
Reusable Secure Computation in the Plain Model

Vipul Goyal∗ Akshayaram Srinivasan† Mingyuan Wang‡

Abstract

Consider the standard setting of two-party computation where the sender has a secret function f
and the receiver has a secret input x and the output f(x) is delivered to the receiver at the end of the
protocol. Let us consider the unidirectional message model where only one party speaks in each round. In
this setting, Katz and Ostrovsky (Crypto 2004) showed that at least four rounds of interaction between
the parties are needed in the plain model (i.e., no trusted setup) if the simulator uses the adversary in
a black-box way (a.k.a. black-box simulation). Suppose the sender and the receiver would like to run
multiple sequential iterations of the secure computation protocol on possibly different inputs. For each
of these iterations, do the parties need to start the protocol from scratch and exchange four messages?

In this work, we explore the possibility of amortizing the round complexity or in other words, reusing a
certain number of rounds of the secure computation protocol in the plain model. We obtain the following
results.

• Under standard cryptographic assumptions, we construct a four-round two-party computation pro-
tocol where (i) the first three rounds of the protocol could be reused an unbounded number of
times if the receiver input remains the same and only the sender input changes, and (ii) the first
two rounds of the protocol could be reused an unbounded number of times if the receiver input
needs to change as well. In other words, the sender sends a single additional message if only its input
changes, and in the other case, we need one message each from the receiver and the sender. The
number of additional messages needed in each of the above two modes is optimal and, additionally,
our protocol allows arbitrary interleaving of these two modes.

• We also extend these results to the multiparty setting (in the simultaneous message exchange model)
and give round-optimal protocols such that (i) the first two rounds could be reused an unbounded
number of times if the inputs of the parties need to change and (ii) the first three rounds could be
reused an unbounded number of times if the inputs remain the same but the functionality to be
computed changes. As in the two-party setting, we allow arbitrary interleaving of the above two
modes of operation.

∗NTT Research and CMU vipul@cmu.edu
†Tata Institute of Fundamental Research akshayaram.srinivasan@tifr.res.in
‡UC Berkeley mingyuan@berkeley.edu
1A. Srinivasan was supported in part by a SERB startup grant and Google India Research Award. M. Wang was supported

in part by DARPA under Agreement No. HR00112020026, AFOSR Award FA9550-19-1-0200, NSF CNS Award 1936826, and
research grants by the Sloan Foundation, and Visa Inc. Any opinions, findings and conclusions, or recommendations in this
material are those of the authors and do not necessarily reflect the views of the United States Government or DARPA. This
work was partly done when M. Wang was an intern at CMU.

1

vipul@cmu.edu
akshayaram.srinivasan@tifr.res.in
mingyuan@berkeley.edu

Contents
1 Introduction 3

1.1 Our Results . 3

2 Technical Overview 4
2.1 Reusable Two-Party Computation . 5

2.1.1 Reusable Zero-Knowledge Argument of Knowledge . 5
2.1.2 Reusable Oblivious Transfer Protocol . 6

2.2 Reusable MPC . 9

3 Preliminaries 9
3.1 Reusable Secure Two-Party Computation Protocol . 9
3.2 Reusable Secure Multiparty Computation . 11
3.3 Pseudorandom Generator, Pseudorandom Function, and Symmetric-key Encryption 12
3.4 Garbled Circuits . 13
3.5 Extractable Commitment . 13
3.6 ZAP . 15
3.7 Trapdoor Generation Protocol . 15

4 Reusable Zero-knowledge Argument of Knowledge 16
4.1 Construction . 17
4.2 Proof of Zero-knowledge . 18
4.3 Proof of Knowledge Extraction . 20

5 Reusable Oblivious Transfer Protocol 21
5.1 A Building Block . 22
5.2 Our Construction . 23
5.3 Indistinguishability against a malicious sender. 24
5.4 Simulation security for a malicious receiver. 26

6 Reusable 2PC Protocol 28
6.1 The Sender is Corrupt . 30
6.2 The Receiver is Corrupt . 31

7 Reusable MPC Protocol 32
7.1 Additional Building Blocks . 32

7.1.1 A Rewind-secure Extractable Commitment Scheme for Reusable MPC 32
7.1.2 (Reusable) Non-malleable Commitment. 33
7.1.3 Two-round (Reusable) Semi-Malicious MPC. 34

7.2 Our Protocol . 34
7.3 The Simulator . 38
7.4 The Hybrids . 40
7.5 Indistinguishability of Hybrids. 42

2

1 Introduction
Secure computation [Yao86, GMW87] is a fundamental cryptographic primitive with numerous applications.
A secure computation protocol allows a set of parties to compute a joint function of their private inputs
while hiding everything about their inputs except the output of the functionality. This property is required
to hold even against a centralized adversary that might corrupt any subset of the participating parties and
instruct them to deviate arbitrarily from the protocol specification (known as malicious adversaries). In
this work, we focus on constructing secure computation protocols that provide security against malicious
adversaries in the plain model (i.e., without assuming any trusted setup).

Round Complexity of Secure Computation. Consider the standard setting of two-party computation
where a sender and receiver are computing a certain function on their private inputs. Specifically, the
receiver has a private input x and the sender has a secret function f . At the end of the protocol, the receiver
learns f(x). We consider the unidirectional message model where, in each round of the protocol, a single
party speaks. In this setting, Katz and Ostrovsky [KO04] showed that we need at least four rounds of
communication in order to compute general functions if the simulator uses the adversary in a black-box way
(i.e., black-box simulation). In the case of multiple parties, Garg et al. [GMPP16] showed a four-round lower
bound in the simultaneous message exchange model where every party may speak in each round.

A long line of works, starting from the seminal works of Yao [Yao86] and Beaver, Micali, Rogaway [BMR90]
have led to constructions of secure computation protocols that have minimal round complexity. Currently,
we know of round-optimal malicious-secure protocols in the plain model in both the two-party and the
multiparty setting under the minimal cryptographic hardness assumptions [KO04, IPS08, IKO+11, ORS15,
GMPP16, BHP17, ACJ17, BL18, GS18, BGJ+18, HHPV18, FMV19, CCG+20, CCG+21].

Reusability of Rounds. Let us consider a setting where the sender and the receiver are not just inter-
ested in computing a single secure computation instance, but are interested in computing several instances
sequentially possibly on different inputs. For example, say two banks collaborate on detecting if a large
transaction is fraudulent. The banks might have an evolving database of past transactions. In this case,
the parties participating in the 2PC remain the same while their input changes consistently. We ask the
question of whether it is necessary for the sender and the receiver to start the protocol from scratch in each
of these iterations and exchange four messages. Or, can they reuse some of the rounds of the protocol?

In this work, we begin the systematic study of reusable secure computation protocols in the plain model.
Specifically, we study the possibility of constructing protocols where some of the rounds could be reused if
the parties need to change either their private inputs or change the functionality to be securely computed.
Prior to our work, reusable secure computation protocols were considered only in the common random string
(CRS) model [BL20, BGMM20, AJJM20, AJJM21, BJKL21, BGSZ22], or in the plain model satisfying the
weaker notion of super-polynomial simulation security [FJK21].

1.1 Our Results
In this work, we give round-optimal (i.e., four-round) constructions of two-party protocol (in the unidirec-
tional message exchange model) and multiparty protocol (in the simultaneous message exchange model) for
computing general functions where an optimal number of rounds could be reused an unbounded number of
times.

Reusable 2PC. In the case of 2PC, we give a construction of a four-round protocol where (i) the first
three rounds of the protocol can be reused an unbounded number of times if the receiver input remains
the same and only the sender input changes and (ii) the first two rounds of the protocol can be reused an
unbounded of times if the receiver input needs to change as well. We observe that the number of additional
messages needed in each mode of reuse is optimal. First, any 2PC protocol in the unidirectional message
model requires at least four rounds (w.r.t. black-box simulation) [KO04]. Furthermore, it is easy to see
that, for every new sender input, at least one additional round is needed. Finally, if the receiver input needs
to change, then we need at least two rounds of interaction. Otherwise, if there is only one more additional
round, a semi-honest receiver could launch the so-called residual attack [HLP11] by evaluating it multiple

3

times with different choices of her input. Further, we allow the parties to interleave the above two modes of
operation arbitrarily.2 We prove the following theorem.

Theorem 1 (Reusable 2PC). Assume either DDH or QR assumption holds and the existence of a ZAP
protocol. There exists a construction of a four-round reusable 2PC protocol with security against malicious
adversaries.

We remark that in our model the sender maintains some state across each reuse session (i.e., in the
sessions where the receiver’s private input changes). This is used to ensure that the receiver’s third-round
messages across different reuse sessions are consistent. We argue that (refer to the technical overview) this
is necessary for the unidirectional message model; without this, it is not possible to achieve even simple
functionalities such as the zero-knowledge argument of knowledge.

Reusable MPC. In the case of multiple parties, we give a four-round protocol (in the simultaneous
message exchange model) where (i) the first two rounds of the protocol can be reused an unbounded number
of times if the parties need to change their private inputs and (ii) the first three rounds of the protocol can
be reused an unbounded number of times if the private inputs remain the same but only the functionality to
be computed changes. Again, as in the case of 2PC, we allow arbitrary interleaving of these two modes and
observe that the number of additional messages needed in each reuse mode is optimal. We refer the reader
to Section 3.2 for the formal definition of a reusable MPC. We prove the following theorem.

Theorem 2 (Reusable MPC). Assuming the existence of a four-round reusable 2PC protocol, a two-round
semi-malicious reusable MPC protocol, and ZAPs. Then, there exists a construction of a four-round reusable
MPC protocol with security against malicious adversaries.

We can instantiate the two-round semi-malicious reusable MPC protocol under the DDH assumption [BGMM20],
SXDH assumption on asymmetric bilinear maps [BL20], LWE assumption [AJJM20, AJJM21, BJKL21], and
the LPN assumption [BGSZ22].

Other Contributions. Along the way to obtaining our final results, we also construct a reusable zero-
knowledge argument of knowledge (Section 4) and a reusable oblivious transfer (Section 5) in this paper. As
far as we know, our work is the first to consider these reusable primitives in the plain model.

Alternate View of Our Results. Our protocols in the two-party and the multiparty setting have the
following two-phase structure: in the first phase, we run a “mini” protocol to establish a reusable setup and
in the second phase, we run a secure computation protocol that uses this setup. The number of rounds in
the first and second phases depends on whether the private inputs of the parties change, or whether the
functionality to be computed changes. In both settings, the number of rounds in the setup phase is at
most 3. This must be contrasted with a naïve way of generating this setup which is to use a coin-tossing
protocol to establish a CRS and then run a reusable 2PC/MPC in the CRS model. As shown in the works
of Katz-Ostrovsky [KO04] and Garg et al. [GMPP16], such a coin-tossing protocol requires four rounds, and
hence, this setup phase requires at least four rounds. In contrast, our approach leads to construction where
at most 3 fixed and reusable rounds are required. In cases where only the function changes, we require 1
fresh round per execution. If the input of the parties also changes, we require 2 fresh rounds per execution.
In addition, since our ultimate goal is to obtain a construction in the plain model, our constructions are
arguably cleaner and simpler when compared to the coin-tossing-based approach.

2 Technical Overview
In this section, we give the key technical ideas behind our construction of a reusable two-party (in Section 2.1)
and multiparty secure computation protocol (in Section 2.2).

2In particular, we refer to every new third-round message the receiver sends using a new input as a new reuse session.
Within each reuse session, the sender could send multiple fourth-round messages using different inputs. By interleaving the two
modes of reusability arbitrarily, we mean that the protocol execution could switch between reuse sessions (or create new reuse
sessions) in an arbitrary manner. In fact, our protocol remains secure even if the adversary adaptively chooses which reuse
session to execute next. We refer the reader to Section 3.1 for the formal definition of a reusable 2PC.

4

2.1 Reusable Two-Party Computation
As mentioned before, our goal is to construct a round-optimal (i.e., a four-round) two-party computation
protocol where (i) the first three rounds of the protocol could be reused an unbounded number of times if
the receiver input is fixed and only the sender input needs to change, and (ii) the first two rounds of the
protocol could be reused an unbounded number of times if the receiver input needs to change as well.

The starting point of our construction is the (non-reusable) canonical two-party computation protocol
in the plain model based on garbled circuits [Yao86]. Specifically, we consider Yao’s 2PC protocol where
the semi-honest oblivious transfer (OT) is replaced with a four-round malicious secure OT and the sender
additionally uses a zero-knowledge argument of knowledge (ZK-AoK) to prove that the garbled circuit is
generated correctly. The security of this protocol against malicious receivers follows directly from the zero-
knowledge property of the underlying proof system, the security of the OT, and the security of garbled
circuits. To give a bit more details, (i) we first use the simulator for the zero-knowledge proof to show that
the proof gives no information about the witness (which is the secret randomness used to generate garbled
circuits and the sender OT messages), (ii) we then use the simulator for the underlying OT protocol to
extract the effective receiver input x, and (ii) finally, we use the security of garbled circuits to show that
only the output f(x) is revealed. The security against malicious sender follows from the proof of knowledge
property that allows the simulator to rewind and extract a witness proving that the garbled circuit was
correctly generated. This witness is used to extract the effective sender input which is given to the ideal
functionality.

We run into several roadblocks when we try to make this protocol reusable. The first issue is that the
zero-knowledge property of the proof system might be completely compromised if the first three rounds of
the protocol are reused for proving different statements. The second issue is that the receiver security of the
OT protocol could be compromised if the first two rounds are reused (in the case when the receiver inputs
need to change) and the sender security could be compromised if the first three rounds are reused (in the
case when the sender inputs need to change). To get around these bottlenecks, we give constructions of
round-optimal ZK-AoK and oblivious transfer protocol secure against malicious adversaries with the desired
reusability properties. This forms the crux of our main technical contribution. Moreover, we show that the
2PC protocol constructed above inherits the reusability features of the underlying building blocks.

2.1.1 Reusable Zero-Knowledge Argument of Knowledge

Let us first try to construct a ZK-AoK protocol that runs in four rounds and the first three rounds of the
protocol could be reused an unbounded number of times to prove different statements. This means that for
each new statement, the prover needs to send a single message to the verifier and the verifier can check if the
proof is accepting or rejecting. Zero-knowledge arguments for NP without this additional reusability feature
are known from one-way functions [BJY97]. However, if we additionally require this reusability feature, then
such a protocol can be shown to imply a pre-processing NIZK if the proof is not publicly verifiable and a
designated prover NIZK when the proof is publicly verifiable. Indeed, the first three rounds of the protocol
could be fixed as part of the CRS and the secret randomness used to generate the respective messages could
be given to the prover and the verifier respectively as the proving and verifying keys. Now, the prover could
use this key to generate proofs for an unbounded number of NP statements which could be verified by the
verifier using the verifying key. All known constructions of pre-processing or designated prover NIZKs rely
on assumptions stronger than one-way functions and, hence, it is likely that we need stronger assumptions
to construct such a zero-knowledge protocol.

Our construction of reusable zero-knowledge builds on the FLS trapdoor paradigm [FLS90]. In this
protocol, the first three rounds are used to generate a trapdoor between the verifier and the prover. In
parallel, the prover and the verifier in rounds 2-4, run a delayed-input WI-PoK showing that either the
statement is in the NP language or the prover knows the trapdoor. The trapdoor generation phase has the
property that a cheating prover cannot extract a trapdoor whereas a rewinding simulator can extract it
and use it to complete the WI argument. This allows us to argue PoK as well as zero-knowledge property.
Unfortunately, this protocol as such is not reusable as the witness indistinguishability property of the WI
protocol could completely break down if the first two rounds of the protocol are reused. This is indeed the
case for the FLS delayed-input WI proof.

5

Our Solution. Our idea is to replace this delayed-input WI proof with a ZAP protocol [DN00]. ZAP is a
two-round WI protocol between a verifier and a prover where the verifier’s first-round message is a random
string. Importantly, for our purposes, the same random string could be reused by the prover to prove multiple
statements. Therefore, we can modify the above protocol so that the verifier in the third round also sends
the first round message of a ZAP scheme. The prover in the final round proves via the ZAP that either the
statement is true or it knows the trapdoor. This construction can be shown to be reusable zero-knowledge,
meaning that the zero-knowledge property holds even if the first three rounds are reused. Unfortunately, it
is not clear how to prove the soundness of this construction as ZAPs are not proofs of knowledge. To fix this,
we additionally ask the prover to send an extractable commitment and show using ZAP that either statement
is true or this extractable commitment is a valid commitment to the trapdoor. While this modification is
sufficient to prove soundness, it is still not sufficient to show proof of knowledge property as ZAP does not
allow extracting a valid witness from a malicious prover. To get around this problem, we ask the prover to
send an additional extractable commitment to the witness and show via ZAP that either the first extractable
commitment is a commitment to the trapdoor or the second extractable commitment is a commitment to a
valid witness. An astute reader might have noticed that the extractable commitment to the witness must
have the delayed-input property (meaning that the message is not determined until the end of the third
round) and also have the first two rounds reusable. This means that using the same first two rounds of
messages, a committer must be able to commit to a priori unbounded number of messages while maintaining
the hiding property against a malicious receiver. We give a construction of such a commitment scheme in
the main body. At a high level, the committer commits to a key of an SKE using a standard extractable
commitment and sends an encryption of the message to be committed under the key in the final round.
With this modification, we can show that the above protocol satisfies both reusable zero-knowledge (where
the first three rounds are reused) as well as satisfies proof of knowledge property. We refer the reader to
Section 4 for the details.

On the possibility of two-round reusable ZK-AoK. A natural question to ask is whether we can
construct a round-optimal ZK-AoK protocol where the first two rounds are reused and the verifier can send
arbitrary third-round messages in each reuse session. Indeed, if this ZK-AoK has to be used in our 2PC
construction, then in each reuse session where the receiver’s inputs change, a malicious receiver could choose
an arbitrary third-round message and ask the prover to use this message to generate the final round proof.
Unfortunately, we argue that such a ZK-AoK (with black-box simulators and extractors) cannot exist. This
is because a malicious verifier could use the same strategy as that of the black-box extractor and generate
multiple third-round messages and use the honest prover responses to extract a valid witness. The same
argument also rules out the existence of a 2PC protocol for general functions where the receiver can choose
arbitrary third-round messages. To get around this issue, we let the sender in the 2PC protocol maintain
some state across the reuse sessions. Specifically, the sender could check if the third round message of the
ZK-AoK protocol in each of the subsequent reuse sessions is the same as the ones used before. If this check
does not pass, then the sender aborts. This check is necessary to get around the above-mentioned roadblock.

2.1.2 Reusable Oblivious Transfer Protocol

We now highlight the main technical challenges in constructing a reusable oblivious transfer protocol and
explain how we overcome them. Recall that our goal is to construct a four-round (round-optimal) oblivious
transfer protocol in the plain model that is secure against malicious adversaries and has first two round
reusability (in case the receiver inputs need to change) and first three round reusability (in case only the
sender inputs need to change).

We first observe that it is sufficient to construct an OT protocol with the above reusability features
and satisfies standard simulation security against malicious receivers but only has indistinguishability-based
security against malicious senders. Specifically, we require the view of a malicious sender to be computa-
tionally independent of the receiver’s choice bits. Once we have such a protocol, we can upgrade its security
by additionally asking the sender to give a ZK-AoK that it generated its OT messages correctly. If we rely
on the ZK-AoK constructed in the previous subsection, then one could use the proof of knowledge extrac-
tor to extract the malicious sender inputs and thereby, show simulation security against corrupted senders.
The zero-knowledge property of the proof system protects an honest sender against a malicious receiver.

6

Additionally, this transformation preserves the desired reusability features of the underlying OT protocol.
Hence, in the rest of this subsection, we focus on constructing a four-round OT protocol that has simulation
security against malicious receivers and indistinguishability-based security against malicious senders.

Key Technical Challenge. The key technical challenge we face in constructing such an OT protocol is
in designing an extractor that could extract the effective choice bit from a malicious receiver. This task is
further complicated because (i) it must be accomplished within the first three rounds and hence, we cannot
use any ZK-AoK to extract this information, and (ii) more importantly, we need the first two rounds of
the protocol to be reusable an unbounded number of times. This means the honest receiver’s input in each
iteration must be hidden even if the first two round messages are fixed.

Starting Point. The starting point of our construction, as in the previous works [KO04, ORS15, FMV19],
is a two-round semi-honest oblivious transfer from a special public-key encryption scheme. This special
public-key encryption has the property that randomly sampled public keys are computationally indistin-
guishable from random strings (i.e., they are pseudorandom). Given such public-key encryption, the con-
struction of a semi-honest oblivious transfer is as follows. The receiver chooses a valid public key pkb (where
b is its choice bit) and chooses a random string pk1−b and sends (pk0, pk1) to the sender. The sender encrypts
m0 and m1 under pk0 and pk1 respectively and sends it to the receiver. The receiver can now use the secret
key skb corresponding to pkb to decrypt and obtain mb. In the semi-honest setting, we can set pk1−b to
be the same as the public key obtained from an external challenger and hence, one can use the semantic
security of PKE to show that m1−b is hidden. To make this construction secure against malicious receivers,
the prior works [KO04, ORS15, FMV19] used a special kind of three-round commitment scheme called 1-out-
of-2 binding commitments. Specifically, in their construction, the receiver commits to two random strings
via a standard extractable commitment. Let us call these two instances of the extractable commitment
as (Ecom0,Ecom1). In the second round, the sender sends a random string s. The receiver, in the third
round, sends two strings (s0, s1) and proves using a WI proof that one of these strings is the same as the
one that is committed in Ecom0 or Ecom1. The honest receiver chooses s1−b to be the same as the string
committed in Ecom0 and chooses sb = s⊕ pk where pk is a randomly sampled public key for which it knows
the corresponding secret key. It completes the WI proof using s1−b and the randomness used to generate
Ecom0 as the witness. The sender in the fourth round of the protocol sends encryptions of m0 and m1 under
the public keys s⊕s0 and s⊕s1 respectively and the receiver can use the corresponding secret key to extract
mb.

To argue security against malicious receivers, we first observe that, from the soundness of the WI proof
system, there exists some b such that s1−b is the same as the value that was committed. The simulator first
rewinds and extracts s0, s1 from the extractable commitment. It then sets s such that s⊕ s1−b is the public
key obtained from the external challenger.3 This allows us to argue that m1−b is hidden and formally proves
security against malicious receivers. Indistinguishability against malicious senders is shown via a careful
hybrid argument.

Challenges in the Reusable Setting. Unfortunately, the above construction is completely insecure in
the reusable setting. Namely, even if the first two messages of the protocol are reused once, then a corrupt
sender can look at the two strings sent by the honest receiver in the third round and figure out if the choice
bits used in the two iterations are the same or different. To get around this issue, we could try to use
a delayed-input extractable commitment where the first two messages are reusable and the message to be
committed is known only in the third round (see the previous discussion for such a construction). In this
case, the construction becomes trivially insecure against a malicious receiver. This is because the sender
sends s in the second round and this is fixed in all the executions. Therefore, the receiver could choose
(s0, s1) such that it knows the corresponding secret keys for both s ⊕ s0 and s ⊕ s1 and break the sender’s
privacy.

3Here, the simulator needs to first guess the value of the malicious receiver’s choice bit b and set s accordingly. In the third
round, it checks if the guessed value is correct and proceeds only in that case.

7

Our Solution. Observe that in the non-reusable version, security against corrupted receivers crucially
relied on sampling the string s uniformly after the receiver sent the commitments. However, in the reusable
setting, the string s is “chosen once for all” and fixed in all the subsequent executions. Thus, to make the
above template reusable secure, we need to come up with a mechanism wherein we can “derandomize” the
choice of s so that a single fixed s works for every execution. Towards this purpose, we do the following:

1. Let us start with the flawed approach discussed earlier where s0, s1 are committed using a reusable
delayed-input extractable commitment. In this case, the receiver can trivially break the security
by choosing s0 and s1 such that s ⊕ sc for c ∈ {0, 1} is a valid public key for which it knows the
corresponding secret key. In hindsight, the insecurity of this construction stems from the fact that the
receiver has complete control in choosing the public keys for both branches 0 and 1. As a first step,
we modify the construction so that the receiver has full power to choose the public keys for one of the
branches (namely, the branch corresponding to its choice bit b) but the possible choices of the public
keys for the other branch are restricted, meaning that the number of possible choices of the string s1−b
that a corrupt receiver can choose is exponentially small.

2. Though the first step makes progress in restricting the power of a malicious receiver, we are still not
done. This is because if the receiver is able to find a valid public key pk such that pk ⊕ s is in the
restricted set, then it can use it to recover both the sender inputs. For instance, if the set of valid public
keys is dense (as in the case of El-Gamal encryption), then the receiver can still break the security
of the OT protocol. Hence, our next step is to use public-key encryption that has pseudorandom
public keys, and additionally, the set of valid public keys is sparse. For security, we require that if a
message is encrypted under an invalid public key, then it is statistically hidden. In the technical section
(Section 5.1), we give constructions of such public-key encryption from standard assumptions such as
DDH and QR. Given such public-key encryption, we can argue the security of our OT protocol against
malicious receivers as follows. Since the number of possible choices of s1−b is exponentially small and
since the set of valid public keys is sparse, the set of possible values of s such that s = s1−b ⊕ pk is
exponentially small. Therefore, a randomly chosen s with overwhelming probability does not belong
to this bad set and thus, can be fixed once and for all.

We now explain both the steps in a bit more detail. The approach we take in step-1 is inspired by Naor’s
commitments [Nao91]. Specifically, we use an extractable commitment to commit to two random strings as
before, but instead of showing that one of (s0, s1) is the same as the value committed in Ecom0 or Ecom1, we
show that one of (s0, s1) is equal to a PRG applied on the value that is committed in Ecom0 or Ecom1. Since
the set of valid public keys is sparse, with overwhelming probability a randomly chosen s has the property
that the set {s⊕PRG(·)} has zero intersection with the set of valid public keys (if the PRG has a sufficiently
large stretch). This allows us to argue that even if the receiver has the power to choose the value inside
the extractable commitment after seeing s, it cannot break the sender’s privacy. Furthermore, we observe
that a similar extraction strategy as explained earlier allows us to extract the effective choice bit from the
malicious receiver and prove simulation security.

To argue receiver privacy, we design a careful hybrid argument wherein we use the security of the under-
lying primitives. Specifically, we first switch sb to also be the output of a PRG on a randomly chosen seed rb
by relying on the pseudorandomness of the public keys and that of the PRG. We commit to rb in Ecom1 and
then switch the WI proof to using the randomness corresponding to Ecom1 and rb as the witness. We then
switch Ecom0 to be a commitment of rb and switch s1−b = s⊕ pk for a randomly chosen pk. We now reverse
the WI proof to use the randomness in Ecom0 as the witness and switch Ecom1 to be a commitment of a
random seed. The final hybrid corresponds to an honest execution where the receiver’s choice bit is 1− b.

Getting 3-round Reusability. The above approach allows us to construct an oblivious transfer protocol
where the first two rounds could be reused an unbounded number of times if the receiver inputs need to
change. To make the first three rounds of the protocol to be reusable, we do the following. Instead of using
(m0,m1) as the sender OT inputs, we sample two random keys (k0, k1) of an SKE scheme and use them as
the sender OT inputs. In the final round, we send encryption of m0 under k0 and encryption of m1 under
k1. If the receiver input b remains the same, then in each iteration, the receiver only learns kb and k1−b is

8

hidden. It now follows from the security of the SKE scheme that m1−b in each iteration is hidden and hence,
this modification can be shown to have the desired reusability features.

2.2 Reusable MPC
In a recent work, Choudhuri et. al. [CCG+20] constructed a four-round malicious-secure MPC protocol from
the minimal assumption that a four-round malicious-secure OT protocol exists. In particular, their protocol
makes use of several building blocks such as a four-round OT protocol, a rewind-secure WI proof, a rewind-
secure semi-malicious four-round MPC protocol, etc. Via a careful parallelization of these building blocks,
they show how to obtain a four-round malicious-secure MPC protocol.

Similar to the reusable 2PC case, we observe that if we instantiate every building block with a variant
that supports reusability, then the protocol shall also be reusable. In particular, we shall instantiate the
four-round OT protocol with the reusable OT protocol that we constructed earlier. The rewind-secure WI
proof shall be replaced by the ZAP protocol (which naturally satisfies rewinding security). Moreover, we
instantiate the four-round semi-malicious MPC protocol with the two-round reusable semi-malicious MPC
protocol [BGMM20, BL20, AJJM20, AJJM21, BJKL21] where the first round message could be fixed and
one can evaluate multiple functions by sending a single final round message. We prove that by using these
reusable variants of the building blocks, the construction of Choudhuri et al. [CCG+20] is reusable. We refer
the reader to Section 7 for the formal description.

3 Preliminaries
Let λ be the security parameter. We use negl(λ) to denote a negligible function. That is, for all polynomial
p(λ), it holds that negl(λ) < 1/p(λ) for large enough λ. For a randomized function f , we use f(x; r) to
denote the evaluation of f with input x and randomness r. For any distribution A, we use a ← A to
denote that a is drawn according to distribution A. For any two distributions A and B, we use A

c
≈ B

to denote that any PPT distinguisher D cannot distinguish A and B with non-negligible advantage, i.e.,∣∣Pr
[
D(1λ, A) = 1

]
− Pr

[
D(1λ, B) = 1

]∣∣ = negl(λ). For any positive integer n, we use [n] to denote the set
{1, 2, . . . , n}.

3.1 Reusable Secure Two-Party Computation Protocol
We consider the standard setting of two-party computation in the unidirectional message model. Specifically,
the receiver has a private input a string x and the sender has a private input a function f . At the end of
the protocol, the receiver learns f(x) and the sender gets no output. By the unidirectional message model,
we refer to the setting where only one party speaks in each round of the protocol. We are interested in
constructing round-optimal (i.e., four-round) protocols for this task.

Syntax. A four round reusable secure two-party computation protocol is given by a set of algorithms
Π = (Π1,Π2,Π3,Π4, outΠ) with the following syntax.

• Π1(1λ, 1|x|) : It is a PPT algorithm that is run by the receiver and it outputs the first round message
π1 and a secret receiver state stR.

• Π2(1λ, π1, 1
|f |) : It is a PPT algorithm that is run by the sender and outputs the second round message

π2 and a secret sender state stS .

• Π3(1λ, π2, x, stR) : It is a PPT algorithm that is run by the receiver and outputs the third round
message π3.

• Π4(1λ, π3, f, stS) : It is a PPT algorithm that is run by the sender and outputs the final round message
π4 and outputs the updated sender state stS .

• outΠ(π3, π4, x, stR) : It is a deterministic algorithm that is run by the receiver and provides the output
y.

9

Remark 1. As mentioned, for the unidirectional message model, it is necessary that Π4 outputs an updated
sender state to get around the impossibility of constructing reusable ZK-AoK w.r.t. black-box simulator and
extractor.

Definition 1 (Reusable Security against Corrupted Receivers). We say that the protocol Π satisfies reusable
security against corrupted receivers if for every non-uniform (stateful) PPT adversary A that is corrupting
the receiver, there exists an expected PPT (stateful) simulator Sim such that for all ` = poly(λ) and for all
non-uniform (stateful) PPT distinguishers D, the output of the real and ideal executions defined below are
computationally indistinguishable.

• Real Execution:

1. A on input (1λ, 1`) executes the first two rounds of the protocol with the honest sender.

2. In the i-th reuse session:

(a) A either sends a fresh third round message which is forwarded to the sender or asks the sender
to reuse a prior third round message.

(b) D on input the current view of A outputs the honest sender input f (i) for this session.
(c) The honest sender generates the final round message in the protocol using the input f (i) and

the adversarially chosen third round message (which is either fresh or reused from a prior
session). This final round message is forwarded to the adversary.

3. The output of the real execution corresponds to the final output of D which is given the view of A
at the end of the `-th reuse session.

• Ideal Execution:

1. Sim on input (1λ, 1`) and oracle access to the adversary A generates the view of the adversary at
the end of the first two rounds and outputs this view.

2. The ideal execution starts by initializing the adversary A with this view and continues with the
rest of the execution as follows.

3. In the i-th reuse session:

(a) A either sends a fresh third round message or asks the sender to reuse a prior third round
message.

(b) D on input the current view of A outputs the honest sender input f (i) for this session.
(c) The simulator on input the relevant third round message from the adversary outputs x(i).
(d) The simulator is provided with f (i)(x(i)) and uses it to generate the final round message in

the protocol. This message is forwarded to the adversary.

4. The output of the ideal execution corresponds to the final output of D which is given the view of
A at the end of the `-th reuse session.

Definition 2 (Reusable Security against Corrupted Senders). We say that the protocol Π satisfies reusable
security against corrupted senders if for every non-uniform (stateful) PPT adversary A that is corrupting
the sender there exists an expected PPT (stateful) simulator Sim such that for any ` = poly(λ) and for all
non-uniform (stateful) PPT distinguishers D, the output of the real and ideal executions defined below are
computationally indistinguishable.

• Real Execution:

1. A on input (1λ, 1`) executes the first two rounds of the protocol with the honest receiver.

2. In the i-th reuse session:

(a) A either asks the honest receiver to reuse the third round message in the j-th reuse session
(for some j < i) or asks it to generate a fresh third round message.

(b) In the case where a fresh message is requested, D on input the current view of A outputs x(i).
This input is used by the honest receiver to sample a fresh third-round message.

10

(c) The adversary generates a final round message in the protocol. The honest receiver computes
the output of the protocol and this output is forwarded to the adversary.

3. The output of the real execution corresponds to the final output of D which is given the view of A
at the end of the `-th reuse session.

• Ideal Execution:

1. Sim on input (1λ, 1`) and oracle access to the adversary A generates the view of the adversary at
the end of the first two rounds and outputs this view.

2. The ideal execution starts by initializing the adversary A with this view and continues with the
rest of the execution as follows.

3. In the i-th reuse session:

(a) A either asks to reuse the third round message in j-th reuse session or asks to sample a fresh
third round message. In the former case, we reset x(i) = x(j). In the latter case, D on input
the current view of A outputs x(i).

(b) Depending on A’s request, Sim either reuses the third round message in the j-th session or
samples a fresh third round message (without the knowledge of x(i)).

(c) The adversary generates a final round message in the protocol which is forwarded to the
simulator. The simulator either provides f (i) which is forwarded to the trusted functionality
or instructs the trusted functionality to output ⊥. In the former case, the output of the honest
receiver is set to f (i)(x(i)) and in the latter case, it is set to ⊥. This output is forwarded to
the adversary.

4. The output of the ideal execution corresponds to the final output of D which is given the view of
A at the end of the `-th reuse session.

3.2 Reusable Secure Multiparty Computation
We consider the setting of multiparty computation in the bidirectional message model. Specifically, all parties
hold an input xi. Given a function f to compute, at the end of the protocol, all parties learn f(x1, . . . , xn).
By bidirectional message model, we refer to the setting where all parties speak in each round of the protocol.
We are interested in constructing round-optimal (i.e., four-round) protocols for this task.

Syntax. A four round reusable secure multiparty computation protocol is given by a set of algorithms
Π = (Π1,Π2,Π3,Π4, outΠ) with the following syntax.

• Π1(1λ, 1|x|) : It is a PPT algorithm that is run by the party to generate the first round message π1 and
a secret state st.

• Π2(1λ, π1, 1
|f |, st) : It is a PPT algorithm that is run by the party to generate the second round message

π2 and an updated state st.

• Π3(1λ, π2, x, st) : It is a PPT algorithm that is run by the party to generate the third round message
π3.

• Π4(1λ, π3, f, st) : It is a PPT algorithm that is run by the party to generate the final round message
π4 and an updated state st.

• outΠ(π3, π4, x, st) : It is a deterministic algorithm that is run by the party and provides the output y.

Definition 3 (Reusable Security). We say that the protocol Π satisfies reusable security if for every non-
uniform (stateful) PPT adversary A that is corrupting a subset of parties I ⊂ [n] (let H be the set of honest
parties), there exists an expected PPT (stateful) simulator Sim such that for all ` = poly(λ) and for all
non-uniform (stateful) PPT distinguishers D, the output of the real and ideal executions defined below are
computationally indistinguishable.

11

• Real Execution:

1. A on input (1λ, 1`) executes the first two rounds of the protocol with the honest parties.

2. In the i-th reuse session:

(a) A either asks the honest parties to reuse the third round message in the j-th reuse session
(for some j < i) or requests to compute a new reuse session.

(b) In the case where a fresh session is requested, D on input the current view of A outputs the
honest input {x(i)

k }k∈H for the honest parties. A and the honest parties with this input execute
the third round of the protocol.

(c) D, on input the current view of the adversary, output a function f (i) to be computed in
the fourth round. A executes the final round message with the honest parties computing the
function f (i). The output of the honest parties is forwarded to A.

3. The output of the real execution corresponds to the final output of D which is given the view of A
at the end of the `-th reuse session.

• Ideal Execution:

1. Sim on input (1λ, 1`) and oracle access to the adversary A generates the view of the adversary at
the end of the first two rounds and outputs this view.

2. The ideal execution starts by initializing the adversary A with this view and continues with the
rest of the execution as follows.

3. In the i-th reuse session:

(a) A either asks to reuse the third round message in j-th reuse session or asks to sample a
fresh third round message. In the former case, the party’s input is reset as x(i)

k = x
(j)
k for

each k ∈ H. In the latter case, D on input the current view of A outputs the party’s input
{x(i)

k }k∈H. On receiving the third round message from A, Sim outputs {x(i)
k }k∈I .

(b) Depending on A’s request, Sim either reuses the third round message in the j-th session or
samples a fresh view for the third round (without the knowledge of x(i)).

(c) The distinguisher D on the current view of the adversary outputs a function f (i) to compute.
The simulator outputs (f (i), {x(i)

k }k∈I) which is forwarded to the trusted functionality. The
trusted functionality replies with f (i)(x

(i)
1 , . . . , x

(i)
n). The simulator instructs the trusted func-

tionality to deliver ⊥ or the output to the honest parties. In the latter case, the output of the
honest party is set to f (i)(x

(i)
1 , . . . , x

(i)
n) and in the former case, it is set to ⊥. The output of

the honest parties is forwarded to A.
4. The output of the ideal execution corresponds to the final output of D which is given the view of
A at the end of the `-th reuse session.

3.3 Pseudorandom Generator, Pseudorandom Function, and Symmetric-key
Encryption

Definition 4 (PRG). A function PRG : {0, 1}λ → {0, 1}m, where m > λ, is called a pseudorandom generator
if for all PPT adversary A, it holds that

|Pr[A(PRG(U ′)) = 1]− Pr[A(U) = 1]| = negl(λ),

where U and U ′ are uniform distributions over {0, 1}m and {0, 1}λ, respectively.

Observe that, given any pseudorandom generator PRG, one could expand it into a new PRG′ of an
arbitrarily-large polynomial stretch (i.e., m/λ) by repeatedly applying PRG.

12

Definition 5 (PRF). A function PRF : {0, 1}λ × {0, 1}poly(λ) → {0, 1}poly(λ) is called a pseudorandom
function if for all PPT adversary A, it holds that∣∣∣Pr

[
APRF(k,·)(1λ) = 1

]
− Pr

[
AF (·)(1λ) = 1

]∣∣∣ = negl(λ),

where k is sampled uniformly at random and function F is sampled uniformly at random from the set of all
functions.

Definition 6 (SKE). A symmetric-key encryption (SKE) scheme consists of three algorithms (Gen,Enc,Dec)
with the following syntax.

• sk← Gen(1λ): on input the security parameter, Gen outputs a secret key sk.

• ct← Enc(sk,msg): on input the secret key sk and a message msg, Enc outputs a ciphertext ct.

• msg = Dec(sk, ct): on input the secret key sk and a ciphertext ct, Dec outputs a message msg.

It satisfies the following guarantee:

• Correctness. For all message msg, it holds that Pr[Dec(sk, ct) = msg] = 1, where sk ← Gen(1λ) and
ct← Enc(sk,msg).

• CPA-security. For all messages msg0,msg1 and PPT adversary A, it holds that∣∣∣∣∣Pr

[
sk← Gen(1λ), b← {0, 1},

ct← Enc(sk,msgb), b
′ ← AEnc(sk,·)(ct)

: b = b′

]
− 1

2

∣∣∣∣∣ = negl(λ).

3.4 Garbled Circuits
Definition 7 (GC). A garbling scheme consists of two algorithms (Garble,Eval). The garbling algorithm
takes a circuit C as input and outputs a garbled circuit Ĉ and a label for each input wire and value, i.e.,(
Ĉ, {labw,b}w,b

)
← Garble(1λ, C). The evaluation algorithm takes as input a garbled circuit and one label

for each input wire and outputs an evaluation, i.e., y = Eval
(
Ĉ, {labw,xw

}w
)
. It satisfies the following

guarantee.

• Correctness. For any circuit C and input x, it holds that

Pr

(
Ĉ, {labw,b}w,b

)
← Garble(1λ, C)

y = Eval
(
Ĉ, {labw,xw

}w
) : C(x) = y

 = 1.

• Security. There exists a simulator Sim such that for any circuit C and input x, it holds that(
Ĉ, {labw,xw

}w
) c
≈ Sim

(
1λ, 1|C|, C(x)

)
,

where
(
Ĉ, {labw,b}w,b

)
← Garble(1λ, C).

3.5 Extractable Commitment
Definition 8. A three-round extractable commitment consists of three algorithms (Ecom1,Ecom2,Ecom3).
In the first round, the committer with message x, sends ecom1 = Ecom1(x; τ). The receiver is public-coin,
which means that ecom2 ← Ecom2 is simply a uniformly random string. Given ecom2, in the third round,
the committer sends ecom3 = Ecom3(x, τ, ecom2). The scheme is statistically binding in that, given the first

13

message ecom1, it is statistically impossible for the committer to open to a different message x′. We also
require the existence of an extractor EcomExt such that for any malicious committer C∗, the following holds.

Pr

(ecom1, ecom2, ecom3)← 〈C∗,R〉 is accepting and

x← EcomExtC
∗
(ecom1, ecom2, ecom3) such that

∃x′, τ s.t.
(
x′ 6= x

)
∧ ecom1 = Ecom1(x′; τ)

 = negl(λ).

In particular, the extractor EcomExt requires two accepting transcripts (i.e., ecom1, {ecomj
2, ecom

j
3}2j=1),

such that ecom1
2 and ecom2

2 are distinct, to extract a message x.

Such a scheme can be constructed based on injective one-way functions (see, for example, [PW09]).

Delayed-input Extractable Commitment. We could use the above extractable commitment scheme
to construct a delayed-input extractable commitment. That is, the committer only obtains the message m
to be committed after the first two rounds. Intuitively, the committer simply commits to a random string
k using the above scheme, and, in the last round, it also sends the ciphertext m⊕ k.4 Moreover, one could
still use the extractor to extract m as extracting k immediately reveals m.

Formally, this scheme is as follows.

1. In the first round, the committer samples a random string k. Compute and send ecom1 = Ecom(k; τ).

2. In the second round, the receiver samples and sends ecom2 ← Ecom2.

3. To commit to a message m, the committer computes and sends
(
m⊕k, ecom3 = Ecom3(k, τ, ecom2)

)
.

Observe that the hiding property holds even in the following sense. Consider the game where the ad-
versary sends two messages m0 and m1 to the challenger and engages in an arbitrary polynomial number of
independent instances of the extractable commitment scheme with the challenger. The challenger samples
a random bit b and commits to mb in all instances. Even in this case, the adversary cannot predict b with
non-negligible advantage. One can prove this using a standard hybrid argument.

To differ from the non-delayed-input commitment scheme, we shall explicitly state that the scheme is
delayed-input whenever we use it.

Delayed-input Reusable Extractable Commitment. Similarly, we could use the extractable commit-
ment scheme to construct a delay-input reusable extractable commitment. That is, the first two rounds
are executed only once. Afterward, the committer could send multiple third-round messages to commit to
different messages. Intuitively, one commits to a secret-key sk for SKE. In every reuse session, the sender ap-
pends the encryption of the message under sk along with the original third round message of the extractable
commitment scheme.

Formally, this scheme is as follows.

1. In the first round, the committer samples a secret key sk for SKE. Compute and send ecom1 =
Ecom(sk; τ).

2. In the second round, the receiver samples and sends ecom2 ← Ecom2.

3. To commits to a messagem in a reuse session, the committer computes and sends
(
Enc(sk,m), ecom3 =

Ecom3(sk, τ, ecom2)
)
where Enc is a public-coin symmetric key encryption.5

Observe that this reusable extractable commitment is hiding due to the hiding property of the ex-
tractable commitment scheme and the semantic security of the symmetric key encryption scheme. The
binding property of the construction follows directly from the binding of the underlying extractable com-
mitment. Furthermore, extracting the key k enables the extraction of all the messages m. We shall use
(rEcom1, rEcom2, rEcom3) to denote this reusable extractable commitment scheme.

4Observe that the delayed-input scheme is no longer first-message binding.
5Note that standard SKE scheme based on PRF where the ciphertext comprises of (r,PRF(sk, r)⊕m) (where r is uniformly

chosen) is a public-coin SKE construction.

14

3.6 ZAP
ZAP [DN00] is a two-message public-coin witness-indistinguishable proof.

Definition 9. A ZAP for a language L ∈ NP with relation RL consists of two algorithms (P,V) such that
the following hold.

• Completeness. There exists a polynomial p(λ) such that for every (x,w) ∈ RL,

Pr
[
r ← {0, 1}p(λ)

, π ← P(x,w, r) : V(x, r, π) = 1
]

= 1.

• Soundness. For any PPT adversary P∗, it holds that

Pr
[
r ← {0, 1}p(λ)

, (x, π)← P∗(r) :
(
x /∈ L

)
∧
(
V(x, r, π) = 1

)]
= negl(λ).

• Witness Indistinguishability. For any statement x and witnesses w1 and w2 such that (x,w1) ∈ RL
and (x,w2) ∈ RL and for any PPT adversary V∗, it holds that

|Pr[r ← V∗, π ← P(x,w1, r) : V∗(r, x, π) = 1] −
Pr[r ← V∗, π ← P(x,w2, r) : V∗(r, x, π) = 1]| = negl(λ).

Note that ZAP is immediately reusable. That is, given a fixed first-round message by the verifier, the witness
indistinguishability is preserved even if the prover sends multiple second-round messages proving (possibly
different) statements using different witnesses.

For ease of presentation, in our protocols, we shall use (ZAP1,ZAP2) to denote the algorithms that
generate the first and second message of a ZAP protocol.

3.7 Trapdoor Generation Protocol
A trapdoor generation protocol is a protocol between the sender and receiver. The sender does not hold any
input and the receiver shall not output anything. The objective of the trapdoor generation protocol is for
the sender to establish a trapdoor. The security is two-fold. First, a malicious receiver shall not be able to
generate a valid trapdoor. Second, there is an extractor who could extract a valid trapdoor by rewinding
the sender. Similar to [BGJ+18, CCG+20], we define trapdoor generation protocol as follows.

A three-round trapdoor generation protocol consists of the following algorithms (TDGen1,TDGen2,TDGen3,
TDOut,TDValid,TDExt). In the first round, the sender sends td1 ← TDGen1(rS). In the second round, the
receiver sends td2 ← TDGen2. In the third round, the sender sends td3 = TDGen3(rS , td2). The trap-
door generation succeeds if TDOut(td1, td2, td3) = 1. Given any input t and the first round message td1,
TDValid(t, td1) checks whether t is a valid trapdoor or not. It satisfies the following security guarantee.

• A malicious PPT receiver could not generate a valid trapdoor.

• There is an extractor who outputs a valid trapdoor via rewinding. In particular, given two accepting
transcripts (td1, {tdi2, td

i
3}2i=1) such that td1

2 and td2
2 are distinct, TDExt outputs a valid trapdoor t.

Badrinarayanan et al. [BGJ+18] gave a construction of such a trapdoor generation protocol based on
digital signatures which can in turn be based on one-way functions [Rom90].

1-rewind Security. A stronger notion called 1-rewind security is needed for the construction of our MPC
protocol. Consider the following experiment between the honest sender S and a malicious PPT receiver R∗.

• The honest sender and malicious receiver engage in the trapdoor generation protocol once. The tran-
script is (td1, td2, td3)

• Then, the malicious receiver is allowed to rewind back to the beginning of round 2 and sends another
second-round message td′2. It receives back td′3 as the third round message.

15

• The malicious receiver outputs a string t based on its view.

The trapdoor generation protocol is 1-rewind secure if for any malicious receiverR∗, in the above experiment,
it holds that

Pr[TDValid(t, td1) = 1] = negl(λ).

For the 1-rewind secure trapdoor generation protocol, the extractor requires three accepting transcripts to
extract a trapdoor. That is, (td1, {tdi2, td

i
3}3i=1) such that td1

2, td
2
2, td

3
2 are all distinct.

A 1-rewind secure trapdoor generation protocol can be constructed from any signature scheme, which
can be based on one-way functions. We refer the readers to, for example, [CCG+20] for such a construction.

4 Reusable Zero-knowledge Argument of Knowledge
In this section, we give a construction of a round-optimal reusable zero-knowledge argument of knowledge
(ZK-AoK) protocol where the first three rounds of the protocol could be reused an unbounded number of
times to prove different statements. Specifically, the prover and the verifier execute the first three rounds
of the protocol once. Afterward, given any language L in NP and (st, w) ∈ RL, the prover could send the
fourth round of the protocol to convince the verifier that the statement st is in the language L. The fourth
round could be re-executed for an unbounded number of times. We require the proof to be zero-knowledge
and, additionally, the existence of a knowledge extractor. We start with the syntax and give the formal
definition.

Syntax. A four-round reusable zero-knowledge argument of knowledge protocol consists of a tuple of
algorithms (rZK1, rZK2, rZK3, rZK4, outV). To generate the messages of the protocol in the first three rounds,
the Prover P uses randomness rP and the verifier uses randomness rV . That is, the verifier sends rzk1 =
rZK1(1λ; rV); the prover sends rzk2 = rZK2(1λ, rzk1; rP); the verifier sends rzk3 = rZK3(1λ, rzk2; rV).

In the ith reuse session, the prover with input (st(i), w(i)) ∈ RL(i) sends the proof π(i) ← rZK4(rzk1, rzk3, rP ,
st(i), w(i)).6 The verifier with input st(i) verifies the validity of the proof using outV(rZK1, rzk2, rzk3, st

(i), π(i)).7

Definition 10. A four-round protocol rZK between a prover and a verifier is a reusable zero-knowledge
argument of knowledge if it satisfies the following.

• Completeness. In honest execution, the verifier always accepts the proof.

• Zero-knowledge. For any malicious stateful PPT verifier V∗, there exists a stateful (expected) PPT
simulator Sim such that, for all ` = poly(λ) and for any non-uniform (stateful) PPT distinguisher D,
the real and the ideal executions described below are computationally indistinguishable.

– Real Execution.

∗ The honest prover and the verifier V∗ (which is given 1λ, 1`) execute the first three rounds
of the protocol. Let rP denote the random tape used by the prover to generate the first three
rounds and let (rzk1, rzk2, rzk3) be the transcript.

∗ For the i-th reuse session:
· The distinguisher D on input the current view of V∗ outputs (st(i), w(i)). If (st(i), w(i)) ∈
RL(i) , then the prover generates π(i) ← rZK4(rzk1, rzk3, rP , st

(i), w(i)) and otherwise, it
sets π(i) = ⊥. It sends π(i) to the verifier V∗.

∗ The output of the real execution corresponds to the final output of D that is given as input
the view of V∗ at the end of the `-th reuse session.

– Ideal Execution.

∗ The simulator Sim on input (1λ, 1`) and oracle access to V∗ generates the view of V∗ at the
end of the third round and outputs it.

6rP is only the secret state of the prover. The prover has access to fresh randomness.
7Note that the verifier does not hold any secret state. Hence, given the first three rounds, the proof is publicly verifiable.

16

∗ The ideal execution initializes V∗ with this view and continues with the rest of the execution
as follows.

∗ In the i-th reuse session:
· The distinguisher D on input the current view of V∗ outputs (st(i), w(i)).
· If (st(i), w(i)) ∈ RL(i) , Sim on input st(i) generates π(i). Else, we set π(i) = ⊥. We send
π(i) to the verifier V∗.

∗ The output of the ideal execution corresponds to the final output of D that is given as input
the view of V∗ at the end of the `-th reuse session.

• Knowledge Extraction. For any malicious prover P∗, there exists an (expected) PPT knowledge
extractor E such that, for all statement st(i), it holds that

Pr
[(

st(i) , EP
∗
(st(i))

)
∈ RL(i)

]
> Pr

[
Accept(i)

]
− negl(λ),

if Pr
[
Accept(i)

]
is non-negligible where Accept(i) denotes the event that the honest verifier accepts the

proof in the ith reuse session when interacting with the malicious prover P∗.

4.1 Construction
In Figure 1, we present our construction with the following building blocks.

• A delayed-input reusable extractable commitment scheme (rEcom1, rEcom2, rEcom3) from Section 3.5.

• A delayed-input extractable commitment scheme (Ecom1,Ecom2,Ecom3) from Section 3.5.

• A trapdoor generation protocol (TDGen1,TDGen2,TDGen3,TDOut,TDValid) from Section 3.7.

• A ZAP scheme (ZAP1,ZAP2) from Section 3.6.

• Language L̂(i). Fix the transcript for the first three rounds. A statement

ŝt(i) =
(

(recom1, recom2, recom
(i)
3), (ecom1, ecom2, ecom3), st(i)

)
is in language L̂(i) with witness (w(i), rrecom, t, recom) if either one of the following holds.

– Valid Witness. (recom1, recom2, recom
(i)
3) is an honest commitment of w(i) with randomness

rrecom and (st(i), w(i)) ∈ RL(i) .

– Valid Trapdoor. TDValid(t, td1) = 1 and (ecom1, ecom2, ecom3) is an honest commitment
of t with randomness recom.

• Protocol description.

1. Round-1: The verifier sends td1 ← TDGen1(rtd).

2. Round-2: The prover samples the following td2 ← TDGen2,
recom1 ← rEcom1(rrecom), and ecom1 ← Ecom1(recom). The prover sends td2, recom1, and
ecom1.

3. Round-3: The verifier samples the following td3 = TDGen3(rtd, td2), recom2 ← rEcom2,
ecom2 ← Ecom2, and zap1 ← ZAP1. The verifier sends td3, recom2, ecom2, and zap1.

4. Round-4: For the ith reuse session, prover does the following.

– The prover checks that the trapdoor generation is successful, i.e., TDOut(td1, td2, td3) =
1. If not, the prover aborts. Otherwise, the prover continues to sample:
recom

(i)
3 = rEcom3(recom2, rrecom, w

(i)),
ecom3 = Ecom3(ecom2, recom, 0

λ),

17

zap
(i)
2 ← ZAP2(zap1, ŝt

(i), (w(i), rrecom,⊥,⊥)) proving that ŝt(i) = ((recom1, recom2, recom
(i)
3),

(ecom1, ecom2, ecom3), st(i)) ∈ L̂(i) with witness (w(i), rrecom,⊥,⊥). The prover sends
recom

(i)
3 , ecom3, and zap

(i)
2 .

5. Verifier Output. The verifier accepts the proof if both (recom1, recom2, recom
(i)
3) and

(ecom1, ecom2, ecom3) are accepting transcripts, and (zap1, zap2) is a valid proof of the state-
ment ŝt(i).

Figure 1: Our four-round reusable ZK-AoK

We shall prove the following theorem. The completeness follows immediately.

Theorem 3. Assuming the security of the reusable extractable commitment scheme, the extractable commit-
ment scheme, the trapdoor generation protocol, and the ZAP, the protocol described in Figure 1 is a reusable
ZK-AoK (see Definition 10).

4.2 Proof of Zero-knowledge
The simulator is presented in Figure 2. We shall prove the indistinguishability through the following hybrids,
where H4 is identical to the simulator.

• Extracting the Trapdoor.

– The simulator runs the first three rounds of the protocol using the same strategy as that
of the honest prover. If the trapdoor generation fails, i.e., TDOut(td1, td2, td3) 6= 1, the
simulator aborts and outputs the view of the adversary.

– The simulator fixes the first round of the protocol. It generates a number of lookahead threads
for the second and third rounds of the protocol. It generates as many as needed until it gets
two accepting transcripts. That is, there are td1, {tdj2, td

j
3}2j=1 such that TDOut(td1, td

j
2, td

j
3) =

1. If td1
2 and td2

2 are not distinct, the simulator aborts. Otherwise, it invokes the TDExt(td1,
{tdj2, td

j
3}2j=1) to extract a valid trapdoor t∗.

• Commit to the trapdoor and prove using the trapdoor.

– The simulator generates independently sampled second-round messages and sends them to
the verifier until the verifier replies back a valid third-round message (i.e., the trapdoor
generation does not fail). The simulator outputs the view of the adversary in the first three
rounds.

– To generate the final round message in the i-th reuse session, the simulator on input st(i)

generates the fourth round as follows. It computes
recom

(i)
3 = rEcom3(recom2, rrecom, r

(i)) where r(i) is a random string, ecom3 = Ecom3(ecom2,

recom, t
∗), zap

(i)
2 ← ZAP2(zap1, ŝt

(i), (⊥,⊥, t∗, recom)) proving that ŝt(i) ∈ L̂(i) with witness
(⊥,⊥, t∗, recom). The simulator sends recom(i)

3 , ecom3, and zap
(i)
2 to the verifier.

Figure 2: The simulator for zero-knowledge

Running Time. Let ε be the probability that the malicious verifier sends a valid third-round message.
Then, the expected running time of the above simulator is given by (1− ε)poly(λ) + ε · (poly(λ)

ε) = poly(λ).

Hybrid description.

• H0: This is the real execution.

18

• H1: In this hybrid, if the trapdoor generation succeeds, it freezes the first round and generates a
number of lookahead threads for the second and third rounds. It generates as many as needed until it
gets two accepting transcripts. The simulator aborts if a valid trapdoor t∗ is not extracted.

• H2: In the fourth round, the simulator now commits to the valid trapdoor t∗ using the delayed-
input extractable commitment in the main thread, i.e., ecom3 = Ecom3(ecom2, recom, t

∗) (instead of
committing to all zeroes string).

• H3: In the fourth round, the simulator now proves the statement ŝt(i) using the witness (⊥,⊥, t∗, recom)
(instead of the witness (w(i), rrecom,⊥,⊥)).

• H4: In the fourth round, the simulator now commits to a random string r(i) (instead of the witness
w(i)) in the reusable extractable commitment, i.e., recom(i)

3 = rEcom3(recom2, rrecom, r
(i)).

Security Proof.

Claim 1. H0 and H1 are indistinguishable assuming the trapdoor extraction property of the trapdoor gener-
ation protocol.

Proof. The only difference between the two hybrids is when the trapdoor extraction fails. We shall prove that
the running time of the simulator is expected polynomial time and the failure probability is exponentially
low.

Suppose the probability that the simulator receives an accepting third round message is ε. Therefore,
with probability 1 − ε, the third round message is not accepting and the simulator aborts. Otherwise, the
simulator will try to rewind to generate another accepting transcript. In expectation, it needs to generate 1/ε
lookahead threads to obtain an accepting transcript. Therefore, in expectation, the simulator will generate
(1− ε) + ε · 1

ε number of threads. Hence, the simulator is efficient.
Since td2 ← TDGen2 is a random string of length λ, the probability that td1

2 = td2
2 is exp(−Θ(λ)).

Therefore, the failure probability is upper-bounded by ε · 1
ε · exp(−Θ(λ)), which is exponentially low.

Claim 2. H1 and H2 are indistinguishable assuming the hiding property of the delayed-input extractable
commitment scheme.

Proof. If the two hybrids are not indistinguishable, we could use it to construct an adversary Aecom that
breaks the hiding property of the delayed-input extractable commitment scheme.

The Aecom interacts with the malicious verifier in the exact same way as in H1. That is, it freezes the
first message and extracts a valid trapdoor t∗ as in H1. It forwards t∗ and 0λ to the challenger Cecom. It then
invokes the challenger multiple times to generate independently sampled ecom1 and uses it to generate the
second round message in the main thread until it obtains a valid third round message from the verifier. It
forwards the corresponding ecom2 to the challenger and receives ecom3. It uses this to complete the fourth
round message in the protocol. Depending on whether the challenger commits to t∗ or 0λ, it either simulates
the hybrid H1 or H2. Furthermore, the simulator in this reduction is efficient as its expected running time
is given by (1 − ε)poly(λ) + ε · (poly(λ)

ε) = poly(λ) where ε is the probability that verifier outputs a valid
third round message. Since the two hybrids are distinguishable, Aecom breaks the hiding property of the
commitment scheme.

Claim 3. H2 and H3 are indistinguishable assuming the witness indistinguishable property of the ZAP.

Proof. If the two hybrids are not indistinguishable, we shall break the witness indistinguishable property of
the ZAP.

The Azap interacts with the malicious verifier in the exact same way as the hybrids. That is, it freezes
the first message and extracts a valid trapdoor t∗. Since the two hybrids are distinguishable, there is a
non-negligible probability that this happens. Azap then simulates the second round message in the main
thread as in H2 and obtains a valid third round message. It forwards zap1 from this third round message to
the external challenger. For the i-th reuse session, Azap forwards the statement ŝt(i) and the two witnesses
(i.e., (⊥,⊥, t∗, recom) and (w(i), rrecom,⊥,⊥)) to the challenger Czap. It forwards the zap2 it receives from the

19

challenger as zap
(i)
2 . Depending on which witness the challenger uses, it either simulates H2 or H3. Since

the two hybrids are distinguishable, Azap break the witness indistinguishable property of the ZAP.

Claim 4. H3 and H4 are indistinguishable assuming the hiding property of the reusable extractable commit-
ment scheme.

Proof. The proof is similar to Claim 2.

4.3 Proof of Knowledge Extraction
The knowledge extractor is presented in Figure 3. Let µ be the probability that prover sends an accepting
transcript. By assumption µ is non-negligible. To prove the knowledge extraction property, we prove the
following claims.

• Check validity of the proof. The knowledge extractor runs full execution of the protocol as
the honest verifier and checks if the honest verifier accepts the proof or not.

• Rewind the third round to extract the witness. If the proof is accepting, the knowledge
extractor rewinds the third round as many times as needed to obtain two accepting transcript
recom1, {recomj

2, recom
j
3}2j=1. If recom1

2 and recom2
2 are not distinct, the knowledge extractor

aborts. Otherwise, it extracts the key k present in the extractable commitment and uses this key
to extract message w(i) sent in the last round (recall that in our reusable delayed-input extractable
commitment, a key k is committed using a standard extractable commitment and the message to
be committed is encrypted under this key k and sent in the last round.). It outputs w(i) as the
witness.

Figure 3: The knowledge extractor

Claim 5. Let Event1 be the event that there exists a valid trapdoor t∗ and randomness r∗ecom such that the
transcript (ecom1, ecom2, ecom3) in the main thread is a commitment to t∗ with randomness r∗ecom. Assuming
the security of the trapdoor generation protocol, it holds that

Pr[Event1] = negl(λ).

Proof. Suppose this event happens with non-negligible probability, we shall break the security of the trapdoor
generation protocol as follows.
Atd receives the td1 from the challenger Ctd. It forwards this message to the malicious prover. It sends

the td2 it receives from the prover to the challenger from Ctd and receives back td3. It sends td3 in the
third message to the malicious prover. It rewinds the third message as many times as needed to obtain
two accepting transcripts ecom1, {ecomj

2, ecom
j
3}2j=1. Based on a similar argument as in Claim 1, this step

runs in expected polynomial time and the failure probability (i.e., ecom1
2 = ecom2

2) is negligible. It extracts
the trapdoor t that is committed. The extractor of the commitment scheme guarantees that the committed
value cannot be anything other than t. The fact that Event1 happens with non-negligible probability implies
that t is a valid trapdoor with non-negligible probability (follows from the correctness of extraction of ecom).
Hence, Atd outputs a valid trapdoor t with non-negligible probability, which breaks the security of the
trapdoor generation protocol.

Claim 6. Let Event2 be the event that there exists a valid witness w(i) and randomness r∗recom such that
the transcript (recom1, recom2, recom

(i)
3) in the main thread is a commitment to a valid witness w(i) with

randomness r∗recom. Assuming the soundness of the ZAP,

Pr[Event2] > 1− negl(λ)

Proof. We first show that if zap2 is accepting then it follows from the soundness of ZAP that ŝt
(i) in the

language with probability 1− negl(λ). Assume for the sake of contradiction that this is not the case and we
now give a reduction that breaks the soundness of ZAP.

20

Azap receives the first message r from the challenger Czap. It simulates the main thread of the protocol
with r as zap1. The prover sends a valid proof zap2 proving the statement ŝt(i). We forward this to the ZAP
challenger. Since zap2 is accepting with non-negligible probability µ, it follows that the probability that the
statement ŝt(i) is not in the language is negligible.

Since ŝt
(i) is in the language with overwhelming probability and by Claim 5, (ecom1, ecom2, ecom3) is

not a valid commitment to the trapdoor with overwhelming probability, it follows that Event2 happens with
overwhelming probability.

From Claims 5, 6, it follows that the probability that Event1 ∨¬Event2 is negl(λ), it follows from the cor-
rectness of extraction of recom that the output of the knowledge extractor is a valid witness with probability
at least µ− negl(λ).

5 Reusable Oblivious Transfer Protocol
In this section, we give a construction of a reusable four-round oblivious transfer protocol. That is, the
sender and receiver shall only execute the first two rounds once. Afterward, given a new choice bit as input,
the receiver could send a new third-round message. As for the sender, on fixing the first three rounds, the
sender could send multiple fourth-round messages given different pairs of messages as inputs.

We first make the following observation on how to transform any OT protocol into one where the first
three rounds of protocol could be reused an unbounded number of times.

Remark 2 (Any OT is sender reusable). Given any four-round OT protocol, one could transform it into
a new four-round OT protocol such that the first three rounds are reusable. Specifically, the sender could
execute the original OT protocol with two keys k0 and k1 as his inputs. To reuse the first three rounds
with different sender’s input m0 and m1, the sender could simply append the fourth round message with a
public-coin symmetric key encryption of m0 and m1 using k0 and k1 respectively. The sender’s privacy for
the original OT protocol implies its privacy for the reusable OT protocol. Furthermore, this transformation
preserves receiver reusability.

In light of this observation, we shall only focus on the reusability of the first two rounds where the
receiver’s choice bit may change.

As a first step, we shall construct a reusable oblivious transfer protocol that provides indistinguishability
security against a malicious sender and simulation security against a malicious receiver, which we define
below. In the next section, we use this protocol as our main building block and construct a reusable 2PC
protocol.

Syntax. A four-round reusable OT protocol consists of the following algorithms (rOT1, rOT2, rOT3, rOT4, outrOT).
Let rS and rR denote the sender’s and receiver’s private randomness in the first two rounds. The receiver
sends ot1 = rOT1(1λ; rR) in the first round. The sender sends ot2 ← rOT2(1λ, ot1; rS) in the second
round. For the ith reuse session, let us denote the receiver’s choice bit by b(i) and the sender’s messages by
m

(i)
0 ,m

(i)
1 . Receiver shall send ot

(i)
3 = rOT3(1λ, ot2, rR, b

(i)) as the third round message. The sender shall
send ot

(i)
4 = rOT4(1λ, ot1, ot

(i)
3 ,m

(i)
0 ,m

(i)
1 , rS) as the fourth round message.8 The receiver finally runs outrOT

on the transcript of the protocol and its entire random tape to compute the output.

Definition 11. We say that rOT is a four-round reusable oblivious transfer protocol with simulation security
against corrupted receivers and indistinguishability security against corrupted senders if:

• Correctness. For all i, the receiver’s output for the ith session is m(i)

b(i)
.

• Indistinguishability against the malicious sender. For any PPT adversary S∗ and for any
` = poly(λ), let ViewS∗〈S∗,R(b(1), b(2), . . . , b(`))〉 denote the view of the adversary when it interacts

8We remark that the receiver (resp., sender) has access to fresh randomness for every third (resp., fourth) round message.
rR (resp., rS) is simply her secret state for the first two messages.

21

with an honest receiver with inputs b(1), b(2), . . . , b(`) (where b(i) denotes the input used by R in the i-th
reuse session). It holds that

ViewS∗〈S∗,R(b(1), b(2), . . . , b(`))〉
c
≈ ViewS∗〈S∗,R(0, 0, . . . , 0)〉.

• Simulation security against the malicious receiver. Same as Definition 3 adapted to the case
of oblivious transfer.

5.1 A Building Block
Our construction utilizes a special PKE scheme defined as follows.

Definition 12. We consider a public-key encryption scheme (Gen,Enc,Dec) such that the following hold.

• Correctness. For any message m, it holds that

Pr

[
(pk, sk)← Gen(1λ), ct = Enc(pk,m)

m′ = Dec(ct, sk)
: m′ = m

]
= 1.

• Semantic Security. For all PPT adversary A, it holds that∣∣∣∣∣Pr

[
(pk, sk)← Gen(1λ), (m0,m1)← A(pk)

b← {0, 1}, ct = Enc(pk,mb), b
′ ← A(pk, ct)

: b′ = b

]
− 1

2

∣∣∣∣∣ = negl(λ).

• Valid public keys are (exponentially) sparse and pseudorandom. Let PK denote the set of all
strings in the co-domain of Gen(1λ). Let PK′ be the set of valid public keys, i.e., those public keys in
the support of Gen(1λ). It holds that

–
∣∣PK′∣∣/|PK| = 2−poly(λ),

– For any PPT distinguisher D, |Pr[D(pk) = 1]− Pr[D(U) = 1]| = negl(λ), where (pk, sk)← Gen(1λ)
and U is sampled uniformly from PK.

• Invalid public keys statistically hide the message.9 For any pk /∈ PK′, it holds, for all messages
m0 and m1, that Enc(pk,m0) and Enc(pk,m1) are statistically close.

We provide instantiations of this primitive from a list of assumptions below.

• DDH. Such PKE can be constructed from the Decisional Diffie-Hellman assumption (DDH) similar to
[NP01]. In particular, Gen(1λ) samples a group G of order p and a generator g. pk and sk are sampled

to be
(
g ga

gb gab

)
and (a, b) for randomly chosen a and b. The universe PK is

(
g ga

gb gc

)
for all a, b,

and c. To encrypt a message m ∈ G, one sends gu · (ga)v and m · (gb)u · (gc)v. If c = ab, then one can
decrypt the message correctly. However, if c 6= ab, gu · (ga)v and m · (gb)u · (gc)v statistically hides m.
This construction satisfies all the properties above.

• SSP-OT. In general, it can be constructed from any two-round OT protocol (OT1,OT2) that satisfies
(1) statistical sender privacy (a.k.a. SSP-OT) and (2) that the first round message is pseudorandom.
In particular, we could sample the public key to be (OT1(0; r1), . . . ,OT1(0; rλ)) with independent
randomness r1, . . . , rλ. To encrypt a message m, one first samples m1, . . . ,mλ that additively secret
shares m. The ciphertext shall be {OT2(oti,1, (mi,⊥))}λi=1, where oti,1 stands for OT1(0; ri).

The valid public key is pseudorandom as the first round message of the OT protocol is pseudorandom.
Valid public keys are 2−λ sparse if we assume the support of the first-round message with choice bit 0
is smaller than that with choice bit 1. Without loss of generality, we may assume this as, otherwise,

9We note that computational security also works for our construction. We state the statistical security as all of our instan-
tiations enjoys this stronger notion.

22

we could simply switch the valid public keys to be (OT1(1; r1), . . . ,OT1(1; rλ)). Finally, invalid public
keys statistically hide the message since the OT protocol enjoys statistical sender privacy.

The construction we describe above is a particular case of this general construction using the statistical
sender private OT from DDH [NP01].

• QR. Recall the PKE scheme [GM82] from the quadratic residuosity problem. Suppose N is a Blum
integer N = p · q. A random quadratic non-residue x, whose Jacobi symbol

(
x
N

)
is 1, is sampled as

the public key. To encrypt a bit b, one samples a random y, which is coprime to N , and encrypt it as
ct = y2 · xb. The decryption algorithm uses p and q to check if ct is a quadratic residue or not, which,
in turn, determines if b is 0 or 1.

This PKE already satisfies several requirements. Valid public key x (i.e., quadratic non-residue with
Jacobi symbol 1) is indistinguishable from a random integer with Jacobi symbol 1, hence, is pseudo-
random.10 Invalid public keys statistically hide the message as, if x is a quadratic residue, ct is simply
a random quadratic residue, and all information regarding b is lost. The only issue is that the valid
public keys are not sparse enough; they are only 1/2-sparse. We use our ideas above again. We sample
λ public keys x1, . . . , xλ. When one encrypts a bit b, one first additively secret shares b as b1, . . . , bλ
and encrypts bi with xi. This ensures that the valid public keys are 2−λ-sparse.

5.2 Our Construction
Our protocol is formally presented in Figure 4 using the following building blocks.

• (rEcom1, rEcom2, rEcom3) is a delayed-input reusable extractable commitment scheme from Section 3.5.

• (ZAP1,ZAP2) is a ZAP scheme from Section 3.6.

• (Gen,Enc,Dec) is a PKE scheme defined in Section 5.1.

• PRG is a pseudorandom generator with a sufficiently large stretch11 from Section 3.3.

• Inputs: Suppose there are ` reuse sessions (where ` is not a priori fixed). Sender holds the input
{m(i)

0 ,m
(i)
1 }i∈[`]. Receiver holds the input b(1), b(2), . . . , b(`).

• Language L: Fix (recom1,1, recom1,2) and (recom2,1, recom2,2). A statement(
recom

(i)
1,3, recom

(i)
2,3, r

(i)
0 , r

(i)
1

)
is in language L if there exists a witness (α(i), c, τ) such that

–
(
recomc,1, recomc,2, recom

(i)
c,3

)
is an honest commitment of α(i) with randomness τ ;

– And either r(i)
0 or r(i)

1 equals to PRG(α(i)).

• Protocol description:

1. Receiver initiates two instances of the delayed-input reusable extractable commitment recom1,1 ←
rEcom1(1λ; τ1) and recom2,1 ← rEcom1(1λ; τ2). Receiver sends recom1,1, recom2,1.

10Our OT protocol is written assuming pk is pseudorandom over binary strings and, hence, all the operations are over F2.
If we plug the QR-based construction into our OT protocol, the operation will be over the multiplicative group J, i.e., the set
of integers with Jacobi 1. Additionally, we need a (deterministic) mapping from a random binary string to a random element
from J (since the PRG outputs are binary strings). For instance, this mapping can be chosen to be any randomized process of
picking random elements from J (i.e., the process uses the input as its randomness to pick elements from J).

11The stretch we need depends on how sparse the valid public keys are. Looking forward, our proof relies on the fact that
strings of the form pk⊕PRG(s) (for all possible valid public keys pk and seed s) are also (exponentially) sparse in the universe.
Therefore, if the valid public keys are, for instance, 2−λ sparse, it suffices to have a PRG of seed length 6 λ/2 and, consequently,
of stretch > log |PK|/(λ/2).

23

2. Sender samples recom1,2 ← rEcom2, recom2,2 ← rEcom2, zap1 ← ZAP1, and a random string
s. Sender sends (recom1,2, recom2,2, s, zap1).

• For the ith reuse session,

i-3: Receiver samples random α(i) and (pk(i), sk(i))← Gen(1λ). Set

r
(i)

b(i)
= s⊕ pk(i) r

(i)

1−b(i) = PRG
(
α(i)

)
.

The receiver commits to α(i) in the first instance of the reusable commitment and junk
in the second instance. That is,

recom
(i)
1,3 = rEcom3(τ1, recom1,2, α

(i)),

recom
(i)
2,3 = rEcom3(τ2, recom2,2,⊥).

The receiver samples zap(i)
2 which uses the witness (α(i), 1, τ1) to prove

(recom
(i)
1,3, recom

(i)
2,3, r

(i)
0 , r

(i)
1) ∈ L.

Receiver sends
(
recom

(i)
1,3, recom

(i)
2,3, r

(i)
0 , r

(i)
1 , zap

(i)
2

)
to the sender.

i-4: Sender verifies that (recom1,1, recom1,2, recom1,3), (recom2,1,

recom2,2, recom2,3), and zap1, zap
(i)
2 are all accepting. If the verification fails, the sender

aborts. For both j ∈ {0, 1}, set pk(i)
j = s⊕ r(i)

j and ct
(i)
j = Enc(pk

(i)
j ,m

(i)
j). Sender sends(

ct
(i)
0 , ct

(i)
1

)
to the receiver.

• Receiver Output. The receiver recovers message m(i)

b(i)
= Dec(sk(i), ct

(i)

b(i)
).

Figure 4: Our four-round reusable OT

We shall prove the following theorem.

Theorem 4. Assuming the security of the reusable extractable commitment scheme, the ZAP scheme, the
pseudorandom generator, and the PKE scheme, the protocol defined in Figure 4 is a reusable four-round obliv-
ious transfer protocol with simulation security against malicious receivers and indistinguishability security
against malicious senders (see Definition 11).

The correctness of protocol follows the correctness of the PKE scheme.

5.3 Indistinguishability against a malicious sender.
We prove it through a sequence of hybrids. Note that H0 is the sender’s view when he interacts with an
honest receiver. And the last hybrid is the sender’s view when the honest receiver’s inputs are fixed to be
(0, 0, . . . , 0).

Hybrid Description.

• H0: Sender’s view in the real world.

• H1: This hybrid is identical to the previous one except that r(i)

b(i)
is sampled uniformly at random.

• H2: This hybrid is identical to the previous one except that r(i)

b(i)
is sampled as PRG(α̂(i)) for a random

α̂(i).

• H3: This hybrid is identical to the previous one except that recom2,3 now also commits to α(i). That
is, recom(i)

2,3 = rEcom3(τ2, recom2,2, α
(i)).

24

• H4: This hybrid is identical to the previous one except that ZAP uses the second instance of the commit-
ment as the witness. That is, zap(i)

2 uses the witness (α(i), 2, τ2) to prove (recom
(i)
1,3, recom

(i)
2,3, r

(i)
0 , r

(i)
1) ∈

L.

• H5: This hybrid is identical to the previous one except that recom1,3 now commits to either α(i) or α̂(i)

depending on r(i)
1 . That is, if r(i)

1 = PRG(α(i)), then recom
(i)
1,3 = rEcom3(τ1, recom1,2, α

(i)); otherwise,
recom

(i)
1,3 = rEcom3(τ1,

recom1,2, α̂
(i)).

• H6: This hybrid is identical to the previous one except that ZAP uses the first instance of the com-
mitment as the witness. That is, zap(i)

2 uses the witness either (α(i), 1, τ1) or (α̂(i), 1, τ1)12 to prove
(recom

(i)
1,3, recom

(i)
2,3, r

(i)
0 , r

(i)
1) ∈ L.

• H7: This hybrid is identical to the previous one except that recom2,3 now switches back to a commit-
ment of ⊥.

• H8: This hybrid is identical to the previous one except that r(i)
0 is sampled uniformly at random.

• H9: This hybrid is identical to the previous one except that r(i)
0 is sampled as s⊕ pk(i) where pk(i) is

sampled as the output of Gen(1λ).

Security Proof. We prove the indistinguishability of hybrids below.

Claim 7. Assuming the valid public keys are pseudorandom, H0 and H1 are indistinguishable.

Proof. Assume for the sake of contradiction that H0 and H1 are computationally distinguishable with a
non-negligible advantage. We show that this contradicts the pseudorandomness of the public keys property
of our PKE scheme.

The simulator simply simulates the hybrid as described until it sends the third-round message. When it
needs to send r(i)

b(i)
, it receives a string x from the external challenger, which is either a valid public key or

a random string. It sends s ⊕ x as r(i)

b(i)
. Depending on whether x is a valid public key or a random string,

it either simulates H0 or H1. If there is a distinguisher that can distinguish between H0 and H1 with a
non-negligible advantage, then it contradicts the pseudorandomness of public keys.

Claim 8. Assuming the pseudorandomness of the PRG, H1 and H2 are indistinguishable.

Proof. This proof is similar to the previous one. The simulator simply simulates the hybrid as described.
When it needs to send r(i)

b(i)
, it receives a x string from the external challenger, which is either the output

of the PRG on uniform input or a random string. It sends x as r(i)

b(i)
. Clearly, it either simulates H1 or H2.

Hence, H1 and H2 are indistinguishable by the pseudorandomness of the PRG.

Claim 9. Assuming the hiding property of the reusable delayed-input extractable commitment schemes, H2

and H3 are indistinguishable.

Proof. The simulator samples α(i). It sends to the external challenger (α(1), . . . , α(`)) and (⊥, . . . ,⊥). The
simulator and the external challenger engage in a reusable delayed-input extractable commitment scheme,
where the external challenger commits to either (α(1), . . . , α(`)) or (⊥, . . . ,⊥). The simulator now simulates
the hybrid as described. It sends the external challenger’s messages in place of the second instance of the
commitment. Since the other components of the protocol do not depend on the private randomness of the
second commitment scheme, the simulator can simulate the hybrid. Depending on whether the external
challenger commits to (α(1), . . . , α(`)) or (⊥, . . . ,⊥), it either simulates H2 or H3. By the hiding property,
H2 and H3 are indistinguishable.

Claim 10. Assuming the witness indistinguishability of the ZAP scheme, H3 and H4 are indistinguishable.
12depending on whether recom

(i)
1,3 is a commitment of α(i) or α̂(i).

25

Proof. If the two hybrids are distinguishable with a non-negligible advantage, then we show a simulator that
breaks the witness indistinguishability of the ZAP scheme. The simulator simulates the hybrid as described.
It sends the zap1 in the hybrid to the external challenger as the first message of the ZAP scheme. It also
sends the statement and two witnesses to the external challenger. It forwards the proof it receives from
the external challenger as zap(i)

2 in the hybrid. Depending on which witness the external challenger uses, it
simulates either H3 or H4. Therefore, the witness indistinguishability of the ZAP scheme implies that H3

and H4 are indistinguishable.

Claim 11. Assuming the hiding property of the reusable delayed-input extractable commitment schemes, H4

and H5 are indistinguishable.

Proof. This proof is analogous to the proof of Claim 9. Observe that all the ZAP proofs are on the second
instance of the commitment scheme and, hence, the first instance is independent of the other components in
the protocol.

Claim 12. Assuming the witness indistinguishability of the ZAP scheme, H5 and H6 are indistinguishable.

Proof. This proof is analogous to the proof of Claim 10.

Claim 13. Assuming the hiding property of the reusable delayed-input extractable commitment schemes, H6

and H7 are indistinguishable.

Proof. This proof is analogous to the proof of Claim 9. Observe that all the ZAP proofs are back on the first
instance of the commitment scheme and, hence, the second instance is independent of the other components
in the protocol.

Claim 14. Assuming the pseudorandomness of the PRG, H7 and H8 are indistinguishable.

Proof. The proof is analogous to the proof of Claim 8.

Claim 15. Assuming the valid public keys are pseudorandom, H8 and H9 are indistinguishable.

Proof. The proof is analogous to the proof of Claim 7.

Remark 3 (Public recovery of the received message in the reusable setting). Later in our MPC protocol,
every pair of parties shall engage in an instance of a reusable OT protocol. Furthermore, in the last round,
the receiver of the OT protocol needs to publish her private randomness to help all parties recover the message
she receives. This has to be done without harming the reusability of the OT protocol.

Observe that, in our OT protocol, the receiver could publish the randomness used in

(pk(i), sk(i))← Gen(1λ).

This helps all parties to decrypt the message it received in the ith reuse session. Moreover, it is easy to see
that the receiver’s choice bits for other reuse sessions remain hidden. We remark that the indistinguishability
of the receiver’s choice bit in the ith session holds even if the sender learns pk(j), sk(j) for all j 6= i. We
make a note of this as when we use the reusable OT as a building block in our MPC protocol, we do need
the receiver to send out pk(j), sk(j) in the fourth round (in the simultaneous message exchange model) to help
other parties recover the message the receiver receives.

5.4 Simulation security for a malicious receiver.
The simulator is presented in Figure 5.

• Run the first three rounds and check abort. In the main thread, it runs the protocol
honestly for all reuse sessions until the first time the receiver’s third round message does not cause
an abort. (Observe that at this point, all sender’s messages are independent of its inputs.)

• Rewind to extract k1 and k2. The simulator rewinds back to the end of the first round and
generates a set of lookahead threads (running until round 3). It uses the EcomExt to extract
the key k1 and k2 committed in the first rounds of the two instances of the reusable delayed-

26

input extractable commitment scheme. Recall that in our construction of reusable delayed-input
extractable commitment, the extractable commitment is used to commit to a key for an SKE
scheme. If the extraction fails, it aborts.

• Extract choice bits and query the ideal functionality. For every session such that the third
round is accepting, it uses the key k1 and k2 to extract the committed messages α(i) and α̂(i).
If r(i)

0 equals to either PRG(α(i)) or PRG(α̂(i)), it set b(i) to be 1. Else if r(i)
1 equals to either

PRG(α(i)) or PRG(α̂(i)), it set b(i) to be 0. Otherwise, it aborts. If b(i) is found, send it to the
ideal functionality and receives m(i)

b(i)
.

• Finish the fourth round by encrypting the same message. The simulator now finishes the
main thread by computing and sending(

Enc(pk
(i)
0 ,m

(i)

b(i)
), Enc(pk

(i)
1 ,m

(i)

b(i)
)
)

as the fourth round message.

Figure 5: The simulator for a malicious receiver

We shall prove it via a sequence of hybrids. The first hybrid H0 is the real world and the last hybrid is the
ideal world.

Hybrid Description.

• H0: This is the real world.

• (Extracting keys k0, k1) H1: If the verification for the third round fails in all sessions, the simulator
aborts as in the previous hybrid. Otherwise, the simulator rewinds back to the end of the first round. It
generates a number of lookahead threads that run the second and third rounds to extract the committed
keys k1 and k2.13 We do not make any other changes to the main thread and, hence, this hybrid is
identically distributed to the previous one.

• (Queries the ideal functionality) H2: In this hybrid, for every accepting third-round message, the
simulator uses k0 and k1 to extract the receiver’s choice bits b(i). In particular, for the ith session, it
does the following. If the verification for third round succeeds, it first extracts the committed messages
α(i) and α̂(i). If r(i)

0 equals to either PRG(α(i)) or PRG(α̂(i)), it set b(i) to be 1. Else if r(i)
1 equals to

either PRG(α(i)) or PRG(α̂(i)), it set b(i) to be 0. Otherwise, it aborts. The simulator sends the choice
bits b(i) to the ideal functionality and receives m(i)

b(i)
.

• (Encrypt the same message in both ciphertexts) H3,j : This hybrid is identical to the previous
hybrid in all the i > j sessions. For the other sessions (i.e., i 6 j), in the i-4 round, it sends
Enc(pk

(i)
0 ,m

(i)

b(i)
) and Enc(pk

(i)
1 ,m

(i)

b(i)
) (instead of sending Enc(pk

(i)
0 ,m

(i)
0) and Enc(pk

(i)
1 ,m

(i)
1)).

Security Proof.

Claim 16. Assuming the soundness of ZAP, H2 is indistinguishable from H1.

Proof. The only difference between H2 and H1 is when there exists an i such that b(i) does not exist.
Assuming H2 and H1 are not indistinguishable, it implies that there exists an i such that the third round
message is accepting, but b(i) does not exist with non-negligible probability. We shall break the soundness
of ZAP as follows.

The simulator engages in a ZAP protocol with the honest verifier. It receives the first round message
r from the verifier and proceeds to simulate the hybrid as described. It sends the r it received in place of

13Recall in the reusable delayed-input extractable commitment scheme, a key for the PRF is committed in the first round.
Here, k1 (resp., k2) is the key committed in the first (resp., second) instance of the commitment scheme.

27

zap1. Now, it receives back a statement st =
(
recom

(i)
1,3, recom

(i)
2,3, r

(i)
0 , r

(i)
1

)
and a proof π = zap

(i)
2 . Since

our extraction of b(i) fails, we now argue that it must be the case st /∈ L with overwhelming probability.
Specifically, if both the commitments are invalid then the statement st 6∈ L. Otherwise, if at least one of
the commitments is valid, then the extractor for the extractable commitment extracts this committed value
except with negligible probability. In this case, if both r

(i)
0 and r

(i)
1 is not equal to the PRG applied on

the extracted value, then st 6∈ L. Therefore, with non-negligible probability, the simulator generates a false
statement st but an accepting proof π. Thus, it breaks the soundness of ZAP.

Claim 17. H3,j is (statistically) indistinguishable from H3,j−1.

Proof. This claim follows from the following claim.

Claim 18. With high probability over the choice of s, for all α, s⊕ PRG(α) is not a valid public key.

If this claim is true, then H3,j is clearly (statistically) indistinguishable from H3,j−1 as invalid public
keys statistically hide the message. That is,

Enc(pk
(j)

1−b(j) ,m
(j)

1−b(j)) ≈ Enc(pk
(j)

1−b(j) ,m
(j)

b(j)
),

since pk
(j)

1−b(j) = s⊕ PRG(α) for some α.
The proof of this claim is similar to the proof of the (statistical) binding property of Naor’s commitment

scheme [Nao91]. Call an s “bad” if there exists a valid public key pk and an α such that s = pk ⊕ PRG(α).
The number of “bad” s is upper bounded by the product of (1) the number of valid public keys and (2) the
input size of the PRG. Recall that our PKE scheme is required to have scarce valid public keys. Hence, for
a PRG with a sufficiently large stretch, the number of “bad” s shall be only a negligible fraction of the size
of the universe. Therefore, most choices of s are “good” and the claim is proven.

6 Reusable 2PC Protocol
In this section, we shall use our reusable OT protocol and the reusable zero-knowledge protocol to construct
a reusable 2PC protocol. We consider the unidirectional message setting. That is, for every round, only
one party shall send messages to the other party. In this setting, we consider a four-round reusable 2PC
protocol, where only one party receives the output of the protocol.14 In our protocol, the first two rounds
shall only be executed once. In the third round, the receiver shall send a message depending on his input x.
In the last round, the sender sends one message depending on her function f . Parties could either reuse the
first two rounds, where both the input x and the function f could change, or reuse the first three rounds,
where only the function f could change.

Our protocol follows the standard 2PC protocol based on Yao’s garbled circuit. That is, a four-round
oblivious transfer protocol is run and in the last round, the sender shall generate a garbled circuit and send
the receiver his labels using the OT protocol. Since our OT protocol supports reusing its first two rounds
with different receiver’s choice bits, our 2PC protocol also supports reusing the first two rounds with different
receiver’s inputs. Additionally, we parallel this with our ZK-AoK protocol where the sender proves that the
garbled circuits and OT messages are generated honestly. Crucially, we also rely on that the zero-knowledge
protocol is reusable so that the sender could prove a different statement in every fourth round message.

Our protocol is formally presented in Figure 6 with the following blocks.

• (rOT1, rOT2, rOT3, rOT4) is a four-round reusable OT from Section 5.

• (rZK1, rZK2, rZK3, rZK4) is a four-round reusable ZK-AoK from Section 4.

• (Garble,Eval) is a garbling scheme from Section 3.4.

We use C for the universal circuit that takes the input a function f and an input x and outputs f(x).
14This is optimal as Katz and Ostrovsky [KO04] proved that five rounds are needed if both parties shall receive the output

of the protocol.

28

Remark 4. As we discussed in the technical overview, it is necessary that the sender maintains (and updates)
a secret state across different reuse sessions. Otherwise, a malicious receiver could employ the same strategy
as the (black-box) simulator to effectively “rewind” the sender across multiple reuse sessions and, hence,
extract the input of the sender.

• Language L(i). Fix the first three rounds (rot1, rot2, rot
(i)
3) and

(rzk1, rzk2, rzk3). A statement

st(i) =
(
Ĉ, {lab

w,f
(i)
w
}w∈S , rot(i)4

)
is in the language L(i) with witness (f (i), r(i), rS,rot, r

(i)
S,rot) if both the following conditions are

satisfied.

– Ĉ an honest garbling of Garble(C; r(i)) and {lab
w,f

(i)
w
}w∈S is the correct labels corresponding

to the sender’s input f (i).

– rot
(i)
4 is honestly generated with the partial transcript (rot1, rot2, rot

(i)
3) and the receiver’s

input labels as the input messages using randomness (rS,rot, r
(i)
S,rot).

• Protocol Description.

1. The receiver sends rot1 ← rOT1(1λ; rR,rot) and rzk1 ← rZK1(1λ; rR,rzk).

2. The sender sends rot2 ← rOT2(1λ; rS,rot and rzk2 ← rZK2(1λ; rS,rzk).

• Suppose the sender and receiver are going to execute a new reuse session with f (i) and x(i)

as their inputs, respectively.

i-3. The receiver samples rot
(i)
3 ← rOT3(rot2, x

(i), rR,rot,). That is, the receiver computes
the third-round message of the reusable OT with x(i) as his choice bits. The receiver
computes rzk3 ← rZK3(rzk2, rR,rzk). It sends rot

(i)
3 and rzk3.

i-4. Secret state updates. The sender maintains a secret state ω, which is initially set to
be an empty string. If ω is empty, it updates ω to be rzk3, i.e., this is the first time the
sender receives the third round message rzk3. If ω is not empty and ω 6= rzk3, the sender
aborts, i.e., the new rzk3 message the sender receives is different from the ones it receives
from previous reuse sessions.
The sender samples (Ĉ, {labw,b}w,b) ← Garble(C; r(i)) and rot

(i)
4 = rOT4(rot1, rot

(i)
3 ,

{labw,0}w∈R, {labw,1}w∈R, rS,rot; r(i)
S,rot). That is, she samples the fourth OT message

with the labels for the receiver’s input wire as her messages. She samples rzk
(i)
4 ←

rZK4(rzk3, rS,rrzk , st
(i), (f (i), r(i)), rS,rot, r

(i)
S,rot), where st(i) =

(Ĉ, {lab
w,f

(i)
w
}w∈S , rot(i)4) and (f (i), r(i), rS,rot, r

(i)
S,rot) is the witness. The sender sends Ĉ,

{lab
w,f

(i)
w
}w∈S , rot(i)4 , and rzk

(i)
4 .

• Suppose the sender and receiver are going to use an old reuse session. In this case, only the
sender needs to compute and send a new fourth-round message (w.r.t. a new input function
f ′). The sender does exactly the same as in i-4 except that she does not need to do the
“secret state update” step.

• The receiver output. It verifies that (rzk1, rzk2, rzk3, rzk
(i)
4) is an accepting proof of the state-

ment st(i). If not, it aborts. Otherwise, it recovers {lab
w,x

(i)
w
}w∈R from the reusable OT. Then, it

evaluates z(i) = Eval(Ĉ, {labw,b}w,b). It outputs z(i) as C(f (i), x(i)).

Figure 6: Our reusable 2PC protocol in the unidirectional message model

We shall prove the following.

29

Theorem 5. Assuming the security of the reusable OT, the reusable ZK-AoK, and the garbling scheme, the
protocol in Figure 6 is a simulation-secure reusable 2PC protocol.

6.1 The Sender is Corrupt
The simulator for the sender is presented in Figure 7. We shall prove indistinguishability via a sequence of
indistinguishable hybrids.

• The simulator interacts with the malicious sender in a full execution as an honest receiver with
input 0 in each reuse session. It continues the execution until it finds the first reuse session where
the fourth round message sent by the sender has an accepting proof (for the non-accepting sessions,
it forwards ⊥ as the output of the honest receiver). The simulator fixes the first two rounds of
this protocol and invokes the proof of knowledge extractor for this session. From Figure 3, we
infer that this knowledge extractor rewinds and extracts the key k committed in extractable
commitment which is part of the reusable delayed-input extractable commitment scheme. The
simulator outputs the view of the adversary in the first two rounds.

• For each reuse session, the simulator again uses 0 as the honest receiver input and continues with
the execution. If the fourth round message sent by the sender is not accepting, it instructs the
ideal functionality to abort. Otherwise, it uses the key k to extract the sender’s input in this
rewind session. It then sends the sender’s input to the ideal functionality and instructs it to send
the output to the receiver.

Figure 7: Simulator for the sender

Hybrid Description.

• H0: This is the real world.

• H1: This hybrid is identical to the previous one except for the following. If the sender sends a valid
fourth-round message, we invoke the knowledge extractor to extract the sender’s input as described in
the simulation and use this to compute the output of the receiver.

• H2: This hybrid is identical to the previous one except that we now switch the receiver’s input from
x(i) to 0.

Security Proof.

Claim 19. Assuming the knowledge extraction property of the reusable ZK-AoK, H0 and H1 are indistin-
guishable.

Proof. The only difference between H0 and H1 is when the knowledge extraction fails. Let us assume without
loss of generality that the adversary outputs a valid fourth-round message with non-negligible probability.
Otherwise, the proof sent in the fourth round message is not accepting with overwhelming probability and,
hence, the output of the honest receiver is ⊥. Thus, if the extraction fails with non-negligible probability,
we shall break the knowledge extraction property of the reusable ZK-AoK. In particular, the prover A shall
interact with a knowledge extractor. It simulates the hybrid exactly as described except for the ZK-AoK
protocol, which is exposed to the external knowledge extractor. If the two hybrids are not indistinguishable,
it implies that the prover sends an accepting proof with non-negligible probability, but the extractor fails to
extract a valid witness with non-negligible probability, then this breaks the knowledge extraction and this
is a contradiction.

Claim 20. Assuming the receiver indistinguishability of the reusable OT, H1 and H2 are indistinguishable.

30

Proof. Suppose H1 and H2 are distinguishable with a non-negligible advantage, then we show how to break
the receiver indistinguishability of the reusable OT by designing a corrupt sender S∗.

The sender S∗ generates the verifier messages of the ZK-AoK on its own. It receives the rOT messages
from the challenge receiver R. It sends the ZK-AoK messages and the rOT messages to the malicious sender.
It then forward the rOT messages it receives from the sender to the challenge receiver. Depending on whether
the receiver’s input is x(i) or 0, it either simulates H1 or H2. Hence, it breaks the receiver indistinguishability
of the reusable OT if H1 and H2 are distinguishable.

6.2 The Receiver is Corrupt
The simulator for the receiver is presented in Figure 8. We shall prove indistinguishability via a sequence of
hybrids.

• The simulator interacts with the malicious receiver by invoking the simulator for the rOT and the
rZK protocols until it finds a reuse session where the receiver sends a valid third round message. It
fixes the first round message of the protocol and as described in Figure 2, it rewinds the second and
third rounds and extracts the trapdoor t∗. Additionally, it extracts the key k1 and k2 committed
in the extractable commitments used as part of the rOT protocol (as described in Figure 5). It
outputs the view of the adversary in the first two rounds of the protocol.

• For every reuse session:

– Extract the receiver’s input. If the receiver’s third-round message is not valid, it aborts.
Otherwise, it shall invoke the extractor for the OT protocol (as described in Figure 5) that
uses the keys k1 and k2 to extract the receiver’s input x(i).

– Query the ideal functionality. The simulator queries the ideal functionality with x(i) and
receives z(i) back.

– Simulate the ZK proof. The simulator generates the ZK proof by invoking the zero-
knowledge simulator that uses the trapdoor t∗.

– Simulate the Garbled Circuits. The simulator generates the garble circuits using the
simulator, i.e.,

(
Ĉ, {labw}w∈R∪S

)
← Sim(1λ, 1|f

(i)|, z(i)).

– Finally, the simulator prepares the rot
(i)
4 using {labw}w∈R as the output from the OT func-

tionality.

Figure 8: Simulator for The Receiver

Hybrid Description.

• H0: This is the real world.

• H1: This hybrid is identical to the previous ones except that the simulator invokes the simulator for
zero-knowledge to generate rzk

(i)
4 .

• H2: This hybrid is identical to the previous one except that if the receiver’s third round message is
valid, we shall rewind to extract the receiver’s input using the OT extractor for the receiver’s choice
bits. It also invokes the OT simulator for the receiver to prepare rot

(i)
4 .

• H3: This hybrid is identical to the previous ones except that the simulator invokes the simulator for
the garble circuits. Specifically, we query the ideal functionality on input x(i) and obtain z(i) and we
invoke the garbled circuits simulator on z(i) to generate

(
Ĉ, {labw}w∈R∪S

)
. We use this to generate

the fourth round message in the protocol.
We note that the indistinguishability of H2 and H3 follows directly from the simulation security of
garbled circuits. Further, we observe that H3 is distributed identically to the ideal execution using Sim
described in Figure 8.

31

Security Proof.

Claim 21. Assuming the zero-knowledge property of the reusable ZK-AoK, H0 and H1 are indistinguishable.

Proof. If H0 and H1 are computationally distinguishable, we could use the malicious receiver to construct
a malicious verifier and use D to construct a distinguisher that breaks the zero-knowledge property of the
reusable ZK-AoK. Specifically, the malicious receiver simulates the hybrid as described except for the ZK-
AoK messages, which are exposed to the external prover. In each reuse session, the statement that is given
by the distinguisher is st(i) and the witness corresponds to (f (i), r(i), rS,rot, r

(i)
S,rot). If the prover messages

generated by the external challenger are generated as the honest prover messages, then we perfectly emulate
H0 and otherwise, the challenger generates the message using the simulator for the ZK-AoK, and we emulate
H1. Thus, if H0 and H1 are distinguishable, it contradicts the zero-knowledge property of reusable ZK-AoK.
Note that this claim requires that the rzk3 message is fixed across all reuse sessions as the zero-knowledge
property only holds if the third round message is fixed.

Claim 22. Assuming simulation security against corrupt receivers of the reusable OT, H1 is indistinguishable
from H2.

Proof. If H1 and H2 are not indistinguishable, we could use the malicious receiver to construct a receiver and
a distinguisher that breaks the simulation security against corrupt receivers of the reusable OT. Specifically,
in each reuse session, we use the malicious receiver to generate the receiver OT message. The distinguisher
constructs the garbled circuit C̃ and provides {labw,0, labw,1}w∈S as the honest sender inputs for this reuse
session. We use the sender rOT messages generated by the challenger and compute the rest of the protocol
messages as in the previous hybrid and forward this to the corrupt receiver. The reduction finally runs the
distinguisher D on the view of the malicious receiver and outputs whatever D outputs.

If the messages generated by the challenger correspond to the real execution, the output of the above
reduction is identical to H1. Else, it is identical to H2. This contradicts the simulation security against
corrupt receivers.

7 Reusable MPC Protocol
In this section, we shall use our reusable oblivious transfer protocol to construct a four-round reusable MPC
protocol. That is, the first two rounds of the protocol are executed once. Afterward, given every new input
~x, parties execute the third round in a new reuse session. Finally, given any function f for a reuse session,
parties execute the fourth round to evaluate f(~x).

Recently, Choudhuri et al. [CCG+20] constructed a four-round MPC protocol using any four-round OT
protocol. Our protocol adapts their protocol appropriately to make it reusable. In particular, we instantiate
the building blocks in their protocol using appropriate reusable variants. For instance, we instantiate the
four-round OT in their protocol with the reusable four-round OT that we construct in Section 5.

Intuitively, Choudhuri et al. [CCG+20] prove the security of their protocol through a sequence of hybrids,
where the indistinguishability among the hybrids reduces to the security of the underlying building blocks.
We observe that, as long as each building block supports reusable security, their proof also works to prove
the reusable security of the protocol by the same reduction.

We present the protocol in Section 7.2. The simulator and a formal security proof are included in
Section 7.3 and Section 7.4.

7.1 Additional Building Blocks
7.1.1 A Rewind-secure Extractable Commitment Scheme for Reusable MPC

As in [CCG+20], we use the following variant of the reusable extractable commitment scheme. Note that this
commitment scheme is reusable rewind-secure. That is, the committed message is hidden even if the receiver
could rewind the sender and ask for multiple third-round messages. For technical reasons, we shall prove
and use the rewind security in the proof directly. For our purpose, we shall set B = 4 in our construction.
Note that if B = 4, one could extract the committed polynomial using any 5 well-formed transcripts.

32

A prominent feature of this commitment scheme is that the receiver cannot verify the well-formedness
of the sender’s third-round message. Therefore, one must rely on additional proof to be convinced if the
transcript is well-formed or not.

• Commitment Phase. Let Com be a non-interactive commitment scheme.

1. Sender picks N degree-B random polynomials p1, p2, . . . , pN over Fq, where q > 2λ is a
prime. For all j ∈ [N], Sender computes recom1,j = Com(pj ; rj). Sender sends recom1 =
(recom1,1, . . . , recom1,N)

The sender also sample a random key k. This key k is not used in the first round, but it is
fixed for all reuse sessions.

2. For all j ∈ [N], receiver samples a random zj from F∗q . Receiver sends recom2 = (z1, . . . , zN).

3. Reuse. Suppose the sender wants to commit to m(i) in the ith reuse session.

– For all j ∈ [N], computes recom3,j = (k ⊕ pj(0), pj(zj)).
– Let recom3,N+1 = SKE.Enc(k,m(i)).
– Sends recom3 = (recom3,1, . . . , recom3,N , recom3,N+1).

• Decommitment. To decommit, the sender simply sends all polynomials p1, . . . , pN together with
the private randomness r1, . . . , rN .

Figure 9: (Reusable) Rewind-secure Extractable Commitment

7.1.2 (Reusable) Non-malleable Commitment.

We import the following definitions and theorems from [CCG+20] regarding non-malleable commitment.
Consider a three-round commitment scheme. [CCG+20] consider the following notion of non-malleability

with respect to extraction. In the experiment, a Man-In-the-Middle (MIM) adversary interacts with an honest
sender in the left session and interacts with an extractor ExtNMCom on the right session, which only guarantees
the extraction of the committed value when the adversary outputs a well-formed commitment. Without
loss of generality, we assume the left session and right session are associated with distinct tags/identities.
The honest sender on the left holds an input m and the MIM attacker holds an auxiliary input z. Let
MIMExt

〈C,ExtNMCom〉(m, z) stands for the joint distribution of the extracted value val and the adversary’s view.

Definition 13. A three-round commitment scheme is said to be non-malleable with respect to extraction if
there exists an extractor ExtNMCom such that

MIMExt
〈C,ExtNMCom〉(m0, z)

c
≈ MIMExt

〈C,ExtNMCom〉(m1, z).

[CCG+20] also considers the following delay-input non-malleability notion. A three-round non-malleable
commitment scheme is delayed-input if the committer can choose the message to commit after the execution
of the first two rounds. In particular, they consider the adaptive security that the adversary, after the two
rounds, may adaptively chooses a message val and ask the honest sender in the left session to commit to this
message in the third round. Now, let MIM0

〈C,R〉(z) stand for, in the above experiment, the joint distribution
of the adversary’s view and the value val′ that he commits in the third round. On the other hand, consider
the experiment where the honest sender on the left always commits to a random string in the last round.
Let MIM1

〈C,R〉(z) stand for the joint distribution in this experiment.

Definition 14. A three-round commitment scheme is said to be delayed-input non-malleable if

MIM0
〈C,R〉(z)

c
≈ MIM1

〈C,R〉(z).

Given these two definitions, [CCG+20] defines their non-malleability notion.

Definition 15 (Special Non-malleability). A three-round commitment scheme is special non-malleable if it
satisfies

33

• It is non-malleable with respect to extraction.

• It is delayed-input non-malleable.

• It satisfies that the last message is pseudorandom. For any message m that the sender is to commit,
the third-round message is indistinguishable from a uniformly random string given the first two rounds.

[CCG+20] showed the construction of [GPR16] satisfies their definition.

Theorem 6 ([GPR16]). Assuming non-interactive commitments, there is a three-round commitment scheme
with the special non-malleable property.

Reusability. To use it in our protocol, we need a reusable special non-malleability. That is, in both the
non-malleable with respect to extraction and delayed-input non-malleable experiment, the MIM attacker is
allowed to ask for multiple last round messages (committing to independent random strings) from the sender
in the left session before he would finally ask for a challenge commitment from the sender on the left and
trying to break the non-malleability.

We note that [GPR16] already satisfies this stronger notion due to its last message pseudorandomness
property. In fact, their last message pseudorandomness property holds even if the receiver receives multiple
third-round messages committing to arbitrary messages. Therefore, by a standard hybrid argument, we may
first switch the (additional) multiple third-round messages that the MIM attacker gets to see to a purely
random string. Afterward, the reusable special non-malleable property reduces to the non-reusable special
non-malleable property as the MIM attacker could simulate those random strings himself.

7.1.3 Two-round (Reusable) Semi-Malicious MPC.

We also use a two-round reusable semi-malicious MPC in the plain model. In particular, this protocol should
have the following properties.

• In the first round, parties send a message based only on their input.

• In the second round, given any function f , parties send a second-round message based on their secret
state and function f .

• Reusability. The last round can be executed an unbounded number of times for different functions.
However, every party’s input is always fixed.

Such a two-round semi-malicious reusable MPC protocol has been constructed recently based on various
assumption such as DDH assumption [BGMM20], SXDH assumption on asymmetric bilinear maps [BL20],
LWE assumption [AJJM20, AJJM21, BJKL21], and the LPN assumption [BGSZ22].

7.2 Our Protocol
Our protocol uses the following building blocks.

• (rREcom1, rREcom2, rREcom3): This is a reusable rewind-secure extractable commitment scheme de-
fined in Section 7.1.1.

• (Ncom1,Ncom2,Ncom3): This is the non-malleable commitment scheme defined in Section 7.1.2.

• (rMPC1, rMPC2): This the two-round semi-malicious MPC protocol in Section 7.1.3.

• (TDGen1,TDGen2,TDGen3): This is a one-rewind secure trapdoor generation protocol defined in Sec-
tion 3.7.15

15We note that the specific trapdoor generation protocol construction [CCG+20] (based on the signature scheme) satisfies the
unique last round message property. That is, given the first two rounds of the protocol, there is a unique last-round message
that is accepting. In terms of reusing the protocol, this means that the sender in the trapdoor generation protocol will always
send the same message in the third message of every reuse session.

34

• (ZAP1,ZAP2): The is the ZAP protocol. Recall that ZAP is both delayed-input and also unbounded
rewind-secure as discussed in Section 3.6.

• (rOT1, rOT2, rOT3, rOT4): This is the reusable OT protocol we constructed in Section 5.

• (Garble,Eval): This is a garbling scheme defined in Section 3.4.

High-level Summary. Figure 10 presents a high-level sketch of the protocol. On a basic level, parties
shall execute the 2-round semi-malicious MPC in the third and fourth rounds to compute any function f .
To ensure honest behavior, however, the following blocks are also added. First, parties shall commit to
their input using the reusable delayed-input commitment scheme rREcom. Second, a three-round trapdoor
generation protocol TDGen and a three-round non-malleable commitment scheme are executed in the first
three rounds. Now, parties are supposed to prove their honest behavior in the third round by the first
instance of the ZAP protocol zap1,a, zap2,a.16 However, this proof is not sent in the clear but used as choice
bits for another OT protocol. Since the proof zap2,a is not sent in the clear, parties cannot verify the honesty
of other parties before the fourth round. Therefore, parties cannot send their message rMPC2 in the clear as
well. Instead, it will compute a garbled circuit that will spit out this message rMPC2 after it verifies all the
zap2,a proofs. The labels of this garbled circuit are used as the sender’s message in the OT protocol. Finally,
another instance of the ZAP protocol is executed to prove the honest behavior of the last round. We refer
the readers to the technical overview of [CCG+20] for a more detailed overview.

A formal description of our protocol is in Figure 11.

Pi Pj
rREcom1−−−−−−→ TDGen1←−−−−−− Ncom1−−−−−−→ rOT1−−−−−−→
rREcom2−−−−−−→ TDGen2−−−−−−→ Ncom2←−−−−−−

zap1,a←−−−−−− rOT2←−−−−−−
zap1,b←−−−−−−

rREcom3(x,r)−−−−−−→ rMPC1(x,r)−−−−−−→ TDGen3←−−−−−− Ncom3(t)−−−−−−→
rOT3(zap2,a)
−−−−−−→

GC(rMPC2(x,r))−−−−−−→ rOT4({labw,b})←−−−−−−
zap2,b−−−−−−→

Figure 10: A pictorial view of the messages exchanged between party i and j. Every row corresponds to
one round. The red part indicates where we make appropriate modifications to [CCG+20]. The OT protocol
is instantiated with a reusable OT protocol; the (bounded) rewind-secure WI proofs are instantiated with
ZAP; the MPC is instantiated with a two-round reusable MPC.

Intuition for Reusability. [CCG+20] proves that their protocol is secure in the standalone setting. How-
ever, when one reuses the first two rounds of the protocol, this might cause issues as each reuse session shares
the same first two rounds. In particular, in the security proof, when we try to reduce the indistinguishability
between hybrids to the security of a particular building block, we might rely on the external challenger to
send us the messages belonging to that building block for all reuse sessions. Therefore, it is crucial that all
building blocks individually are reusable. And, indeed, as long as each building blocks are reusable, one can
use the same proof as [CCG+20] to prove the reuse security. In particular, the indistinguishability between
hybrids shall reduce to the reusable security of specific building blocks.

Theorem 7. Assuming the reusable security of the building blocks, the protocol in Figure 11 is a four-round
reusable MPC protocol.

For ease of presentation, we omit the (·) superscript indicating the reuse sessions.

16ZAP proves that either the party is generating all the messages correctly, or the non-malleable commitment commits to a
valid trapdoor.

35

• Language Li→ja . Given the first two rounds, a statement

sti→ja :=
(
rmpci,1,

{
rrecomi→k

3

}
k
, ncomi→j

3

)
is in the language Li→ja with witness

wi→ja :=
(
xi, ri,

{
ri→krrecom

}
k
, ri→jncom, t

)
if either one of the following is true.

– Honest witness. (1) rmpci,1 is a honestly generated with input xi and randomness ri;
(2) For all k, (rrecomi→k

1 , rrecomk→i
2 , rrecomi→k

3) is an honest commitment of (xi, ri) using
randomness ri→krrecom.

– Trapdoor witness. (ncomi→j
1 , ncomi→j

2 , ncomi→j
3) is an honest commitment of t with ran-

domness ri→jncom such that t is a valid trapdoor with respect to td1,j .

• Language Li→jb . Given the first three rounds, a statement

sti→jb :=
({

roti→k4

}
k
, Ĉi, ncom

i→j
3

)
is in the language Li→jb with witness

wi→jb :=
(
xi, ri, rmpc2,i,

{
ri→krrecom, r

i→k
rot

}
k
, rgc,i, r

i→j
ncom, t

)
if either one of the following is true.

– Honest witness. (1) (rmpci,1, rmpci,2) is honestly generated with input xi and randomness
ri; (2) for all k, (rrecomi→k

1 , rrecomk→i
2 , rrecomi→k

3) is an honest commitment of (xi, ri) using
randomness ri→krrecom; (3) (Ĉi, {labw,b}w,b) is an honest garbling of Ci with randomness rgc,i; (4)
for all k, roti→k4 is honestly generated with randomness ri→krot and messages {labw,b}w∈Pk,b.

– Trapdoor witness. (ncomi→j
1 , ncomi→j

2 , ncomi→j
3) is an honest commitment of t with ran-

domness ri→jncom such that t is a valid trapdoor with respect to td1,j .

• Circuit. The circuit Ci does the following.

– Hardwired Inputs. rmpc2,i,
{
stj→ia

}
j
, and

{
zapi→j1,a

}
j

– Inputs.
{
zapj→i2,a

}
j

– Computation. If for all j,
(
zapi→j1,a , zap

j→i
2,a

)
is a valid proof of the statement stj→ia , output

rmpc2,i. Otherwise, output ⊥.

• Protocol Description.

1. Pi computes/broadcasts the following:

– Trapdoor generation protocol: td1,i ← TDGen1(rtd,i)

For every j 6= i,

– All Commitments:
∗ rrecomi→j

1 ← rREcom1(ri→jrrecom)

∗ ncomi→j
1 ← Ncom1(ri→jncom)

– Reusable OT: roti→j1 ← rOT1(ri→jrot)

36

2. Pi computes/broadcasts the following. For every j 6= i:

– Trapdoor generation protocol: tdi→j2 ← TDGen2

– ZAP: zapi→j1,a ← ZAP1, zap
i→j
1,b ← ZAP1

– All Commitments:
∗ rrecomi→j

2 ← rREcom2

∗ ncomi→j
2 ← Ncom2

– Reusable OT: roti→j2 ← rOT2

For the kth reuse session, computes the following.

3. Pi computes/broadcasts the following.

– Reusable MPC: rmpc1,i ← rMPC1(xi, ri). Here, xi is Pi’s input.

– Let td2,i be the concatenation of tdj→i2 for all j 6= i.
Trapdoor generation protocol: td3,i ← TDGen3(td1,i, td2,i, rtd,i).

For every j 6= i:

– All commitments.
∗ rrecomi→j

3 ← rREcom3((xi, ri), rrrecom) commits to input xi and randomness ri used
for the semi-malicious protocol.

∗ ncomi→j
3 ← Ncom3(t, rncom) commits to a random string t. (Note that parties keep

committing to a new string t for each reuse session until the first reuse session where
the third round messages do not cause an abort. In this case, this non-malleable
commitment is fixed and shall be sent in all future reuse session as the third round
message of the non-malleable commitment protocol.)

– Sample zapi→j2,a ← ZAP2 such that (zapj→i1,a , zap
i→j
2,a) proves the statement sti→ja using the

honest witness. Note that zapi→j2,a will not be sent.

– roti→j3 ← rOT3(zapi→j2,a , r
i→j
rot). Here, Pi is the receiver in the OT protocol with choice

bits zapi→j2,a .

4. Pi computes/broadcasts the following.

– Check Trapdoor validity: if there exists j such that (td1,j , td2,j , td3,j) is invalid, abort.
– Reusable rewind-secure MPC: rmpc2,i ← rMPC2(xi, ri). Note that rmpc2,i will not be

sent.
– Garbled Circuits: Ĉi, where (Ĉi, {labw,b}w,b)← Garble(Ci, rgc,i).

For every j 6= i:

– OT messages: roti→j4 ← rOT4({labw,b}w∈Pj ,b, r
i→j
rot). That is, Pi is the sender in the OT

protocol with party j’s input labels as its messages.
– In order to facilitate other parties to recover the input labels corresponding to Pi for the

garbled circuit Ĉj , Pi shall send its secret state to other parties.
However, instead of broadcasting ri→jrot as did in [CCG+20], parties shall broadcast the
secret-key for decrypting the ciphertext of the last round (refer to Remark 3).
This change is necessary as the rOT is no longer reusable if the entire secret state ri→jrot

is revealed.
– Sample zapi→j2,b ← ZAP2 such that (zapj→i1,b , zap

i→j
2,b) proves the statement sti→jb using the

honest witness.

• Output Computation. Party Pi computes the following.

– Verify that (zapj→i1,b , zap
i→j
2,b) is a valid proof of the statement sti→jb .

37

– Extract the OT messages: for all j 6= i, and for all k 6= j, extract {labw,b}w∈Pk
from rotj→k4 .

This is feasible since Pk broadcasts the decryption key for the rOT messages it receives.

– Evaluate the garbled circuits: for all j 6= i, rmpc2,j = Eval(Ĉj , {labw,b}w).

– Given all the messages {rmpci,j}i∈[2],j∈[n] of the semi-malicious MPC protocol, evaluate the
output of the protocol.

Figure 11: A formal description of our reusable MPC protocol

7.3 The Simulator
Our simulator is similar to [CCG+20]. We formally state it below.

Step 1. Check Adversary Abort. In this step, the simulator checks if the adversary aborts all reuse
sessions or not.

• The simulator follows the honest party’s protocol using input 0.

• It runs all the reuse sessions until there is one reuse session where the adversary does not abort
the third round.

• Check Abort. If the adversary aborts in all reuse sessions, the simulator aborts and outputs the
view of the adversary. Otherwise, we say the check abort step succeeds. Let us denote this reuse
session where the adversary sends an accepting third-round message for the first time by u.

• Check Implicit Abort. If the adversary did not abort explicitly, the simulator now runs a
lookahead thread to extract the proof zap1,a from the reusable OT protocol. As long as there is
one malicious party whose proof does not verify, we call this implicit abort.

Remark 5. Recall in our reusable OT protocol, two seeds r(i)
0 , r

(i)
1 are committed using the delayed-input

extractable commitment scheme in the third round. When one extracts from the rOT protocol, one extracts
the key committed in the first round of the delayed-input extractable commitment scheme, which, in turn,
allows extraction of r(i)

0 , r
(i)
1 and further allows extraction of the choice bits.

Moreover, the extraction of the key allows the extraction of choice bits for all future third-round rOT
messages (as they all share the fixed first-round message). Therefore, this extraction only needs to be run
once.

Step 2. Rewinding. The simulator runs a set of lookahead threads as follows.

• The simulator rewinds the protocol to the completion of the first round and runs a number of
lookahead threads.

• In each lookahead thread, the simulator uses the honest party’s strategy using input 0. It runs
until this thread satisfies that (1) the first u − 1 reuse sessions aborts and (2) the third-round
message of the u-th reuse session is accepting.

• No Abort Case.

– We say a lookahead thread is GOOD (with respect to some honest party i) if, in the u-th
reuse session, all malicious parties’ third-round message is accepting and the proofs zap1,a

extracted from their rOT message (to party i) verify.

– The simulator runs as many lookahead threads as needed to get 12λ GOOD threads.

• Implicit Abort Case.

38

– We say a lookahead thread is IMPLICIT if, in the u-th session, all malicious parties’ third-
round message is accepting.

– The simulator runs as many lookahead threads as needed to get 12λ IMPLICIT threads.

Step 3. Extraction. In this step, the simulator extracts the trapdoors and inputs.

• Without loss of generality, assume 12λ > 5n.

• No abort case. Since there are > 5n GOOD threads, there exists an honest party i∗ such
that there exist 5 GOOD threads with respect to i∗. Using these 5 GOOD threads to extract
the trapdoor and input from all adversaries. Note that 5 accepting transcripts are sufficient for
extracting both the inputs and trapdoors.

• Implicit abort case. Similar to no abort case, except that only trapdoors are extracted.

Step 4. Estimating abort probability. Recall that T denotes the number of lookahead threads sampled
in order to get 12λ GOOD or IMPLICIT threads. Set ε′ = 12λ/T to be the estimation of abort probability.

Step 5. Re-sampling the main thread. The simulator now re-samples the main thread until the u-th
reuse session’s third round. That is, in the first u− 1 reuse session, the adversary aborts in the third round.
In the u-th session, the adversary’s third-round messages are accepting.

• It uses the honest party’s strategy with input 0 in the first u− 1 reuse sessions.

• In the third round of the u-th reuse session, it does the following

– The non-malleable commitment is committed to the extracted trapdoor.

– The proof zap1,a is generated using the trapdoor witness.

– The rREcom commits to 0 as its input.

– For the first message of the MPC, sample it using the simulator of the semi-malicious MPC.

• Abort and re-sample condition.

– In the no abort case, it ensures that in the first u− 1 reuse sessions, the adversary all aborts
in the third round. Only in the third round of the u-th reuse session, the adversary does not
abort and the extracted proof zap1,2 also verifies.

– In the implicitly abort case, it ensures that in the first u − 1 reuse sessions, the adversary
all aborts in the third round. In the third round of the reuse session, the adversary does not
abort and the extracted proof zap1,2 does not verify.

– It runs for at most min(2λ, λ2/ε′) times.

Step 6. Finishing the main thread. The simulator now finishes the main thread. This includes not
only the fourth round of u-th reuse session but all future reuse sessions.

• For the fourth round of the current freezed reuse session:

– No abort case.

∗ Query the ideal functionality and get the output.
∗ Invoke the simulator of the semi-malicious MPC with the obtained output and generate

the simulated second-round message rmpc2,i.
∗ Invoke the simulator of the garbled circuit with rmpc2,i as the output.
∗ The fourth round of the OT message is sampled using the simulated labels as input

39

messages.
∗ The proof zapb,2 is sampled using the trapdoor witness.
∗ It checks the fourth-round message sent by the adversary, if they are accepting, instruct

the ideal functionality to send the output to the honest party. Otherwise, instruct the
ideal functionality to send ⊥ to the honest parties.

– Implicit abort case.

∗ Invoke the simulator of the garbled circuit with ⊥ as the output.
∗ The fourth round of the OT message is sampled using the simulated labels as input

messages.
∗ The proof zapb,2 is sampled using the trapdoor witness.
∗ Instruct the ideal functionality to send ⊥ to the honest party.

• For all future reuse sessions:

– The third round is sampled similarly in step 5. That is,

∗ The non-malleable commitment is sampled using the trapdoor.
∗ The proof zap1,a is sampled using the trapdoor witness.
∗ The rREcom commits to 0.
∗ The first round message of the MPC is sampled using the simulator.
∗ Determine abort case. Based on the adversary’s third round message, we label this

session either as explicit abort, implicit abort, or no abort.

– The fourth round is sampled similarly as above. If the adversary explicitly aborts, no message
needs to be sent. If the adversary either implicitly aborts or does not abort, we use the
strategy described above.

Running time of the simulator. Following a similar analysis as in [CCG+20], we remark that the
simulator shall run in the expected polynomial time. Fix u to be the first reuse session that the third round
is accepting. Assume that the simulator goes into step 2 with probability ε. The only steps where the
adversary might run in exponential time are

• Step 2, where the simulator samples 12λ lookahead threads for extraction. The expected total number
of threads of this is 12λ/ε.

• Step 5. By similar analysis in [BGJ+18], if the probability estimation is correct, this step ends in λ2/ε
steps. However, there is a 2−λ probability that the probability estimation is wrong, in which case, the
simulator will end in at most 2λ steps.

Overall, for a fixed u, the total expected running time is

poly(λ) + poly(λ) · ε ·
(
12λ/ε+ (1− 2−λ) · λ2/ε+ 2−λ · 2λ

)
= poly(λ).

Since there are at most polynomially many reuse sessions, the overall running time is again expected poly-
nomial.

7.4 The Hybrids
Assume that there is an adversary that can distinguish the real and ideal world by a non-negligible advantage.
Recall that u is the first reuse session such that the check abort step succeeds at the u-th session. Since
there are at most polynomial reuse sessions, there must exist a u such that the adversary can distinguish
the real and ideal world conditioned on u by a non-negligible advantage µ.

HybREAL. This is the real world.

40

Hyb0. Determine Abort in the 3rd round and extraction.

• The simulator executes the protocol using the honest party’s strategy. If the adversary aborts in every
third-round message across all reuse sessions, the simulator outputs the view of the adversary and
aborts.

• If “check abort” succeeds (i.e., there is one reuse session where the adversary does not abort in the
third-round message.), the simulator checks if there is an implicit abort by extracting zap2,a from the
rOT protocol.

• In either no-abort or implicit-abort cases, the simulator rewinds the execution to after the completion
of the first round. It generates 5nλ

µ lookahead threads. In each lookahead, it uses the honest parties’
strategy and inputs.

• In the case of implicit-abort, the simulator extracts the trapdoors and proofs. In the cases of no-abort,
the simulator extracts the inputs, trapdoors, and proofs.

• The simulator outputs ⊥extract if the extraction fails in either case.

• The simulator now re-samples the main thread from the completion of round 1. It rewinds and re-
samples the main thread for at most λ

µ times for this step.

Since we assume µ is non-negligible, this hybrid will end in polynomial time.

Hyb1. Using input 0 in the aborting step. In this hybrid, the “check abort” is done using the fake
input 0. We switch to this hybrid in a sequence of hybrids as follows.

• Hyb1,0. Switch the rOT choice bits to 0. That is, for all honest parties, the simulator sends
rOTi→j3 (0) instead of rOTi→j3 (zapi→j2,a).

• Hyb1,1. Switch the rREcom to 0. That is, the input committed in rREcom is switched from honest
input to 0.

• Hyb1,2. Switch the input of Π to 0. That is, we switch the input to the two-round semi-malicious
MPC protocol Π from honest input to 0.

• Hyb1,3. Switch the rOT choice bits to zapi→j2,a . We finally switch the choice bits in the OT protocol
from 0 to the honest proof zapi→j2,a .

Hyb2. Using input 0 in the lookahead thread. The simulator does this switch one lookahead thread
at a time. In each lookahead thread, the simulator switches things in a sequence of hybrids as follows.

We note that within each lookahead thread, we again switch things one reuse session at a time.
For every k, the following changes are only made to the k-th lookahead thread.

• Hyb2,k,0. Switch the Ncom. In the k-th lookahead thread, for the non-malleable commitment, the
simulator, instead of committing to a random string, commits to the trapdoor extracted from other
reuse sessions.

• Hyb2,k,1. Switch the ZAP proof. In the k-th lookahead thread, the simulator samples zap2,a using
the trapdoor witness (instead of the honest witness).

• Hyb2,k,2. Switch the rEcom. In the k-th lookahead thread, the simulator samples rEcom3 commits to
the input 0 (instead of the honest input).

• Hyb2,k,3. Switch the input of Π to 0. In the k-th lookahead thread, the simulator generates the
first round message of Π using input 0 (instead of the honest input).

• Hyb2,k,4. Switch the ZAP proof. In the k-th lookahead thread, the simulator now samples zap2,a

back to using the honest witness.

41

• Hyb2,k,5. Switch the Ncom. In the k-th lookahead thread, for the non-malleable commitment, the
simulator switches back to committing to a random string.

Additionally, we shall also switch the input from honest to 0 for the first u − 1 reuse sessions of the main
thread.

Hyb3. Switch Ncom to commit to the extracted trapdoor in the main thread. As described in
the simulator, if the check abort step succeeds at the u-th reuse session. Our re-sampled main thread will
also maintain that the u-th session is the first session, where the adversary does not abort. We shall switch
the Ncom to trapdoor for all reuse sessions starting from u. (Recall that once a reuse session does not abort
in the third round, the non-malleable commitment is fixed for all reuse sessions in the future.)

Hyb4. Switch the proof zapa,2 to using the trapdoor witness in the main thread. This is done
one reuse session at a time starting from the u-th reuse session.

Hyb5. Switch the proof zapb,2 to using the trapdoor witness in the main thread. This is again
done one reuse session at a time starting from the u-th reuse session.

Hyb6. Switch rREcom to commit to 0 in the main thread. This is done one reuse session at a time
starting from the u-th reuse session.

Hyb7. Simulate Π in the main thread. This is done one reuse session at a time starting from the u-th
reuse session. The simulator queries the ideal functionality and obtains the output of the protocol. Using
this output, it simulates the rMPC messages.

Hyb8. Simulate the Garbled Circuit in the main thread. This is done one reuse session at a time
starting from the u-th reuse session. Depending on implicit abort or no abort, the simulator for the garbled
circuit is invoked with output ⊥ or rmpc2,i.

HybIDEAL. Run the actual probability estimation. In this hybrid, the simulator does not sample only
5nλ/µ threads but as many as needed to get 12λ GOOD thread. It also estimate the abort probability
ε′ = 12λ/T and continues to re-sample the main thread at most min(2λ, λ2/ε′) times.

7.5 Indistinguishability of Hybrids.
Our proof follows the same proof structure as in [CCG+20]. We shall highlight if there is a difference in the
proof due to reuse.

As in [CCG+20], we maintain the following invariant.

Definition 16 (Invariant). We say Event occurs if there exists an i, j, k such that

• Pi is an honest party, Pj is a malicious party, and k is a reuse session.

• ExtNMCom from the non-malleable commitment transcript ncomj→i
1 , ncomi→j

2 , ncom
j→i,(k)
3 outputs ti.

• TDValid(td1,i, ti) = 1.

That is, Event happens if the extractor outputs a valid trapdoor ti from the non-malleable commitment from
a malicious party Pj to an honest party Pi in some reuse session. The invariant we maintain is

Pr[Event] 6 negl(λ).

Claim 23. The invariant holds in the hybrid HybREAL.

42

Proof. The proof of [CCG+20] shows that if Event happens with non-negligible probability, one can break the
1-rewind-security of the trapdoor. In particular, the adversary interacts with the external challenger for the
trapdoor generation protocol. It simulates the hybrids by simulating all the messages except for the trapdoor
generation protocol between i and j. Here, td1,i is set to be td1 it receives from the external challenger. It
forwards td2,i to the external challenger as td2 and receives back td3, which is set to be td3,i. It then freezes
the first round of the hybrid and simulates another thread. Again, it simulates all the messages except for
the TD protocol between i and j, which he again receives from the external challenger. It then invokes
the extractor ExtNMCom to extract the message committed by Party j. If Event happens with non-negligible
probability, ExtNMCom will output a valid trapdoor with non-negligible probability and, hence, breaking the
1-rewind-security of the trapdoor generation protocol.

In the reuse setting, we need to simulate all reuse sessions when we simulate the hybrids. However, since
the trapdoor generation protocol has a fixed third-round message across all reuse sessions, receiving td3 from
the external challenger enables us to simulate all reuse sessions.

Claim 24. The invariant holds in Hyb0.

Proof. Since there is no change in the main thread. The invariant continues to hold.

Claim 25. Hyb0 is indistinguishable from HybREAL with probability 6 µ
4 + negl(λ).

Proof. The proof is similar to [CCG+20]. If the probability of “not abort” in the check abort step is < µ/4,
then the claim is correct as there is no difference when the adversary aborts.

If the adversary does not cause an abort with probability > µ/4, then by Chernoff bound, with 1 −
negl(λ) probability, there will be 5 GOOD thread with respect to some honest party i∗ out of 5nλ

µ threads.
Additionally, given 5 GOOD threads, the extraction succeeds with overwhelming probability.

Finally, out of λ/µ thread, we will successfully re-sample the main thread with overwhelming probability.
Hence, the claim is correct.

In the rest of the proof, we only focus on the no-abort case. Implicit abort can be handled similarly.

Claim 26. The invariant holds in Hyb1,0.

Proof. Since there is no difference in the main thread, the invariant still holds.

Claim 27. Assuming the hiding property of the reusable OT against malicious senders, Hyb1,0 is indistin-
guishable from Hyb0.

Proof. Similar to [CCG+20], we shall prove that switching the OT protocol between every pair of parties
(i, j) one at a time is indistinguishable. Since there are at most n2 such pairs, one concludes that Hyb1,0 is
indistinguishable from Hyb0.

Note that, in our case, there are multiple reuse sessions and we rely on the external challenger to generate
all the rOT messages in all reuse sessions. However, since the receiver’s privacy of rOT holds in the reuse
setting. The distinguishability of the two hybrids still results in a successful attack on the receiver’s privacy
in rOT.

Consider the adversary that interacts with an external challenger for the rOT protocol. The adversary
simulates the protocol for all messages except for the rOT protocol between the receiver Party i and the
sender Party j. It forwards the message it receives from the external challenger as the receiver’s message for
party i and forwards the message it receives from Party j as the malicious sender’s message to the external
challenger. For every reuse session, it gives the external challenger zapi→j2,a and 0. The external challenger
either always uses the input zapi→j2,a or always uses 0. Therefore, if the two hybrids are distinguishable, we
break the receiver’s privacy of the reusable OT protocol.

Claim 28. The invariant holds in Hyb1,1.

Proof. Since there is no difference in the main thread, the invariant still holds.

Claim 29. Assuming the hiding property of the rREcom, Hyb1,1 is indistinguishable from Hyb1,0.

43

Proof. If the two hybrids are distinguishable, we break the reusable privacy of rREcom. Note that since there
are multiple reuse sessions, we rely on the external challenger to send all the third-round messages. Recall
that in the third round, the sender sends {k ⊕ pj(0), pj(z)}j (which is identical across all reuse sessions)
and additionally, SKE.Enc(k,m(i)) committing to some m(i) in the i-th session. Since k is hiding, by the
CPA-security of the SKE scheme, we can switch all the inputs from honest to 0 without being detected.

Claim 30. The invariant holds in Hyb1,2.

Proof. Since there is no difference in the main thread, the invariant still holds.

Claim 31. Assuming the privacy of Π, Hyb1,2 is indistinguishable from Hyb1,1.

Proof. We switch the input from honest to 0 one reuse session at a time.
Note that we use a two-round semi-malicious protocol that is computed in the third round and fourth

rounds. Hence, the instance of Π in each reuse session is completely independent of each other. Consequently,
the reduction from the indistinguishability of switching the input of Π in one reuse session to the privacy of
Π is straightforward. That is, we only rely on the external challenger to send us one message, which is the
first round message of Π using either honest input or 0, and this enables us to simulate the entire hybrid.
Hence, if Hyb1,2 and Hyb1,1 are distinguishable, we break the privacy of Π.

Claim 32. The invariant holds in Hyb1,3.

Proof. Since there is no difference in the main thread, the invariant still holds.

Claim 33. Assuming the receiver privacy of the reusable OT, Hyb1,3 and Hyb1,2 are indistinguishable.

Proof. The proof is analogous to the proof of Claim 27.

As we go into switching things in the lookahead thread. We now argue that the invariant holds even in
the lookahead thread as well. Initially, all the lookahead threads are the same as the main thread. Therefore,
by Claim 23, the invariant holds in every lookahead thread.

Claim 34. Assuming the non-malleability with respect to the extraction property of Ncom, the invariant
holds in the Hyb2,k,0.

Proof. If the invariant does not hold, we shall construct an adversary that breaks the non-malleability with
respect to extraction of the Ncom. In particular, the adversary ANcom picks a random honest party i,
malicious party j, and a reuse session k. It simulates all messages of the hybrid except for those in the non-
malleable commitment protocol between i and j, which it receives from the external challenger. Note that our
reusable non-malleable commitment allows the adversary to get multiple third-round messages committing
to random messages before finally obtaining the challenge commitment. Therefore, the adversary gets third-
round messages of the Ncom from all reuse sessions from the external challenger.

The adversary also creates 5 lookahead threads as the hybrid described. With non-negligible probability,
those 5 lookahead threads are GOOD with respect to some honest party. Therefore, we extract the trapdoor
from j with a non-negligible probability. The trapdoor tj and a random message r are forwarded to the
external challenger and the challenge commitment commits to either one of them.

Depending on which message the commitment commits to, we either simulate Hyb2,k,0 or Hyb2,k−1,5.
Since the invariant holds in the previous hybrid and does not hold in this hybrid, if ExtNMCom outputs a valid
trapdoor, we must be in hybrid Hyb2,k,0. This breaks the non-malleability with respect to extraction.

Claim 35. Assuming the hiding property of Ncom, Hyb2,k,0 is indistinguishable from Hyb2,k−1,5.

Proof. The changes are made in the lookahead thread. To prove indistinguishability, we shall prove that the
extraction continues to succeed. We already established that the invariant holds in this hybrid. Therefore, if
the proof zap2,a verifies, with overwhelming probability, the transcript is well-formed. Therefore, as long as
we prove that the probability of zap2,a verifies only changes negligibly, the probability that we receive a well-
formed transcript is almost the same, and hence, the extraction succeeds with almost the same probability.

Now, assume for contradiction that the probability of zap2,a verifying changes by a non-negligible amount,
we shall break the hiding property of Ncom as follows. The adversary ANcom picks a random honest party i,

44

malicious party j, and a reuse session k. It simulates all messages of the hybrid except for those in the non-
malleable commitment protocol between i and j, which it receives from the external challenger. Note that our
reusable non-malleable commitment allows the adversary to get multiple third-round messages committing
to random messages before finally obtaining the challenge commitment. Therefore, the adversary gets third-
round messages of the Ncom from all reuse sessions from the external challenger.

The adversary also creates 5 lookahead threads as the hybrid described. With non-negligible probability,
those 5 lookahead threads are GOOD with respect to some honest party. Therefore, we extract the trapdoor
tj with a non-negligible probability. Now the adversary sends tj and a random value r to the external
challenger and receives back a challenge commitment. It then forwards this message to the adversary and
receives back the third-round message of the reusable OT protocol, from which he can extract the proof
zap2,a. Now the adversary checks if the proof zap2,a verifies. If so, it guesses the committed message to be
tj ; otherwise, it guesses r. Since there is a non-negligible difference in the probability that zap2,a verifies,
one distinguishes the commitment of tj from r with a non-negligible advantage.

Claim 36. Assuming the witness indistinguishable property of the ZAP, the invariant continues to hold in
Hyb2,k,1.

Proof. We know the invariant holds in the previous hybrid. If the invariant does not hold in this hybrid, we
may break the witness indistinguishability of ZAP as follows.

The adversary Azap shall simulate all messages in the hybrid except for the ZAP proof that we are
switching (i.e., a single instance of the ZAP protocol). Observe that although the ZAP instances in different
reuse sessions might share the same first-round message, we do not rely on the external challenger to generate
those proofs for us since the prover has no secret state.

Now, the adversary also creates 5 lookahead threads, which is GOOD with respect to some party with a
non-negligible probability. From these lookahead threads, it extracts the trapdoor tj from party j. It then
forwards the statement and two witnesses (the trapdoor witness and the honest witness) to the external
challenger and receives back proof using one of them.

Now, Azap runs the extractor ExtNMCom and extracts the trapdoor from the non-malleable commitment
from the adversary and checks if it is valid. If it is valid, it guesses that the witness is the trapdoor witness.
Otherwise, it guesses the witness to be the honest witness. Since there is a non-negligible change in the
probability if the extracted value is a valid trapdoor or not, this breaks the witness indistinguishability of
the ZAP protocol.

Claim 37. Assuming the witness indistinguishable property of the ZAP, Hyb2,k,1 is indistinguishable from
Hyb2,k,0.

Proof. The changes are in the lookahead thread; we need to guarantee that the extraction succeeds with
roughly the same probability. Since we have already established that the invariant holds, it must be the case
that the transcript is well-formed if the proof verifies. Therefore, if the two hybrids are distinguishable, it
must be the case that the probability that some of those proofs verify changes non-negligibly. We shall use
this non-negligible difference to distinguish which witness the external challenger uses. The rest of the proof
is similar to the proof of Claim 35 and Claim 36.

Claim 38. The invariant holds in Hyb2,k,2.

Proof. This is done by a sequence of hybrids.

• In this hybrid, we switch the non-interactive commitment Com in the construction of rREcom from
committing to pi to junk values ⊥.

Claim 39. The invariant holds in this hybrid.

Proof. We switch the Com one at a time and show that if the invariant does not hold, then we break
the hiding property of Com.

Specifically, the adversaryACom sends the external challenger pi and⊥, and receives back a commitment
c. It simulates the hybrids as described except for the commitment (that commits to either pi or ⊥).

45

It then runs several lookahead threads and invokes ExtNMCom to extract the committed value t. If t is
a valid trapdoor, it outputs ⊥; otherwise, it outputs pi.
Since the invariant holds in the previous hybrid, if it does not hold in this hybrid, the adversary breaks
the hiding property of Com with a significant advantage.

• In this hybrid, instead of sending {pi(0)⊕ k, pi(zi)}i,SKE.Enc(k, input) as the third round message of
rREcom, the simulator sends {Ui, pi(zi)}i,SKE.Enc(k, input), where Ui is uniformly random.

Claim 40. The invariant holds in this hybrid.

Proof. Note that we only need 3 lookahead threads to extract the non-malleable commitment using
ExtNMCom and the trapdoor. Since our polynomial is of degree B = 4, getting 3 evaluations of the
degree-4 polynomial, the evaluation pi(0) is still uniformly random. Hence, if the invariant holds in
the previous hybrid, the invariant must also hold in this hybrid.

• In this hybrid, we switch the input to 0. That is, in the last round of rREcom, we send {Ui, pi(zi)}i,SKE.Enc(k, 0).

Claim 41. The invariant holds in this hybrid.

Proof. This is due to the CPA security of the SKE scheme. The proof is similar to the proof of
Claim 39.

• In this hybrid, we switch the third round of the commitment back to {pi(0)⊕k, pi(zi)}i,SKE.Enc(k, 0).

Claim 42. The invariant holds in this hybrid.

Proof. The proof is identical to the proof of Claim 40.

• In this hybrid, we switch the non-interactive commitment Com in the construction of rREcom from
committing to junk ⊥ to pi.

Claim 43. The invariant holds in this hybrid.

Proof. The proof is identical to the proof of Claim 39.

Note that the final hybrid is identical to hybrid Hyb2,k,2 and proof is done.

Claim 44. Hyb2,k,2 is indistinguishable from Hyb2,k,1.

Proof. Similar to the proof of Claim 35, we just need to prove that the extraction continues to hold. As
we have already established the invariant, proving that the probability that zap2,a verifies only changes
negligibly suffices to prove that the probability of well-formedness of the transcript only changes negligibly.

The proof of this is done similarly to Claim 35 using the sequence of sub-hybrids as in the proof of
Claim 38. Note that, we only need 3 lookahead threads to extract the message in Ncom, the trapdoor, and
the proof zap2,a in the reusable OT. Since we use a polynomial of degree-4 in our commitment schemes, it
is indistinguishable to make those switches.

Claim 45. Assuming the privacy of the reusable MPC protocol, the invariant holds in Hyb2,k,3.

Proof. The proof is similar to the proof of Claim 36. Note that every instance of the MPC protocol in each
reuse session is independent of the others. Hence, we only rely on the external challenger to send us one
message, i.e., the MPC message that we are switching. And we can simulate all other messages in the hybrid
ourselves.

Claim 46. Assuming the privacy of the reusable MPC protocol, Hyb2,k,3 is indistinguishable from Hyb2,k,2.

Proof. The proof is similar to the proof of Claim 37 and Claim 45.

46

Claim 47. Assuming the witness indistinguishability of the ZAP, the invariant holds in Hyb2,k,4.

Proof. This proof is identical to the proof of Claim 36.

Claim 48. Assuming the witness indistinguishability of the ZAP, Hyb2,k,4 is indistinguishable from Hyb2,k,3.

Proof. This proof is identical to the proof of Claim 37.

Claim 49. Assuming the non-malleable with respect to extraction of Ncom, the invariant holds in Hyb2,k,5.

Proof. This proof is identical to the proof of Claim 34.

Claim 50. Assuming the hiding property of the non-malleable commitment scheme, Hyb2,k,5 is indistin-
guishable from Hyb2,k,4.

Proof. This proof is identical to the proof of Claim 35.

Claim 51. Assuming the non-malleable with respect to extraction property of Ncom, the invariant holds in
Hyb3.

Proof. The proof is identical to the case when we switch the non-malleable commitment in the lookahead
thread (Claim 34).

Claim 52. Assuming the hiding property of the Ncom, Hyb3 is indistinguishable from Hyb2.

Proof. If these two hybrids are not indistinguishable, then we shall break the hiding property of the non-
malleable commitment.

Consider the adversary ANcom that interacts with the external challenger. It simulates the hybrids exactly
as described except for the non-malleable commitment protocol, which is exposed to the external challenger.

It runs 5 lookahead threads, which extract the input, trapdoor, and zap proof with non-negligible proba-
bility. Note that in the lookahead thread, the simulator is committing to a random string in the non-malleable
commitment. We can ask the external challenger to provide those messages as the hiding property of the
non-malleable commitment holds in the reusable setting.

Finally, it sends the external challenger the extracted trapdoor and a random string and receives back
a commitment. This commitment is sent as the third round message of the non-malleable commitment
for all future reuse sessions in the main thread. Depending on which messages are committed, we either
simulate Hyb3 or Hyb2. Hence, if the two hybrids are distinguishable, we break the hiding property of the
non-malleable commitment.

Claim 53. Assuming the witness indistinguishable property of the ZAP, the invariant holds in Hyb4.

Proof. This proof is identical to the proof of Claim 36.

Claim 54. Assuming the witness indistinguishable property of the ZAP, Hyb4 is indistinguishable from Hyb3.

Proof. If these two hybrids are distinguishable, we shall break the witness indistinguishable property of
ZAP. The adversary Azap interacts with the external challenger. It simulates the hybrid exactly as described
except for the zap protocol that we are switching. It runs 5 lookahead threads to do the extraction. Note
that in those lookahead threads, we do not rely on the external challenger to generate any messages. Finally,
it sends the challenger the statement and the honest witness, and the trapdoor witness. And the challenger
replies with proof.

Depending on which witness the challenger uses, we either simulate Hyb4 or Hyb3. Together with the
efficient distinguisher for the two hybrids, we break the witness indistinguishability of the ZAP.

Claim 55. Assuming the witness indistinguishable property of the ZAP, the invariant holds in Hyb5.

Proof. Note that although we are modifying the fourth round of the main thread, it still might affect the
invariant since there are future reuse sessions. However, this claim can be identically proven as in the proof
of Claim 36.

Claim 56. Assuming the witness indistinguishable property of the ZAP, Hyb5 is indistinguishable from Hyb4.

47

Proof. This proof is identical to the proof of Claim 54.

Claim 57. Assuming the security of rREcom, Hyb6 is indistinguishable from Hyb5.

Proof. There is a potential circularity if we want to directly switch the input from honest to 0. In particular,
we need at least 5 lookahead threads to extract the adversary’s input. Note that we rely on the external
challenger to generate the rREcommessages in the lookahead threads. However, given these many rewindings,
switching the input from honest to 0 could be distinguishable. To avoid this circularity issue, we shall first
modify the lookahead threads and instruct them to send junk messages in the last round of the rREcom. We
shall argue that this does not harm extraction. Afterward, we can now switch the input from honest to 0 as
we no longer rely on the external challenger to sample those third-round rREcom messages in the lookahead
threads.

• In this hybrid, in the lookahead threads, the simulator sends {k ⊕ qi(0), qi(zi)}i,SKE.Enc(k, 0) in the
last round of the rREcom protocol for freshly sampled random polynomials q1, . . . , qN .

Claim 58. The invariant holds in this hybrid.

Proof. We shall break the hiding property of Com if the invariant does not hold. The adversary ACom

sends two polynomials pi and qi to the sender and the sender sends back a commitment of either pi or
qi. ACom proceeds to sample the hybrid except for the commitment of the i-th polynomial. It samples
the third round message of the rREcom as {k ⊕ qi(0), qi(zi)}i,SKE.Enc(k, 0).

If the commitment that the challenger sends commits to pi, we simulate this hybrid. If the commitment
that the challenger sends commits to qi, we simulate the previous hybrid.

ACom proceeds to generate 2 lookahead threads to extract the message committed in Ncom using
ExtNMCom. If it is a valid trapdoor, it guesses 1. Otherwise, it guesses 0.

Since the invariant holds in the previous hybrid, if it does not hold in this hybrid, we break the hiding
property of Com.

Claim 59. This hybrid is indistinguishable from the previous one.

Proof. This proof is similar to the proof of Claim 59. The only difference is that we do not need to
extract the message in the non-malleable commitment scheme but can directly use the distinguisher of
the hybrids.

• In this hybrid, we shall commit to 0 in the main thread.

Claim 60. The invariant holds in this hybrid.

Proof. If the invariant does not hold, we shall break the reusable security of rREcom.

The adversary ArREcom interacts with an external challenger. It simulates the hybrid as described
except for the rREcom instance that we switch. It forwards all of its inputs to the challenger and the
challenger is supposed to always commit to the honest input or 0 in all reuse sessions. Note that we
do not rely on the external challenger to generate the third-round message of the rREcom protocol for
us as they have already been switched to junk messages.

Next, ArREcom rewinds to sample one more thread to extract the message committed in Ncom. We will
rely on the external challenger to sample those rREcom messages in this rewinding step. However, the
polynomial is degree-4 and, hence, is secure against 1-rewinding.

Now, if the extracted message is a valid trapdoor, ArREcom outputs 1; otherwise, it outputs 0. If the
invariant does not hold in this hybrid, ArREcom breaks the hiding property of rREcom. This completes
the proof.

Claim 61. This hybrid is indistinguishable from the previous one.

48

Proof. The proof is similar to the proof of Claim 60. The only difference is that we do not need to
extract the message in the non-malleable commitment scheme but can directly use the distinguisher of
the hybrids.

• In this hybrid, we switch the last round of the rREcom protocol in the lookahead threads back to
honestly generated.

Claim 62. The invariant holds in this hybrid.

Proof. This proof is identical to the proof of Claim 58.

Claim 63. This hybrid is indistinguishable from the previous one.

Proof. This proof is identical to the proof of Claim 59.

Note that the last hybrid is exactly Hyb6 and the proof is done.

Claim 64. Assuming the privacy of the reusable MPC protocol, the invariant holds in Hyb7.

Proof. This proof is identical to the proof of Claim 45. Note that since the invariant holds in the previous
hybrid, the adversary must be behaving in a semi-malicious manner if the proof verifies.

Claim 65. Assuming the privacy of the reusable MPC protocol, Hyb7 is indistinguishable from Hyb6. Note
that since the invariant holds in the previous hybrid, the adversary must be behaving in a semi-malicious
manner if the proof verifies.

Proof. This proof is similar to the proof of Claim 54.

Claim 66. Assuming the security of the garbled circuit, the invariant holds in Hyb8.

Proof. This is done by two hybrids.

• In this hybrid, we shall first change the four-round OT message. We use the extracted receiver’s choice
bits and prepare the sender’s message using only the label corresponding to the receiver’s choice bits.
That is, in the step roti→j4 ← rOT4({labw,b}w∈Pj ,b, r

i→j
rot), only one label is provided for every input

wire and the sender is using this label as both of its input messages.

Claim 67. The invariant holds in this hybrid.

Proof. If the invariant does not hold in this hybrid, we shall break the sender’s security of the reusable
OT protocol.

The adversary ArOT interacts with an external challenger. It simulates the hybrids as described except
for the reusable OT protocol, which is exposed to the external challenger. It generates 5 lookahead
threads to do the extraction. Note that we do not rely on the external challenger to generate the
second sender’s message in those lookahead threads as those messages are purely random strings.

Now it provides the challenger with both of the labels and the challenger is supposed to either use only
one of them or both of them. Depending on which case the challenger selects, we either simulate this
hybrid or the previous one.

Next, ArOT rewinds the adversary to extract the message in the Ncom using ExtNMCom. (Again, we
do not need the external challenger to generate the second-round rOT message as they are random
strings) If the extracted value is a valid trapdoor, it guesses 1; otherwise, it guesses 0. If the invariant
does not hold in this hybrid, this breaks the hiding property of the reusable OT protocol.

• In this hybrid, the simulator invokes the simulator of the garbled circuit with the output corresponding
to either ⊥ or rmpc2,i depending on implicit abort or no abort.

Claim 68. The invariant holds in this hybrid.

49

Proof. The proof is similar to the proof of Claim 67. Note that the garbled circuit is only used in the
fourth round. Hence, the adversary has no issue generating the lookahead threads.

Claim 69. Assuming the security of the garbled circuit, Hyb8 is indistinguishable from Hyb7.

Proof. This proof is similar to the proof of Claim 66. The only difference is that we do not need to extract
the committed message inside Ncom but can directly invoke the distinguisher for the hybrids to break the
corresponding securities.

Claim 70. The invariant holds in HybIDEAL.

Proof. Since the main thread is identical to the previous one, the invariant still holds.

Claim 71. HybIDEAL and Hyb8 is indistinguishable except with probability 6 µ
4 + negl(λ).

Proof. Suppose the probability that the adversary does not abort in the check abort step is < µ/4, then the
claim is correct as there is no difference when the adversary aborts.

Suppose the probability that the adversary does not abort is > µ/4, then out of 5nλ/µ threads, there
will exist 5 GOOD threads with some party i∗ with overwhelming probability. Additionally, the simulator
will run in the expected polynomial time to get 12λ GOOD threads.

The only difference is that the simulator tries to re-sample the main thread for at most min(2λ, λ2/ε′)
times instead of λ/µ times. By the same argument as in [CCG+20], it can be shown that the two hybrids
are indistinguishable in this case.

References
[ACJ17] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to round-optimal

secure multiparty computation. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part I, volume 10401 of LNCS, pages 468–499. Springer, Heidelberg, August 2017. 3

[AJJM20] Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. Multi-key fully-
homomorphic encryption in the plain model. In Rafael Pass and Krzysztof Pietrzak, editors,
TCC 2020, Part I, volume 12550 of LNCS, pages 28–57. Springer, Heidelberg, November 2020.
3, 4, 9, 34

[AJJM21] Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. Unbounded multi-
party computation from learning with errors. In Anne Canteaut and François-Xavier Standaert,
editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages 754–781. Springer, Heidel-
berg, October 2021. 3, 4, 9, 34

[BGJ+18] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana,
and Amit Sahai. Promise zero knowledge and its applications to round optimal MPC. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS,
pages 459–487. Springer, Heidelberg, August 2018. 3, 15, 40

[BGMM20] James Bartusek, Sanjam Garg, Daniel Masny, and Pratyay Mukherjee. Reusable two-round
MPC from DDH. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume
12551 of LNCS, pages 320–348. Springer, Heidelberg, November 2020. 3, 4, 9, 34

[BGSZ22] James Bartusek, Sanjam Garg, Akshayaram Srinivasan, and Yinuo Zhang. Reusable two-round
MPC from LPN. In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors, Public-Key
Cryptography - PKC 2022 - 25th IACR International Conference on Practice and Theory of
Public-Key Cryptography, Virtual Event, March 8-11, 2022, Proceedings, Part I, volume 13177
of Lecture Notes in Computer Science, pages 165–193. Springer, 2022. 3, 4, 34

50

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure computation
without setup. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of
LNCS, pages 645–677. Springer, Heidelberg, November 2017. 3

[BJKL21] Fabrice Benhamouda, Aayush Jain, Ilan Komargodski, and Huijia Lin. Multiparty reusable
non-interactive secure computation from LWE. In Anne Canteaut and François-Xavier Stan-
daert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages 724–753. Springer,
Heidelberg, October 2021. 3, 4, 9, 34

[BJY97] Mihir Bellare, Markus Jakobsson, and Moti Yung. Round-optimal zero-knowledge arguments
based on any one-way function. In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of
LNCS, pages 280–305. Springer, Heidelberg, May 1997. 5

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round oblivious
transfer via garbled interactive circuits. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 500–532. Springer, Heidelberg,
April / May 2018. 3

[BL20] Fabrice Benhamouda and Huijia Lin. Mr NISC: Multiparty reusable non-interactive secure
computation. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume 12551
of LNCS, pages 349–378. Springer, Heidelberg, November 2020. 3, 4, 9, 34

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols
(extended abstract). In 22nd ACM STOC, pages 503–513. ACM Press, May 1990. 3

[CCG+20] Arka Rai Choudhuri, Michele Ciampi, Vipul Goyal, Abhishek Jain, and Rafail Ostrovsky. Round
optimal secure multiparty computation from minimal assumptions. In Rafael Pass and Krzysztof
Pietrzak, editors, TCC 2020, Part II, volume 12551 of LNCS, pages 291–319. Springer, Heidel-
berg, November 2020. 3, 9, 15, 16, 32, 33, 34, 35, 37, 38, 40, 42, 43, 50

[CCG+21] Arka Rai Choudhuri, Michele Ciampi, Vipul Goyal, Abhishek Jain, and Rafail Ostrovsky. Obliv-
ious transfer from trapdoor permutations in minimal rounds. In Kobbi Nissim and Brent Waters,
editors, Theory of Cryptography - 19th International Conference, TCC 2021, Raleigh, NC, USA,
November 8-11, 2021, Proceedings, Part II, volume 13043 of Lecture Notes in Computer Science,
pages 518–549. Springer, 2021. 3

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In 41st FOCS, pages 283–293.
IEEE Computer Society Press, November 2000. 6, 15

[FJK21] Rex Fernando, Aayush Jain, and Ilan Komargodski. Maliciously-secure MrNISC in the plain
model. Cryptology ePrint Archive, Report 2021/1319, 2021. https://eprint.iacr.org/2021/1319.
3

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs based
on a single random string (extended abstract). In 31st FOCS, pages 308–317. IEEE Computer
Society Press, October 1990. 5

[FMV19] Daniele Friolo, Daniel Masny, and Daniele Venturi. A black-box construction of fully-simulatable,
round-optimal oblivious transfer from strongly uniform key agreement. In Dennis Hofheinz
and Alon Rosen, editors, TCC 2019, Part I, volume 11891 of LNCS, pages 111–130. Springer,
Heidelberg, December 2019. 3, 7

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker
keeping secret all partial information. In 14th ACM STOC, pages 365–377. ACM Press, May
1982. 23

[GMPP16] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou. The exact
round complexity of secure computation. In Marc Fischlin and Jean-Sébastien Coron, editors,
EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 448–476. Springer, Heidelberg, May
2016. 3, 4

51

https://eprint.iacr.org/2021/1319

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A com-
pleteness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC,
pages 218–229. ACM Press, May 1987. 3

[GPR16] Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable commitments. In
Daniel Wichs and Yishay Mansour, editors, 48th ACM STOC, pages 1128–1141. ACM Press,
June 2016. 34

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation from
minimal assumptions. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part II, volume 10821 of LNCS, pages 468–499. Springer, Heidelberg, April / May 2018. 3

[HHPV18] Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venkitasubra-
maniam. Round-optimal secure multi-party computation. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 488–520. Springer,
Heidelberg, August 2018. 3

[HLP11] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the web: Computing
without simultaneous interaction. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of
LNCS, pages 132–150. Springer, Heidelberg, August 2011. 3

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai. Effi-
cient non-interactive secure computation. In Kenneth G. Paterson, editor, EUROCRYPT 2011,
volume 6632 of LNCS, pages 406–425. Springer, Heidelberg, May 2011. 3

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer
- efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 572–591.
Springer, Heidelberg, August 2008. 3

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation. In Matthew
Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 335–354. Springer, Heidelberg,
August 2004. 3, 4, 7, 28

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptol., 4(2):151–158, 1991. 8, 28

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In S. Rao Kosaraju, editor,
12th SODA, pages 448–457. ACM-SIAM, January 2001. 22, 23

[ORS15] Rafail Ostrovsky, Silas Richelson, and Alessandra Scafuro. Round-optimal black-box two-party
computation. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II,
volume 9216 of LNCS, pages 339–358. Springer, Heidelberg, August 2015. 3, 7

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from one-way
functions. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 403–418. Springer,
Heidelberg, March 2009. 14

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In 22nd
ACM STOC, pages 387–394. ACM Press, May 1990. 15

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
FOCS, pages 162–167. IEEE Computer Society Press, October 1986. 3, 5

52

	Introduction
	Our Results

	Technical Overview
	Reusable Two-Party Computation
	Reusable Zero-Knowledge Argument of Knowledge
	Reusable Oblivious Transfer Protocol

	Reusable MPC

	Preliminaries
	Reusable Secure Two-Party Computation Protocol
	Reusable Secure Multiparty Computation
	Pseudorandom Generator, Pseudorandom Function, and Symmetric-key Encryption
	Garbled Circuits
	Extractable Commitment
	ZAP
	Trapdoor Generation Protocol

	Reusable Zero-knowledge Argument of Knowledge
	Construction
	Proof of Zero-knowledge
	Proof of Knowledge Extraction

	Reusable Oblivious Transfer Protocol
	A Building Block
	Our Construction
	Indistinguishability against a malicious sender.
	Simulation security for a malicious receiver.

	Reusable 2PC Protocol
	The Sender is Corrupt
	The Receiver is Corrupt

	Reusable MPC Protocol
	Additional Building Blocks
	A Rewind-secure Extractable Commitment Scheme for Reusable MPC
	(Reusable) Non-malleable Commitment.
	Two-round (Reusable) Semi-Malicious MPC.

	Our Protocol
	The Simulator
	The Hybrids
	Indistinguishability of Hybrids.

