
On the Non-Malleability of ECVRF in the
Algebraic Group Model ⋆

Willow Barkan-Vered, Franklin Harding, Jonathan Keller, and Jiayu Xu

Oregon State University, {barkanvt,hardingf,kellerjo,xujiay}@oregonstate.edu

Abstract. ECVRF is a verifiable random function (VRF) scheme used
in multiple cryptocurrency systems. It has recently been proven to
satisfy the notion of non-malleability which is useful in applications to
blockchains (Peikert and Xu, CT-RSA 2023); however, the existing
proof uses the rewinding technique and has a quadratic security loss. In
this work, we re-analyze the non-malleability of ECVRF in the
algebraic group model (AGM) and give a tight proof. We also compare
our proof with the unforgeability proof for the Schnorr signature
scheme in the AGM (Fuchsbauer, Plouviez and Seurin, EUROCRYPT
2020).

1 Introduction

Verifiable Random Functions (VRFs), proposed by Micali, Rabin and
Vadhan [8], are a cryptographic primitive that allows a party who holds a
secret key to compute a PRF output together with a proof, and anyone who
holds the corresponding public key can verify that the output was computed
correctly given the proof. The basic security properties are (1) uniqueness: for
any public key and any input, it is infeasible to generate two output/proof
pairs with different outputs but the verification algorithm accepts on both
pairs; and (2) pseudorandomness: for anyone who only knows the public key,
the output is indistinguishable from random.

In recent years, new applications for VRFs have been realized, especially in
the cryptocurrency sector. This context requires some new security properties
that have not been considered before. One of them is non-malleability [10]; at a
high level, it means that given the public key and oracle access to the proving
algorithm (but not the secret key), it is infeasible to generate a valid input/proof
pair where the proof is not the output of a proof oracle query. This property
might be useful in the following scenario: in a consensus protocol, if a malicious
gossiper modifies the proof sent from an honest party, it might be difficult for
parties in the network to reach consensus on the “right” proof. Non-malleability
of VRFs is similar to unforgeability of signature schemes: if we view the proving

⋆ This is the final report of CS 529 (Topics in Cryptography) at Oregon State
University, a 10-week course taught by the last author in spring 2023. Its goal is
to help students understand the basic principles of reading and writing papers in
cryptography.

algorithm as a signing algorithm, then non-malleability says that it is infeasible
to generate a forgery where the signature is new (as opposed to unforgeability
where the message must be new).

Elliptic Curve VRF (ECVRF) [9] is a particularly efficient VRF scheme that
has been used in multiple cryptocurrency systems such as Algorand [6] and
Cardano [2], and is currently being considered for standardization [7]. It is based
on the hardness of the discrete logarithm (DL) problem in an elliptic curve
group, and its designing idea has some similarities to the Schnorr signature
scheme [12]: roughly, the proving algorithm is done via applying the Fiat–Shamir
heuristics [3] to the Chaum–Pedersen sigma protocol for proving equality of
discrete logarithms [1] (whereas Schnorr signature is based on the Schnorr sigma
protocol for proof of knowledge of discrete logarithm).

ECVRF has been proven non-malleable in the random oracle model (under
the DL assumption) in a recent paper by Peikert and Xu [10]; as in the security
proof for the Schnorr signature scheme [11], the ECVRF non-malleability proof
in [10] uses the rewinding technique which incurs a quadratic security loss (see
[10, Theorem 5.6]). A natural question is whether this loss can be avoided in
some stronger model such as the algebraic group model (AGM) [4], as mentioned
in [10, Section 1.2]:

Is there a tighter reduction under a stronger assumption, or in a
stronger model? Given recent tighter security analysis for Schnorr
signatures in the Algebraic Group Model (AGM) [5] [...], analogous
results for ECVRF’s non-malleability seem plausible.

Indeed, the recent paper by Fuchsbauer, Plouviez and Seurin [5] gives a tight
unforgeability proof of the Schnorr signature scheme in the AGM. Recall that
the Schnorr signature has the form (R, s), where R is a group element and s is
an integer; at a very high level, the proof idea is to obtain two expressions of R
using the group generator g and the public keyX — one based on the adversary’s
winning condition and the other based on the fact that the adversary is algebraic
— from which the reduction to DL can solve for logX.

In this work, we solve the open problem mentioned in [10] and give a tight
ECVRF non-malleability proof in the ROM+AGM. Our proof idea is similar
to [5]; one main difference is that the second expression of R is obtained via
observing the adversary’s random oracle queries, as R is not part of the
adversary’s final output. Another difference is that upper-bounding the
probability that the two expressions of R are identical (in which case the
reduction cannot solve DL) is more complicated in our proof.

The rest of this paper is organized as follows. In Section 2 we review
necessary concepts including the DL assumption, the Schnorr signature scheme
and its security definition, and ECVRF and its non-malleability definition.
Then as a warm-up, in Section 3 we rewrite the Schnorr signature security
proof in [5]. The main reason why we do this is that the proof in [5] uses the
“game-hop” methodology, while the ECVRF non-malleability proof in the
ROM in [10] uses the more straightforward approach of presenting a reduction

2

and then analyzing its winning probability by ruling out “bad events”; thus,
rewriting the former proof helps us compare our ECVRF non-malleability
proof in the ROM+AGM with both proofs in prior works. It also serves the
educational purpose of helping students understand the Schnorr proof as a
stepping stone to the more complicated ECVRF proof. Finally, in Section 4 we
present our proof that ECVRF is non-malleable in the ROM+AGM, and
compare it with both the Schnorr proof in [5] and the ECVRF proof in [10].

2 Preliminaries

Notation. Let n be the security parameter; we assume that 1n is given as input
to all algorithms and is omitted. For an (efficiently samplable) set S, we write
x ← S for sampling an element x from S uniformly. We write y ← A(x1, . . .)
for the procedure of executing algorithm A on inputs (x1, . . .) and obtaining the
output y; if A is deterministic, we instead write y := A(x1, . . .). We use “PPT”
as a shorthand for “probabilistic polynomial-time”.

2.1 The Discrete Logarithm Assumption

Let GenGroup be an algorithm that outputs (G, p, g), where G is a cyclic group
of prime order p > 2n−1 for which g is a generator. Let X ← G be a random
group element. The discrete logarithm problem is to compute logX = x ∈ Zp

such that gx = X. Formally, we define the following experiment:

Experiment DL:

1. (G, p, g)← GenGroup()
2. X ← G
3. Run x′ ← A(G, p, g,X)

4. A wins if x′ ∈ Zp and gx
′
= X

Fig. 1: Discrete Logarithm Experiment

Definition 1. We say that the discrete logarithm (DL) problem is hard (or the
DL assumption holds) relative to GenGroup if for any PPT adversary A, there
exists a negligible function negl such that Pr[A wins experiment DL] ≤ negl(n).

Below we abuse notations and say the DL assumption holds for (G, p, g);
furthermore, we assume that (G, p, g) are given to all parties as part of their
inputs and do not explicitly write them. We also assume that all integers and
their operations are in Zp.

3

2.2 The Algebraic Group Model

The Algebraic Group Model (AGM) is an idealized model that puts some
constraints on how an adversary derives any group elements it generates.
Specifically, suppose a group G has been generated and fixed. Whenever the
adversary A outputs a group element X ∈ G, A must also return the algebraic
representation of X, namely a product of powers of group elements that A has
previously seen: if A’s view prior to outputting X consists of X1, . . . , Xℓ ∈ G
then it must return the algebraic representation in the form of

X =

ℓ∏
i=1

Xρi

i

for some ρ1, . . . , ρℓ ∈ Zp.
Since our security proofs are in the combination of ROM and AGM, the

adversary must provide the algebraic representations of group elements in its
final output as well as its random oracle queries. This will be critical in our
proof of ECVRF’s non-malleability.

2.3 Signature Schemes

We recall the standard definition of signature schemes and their security.

Definition 2. A signature scheme is a tuple of algorithms (Gen,Sign,Ver) where

– The key generation algorithm Gen outputs a public/secret key pair (pk, sk).
– The signing algorithm Sign, on input the secret key sk and a message m,

outputs a signature σ.
– The (deterministic) verification algorithm Ver, on input the public key pk,

a message m and a signature σ, outputs a bit b where 1 indicates “accept”
and 0 indicates “reject”.

The correctness property says that for (pk, sk)← Gen(), any message m, and
σ ← Sign(sk,m), it holds that Pr[Ver(pk,m, σ) = 1] = 1.

Definition 3. A signature scheme (Gen,Sign,Ver) is existentially unforgeable
under chosen message attacks (EUF-CMA-secure, or just secure) if for any PPT
adversary A, there exists a negligible function negl such that
Pr[A wins experiment Forge] ≤ negl(n). Experiment Forge is defined in
Figure 2.

2.4 The Schnorr Signature Scheme

The Schnorr signature scheme, presented in Figure 3, is a signature scheme based
on exponents in prime-order cyclic groups. It is easy to see that the scheme is
correct: if X = gx, R = gr, and s = r + cx, then RXc = gr(gx)c = gr+cx = gs.

4

Experiment Forge:

1. (pk, sk) ← Gen(). Initialize an empty set Q := {} to keep track of A’s oracle
queries.

2. A(pk) is given access to a signing oracle Signsk which executes the signing
algorithm Sign(sk, ·). When A queries Signsk(m), update Q := Q ∪ {m}.

3. A outputs a message m∗ and a signature σ∗.
4. A wins if and only if Ver(pk,m∗, σ∗) = 1 and m∗ /∈ Q (i.e., the message was

not previously queried).

Fig. 2: The Signature Security Experiment

Public parameters: cyclic group G with generator g and prime order p, and H :
G× {0, 1}∗ → Zp is a hash function modeled as a random oracle.

Gen():

1. x← Zp; X := gx

2. Output (pk := X, sk := x)

Sign(x,m):

1. r ← Zp; R := gr

2. c := H(R,m)
3. s := r + cx
4. Output σ := (R, s)

Ver(X,m, (R, s)):

1. c := H(R,m)
2. If RXc = gs output 1; else output 0

Fig. 3: The Schnorr Signature Scheme

5

2.5 VRF and Non-Malleability

Conceptually, a verifiable random function (VRF) can be viewed as an
asymmetric version of a pseudorandom function: a private key can be used to
generate pseudorandom outputs from a message, and the public key can be
used to verify that the output was generated correctly.

While a VRF has multiple security properties, in this paper we only consider
non-malleability. In this context, a VRF can be defined just as a signature scheme
(Definition 2); the only difference is that the signing algorithm Sign of a signature
scheme is called the proving algorithm Prove here, and the signature σ is called
the proof π.

Non-malleability is almost identical to the security of a signature scheme,
with just one difference: under EUF-CMA security the adversary may not
output a previously-queried message but may output a previously-seen
signature; whereas under non-malleability the adversary may output a
previously-queried message but may not reuse a previously-seen proof.

Definition 4. A VRF (Gen,Prove,Ver) is non-malleable if for any PPT
adversary A, there exists a negligible function negl such that
Pr[A wins experiment NM] ≤ negl(n). Experiment NM is defined in Figure 4.

Experiment NM:

1. (pk, sk)← Gen(). Initialize an empty set P := {} to keep track of the results
of A’s oracle query outputs.

2. A(pk) is given access to a proof oracle Provesk which executes the proving
algorithm Prove(sk, ·). When A queries Provesk(m) whose output is π, update
P := P ∪ {π}.

3. A outputs a message m∗ and a proof π∗.
4. A wins iff Ver(pk,m∗, π∗) = 1 and π∗ /∈ P (i.e.,A does not repeat a previously-

seen proof).

Fig. 4: The VRF Non-Malleability Experiment

2.6 ECVRF

ECVRF (Elliptic Curve VRF) is, as the name suggests, a VRF implemented
on an elliptic curve, and similarly to the Schnorr signature scheme, is based on
exponents in cyclic groups. It is presented in Figure 5.

It is easy to see that the scheme is correct: if X = gx, Z = Y x, and s = r+cx,
then in verification R = gs/Xc = gs/(gx)c = gs−cx = gr and RY = Y s/Zc =

6

Y s/(Y x)c = Y s−cx = Y r, so H(Y,Z,R,RY) = H(Y, Z, gr, Y r) = c (the second
equation is because c is defined as H(Y, Z, gr, Y r) in the proving algorithm).

Public parameters: cyclic group G with generator g and prime order p;
HTC (for “hash to curve”) : G × {0, 1}∗ → G and H : G4 → H (where H ⊂ G
and |H| is super-polynomial) are two hash functions modeled as random oracles.

Gen():

1. x← Zp; X := gx

2. Output (pk := X, sk := x)

Prove(x,m):

1. Y := HTC(gx,m); Z := Y x

2. r ← Zp

3. R := gr; RY := Y r

4. c := H(Y,Z,R,RY)
5. s := r + cx
6. Output (Z, c, s)

Ver(X,m, (Z, c, s)):

1. Y := HTC(X,m)
2. R := gs/Xc; RY := Y s/Zc

3. If H(Y,Z,R,RY) = c output 1; else output 0

Fig. 5: ECVRF

Comparison with the Schnorr signature scheme. ECVRF uses a similar
idea to the Schnorr signature scheme, and we briefly mention their differences
below:

– In ECVRF, aside from the public group generator g, we use a hash-to-curve
function on the message to select another generator Y , and construct a
public key analog Z = Y x (this value is returned as part of the proof).
Furthermore, analogous to R = gr in the Schnorr signature scheme, we

7

additionally compute group element RY = Y r.
Finally, the inputs to the random oracle H contain the additional group
element Z and RY , and the message m (which is an H input in the Schnorr
scheme) is replaced by its “representation in the group” Y .

– In the Schnorr scheme, the signature contains R and s, and the H output
c is the intermediate value; in verification we recompute c and check if R
satisfies the equation. In ECVRF, the proof contains c and s, which we use
in conjunction with other known values to recompute R and RY ; after that
we check if the H function returns the same value c — an ordering opposite
that of Schnorr.

– In the Schnorr scheme, the range of H (or equivalently, the range of c) is Zp,
whereas in ECVRF it is a large subset of Zp, H.

Finally, we note that in an implementation of ECVRF, the verification
algorithm and the random oracles HTC,H might take as input elements of a
larger group E rather than G, where G is a subgroup of E and the co-factor
|E|/|G| is co-prime with |G|. (The key generation and proving algorithms are
unchanged, and the range of HTC is still G.) This allows for more efficient
verification if checking group membership is slow in G but fast in E.1 We
present our non-malleability proof in the setting that all group elements are in
G, but explain after the proof why it still holds even if inputs to verification
can be elements of the larger group E.

3 Schnorr Signature Scheme in the ROM+AGM

In this section, we rewrite the Schnorr signature security proof in [5].

Theorem 1. If the DL assumption holds for (G, p, g), then the Schnorr
signature scheme (Figure 3) is secure in the ROM+AGM.

The proof of the theorem is done via a reduction to the DL assumption. The
reduction works in two steps:

– The reduction first needs to simulate the forgery experiment to the adversary.
The reduction embeds its DL challenge X as the public key; it can simulate
the signing oracle without knowledge of the secret key via choosing random
s and c, setting R := gs/Xc, and then “programming” the random oracle H
by setting H(R,m) := c. Note that this step does not require the adversary
to be algebraic.

– After the adversary outputs the forgery (m∗, (R∗, s∗)), the reduction
computes x = logX via two expressions of R∗ using g and X, one from the
adversary’s winning condition, i.e.,

R∗ =
gs

∗

Xc∗

1 We stress that group membership checks, while not a focus of our work, must be
performed in practice.

8

(where c∗ = H(R∗,m∗)); and the other from the algebraic representation of
R∗ given by the adversary. The set of group elements seen by the adversary
is: the generator g, the public key X, and the Ri (i ∈ [q] where q is the
number of the adversary’s signing oracle queries) values returned by the
signing oracle; so the adversary’s algebraic representation of R∗ must be
expressed as a product of powers of these group elements, i.e.,

R∗ = gγXξ

q∏
i=1

Rρi

i .

From these two expressions, we can solve

x =
s∗ − γ −

∑q
i=1 ρisi

c∗ + ξ −
∑q

i=1 ρici
.

The reduction would fail if c∗ + ξ −
∑q

i=1 ρici = 0. However, the probability
of this occurring is negligible. This is because c∗ = H(R∗,m∗) and ci =
H(Ri,mi), and the adversary’s winning condition implies m∗ ̸= mi, so c∗ is
independent of ci; furthermore, the adversary must have chosen R∗ — and
thus must have chosen ξ, ρ1, . . . , ρq — before querying H to obtain c∗, so c∗

is also independent of ξ, ρ1, . . . , ρq. In sum, c∗ is a random integer that is
independent of all other terms in the denominator, so the probability that
the denominator is 0 is negligible.

Proof. Fix an arbitrary PPT adversary A in experiment Forge for the Schnorr
signature scheme; assume A makes q queries to the signing oracle Signx and qH
queries to the random oracle H. We construct a reduction B in Figure 8 that
uses A to solve the DL problem for (G, p, g).

Clearly B is PPT. We now analyze the probability that B’s output x′ is equal
to x.

Simulating experiment Forge.

Claim. If TwoROValues does not occur, then A’s view simulated by B is identical
to A’s “real” view in experiment Forge.

Proof. A’s view consists of three parts: the public key X, answers to the signing
oracle Signx, and answers to the random oracle H. In both views, X is a random
element of G, and H queries are answered via lazy sampling (except for the
“programming” while answering Signx queries). As for answers to Signx, we first
define an intermediate signing oracle in Figure 9.

9

Signx(mi):

1. ci, si ← Zp

2. Ri := gsi/Xci

3. If H(Ri,mi) is defined, output TwoROValues and abort
4. Program H(Ri,mi) := ci
5. Return (Ri, si) to A

Fig. 6: Signing Oracle

H(R,m):

1. If H(R,m) is already defined, return that value to A
2. H(R,m)← Zp; return H(R,m) to A

Fig. 7: Random Oracle

B(X):

1. Run A(X), simulating A’s oracle queries as described in Figures 6 and 7
2. A outputs (m∗, (R∗, s∗)) together with the algebraic representation of R∗, i.e.,

R∗ = gγXξ ∏q
i=1 R

ρi
i

3. If m∗ = mi for some i ∈ [q], abort
4. If H(R∗,m∗) is undefined, choose H(R∗,m∗)← Zp

5. c∗ := H(R∗,m∗)
6. If c∗ + ξ −

∏q
i=1 ρici = 0, output ZeroDenominator and abort

7. Output

x′ :=
s∗ − γ −

∑q
i=1 ρisi

c∗ + ξ −
∑q

i=1 ρici

Fig. 8: Reduction B that solves the DL problem (underlined texts show situations
where an H output is defined)

10

Signx(mi):

1. ci ← Zp

2. ri ← Zp; Ri := gri

3. If H(Ri,mi) is defined, output TwoROValues and abort
4. Program H(Ri,mi) := ci
5. si := ri + cix
6. Return (Ri, si) to A

Fig. 9: Intermediate Signing Oracle

The difference between this and the “real” signing oracle in experiment Forge
is the addition of line 3 and that ci is randomly sampled in advance and then used
to “program” H(Ri,mi) (whereas in the “real” signing oracle ci := H(Ri,mi) is
chosen when H is queried). Since TwoROValues does not occur by assumption,
we can ignore line 3. Furthermore, since TwoROValues does not occur, H(Ri,mi)
has not yet been sampled, so the intermediate approach of “pre-programming”
H is no different than simply querying H. Therefore the two signing oracles are
identical to A.

Next, in both the intermediate signing oracle and the signing oracle simulated
by B (Figure 6), ci is a random integer in Zp and Ri, si satisfy gsi = RiX

ci . If
we choose Ri ← G then we get the intermediate signing oracle, and if we choose
si ← Zp then we get the signing oracle simulated by B. Since |G| = |Zp| = p,
these two approaches are identical in the view of A. We conclude that A’s view
simulated by B is identical to A’s “real” view in experiment Forge.

Claim. Pr[TwoROValues] ≤ q(q+2qH−1)
2p .

Proof. TwoROValues occurs if there exists a query (say the i-th query) mi to
Signx by A where H(Ri,mi) is already defined. Recall that each query to H
explicitly defines an H value and each query to Signx implicitly defines an H
value (see underlined texts in Figure 8); thus, when the i-th query to Signx is
made, we have defined at most qH+i−1 H values. Since Ri is a random element
of G (independent of everything else), the probability that it is equal to one of
the qH + i − 1 R values that appear as an H input, is at most (qH + i − 1)/p.
Applying a union bound, we get

Pr[TwoROValues] ≤
q∑

i=1

qH + i− 1

p
=

q(qH − 1)

p
+

q(q + 1)

2p
=

q(q + 2qH − 1)

2p
.

Computing x after A halts.

Claim. If ZeroDenominator does not occur, and A wins experiment Forge, then
B outputs x′ = x.

11

Proof. If successful, A returns (m∗, (R∗, s∗)) where R∗ = gs
∗
/Xc∗ and

c∗ = H(R∗,m∗), together with an algebraic representation
R∗ = gγXξ

∏q
i=1 R

ρi

i . From these two expressions, we get

gs
∗

Xc∗
= gγXξ

q∏
i=1

Rρi

i = gγXξ

q∏
i=1

(
gsi

Xci

)ρi

= gγ+
∑q

i=1 ρisiXξ−
∑q

i=1 ρici

(where the second equation is due to how Ri is defined), or equivalently,

gs
∗−γ−

∑q
i=1 ρisi = Xc∗+ξ−

∑q
i=1 ρici ,

from which we can solve for x as

x =
s∗ − γ −

∑q
i=1 ρisi

c∗ + ξ −
∑q

i=1 ρici

as B does. Note that this expression is well-defined as long as c∗+ξ−
∑q

i=1 ρici ̸=
0 (i.e., ZeroDenominator does not occur), since p is prime.

Claim. Pr[ZeroDenominator] ≤ qH+1
p .

Proof. ZeroDenominator occurs if and only if

c∗ + ξ −
q∑

i=1

ρici = 0 (1)

when B attempts to compute x after A halts. Recall that c∗ = H(R∗,m∗) takes
on a value from one of three places where an H output is defined (see underlined
texts in Figure 8):

1. A query to Signx by A;
2. An explicit query to H by A; and
3. At the end of the experiment after A halts.

First, we show that case 1 is impossible. Suppose that c∗ is defined in the
i-th query to the signing oracle by A. That is, c∗ = H(R∗,m∗) is defined as
H(Ri,mi), which implies that m∗ = mi — but then B would have already
aborted (line 3 of Figure 8). So this case is ruled out.

Thus, c∗ must be defined in either case 2 or case 3, so it takes on one of (at
most) qH +1 values (qH values in case 2 and 1 value in case 3). Note that c∗ and
c1, . . . , cq are independently sampled while simulating H, since c∗ = H(R∗,m∗),
ci = H(Ri,mi) and m∗ ̸= mi for all i ∈ [q]. Also, the algebraic representation of
R∗ — which includes ξ and ρ1, . . . , ρq — is determined either when A queries H
on R∗ (case 2), or when A outputs R∗ as part of its forgery (case 3). Regardless,
this happens before c∗ is chosen at random. Therefore c∗ is independent of ξ
and ρ1, . . . , ρq. We conclude that c∗ is a random integer in Zp independent of all
other variables in (1). So for each of the qH + 1 possible values for c∗, (1) holds

12

with probability 1/p. By the union bound, (1) occurs with probability (qH+1)/p
and the result follows.2

In sum, we have proved that B wins experiment DL as long as A wins
experiment Forge and the two “bad events” TwoROValues and
ZeroDenominator do not occur. Therefore,

Pr[B wins] ≥ Pr[A wins]− Pr[ZeroDenominator]− Pr[TwoROValues]

≥ Pr[A wins]− q(q + 2qH − 1) + 2qH + 2

2p
.

Since Pr[B wins] is negligible as the DL assumption holds for (G, p, g), we know
that Pr[A wins] is also negligible. This completes the proof. ■

Comparison with the proof in [5]. Our proof is fundamentally the same as
that in [5]. Both proofs essentially use the same reduction to reduce Schorr
signature security to the discrete logarithm assumption, and the reduction fails
under the same “bad events”: the denominator is 0 in the expression for x
(ZeroDenominator), or the simulated signing oracle cannot set a desired output
of the random oracle H because the adversary has already queried H on the
same input (TwoROValues). However, our proof differs from theirs in
expression. The proof in [5] uses the “game-hop” methodology: it begins with
Game0 which is the adversary’s real view, rules out the “bad event”
ZeroDenominator in Game1 and TwoROValues in Game2, and finally reduces to
DL in Game2; in other words, it rules out the “bad events” before presenting
the reduction, while we let the reduction abort if either of the “bad events”
occurs. The proof in [5] is more concise; in particular, we provide a detailed
argument why the reduction’s simulation of the signing oracle is identical to
the adversary’s real view if TwoROValues does not occur. Furthermore, our
upper bound of Pr[TwoROValues] is slightly tighter than theirs
((q(q+2qH − 1))/(2p) versus q(q+ qH)/p). Note also that we use multiplicative
notation to denote group operations, whereas [5] uses additive notation.

4 Non-Malleability of ECVRF in the ROM+AGM

In this section, we present a tight non-malleability proof for ECVRF in the
ROM+AGM.

Theorem 2. If the DL assumption holds for (G, p, g), then ECVRF (Figure 5)
is non-malleable in the ROM+AGM.

2 Note that the upper bound of Pr[ZeroDenominator] is not 1/p, since A can make qH
H queries and obtain qH candidate c∗ values, and if any of them makes (1) happen,
A can choose that value as c∗.

13

The proof of this theorem is similar to that of Schnorr signature security,
and we only highlight the differences here. It is done via a reduction to the DL
assumption, and just as in the Schnorr proof, the reduction works in two steps:

– The reduction first needs to simulate the non-malleability experiment to
the adversary. As in the Schnorr security proof, the reduction simulates the
proof oracle without knowledge of the secret key by choosing random c, s
and “programming” the random oracle H accordingly. In addition, while
simulating the proof oracle, the reduction needs to come up with random
group elements Y,Z where Y = HTC(X,m) and Z = Y x. In order to
achieve this without knowing x, the reduction chooses a random integer y
as the “discrete logarithm trapdoor”, and sets Y = gy and Z = Xy.

– After the adversary outputs the message/proof pair (m∗, (Z∗, c∗, s∗)), the
reduction can first compute the intermediate values Y ∗, R∗, and R∗

Y as in
verification. In order for the adversary to win with non-negligible probability,
H(Y ∗, Z∗, R∗, R∗

Y) must have been defined to be c∗ before the adversary
halts (otherwise the result of H(Y ∗, Z∗, R∗, R∗

Y) is chosen at random after
the adversary outputs c∗, so the adversary has a negligible probability of
“predicting” c∗ that is equal to H(Y ∗, Z∗, R∗, R∗

Y)). Furthermore, it is not
hard to see that if c∗ is implicitly defined as one of the ci values returned by
the proof oracle, then the adversary has repeated the proof and thus lost,
so this case can also be ruled out. The remaining case is that c∗ is result
of an explicit H(Y ∗, Z∗, R∗, R∗

Y) query by the adversary; call it the “crucial
query”. Then the reduction can compute x = logX via two expressions of
R∗ using g and X, one from the definition of R∗, i.e.,

R∗ =
gs

∗

Xc∗
,

and the other from the algebraic representation of R∗ given by the adversary
(note that the adversary must provide this algebraic representation while
making the crucial query, since R∗ is part of its random oracle query inputs).
The set of group elements seen by the adversary is: the generator g, the public
key X, the Zi (i ∈ [q′] where q′ is the number of the adversary’s proof oracle
queries before its crucial query) values returned by the proof oracle, and the
Y ′
j (j ∈ [q′HTC] where q′HTC is the number of the adversary’s HTC queries

before its crucial query) values from the adversary’s HTC queries; so the
adversary’s algebraic representation of R∗ must be expressed as a product
of powers of these group elements, i.e.,

R∗ = gγXξ

q′HTC∏
j=1

(Y ′
j)

αj

q′∏
i=1

Zβi

i .

The reduction knows both y′j = logg Y
′
j (the reduction can choose it while

simulating the adversary’s HTC queries) and yi = logX Zi (which is the
“discrete logarithm trapdoor” while simulating the adversary’s proof oracle

14

queries — see the bullet above), so it can rewrite this expression using g and
X only. From these two expressions, we can solve

x =
s∗ − γ −

∑q′HTC
j=1 αjy

′
j

c∗ + ξ +
∑q′

i=1 βiyi
.

The reduction would fail if c∗ + ξ+
∑q′

i=1 βiyi = 0. However, the probability
of this occurring is negligible because c∗ is independent of all the other items
in the denominator: similar to the proof for the Schnorr signature scheme, c∗

is independent of the algebraic representations ξ, β1, . . . , βq′ since they are
determined by the adversary before making the crucial query. As for yi, first
note that c∗ is generated after yi are defined (since we have ruled out the
possibility that c∗ is defined implicitly during a proof oracle query); at the
time when c∗ is generated, the H outputs that have been defined include (1)
outputs of the adversary’s explicit H queries and (2) those implicitly defined
during the adversary’s proof oracle queries, all of which have inputs different
from the crucial query (otherwise c∗ would have been defined previously).
Therefore, the process of generating c∗ is independent of what appeared in
the experiment previously, including yi.

Proof. Fix an arbitrary PPT adversary A in the non-malleability experiment for
ECVRF; assume A makes q queries to the proof oracle Provex, qHTC queries to
the random oracle HTC, and qH queries to the random oracle H. We construct
a reduction B in Figures 13 and 14 that uses A to solve the DL problem for
(G, p, g).

Clearly B is PPT. We now analyze the probability that B’s output x′ is equal
to x.

Simulating experiment NM.

Claim. If TwoROValues does not occur, then A’s view simulated by B is identical
to A’s “real” view in experiment NM.

Proof. A’s view consists of four parts: the public key X, answers to the proof
oracle Provex, and answers to the random oracles HTC and H. In both views,
X is a random element of G, and HTC and H queries are answered via lazy
sampling (except for the “programming” of H while answering Provex queries).
As for answers to Provex, we first define an intermediate proof oracle in Figure 15.

The difference between this and the “real” proof oracle in experiment NM
is the addition of line 4 and that ci is randomly sampled in advance and then
used to “program” H(Yi, Zi, Ri, RY,i) (whereas in experiment NM
ci := H(Yi, Zi, Ri, RY,i) is chosen when H is queried). Similar to the proof of
the corresponding claim for the Schnorr signature scheme, the two proof
oracles are identical to A.

We now define a second intermediate proof oracle in Figure 16.

15

Provex(mi):

1. If HTC(X,mi) is defined, retrieve record ⟨mi, yi⟩
2. Else yi ← Zp and program HTC(X,mi) := gyi

3. Yi := gyi ; Zi := Xyi

4. ci ← H; si ← Zp

5. Ri := gsi/Xci

6. RY,i := Ryi
i

7. If H(Yi, Zi, Ri, RY,i) is defined, output TwoROValues and abort
8. Program H(Yi, Zi, Ri, RY,i) := ci
9. Return (Zi, ci, si) to A

Fig. 10: Proof Oracle

HTC(X ′
j ,m

′
j):

1. If HTC(X ′
j ,m

′
j) is already defined, return that value to A

2. Choose y′
j ← Zp, define Y ′

j := HTC(X ′
j ,m

′
j) := gy

′
j , and return Y ′

j to A.
Furthermore, if X ′

j = X then record
〈
m′

j , y
′
j

〉
Fig. 11: Random Oracle HTC

H(Y,Z,R,RY):

1. If H(Y,Z,R,RY) is already defined, return that value to A
2. H(Y,Z,R,RY)← Zp; return H(Y,Z,R,RY) to A

Fig. 12: Random Oracle H

Fig. 13: Reduction B simulating A’s oracle queries (underlined texts show
situations where an H output is defined)

16

B(X):

1. Run A(X), simulating A’s oracle queries as described in Figures 10 to 12
2. A outputs (m∗, (Z∗, c∗, s∗))
3. If (Z∗, c∗, s∗) = (Zi, ci, si) for some i ∈ [q], abort
4. Y ∗ := HTC(X,m∗) (choose Y ∗ ← G if HTC(X,m∗) is undefined); R∗ :=

gs
∗
/Xc∗ ; R∗

Y := (Y ∗)s
∗
/(Z∗)c

∗

5. Retrieve the H(Y ∗, Z∗, R∗, R∗
Y) query by A. If there is no such query, or if

the output of the query is not c∗, output NoROQuery and abort. Call this H
query the “crucial query”

6. Retrieve the algebraic representation of R∗, i.e, R∗ =

gγXξ ∏q′HTC
j=1 (Y ′

j)
αj

∏q′

i=1 Z
βi
i (where q′ and q′HTC are the numbers of

Prove and HTC queries respectively before the crucial query)

7. If c∗ + ξ +
∑q′

i=1 βiyi = 0, output ZeroDenominator and abort
8. Output

x′ =
s∗ − γ −

∑q′HTC
j=1 αjy

′
j

c∗ + ξ +
∑q′

i=1 βiyi

Fig. 14: Reduction B solving the DL problem after A halts

Provex(mi):

1. Yi := HTC(X,mi); Zi := Y x
i

2. ci ← H
3. ri ← Zp; Ri := gri ; RY,i := Y ri

i

4. If H(Yi, Zi, Ri, RY,i) is defined, output TwoROValues and abort
5. Program H(Yi, Zi, Ri, RY,i) := ci
6. si := ri + cix
7. Return (Zi, ci, si) to A

Fig. 15: Intermediate proof oracle I

17

Provex(mi):

1. Yi := HTC(X,mi); Zi := Y x
i

2. ci ← H; si ← Zp

3. ri := si − cix; Ri := gsi/Xci ; RY,i := Y ri
i

4. If H(Yi, Zi, Ri, RY,i) is defined, output TwoROValues and abort
5. Program H(Yi, Zi, Ri, RY,i) := ci
6. si := ri + cix
7. Return (Zi, ci, si) to A

Fig. 16: Intermediate proof oracle II

In both intermediate proof oracles ci is a random integer in H, Ri, si satisfy
gsi = RiX

ci , and ri = logRi. If we choose Ri ← G then we get the first
intermediate proof oracle, and if we choose si ← Zp then we get the second
intermediate proof oracle. Since |G| = |Zp| = p, these two approaches are
identical in the view of A.3

The difference between the second intermediate proof oracle and the proof
oracle simulated by B (Figure 10) is that the former defines Zi = Y x

i and RY,i =
Y ri
i , whereas the latter defines Zi = Xyi and RY,i = Ryi

i . However, in both
cases Zi = gx log Yi and RY,i = glogRi log Yi (note that Yi = HTC(X,mi) and
Ri = gsi/Xci are defined in the same manner in the two cases), so there is no
difference. We conclude that A’s view simulated by B is identical to A’s “real”
view in experiment NM.

Claim. Pr[TwoROValues] ≤ q(q+2qH−1)
2p .

Proof. The proof is very similar to that of the corresponding claim for the
Schnorr signature scheme, so we only provide a sketch here. TwoROValues
occurs if there exists a query (say the i-th query) mi to Provex by A in which
H(Yi, Zi, Ri, RY,i) is already defined. At this moment we have defined at most
qH + i − 1 H values, so the probability that Ri is one of them is at most
(qH + i− 1)/p (note that Ri is a random element of G even though ci is chosen
from H rather than Zp). Applying a union bound yields the result.

Computing x after A halts.

Claim. If ZeroDenominator and NoROQuery do not occur, andA wins experiment
NM, then B outputs x′ = x.

3 Note that here the range of ci is H, rather than Zp as in the Schnorr signature
scheme. However, the same argument still holds; the key point is that si has the
“full range” Zp.

18

Proof. If successful, A outputs (Z∗, c∗, s∗), and, by our assumption, there exists
an H query (the crucial query) such that H(Y ∗, Z∗, R∗, R∗

Y) = c∗, where R∗ is
defined as

R∗ =
gs

∗

Xc∗
.

Since A is algebraic, it must provide algebraic representations of all these input

values, including R∗ = gγXξ
∏q′HTC

j=1 (Y ′
j)

αj
∏q′

i=1 Z
βi

i (line 6 of Figure 14). Note

that B defines Y ′
j = gy

′
j (line 2 of Figure 11) and Zi = Xyi (line 3 of Figure 10).

So R∗ can be expressed as

R∗ = gγXξ

q′HTC∏
j=1

(gy
′
j)αj

q′∏
i=1

(Xyi)βi = gγ+
∑q′HTC

j=1 αjy
′
jXξ+

∑q′
i=1 βiyi .

Combining the two expressions above, we get

gs
∗

Xc∗
= gγ+

∑q′HTC
j=1 αjy

′
jXξ+

∑q′
i=1 βiyi ,

or equivalently,

gs
∗−γ−

∑q′HTC
j=1 αjy

′
j = Xc∗+ξ+

∑q′
i=1 βiyi ,

from which we can solve for x as

x =
s∗ − γ −

∑q′HTC
j=1 αjy

′
j

c∗ + ξ +
∑q′

i=1 βiyi

as B does. Note that this expression is well-defined as long as c∗+ξ+
∑q′

i=1 βiyi ̸=
0 (i.e., ZeroDenominator does not occur), since p is prime.

Claim. Pr[ZeroDenominator] ≤ qH
|H| .

Proof. ZeroDenominator occurs if and only if

c∗ + ξ +

q′∑
i=1

βiyi = 0 (2)

when B attempts to compute x afterA halts. Recall that c∗ = H(Y ∗, Z∗, R∗, R∗
Y)

is the output ofA’s crucial query (line 5 of Figure 14), and anH output is defined
in either of the following two places (see underlined texts in Figure 13):

1. A query to Provex by A; and
2. An explicit query to H by A.

We first show that c∗ cannot be defined in case 1, i.e., A’s crucial query
cannot be identical to one of the previously defined H values while simulating
Provex. If c∗ = H(Y ∗, Z∗, R∗, R∗

Y) is defined as H(Yi, Zi, Ri, RY,i) for some

19

i ∈ [q], then (Y ∗, Z∗, R∗, R∗
Y) = (Yi, Zi, Ri, RY,i). This implies that Z∗ = Zi.

Furthermore, since R∗ = Ri, we have that gs
∗
/Xc∗ = gsi/Xci , and as c∗ =

H(Y ∗, Z∗, R∗, R∗
Y) = H(Yi, Zi, Ri, RY,i) = ci we have s∗ = si. That means

(Z∗, c∗, s∗) = (Zi, ci, si) which is a contradiction since B would have already
aborted (in line 3 of Figure 14). So this case is ruled out.

Thus, c∗ must be defined in case 2, so it takes on one of (at most) qH values.
Consider the moment when c∗ is defined; we have just argued that c∗ is defined
via an explicit query to H (the crucial query) by A. Since the inputs of the
crucial query are different from all previous H inputs that resulted in an existing
H output (otherwise c∗ would have been defined implicitly, i.e., in case 1), we
know that c∗ is independent of all procedures that occurred previously in the
experiment, including yi for all i ∈ [q]. Moreover, the algebraic representation of
R∗ — which includes ξ and β1, . . . , βq′ — is determined when A makes its crucial
query on R∗, and that happens before c∗ is defined. Therefore c∗ is independent
of ξ and β1, . . . , βq′ . We conclude that c∗ is a random integer in H independent
of all other variables in (2). So for each of the qH possible values for c∗, (2) holds
with probability 1/|H|. By the union bound, (2) occurs with probability qH/|H|
and the result follows.

Claim. Pr[NoROQuery ∧ A wins] ≤ 1
|H| .

Proof. Assume that NoROQuery occurs. Recall that from the proof of the
previous claim, if A wins, H(Y ∗, Z∗, R∗, R∗

Y) cannot be defined implicitly
during a Provex query. On the other hand, NoROQuery implies that
H(Y ∗, Z∗, R∗, R∗

Y) cannot be defined via an explicit H query either. This
means that H(Y ∗, Z∗, R∗, R∗

Y) is undefined before A halts, so it is a random
integer in H in A’s view. Therefore, the probability that A outputs c∗ that is
equal to H(Y ∗, Z∗, R∗, R∗

Y) — which is part of A’s winning condition — is
1/|H|.

In sum, we have proved that B wins experiment DL as long as A wins
experiment NM and the three “bad events” TwoROValues, ZeroDenominator
and NoROQuery do not occur. Therefore,

Pr[B wins] ≥ Pr[A wins]− Pr[ZeroDenominator]− Pr[TwoROValues]

− Pr[NoROQuery ∧ A wins]

≥ Pr[A wins]− q(q + 2qH − 1)

2p
− qH + 1

|H|
.

Since Pr[B wins] negligible as the DL assumption holds for (G, p, g), we know
that Pr[A wins] is also negligible. This completes the proof. ■

Comparison with the proof in [10]. Our proof bears some similarities to
the proof of [10, Theorem 5.6], which shows the non-malleability of ECVRF in
the ROM only (and not in the AGM). In particular, our reduction simulates

20

the oracles Provex, HTC and H in the same way as [10, Algorithm 6], and the
argument that the reduction’s simulation produces an indistinguishable view
for the adversary, is essentially the same as the proof of [10, Claim 5.9] The
two proofs differ significantly in what the reduction does after the adversary
halts: [10] rewinds the adversary which incurs a quadratic security loss, while we
avoid this loss by running the adversary only once and relying on the AGM to
solve DL.

Further discussion. Just as [10, Theorem 5.6], our non-malleability proof does
not use the fact that Y and RY are part of the inputs to H. Including Y and
RY is necessary for other security properties such as uniqueness, which are out
of the scope of this work; see [10, Remark 5.11] for further discussion.

Finally, we remark that our proof still holds even if the verification algorithm
takes as input group elements of a larger group E (see Section 2.6). In the context
of non-malleability, this gives the adversary the additional ability of outputting
Z∗ ∈ E\G. However, this does not affect the fact that the adversary must make
the crucial query in order to win with non-negligible probability, from which the
reduction can obtain two expressions of R∗ using g and X. (Note that R∗ ∈ G
even if Z∗ ∈ E \G, as Z∗ is only used while computing R∗

Y which is not needed
by the reduction.) Therefore, ECVRF still has tight non-malleability even in this
case.

References

1. D. Chaum and T. P. Pedersen. Wallet databases with observers. In CRYPTO
1992, pages 89–105.

2. B. David, P. Gazi, A. Kiayias, and A. Russell. Ouroboros Praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In EUROCRYPT 2018, pages
66–98.

3. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO 1986, pages 186–194.

4. G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its
applications. In CRYPTO 2018, pages 33–62.

5. G. Fuchsbauer, A. Plouviez, and Y. Seurin. Blind Schnorr signatures and signed
ElGamal encryption in the algebraic group model. In EUROCRYPT 2020, pages
63–95.

6. Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling
byzantine agreements for cryptocurrencies. In SOSP 2017, pages 51–68.

7. S. Goldberg, L. Reyzin, D. Papadopoulos, and J. Včelák. Verifiable
random functions (VRFs), 2022. https://datatracker.ietf.org/doc/

draft-irtf-cfrg-vrf.
8. S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable random functions. In FOCS

1999, pages 120–130.
9. D. Papadopoulos, D. Wessels, S. Huque, M. Naor, J. Včelák, L. Reyzin, and

S. Goldberg. Making NSEC5 practical for DNSSEC. Cryptology ePrint Archive,
Report 2017/099. https://eprint.iacr.org/2017/099.

10. C. Peikert and J. Xu. Classical and quantum security of elliptic curve VRF, via
relative indifferentiability. In CT-RSA 2023, pages 84–112.

21

https://datatracker.ietf.org/doc/draft-irtf-cfrg-vrf
https://datatracker.ietf.org/doc/draft-irtf-cfrg-vrf
https://eprint.iacr.org/2017/099

11. D. Pointcheval and J. Stern. Security proofs for signature schemes. In
EUROCRYPT 1996, pages 387–398.

12. C.-P. Schnorr. Efficient identification and signatures for smart cards. In CRYPTO
2018, pages 239–252.

22

	On the Non-Malleability of ECVRF in the Algebraic Group Model

