
Oblivious Transfer from Rerandomizable PKE

Shuaishuai Li1,2, Cong Zhang1,2, and Dongdai Lin1,2(B)

1 SKLOIS, Institute of Information Engineering, CAS
2 School of Cyber Security, University of Chinese Academy of Sciences

{lishuaishuai,zhangcong,ddlin}@iie.ac.cn

Abstract. The relationship between oblivious transfer (OT) and public-
key encryption (PKE) has been studied by Gertner et al. (FOCS 2000).
They showed that OT can be constructed from special types of PKE,
i.e., PKE with oblivious sampleability of public keys or ciphertexts. In
this work, we give new black-box constructions of OT from PKE without
any oblivious sampleability. Instead, we require that the PKE scheme is
rerandomizable, meaning that one can use the public key to rerandomize
a ciphertext into a fresh ciphertext. We give two different OT protocols
with different efficiency features based on rerandomizable PKE. For 1-
out-of-n OT, in our first OT protocol, the sender has sublinear (in n) cost,
and in our second OT protocol, the cost of the receiver is independent
of n. As a comparison, in the PKE-based OT protocols of Gertner et al.,
both the sender and receiver have linear cost.

Keywords: Oblivious Transfer · Public-Key Encryption · Rerandom-
izable

1 Introduction

Oblivious transfer (OT) [22] is a two-party cryptographic protocol that allows
a sender to obliviously transfer a message to a receiver. OT is a fundamental
building block in secure multiparty computation (MPC) and plays an important
role in many famous MPC protocols, such as the gabled circuits [25] and GMW
protocol [13]. In particular, the result of [13] implies that OT is complete for
MPC. That is, any function can be securely computed with only OT in hand.
For this reason, OT serves as one of the most important primitive in public-key
cryptography.

In an OT protocol, there are two parties called the sender and receiver, where
the sender takes two messages x0, x1 as inputs and the receiver takes a choice
bit b as input. At the end of the protocol, the receiver obtains the message xb

while the sender receives nothing. This protocol is also known as 1-out-of-2 OT
(the receiver obtains one message out of two messages). The work of [3] further
generalized OT and introduced 1-out-of-n OT (under the name of all-or-nothing
disclosure of secrets). In a 1-out-of-n OT protocol, the sender takes n messages
x1, . . . , xn as inputs, and the receiver takes an index i ∈ [n] as input. At the end
of the protocol, the receiver outputs xi.

Studying the relationships between cryptographic primitives is of great sig-
nificance for understanding their powers and limitations. In the work of [12],
Gertner et al. studied the relationship between OT and several other crypto-
graphic primitives such as public-key encryption (PKE), key agreement and
trapdoor permutations. They showed that OT and PKE are incomparable with
respect to black-box reductions, which implies that one cannot obtain OT (resp.
PKE) with only PKE (resp. OT) in hand. To further understand the relationship
between OT and PKE, they considered the problem of constructing OT from
PKE with special properties. In particular, they found that PKE with oblivious
sampleability of public keys or ciphertexts is sufficient for OT, where oblivious
sampleability of public keys (resp. ciphertexts) means that one can sample a pub-
lic key (resp. ciphertext) without knowing the corresponding secret key (resp.
plaintext). In this work, we follow this work and continue to study the relation-
ship between OT and PKE. More precisely, we seek to present new constructions
of OT from PKE without any oblivious sampleability. In fact, another sufficient
property of PKE for constructing OT is homomorphism. PKE with homomor-
phism is also referred as homomorphic encryption (HE). For example, the work
of [24] used additively HE (AHE) to design an efficient OT protocol, which tells
us that AHE is sufficient for OT. A natural question is that whether we can base
OT on weaker HE schemes than AHE, or to be formally, we ask the following
question.

What is the minimum homomorphism required to construct OT?

1.1 Our Contribution

Main Result. In this work, we study the above question, and our main result is
that OT could be based on rerandomizable PKE, which is a special PKE scheme
with the property that one can rerandomize a ciphertext into a fresh ciphertext
encrypting the same message. Note that rerandomization can be viewed as the
minimum homomorphism in the sense that it only allows one to compute the
identity function. We remark that many existing PKE schemes have the prop-
erty of rerandomization, including the ElGamal scheme [10], the Paillier scheme
[19], and the Regev scheme [23]. In particular, the work of [21] constructed a
rerandomizable PKE scheme without any homomorphism other than rerandom-
ization3.

OT with New Efficiency Features. Our another contribution is that we de-
sign PKE-based OT protocols with new efficiency features. As we have said,
Gertner et al. [12] showed that OT can be constructed from PKE with oblivious
sampleability of public keys or ciphertexts. While their OT constructions are
very efficient and general, the costs of both parties in their protocols are linear
3 This scheme achieves a slightly weaker variant of IND-CCA security called replayable

CCA (RCCA) security, which is introduced by [5]. As stated in [5], RCCA security
is sufficient for many applications of IND-CCA secure PKE (authentication, key
exchange, etc.).

2

in n. Consider the setting where the two parties have different data processing
capability (e.g., the two parties use different machines with different compu-
tational powers, or they are in different network settings with different data
transfer capability) and we want to minimize the running time of the protocol4.
In such an unbalanced setting, if we can reduce the cost of the party with lower
data processing capability than the other party, then the resulting protocol may
have less running time even if the total cost remains the same or is even higher.
Our OT constructions allow us to obtain OT protocols with new efficiency fea-
tures which are more suitable for the aforementioned unbalanced setting. More
precisely, we obtain the following two OT protocols based on rerandomizable
PKE.

• A two-pass OT protocol where the costs of the sender and receiver are
O(n/ log n) and O(n1+ε/ log n) for any constant ε > 0, respectively.

• A three-pass OT protocol where the costs of the sender and receiver are
O(n) and O(1), respectively.

In our first OT protocol, the sender has sublinear cost, hence it is more
suitable for the setting where the sender has lower data processing capability
than the receiver. In our second OT protocol, the receiver has cost independent
of n, hence it is more suitable for the setting where the receiver has lower data
processing capability than the sender.

1.2 Technical Overview

Now let us give an overview of the techniques used in our OT constructions. For
simplicity, we focus on bit-OT where each message is a single bit (extending our
results to string-OT is direct, and we will discuss this in Appendix A). Assume
that the sender takes x = (x1, . . . , xn) ∈ {0, 1}n as input and the receiver takes
an index i ∈ [n] as input. Our goal is to let the receiver obtain xi.
OT with Sublinear Sender-Cost. Our starting point is that if we define the
function fi(z) = zi over {0, 1}n, then fi(x) is exactly xi. We first design a toy
protocol with exponential cost to let the receiver get the value of xi.

1. The receiver samples a key pair and uses the public key to encrypt fi(z) to
cz for each z ∈ {0, 1}n. Then it sends the public key and all the ciphertexts
to the sender.

2. The sender uses the public key to rerandomize cx and sends the resulting
ciphertext to the receiver.

3. Finally, the receiver decrypts the received ciphertext to get xi.

The correctness of the above OT protocol is easy to verify. As for the security,
note that the sender does not know the secret key, so it knows nothing about i
from the received ciphertexts. Moreover, the receiver only receives a ciphertext c
4 In the works of [7,6,9], the authors studied private set intersection (PSI) in a similar

setting where one party may limited resources for computation and storage.

3

which is a rerandomization of a ciphertext encrypting xi, and by the property of
rerandomizable PKE, c is indistinguishable from a fresh encryption of xi, which
means that the receiver only obtains xi from c.

In the toy protocol, although the cost of the sender is independent of n, the
cost of the receiver is exponential in n (the receiver must compute and send
2n ciphertexts). Namely, the toy protocol is an “inefficient” OT protocol. Now
we show how to optimize the toy protocol such that the cost of the receiver is
polynomial in n while the cost of the sender remains sublinear.

To achieve our goal, we use a reduction from long OT to short OT. More
precisely, for any n = t(m − 1), a 1-out-of-n OT protocol can be constructed
using t calls to a 1-out-of-m OT protocol. Moreover, the cost of this 1-out-of-n
OT protocol is about t times that of the 1-out-of-m OT protocol. We refer to
Section 3.2 for more details about this reduction. If we use the aforementioned
“inefficient” OT protocol as the underlying 1-out-of-m OT protocol, then in the
resulting 1-out-of-n OT protocol, the costs of the sender and receiver will be
O(t) and O(t2m), respectively. By setting m = ε log n for some positive constant
ε, we can obtain an OT protocol where the costs of the sender and receiver are
O(n/ log n) and O(n1+ε/ log n), respectively. This is the desired OT protocol.

OT with Constant Receiver-Cost. Our sender-efficient OT protocol could
be cast into the following framework: the receiver sends a set of ciphertexts
containing an encryption of xi; the sender uses x to select the encryption of xi.
Now we swap the roles of the sender and the receiver. Concretely, we let the
sender send (a set of ciphertexts containing an encryption of xi) first and then
the receiver select (the encryption of xi). Our starting point is that if we define
the function gx(j) = xj over [n], then gx(i) is exactly xi. We first describe the
following “insecure” protocol.

1. The sender samples a key pair and uses the public key to encrypt gx(j) to
cj for each j ∈ [n]. Then it sends the public key and all the ciphertexts to
the receiver.

2. The receiver uses the public key to rerandomize ci and sends the resulting
ciphertext to the sender.

3. Finally, the sender decrypts the received ciphertext to get xi and sends xi

to the receiver.

The above protocol is insecure due to that the sender knows the value of
xi, which leaks information about i. To solve this problem, we let the receiver
randomize the underlying plaintext of ci. Fortunately, this can be done using
rerandomization. Concretely, in the first step, we let the sender send encryptions
of xj and xj ⊕ 1 (instead of just xj). In this way, the receiver has encryptions
of xi and xi ⊕ 1 (written as ci,0 and ci,1, respectively). Now, the receiver can
randomize the underlying plaintext of ci: it samples a random bit r, and then it
computes a ciphertext e as a rerandomization of ci,0 if r = 0 and ci,1 otherwise.
It is easy to verify that e is an encryption of xi ⊕ r. Now we can describe our
secure OT protocol.

4

1. The sender samples a key pair and uses the public key to encrypt xj to cj,0
and xj ⊕ 1 to cj,1 for each j ∈ [n]. Then it sends the public key and all the
ciphertexts to the receiver.

2. The receiver samples a random bit r, and then it computes a ciphertext e
as a rerandomization of ci,0 if r = 0 and ci,1 otherwise. Then it sends e to
the sender.

3. The sender decrypts the received ciphertext to get s and sends s to the
receiver.

4. Finally, the receiver computes xi = s⊕ r.

The correctness of the above OT protocol is easy to verify. As for the security,
note that s is a random bit due to r is random, hence the sender cannot get any
information about i. Moreover, the receiver only obtains xi as it does not know
the secret key. Finally, it is easy to see that in our protocol, the cost of the sender
is linear in n, and the cost of the receiver is independent of n.

1.3 Related Primitives

The most relevant primitives for OT are probably private information retrieval
(PIR) [8] and symmetrically PIR (SPIR) [11], where SPIR is a stronger variant
of PIR. If only security requirements are considered, SPIR is in fact equivalent to
OT. However, PIR and SPIR typically are used in a different context where n is
large (e.g., n = 220), and they additionally require that the total communication
cost is sublinear in n. To date, the state-of-the-art PIR [16,2,20,18,1,17,14] and
SPIR [15] protocols are based on fully-homomorphic encryption (FHE).

2 Preliminaries

Notations. Let κ be the security parameter. For any two integers i, j, we denote
[i, j] the set {i, · · · , j} and abbreviate [1, j] by [j]. If i > j, [i, j] represents the
empty set ∅. For any two distributions X and Y, we say that X and Y are
computationally indistinguishable, denoted as X ≈c Y, if no PPT algorithm
can distinguish these two distributions. We say that X and Y are statistically
indistinguishable, denoted as X ≈s Y, if their statistical distance is negligible.
For any set A, we use a ← A to represent that we sample a random element a
from A in a uniform way.

2.1 Oblivious Transfer

In this work, we prove the security of our protocols in the universally composable
(UC) framework, and we refer to [4] for more detail about this framework. Now
we describe the ideal functionality for OT.

Definition 1 (Ideal Oblivious Transfer Functionality FOT). The ideal OT
functionality FOT is a two-party functionality which receives n bits x1, . . . , xn

from a party P0 called the sender and an index i ∈ [n] from the other party P1

called the receiver. FOT returns xi to P1.

5

2.2 Rerandomizable Public-Key Encryption

Our OT protocols make use of a rerandomizable PKE scheme, and we recall the
definition of rerandomizable PKE in this section.

Definition 2 (Rerandomizable Public-Key Encryption). A rerandomiz-
able public-key encryption (PKE) consists of four algorithms Keygen,Enc,Dec,
and Rand. LetM be the plaintext space, C be the ciphertext space, PK be the pub-
lic key space, and SK be the secret key space. These four algorithms are defined
as follows.

• Keygen(1κ): on input the security parameter κ, output a key pair (pk, sk) ∈
PK × SK.

• Enc(p, pk): on input a plaintext p ∈M and a public key pk ∈ PK, outputs a
ciphertext c ∈ C.

• Dec(c, sk): on input a ciphertext c ∈ C and a secret key sk ∈ SK, outputs a
plaintext p ∈M.

• Rand(c, pk): on input a ciphertext c ∈ C and a public key pk ∈ PK, outputs
a ciphertext c′ ∈ C.

Rerandomizable PKE requires the following properties.

• Correctness. For any plaintext p ∈M, it holds that

Pr[Dec(Enc(p, pk), sk) = p] ≥ 1− neg(κ)

where (pk, sk)← Keygen(1κ).
• IND-CPA Security. For any two plaintexts p0, p1, we have

Enc(p0, pk) ≈c Enc(p1, pk)

where (pk, sk)← Keygen(1κ).
• Ciphertext Rerandomizable. For any plaintext p ∈M, it holds that

Rand(c, pk) ≈s Enc(p, pk)

where (pk, sk)← Keygen(1κ) and c← Enc(p, pk).

2.3 Reviewing the Previous PKE-Based OT Protocols

In this section, we review the OT protocols of Gertner et al. [12]. Their protocols
are based on PKE with oblivious sampleability of public keys or ciphertexts. We
first define such special PKE.

Definition 3 (PKE with Oblivious Sampleability of Public Keys). We
say that a PKE scheme (Keygen,Enc,Dec) has oblivious sampleability of public
keys if there exists a PPT algorithm OsPk satisfying that

{pk|pk ← OsPk(1κ)} ≈s {pk|(pk, sk)← Keygen(1κ)}.

6

Definition 4 (PKE with Oblivious Sampleability of Ciphertexts). We
say that a PKE scheme (Keygen,Enc,Dec) has oblivious sampleability of cipher-
texts if there exists a PPT algorithm OsCt satisfying that

{c|c← OsCt(pk)} ≈s {c|p←M, c← Enc(p, pk)}

where (pk, sk)← Keygen(1κ).

Now let us describe the OT protocols of [12]. The first is based on PKE with
oblivious sampleability of public keys, and its description is in the following.

Protocol OTospk

Input: Let (Keygen,Enc,Dec,OsPk) be a PKE scheme with oblivious sam-
pleability of public keys. The sender P0 takes n bits x1, . . . , xn as inputs, and
the receiver P1 takes an index i ∈ [n] as input.
Output: P1 gets xi as output.

1. P1 samples a key pair (pki, ski) ← Keygen(1κ) and pkj ← OsPk(1κ) for
each j ∈ [n]\{i}. Then, P1 sends {pkj}j∈[n] to P0.

2. P0 computes a ciphertext ej = Enc(xj , pkj) for each j ∈ [n] and sends
{ej}j∈[n] to the receiver.

3. P1 decrypts u← Dec(ei, ski) and returns u.

Security Analysis of OTospk. The correctness is easy to verify. Let us discuss
the privacy. Firstly, note that pki is indistinguishable from each other pkj , hence
the sender P0 cannot obtain any information about i. Secondly, for each j ̸= i,
since receiver P1 does not know the decryption key of pkj (pkj is obliviously
sampled), it cannot decrypt the ciphertext ej .
Complexity of OTospk. In the protocol, both the sender and receiver have cost
linear in n. Moreover, the protocol only takes two passes.

The second OT protocol of [12] is based on PKE with oblivious sampleability
of ciphertexts, and its description is in the following.

Protocol OTosct

Input: Let (Keygen,Enc,Dec,OsCt) be a PKE scheme with oblivious sam-
pleability of ciphertexts. The sender P0 takes n bits x1, . . . , xn as inputs, and
the receiver P1 takes an index i ∈ [n] as input.
Output: P1 gets xi as output.

1. P0 samples a key pair (pk, sk) and sends pk to P1.
2. P1 samples a random plaintext r and computes ci = Enc(r, pk). Then, it

obliviously samples cj ← OsCt(pk) for each j ∈ [n]\{i}. Finally, P1 sends
{cj}j∈[n] to P0.

3. P0 decrypts rj = Dec(cj , sk) and computes uj = xj ⊕ rj for each j ∈ [n].
Then, it sends {uj}j∈[n] to P1.

7

4. P1 computes z = ui ⊕ r and returns z.

Security Analysis of OTosct. The correctness is easy to verify. Let us discuss
the privacy. Firstly, note that each ci is statistically indistinguishable from each
other cj , hence the sender P0 cannot obtain any information about i. Secondly,
for each j ̸= i, since the receiver P1 does not know the decryption key sk, it
knows nothing about rj , which implies that it knows nothing about xj even
with uj in hand.

Complexity of OTosct. In the protocol, both the sender and receiver have cost
linear in n. Moreover, the protocol takes three passes (the first pass can be
executed once for all).

3 Sender-Friendly Oblivious Transfer

In this section, we present our first OT protocol, which is sender-friendly, mean-
ing that the cost of the sender is sublinear in n. Throughout this section, let
(Keygen,Enc,Dec,Rand) be a rerandomizable PKE scheme.

3.1 First Attempt: OT with Constant Sender-Cost and Exponential
Receiver-Cost

We first give an “inefficient” OT protocol where the cost of the receiver P1 is
exponential in n (the cost of the sender P0 is independent of n). This protocol
proceeds as follows.

1. P1 samples a key pair and uses the public key to encrypt zi to cz for each
z ∈ {0, 1}n. Then it sends the public key and all the ciphertexts to P0.

2. P0 uses the public key to rerandomize cx and sends the resulting ciphertext
to P1.

3. Finally, P1 decrypts the received ciphertext to get xi.

We introduce an optimization to the above protocol. Notice that if all the bits
x1, . . . , xn are the same, then cx is always an encryption of x1. Therefore, the
receiver just needs to send encryptions of the elements in {0, 1}n\{0n, 1n}. This
optimization has a small improvement to the protocol when n is large. However,
if n is small, then this optimization is remarkable and for n = 2, it will halve
the cost of the receiver. Now we describe the protocol with our optimization.

Protocol OTsen
rpke

Input: The sender P0 takes n bits x1, . . . , xn as inputs, and the receiver P1

takes an index i ∈ [n] as input. Let I = {0n, 1n}.
Output: P1 gets xi as output.

8

1. P1 samples a pair of keys (pk, sk) ← Keygen(1κ). Then, for each z =
(z1, . . . , zn) ∈ {0, 1}n\I, P1 computes cz ← Enc(zi, pk). Finally, P1 sends
(pk, {cz}z∈{0,1}n\I) to P0.

2. P0 computes e ← Enc(x1, pk) if x ∈ I and e ← Rand(cx, pk) otherwise.
Then, it sends e to P1.

3. P1 computes u← Dec(e, sk) and outputs u.

Complexity of OTsen
rpke. The sender needs to compute and send a single cipher-

text, its cost is independent of n. The receiver needs to compute and send 2n−2
ciphertexts, hence its cost is exponential in n.

Security of OTsen
rpke. We state the security of OTsen

rpke by proving the following
theorem.

Theorem 5. For any n = O(log κ), the protocol OTsen
rpke securely realizes the

functionality FOT in the UC framework.

Proof. If both the sender and receiver are honest, it is easy to verify that the
receiver will obtain the bit xi. If some party is corrupt, there are two cases to
be considered.

Sender is Corrupt. In this case, we construct a simulator S as follows.

• S samples a key pair (pk, sk) and computes cz ← Enc(0, pk) for each z ∈
{0, 1}n\I. Then S simulates the receiver sending (pk, {cz}z∈{0,1}n\I) to the
sender.

It remains to show that the environment cannot distinguish the simulated and
real executions. We first define Hybridj for each j ∈ [2n − 1].

• Hybridj : Sj samples a key pair (pk, sk). Then, it computes cz ← Enc(zi, pk)
for each z ∈ [1, j− 1] and cz ← Enc(0, pk) for each z ∈ [j, 2n− 2]. Finally, Si
simulates the receiver sending (pk, {cz}z∈{0,1}n\I) to the sender.

Note that Hybrid1 is exactly the simulated execution, and Hybrid2n−1 is the
real execution. Now we proceed to show that each two consecutive hybrids are
indistinguishable, which will imply that Hybrid1 and Hybrid2n−1 are indistin-
guishable because there are total 2n − 1 = poly(κ) hybrids.

For each j ∈ [2n − 2], the two hybrids Hybridj and Hybridj+1 only differ in
the generation of cj , which is an encryption of 0 in Hybridj and an encryption
of ji in Hybridj+1

5. By the IND-CPA security of the underlying PKE scheme,
we know that an encryption of ji is indistinguishable from an encryption of 0.
Therefore, Hybridj and Hybridj+1 are indistinguishable.

Receiver is Corrupt. In this case, we construct a simulator S as follows.

5 Each j is viewed as a bitstring and ji is the i-th bit of j.

9

• S sends the input of P1 to FOT and receives the output xi. Then it samples
a key pair (pk, sk) and computes e′ ← Enc(xi, pk). Finally, it simulates the
sender sending e′ to the receiver.
Now we show that the simulated and real executions are indistinguishable,

which implies that the environment cannot distinguish the simulated and real
executions. In the simulated execution, the simulated ciphertext e′ is a fresh
encryption of xi under a fresh public key. In the real execution, the ciphertext
e is a rerandomization of an encryption of the output u. By the correctness of
the protocol, we know that u is xi. Moreover, the underlying rerandomizable
PKE guarantees that a rerandomization of a ciphertext (of any plaintext p)
is indistinguishable from a fresh encryption of p under the same public key.
Therefore, the simulated ciphertext e′ is indistinguishable from the ciphertext e
in the real execution. ⊓⊔

3.2 A Reduction from Long OT to Short OT
In this section, we give a reduction from long OT to short OT. Concretely, we
can construct 1-out-of-n OT using t calls to 1-out-of-m OT where n = t(m− 1).
The construction is quite simple, and its description is in the following.
1. The sender P0 sets Xj = (x(j−1)(m−1)+1, . . . , xj(m−1), 0) for each j ∈ [t].
2. The receiver P1 sets i = (i1 − 1)(m− 1) + i2 with i1 ∈ [t] and i2 ∈ [m− 1].

Then for each j ∈ [t], P1 lets qj be i2 if j = i1 and m otherwise.
3. P0 and P1 parallelly invoke a 1-out-of-m OT protocol t times, where in the

j-th execution, P0 takes Xj as input and P1 takes qj as input.
4. P1 takes the output in the i1-th execution as its final output.

Proof Sketch of the above OT Construction. Firstly, it is easy to verify
that in the i1-th execution, the output of P1 will be xi, which implies that the
correctness holds. As for the security, note that in the j-th execution, the output
of P1 will be 0 if j ̸= i1. This implies that the simulator will be able to infer
the output of each short OT instance from the output of the long OT. Also, the
simulator can infer the input of each short OT instance from the input of the
long OT. Therefore, to simulate the view of the corrupted party, the simulator
just invokes the simulators of all the short OT instances using the inferred inputs
and outputs.

3.3 Putting It All Together: OT with Sublinear Sender-Cost and
Polynomial Receiver-Cost

We show how to design an OT protocol where the cost of the sender is sublinear
in n and the cost of the receiver is polynomial in n. To achieve this goal, we take
our OT protocol OTsen

rpke as the underlying 1-out-of-m OT protocol in the OT
construction described in Section 3.2. As a result, we can derive an OT protocol
where the costs of the sender and receiver are O(t) and O(t2m), respectively
(n = t(m − 1)). By setting m = ε log n for any constant ε > 0, we obtain the
desired OT protocol where the costs of the sender and receiver are O(n/ log n)
and O(n1+ε/ log n), respectively.

10

4 Receiver-Friendly Oblivious Transfer

In this section, we present our second OT protocol, which is receiver-friendly,
meaning that the cost of the receiver is sublinear in n. More precisely, in our
protocol, the costs of the sender and receiver are O(n) and O(1), respectively.
Throughout this section, let (Keygen,Enc,Dec,Rand) be a rerandomizable PKE
scheme. Our protocol is described as follows.

Protocol OTrec
rpke

Input: The sender P0 takes n bits x1, . . . , xn as inputs, and the receiver P1

takes an index i ∈ [n] as input.
Output: P1 gets xi as output.

1. P0 samples a key pair (pk, sk) ← Keygen(1κ). Then, for each j ∈ [n], P0

computes cj,0 ← Enc(xj , pk) and cj,1 ← Enc(xj ⊕ 1, pk). Finally, P0 sends
(pk, {cj,0, cj,1}j∈[n]) to P1.

2. P1 chooses a random bit r and computes e ← Rand(ci,0, pk) if r = 0 and
e← Rand(ci,1, pk) otherwise. Then, it sends e to P0.

3. P0 computes u← Dec(e, sk) and sends u to P1.
4. P1 outputs z = u⊕ r.

Complexity of OTrec
rpke. The sender needs to compute and send 2n ciphertexts,

hence its cost is linear in n. The receiver needs to compute and send a single
ciphertext, hence its cost is independent of n.

Security of OTrec
rpke. We state the security by proving the following theorem.

Theorem 6. For any n = poly(κ), the protocol OTrec
rpke securely realizes the func-

tionality FOT in the UC framework.

Proof. If both the sender and receiver are honest, it is easy to verify that u is
exactly xi ⊕ r, hence the final output is z = u ⊕ r = xi, which guarantees the
correctness. Now we proceed to prove the privacy of our protocol. We need to
consider two cases.

Sender is Corrupt. In this case, we construct a simulator S as follows.

• S samples a key pair (pk, sk) and computes e′ ← Enc(r′, pk) with r′ being a
random bit. Then S simulates the receiver sending e′ to the sender.

Now we show that the simulated and real executions are indistinguishable. In
the simulated execution, the simulated ciphertext e′ is an fresh encryption of a
random bit r′. In the real execution, the ciphertext e is a rerandomization of an
encryption of xi⊕r. Note that xi⊕r is random because r is a random bit. More-
over, the underlying rerandomizable PKE guarantees that a rerandomization of
a ciphertext (of any plaintext p) is indistinguishable from a fresh encryption of
p under the same public key. This implies that the simulated ciphertext e′ is

11

indistinguishable from the real ciphertext e. Therefore, the simulated and real
executions are indistinguishable.

Receiver is Corrupt. In this case, we construct a simulator S as follows.

• S sends the input of P1 to FOT and receives the output xi. Then it samples
a key pair (pk, sk) and a random bit r. S computes ci,0 ← Enc(xi, pk) and
ci,1 ← Enc(xi ⊕ 1, pk), and cj,b ← Enc(b, pk) for each j ∈ [n]\{i}, b ∈ {0, 1}.

• Then, S simulates P0 sending (pk, {cj,0, cj,1}j∈[n]) to P1.
• Finally, S simulates P0 sending u = xi ⊕ r to P1.

It remains to show that the environment cannot distinguish the simulated
and real executions. We first define Hybridj for each j ∈ [n+ 1].

• Hybridj : Sj samples a key pair (pk, sk) and a random bit rj . Next,
− If j ≤ i, then it computes ck,b ← Enc(xk ⊕ b, pk) for each k ∈ [1, j − 1]∪
{i}, b ∈ {0, 1}, and ck,b ← Enc(b, pk) for each k ∈ [j, i− 1]∪ [i+1, n], b ∈
{0, 1}.

− If j > i, then it computes ck,b ← Enc(xk⊕b, pk) for each k ∈ [1, j−1], b ∈
{0, 1}, and ck,b ← Enc(b, pk) for each k ∈ [j, n], b ∈ {0, 1}.

Then, Sj simulates P0 sending (pk, {ck,0, ck,1}k∈[n]) and u = xi ⊕ rj to P1.

Note that Hybrid1 is exactly the simulated execution, and Hybridn+1 is the
real execution. Now we proceed to show that each two consecutive hybrids are
indistinguishable, which will imply that Hybrid1 and Hybridn+1 are indistinguish-
able because there are total n+ 1 = poly(κ) hybrids.

It is easy to see that Hybridi and Hybridi+1 are identical, so we only need to
show that Hybridj and Hybridj+1 for each j ∈ [n]\{i}. The two hybrids Hybridj
and Hybridj+1 only differ in the generation of (cj,0, cj,1). In Hybridj , cj,0 and
cj,1 are encryptions of 0 and 1, respectively. And in Hybridj+1, cj,0 and cj,1
are encryptions of xj and xj ⊕ 1, respectively. By the IND-CPA security of the
underlying PKE scheme, the encryptions of 0 and 1 are indistinguishable from
that of xj and xj⊕1. Therefore, Hybridj and Hybridj+1 are indistinguishable. ⊓⊔

5 Comparision to the Previous OT Protocols Based on
Special Types of PKE

In this section, we compare the concrete and asymptotic complexity of our OT
protocols and the PKE-based OT protocols of [12]. For the comparison of con-
crete complexity, we consider 1-out-of-2 OT and use the protocol described in
Section 3.1 as our sender-friendly OT protocol6. For the comparison of asymp-
totic complexity, we consider the 1-out-of-n OT and use the protocol described in
Section 3.3 as our sender-friendly OT protocol. Moreover, we focus on the round
complexity, communication cost of the protocols. In particular, we compare the
communication cost on the sender side and the receiver side separately.
6 Recall that though this protocol has exponential cost, it is still efficient for small n.

12

5.1 Comparison with Respect to 1-out-of-2 OT

When considering 1-out-of-2 OT, we directly use the protocol described in Sec-
tion 3.1. The detailed comparison is shown in Table 1.

1-out-of-2 OT Round
Complexity

Sender
Communication

Receiver
Communication

OTospk ([12]) 2 passes 2 cts 2 pks
OTosct ([12]) 3 passes 1 pk & 2 pts 2 cts

OTsen
rpke (Section 3) 2 passes 1 ct 1 pk & 2 cts

OTrec
rpke (Section 4) 3 passes 1 pk & 1 pt & 4 cts 1 ct

Table 1. A comparison of the PKE-based 1-out-of-2 OT protocols of [12] and our OT
protocols regarding round complexity, communication costs of sender and the receiver.
Note that we use pk (resp. pks), pt (resp. pts), and ct (resp. cts) to represent public
key (resp. public keys), plaintext (resp. plaintexts), and ciphertext (resp. ciphertexts),
respectively.

The comparison illustrates that in some scenarios our protocols may be a
better choice. For example, if our goal is optimal round complexity and low
sender-communication, then OTsen

rpke is a better choice than OTospk.

5.2 Comparison with Respect to 1-out-of-n OT

To compare the asymptotic complexity, we consider 1-out-of-n OT. In particular,
we use the protocol described in Section 3.3 as our sender-friendly OT protocol.
The detailed comparison is shown in Table 2.

1-out-of-n OT Round
Complexity

Sender
Communication

Receiver
Communication

OTospk ([12]) 2 passes O(n) O(n)

OTosct ([12]) 3 passes O(n) O(n)

OTsen
rpke (Section 3) 2 passes O(n/ log n) O(n1+ε/ log n)

OTrec
rpke (Section 4) 3 passes O(n) O(1)

Table 2. A comparison of the PKE-based 1-out-of-n OT protocols of [12] and our OT
protocols regarding round complexity, communication costs of sender and the receiver.
Note that we focus on the asymptotic cost.

The comparison tells us that for relatively large n (e.g., n = 1000), our
protocols may be better choices in some settings. For example, if the sender is in

13

a low-speed network and we want the sender to have low communication, then
OTsen

rpke will be a better choice. Similar, if the receiver is in a low-speed network
and we want the receiver to have low communication, then OTrec

rpke will be a better
choice.

6 Conclusion

This work takes the work of Gertner et al. [12] as the starting point and con-
tinue to study the relationship between OT and PKE. Our main result is that
rerandomizable PKE implies OT. Since rerandomization can be viewed as the
minimum homomorphism in the sense that it only allows one to compute the
identity function, our result answers the question of what is the minimum homo-
morphism required to construct OT. Based on rerandomizable PKE, we give two
OT protocols and compare its efficiency with previous PKE-based OT protocols.
Our OT protocols have new efficiency features, and they are more suitable for
the unbalanced setting where one party may have more data processing power
than the other one.
Acknowledgement. We are grateful for the helpful comments from the anony-
mous reviewers. This work was supported by the National Key Research and
Development Program of China (No. 2020YFB1805402) and the National Nat-
ural Science Foundation of China (Grants No. 61872359 and No. 61936008).

References

1. Ali, A., Lepoint, T., Patel, S., Raykova, M., Schoppmann, P., Seth, K., Yeo, K.:
Communication-computation trade-offs in PIR. In: USENIX Security 2021 (2021),
https://www.usenix.org/conference/usenixsecurity21/presentation/ali

2. Angel, S., Chen, H., Laine, K., Setty, S.T.V.: PIR with compressed queries and
amortized query processing. In: 2018 IEEE Symposium on Security and Privacy, SP
2018, Proceedings, 21-23 May 2018, San Francisco, California, USA. pp. 962–979.
IEEE Computer Society (2018). https://doi.org/10.1109/SP.2018.00062

3. Brassard, G., Crépeau, C., Robert, J.: All-or-nothing disclosure of secrets. In:
Odlyzko, A.M. (ed.) Advances in Cryptology - CRYPTO ’86, Santa Barbara, Cal-
ifornia, USA, 1986, Proceedings. Lecture Notes in Computer Science, vol. 263, pp.
234–238. Springer (1986). https://doi.org/10.1007/3-540-47721-7_17

4. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA. pp. 136–145. IEEE
Computer Society (2001). https://doi.org/10.1109/SFCS.2001.959888

5. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) Advances in Cryptology - CRYPTO 2003, 23rd Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 17-21,
2003, Proceedings. Lecture Notes in Computer Science, vol. 2729, pp. 565–582.
Springer (2003). https://doi.org/10.1007/978-3-540-45146-4_33

6. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homomorphic
encryption with malicious security. In: Lie, D., Mannan, M., Backes, M., Wang,

14

https://www.usenix.org/conference/usenixsecurity21/presentation/ali
https://doi.org/10.1109/SP.2018.00062
https://doi.org/10.1007/3-540-47721-7_17
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-540-45146-4_33

X. (eds.) Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018.
pp. 1223–1237. ACM (2018). https://doi.org/10.1145/3243734.3243836

7. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic en-
cryption. In: Thuraisingham, B., Evans, D., Malkin, T., Xu, D. (eds.) Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. pp. 1243–1255.
ACM (2017). https://doi.org/10.1145/3133956.3134061

8. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee,
Wisconsin, USA, 23-25 October 1995. pp. 41–50. IEEE Computer Society (1995).
https://doi.org/10.1109/SFCS.1995.492461

9. Cong, K., Moreno, R.C., da Gama, M.B., Dai, W., Iliashenko, I., Laine, K., Rosen-
berg, M.: Labeled PSI from homomorphic encryption with reduced computation
and communication. In: Kim, Y., Kim, J., Vigna, G., Shi, E. (eds.) CCS ’21: 2021
ACM SIGSAC Conference on Computer and Communications Security, Virtual
Event, Republic of Korea, November 15 - 19, 2021. pp. 1135–1150. ACM (2021).
https://doi.org/10.1145/3460120.3484760

10. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) Advances in Cryptology, Proceed-
ings of CRYPTO ’84, Santa Barbara, California, USA, August 19-22, 1984, Pro-
ceedings. Lecture Notes in Computer Science, vol. 196, pp. 10–18. Springer (1984).
https://doi.org/10.1007/3-540-39568-7_2

11. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data pri-
vacy in private information retrieval schemes. In: Vitter, J.S. (ed.) Proceed-
ings of the Thirtieth Annual ACM Symposium on the Theory of Com-
puting, Dallas, Texas, USA, May 23-26, 1998. pp. 151–160. ACM (1998).
https://doi.org/10.1145/276698.276723

12. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relation-
ship between public key encryption and oblivious transfer. In: 41st Annual Sym-
posium on Foundations of Computer Science, FOCS 2000, 12-14 November 2000,
Redondo Beach, California, USA. pp. 325–335. IEEE Computer Society (2000).
https://doi.org/10.1109/SFCS.2000.892121

13. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or A completeness theorem for protocols with honest majority. In: Aho,
A.V. (ed.) Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, 1987, New York, New York, USA. pp. 218–229. ACM (1987).
https://doi.org/10.1145/28395.28420

14. Henzinger, A., Hong, M.M., Corrigan-Gibbs, H., Meiklejohn, S., Vaikuntanathan,
V.: One server for the price of two: Simple and fast single-server private information
retrieval. IACR Cryptol. ePrint Arch. p. 949 (2022), https://eprint.iacr.org/2022/
949

15. Lin, C., Liu, Z., Malkin, T.: XSPIR: efficient symmetrically private information
retrieval from ring-lwe. In: Atluri, V., Pietro, R.D., Jensen, C.D., Meng, W. (eds.)
Computer Security - ESORICS 2022 - 27th European Symposium on Research
in Computer Security, Copenhagen, Denmark, September 26-30, 2022, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol. 13554, pp. 217–236. Springer
(2022). https://doi.org/10.1007/978-3-031-17140-6_11

15

https://doi.org/10.1145/3243734.3243836
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1109/SFCS.1995.492461
https://doi.org/10.1145/3460120.3484760
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1145/276698.276723
https://doi.org/10.1109/SFCS.2000.892121
https://doi.org/10.1145/28395.28420
https://eprint.iacr.org/2022/949
https://eprint.iacr.org/2022/949
https://doi.org/10.1007/978-3-031-17140-6_11

16. Melchor, C.A., Barrier, J., Fousse, L., Killijian, M.: XPIR : Private information
retrieval for everyone. Proc. Priv. Enhancing Technol. 2016(2), 155–174 (2016).
https://doi.org/10.1515/popets-2016-0010

17. Menon, S.J., Wu, D.J.: SPIRAL: fast, high-rate single-server PIR via FHE com-
position. In: SP 2022 (2022). https://doi.org/10.1109/SP46214.2022.9833700

18. Mughees, M.H., Chen, H., Ren, L.: Onionpir: Response efficient single-server PIR.
In: CCS ’21 (2021). https://doi.org/10.1145/3460120.3485381

19. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) Advances in Cryptology - EUROCRYPT ’99, Inter-
national Conference on the Theory and Application of Cryptographic Techniques,
Prague, Czech Republic, May 2-6, 1999, Proceeding. Lecture Notes in Computer
Science, vol. 1592, pp. 223–238. Springer (1999). https://doi.org/10.1007/3-540-
48910-X_16

20. Park, J., Tibouchi, M.: SHECS-PIR: somewhat homomorphic encryption-based
compact and scalable private information retrieval. In: ESORICS 2020 (2020).
https://doi.org/10.1007/978-3-030-59013-0_5

21. Prabhakaran, M., Rosulek, M.: Rerandomizable RCCA encryption. In: Menezes,
A. (ed.) Advances in Cryptology - CRYPTO 2007, 27th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2007, Proceed-
ings. Lecture Notes in Computer Science, vol. 4622, pp. 517–534. Springer (2007).
https://doi.org/10.1007/978-3-540-74143-5_29

22. Rabin, M.O.: How to exchange secrets with oblivious transfer (1981)
23. Regev, O.: On lattices, learning with errors, random linear codes, and cryptog-

raphy. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005. pp.
84–93. ACM (2005). https://doi.org/10.1145/1060590.1060603

24. Stern, J.P.: A new efficient all-or-nothing disclosure of secrets protocol. In: Ohta,
K., Pei, D. (eds.) Advances in Cryptology - ASIACRYPT ’98, International Confer-
ence on the Theory and Applications of Cryptology and Information Security, Bei-
jing, China, October 18-22, 1998, Proceedings. Lecture Notes in Computer Science,
vol. 1514, pp. 357–371. Springer (1998). https://doi.org/10.1007/3-540-49649-1_28

25. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd
Annual Symposium on Foundations of Computer Science, Chicago, Illinois,
USA, 3-5 November 1982. pp. 160–164. IEEE Computer Society (1982).
https://doi.org/10.1109/SFCS.1982.38

16

https://doi.org/10.1515/popets-2016-0010
https://doi.org/10.1109/SP46214.2022.9833700
https://doi.org/10.1145/3460120.3485381
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-030-59013-0_5
https://doi.org/10.1007/978-3-540-74143-5_29
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/3-540-49649-1_28
https://doi.org/10.1109/SFCS.1982.38

A From Bit-OT to String-OT

Our OT protocols are designed for bit-OT where each item is a bit. In this
section, we show how to extend our protocols to string-OT where each item is
a bitstring. Concretely, we use the idea of [8]. Let x1, . . . , xn ∈ {0, 1}l be the
bitstrings held by the sender where each xj = (xj,1, . . . , xj,l), and let i be the
index held by the receiver. The sender first defines Xk = (x1,k, . . . , xn,k) for
each k ∈ [l], then a naive string-OT protocol is that the sender and receiver
direct invoke a bit-OT protocol l times, where the sender uses Xk as its input in
the k-th invocation. However, the authors in [8] observed that some messages of
the receiver may be used for multiples invocations because the receiver has the
same input in every invocation, which allows us to reduce the communication
cost. For the sake of completeness, we present the detailed descriptions of our
PKE-based string-OT protocols in this section. We note that the security proofs
of our string-OT protocols will be much like the security proofs of our bit-OT
protocols, and we omit the details about the security proofs.

A.1 Sender-Friendly 1-out-of-n String-OT

In this section, we give the description of our sender-friendly string-OT protocol.
Similar to our bit-OT protocol, we first give an inefficient string-OT protocol.

Protocol sOTsen
rpke

Input: The sender P0 takes n l-bit long bitstrings x1, . . . , xn as inputs where
each xj = (xj,1, . . . , xj,l), and the receiver P1 takes an index i ∈ [n] as input.
Let I = {0n, 1n}.
Output: P1 gets xi as output.

1. P1 samples a pair of keys (pk, sk) ← Keygen(1κ). Then, for each z =
(z1, . . . , zn) ∈ {0, 1}n\I, P1 computes cz ← Enc(zi, pk). Finally, P1 sends
(pk, {cz}z∈{0,1}n\I) to P0.

2. P0 defines Xk = (x1,k, . . . , xn,k) for each k ∈ [l]. Then for each k ∈ [l], P0

computes ek ← Enc(x1,k, pk) if Xk ∈ I and ek ← Rand(cXk , pk) otherwise.
Finally, it sends {ek}k∈[l] to P1.

3. For each k ∈ [l], P1 computes uk ← Dec(ek, sk). P1 outputs (u1, . . . , ul).

Complexity of sOTsen
rpke. The protocol sOTsen

rpke requires the sender to send l
ciphertexts and the receiver to send 2n − 2 ciphertexts (and a public key). The
reduction from long OT to short OT described in Section 3.2 also applies to
string-OT. By a similar discussion in Section 3.3, we could obtain an efficient
string-OT protocol where the costs of the sender and receiver are O(ln/ log n)
and O(n1+ε/ log n) for a positive constant ε, respectively.

A.2 Receiver-Friendly 1-out-of-n String-OT

This section presents the description of our receiver-friendly string-OT protocol.

17

Protocol sOTrec
rpke

Input: The sender P0 takes n l-bit long bitstrings x1, . . . , xn as inputs where
each xj = (xj,1, . . . , xj,l), and the receiver P1 takes an index i ∈ [n] as input.
Output: P1 gets xi as output.

1. P0 samples a key pair (pk, sk) ← Keygen(1κ). Then, for each j ∈ [n] and
k ∈ [l], P0 computes ckj,0 ← Enc(xj , pk) and ckj,1 ← Enc(xj ⊕1, pk). Finally,
P0 sends (pk, {ckj,0, ckj,1}j∈[n],k∈[l]) to P1.

2. For each k ∈ [l], P1 chooses a random bit rk, and computes ek ←
Rand(cki,0, pk) if rk = 0 and ek ← Rand(cki,1, pk) otherwise. Then, it sends
{ek}k∈[l] to P0.

3. P0 computes uk ← Dec(ek, sk) for each k ∈ [l] and sends {uk}k∈[l] to P1.
4. P1 computes zk = uk ⊕ rk for each k ∈ [l] and outputs (z1, . . . , zk).

Complexity of sOTrec
rpke. The protocol sOTrec

rpke requires the sender to send 2ln
ciphertexts and l plaintexts (and a public key) and the receiver to send l ci-
phertexts. Namely, the costs of the sender and receiver are O(ln) and O(l),
respectively.

18

	Oblivious Transfer from Rerandomizable PKE

