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Incompressibility is a popular security notion for white-box cryptography and captures
that a large encryption program cannot be compressed without losing functionality. Fouque,
Karpman, Kirchner and Minaud (FKKM) defined strong incompressibility, where a com-
pressed program should not even help to distinguish encryptions of two messages of equal
length. Equivalently, the notion can be phrased as indistinguishability under chosen-plaintext
attacks and key-leakage (LK-IND-CPA), where the leakage rate is high.
In this paper, we show that LK-IND-CPA security with superlogarithmic-length leakage,

and thus strong incompressibility, cannot be proven under standard (i.e. single-stage) assump-
tions, if the encryption scheme is key-fixing, i.e. a polynomial number of message-ciphertext
pairs uniquely determine the key with high probability.
Our impossibility result refutes a claim by FKKM that their big-key generation mechanism

achieves strong incompressibility when combined with any PRG or any conventional encryp-
tion scheme, since the claim is not true for encryption schemes which are key-fixing (or for
PRGs which are injective). In particular, we prove that the cipher block chaining (CBC)
block cipher mode is key-fixing when modelling the cipher as a truly random permutation for
each key. Subsequent to and inspired by our work, FKKM prove that their original big-key
generation mechanism can be combined with a random oracle into an LK-IND-CPA-secure
encryption scheme, circumventing the impossibility result by the use of an idealised model.
Along the way, our work also helps clarifying the relations between incompressible white-

box cryptography, big-key symmetric encryption, and general leakage resilient cryptography,
and their limitations.

1 Introduction

1.1 White-Box Cryptography and Big-Key Encryption

Chow, Eisen, Johnson, and van Oorschot [CEJv03, CEJvO03] introduced the white-box attack model,
where an adversary obtains full access to the implementation code of a cryptographic algorithm and is
in full control of its execution environment. White-box cryptography aims at designing cryptographic
implementations which remain secure in the presence of a white-box adversary. As of today, white-box
programs are largely deployed for Digital Rights Management (DRM) and protecting mobile payment ap-
plications [EMV19, Sma14]. Typically, white-box programs correspond to white-box versions of popular
symmetric encryption schemes, such as the Advanced Encryption Standard (AES).
Defining security for white-box cryptography is intricate and has been studied by quite a number of

works [SWP09, Wys11, DLPR14, FKKM16a, ABF+20, AABM20, ABCW23, HITY22]. In particular,
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Delerablée, Lepoint, Paillier, and Rivain (DLPR) [DLPR14] noted that necessary security goals for white-
box programs include not leaking the key (security against key extraction) and not leaking the message
(one-wayness). In addition, the authors also pointed out that white-box programs might be susceptible to
so called code-lifting attacks, where an adversary simply copies the entire execution code of the program
and runs a copy on any device of its choice [Bre12]. As a mitigation technique against code-lifting attacks,
DLPR proposed the property of incompressibility. Constructions achieve incompressibility by designing
large programs implementing the desired cryptographic operations which only remain functional in their
complete forms, i.e. if such a program is compressed, or if fragments of it are removed, the program loses
its functionality. The idea behind incompressibility is that a white-box adversary should not be able to
copy the complete program due to its large size, e.g. it should be difficult to move such a large program
over the network. At the same time, seeing (or copying) only some fractions of the program should not
give enough information to the adversary for breaking the security of the program. For instance, an
adversary who sees the incompressible program should not be able to derive a functionally equivalent
program of smaller size, or should not be able to copy small fragments of the program and use them for
decrypting arbitrary ciphertexts.

1.1.1 Incompressibility

As mentioned above, incompressibility was introduced in [DLPR14] as a means for white-box programs
to mitigate code-lifting attacks. In the syntax of an incompressible program, we depart from a symmetric
encryption scheme of conventional size and use a white-box compiler to derive an incompressible encryp-
tion (or decryption) program. The incompressible program can then be used in combination with the
encryption scheme for performing encryptions (or decryptions) in the white-box attack model, while the
inverse operation can be performed using the original program of conventional size (and thus retaining
the original efficiency). Incompressibility seems particularly interesting for white-box programs as it
provides a means of mitigating code-lifting attacks without needing to rely on any external hardware or
software components (in contrast to e.g. device-binding [ABF+20, AABM20, ABCW23]).

Since its introduction, a line of works [DLPR14, FKKM16a, BBK14, BI15, BIT16, AAB+19, KLLM20,
KI21, HITY22] has presented constructions and concrete designs for incompressible ciphers according
to various security definitions [DLPR14, FKKM16a, BI15, BIT16, AAB+19, KI21, HITY22]. All these
definitions capture incompressibility intuitively as described in the beginning of this section, but differ
on how an adversary obtains leakage from the incompressible white-box program, or how/whether the
adversary may interact with encryption oracles after receiving key leakage. In particular, Fouque, Karp-
man, Kirchner, and Minaud (FKKM) [FKKM16a] introduced the strong incompressibility model, which
is our main focus.
Adopting the terminology of IND-CPA-security of encryption schemes, the strong incompressibility

model can be seen as indistinguishability under chosen plaintext attacks and key-leakage (LK-IND-CPA).
The LK-IND-CPA model indeed allows the adversary to make encryption queries after seeing key leak-
age.1 Intuitively, if the incompressible construction still has enough min-entropy conditioned on the
leakage, e.g. a compressed version of the program, then the adversary should not be able to distinguish
between encryptions of different messages. In other words, this model captures confidentiality, which
implies security against key extraction and one-wayness.

1.1.2 Big-Key Encryption

A very similar model was considered by Bellare, Kane and Rogaway (BKR) in the context of big-key
(symmetric) encryption [BKR16]. In big-key encryption, keys of very large size are used as a means to
achieve security in the bounded retrieval model (BRM), where we assume that the adversary can only
exfiltrate a limited amount of data from a system under attack. BKR propose to use such large keys for
deriving shorter subkeys, which can then be used for encrypting messages using conventional encryption
schemes. For capturing security, BKR consider IND-CPA under leakage (which BKR refer to as LIND)

1Here, the term adversary refers to the algorithm trying to break the winning condition, e.g. encrypt a message, distinguish
between two values etc. In white-box security notions, the leakage algorithm or a compressed adversary generator is
sometimes referred to as an adversary and the entity trying to break the winning condition is sometimes referred to as
a decompression algorithm.
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and thus a model which is essentially identical to strong incompressibility. The two models only differ on
their definitional style, since instead of bounding min-entropy directly, BKR consider a bounded-length
leakage function which implies an upper bound on the lost min-entropy of the key. Throughout this
paper, LK-IND-CPA refers to said IND-CPA under leakage model and we consider this definition in
the context of incompressible white-box cryptography. For completeness, Section 5 shows formally that
LK-IND-CPA is equivalent to strong incompressibility by FKKM and to the LIND model by BKR.

1.1.3 Similarities and Differences

White-box incompressibility and big-key encryption share not only common intuitive goals, as discussed
above, but also possible use cases. Bogdanov and Isobe [BI15] discuss that incompressibility may be
useful for thwarting mass surveillance, which BKR [BKR16] also mention as a main motivation of big-
key encryption. The idea is that it may be admissible for a local user to store large keys on their own
device. However, a large-scale surveillance project might not be able to store the keys of many users, if
all users employ large keys.
The main syntactical difference between incompressible white-box cryptography and big-key symmet-

ric encryption is the process of how large keys are generated. In big-key encryption, a large key is simply
generated at random, and the same large key is used for both encryption and decryption. In white-box
cryptography, however, the large key (or incompressible construction) is derived from a conventional
(small-key) encryption scheme via a white-box compiler. The compiler takes the short key of the encryp-
tion scheme and compiles it into a functionally equivalent large key/program which performs encryptions
secure under leakage.
Having functionally equivalent short and large keys is particularly useful in scenarios where only

either encryption or decryption will be performed in the presence of a leakage adversary. For instance,
if encryption and decryption are performed in a safe environment and a leaky environment respectively,
then short key may be used for encryption while the large key should be used for decryption.

1.2 On Strong Incompressibility from Standard Assumptions

The central question that we address in this work is the following:

Can white-box incompressible schemes based on conventional ciphers really be provably secure
under standard assumptions?

This question is motivated by the use of white-box cryptography for conventional ciphers such as AES
using conventional cipher modes such as CBC mode.
We answer the above question in the negative. We show that, for some types of encryption schemes,

it is impossible to achieve LK-IND-CPA security even with very mild leakage under simple assumptions.
More concretely, we present a general negative result showing that, if a symmetric encryption scheme
satisfies a property called key-fixing, then it cannot be proven secure under a super-logarithmic amount
of leakage based on single-stage assumptions. A single-stage assumption is defined by a game played by
a single adversary, which is the case for most standard definitions. For example, IND-CPA security (cf.
game indcpabske,A(1

n) in Fig. 1) is a single-stage assumption. In turn, LK-IND-CPA security (cf. game

lkindcpabbke,G,β,m(1n) in Fig. 1) is a two-stage assumption since the leakage-producing adversary A1 and
the main adversary A2 only share a short leakage lkg produced by A1, but not their complete states.
Moreover, we show that the CBC mode of symmetric ciphers is key-fixing, when modelling the cipher

as an ideal random permutation for each key. In other words, it is impossible to provably compile a
CBC-mode-based encryption into its strongly incompressible version under single-stage assumptions.
Our result highlights the importance of taking the cipher mode into account when arguing about the
incompressibility of white-box encryption schemes built from symmetric ciphers. Reasoning only about
the security of the key generator does not suffice. For example, our result shows that FKKM’s key
generator cannot be used in combination with key-fixing symmetric-encryption schemes if we wish to
have a provably secure white-box encryption scheme.
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1.3 Technical Overview

Our goal is to show that the LK-IND-CPA security of a symmetric encryption scheme with super-
logarithmic-length leakage cannot be reduced to any single-stage assumption in a black-box way. In the
following, we will refer to the length of the leakage as β = ω(log n), where n is the security parameter.
We will also assume that the a secret key is a bit string in {0, 1}m with m = poly(n). We will use the
term WBE to refer to an incompressible white-box encryption scheme. We shall keep in mind, however,
that our result also applies to big-key encryption.
Concretely, we prove via a meta-reduction that for any single-stage assumption modelled by a game Gb,

no PPT reduction R turns a pair of PPT adversaries (A1,A2) with non-negligible advantage against LK-
IND-CPA security into a PPT algorithm R(A1,A2) with non-negligible distinguishing advantage against
the game Gb.

1.3.1 Meta-Reduction Outline

Our proof technique is inspired by the meta-reduction approach of Wichs [Wic13], who shows an im-
possibility result about leakage-resilient injective one-way functions. We here paraphrase the intuition
given by Wichs in our context: Building a reduction to prove leakage-resilience or incompressibility is
difficult, because the reduction first needs to give a key k to a first adversary A1, and then receives some
leakage lkg about k. Then, the reduction gives lkg to a second adversary A2 and additionally simulates
an encryption oracle for A2. The reduction does not know how adversary A1 computes the leakage.
Therefore, it seems that the only way in which the reduction can simulate the leakage lkg and the en-
cryption oracle ENC correctly together is by knowing the key k already (see Section 6 for a discussion).
If the answers to the encryption oracle fix the key k uniquely, then we can actually formalise the above.
Technically, Wichs would have implemented the above intuition using the two following steps.

1. First, sample a pair of inefficient adversaries (A1,A2) which do not share any state and break the
security of the WBE with non-negligible advantage.

2. Next, design a PPT simulator S that simulates both adversaries with a shared state such that

(A1,A2)
comp
≈ S.

Assume towards contradiction that there exists a single-stage assumption modelled by a game Gb and a
PPT reduction R which bases the LK-IND-CPA security of the encryption scheme on said assumption,
then it follows that RS is PPT (because both R and S are), and has non-negligible advantage against

Gb (since (A1,A2)
comp
≈ S implies R(A1,A2)

comp
≈ RS), which contradicts the single-stage assumption.

Simulation vs. Attack. The above simulation does not give a valid attack against the scheme,
because the two adversaries “cheat” by sharing a state. In fact, the shared state gives the second
adversary the entire key rather than just the leakage. This difference is significant because there could
be exponentially many possible keys which are consistent with the leakage, and thus it is infeasible for
the second adversary to guess the key if given just the leakage.
However, if the reduction cannot detect this cheat, then it must be as successful when interacting with

the pair of cheating adversaries as with the real (inefficient) adversaries (A1,A2). Thus, a key point in
the analysis will be to argue that, from the reduction’s point of view, the pair of inefficient adversaries
(A1,A2) is indistinguishable from the efficiently simulated pair of cheating adversaries. Below, we
outline the inefficient adversaries (A1,A2) and their simulator in more detail.

Sampling Inefficient (A1,A2). On a high-level, our simulatable attack works as follows: The ad-
versary pair (A1,A2) has a hardwired random function RO, with input space {0, 1}m and output space
{0, 1}β . Note that β = ω(log n) therefore it is difficult to guess the output of RO on any given input. As
required by the security definition of WBE (Theorem 2.4), A1 and A2 do not share any state.

Adversary A1. We construct the first-stage adversary A1 such that it simply outputs lkg ← RO(K)
where K is the big key of the WBE. By construction, the length of the leakage is β, as permitted.
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Adversary A2. The second-stage adversary A2 receives leakage lkg as input and is given access to an
encryption oracle encO. It queries sufficiently many messages to encO, until the key K is uniquely
determined2 and then finds K by exhaustive search. If K does not match the leakage lkg , i.e.
lkg ̸= RO(K), the adversary A2 returns 1. In turn, if K matches the leakage, then it will break
the IND-CPA game by sending two distinct messages msg0 and msg1 to the challenge oracle encO,
getting back a challenge ciphertext ctxt∗, decrypting ctxt∗ using K, and returning 0 if the resulting
plaintext is msg0, and 1, otherwise.

Efficiently Simulating (A1,A2). The adversary A2 is inefficient since it searches for K exhaustively.
Nevertheless, it turns out that we can simulate the pair (A1,A2) efficiently by a simulator S which
emulates A1 and A2 jointly, i.e. the simulated adversaries are allowed to share a state. The simulated
A1 (which takes K as input) does not have a hardwired true random function. Instead, it implements
RO jointly with the simulated A2 via lazy sampling, and with queries and responses recorded in a table.
The simulated A2 will not perform an exhaustive search. Instead, it only tries out all polynomially-many
values in the table, i.e. values of K that were used for querying A1.

1.3.2 Conceptual Reflections

We highlight some key points in the analysis of the above meta-reduction.

Soundness of Simulation. To detect simulation, the reduction R needs to provide a leakage lkg =
RO(K∗) to A2 without querying A1 on K∗. Here, if the reduction is interacting with the simulated A2, it
would not be successful, since the simulator wouldn’t have the correct value of K∗ stored in its state. On
the other hand, the real (inefficient) A2 would successfully break IND-CPA as described above. However,
R is only able to implement this distinguishing strategy with negligible probability, since random values
of length β = ω(log n) are hard to guess.

Key-Fixing. In order to make the above approach work, we need to assume that the key K is uniquely
determined after seeing sufficiently many encryption queries. This property, analogous to Wichs’ injec-
tivity requirement [Wic13], seems necessary for our adversary to be successful. This is because, if there
were too many keys, then the inefficient A2 would pick an arbitrary key from multiple possibilities
with no guarantee in decryption correctness. Indeed, this is how Hazay, Lopez-Alt, Wee, and Wichs
(HLWW) [HLWW13] obtain feasibility results for leakage-resilient encryption. In turn, it is still quite
unclear how practical encryption schemes could reasonably avoid key-fixing. As we will see in Section 4,
CBC-mode is key-fixing when the cipher is modelled as a truly random permutation for every key. We
also show that CBC-mode continues to be key-fixing when using different fractions of a large key for
each encryption.

Different Models. Our lower bound conceptually also applies to both strong incompressibility and
leakage-resilient encryption when the leakage bounds are chosen appropriately. We prove the equivalence
between strong incompressibility and leakage-resilient encryption in Section 5.

1.3.3 Outline

Section 2 provides additional background and definitions. Section 3 states and proves our main impossi-
bility result. Section 4 illustrates that practical encryption schemes tend to be key-fixing by showing that
CBC-mode is key-fixing even when using different chunks from a big key rather than only a small key.
This result models the underlying cipher as a random independent permutation for every key. Section 5
relates strong incompressibility and leakage-resilient encryption. Section 6 discusses consequences of our
impossibility result and possible avenues to circumvent it, both in theory and in practice.

2Achieving uniqueness is not always possible. We elaborate on this issue shortly.
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indcpabske,A(1
n)

k ←$ {0, 1}n

b′ ←$AencO(1n)

return b′

encO(msg0,msg1)

assert |msg0| = |msg1|
return enc(k,msgb)

KencO(msg0,msg1)

assert |msg0| = |msg1|
return Kenc(K,msgb)

lkindcpabbke,G,β,m(1n)

(A1,A2)←$ G(1n)
K ←$ Kgen(1n, 1m)

lkg ←$A1(K)

b′ ← (|lkg | ≤ β)

b′′ ←$AKencO
2 (lkg)

return b′ ∧ b′′

lkindcpabwbe,G,β,m(1n)

(A1,A2)←$ G(1n)
k ←$ {0, 1}n

K ←$ wbkgen(k, 1m)

lkg ←$A1(K)

b′ ← (|lkg | ≤ β)

b′′ ←$AencO
2 (lkg)

return b′ ∧ b′′

Figure 1: (β,m)-LK-IND-CPA-security for SKE, BKE, and WBE.

2 Preliminaries

Let N = {1, 2, . . .} be the set of positive integers and N0 = {0, 1, 2, . . .} be the set of non-negative integers.
For ℓ ∈ N, write [ℓ] := {1, 2, . . . , ℓ}. We write log for log2, the base-2 logarithm. We denote the security
parameter by n ∈ N. In big-key and white-box primitives, algorithms often take a length parameter
m ∈ N as additional input. For conciseness, we often make the parameters n and m implicit. If S is a
finite set, we write x ←$ S for sampling from S uniformly at random. For a probabilistic algorithm A,
we write y ←$A(x) for running A on the input x with implicit uniform randomness. If the randomness
r is explicit, we write y ← A(x; r) instead.
We formalise security under leakage as a game played by a pair of adversaries (A1,A2). Adversary A1

computes leakage of the secret key and passes it to A2.

Definition 2.1 (Two-Stage Adversary Generators) Let G(1n) be an algorithm which outputs a pair
of two algorithms (A1,A2) forming a two-stage adversary. We call the algorithm G a two-stage adversary
generator if G is probablistic polynomial-time and A1 and A2 also run in time polynomial in n.

2.1 Encryption Schemes

Definition 2.2 (SKE) A symmetric-key encryption (SKE) scheme ske = (enc, dec) is a pair of PPT
algorithms (which implicitly input 1n).

• ctxt ←$ enc(k,msg): The randomised encryption algorithm enc takes a key k ∈ {0, 1}n and a
message msg ∈ {0, 1}∗ and produces a ciphertext ctxt ∈ {0, 1}∗.

• msg ← dec(k, ctxt): The deterministic decryption algorithm dec takes a key k ∈ {0, 1}n and
decrypts a ciphertext ctxt ∈ {0, 1}∗ to a message msg ∈ {0, 1}∗.

An SKE scheme ske is correct if for any n ∈ N, k ∈ {0, 1}n, and msg ∈ {0, 1}∗,

dec(k, enc(k,msg)) = msg .

2.1.1 White-Box Encryption

A white-box encryption scheme is derived from a symmetric encryption scheme with a key of conventional
size. The small key of the latter can be transformed into a functionally equivalent big key.

Definition 2.3 (WBE) A white-box encryption (WBE) scheme

wbe = (wbkgen, enc, dec,Kenc,Kdec)

is a tuple of six PPT algorithms with the following properties:
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White-Box Key Generation: The randomised white-box key generation algorithm K ←$ wbkgen(k, 1m)
generates a big key K ∈ {0, 1}m given a small key k ∈ {0, 1}n and a length parameter m ∈ N.

Small-Key Mode: (enc, dec) is an SKE scheme running on the short key.

Big-Key Mode: (Kenc,Kdec) is an SKE scheme running on the large key.

A WBE scheme wbe is correct if the following properties are satisfied:

Small-Key Correctness: (enc, dec) is correct (as an SKE scheme).

Big-Key Correctness: (Kenc,Kdec) is correct (as an SKE scheme).

Encryption Equivalence: For any PPT distinguisher D, any n,m ∈ N, m ≥ n, any k ∈ {0, 1}n, any
K ∈ wbkgen(k, 1m), any O1,O

′
1 ∈ {enc(k, ·),Kenc(K, ·)}, and any O2,O

′
2 ∈ {dec(k, ·),Kdec(K, ·)},∣∣∣Pr[DO1,O2(1n, 1m)

]
− Pr

[
DO′

1,O
′
2(1n, 1m)

]∣∣∣
is negligible.

In Theorem 2.3, the small-key mode of a WBE works independently of the length parameter chosen
for the big-key mode. In other words, a small key of a WBE scheme could have multiple equivalent big
keys of different lengths.
We next define LK-IND-CPA security for white-box encryption, as introduced by HLWW, adapted to

WBE, with the only difference being the key generation process. Namely, for white-box cryptography, we
generate a pseudorandom large key from a smaller key. Note that the LK-IND-CPA model considered
by FKKM [FKKM16a] (named strong incompressibility model), provides the adversary access to an
additional encryption oracle, so it can obtain ciphertexts for chosen plaintexts. Our models in Fig. 1 do
not explicitly provide access to such an encryption oracle, but the adversary can still obtain ciphertexts
for chosen plaintexts simply by querying the challenge oracle with two equal messages msg0 = msg1.

Definition 2.4 [(β,m)-LK-IND-CPA for WBE] Let β,m be functions of n. A WBE scheme wbe is
(β,m)-LK-IND-CPA-secure if for any PPT two-stage adversary generator G

Advlkindcpawbe,G,β,m(n) :=
∣∣Pr[lkindcpa0wbe,G,β,m(1n) = 1

]
− Pr

[
lkindcpa1wbe,G,β,m(1n) = 1

]∣∣
is negligible, where the experiment lkindcpabwbe,G,β,m for b ∈ {0, 1} is defined in Fig. 1.

2.2 Big-Key Symmetric Encryption

We recall the definition of big-key encryption (BKE) [BKR16]. The syntax of BKE is almost identical
to that of SKE, except that the (big-)key generation algorithm additionally inputs a length parameter
m ∈ N which determines the size of the secret-key.

Definition 2.5 (BKE) A big-key encryption (BKE) scheme bke = (Kgen,Kenc,Kdec) is a tuple of three
PPT algorithms with the following properties:

• K ←$ Kgen(1n, 1m): The randomised big-key generation algorithm Kgen generates a secret key
K ∈ {0, 1}m.

• ctxt ←$ Kenc(K,msg): The randomised big-key encryption algorithm Kenc produces a ciphertext
ctxt ∈ {0, 1}∗ given a big key K ∈ {0, 1}m and a message msg ∈ {0, 1}∗.

• msg ← Kdec(K, ctxt): The deterministic big-key decryption algorithm Kdec takes a big key K ∈
{0, 1}m and decrypts a ciphertext ctxt ∈ {0, 1}∗ to a message msg ∈ {0, 1}∗.

A BKE scheme bke is correct if for any n,m ∈ N, K ∈ Kgen(1n, 1m), and msg ∈ {0, 1}∗,

Kdec(K,Kenc(K,msg)) = msg .

Definition 2.6 ((β,m)-LK-IND-CPA for BKE) Let β,m be functions of n. A BKE scheme bke is
(β,m)-LK-IND-CPA-secure if for any PPT two-stage adversary generator G

Advlkindcpabke,G,β,m(n) :=
∣∣Pr[lkindcpa0bke,G,β,m(1n) = 1

]
− Pr

[
lkindcpa1bke,G,β,m(1n) = 1

]∣∣
is negligible, where Fig. 1 defines the experiment indcpabbke,G,β,m for b ∈ {0, 1}.
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O0[G](i, 1n)
if Ai,1 = ⊥ :

(Ai,1,Ai,2)←$ G(1n)
return ()

O1[G](i,K)

if Ai,1 = ⊥ : return ⊥
lkg ←$Ai,1(K)

return lkg

O2[G]encO(i, lkg)
if Ai,2 = ⊥ : return ⊥

b∗ ←$AencO
i,2 (lkg)

return b∗

Figure 2: Oracles given to black-box reductions which establish (β,m)-LK-IND-CPA security of wbe.
The oracle encO is implemented by the caller of O2.

3 Impossibility Result

In this section, we prove that the (β,m)-LK-IND-CPA security of a WBE scheme cannot be black-
box-reduced to any single-stage assumption, provided that the WBE scheme is key-fixing, and that the
leakage β = ω(log n). In Section 3.1, we formalise single-stage assumptions and black-box reductions
which establish the (β,m)-LK-IND-CPA security of WBE schemes as well as key-fixing. We then present
our impossibility result in Section 3.2.

3.1 Single-Stage Assumptions, Black-Box Reductions, and Key-Fixing

Notation. In this section, we use the notation B → Gb(1n) for the interaction between adversary B
and the game Gb(1n). We denote by 1 = B → Gb(1n) the even that the adversary returns 1 when
interacting with game Gb(1n). This notation makes the adversary the “main routine” which calls the
game (rather than making the game call the adversary).

Remark. The → notation is useful, because we can later write B = RA1,A2 and RA1,A2 → Gb(1n).
This way, the notation distinguishes between R’s black-box interface to the two-stage adversary (A1,A2)
and to the game Gb(1n). In this notation, the security parameter is given to B and R implicitly.

Definition 3.1 (Single-Stage Assumption) A single-stage assumption is defined via two PPT games
G0 and G1 which provide the same set of oracles Q to an adversary B. The assumption is then that for
all PPT adversaries B, ∣∣Pr[1 = B → G0(1n)

]
− Pr

[
1 = B → G1(1n)

]∣∣
is negligible in n.

Example. The IND-CPA security game indcpabske,A(1
n) (cf. Fig. 1) is a single-stage game, while the LK-

IND-CPA game lkindcpabbke,G,β,m(1n) (cf. Fig. 1) is a two-stage assumption since the leakage-producing
adversary A0 and the main adversary A1 do not share their complete state.

Style. Theorem 3.1 encodes security without an experiment environment, but instead the adversary B
is the main procedure and calls oracles which are exposed by the game. This encoding is w.l.o.g., since
one can always add an oracle for setup. It is convenient, since the interface between the adversary and the
game is explicit. Moreover, encoding single-stage games as distinguishing games is w.l.o.g., since every
search game with efficiently checkable winning condition can be encoded as a decision game by adding
an oracle in the real world which returns 1 when the winning condition is satisfied, but always returns 0
in the ideal world. This encoding of single-stage games is borrowed from [BDF+18] and requires query
restrictions on adversaries to be formulated via silencing oracles à la Rogaway-Zhang [RZ18].
We now define what it means for a reduction to base security of a big-key encryption scheme on a

single-stage assumption.

Definition 3.2 (Black-Box Reduction) Let (G0, G1) be two games defining a single-stage assump-
tion. Let wbe be a white-box encryption scheme. A PPT oracle algorithm R bases the (β,m)-LK-IND-
CPA security of wbe on (G0, G1) if for all (possibly inefficient) distributions G over (possibly inefficient)
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two-stage adversaries (A1,A2) the following holds: If Advlkindcpawbe,G,β,m(n) is non-negligible, then

Adv(RO0[G],O1[G],O2[G], G0, G1)

:=
∣∣∣Pr[1 = RO0[G],O1[G],O2[G] → G0(1n)

]
− Pr

[
1 = RO0[G],O1[G],O2[G] → G1(1n)

]∣∣∣
is also non-negligible. See Fig. 2 for the behaviour of O0, O1, and O2. We call such an algorithm R a
black-box reduction.

The reduction R can query O0[G] with an integer i to sample a new pair of adversaries Ai,1 and Ai,2.
It can then run O1[G](i,K) which returns lkg ←$ Ai,1(K). It can query O1[G] on as many inputs (i,K)
as it likes, repeating both i and K. Similarly, R can query O2[G] on (i, lkg). It will then obtain several
encryption requests from O2[G] and eventually obtain a bit b∗. Our proof allows rewinding. However,
all oracles are stateless and it is w.l.o.g. to assume that Ai,1 and Ai,2 do not have randomness beyond
the randomness that was used by G to generate them. Similarly, we model rewinding of the adversaries
by being able to query them multiple times with different inputs.
We now define key-fixing, which roughly means that a polynomial number of ciphertexts uniquely

determine the key with high probability. Formally, we say that a scheme is key-fixing if there exists
an algorithm UniqueChecker which determines with good probability whether the key associated with a
given set of ciphertexts is unique. The number of required ciphertexts to determine uniqueness depends
on the key size m, because if their accumulated length is less than m, the ciphertexts cannot determine
the key information-theoretically. Additionally, for local constructions, we need to have sufficiently
many samples to access each key bit sufficiently frequently. We do not make the number of necessary
ciphertexts explicit, but instead also allow it to depend on the scheme.

Definition 3.3 (Key-Fixing) Let m, ℓ be polynomials in n. A symmetric-key encryption scheme (enc, dec)
is (m, ℓ)-key-fixing if there is a PPT algorithm UniqueChecker such that the following hold:

Overwhelmingly Unique For any K ∈ {0, 1}m,

Pr∀i∈[m], ci←$enc(K,0ℓ)[UniqueChecker(c1, . . . , cm) ̸= 1]

is negligible in n.

Correctness For any PPT algorithm R,

Pr(K,(ci)mi=1)←$R(1n)

[
UniqueChecker(c1, . . . , cm) = 1

∧ ∃K ′ ̸= K, ∀i ∈ [m], dec(K, ci) = dec(K ′, ci) = 0ℓ

]
is negligible in n.

A white-box encryption scheme (wbkgen, enc, dec,Kenc,Kdec) is (m, ℓ)-key-fixing if the symmetric-key
encryption scheme (Kenc,Kdec) is (m, ℓ)-key-fixing.

The key-fixing property above which we require for our impossibility result on strong incompressibility
corresponds to Wichs’ [Wic13] injectivity requirement for their impossibility result on leakage-resilient
one-way functions. Essentially, key-fixing is a probabilistic version of injectivity, saying that for honestly
generated ciphertexts, the probability that they fix the key is overwhelming. We remark that the choice
of the all zero message 0ℓ is arbitrary – it suffices for the property to hold for some arbitrarily fixed
message sequence.

3.2 Impossibility Result

Theorem 3.4 Let m, ℓ be polynomials in n. Let wbe be a correct (m, ℓ)-key-fixing white-box encryption
scheme. If β = ω(log n), then there exists no black-box reduction which bases the (β,m)-LK-IND-CPA-
security on a single-stage assumption, or the assumption is false.

In other words, the above theorem states that for all PPT reductions R and all (true) single-state
assumption modelled by a pair of games (G0, G1), the advantage Adv(RO0,O1,O2 , G0, G1) is negligible.
Of course, for an incorrect assumption, there might still be a successful adversary.
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G(1n)
RO←$ {f : {0, 1}m → {0, 1}β}
return (A1[RO],A2[RO])

A1[RO](K)

lkg ← RO(K)

return lkg

A2[RO]
encO(lkg)

C ← ∅
for j ∈ [ℓ] :

cj ←$ encO(0ℓ, 0ℓ)

if UniqueChecker(c1, . . . , cℓ) ̸= 1 : return 1

findK∗ :{
RO(K∗) = lkg

∀j, 0ℓ = dec(K∗, cj)

if no such K∗ : return 1

c∗ ←$ encO(0ℓ, 1ℓ)

if dec(K∗, c∗) = 0ℓ :

return 0

return 1

Ĝ(1n)
T ← empty table

return (ÂT
1 , ÂT

2 )

ÂT
1 (K)

if T [K] = ⊥ :

T [K]←$ {0, 1}β

lkg ← T [K]

return lkg

ÂT,encO
2 (lkg)

C ← ∅
for j ∈ [ℓ] :

cj ←$ encO(0ℓ, 0ℓ)

if UniqueChecker(c1, . . . , cℓ) ̸= 1 : return 1

findK∗ :{
T (K∗) = lkg

∀j, 0ℓ = dec(K∗, cj)

if no such K∗ : return 1

c∗ ←$ encO(0ℓ, 1ℓ)

if dec(K∗, c∗) = 0ℓ :

return 0

return 1

Figure 3: An inefficient stateless adversary distribution G (left) and its efficient stateful (with shared
tables T ) simulation (right), both parametrised by (m, ℓ, β).

Proof of Theorem 3.4. Let the games (G0, G1) model a single-stage assumption. If the assumption
(G0, G1) is false, then we are done. Below, assume that the assumption (G0, G1) is true.
Recall that β = ω(log n) and wbe is correct and (m, ℓ)-key-fixing. Assume towards contradiction that

there exists a PPT black-box reduction which bases the (β,m)-LK-IND-CPA-security of wbe on the
assumption (G0, G1).

Consider the distribution G of inefficient stateless adversaries defined in the left column of Fig. 3, and
the distribution Ĝ of efficient stateful adversaries defined in the right column of Fig. 3. To prove Theo-
rem 3.4, we will prove the following two claims:

Claim 1 (Successful Adversary) Advlkindcpawbe,G,β,m(n) is non-negligible.

Claim 2 (Efficient Simulation) For any PPT reduction R and all b ∈ {0, 1},∣∣∣Pr[1 = RO0[G],O1[G],O2[G] → Gb(1n)
]
− Pr

[
1 = RO0[Ĝ],O1[Ĝ],O2[Ĝ] → Gb(1n)

]∣∣∣
is negligible.

Assuming that both claims hold, and that R is a black-box reduction from the (β,m)-LK-IND-CPA
security of wbe to the single-stage assumption modeled by (G0, G1), we conclude that∣∣∣Pr[1 = RO0[Ĝ],O1[Ĝ],O2[Ĝ] → G0(1n)

]
− Pr

[
1 = RO0[Ĝ],O1[Ĝ],O2[Ĝ] → G1(1n)

]∣∣∣
is non-negligible in n, which contradicts the single-stage assumption. It remains to prove the two claims.
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Proof of Claim 1. We argue that G almost always breaks (β,m)-LK-IND-CPA-security when directly

interacting with the security game lkindcpabwbe,G,β,m(n), i.e. the advantage Advlkindcpawbe,G,β,m(n) is overwhelm-
ing. For sanity check, we note that for any (A1,A2) generated by G, A1 has output length exactly β. It
therefore remains to show that A2 guesses the hidden bit b correctly except with negligible probability.
We first note that, by the overwhelmingly unique condition of key-fixing (Theorem 3.3),

UniqueChecker(c1, . . . , cℓ) = 1

with overwhelming probability. Next, by the correctness condition of key-fixing, there is no second
K ′ ̸= K∗ which could have yielded the same ciphertexts. Hence, K must be equal to K∗. Finally, by
correctness of the encryption scheme, we must have dec(K∗, c∗) = bℓ.

Proof of Claim 2. Observe that the only difference between G and Ĝ is that the random function
hardwired in (A1,A2) is simulated by lazy sampling in (Â1, Â2). Define R := RO0[G],O1[G],O2[G] → Gb(1n)
and define R̂ analogously. We observe that R and R̂ produce identically distributed outputs except when
there exists a tuple (i,K∗, lkg) where all four following events and conditions are satisfied:

• R did not query O1[G](i,K∗),

• R queried O2[G](i, lkg),

• RO(K∗) = lkg ,

• UniqueChecker(c1, . . . , cℓ) = 1

where RO is the random function hardwired to the i-th instance of (A1,A2).
Since UniqueChecker(c1, . . . , cℓ) = 1, by the correctness property of key-fixing (Theorem 3.3), there is

only a unique key K∗ which is consistent with these ciphertexts. Since R did not query O1[G](i,K∗), the
value RO(K∗) for this unique key K∗ is information-theoretically hidden from R and thus the probability
that the value lkg chosen by R is equal to RO(K∗) is negligible.

4 CBC-Mode with a Random Permutation is Key-Fixing.

We now prove that CBC mode is key-fixing when modelling the cipher as a (family of) truly random
permutation π, i.e. for any key k ∈ {0, 1}n, we treat π(k, ·) as a random permutation and π−1(k, ·) its
inverse. We first prove this statement for the case where the key is not large (Section 4.1) and then
handle the case with a large key (Section 4.2). In order to formalise this statement, we consider an
FKKM-like construction where, for each encryption, a number of random indices into the large key are
sampled, run through an extractor (which we implement by a random matrix), and then used as a key for
CBC-mode (Section 4.2). This second result proves key-fixing for one example of obtaining small keys
from large keys. Similar results can be proven for other natural approaches using different extractors as
well, as long as all inputs bits are treated equally.

4.1 Key-Fixing of Small-Key CBC-mode

We start by describing CBC-mode. Since the length of some messages is not divisible by n, we first need
to encode the message into a multiple of n.

Definition 4.1 (Encoding scheme) We call two functions encoden : {0, 1}∗ → {0, 1}∗ and decoden :
{0, 1}∗ → {0, 1}∗ an encoding scheme if the following hold:

• encoden and decoden are computable in time polynomial in n and the input length.

• decoden is the inverse of encoden, i.e. for all x ∈ {0, 1}∗, decoden can recover x from encoden(x),
that is, we have decoden(encoden(x)) = x. In particular, encoden is injective, i.e. if x ̸= x′, then
encoden(x) ̸= encoden(x

′).
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• the length encoden only depends on the length of the input, i.e. if |x| = |x′|, then |encoden(x)| =
|encoden(x′)|.

• For all x ∈ {0, 1}∗, |encoden(x)| is divisible by n.

We can construct a CBC-mode encryption scheme skeπ,CBC = (enc, dec) as follows:

enc(k,msg)

n← |k|
msg ′ ← encoden(msg)

nc←$ {0, 1}n

c0 ← nc

ℓ← |msg ′|
n

for i ∈ [ℓ]

xi ← msg ′
(i−1)n+1...in

ci ← π(k, xi ⊕ ci−1)

ctxt ← (c0, . . . , cℓ)

return ctxt

dec(k, ctxt)

n← |k|

ℓ← |ctxt |
n
− 1

(c0, . . . , cℓ)← ctxt

for i ∈ [ℓ]

xi ← ci−1 ⊕ π−1(k, ci)

msg ′ ← x1|| . . . ||xℓ

msg ← decode|k|(msg ′)

return msg

Theorem 4.2 For m = n and ℓ = 3n, skeπ,CBC is (m, ℓ)-key-fixing.

Proof. Define UniqueChecker(c1, . . . , cℓ) to always return 1. Therefore, the overwhelmingly uniqueness
condition is satisfied. We now turn to correctness.
We prove that a PPT adversary R cannot come up with a ciphertext c1 and a key k such that there

exists a key k′ such that dec(k, c1) = deck′(c1) = 0ℓ. Namely, for every nonce nc and keys k and k′, there
is a probability of 2−n that πk(nc) = πk′(nc). Now, let y := πk(nc) and assume that y ̸= nc. Then, again,
the probability that πk(y) = πk′(y) is 2−n. Letting y′ := πk(y) and again assuming that y′ /∈ {y, nc}, the
probability that πk(y

′) = πk′(y′) is 2−n. And and we get the same probability for the next ciphertext
block y′′ := πk(y

′) Thus, for triple (k, k′, nc) such that |{y′′, y′, y, nc}| = 4, we have that

Prπ[dec(k, c1) = deck′(c1)] = 2−4n.

Taking a union bound over all nonces and pairs of distinct keys (nc, k, k′), the probability over π that
such a nonce and pair (k, k′) exists, is 2−n. Moreover, in a polynomial number of queries, R will not be
able to find k and nc such that {nc, y, y′} contains a collision, so that |{y′′, y′, y, nc}| = 4 for all values
that the reduction can compute. This concludes the proof of Theorem 4.2.

4.2 Key-Fixing of Big-Key CBC-Mode

We now construct a big-key symmetric encryption scheme bkeπ,CBC = (Kenc,Kdec) by augmenting the
skeπ,CBC scheme constructed above. In the construction below, we derive a subkey by multiplying a
random binary matrix M to it. This gives us a subkey of conventional length, which we use for running
the CBC-based encryption scheme from the previous subsection. Note that the construction below can
equally be turned into an incompressible white-box encryption if the large key K is itself derived from
a small key of conventional length.

Kenc(K,msg)

M ←$ {0, 1}m×n

k ← K ·M
nc←$ {0, 1}n

c′ ←$ skeπ,CBC.enc(k,msg , nc)

c← (M, c′)

return c

Kdec(K, c)

(M, c′)← c

k ← K ·M

msg ← skeπ,CBC.dec(k, c
′, nc)

return msg
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ENC− COMb
µ,A(1

n)

k ←$ kgen(1n)

K ←$ wbkgen(k)

leak(·)←$A(1n)
lkg ←$ leak(K)

b′ ←$AencO,encOb(lkg)

b′′ ← (H∞(K|lkg)) ≥ µ)

return b′ ∧ b′′

encO(m)

c←$ Kenc(m)

return c

encOb(m0,m1)

if |m0| = |m1|
cb ←$ Kenc(mb)

return cb

Figure 4: Strong incompressibility model.

Theorem 4.3 For m ≥ n a polynomial in n and nℓ ≥ 2m− 1, bkeπ,CBC is (m, ℓ)-key-fixing.

Proof. As in the proof of Theorem 4.2, we construct UniqueChecker so that it almost always re-
turns 1, but it now performs an additional check. Concretely, let Mi denote the matrix specified in ci.
UniqueChecker additionally checks that the matrix M̂ := M1|| . . . ||Mℓ is of full rank m over the binary
field {0, 1}. If so, UniqueChecker outputs 1. Else, it outputs 0. For a random m-by-t matrix over {0, 1}
where t ≥ m, the probability that the matrix is of full rank m is at least 1−m/2t−m+1. Setting t = nℓ,
the probability that M̂ is of full rank m is at least 1 − m/2m which is overwhelming in n. Thus the
overwhelmingly unique property holds.

For correctness of UniqueChecker, observe that (a) the analysis of Theorem 4.2 now applies to each
extracted key individually. Bootstrapping from the individual keys and using the full-rank matrix M̂ ,
we then obtain uniqueness of the entire big-key K.

Remark. We remark that the above impossibility can be extended to the case where M is chosen to
be a random sparse matrix (so that, for example, each encryption/decryption only depends on κ ≪ m
bits of the big key K) as long as M̂ = M1|| . . . ||Mℓ is of full rank m with overwhelming probability for
some ℓ polynomial in m.

5 Equivalence of Strong Incompressibility and Big-Key
Encryption Security

In this section, we show that the strong incompressibility model of FKKM ([FKKM16a, Definition
4] or Theorem 5.1 below) and the LIND model of BKR ([BKR16, Figure 10] or Theorem 5.1 below)
are equivalent to the LK-IND-CPA model when choosing appropriate leakage classes. We thus show
formally that our impossibility result from Section 3 does not only apply to incompressible white-box
cryptography, but also to big-key symmetric encryption and any other leakage-resilient cryptographic
schemes whose security is defined via LK-IND-CPA.

Definition 5.1 (Strong Incompressibility [FKKM16a, Definition 4]) A WBE-scheme is µ-strongly
incompressible (ENC-COM) if for any PPT stateful adversary A the following advantage∣∣Pr[1 = ENC− COM0

µ,A(1
n)
]
− Pr

[
1 = ENC− COM1

µ,A(1
n)
]∣∣,

is negligible, where the experiment ENC− COMb
µ,A(1

n) runs as described in Section 5.

Definition 5.2 (LIND-security [BKR16, Figure 10]) A BKE-scheme is β-LIND-secure if for any
PPT stateful adversary A the following probability is negligible,

Pr
[
1 = LIND0

β,A(1
n)
]
− Pr

[
1 = LIND1

β,A(1
n)
]
,

where Fig. 5 defines LINDb
β,A(1

n).
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LINDb
β,A(1

n)

leak(·)←$A(1n)
K ←$ kgen(1n)

lkg ← leak(K)

b′ ←$AencOb(lkg)

b← |lkg | ≤ β

return b′ ∧ b′′

encOb(m0,m1)

if |m0| = |m1|
cb ←$ Kenc(K,mb)

return cb

Figure 5: LIND security

Our previously defined LK-IND-CPA game defines an upper bound β on the leakage. Instead, LK-
IND-CPA can also consider adversary pairs (A1,A2) which ensure that the min-entropy of K conditioned
on the leakage is greater than some value µ. With a strict upper bound β as defined previously, LK-IND-
CPA is equivalent to LIND security, and with a min-entropy bound, LK-IND-CPA security is equivalent
to strong incompressibility. We now show that if a scheme is LK-IND-CPA secure w.r.t. a strict upper
bound β, then it is also LK-IND-CPA secure with a closely related upper bound on the leakage resulting
from the following claim.

Claim 3 (Relation between leakage classes) Let leak be such that |leak(K)| ≤ β for all K ∈ {0, 1}m.
Let δ = ω(log n). Given leakage lkg := leak(K), the min-entropy H∞(K|lkg) is at least m− β − δ except
with negligible probability over the choice of K.

Proof. The claim follows by a counting argument. There are 2m values of K and at most 2β leakage
values of lkg . For any fixed leakage lkg , write

Klkg := {K : leak(K) = lkg}.

Let S be the set of lkg such that
|Klkg | < 2m−β−δ.

Now, the union ⋃
lkg∈S

Klkg

contains at most
|S| · 2m−β−δ < 2m−δ

elements. Thus, the fraction of keys K which lead to leakage that has too low min-entropy is at most

2m−δ

2m
= 2−δ,

which is negligible, which concludes the proof.
Therefore, when an adversary is a valid adversary w.r.t. leakage bounded by β, then the adversary

is also a valid adversary w.r.t. min-entropy |K| − β − δ for any δ = ω(log n). Hence, our impossibility
result also applies to models which consider min-entropy.

6 Discussion

We now discuss consequences of our impossibility result.
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Implication to FKKM’s Strong Incompressibility Model. FKKM [FKKM16a] use a symmetric-
key cipher, e.g. AES, to generate large look-up tables as well as their input queries. These tables are
intended as an incompressible key generator for deriving subkeys, to be fed into a PRG or any conventional
encryption scheme for encrypting messages.
In their original paper, FKKM claim that this composition yields LK-IND-CPA-security based on the

security of the underlying cipher. However, this contradicts our impossibility result, and indeed, FKKM
did not provide arguments to support the claim. More concretely, the security proof only argues about
indistinguishability of keys, but the reduction does not emulate encryption oracles. Therefore the security
argument is insufficient for proving LK-IND-CPA-security, but only a weaker (or incomparable) model
of security. Inspired by our impossibility result, FKKM revisited their security analysis [FKKM16b,
Appendix D] and now prove that their key generator can be combined with a length-expanding random
oracle to yield an LK-IND-CPA-secure encryption scheme in the random oracle model. The use of
idealised models circumvents our impossibility result.

(Non-)Implication to Other Security Models. Our impossibility result does not apply to weaker
incompressibility models without encryption oracles, as considered, for example, in [DLPR14, BI15,
BIT16, BBK14, CCD+17, AAB+19, KLLM20, KI21]. Although we present our negative result in the
context of incompressible white-box cryptography, it readily generalises to any leakage-resilient encryp-
tion scheme whose security implies LK-IND-CPA-security, such as big-key symmetric encryption. For
completeness, we showed formally that both FKKM’s strong incompressibility and the BKR’s LIND-
security are equivalent to LK-IND-CPA-security (cf. Section 5).

Circumventing our Impossibility Result. Given that our impossibility result rules out proving
key-fixing schemes secure under single-stage assumptions in the standard model, natural approaches
towards circumvention include:

• proving security in an idealised model such as the random oracle model (ROM),

• proving security under two-stage assumptions, or

• designing a non-key-fixing scheme.

Using Random Oracles or Two-Stage Assumptions. Highly efficient encryption with prov-
able LK-IND-CPA-security with large leakage was achieved in the context of big-key encryption in
BKR [BKR16] and a follow-up work by Bellare and Dai (BD [BD17]) in the random oracle model. In
particular, BKR and BD seek to reduce the number of (blocks of) bits accessed by, i.e. the locality of,
the encryption algorithm to securely derive a subkey, where the former is modelled as a function of (1)
the key size and (2) the output length of the adversarially chosen leakage function.
BKR and BD further show that the random oracle can be instantiated using universal computational

extractors (UCE) [BHK13]. UCEs are a strong two-stage-assumption for hash-functions which, in some
cases, can be instantiated from indistinguishability obfuscation [BFM14] in a provably secure, yet ineffi-
cient way. As of now, no practically efficient, provably secure constructions of UCEs based on standard
assumptions are known.
Although the BKR construction of big-key encryption falls short of being a white-box encryption

scheme due to the lack of functionally equivalent small keys, the latter can be easily added by deriving
the big key from a small key using a PRG.

Using Non-Key-Fixing Constructions. A very exciting feasibility result for building LK-IND-
CPA-secure encryption schemes under the mere assumption of one-way functions was provided by
HLWW [HLWW13]. While “natural” encryption schemes tend to satisfy key-fixing, as illustrated by
our result for CBC-encryption in Section 4, HLWW demonstrate that there are meaningful ways of
introducing redundancy which allows to prove leakage-resilience beyond log n many bits and thus cir-
cumvent our impossibility result.
Crucially, their scheme has key material which is never accessed for the generation of honest cipher-

texts. A sequence of subtle game-hops then moves to a situation where, for the challenge ciphertext, the
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additional key material is accessed, so that one obtains information-theoretic security for the challenge
ciphertext. The difficult argument is to show that this modified challenge ciphertext which accesses the
additional information is indistinguishable from a real ciphertext, using hash-proof systems. Specifically,
HLWW introduce symmetric-key weak hash proof systems (wHPS), which can be seen as a special type
of PRFs which can take as input values from valid and invalid distributions. Given multiple (valid)
input-output pairs and one random invalid input, the corresponding output on the invalid input should
be uniformly random and statistically independent from the previously obtained input-output pairs.
HLWW construct wHPS from weak PRFs (wPRFs) and show how wHPS can be used for constructing

leakage resilient wPRFs by simply applying a randomness extractor to the output of the wHPS. Then,
given such leakage-resilient wPRF, messages can easily be encrypted in an LK-IND-CPA-secure way by
padding them with outputs of the leakage-resilient wPRF. Crucially, a leakage-resilient wPRF constructed
via the above complicated process is not key-fixing, which circumvents our impossibility result.

The HLWW construction as outlined above achieves a moderate leakage rate of log(n)
n and uses the

complete secret key for each encryption. HLWW show that using t parallel repetitions of the above
construction and random sampling yields a big-key encryption scheme with significantly improved locality

while retaining the leakage rate t·log(n)
t·n = log(n)

n . Recently, Quach, Waters and Wichs (QWW) [QWW21]
provide a construction secure against the same leakage rate, based on pseudo-entropy functions which
are derived from targeted lossy functions based on injective PRGs. Unlike HLWW, the ciphertext size
in QWW do not increase with the leakage bound, but the secret key size does.

Summary. Amongst all options for circumventing our impossibility result, it seems that opting for
a weaker security model for incompressibility is not advisable, because the encryption oracle is close
to a real-life attacker capability3. However, when seeking to prevent code-lifting attack [Bre12], if the
hardware supports it, a promising alternative is to aim for hardware-binding [CdRP14, SdHM15, BBIJ17,
AABM20], since provably secure constructions are feasible in this domain [ABCW23, ABF+20].

As HLWW and QWW show, developing tailor-made ciphers which are provably strongly incompressible
under standard assumptions is theoretically feasible, but at present remains impractical. While this might
change at some point in the future, the BKR and BD approaches of using strong (two-stage) assumptions
on hash-functions, or the BKR, BD, and FKKM approaches to use a random oracle seem to lead to more
practical constructions.
Additionally, it might be feasible to mix ideal-model analysis and cryptanalysis for a higher degree of

confidence. For example, hash-functions are usually presented with a proof of indifferentiability, assuming
only that smaller building blocks are ideal, and a similar style of results might be possible and desirable
for incompressibility. In particular, this latter avenue potentially allows us to still prove security for
standard encryption schemes.

In summary, from our perspective, one should either aim for device-binding instead of incompressibility,
or, if one needs to aim for incompressibility, then the most promising way to achieve high-confidence
security of real-life constructions is to employ a mix of cryptanalysis and ideal-model analysis.
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