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In this paper, we present a novel method for timestamping and data notari-
sation on a distributed ledger. The problem with on-chain hashes is that a
cryptographic hash is a deterministic function that it allows the blockchain
be used as an oracle that confirms whether potentially leaked data is au-
thentic (timestamped or notarised by the user). Instead, we suggest using
on-chain Pedersen commitments and off-chain zero-knowledge proofs (ZKP)
for designated verifiers to prove the link between the data and the on-chain
commitment. Our technique maintains the privacy of the data, and retains
control of who can access it and when they can access it. This holds true
even on a public blockchain, and even if the data is leaked by authorised
parties. Indeed, an authorised data consumer (a designated-verifier for the
ZKP), who discloses the data publicly, cannot convince anyone about the
legitimacy of the data (in the sense that it is consistent with the information
uploaded to the blockchain), because the ZKP proof is valid only for them.
Our techniques can be used in scenarios where it is required to audit highly-
sensitive data (e.g. application logs) by specific third parties, or to provide
on-demand data certification by notaries

1 INTRODUCTION
Blockchains are rapidly gaining traction not just for cryptocur-
rencies but also as a vehicle for data integrity and decentralised
databases. Two applications that are currently going mainstream
are timestamping and notarisation (digitally signed data by a recog-
nised authority). Trusted timestamping is straightforward due to
data persistency and agreed order of insertion that a blockchain of-
fers. There are multiple notary services that leverage the blockchain.
These range from proving existence of data compliant with regula-
tions, to contract liability and data legitimacy. They are achieved
in conjunction with digital certificates. To some extent, one can
even use it for proof of ownership [13]. However, most of the exist-
ing solutions resort to hashing the data and storing the digest on
a blockchain. We identify three main problems when the hashed
approach is used to timestamp or notarise data on-chain.

1.1 Problem Statement
We highlight several problems related to plain hashes on-chain.

Accessing timestamped data. Applications that require auditability
(who can access the data and when) or need to grant access based
on policies cannot rely solely on storing data on-chain. If we store
the data in plain text on a public blockchain, then everyone can read
it. If we instead store hashed data, the blockchain becomes an oracle
to check consistency of shared data (by recomputing the hash and
checking it against the one on-chain). This means that once a data
owner gives access to her data to a single party, she loses control
of who else can access her data. This is worrying as uploading
data on-chain is the main approach taken by many applications.
Permissioned ledgers do not seem to help much either: once granted
access, nodes and users can download on-chain data at any moment,
so in this case the data owner loses the ability of controlling when
in time the data is accessible.

Lack of incentives for notaries. Notaries are required for authenti-
cating data, guaranteeing compliance with laws, certifying confor-
mity with contracts, and more. More often than not the notary offers
his service upon user request and charges a fee either to the data
owner or the data consumer. Signing the data and then uploading
a hash is not incentive-driven for the notary. Indeed, the data can
be freely shared by several parties and the notarisation checked
multiple times at no extra cost. We need a mechanism to control
who can verify the notarisation of on-chain data

Privacy of on-chain data. Last, simply storing a hash on-chain is
not enough to guarantee privacy of the data. It may pose conflict
with privacy regulations in some countries, especially if a salt is
not used. For example, the GDPR regulations in Europe. This can
be partially addressed using a permissioned ledger. But, even if one
is willing to give up the public setting, the lack of standards to
manage access to permissioned ledgers and clear guidelines in case
of compromised keys [11] precludes their utilisation in many use
cases.

1.2 Our solution
In our solution, the data is committed and hashed, we say it is ‘obfus-
cated’. The distinction between commitment and hash is important.
The data owner commits to the data using a private and random
value that breaks the link between the data and its commitment
(more technically, the commitment is hiding whereas the hash is
just binding – see Section 2.1). Then, we use zero-knowledge proofs
(ZKP) for designated verifiers [8] to prove knowledge of the ran-
domness without revealing it. This is the same as proving the link
between the data and its commitment. The proof is specially crafted
for a designated verifier (a fixed data consumer), and he cannot use
the proof to convince any other party of the link between off-chain
and on-chain data. In contrast to publicly-verifiable SNARKs [14],
the designated-verifier ZKP that we use does not require any trusted
setup, it is fast, and straightforward to implement.

To privately timestamp, the data owner Alice commits and hashes
the real data and uploads the hash of the commitment to the blockchain.
Later, she proves to a designated data consumer Bob (and only to
him), the link between the real data and the on-chain obfuscation as
explained above. The ZKP and the immutability of the blockchain en-
sures timestamp for Bob. Indeed, if an obfuscation existed at a given
time in the blockchain, so did the data committed in it. At the same
time, data privacy cannot be undermined even after Alice shares the
data with Bob. The obfuscation process and the non-transferability
of the proof guarantees no one can tell the real off-chain data of
Alice apart from some other potentially fake data presented by Bob.
This is because the proof is meaningless to everyone but Bob, and
the commitment is hiding, i.e. leaks no information about the data.
To selectively verify notarised data, we proceed as follows. The

notary receives the data but only signs its obfuscation (either the
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commitment or its hash). Since the obfuscation is binding, the notary
is implicitly signing the real data too. Signing the obfuscation instead
of the real data means that the data owner gets to decide to whom
the signature is meaningful. Only a designated data consumer, who
is convinced of the link between real and obfuscated data by virtue
of the ZKP, concludes that the notary indeed signed the data. As
in the previous application, no one without a designated proof can
link the signature (stored on-chain) back to the real off-chain data.
The above applications are self-sovereign: the data owner need

not trust nor delegate work to a trusted party. In some scenarios,
however, the data owner may have little capability or willingness
to interact with other parties or have limited connectivity. In return
for a fee, she can simply send her data to a service provider (SP) and
go offline. We explain how to outsource the applications to the SP
ensuring the monetary incentive of the SP against colluding data
consumers that try to re-use proofs addressed to just one of them.

We note that the designated proof can be uploaded to the blockchain
as well, dismissing the need of off-chain communication channels.
Also, our techniques are blockchain agnostic. Throughout this pa-
per we will present our arguments in terms of Bitcoin with the
understanding that they can be extended to all blockchain settings.

1.3 Related Work
There are several applications that have been already deployed in
real scenarios. Amazon Web Services timestamps documents on
Ethereum publishing the document hash in a smart contract [10].
Blockademia [5] is a decentralised application run on Cardano that
allows data owners to publish documents resulting in on-chain
hashes; the app also searches the blockchain and returns the hash
of the document (if any) allowing data consumers to verify consis-
tency. 4ire [1] is deployed on Ethereum and allows the signing of
documents between several parties. It stores the hash of the signed
document on-chain and only allow parties to sign who have au-
thenticated themselves and are approved by previous signers. A
recent line of research focusses on secure information exchange
among multiple parties. Mutually distrusting parties need access
to information but not everyone is allowed to access all informa-
tion. For example, Li et. al. in [4] also use ZKPs (and more building
blocks) to stablish a market model where clients can choose differ-
ent service providers in a fair and private way. More related to our
work, Chowdhury et. al. in [9] propose to use permissioned ledger
to restrict access to the hashed data. Data owners can push data,
and only legitimate data consumers are granted access to the ledger.
Di Ciccio et. al. [7] employ attribute-based encryption (ABE) storing
encrypted data on a distributed file-system (e.g. IPFS); an on-chain
hash points to the data location. A smart contract handling the ABE
policy controls who can decrypt. Contrary to our solution, their
approach cannot be turned self-sovereign since ABE needs a trusted
party to generate the master key. Also, our solution uses an efficient
zero-knowledge proof system, instead of heavy ABE.

1.4 Paper Organisation
The paper is organised as follows. Section 2 reviews background.
Section 3 presents the designated verifier proof system. Section 4
elaborates on our applications: private timestamping and selective

verification of notarised data. Section 5 explains how to delegate to
a service provider. Section 6 presents benchmarks and concludes
the paper.

2 PRELIMINARIES

2.1 Pedersen Commitments
Pedersen commitments [12] are defined over a mathematical group
G𝑝 of 𝑝 elements. To commit to a vector m = (𝑚1, . . . ,𝑚𝑛) ∈ Z𝑛𝑝
of integers modulo 𝑝 we only need a single group element 𝐶 ∈ G𝑝 .
To commit to m using the commitment key CK = (𝐺1, . . . ,𝐺𝑛, 𝐻 ) ∈
G𝑛+1𝑝 , one computes the commitment:

𝐶 ← Comm(m, 𝑟 ,CK) :=𝑚1 ·𝐺1 + · · · +𝑚𝑛 ·𝐺𝑛 + 𝑟 · 𝐻.

At a later time, to verify that m is committed in𝐶 the randomness 𝑟
is revealed and the same process above recalculated and checked
against 𝐶 .
Pedersen commitments are binding and hiding. Informally, the

former means that it is very unlikely to find two messages yielding
the same commitment; whereas the later demands that nothing can
be inferred about the committed message with the knowledge of
the commitment.

Public-verifiably keys or keys with a trapdoor. To ensure the bind-
ing property, the commitment key must be generated in a verifiably
way: no correlation between the group elements G, 𝐻 is known, and
this can be verified publicly.
Another possibility is to have 𝐻 linearly dependent on G. For

example, for case 𝑛 = 1 suppose 𝐻 = 𝑥 · 𝐺 for a known 𝑥 , and
that 𝐶 =𝑚 ·𝐺 + 𝑟 · 𝐻 . It is possible to open a commitment 𝐶 to an
arbitrary value 𝑚′ ≠ 𝑚 setting 𝑟 ′ = 𝑟 + 𝑥−1 (𝑚 −𝑚′) mod 𝑝 . In
other words, Pedersen commitments are not binding to the party
knowing the trapdoor 𝑥 .

2.2 Sigma Protocols
A sigma protocol [6]is a zero-knowledge proof system [16] to prove
the veracity of a public statement without revealing anything about
some private information (the witness).

More formally, letR be anNP-relation. That is, a subset of {0, 1}∗×
{0, 1}∗ such that membership (𝑠𝑡,𝑤) ∈ R can be checked in polyno-
mial time in the length of 𝑠𝑡 , and the length of𝑤 is also polynomial
in the length of 𝑠𝑡 .
The first element of the tuple is called the statement and it is

public information. The second element is called the witness (to the
statement) and it is private. There might be more than one witness
for a given statement. The induced NP-language LR is the set of
statements:

LR = {𝑠𝑡 | ∃ 𝑤 such that (𝑠𝑡,𝑤) ∈ R}.

A sigma protocol is a three-round protocol between a prover and a
verifier. Both parties receive as input the statement 𝑠𝑡 . Additionally,
the prover receives the witness 𝑤 as an auxiliary input and the
verifier may receive any arbitrary auxiliary input.
• First, the prover computes a commitment 𝐴, using random-
ness 𝑎, and sends 𝐴 to the verifier.
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• Next, the verifier randomly samples a challenge 𝑒 and sends
it to the prover,
• Last, the prover computes an answer 𝑧 (using𝑤 and 𝑎 ) and
sends it to the verifier.

The verifier based on the public transcript 𝜋 := (𝐴, 𝑒, 𝑧) accepts the
statement 𝑠𝑡 as valid or not.

2.2.1 Properties. The properties of a sigma protocol are the follow-
ing ones.

Completeness: If (𝑠𝑡,𝑤) ∈ R then the verifier accepts with
probability one.

Special soundness: For any pair of accepting transcripts 𝜋 =

(𝐴, 𝑒, 𝑧), 𝜋 ′ = (𝐴, 𝑒′, 𝑧′) with the same commitment 𝐴 and
distinct challenges 𝑒 ≠ 𝑒′, it is possible to reconstruct the
witness𝑤 such that (𝑠𝑡,𝑤) ∈ R.

Special honest verifier zero-knowledge (SHVZK) There ex-
ists a polynomial-time algorithm Simwhich on input (𝑠𝑡,𝑤) ∈
R and random challenge 𝑒 , it outputs an accepting transcript
𝜋 := (𝐴, 𝑒, 𝑧) indistinguishable from a protocol’s transcript.

We remark that special soundness implies a stronger property: sigma
protocols are also proof of knowledge (of a witness).
Also, SHVZK implies the standard notion of (honest-verifier)

zero-knowledge, where the simulator is tasked with simulating
transcripts on receiving only the statement as input. In other words,
SHVZK guarantees that no information about the witness is leaked
from the exchanged messages assuming the verifier behaves as
prescribed.

2.2.2 An example: Schnorr Protocol. Given two group elements
𝐺,𝐻 ∈ G𝑝 , the Schnorr protocol [15] proves knowledge of the
discrete logarithm 𝑥 = 𝑑𝑙𝑜𝑔𝐺 (𝐻 ) ∈ Z𝑝 . The steps are:

• The prover computes samples 𝑎 ∈ Z𝑝 at random and com-
putes 𝐴 = 𝑎 ·𝐺 . It sends 𝐴 to the verifier.
• The verifier randomly samples a challenge 𝑒 ∈ C ⊆ Z𝑝 and
sends it to the prover.
• The prover computes 𝑧 = 𝑎 + 𝑒𝑥𝑚𝑜𝑑𝑝 and sends it to the
verifier. The verifier accepts if and only if 𝑧 ·𝐺 = 𝐴 + 𝑒 · 𝐻 .

The Schnorr protocol is complete and SHVZK. For special soundness,
observe that from two accepting transcripts (𝐴, 𝑒, 𝑧), (𝐴, 𝑒′, 𝑧′) with
different challenges 𝑒 ≠ 𝑒′ we can write 𝑧 · 𝐺 = 𝐴 + 𝑒 · 𝐻 and
𝑧′ ·𝐺 = 𝐴 + 𝑒′ · 𝐻 . Subtracting the second equation from the first
one, and using that 𝑒 − 𝑒′ has (multiplicative) inverse in Z𝑝 we can
write 𝑑𝑙𝑜𝑔𝐺 (𝐻 ) = (𝑧 − 𝑧)/(𝑒 − 𝑒′).

2.2.3 Fiat-Shamir Heuristic. Sigma protocols are examples of public-
coin interactive proof systems. The challenge sent by the (honest)
verifier is random and independent from the prover’s messages.
Exploiting this feature, an interactive sigma protocol can be turned
non-interactive (just one message from prover to verifier) by emulat-
ing the verifier’s entropy used to sample the challenge with a cryp-
tographic hash function, which is seen as a truly random function
[2, 3]. Namely, setting 𝑒 = Hash(𝑠𝑡, 𝐴). Observe that 𝑡𝑟 := (𝑠𝑡, 𝐴)
is the (public) transcript occurring right before the challenge 𝑒 is
generated by the verifier in the interactive case.

The assumption on the hash function ensures two things. First,
the challenge 𝑒 is randomly distributed, and therefore, the interac-
tive protocol only needs to satisfy zero-knowledge against honest
verifiers (or SHVZK). Second, the prover is unable to calculate the
challenge before calculating the commitment 𝐴 (and the statement
𝑠𝑡 ), so the order of execution of the protocol cannot be inverted. The
latest is true provided the challenge space C is large enough so that
trying with different commitments 𝐴 does not ever hit the (unique)
challenge that would allow simulation. A medium/conservative
choice is to use challenges of size 80 or 128 bits respectively.

2.3 Sigma Protocols with Designated Verifier.
Let LR be an NP-language that admits a sigma protocol. Jakobsson
et. al. [8] design a framework in which a prover Alice is able to
prove a statement 𝑥 ∈ LR only to a designated verifier Bob (who
is in possession of a secret 𝑥), and no one else. The proof is non-
interactive, and the conviction is non-transferable. The latter means
that Bob is not able to convince a third party Charlie of the veracity
of the statement, even if Charlie gets the secret 𝑥 .
Intuitively, as the authors in [8] put it, the idea is that Alice

generates a proof 𝜋𝐵𝑜𝑏 to prove the modified statement:

“𝑠𝑡𝑥 ∈ LR or I know the secret 𝑥”.

The proof 𝜋𝐵𝑜𝑏 is crafted specially for Bob. If Bob is confident that his
secret 𝑥 has not been compromised, then 𝜋𝐵𝑜𝑏 is indeed a convincing
proof to himself. However, Bob is unable to convince Charlie that
𝑠𝑡 is valid using 𝜋𝐵𝑜𝑏 , because the very same proof could have been
generated by Bob (proving that he knows trapdoor 𝑥 instead that
the statement 𝑠𝑡 ∈ LR is valid).
More technically, what Jakobsson et. al. [8] propose is to use a

trapdoor commitment scheme (such as Pedersen with non-verifiable
commitment keys –see Section 2.1), where the trapdoor 𝑥 is known
to the designated verifier. The prover will commit to a random value
𝑣 in a commitment 𝐶 , and use 𝐶 , (along with the statement 𝑠𝑡 and
the first message 𝐴 of the sigma protocol) to generate ‘half’ of the
challenge with the hash function. Namely, the generation of the
non-interactive challenge is

𝑒 := ℎ + 𝑣 where ℎ = Hash(𝑠𝑡,𝐶,𝐴) .

The designated verifier Bob besides the checks of the sigma protocol
will also check that 𝐶 opens to 𝑣 . Now, since Bob can open 𝐶 to
any value he likes (using the trapdoor 𝑥), he can fake proofs 𝜋𝐵𝑜𝑏
running the simulator Sim on a random challenge 𝑒 to obtain 𝜋 :=
(𝐴, 𝑒, 𝑧) and then open commitment 𝐶 to 𝑣∗ := 𝑒 − Hash(𝑠𝑡,𝐶,𝐴).

3 THE UNDERLYING PROOF SYSTEM
We design a proof system allowing a data owner to control who can
be convinced of the link between her data and a hashed commitment
of it – what we call the ‘obfuscation’ of the data.

3.1 The non-interactive designated-verifier sigma protocol
The data owner first commits to her data𝑚 (interpreted as an inte-
ger modulo 𝑝) in a hiding way using a Pedersen commitment key
CK𝐷𝑂 := (𝐺𝐷𝑂 , 𝐻𝐷𝑂 ). The public statement is the tuple:

𝑠𝑡 := (𝑚,𝐶,CK𝐷𝑂 , 𝑜𝑏 𝑓 ) .
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Prove:
Inputs :
• Statement 𝑠𝑡 = (𝑚,𝐶,CK𝐷𝑂 , 𝑜𝑏 𝑓 )
• Witness 𝑟 ∈ Z𝑝 // s.t. 𝐶 =𝑚 ·𝐺𝐷𝑂 + 𝑟 · 𝐻𝐷𝑂

• Context information CK𝐷𝐶

Steps :
(1) 𝑎 ← Z𝑝 , 𝐴 := 𝑎 · 𝐻𝐷𝑂

(2) 𝑣, 𝑠 ← Z𝑝 , 𝐷 := 𝑣 ·𝐺𝐷𝐶 + 𝑠 · 𝐻𝐷𝐶

(3) ℎ := Hash(CK𝐷𝐶 , 𝑠𝑡, 𝐴, 𝐷)
(4) 𝑒 := ℎ + 𝑣
(5) 𝑧 := 𝑎 + 𝑒𝑟
(6) Output 𝜋𝐷𝐶 := (𝐷,𝐴, 𝑧, 𝑣, 𝑠)

Verify:
Inputs :
• Statement 𝑠𝑡 = (𝑚,𝐶,CK𝐷𝑂 , 𝑜𝑏 𝑓 )
• Proof 𝜋𝐷𝐶 := (𝐷,𝐴, 𝑧, 𝑣, 𝑠)
• Context information CK𝐷𝐶

Steps :
(1) If 𝐷 ≠ 𝑤 ·𝐺𝐷𝐶 + 𝑠 · 𝐻𝐷𝐶 reject
(2) ℎ := Hash(CK𝐷𝐶 , 𝑠𝑡, 𝐴, 𝐷)
(3) 𝑒 := ℎ + 𝑣
(4) If 𝑧 · 𝐻𝐷𝑂 ≠ 𝐴 + 𝑒 · (𝐶 −𝑚 ·𝐺𝐷𝑂 ) reject
(5) If 𝑜𝑏𝑓 ≠ sha256(𝐶) reject
(6) Else accept

Fig. 1. Prove and Verify algorithms. Hash is a cryptographic hash function
that maps bitstrings to Z𝑝

She will prove knowledge of the randomness used to commit to𝑚.
Concretely, she proves knowledge of an element in the set:

𝑍𝐾𝑃 (𝑠𝑡) := {𝑟 ∈ Z𝑝 | 𝐶 =𝑚 ·𝐺𝐷𝑂 + 𝑟 · 𝐻𝐷𝑂 ∧ 𝑜𝑏𝑓 = sha256(𝐶)}

The commitment key CK𝐷𝑂 must be generated in a verifiable way
ensuring the group elements 𝐺𝐷𝑂 , 𝐻𝐷𝑂 are independent. This key
can be shared across multiple data owners, and it can be widely
available by e.g. storing it on the blockchain; for example embedding
it an unspendable OP_RETURN output in Bitcoin.

Before the data owner can generate a proof 𝜋𝐷𝐶 , the designated
data consumer chooses a random secret trapdoor 𝑥 ∈ Z𝑝 and sets
up a new trapdoor commitment key as CK𝐷𝐶 := (𝐺𝐷𝐶 , 𝐻𝐷𝐶 :=
𝑥 ·𝐺𝐷𝐶 ). In Figure 1 we detail the non-interactive prover and verifier
of the sigma protocol.

3.2 Faking proofs
Let a valid statement 𝑠𝑡 = (𝑚,𝐶,CK𝐷𝑂 , 𝑜𝑏 𝑓 ). The designated data
consumer, armedwith the knowledge of the trapdoor 𝑥 , can generate
valid proofs for any data𝑚∗ ≠𝑚 even if he does not know an open-
ing 𝑟 for 𝐶 . This is possible because the designated data consumer
can open commitments under his key CK𝐷𝐶 to any value he likes,
and therefore choose in advance the challenge 𝑒 that purportedly
proves knowledge of 𝐷𝐿𝑂𝐺𝐻𝐷𝑂

(𝐶 −𝑚∗ ·𝐺𝐷𝑂 ). For completeness,
we detail how to fake proofs in Figure 2.

FakeProof:
Inputs :
• Statement 𝑠𝑡 = (𝑚,𝐶,CK𝐷𝑂 , 𝑜𝑏 𝑓 )
• 𝑚′ ∈ Z𝑝 // any data, possibly 𝑚′ ≠𝑚
• Trapdoor 𝑥 ∈ Z𝑝 // s.t. 𝐻𝐷𝐶 = 𝑥 ·𝐺𝐷𝑉

• Context information CK𝐷𝐶

Steps :
(1) 𝑧, 𝑒 ← Z𝑝 , 𝐴 := 𝑧 · 𝐻𝐷𝑂 − 𝑒 · (𝐶 −𝑚′ ·𝐺𝐷𝑂 )
(2) 𝑑 ← Z𝑝 , 𝐷 := 𝑑 ·𝐺𝐷𝑉

(3) ℎ := Hash(CK, 𝑠𝑡, 𝐴, 𝐷)
(4) 𝑤 := ·𝑒 − ℎ
(5) 𝑠 := 𝑑−𝑒+ℎ

𝑥 // compute opening with trapdoor
(6) Output 𝜋𝐷𝐶 := (𝐷,𝐴, 𝑧,𝑤, 𝑠)

Fig. 2. Faking proofs by a designated verifier

4 SELF-SOVEREIGN APPLICATIONS

4.1 Timestamping Data On-chain Privately
The first application of the proof system described in Section 3
is to timestamp data in a private manner. The data owner gets to
decide who can audit the timestamps at a later time. The steps of
the interaction are as follows (see also Figure 3 for an illustration).

(1) The data owner Alice uploads the obfuscated data 𝑜𝑏𝑓 :=
sha256(𝐶) to the blockchain, where𝐶 = Comm(𝐶, 𝑟,CK𝐷𝑂 ),
while keeping the commitment opening 𝑟 private.

The obfuscation is logged in the blockchain to ensure its existence
at a given time. However, due to the hiding property of Pedersen
commitments no one can infer which data𝑚 has been timestamped
implicitly.

Any data consumer Bob that is given the data and wants to verify
the link with the on-chain obfuscation will act as the designated
verifier. Bob will be convinced that indeed𝑚 is consistent with 𝑜𝑏𝑓 .
Alice and Bob proceed as follows.

(2) Bob downloads 𝑜𝑏𝑓 from the blockchain.
(3) Bob generates a trapdoor commitment keyCK𝐷𝐶 := (𝐺,𝐻 ) ∈
G2𝑝 . Recall the trapdoor is 𝑥 ∈ Z𝑝 such that𝐻 = 𝑥 ·𝐺 . It sends
CK𝐷𝐶 to Alice.

(4) Alice runs algorithm Prove from Figure 1 on inputs 𝑠𝑡 =

(𝑚,𝐶,CK, 𝑜𝑏 𝑓 ), 𝑟 , and 𝑜𝑏𝑓 . It sends𝑚,𝐶, 𝜋𝐷𝐶 to Bob.
(5) Bob runs algorithm Verify from Figure 1 on inputs𝑚,𝐶, 𝜋𝐷𝐶 .

If the output is accepting, Bob deems the data𝑚 correct.

Privacy of the timestamps via Non-Transferable Proofs. After re-
ceiving𝑚,𝐶, 𝜋𝐷𝐶 with 𝑜𝑏𝑓 = sha256(𝐶) from the data owner Alice,
the data consumer Bob can produce for any data 𝑚∗ ≠ 𝑚 of his
choice a convincing proof 𝜋∗

𝐷𝐶
, that is, a proof that passes the ver-

ification algorithm (see Figure 2). With such power, a third data
consumer Charlie cannot ever be sure if the data that Bob forwards
comes from Alice or from Bob himself. Put differently, Charlie can-
not tell whether the data was created before uploading 𝑜𝑏𝑓 to the
blockchain by Alice or afterwards when Bob sees the commitment
𝐶 . This means that any data coming from Bob is not bounded to the
timestamp 𝑜𝑏𝑓 , maintaining the privacy of𝑚 to anyone but Bob.
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Fig. 3. Example of timestamping application logs privately in a blockchain.

Fig. 4. Controlling who can verify the link between data and its on-chain
obfuscation.

4.2 Notarisation of Data
In this scenario the data owner takes an active role in the process of
notarisation (whereby the data is signed by a notary) and uploads
the signed data to the blockchain herself. It is a two-phase protocol
between the data owner, the designated data consumer, and the
notary. The parameters of the scheme are preconfigured and already
stored on the blockchain. They include the verification key 𝑃𝐾 of
the notary for signatures as well as the commitment key CK𝐷𝑂 of
the data owners.
• Phase 1: Notarisation of data. In the first phase, the data
owner commits to her data 𝑚 and sends it along with the
commitment𝐶 to the notary, who signs the commitment. The
data owner subsequently stores the obfuscated and signed
data 𝐷 = (𝑜𝑏𝑓 , 𝜎) in the blockchain, where 𝑜𝑏𝑓 = sha256(𝐶).
• Phase 2: Verification of notarised data. In the second
phase, a designated data consumer retrieves 𝑜𝑏𝑓 from the
blockchain. It also requests the data𝑚 and the commitment𝐶

to the data owner, along with the proof 𝜋𝐷𝐶 proving knowl-
edge of the commitment opening 𝑟 . The designated verifier
checks the proof and the signature 𝜎 , and also that 𝑜𝑏𝑓 is the
hash of 𝐶 .

Signing business-compliant data. The notary receives the data𝑚
so he can enforce its compliance before signing the commitment 𝐶 .
We emphasize that he does not know the private randomness 𝑟 , and
therefore he cannot establish the link between𝑚 and 𝐶 . In order
to implicitly sign𝑚 and not something else, the data owner proves
the link in zero-knowledge to the notary, who acts as a designated
verifier.

5 OUTSOURCING THE APPLICATIONS
Unlike in the previous use cases, now the data owner trusts a service
provider (SP) with her private randomness 𝑟 . In return, the SP gen-
erates the proof 𝜋𝐷𝐶 for the data consumer and interacts with the
blockchain on behalf of the data owner. Further, the SP lets parties
register as data consumers (which may involve authentication and
compliance with specific policies), and prove to them the correct
timestamping/notarisation of the requested data that is stored in
the blockchain. These two services are offered in exchange for a
fee. The data owner interacts just once with the SP to send her data.
After that she remains completely oblivious to the process.

Fig. 5. Architecture of the outsourced application. Data owners send their
data to the SP. Data consumers register their keys and verify correctness of
data interacting with the SP.

5.1 Signing Notarised Data
When the outsourced service is notarisation, the signature that the
notary (SP) puts on the data can be done in two ways.

Explicit signature. The notary signs the data commitment 𝐶 and
sets the obfuscated data to 𝑜𝑏𝑓 := sha256(𝐶, 𝜎). Thus, the concate-
nation of the commitment and its signature. We assume the data
consumer has the correct verification key of the notary (e.g. via a
standard PKI infrastructure). He receives the signed commitment,
and it checks that the signature is correct and that its hash matches
the on-chain obfuscation 𝑜𝑏𝑓 .

Implicit signature. The notary embeds the obfuscated data in
an unspendable OP_RETURN output of a Bitcoin transaction that
spends a pay-to-public-key-hash (P2PKH) output. The data con-
sumer receives the P2PKH address that is known to belong to the
notary, the commitment 𝐶 , and it checks that its hash is embedded
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in the transaction that spends the notary P2PKH address. This has
the effect of delegating signature verification to blockchain nodes
(miners).

5.2 Protecting the Service Provider: Key Registration
A coalition of mutually distrusting data consumers may interact to
pay the fee of the SP just once and re-use the same proof for all of
them. This is possible if none of the parties knows the secret trapdoor
explicitly, but instead is jointly held by all of them. We protect SPs
against this type of coalitions without resorting to trusted third
party or authenticated channels as in [8].

In our solution, the data consumer proves in zero-knowledge that
he knows the trapdoor 𝑥 of a given commitment keyCK𝐷𝐶 = (𝐺,𝐻 )
as part of the key registration. The difficulty resides in proving
explicit knowledge of the trapdoor 𝑥 . For example, the standard
Schnorr protocol [15] to prove knowledge of the logarithm of 𝐻 in
base 𝐺 does not suffice here. Indeed, a coalition of data consumers
that share the trapdoor 𝑥 can collaborate to prove joint knowledge
of 𝑥 without any of them knowing 𝑥 explicitly.

5.2.1 Solution 1: Outsourcing Generation of the Trapdoor. A straight-
forward solution to avoid malicious coalitions of verifiers is to out-
source the generation of the trapdoor commitment key (𝑥,CK𝐷𝐶 )
to a trusted third party – the trapdoor generator. This party is
trusted to not collude with the SP to share the trapdoor x, and to
not generate simulated proofs. On a generation request from a des-
ignated data consumer, the trapdoor generator will issue the signed
pair (𝑥,CK𝐷𝐶 ). Note it includes the trapdoor 𝑥 explicitly. Any data
consumer can register a commitment key CK𝐷𝐶 with the SP, who
would check such key is signed by the trapdoor generator. If that is
the case, the SP is convinced that the knowledge of the trapdoor 𝑥 of
CK𝐷𝐶 is known by at least one party – now the de facto designated
data consumer – namely the party that requested the generation
of the key to the trapdoor generator. This would make the proof
𝜋𝐷𝐶 convincing only to such designated consumer but not the other
members of the coalition.

5.2.2 Solution 2: Proving Knowledge of the Trapdoor in Zero-knowledge.
The above solution introduces a trusted party (the trapdoor genera-
tor), which depending on use cases might not be desirable. Instead,
the designated consumer can prove (in zero-knowledge) to the SP
that he knows the trapdoor 𝑥 of a given commitment key CK𝐷𝐶 .
The difficulty resides in proving explicit knowledge of the trap-

door 𝑥 . For example, the standard Schnorr protocol to prove knowl-
edge of the logarithm of 𝐻𝐷𝐶 in base 𝐺𝐷𝐶 does not suffice here. A
coalition of verifiers as above can collaborate to prove joint knowl-
edge of 𝑥 assuming each of them knows an additive share 𝑥𝑖 only.

The Underlying Idea. To register the commitment key CK𝐷𝐶 , the
data consumer plays the role of the prover, and the SP the role
of the verifier. As we shall see below, provided the proof verifies
successfully, the SP is convinced that the data consumer has used
the trapdoor 𝑥 explicitly in the generation of the proof with over-
whelming probability.

We use the standard Schnorr protocol (see Section 2.3) but demand
the data consumer (the prover) to commit in advance to all possible

answers. More concretely, on common inputCK𝐷𝐶 = (𝐺,𝐻 := 𝑥 ·𝐻 )
the protocol is as follows:
• the data consumer commits in advance to the two possible
answers 𝑧0 := 𝑎, 𝑧1 := 𝑎 + 𝑥 . He commits by hashing: 𝑐𝑖 =

Hash(𝑧𝑖 ). Here 𝑎 ∈ Z𝑝 is the randomness used to generate
the first message of the Schnorr protocol. The data consumer
sends 𝐴 := 𝑎 ·𝐺 , and 𝑐0, 𝑐1 to the verifier.
• the SP issues a challenge bit 𝑒 ∈ {0, 1}
• the data consumer sends answer 𝑧𝑒 , and the SP checks correct
decommitment 𝑐𝑒 = Hash(𝑧𝑒 ) and correct answer 𝑧𝑒 · 𝐺 =

𝐴 + 𝑒 · 𝐻 .
The above modified Schnorr protocol gives soundness error 𝑝 = 1/2.
To amplify soundness to 𝑝 = 2−𝑠 , they repeat the protocol 𝑠 times
sequentially.

Reducing the number of repetitions. We can increase the size of
the challenge to 𝑑 bits. Each execution of the protocol with 𝑑-bit
challenges gives soundness error 2−𝑑 . To achieve soundness error
2−𝑠 where 𝑠 is a fixed security parameter we need to repeat it a total
of 𝑟 = 𝑠/𝑑 times.

However, now the prover needs to commit to 2𝑑 different answers
𝑧𝑖 = 𝑟 + 𝑒𝑖𝑥 . This can be done efficiently using a Merkle tree of
depth 𝑑 , where the 𝑖-th leaf is set to 𝑧𝑖 . The prover sends the root 𝑐
of the Merkle tree before the verifier issues the challenge 𝑒 , and it
answers with 𝑧 = 𝑟 + 𝑒𝑥 along with the Merkle proof p for it.

Security Analysis – Why the Data Consumer Knows the Trapdoor
Explicitly? The protocol sketched above has special soundness. This
means that there exists a polynomial-time extractor algorithm E,
that from two different accepting transcripts (with the first message
fixed) can extract the trapdoor 𝑥 . More specifically, from two differ-
ent challenges 𝑒 ≠ 𝑒′ and two answers 𝑧, 𝑧′, extracts by computing
𝑥 := (𝑧 − 𝑧′)/(𝑒 − 𝑒′) mod 𝑝 .

Now, assume the data consumer knows all possible answers. In
particular, he can always generate two accepting transcripts (for
two different challenges) and run the extractor E on them to output
the trapdoor 𝑥 . In other words, if the prover knows all possible
answers, then he knows the trapdoor 𝑥 explicitly.

The probability of not knowing the answers but providing a valid
Merkle proof p for 𝑐, 𝑧𝑒 is at most 𝑑𝜖 , where 𝜖 is the probability of
finding a collision of the hash function used in the Merkle tree of
depth 𝑑 .
We conclude that a convincing prover knows 𝑥 explicitly with

probability at least 1 − 𝑑𝜖 . Last, observe that 𝜖 is negligible in the
size of 𝑐 assuming collision resistance of the hash function.

Implementing the Protocol in Practice. Figure 6 defines the non-
interactive version (using the Fiat-Shamir transform) of the protocol
sketched above.
We observe that to preserve zero-knowledge (of the trapdoor)

the Prover executes all rounds sequentially. This affects how the
challenges are derived from the transcript. Specifically, let

𝜋𝑖 := (𝐴𝑖 , 𝑐𝑖 , 𝑒𝑖 , 𝑧𝑖 , p𝑖 )

be the transcript generated in the 𝑖-th round. The (𝑖 + 1)-th chal-
lenge is the hash of (𝜋𝑖 , 𝐴𝑖+1, 𝑐𝑖+1). Also, the prover generates the
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ProveKeyRegistration:
Inputs :
• Statement 𝑠𝑡 = CK𝐷𝑉 = (𝐺,𝐻 )
• Witness 𝑥 ∈ Z𝑝 s.t. 𝐻 = 𝑥 ·𝐺

Steps :
(1) 𝜋0 ← 𝑠𝑡

(2) For 𝑖 = 1 to 𝑟 do:
(a) 𝑎𝑖 ← Z𝑝 , 𝐴𝑖 = 𝑎𝑖 ·𝐺
(b) For 𝑗 = 0 to 2𝑑 − 1: 𝑧𝑖, 𝑗 = 𝑎 + 𝑗𝑥 mod 𝑝
(c) 𝑐𝑖 ← GenMerkleRoot(z𝑖 )
(d) (𝑒𝑖 , 𝑛𝑖 ) ← GenChallenge(𝜋𝑖−1, 𝐴𝑖 , 𝑐𝑖 ) // see below
(e) 𝑧𝑖 = 𝑧𝑖,𝑒𝑖
(f) p𝑖 ← GenMerkleProof (z𝑖 , 𝑒𝑖 )
(g) 𝜋𝑖 = (𝐴𝑖 , 𝑐𝑖 , 𝑒𝑖 , 𝑛𝑖 , 𝑧𝑖 , p𝑖 )

(3) Output 𝝅 = (𝑐𝑖 , 𝑒𝑖 , 𝑛𝑖 , 𝑧𝑖 , p𝑖 )𝑟𝑖=1
VerifyKeyRegistration:
Inputs :
• Statement 𝑠𝑡 = CK𝐷𝑉 = (𝐺,𝐻 )
• Proof 𝝅 = (𝑐𝑖 , 𝑒𝑖 , 𝑛𝑖 , 𝑧𝑖 , p𝑖 )𝑟𝑖=1

Steps :
(1) 𝜋0 ← 𝑠𝑡

(2) For 𝑖 = 1 to 𝑟 do:
(a) 𝑏𝑖 ∈ {0, 1} ← CheckMerkleProof (𝑐𝑖 , p𝑖 , 𝑧𝑖 )
(b) If 𝑏𝑖 reject
(c) 𝑌𝑖 = 𝑒𝑖 · 𝐻
(d) 𝑍𝑖 = 𝑧𝑖 ·𝐺
(e) 𝐴𝑖 = 𝑍𝑖 − 𝑌𝑖 // reconstruct first message
(f) (𝑒∗

𝑖
, 𝑛∗

𝑖
) ← GenChallenge(𝜋𝑖−1, 𝐴𝑖 , 𝑐𝑖 )

(g) If (𝑒∗
𝑖
, 𝑛∗

𝑖
) ≠ (𝑒𝑖 , 𝑛𝑖 ) reject

(h) 𝜋𝑖 = (𝐴𝑖 , 𝑐𝑖 , 𝑒𝑖 , 𝑛𝑖 , 𝑧𝑖 , p𝑖 )
(3) Accept if no rejections in Step 2

GenChallenge(𝜋𝑖−1, 𝐴𝑖 , 𝑐𝑖 ):

(1) 𝑒𝑖 = 2𝑑 , 𝑛𝑖 = 0
(2) while 𝑒𝐼 ≥ 2𝑑 do: // rejection sampling
(a) 𝑛𝑖 = 𝑛𝑖 + 1
(b) ℎ𝑖 = Hash(𝜋𝑖−1, 𝐴𝑖 , 𝑐𝑖 , 𝑛𝑖 )
(c) 𝑒𝑖 ← Trunc(ℎ𝑖 ) // Truncate first ⌈𝑑8 ⌉ bytes

(3) Output (𝑒𝑖 , 𝑛𝑖 )
Fig. 6. NIZK proof system to prove explicit knowledge of the trapdoor 𝑥 .
It is parameterized with the bitsize 𝑑 of the challenges and the number of
iterations 𝑟 . The hash function outputs bitstrings of length 𝑘 .

challenge with e.g. rejection sampling to not introduce bias when
reducing mod 2𝑑 for arbitrary 𝑑 .

Complexity and Choice of Parameters. We instantiate Pedersen
commitments over any elliptic curve with order p of 256 bits
and the hash function used to derive the challenge and to con-
struct the Merkle tree with sha256. These choices yield proofs
𝜋 := (𝑐𝑖 , p𝑖 , 𝑒𝑖 , 𝑧𝑖 , 𝑛𝑖 )𝑟𝑖=1 of bitsize roughly 𝑟 (512 + 257𝑑) where
𝑑 < 256 is the bitsize of the challenges and 𝑟 is the number of
iterations (rounds).
The prover needs to perform 𝑟 scalar multiplications and the

verifier twice as many. We therefore seek to minimize as much

as possible the number of iterations 𝑟 . This is to minimize both,
the computational and communication complexity. However, we
cannot set 𝑟 to small (e.g., 𝑟 = 1), as this would yield a Merkle tree
excessively large (e.g., 2𝑠 leaves) to compute on Prover’s side.
Concrete values of 𝑟 and 𝑑 should be determined empirically

having in mind that 𝑟 = 𝑠/𝑑 , and that we have fixed the soundness
security parameter to 𝑠 ∈ {80, 128, 256}.

6 CONCLUSIONS AND RECOMMENDATIONS
In this paper, we have explained how to achieve private timestamp-
ing and selective verification of notarised data in a blockchain. The
techniques use non-interactive sigma protocols for designated veri-
fiers and only upload (hashes of) committed data to the blockchain.
Due to the hiding property of the Pedersen commitments and non-
transferability of the proofs, we can guarantee privacy and control
who can verify the proofs. Our applications are straightforward to
implement, do not assume trust in third parties, and are blockchain-
agnostic. Although not stated explicitly, the designated proof can be
uploaded to the blockchain as well, dismissing the need of off-chain
communication channels.

6.1 Benchmarks
We have implemented a proof of concept in Rust programming
language. Pedersen commitments and the prover and designated-
verifier (Figure 1) are instantiated over the elliptic curve Curve2559.
We have benchmarked the combined time it takes to commit and
generate a designated-verifier proof, and also the time it takes to
verify the proof for data varying up to 4KB of size. The tests have
run in a laptop with processor AMD Ryzen 7 PRO 4750U at 1.70
GHz and 32GB RAM. All timings are under a fraction of a second.
See Figure 7.

Fig. 7. Times to commit and prove (combined) and verify.

For reference, we have also compared the time to commit and
prove data with the time it takes to hash the same data with SHA512
(Figure 8). We have observed that the performance overhead de-
creases when data size is increased. We believe this is because we
encode data as points in the curve via hashing. The overhead when
committing 4KB of data is roughly a 7x factor.

7



Orginally published in IEEE IST-Africa, 2023, Tshwane, South Africa E. Larraia and O. Vaughan

Fig. 8. Overhead of commit & prove w.r.t. SHA512.

6.2 Future work
There are two avenues we can pursue as future work. First, develop
a proof-of-concept implementation with benchmarks for the service
provider described in Section 5.2. Second, we can explore how to
commit to large data sets and only reveal certain parts of it. This
will allow data owners to disclose a specific data segment to one
consumer, and a different data segment to a different consumer. To
achieve this, the commitment scheme and its associated designated-
verifier should be massaged accordingly.
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