordering. Then identical mask 𝑟 makes 𝑇 = {𝑡1, · · · , 𝑡𝛼 }
to be uniform over F𝛼 for both cases, and this completes the se-

curity. This modification definitely introduces a new false pos-

itive probability, because now 𝑝𝑖 can be zero although there is

no match in that partition. Since there are 𝑂 (𝑛𝑦) hash-bins and
each hash-bin is divided into 𝛼 partitions, we have 𝑂 (𝛼𝑛𝑦) poly-
nomials to evaluate. Then the probability of all 𝑐𝑖 are nonzero is

1 − (1 − 1/𝑡)𝑂 (𝛼𝑛𝑦 ) ≥ 𝑂 (𝛼𝑛𝑦/𝑡) thanks to Bernoulli’s inequality.

As the main usage of this subroutine is the recursive reduction

of the bin size, it is given two hash tables (simple and cuckoo) as

3
We leave as future work to design a clever way to resolve this duplication, if possible.

This will make it possible to use 𝑑 ≥ 2 with an identical mask that enables much more

flexible parameterizations.
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input, rather than input sets 𝑋 and 𝑌 . You can see the detailed

description in Figure 6. We also summarize the security argument

by the following lemma for later usage, whose proof is already

discussed above.

Lemma 5.1. Each bin of the output hash table D of the Figure 6
protocol is uniformly distributed on F𝛼 .

Inputs: A hash table S of size 𝑛 that contains 𝛽 elements in each bin

from one party 𝐿, and another hash table C of size 𝑛 that contains one

element in each bin from the other party 𝑆 .

Outputs: A hash table R of size𝑛 that contains one element in each bin

to 𝐿 and another hash table T of size 𝑛 that contains 𝛼 (≤ 𝛽) elements

in each bin to 𝑆 .

Protocol:
1. [Preprocessing] Perform Step 1-(3) of Figure 4; 𝐿 precomputes

coefficients of the inclusion polynomial 𝐹𝑘,𝑖,𝑗 (𝑦) for 𝑘 ∈ [𝑛], 𝑖 ∈ [𝛼 ]
and 𝑗 ∈ [𝑑 ].
2. [HE Phase]

(1) Perform Step 2-(4) of Figure 4 with item split 𝑑 = 1; 𝑆 sends

homomorphic encryptions of powers of 𝑦𝑘 .

(2) 𝐿 samples multiplicative mask 𝑐𝑘 and homomorphically eval-

uates polynomial 𝑐𝑘 · 𝐹𝑘,𝑖 (𝑦𝑘 ) to have HE encryptions of

results {𝑝𝑘,𝑖 }𝑖∈[𝛼 ] .
(3) 𝐿 samples random mask 𝑟𝑘 ∈ {0, 1}ℓ and masks HE encryp-

tion of 𝑝𝑘,𝑖 , and sends back the resulting ciphertexts. Let

R[𝑘 ] = 𝑟𝑘 .

(4) 𝑆 decrypts the received ciphertexts and append the decrypted

message 𝑡𝑘,𝑖 ∈ {0, 1}ℓ to T [𝑘 ].

Figure 6: HE-subroutine with Identical Mask

5.2 Circuit-PSI from Recursive HE-subroutine
We proceed to the full circuit-PSI protocol using the HE subroutine

of the identical mask, as described in Figure 7. As a rough overview,

two parties initialize PMT instances with cuckoo/simple hashing

respectively. Then HE-subroutine of Figure 5 enables us to recur-

sively reduce the PMT set size. Finally, it solves PMT using the

2PC-based method after reaching a sufficiently small set.

As said before, this protocol is particularly useful when combined

with the naive trade-off strategy that sends all power to evaluate

polynomials with only scalar multiplications. It further reduces

2PC inputs than 𝑂 (
√︁
𝛽); possibly up to 𝑂 (1) size. Furthermore, as

each HE subroutine cost largely depends on the input set size, the

additional cost of recursive application would be quite small: By

denoting the cost of the initial call by 𝐶 , all additional calls require

only 𝑂 (
√
𝐶) cost. Figure 8 shows an overview of the protocols.

We note that the recursive HE subroutine definitely increases

interaction rounds, but also remark that the 2PC phase already

requires additional rounds. In particular, when the 2PC phase is

executed by the GMW protocol, 𝑂 (log ℓ) additional rounds are
required, which is at least 5 in our interest parameter regime.

Meanwhile, the number of HE subroutines to reach 𝑂 (1) size is
𝑂 (log log 𝛽) (assuming square root decreasing), which is typically

not greater than 3.

Inputs: A set 𝑋 ⊂ {0, 1}∗ of size 𝑛𝑥 from one party 𝐿 and a set

𝑌 ⊂ {0, 1}∗ of size 𝑛𝑦 from the other party 𝑆 .

Protocol:
1. [Offline Phase] Same with Figure 4-1; 𝐿 performs initial hashing,

constructs simple hash table S, and precomputes coefficients for the

initial inclusion polynomial.

2. [Online HE Phase] Two parties recursively call the HE subroutine

to have small-sized membership check instances.

(1) Same with Figure 4 until 2-(3); 𝑆 performs initial hashing,

constructs cuckoo hash table C.
(2) 𝐿 and 𝑆 recursively runs several HE-subroutine of Figure 6

on initial input S and C, and end with R and T .
3. [Online 2PC Phase] For each hash bin index 𝑘 :

- Execute 2PC-based PMT to generate Boolean share of

1(R [𝑘 ] ∈ T [𝑘 ]) .

Figure 7: Circuit-PSI protocol with recursive HE-subroutines

One-round HE

𝛽-PMT

√︁
𝛽 PEqT

Multi-rounds HE

𝛽-PMT

√︁
𝛽-PMT · · · 𝑂 (1)-PMT

≈ 𝑂 (1) PEqT

Figure 8: The upper one comes from the naive application of scalar
multiplication-only strategy. Our HE-subroutine with an identical
mask enables the lower one.

We finally remark that this new approach has almost no benefit

when we evaluate polynomial evaluation using non-scalar multi-

plications, unfortunately. Recall that Paterson-Stockmeyer method

evaluates the polynomial with 𝑂 (
√︁
𝛽) non-scalar multiplications,

surprisingly independent of the choice of 𝛼 . Therefore, the original

HE phase can already set very small 𝛼 (< 10), and then further HE

subroutines provide little performance gain.

5.2.1 Reusable Offline Phase. The preprocessing phase of the
first HE-subroutine call can be done offline, but the preprocessing

phase of the following calls should be counted as online time as their

input is determined by the previous HE-subroutine calls. However,

we would also like to remark that the offline phase can be reused

as long as the large set is static: The large set holder can compute

polynomial coefficients without the multiplicative mask offline, and

process it in the online phase with freshly sampled 𝑐𝑖 ← F. Note
that such multiplication of 𝑐𝑖 can be done as plain integers rather

than HE scalar multiplication, and hence takes a tiny computational

cost.

5.2.2 Unique Intersection Condition. There remains one subtle

issue. Recall that an identical mask is secure only when there is at

most one match, and we ensure the initial simple table satisfies that

property. However, outputs of the first HE subroutine, say 𝑟 and 𝐷,

are not guaranteed to satisfy such conditions. Then any duplication

in 𝐷 should be removed and padded with dummy elements. This

removal of duplication does not harm the correctness, and we

simply take one random element from F and fill it in all removed

8



positions. Note that the unique intersection condition still holds

althoughwe use the same element to pad unless the dummy element

is the samewith 𝑟 , which happens with a small probability of 1/𝑡 per
bin. Since we have𝑂 (𝑛𝑦) hash bins, this padding process introduces
another chance of false positive about 1−(1−1/𝑡)𝑂 (𝑛𝑦 ) = 𝑂 (𝑛𝑦/𝑡) .

5.2.3 Correctness and Security. For correctness, it can be easily

checked that there are no false negatives, and we only need to

consider the false positives. First, the initial (permutation-based)

hashing into log 𝑡 bits has 𝑂 (𝑛𝑥/𝑡) chance of a false positive from
a hash collision. Second, the zero coefficient sampling of §5.1 can

occur with probability 𝑂 (𝛼𝑛𝑦/𝑡). Lastly, the dummy padding of

§5.2.2 fails with probability𝑂 (𝑛𝑦/𝑡). Recall first that we assume that

𝑛𝑥 ≫ 𝑛𝑦 , and second the number of partitions 𝛼 is much smaller

than the bin size𝑂 (𝑛𝑥/𝑛𝑦) by definition. Thus we conclude the first
term 𝑂 (𝑛𝑥/𝑡) is dominant and the final false positive probability is

also 𝑂 (𝑛𝑥/𝑡). Detailed computation without 𝑂 (·) notation can be

found in Appendix E.

As we can ensure the unique intersection condition for all HE-

subroutine calls, the security proof can be easily adapted from

Theorem 4.1. Due to the space limit, we place the proof in Appen-

dix F.

Theorem 5.2. The protocol in Figure 7 realizes circuit-PSI func-
tionality against a semi-honest adversary, assuming a semi-honest
secure 2PC.

6 PERFORMANCE EVALUATION
In this section, we provide implementation results and a comparison

with previous works. We use machines equipped with 3.50GHz

Intel Xeon processors with 128GBs of RAM. The network settings

are simulated on localhost using the Linux tc command, and we

denote 30Gbps bandwidth and 0.05ms RTT by LAN, and 100Mbps

bandwidth and 80ms RTT by WAN.

6.1 Evaluation of Our Proposals
We refer to our first proposal of Figure 4 of Section 4 by ‘Con-

struction 1’ and our second proposal of Figure 7 of Section 5 by

‘Construction 2’. We also refer to the naive trade-off protocol that

consists of a one-round HE subroutine with only scalar multiplica-

tions (the upper one in Figure 8) by ‘Naive Tradeoff’ (or ‘Naive’).

We first compare the asymptotic behaviors of our proposals,

summarized by Table 3. We also implement our protocols and then

provide some discussion based on the experimental results. Our HE

phase implementation is mainly adapted from Microsoft APSI li-
brary [1]. For the 2PC phase, we implement the GMW protocol [12]

to evaluate the equality circuits and test membership. GMW proto-

col requires several calls of oblivious transfer (OT), and we use the

Ferret OT library [35].

6.1.1 Asymptotic Evaluations. Clearly, all protocols require𝑂 (𝑛𝑥 )
computational cost for the first offline phase, and we focus on the

online cost. Note that the cuckoo hashing splits the original prob-

lem into 𝑂 (𝑛𝑦) subproblems of the private membership test (PMT)

with 𝛽 = 𝑂 (𝑛𝑥/𝑛𝑦) size sets. Thus, it suffices to focus on the com-

putation and communication cost for each PMT.

In ‘Construction 1’, the small set holder sends 𝑂 (log(𝛽/𝛼)) en-
cryptions of powers using windowing [7] or extremal postage-

stamp base [8], where 𝛼 is the number of partitions. Then the large

set holder homomorphically evaluates the inclusion polynomial

using𝑂 (
√︁
𝛽) non-scalar multiplications and𝑂 (𝛽) scalar multiplica-

tions, using the Paterson-Stockmeyer algorithm [8]. Note that again

the computational cost for polynomial evaluations is independent

of the number of partitions 𝛼 . As a result, the large set holder sends

back 𝛼 resulting ciphertexts, and then two parties execute the 𝛼

PEqTs to have Boolean shares of the membership results, which

are the output of the circuit-PSI. Then the total communication

is 𝑂 (log(𝛽/𝛼) + 𝛼) for each bin, which is 𝑂 (log 𝛽) assuming the

partition size 𝛼 = 𝑂 (1).
In ‘Construction 2’, the small set holder sends𝑂 (

√︁
𝛽) encryptions

for each bin of size 𝛽 . Then the large set holder uses only 𝑂 (𝛽)
scalar multiplications to evaluate the inclusion polynomial and

sends back 𝑂 (
√︁
𝛽) encryptions. The next HE calls are executed

with bin size less than 𝑂 (
√︁
𝛽), and then we can conclude that the

first HE call is dominant in recursive calls. Then the two parties

recursively reduce the bin size until𝑂 (1), and finally perform PMT

on 𝑂 (1)-sized set, which has the same asymptotic cost with PEqTs

𝑂 (1) times.

6.1.2 Experimental Evaluations. Table 2 shows comparison based

on concrete experiments. Note that the ‘Construction 2’ row and

the ‘Naive’ row show the concrete advantage of our recursion

idea. We also remark that the HE phase of our proposals requires

very complicated parameterization related to several optimization

techniques. We detail the whole parameterization and underlying

rationale in Appendix B.

Offline Setup Cost. As expected, the second construction shows

faster performance than the first one in the online phase while

increasing communication. However, it would seem weird that the

offline phase also speeds up in the second construction, since the

removal of non-scalar multiplication only affects to online phase.

We provide a brief explanation about this. The dominant process

in the offline phase is the coefficient computation that evaluates el-

ementary symmetric polynomials
4
on each partition. Computation

of elementary symmetric polynomials takes 𝑂 ( |𝑃 |2) for each parti-

tion 𝑃 . Now recall that the size of each partition is 𝑂 (𝛽/𝛼) where
𝛽 = 𝑂 (𝑛𝑥/𝑛𝑦) in our construction. Note that the first construction

has to take quite a small 𝛼 so that the cost of the online 2PC phase

is reasonable. On the other hand, the second construction can set

much larger 𝛼 = 𝑂 (
√︁
𝛽) for the first HE call, because it can be

further reduced by following HE subroutines. Then each size of the

partition is much smaller in the second construction, and this leads

to the speed-up of the offline phase.

This also explains another seemingly weird point; the offline cost

of Construction 1 drops along with increased 𝑛𝑦 for fixed 𝑛𝑥 , which

is because the size of each partition is likely to decrease when 𝑛𝑦
grows.

6.2 Comparison to Previous Works
We also provide comparisons with other protocols for several input

set sizes in Table 4, including state-of-the-art related works; Private

4
The polynomials of the form

∑
1≤𝑖

1
<𝑖

2
<···<𝑖𝑘 ≤𝑛 𝑥𝑖

1
· · · 𝑥𝑖𝑘 .
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𝑛𝑥 𝑛𝑦 Protocol

Offline Online

Setup (s)

Comm. (MB) LAN (s) WAN (s)

Total HE 2PC Total HE 2PC Total HE 2PC

2
20

5535

Construction 1 (§4) 5.42 8.06 6.75 1.31 4.85 3.07 1.78 8.45 4.18 4.27

Construction 2 (§5) 3.79 12.15 11.23 0.92 2.59 0.98 1.61 8.28 4.30 3.98

Naive (§5) 3.79 13.94 9.33 4.61 4.75 0.5 4.25 9.26 2.31 6.95

11041

Construction 1 (§4) 4.07 10.89 9.51 1.38 5.04 3.13 1.91 8.60 4.55 4.05

Construction 2 (§5) 4.27 19.27 17.43 1.84 3.44 1.39 2.1 9.48 5.14 4.34

Naive (§5) 4.27 21.54 14.63 6.91 6.75 0.67 6.08 12.0 2.90 9.10

2
24

5535

Construction 1 (§4) 351 11.7 10.3 1.45 20.92 18.9 2.02 22.2 17.8 4.39

Construction 2 (§5) 61.1 40.3 39.6 0.69 6.53 4.75 1.78 13.6 10.1 3.49

Naive (§5) 61.1 52.4 34.4 17.9 19.32 3.62 15.7 26.6 5.89 20.7

11041

Construction 1 (§4) 320 16.4 14.6 1.76 24 25.8 1.85 30.4 25.9 4.56

Construction 2 (§5) 62.8 62.5 61.1 1.38 7.7 5.53 2.15 16.3 12.0 4.29

Naive (§5) 62.8 78 50.4 27.7 28.7 3.82 24.9 39.3 6.98 32.3

Table 2: Comparisons between our proposals, where the best item for each pair of 𝑛𝑥 , 𝑛𝑦 is marked with blue. ‘Naive’ rows and ‘Construction 2’
rows show the effect of the recursive HE calls. All experiments are executed with a single thread and satisfy at least 128 bit security and at most
2
−40 false positive probability.

Cons. 1 (§4) Cons. 2 (§5) Naive

Non-scalar

Mult.
𝑂 (√𝑛𝑥𝑛𝑦 ) 0 0

Scalar

Mult.
𝑂 (𝑛𝑥 ) 𝑂 (𝑛𝑥 ) 𝑂 (𝑛𝑥 )

PEqTs 𝑂 (𝑛𝑦 ) 𝑂 (𝑛𝑦 ) 𝑂 (√𝑛𝑥𝑛𝑦 )
Comm. 𝑂 (𝑛𝑦 log(𝑛𝑥 /𝑛𝑦 )) 𝑂 (√𝑛𝑥𝑛𝑦 ) 𝑂 (√𝑛𝑥𝑛𝑦 )

Table 3: The first column corresponds to our first proposal of §4,
where 𝛼 = 𝑂 (1) . The second column corresponds to our second
proposal of §5. The last column corresponds to the naive trade-off
version. Compared to the second column, it requires asymptotically
many PEqTs.

Join & Compute (PJC) [24] and OPPRF-based Circuit-PSI [5, 11, 33].

Below is a summary, and then details follow.

• Our constructions have definite advantages over PJC 1 to

have no small set holder side storage and over PJC 2 to

have much faster performance (even considering offline

and online timing).

• PJC 1 and Construction 2 generally show similar online

performance, where PJC 1 has better computation cost and

our constructions have better communication cost.

• As shown in 𝑛𝑦 = 2
8
columns, our constructions poorly

scale to smaller 𝑛𝑦 < 2
12
, due to a technical issue related

batching property of HE.

• As shown in 𝑛𝑥 = 2
20, 𝑛𝑦 = 2

16
case, OPPRF-based Circuit-

PSI shows quite decent performance for some degree of

unbalanced 𝑛𝑥/𝑛𝑦 .

6.2.1 Comparison to Private Join & Computes. There is another
family of PSI-with-computation protocols named Private Join &

Compute (PJC), which is built on the Diffie-Hellman assumption.

The first proposal [16] had no special interest in an unbalanced

setting and in fact, had linear complexity𝑂 (𝑛𝑥 + 𝑛𝑦). Furthermore,

the coefficients on 𝑛𝑥 and 𝑛𝑦 are similar, since their protocol is

somewhat symmetric; both parties perform𝑂 (𝑛𝑥 +𝑛𝑦) encryptions.

Recently, [24] proposed two protocols for asymmetric cases, which

we named PJC 1 and PJC 2. Their purpose is closest to ours, to the

best of our best knowledge, and they would be the main comparison

target of our work.

We note that PJCs further compute arithmetic shares of the

associated value of the large set holder beyond circuit-PSI Boolean

shares, what the authors call PIR-with-default. We cannot find in

[24] the performance reports of the exact counterpart of circuit-PSI,

and Table 4 numbers correspond to PIR-with-default cost. However,

remark that our protocols can also be efficiently modified to have

the same functionality as PIR-with-default, whose additional cost

is just one more polynomial evaluation. See A for details.

As we found no publicly available implementation of PJCs, we

simply take the numbers in the original paper for 𝑛𝑥 = 2
20
, and

compute other numbers based on asymptotic complexity. Moreover,

we presume that the original reports are conducted on a LAN net-

work simulated by localhost
5
. Then we simply estimate the WAN

timings of the PJCs by 𝑇 + 𝐶/𝑥 , where 𝑇 stands for the reported

time,𝐶 for communications (in MB), and 𝑥 for bandwidth (in MBps).

Note that this estimation is quite advantageous for PJCs, since it

does not reflect real network latency, and the actual running time

on WAN would take more than our estimation.

Comparison to PJC 2 is immediate since our protocols show

sharply improved performance, even if we count offline and online

costs both. Compared to PJC 1 which has online cost 𝑂 (𝑛𝑦), we
have to concede that our protocols are asymptotically worse since

ours anyhow has a dependency with 𝑛𝑥 . However, our experiments

show that our protocols have comparable concrete performances.

Moreover, the linear dependency on 𝑛𝑦 is quite heavy in PJC 1, and

it rapidly becomes inefficient for larger 𝑛𝑦 , for example, 𝑛𝑦 = 2
16
.

We emphasize the huge difference in the offline phase. Our proto-

cols have a significantly shorter setup time and require zero commu-

nication, whereas [24] protocol requires a much longer processing

time and a huge amount of communication. The timing for setup

is probably not so critical because it can be done on the large set

5
We found no specific description of the network environment in the original paper.
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𝑛𝑥 2
20

2
24

2
26

𝑛𝑦 2
8

2
12

2
16

2
8

2
12

2
16

2
12

2
16

Online

LAN Time (s)

Construction 1 (§4) 4.96 4.85 24 20.9
∗

20.9 61.7 55.6 192

Construction 2 (§5) 2.59
∗

2.59 11 7.54
∗

7.54 19.2 18.9 36.2

PJC 1 [24] 0.62 4.22 47.2 0.62 4.22 47.2 4.22 47.2

PJC 2 [24] 3,026 2,134 2,228 48,384 33,997 35,389 - -

OPPRF-CPSI 3.3 3.31 4.28 35.42 35.88 38.1 159 166

WAN Time (s)

Construction 1 (§4) 7.98 8.43 32.2 27.9
∗

27.9 74.9 63.8 209

Construction 2 (§5) 7.8
∗

7.8 21.3 15.1
∗

15.1 38.7 28.8 60.2

PJC 1 [24] 1.18 13.6 190.7 1.18 13.6 191 13.6 191

PJC 2 [24] 3,028 2,151 2,374 48,384 34,017 35,564 - -

OPPRF-CPSI 5.5 5.89 7.77 75 76.7 79.4 312 329

Comm. (MB)

Construction 1 (§4) 4.8 8.1 61 11.7
∗

11.7 94.2 22.5 242

Construction 2 (§5) 12.2
∗

12.2 66.3 45.2
∗

45.2 187.3 84.8 323

PJC 1 [24] 7 117 1,794 7 117 1,794 117 1,794

PJC 2 [24] 29 213 1,821 34.6 256 2,185 - -

OPPRF-CPSI 23.4 25.7 32.8 374 406 442 1,623 1,752

Offline

Time (s)

(Large-side Setup)

Construction 1 (§4) 7.64 5.4 7.4 465
∗

465 101 1,916 440

Construction 2 (§5) 3.8
∗

3.8 7 68
∗

68 80 323 315

PJC 1 [24] 137 137 137 2,207 2,207 2,207 8,828 8,828

PJC 2 [24] 0 0 0 0 0 0 0 0

OPPRF-CPSI 0 0 0 0 0 0 0 0

Comm. (MB)

(Small-side Storage)

Construction 1 (§4) 0 0 0 0 0 0 0 0

Construction 2 (§5) 0 0 0 0 0 0 0 0

PJC 1 [24] 465 465 465 7,440 7,440 7,440 29,760 29,760

PJC 2 [24] 0 0 0 0 0 0 0 0

OPPRF-CPSI 0 0 0 0 0 0 0 0

Table 4: Comparison to prior works. All executions are executed with a single thread and satisfy at least 128 bit security and 2
−40 false positive

probability. For PJCs [24] whose implementation is not publicized, we take some numbers in the original paper and compute the others based
on asymptotic behavior. For each pair (𝑛𝑥 , 𝑛𝑦 ) and each feature, the best item is colored blue. We also highlight in red that PJC 1 has large
offline communication.
(*) Our constructions cannot have efficient parameterizations for 𝑛𝑦 = 2

8 case, due to the usage of batching. We run the experiment by padding
the small set with dummy items up to size 212. For more explanation, and §6.2.3.

side alone. However, offline communication really matters, because

the small set holder has to store the received data for the online

phase. Such a burden on storage could be a significant obstacle

when the small set holder is a mobile or IoT device that probably

has insufficient storage. Moreover, although offline storage can be

reused for multiple calls, it is not totally offline in the sense that

the small set holder starts from the download (or access) of such

a large database when it initiates circuit-PSI. For these reasons,

our protocols of zero offline communication have quite appealing

features.

We found that the authors of [24] already compared PJC with

the random mask idea of [6] where this work starts, but it has some

points to be fixed or updated. See Appendix D for details.

As a final remark, one may think that our efficiency gain mainly

comes from the batching property of HE. However, PJC [24] schemes

also utilize HE to some extent to enjoy the benefit of the batching

property of HE, which says that our efficiency gain rather comes

from better logic based on a polynomial evaluation to check mem-

bership.

6.2.2 Comparison to OPPRF-based Circuit-PSIs. OPPRF-based
protocols [5, 10, 30, 33] are the most efficient family of circuit-PSI

protocols for balanced input sets. As we found no performance

reports on unbalanced sets from the original papers [5, 33], we

provide numbers obtained from our own implementation that com-

bines the state-of-the-art OPPRF-based protocol [5, 33]. We would

like to remark that OPPRF-based protocols also require𝑂 (𝑛𝑦) times

of PEqT, and we also use the fast OT extension library Ferret [35]

for that.

Asymptotically, they have both computational and communica-

tion complexity linear on 𝑛𝑥 and 𝑛𝑦, say 𝑂 (𝑛𝑥 + 𝑛𝑦) . However, we
observed that OPPRF-based protocols have a quite smaller coeffi-

cient on the large set size 𝑛𝑥 than 𝑛𝑦 , whose details can be found in

Appendix C. This implies that they are also expected to remain effi-

cient to some extent of unbalance. Our experiments indeed indicate

that OPPRF-based protocols already have a decent performance to

some degree of unbalance. Based on our experiments in Table 4,

they show even better performance when the ratio is small (see

𝑛𝑥 = 2
20

and𝑛𝑦 = 2
16

case). Roughly judging from our experiments,

the break-even point is about 𝑛𝑥/𝑛𝑦 ≈ 2
8
.

This protocol actually has some procedures that can be done

offline, especially random OTs for equality checks. However, the

portion is not so large as it depends on the small set size 𝑛𝑦 , and

more importantly, such offline computations cannot be reused while
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offline computations of our and PJC can be reused for multiple calls.

Therefore, we include them in the online cost.

6.2.3 Further Set Sizes. We first consider further smaller 𝑛𝑦 .

Note that our protocols insert 𝑛𝑦 elements into 𝑂 (𝑛𝑦) size cuckoo
table, and split each item into 𝑑 HE plaintext items. Then total

𝑂 (𝑑 · 𝑛𝑦) items are batched by batching technique. However, for

extremely small 𝑛𝑦 , the total number of items is smaller than the

batching packing slots. In this case, we have to pad empty batch-

ing slots, and this means that the cost of our protocol cannot be

continuously smaller along with 𝑛𝑦 . The batching slot number 𝑁

is taken at least 2
13

in our parameterization, which implies that our

protocol performance remains similar for 𝑛𝑦 ≤ 2
12
. This problem

was already in the plain PSI protocol [8], but it could be partially

compensated by taking a larger 𝑑 while having a smaller plaintext

slot Z𝑡 . However, in our case, the ciphertext modulus margin 𝜎

should be added in all 𝑑 splits, and such compensation becomes

harder. We note that two𝑛𝑦 = 2
8
columns of Table 4 explicitly show

this drawback. Our constructions have no much difference from

𝑛𝑦 = 2
12
, but PJC enjoys linearly decreasing online performance

than 𝑛𝑦 = 2
12
.

Next, we consider much larger 𝑛𝑥 than 2
26
. Note that the num-

bers in Table 4 quite faithfully follow asymptotic cost, so that

the concrete performances can be easily extrapolated beyond ta-

bles. Then we can expect that OPPRF-based protocols still show

decent performance for some degree of unbalance, for example,

𝑛𝑥/𝑛𝑦 ≤ 2
8
. We then focus on a larger ratio of 𝑛𝑥/𝑛𝑦 ≥ 2

8
where

PJC and our protocols become better than OPPRF-based ones. Since

the dependency on 𝑛𝑦 is heavier for PJC than ours, PJC would be

concretely better when 𝑛𝑦 itself is small. Such a cross-point of 𝑛𝑦
where PJC is better would get larger along with 𝑛𝑥 because ours

anyhow have a dependency with 𝑛𝑥 , whereas PJC has no depen-

dency. See 𝑛𝑥 = 2
26

cases in Table 4; PJC 1 is better in some aspects

when 𝑛𝑦 = 2
12
, but our Construction 2 is better when 𝑛𝑦 = 2

16
.

However, we again remark that for both smaller 𝑛𝑦 and larger

𝑛𝑥 cases, our proposals always have the strong advantage of zero

offline storage. We believe there would be many applications or

environments where this strength could be much useful.
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A HANDLING ASSOCIATE VALUES
First, it is rather easy to handle the associated value on the side of

the small set holder, since the final output of circuit-PSI is uniquely

bound with each small set holder side item by the cuckoo table. For

further computations, the small set holder can feed the correspond-

ing associated value along with a Boolean share of 1(𝑦 ∈ 𝑋 ∩ 𝑌 )
derived from circuit-PSI.

Handling large set holder side associated value is non-trivial

since the large set holder cannot know which element to bind with

the associated value from the circuit-PSI output. Here, labeled PSI
idea [6, 8] can be efficiently applied to this problem. The original

purpose of labeled PSI is to let the small set holder learns the asso-

ciated value 𝑣𝑖 for each of its items 𝑦 𝑗 = 𝑥𝑖 ∈ 𝑋 ∩ 𝑌 . The basic idea
is to let the large set holder construct a polynomial 𝐺 such that

𝐺 (𝑦) = 𝑣𝑖 if 𝑦 = 𝑥𝑖 . Then the large set holder can HE evaluate𝐺 (𝑦)
in the similar way to evaluate inclusion polynomial 𝐹 (𝑦), and send

back the encryption of 𝐺 (𝑦) so that the small set holder learns the

associated value 𝑣𝑖 for 𝑦 = 𝑥𝑖 .

This idea can be efficiently adapted to our situation, but with a

slight modification. Since the associated value is likely to be easily

distinguished from the random value, the naive application of the

idea may let the small set holder infer the matching result. This can

be remedied by allowing the large set holder to sample the additive

mask 𝑟 and construct the polynomial so that𝐺 (𝑦) = 𝑣𝑖 − 𝑟 if 𝑦 = 𝑥𝑖 .

As a result, the small set holder and the large set holder end with

an additive share of 𝑣𝑖 if 𝑦 = 𝑥𝑖 . This additive share can be fed into

further computation along with a Boolean share of 1(𝑦 ∈ 𝑋 ∩ 𝑌 )
derived from circuit-PSI.

B DETAILED PARAMETERIZATIONS
Table 5 provides full details for our parameterizations, which can

be easily converted to json format for [1]. We also find better

parameterizations for the plain PSI [8] by choosing a smaller item

split 𝑑 .

For the first proposal, we found several parameterizations pro-

vided in the previous work [8] available in [1], which are tailored

for the plain PSI. We slightly change some parameters consider-

ing the additional cost of the 2PC phase and additional ciphertext

modulus margin for noise flooding. As an underlying rationale,

the number of item splits 𝑑 is chosen as small as possible, and we

also take smaller 𝛼 so that the post-2PC phase is not so heavy. All

parameters satisfy false-positive probability at most 2
−40

, and the

underlying HE parameters satisfy 128-bit security.

For the second proposal, we let the HE subroutines reduce the

input set sizes to square root until the set size is sufficiently small;

precisely, we stop after reaching ≤ 4. The corresponding HE param-

eters can be set to support one-depth multiplication. Recall that it

was essential to use 𝑑 = 1 (embed one item in one slot), and hence

batching cannot be fully exploited for extremely small sets like

𝑛𝑦 = 2
8
since it typically batches at least 2

12
items. Thus we cannot

find efficient parameterization for those cases in this protocol, and

omit this case in our experiments. There remains one more subtle

issue with respect to implementation. For very large inputs, the

plaintext modulus 𝑡 should satisfy log 𝑡 ≈ 40+ log𝑛𝑥 to have a false

positive probability less than 2
−40

. However, our implementation

base HE library SEAL only supports plaintext modulus up to 60 bits,

𝑛𝑥 𝑛𝑦 𝑇 𝑚 𝛼 𝑑 log 𝑡 𝑁 log𝑞

Plain PSI [8]

2
20

2
12

2
13

98 5 2 34 2
13

204

2
13

2
14

98 3 2 35 2
13

208

2
24

2
12

2
13

1304 5 2 38 2
14

288

2
13

2
14

1304 3 2 39 2
14

292

Cons. 1

§4

2
20

2
8

2
12

228 4 2 33 2
13

197

2
12

2
13

98 5 2 34 2
14

246

2
13

2
14

98 3 1 60 2
14

352

2
16

3 · 215 40 2 2 35 2
13

200

2
24

2
12

2
13

1304 5 2 38 2
14

316

2
13

2
14

1304 3 2 39 2
14

320

2
16

3 · 215 98 7 2 36 2
14

255

2
26

2
12

2
13

1304 20 2 38 2
14

292

2
16

3 · 215 98 24 2 36 2
14

255

Cons. 2

§5

2
20

2
12

2
13

24 4 1 60 2
13

177

2
13

2
14

18 4 1 60 2
13

177

2
16

3 · 215 8 3 1 60 2
13

177

2
24

2
12

2
13

83 3 1 60 2
13

177

2
13

2
14

55 3 1 60 2
13

177

2
16

3 · 215 24 2 1 60 2
13

177

2
26

2
12

2
13

158 4 1 60 2
13

177

2
16

3 · 215 55 2 1 60 2
13

177

Table 5: Parameters used in our experiments.𝑇 : hash table size.𝑚:
the size of the partition (of the first HE call).𝛼 : the partition numbers
per bin (of the last HE call). 𝑑 : number of splits of one item. 𝑡 : HE
plaintext modulus. 𝑁 : HE batching slots. 𝑞: HE ciphertext modulus.

and we cannot conduct experiments with the required plaintext

modulus size log 𝑡 ≈ 40 + log𝑛𝑥 for 𝑛𝑥 > 2
20

cases. For that cases,

we use the plaintext modulus log 𝑡 = 60, but the ciphertext modulus

𝑞 is taken assuming correct plaintext modulus log 𝑡 = 40 + log𝑛𝑥 .
Precisely, we first take an initial HE ciphertext modulus 𝑞 by the

minimal one where the protocol without noise flooding is correct,

and then augment 𝜎 = 40 bits margin on them.

We finally remark that Construction 2 is much easier to param-

eterize in several respects, which can be an implicit strength. It

simply takes the partition size by the square root of the current

bin size and has no additional false positive probability from item

splitting that makes it easier to take the plain modulus 𝑡 , and only

requires depth 1 scalar multiplication that makes it easier to take

the ciphertext modulus 𝑞.

C OPPRF-BASED CIRCUIT-PSI
OPPRF-based circuit-PSI protocols follow the framework due to

Pinkas et. al. [30], which consists of three consecutive stages: hash-

ing, OPPRF, and 2PC. We investigate the communication cost of

each stage. The hashing phase is the same as ours; cuckoo and sim-

ple hashing incurs no communication. Then in the OPPRF phase,

two parties execute OPPRF that starts with an initial OPRF call,

and one party (typically a large set holder) computes some hint (of

programmable PRF) and sends the hint to the other party. There

are many OPRF constructions [11, 23, 28, 33], but they commonly

require 𝐶oprf · 1.3_𝑛𝑦 bits communication where 1.3 comes from

the size of the hash table. The state-of-the-art 𝐶oprf is 1.3 due to

[11]. The hint of programmable PRF typically has size 3𝐶pprf (𝜎 +
log𝑛𝑦)𝑛𝑥 bits [5, 30, 33], where 3 is the number of hash functions
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and 𝜎 is for the probability of failure 2
−𝜎

. The state-of-the-art𝐶pprf
is also 1.3 due to [11]. Finally, two parties compute a programmable

PRF to have a pair of strings of length ℓ = 𝜎 + log𝑛𝑦 for each hash

table bin and perform an equality check by 2PC. This can be done

by generic 2PC protocol with 𝑂 (𝑛𝑦 · ℓ) bit communications, and

concretely GMW protocol requires ≈ 2𝑛𝑦 · ℓ bit communications

using state-of-the-art OT extensions [9, 35]. Putting everything

together, the total bit communication is

(1.7_ + 2𝜎 + 2 log𝑛𝑦) · 𝑛𝑦 + 3(𝜎 + log𝑛𝑦) · 𝑛𝑥 ,

which becomes under our choice of _ = 128 and 𝜎 = 40

≈ (297 + 2 log𝑛𝑦)𝑛𝑦 + (156 + 3.9 log𝑛𝑦)𝑛𝑥 .

D UPDATES ON COMPARISON IN PJC
We provide several update points from the comparison of the PJC

and the HE-based protocol in [24]. First, it estimated the running

time for the final 2PC phase of [6] by 40% of [30], based on the fact

that the same 2PC procedure occupies 40% timing of [30]. However,

such 40% portion is only valid for a balanced input case, and the

final 2PC portion becomes much smaller for an unbalanced case

since it depends on the small set size (precisely, the hash table

size). Second, it estimated the communication cost of the final

2PC phase also following [30], which used a somewhat classic OT

extension protocol [17]. There has been a significant improvement

in OT extensions, especially the communication cost, which is much

lower than [17]. This leads to a smaller communication cost for

our proposals. Meanwhile, such improvement of OT extensions

seems to not have a critical effect on PJC protocols, especially in

offline setup cost that mainly consists of the (garbled) bloom filter

construction. Finally, they estimated the offline cost of [6] including

OPRF preprocessing, but we argue that such OPRF can be skipped.

This reduces the offline cost of HE-based protocols, as shown in

Table 2.

E DETAILS ON FALSE POSITIVES
False Positives from Item Splits. The original paper [8] does not

provide a detailed discussion of false positive probability from item

splits, but we found a relevant computation in the implementation

code [1] of [8], and we provide the contents here.

The idea of item split is to evaluate inclusion polynomials in

𝑑 splits of long items. Then the large set holder sends 𝑑 resulting

ciphertexts that correspond to each substring, and the small set

holder concludes 𝑦 ∈ 𝑋 if all ciphertexts are decrypted into zero.

It introduces some chance of false positive where each substring

matches with different items of 𝑋 despite 𝑦 ∉ 𝑋 , so that the small

set holder falsely concludes 𝑦 ∈ 𝑋 . Toward detailed computation,

we have to consider bin partition 𝛼 . By denoting each partition

size by 𝑚 := 𝛽/𝛼 , the probability of a false partial match is 1 −
(1− 1/𝑡)𝑚 ≈𝑚/𝑡 . For a false positive on this partition, such partial

match has to occur on every substring, whose probability is 𝑝 =

(𝑚/𝑡)𝑑 . The probability 𝑝 should not happen for all 𝛼 partitions

and all (1 + Y) · 𝑛𝑦 hash bins, and therefore the final false positive

probability is 1 − (1 − 𝑝) (1+Y)𝛼𝑛𝑦 ≈ (1 + Y)𝑚𝑑𝛼𝑛𝑦/𝑡𝑑 . It holds that
2
ℓ ≈ 𝑡𝑑 for the original item length ℓ , and by substituting𝑚 = 𝛽/𝛼

and 𝛽 ≈ 𝑛𝑥/𝑛𝑦 , we have

(1 + Y) (𝑛𝑥/𝛼𝑛𝑦)𝑑𝛼𝑛𝑦/2ℓ .
We remark that, although the formula seems to make sense for

𝑑 = 1, there is no need to consider this false positive in this case

because there would be no false matching.

False Positives of Construction of §4. Prior to constructing hash

tables, it performs an initial hashing into some fixed-length ℓ . As-

suming permutation-based hashing, the false positive probability

of hash collision would be 𝑛𝑥/2ℓ . We then have additional false pos-

itives from the item split as elaborated above. Therefore, to ensure

false positive less than 2
−𝜎

, it should hold that

log(𝑛𝑥 + (1 + Y) (𝑛𝑥/𝛼𝑛𝑦)𝑑𝛼𝑛𝑦) + 𝜎 ≤ ℓ .

False Positives of Construction of §5. In this case, we also perform

an initial hashing of false positive probability 2
−ℓ · 𝑛𝑥 . This con-

struction is only possible with 𝑑 = 1 case, and then the HE plaintext

is chosen 𝑡 ≈ 2
ℓ
. We do not have to consider false positives from

item split since 𝑑 = 1, but it has additional false positives from

algorithmic modifications. More precisely, the zero coefficient sam-

pling introduces (1 + Y)𝑛𝑦𝛼/2ℓ , and dummy padding introduces

(1 + Y)𝑛𝑦/2ℓ additional false positive probability. These new false

positives can occur for every HE-subroutine call, and hence the

probabilities should be multiplied by the number of subroutine

calls, say log log(𝑛𝑥/𝑛𝑦). To summarize, in order to ensure a false

positive less than 2
−𝜎

, it should hold that

log(𝑛𝑥 + log log(𝑛𝑥/𝑛𝑦) (1 + Y) (𝛼 + 1)𝑛𝑦) + 𝜎 ≤ ℓ .

F MISSING PROOFS
Proof for Theorem 4.1. It suffices to consider only the HE phase;

Step 1 and 2, since we assume that the 2PC protocol is semi-honest

secure.

We start with a simulation of the view of 𝑆 in the HE phase,

which is the important part related to the argument of Section

4.1. The only part we have to care about is Step 2-(7), where 𝑆

receives ciphertexts of 𝑝 ′
𝑘,𝑖

and then outputs the decrypted result

𝑝 ′
𝑘,𝑖
. Since the simulator knows the outputs 𝑝 ′

𝑘,𝑖
, we can simulate

the ciphertexts of 𝑝 ′
𝑘,𝑖

by fresh encryptions of 𝑝 ′
𝑘,𝑖
. Note that 𝑆 is

only able to know the inner plaintext 𝑝 ′
𝑘,𝑖

from the ciphertexts in

the real execution, thanks to the noise-flooding procedure of Step

2-(6). This makes our simulation that gives fresh encryptions of

𝑝 ′
𝑘,𝑖

indistinguishable from the real execution.

The simulation of the view 𝐿 is quite straightforward and not so

different from the previous proof for the plain PSI [8]. For this case,

we only have to care about the fresh ciphertexts of 𝑦𝑘,𝑗 sent from 𝑆

in Step 2-(3). This can be easily simulated by random ciphertexts,

which are indistinguishable from the ciphertexts of 𝑦𝑘,𝑗 of real

execution, thanks to IND-CPA security. Note that this replacement

of ciphertexts has no effect on the correctness, as 𝐿 outputs random

masks 𝑟𝑘,𝑖 .

Proof for Theorem 5.2. Since the final 2PC phase is assumed to

be semi-honest, we only need to consider the HE phase, which

consists of recursive calls of the HE subroutine of Figure 6. Thus

it suffices to show for each HE-subroutine call, the view of each

party can be easily simulated.
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We start from the simulation of the view of 𝑆 . Note that the only

part we have to simulate is the ciphertexts of 𝑡𝑘,𝑖 in Step 2-(4) of

Figure 6. To simulate this, we sample 𝑡 ′
𝑘,𝑖

fromU(F𝛼 ) and define

the ciphertext by fresh encryptions of 𝑡 ′
𝑘,𝑖
. We then show that this

simulation is indistinguishable from the real execution. First, note

that 𝑆 only obtains the decryption results from the ciphertexts

thanks to noise flooding, and we only need to see whether the

distributions of 𝑡𝑘,𝑖 is alsoU(F𝛼 ). As Lemma 5.1 ensures that the

outputs of the real execution 𝑡𝑘,𝑖 are also distributed on U(F𝛼 ),
this ends the proof.

For the simulation of the view of 𝐿, we simply simulate the

ciphertexts sent from 𝑆 in Step 2-(1) by random ciphertexts. This is

indistinguishable from the real execution, thanks to the IND-CPA

of the underlying HE.
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