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Abstract. This paper describes a formalization of the specification and
the algorithm of the public key encryption scheme CRYSTALS-KYBER
as well as the verification of its δ-correctness and indistinguishability un-
der chosen plaintext attack (IND-CPA) security proof. The algorithms
and proofs were formalized with only minimal assumptions in a modu-
lar way to verify the proofs for all possible parameter sets. During the
formalization in this flexible setting, problems in the correctness proof
were uncovered. Furthermore, the security of CRYSTALS-KYBER un-
der IND-CPA was verified using a game-based approach. As the security
property does not hold for the original version of CRYSTALS-KYBER,
we only show the IND-CPA security for the latest versions. The secu-
rity proof was verified under the hardness assumption of the module
Learning-with-Errors Problem. The formalization was realized in the the-
orem prover Isabelle and is foundational.

Keywords: post-quantum cryptography · CRYSTALS-KYBER · num-
ber theoretic transform · security · verification · Isabelle.

1 Introduction

With large-scale quantum computers all crypto systems based on RSA and Diffie-
Hellmann can be broken using Shor’s algorithm. Since recent developements
in quantum computing lead to believe that these feasible quantum computers
are not too far off in the future, methods for cryptography which are resistant
even to attacks by quantum computers are hot research topics. In the course
of the standardization process initialized by the National Institute of Standards
and Technology (NIST), a variety of post-quantum crypto systems have been
designed. Most prominent are the so-called lattice-based crypto schemes.

The winner of the NIST standardization process for public key encryption
(PKE) and key encapsulation methods (KEM) was announced in July 2022. It
is the key encapsulation mechanism CRYSTALS-KYBER (abbreviated as Ky-
ber throughout this presentation) which was originally developed by Joppe Bos
et al. [9]. In the first submission to the NIST standardisation process [4], the
algorithms from the original paper are extended by sampling methods using
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pseudorandom functions and an encoding and decoding function for mapping
bits to polynomials and vice versa. A main change to the submission in the
second round [3] was excluding the compression and decompression functions in
the key generation and encryption functions. The reason is that a problem in
the security proof under the indistinguishability under chosen plaintext attack
(IND-CPA) was found by Jan-Pieter D’Anvers. Furthermore the use of a slightly
different algorithm for fast multiplication allowed the use of a smaller prime for
the finite field. For the last submission in round three [2] in October 2020, only
small parameter changes have been made.

In contrast to other lattice-based crypto systems like NTRU [33] by Chen
et al., Kyber works over a module instead of a polynomial ring. This combines
the advantages of working over polynomials and vectors. In order to exploit
the structures given by the underlying module, the number theoretic transform
(NTT) is used for fast multiplication. The NTT is a version of the Discrete
Fourier Transform adapted to finite fields and structures thereover. An optimized
version of the NTT uses butterfly schemes like Cooley-Tukey or Gentleman-
Sande. The use of the NTT in lattice-based cryptography is described in [27]
and its connection to nega-cyclic convolutions in [20].

1.1 Our Contribution

The formalization can be found in [21] and [?]. We have formalized the al-
gorithms for key generation, encryption and decryption of the PKE scheme of
Kyber both for the original [4,9] and the latest versions [2,3]. The formalization
only uses minimal assumptions in order to allow for instantiations with various
parameter sets. As an example, some parameter sets as used in [9] and [3] were
formalized as well.

During the verification of the δ-correctness proof, we noticed two problems.
Firstly, we could only verify the δ-correctness for a slightly modified δ. The claim
for δ-correctness of Kyber as in [9] could not be formalized. This issue has already
been pointed out by Manuel Barbosa as mentioned in [18]. We investigate the
reason and explain our modifications to the error bound δ. Secondly, our modular
formalization of the δ-correctness proof revealed a necessary assumption on the
modulus q used in the Kyber specification parameters which was not explicitly
mentioned in the papers [2–4,9]. In the parameter set of Kyber, this assumption
follows indirectly from the choice of the modulus q for the number theoretic
transform (NTT), an algorithm for fast multiplication used in Kyber. Since the
chosen parameter q fulfils this assumption, this part of the proof remains valid.
If the parameters need to be changed in the future, it is important to keep both
the new assumption for the δ-correctness proof and the NTT in mind.

In order to refine the algorithm, the NTT on polynomials as used in the
original version of Kyber, as well as its convolution theorem have also been
formalized for this article.

In our formalization, we only verified the game-based security proof against
IND-CPA of Kyber without the compression of the public key (i.e., the latest
version of Kyber [2,3]). The security property against IND-CPA for the original
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version of Kyber [9] and the version submitted to the first round of the NIST
standardisation process [4] does not hold as remarked by the authors in [9].
This is the reason why the authors [9] chose to omit the compression of the
public key from the submissions for the second and subsequent roundss of the
NIST standardisation process. The proof stated in [9] is thus valid for Kyber
without the compression of the public key under the module-Learning-with-
Errors (module-LWE) hardness assumption. The game version for the module-
LWE was formalized as a building block for the security proof. If the hardness
assumption on the module-LWE problem is true, the advantage against the
module-LWE game is negligible (i.e., small enough).

1.2 Related Work

A short version on the formalization of the δ-correctness of the original version
of Kyber can be found in [22]. Meijers et al. [7, 8] announced a formalization
of Kyber in EasyCrypt [11]. Furthermore, a post-quantum version of EasyCrypt
called EasyPQC is being developed [6]. However, to the best of the authors’
knowledge, there is, up to now, no publication or publicly accessible formalization
of Kyber, its correctness proof or the IND-CPA security proof. As mentioned
in [18], Manuel Barbosa noticed a problem in the pen-and-paper proof of the
δ-correctness proof during the formalization.

Due to this problem, the δ-correctness fails to comply with the necessary
conditions for a Fujisaki-Okamoto (FO) transform along the lines of [14] (and
its formalization by Unruh [35]). In order to fill this gap, new conditions for an
alternative FO transform have been found by Hövelmanns et al. [18]. A formal-
ization of the FO variant is out of scope for this work.

Recently, a verification of the lattice-based post-quantum crypto system
Saber [23] was published [16]. The verification is based on EasyCrypt. Saber
has many similarities to Kyber: They both work over the same module. The
main difference lies in the underlying hardness assumption. Saber is based on
the module-Learning-with-Rounding problem. Instead of adding random errors
as in Kyber, Saber generates errors by adding some fixed error and rounding.
Moreover, Saber does not use any compression function on the output as Ky-
ber does. Therefore, the δ-correctness proof of Saber does not encounter the
problems noticed in Kybers correctness proofs.

Last year, the NTT was verified in CryptoLine by Hwang et al. in [17].
CryptoLine is a tool for low-level verification of implementations which stands
in contrast to our high level verification of the mathematics behind Kyber.

1.3 Isabelle/HOL

All formalizations and verifications were implemented in the theorem prover
Isabelle. An introduction to Isabelle can be found in [30] and [29]. In contrast
to other cryptographic verification tools like EasyCrypt, Isabelle is foundational
and everything is proved from the axioms of HOL. We formalize and verify
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the mathematical principles and algorithms used in Kyber and analyze the δ-
correctness and the IND-CPA security property. This is done on a high-level,
abstract view of Kyber and is not restricted to an implementation.

Two main features in Isabelle support abstraction over a context of assump-
tions: The type class constraints (introduced in [12]) and explicit assumptions
summarized in a context called locale (introduced in [5]). As in many functional
languages, type classes allow ad-hoc polymorphisms. Assumptions are integrated
in the type class definition and thus can be used for resoning steps. The module
system in Isabelle using locales enables the proofs to be independent from con-
crete instantiations of variables. This flexible implementation allows the user to
verify proofs for different parameter inputs. A nice example is the change of the
prime underlying the finite field from the submission of round one [4] to round
two [3]. Since the verified proof in Isabelle is independent of the parameters,
this change in the parameter set could be verified by simply invoking another
locale instance. However, the changes in the algorithms still need to be verified
independently.

For the game-based security proof of the IND-CPA property, we based our
formalizations on the developement of cryptographic game-hop proofs CryptHOL
by Lochbihler [25,26]. Furthermore, we make use of the extensive libraries in Is-
abelle for example for concepts from algebra (e.g., vectors, polynomials, quotient
rings, finite fields, etc.), analysis (e.g., norms, lemmas about sums and inte-
grals), probability theory (e.g., (sub-)probability mass functions, expectations
and probabilities) and many more.

1.4 Structure

In this paper, we discuss the formalization and verification of Kyber and its δ-
correctness proof, as well as the game-based IND-CPA security proof for Kyber.
First, we have a look at the specifications and parameters of Kyber in Section 2.
We elaborate on the representation of the ring Zq[x]/(xn + 1) as a type class
in Isabelle. Since the formalization is independent from the actual parameters,
in Section 3 we look at the instantiation of our formalization with some values
given in [9] and [2]. Next, we describe the formalization of the algorithms for
compression, decompression, key generation, encryption and decryption used
in the original and recent versions of Kyber in Section 4. The recent version
differs from the original by omitting the compression of the output of the key
generation. In Section 5, we proceed with the verification of the δ-correctness
proof of Kyber for both previously presented versions. Here, we recognise two
problems in the proof: On the one hand, we can only show δ-correctness for a
modified δ. We analyze why the original proof could not be formalized and how
a modification on δ can fix this issue. On the other hand, we inspect a problem
with the inequalities in the proof which we can solve by adding an assumption on
the modulus q. This is discussed in Section 5.6. This newly found assumption is
already fulfilled when working in the NTT domain. The formalization of the NTT
on polynomials and its convolution theorem is analyzed in Section 6. In Section 7,
we give a short introduction to game-based cryptography and define the game
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versions of the IND-CPA security game and the module-LWE problem. As the
security proof was formalized using the framework CryptHOL [25], we point out
important concepts for formalizing cryptographic security proofs in Isabelle in
Section 8. The formalization of the game-based security proof of Kyber against
IND-CPA follows in Section 9. In the end, we give a short outlook on further
research questions. The full formalization can be found in [21] and [?].

2 Formalizing the Specifications of Kyber

Let q be a prime and n a power of two, i.e., there is an n′ such that n = 2n′ .
Let Rq denote the ring Zq[x]/(xn + 1). Note that xn + 1 is the 2n′ -th cyclotomic
polynomial which is irreducible over the integers Z, but reducible over the finite
field Zq.

When implementing the specifications of Kyber, one first has to think of
how to formalize a quotient ring when factoring a polynomial ring with coeffi-
cients in a finite field by an ideal generated by a cyclotomic polynomial, namely
Zq[x]/(xn + 1). There are various concepts behind this construct which are not
easy to formalise in Isabelle. To still be able to work over these complicated
spaces without too many premises, we chose to use type class constructs.

First of all, the existing formalization of the finite field uses the type class
mod_ring over a finite type. The modulus prime is encoded as the cardinality
of the finite type. It represents the residue classes of the ring Zq where q is the
cardinality of the finite type.

Polynomials can be easily constructed using the poly type constructor. The
poly constructor defines a polynomial to be a function from the natural numbers
to the coefficient space which is 0 almost everywhere. A polynomial p in R[x]
is thus represented by the function of coefficients f : N −→ R such that p =∑∞
i=0 f(i)xi. Since p has only finitely many non-zero coefficients, f is 0 almost

everywhere. For example the polynomial p = x2+2 is represented as the function
f with:

f(i) =


if i = 0 then 2
if i = 2 then 1
else 0

There is an alternative definition which defines polynomials using a list con-
structor pCons. This allows the user to convert concrete polynomials to lists of
coefficients and vice versa. Continuing our example from above, the list corre-
ponding to p = x2 + 2 is [2, 0, 1]. However, when representing polynomials as
lists, one has to be careful to always reduce redundant zero coefficients in or-
der to guarantee a unique representation. For example, the list [2, 0, 1, 0, 0] also
represents the polynomial p.

The most difficult part is to construct the quotient ring Rq. First, an equiva-
lence relation needs to be established for residue classes modulo xn+1. Then, one
can factor out the equivalence relation using the command quotient_type [19].
The resulting structure inherits basic properties like the zero element, addition,
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subtraction and multiplication from the original polynomial ring through lifting
and transfer [15].

Vectors are implemented using a fixed finite type as an index set. Since
Isabelle does not allow dependent types, a separate finite type for indexing is
used to encode the length of a vector. This idea was introduced by Harrison [13].
For example, when working with vectors in Zk, we use the type (int, ’k) vec.
Here, ’k is a finite type with cardinality exactly k used for indexing the integer
coefficients.

An important fact to note when dealing with formalizations is that the func-
tions translating between the different types always need to be stated explic-
itly. In the mathematical literature, this distinction is often blurred to enable a
shorter presentation.

3 Formalizing the Parameters of Kyber

The parameters of the original version of Kyber [9] are given in Table 1.

Table 1: Original parameter set of Kyber [9]
variable value context

n 256 = 2n′
degree of cyclotomic polynomial

n′ 8 exponent of 2 in n
q 7681 prime number, modulus
k 3 dimension of vectors
du 11 digits for encryption of u
dv 3 digits for encryption of v
dt 11 digits for key generation

Since the framework for the specification of Kyber is formalized indepen-
dently from the actual parameters, we can instantiate the formalization with
any parameters sufficing all required properties:

– n, n′, q, k, du, dv (and dt for Kyber with compression of the public key) are
positive integers

– n = 2n′ is a power of 2
– q > 2 is an odd prime with q mod 4 = 1 (the latter is an additional assump-

tion and will be discussed in Section 5.6)

This is especially of interest for eventual changes in the parameter set. Fur-
thermore, different security level implementations use different parameters. For
example, the initial parameter of the modulus q in [9] is 7681, but since round
two of the NIST standardisation process [2,3], Kyber uses the modulus 3329 and
adapted du and dv. Furthermore, different sizes k of vectors (and adapted du and
dv) define different security levels. The parameter sets for different security levels
from the third round specification of Kyber [2] can be found in Table 2.
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Table 2: Parameter set of round three Kyber [2]
variable Kyber512 Kyber768 Kyber1024 context

n 256 256 256 = 2n′
degree of cyclotomic polynomial

n′ 8 8 8 exponent of 2 in degree n
q 3329 3329 3329 prime number, modulus
k 2 3 4 dimension of vectors
du 10 10 11 digits for encryption of u
dv 4 4 5 digits for encryption of v

In our formalization, we instantiate the locale containing the original Kyber
algorithm and proof of δ-correctness with the parameter set given in Table 1
and the algorithms without compression of the public key with the parameter
set given in Table 2 for Kyber768. Unfortunately this has been trickier than
expected. The existing code generation for generating finite types of a specific
cardinality does not allow the user to instantiate this type for the type class
of prime cardinalities. Therefore, the type class with 7681 elements (and 3329
elements respectively) was instantiated manually for prime cardinality.

4 Formalizing the Kyber Algorithm

The PKE scheme Kyber is divided into three algorithms: the key generation,
the encryption and the decryption. Using a randomly chosen input, the key
generation produces a public and secret key pair that are applied in the en- and
decryption. In order to discard some lower order bits to make the keys smaller, a
compression and decompression function is added. The compression function is
also used to extract the message in the decryption. However, the compression of
the public key breaks the security proof against IND-CPA. Therefore, since the
submission to round two of the NIST standardisation process, this compression
of the public key was left out.

For a clearer presentation, we omit explicit type casts when they are unam-
biguous. For example, the embedding of integers in the reals or vice versa has an
explicit type cast. An important type cast that we will state explicitly is the cast
from an integer to the module Rq which we denote as the function to_module.
In the actual formalization, all type casts are stated.

4.1 Input to the Algorithm

The key generation requires the inputs A ∈ Rk×kq , s ∈ Rkq and e ∈ Rkq which
are chosen randomly. A is chosen uniformly at random from the finite set Rk×kq .
This matrix is part of the public key. For the secret key s and the error term
e, we define the centered binomial distribution βη. Choose η values ci with
P (ci = −1) = P (ci = 1) = 1/4 and P (ci = 0) = 1/2 and return the value
x =

∑η
i=1 ci. In the original version of Kyber [9], we use η = 4.
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Note that in the more recent submissions of Kyber, the value η determining
the variance of the centered binomial distribution was changed as well. Again, the
formalization in locales allows us to easily change these values of η. However,
in the third submission round [2], two separate values η1 and η2 have been
introduced. This distinction has not been formalised.

For generating a polynomial in Rq according to βη, every coefficient is chosen
independently from βη. Similarly, a vector in Rkq is generated according to βkη by
independently choosing all entries according to βη. Both s and e are generated
according to βkη .

The sampled values A, s and e constitute an instance of the module-Learning-
With-Errors (module-LWE) problem which is defined in the following.

Definition 1 (Module-LWE). Given a uniformly random A ∈ Rk×kq and
s, e ∈ Rkq chosen randomly according to the distribution βkη . Let t = As+ e, then
the (decision) module-LWE problem asks to distinguish (A, t) from uniformly
random (A′, t′) ∈ Rk×kq ×Rkq .

There is a probabilistic reduction proof for the NP-hardness of the module-
LWE by Langlois and Stehlé [24]. Using the hardness of the module-LWE, the
key generation of Kyber returns a public key and secret key pair where it is
NP-hard to recover the secret key from the public key alone. This NP-hardness
property is also called the module-LWE hardness assumption.

Note that the module-LWE problem without the error term would be easy
to solve using the Euclidean Algorithm. Thus, the error term cannot be reused
but has to be chosen according to the distribution βkη again. The random choices
and the reduction to the module-LWE have been formalized in the IND-CPA
security proof for Kyber. The NP-hardness proof of the module-LWE has not
been formalized.

4.2 Compression and Decompression

The compression and decompression functions in Kyber help to reduce the public
and secret key sizes (only in the original version) and obscure the message. In the
decryption, the message is also extracted by a compression to one bit. In order
to define these functions, we introduce a positive integer d with 2d < q. Thus,
we have d < dlog2(q)e. In this section, we write “mod 2d” to denote the modulo
operation with modulus 2d, yielding the unique representative in {0, . . . , 2d−1}.

When compressing a value x, we omit the least important bits and reduce the
representation of x to d bits. Decompression rescales to the modulus q. Com-
pression and decompression functions are defined for integers in the following
way.

compressd x =
⌈

2d · x
q

⌋
mod 2d

decompressd x =
⌈q · x

2d
⌋
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Note that the round function is defined as dxc = bx + 1
2c. The compression

and decompression functions are extended as functions over Zq by taking the
unique representative in {0, . . . , q − 1}. We denote compression and decompres-
sion over polynomials as compress_poly and decompress_poly and over vectors
as compress_vec and decompress_vec. They are defined to perform the com-
pression or decompression coefficient- and index-wise, respectively.

We call the value decompressd (compressd x) − x the compression error
cx. The rounding in the compression and decompression may introduce such a
compression error. For example, consider the values d = 2 and q = 5. Then,
the compression of 2 is compress2 2 = d1.6c mod 4 = 2 and decompress2 2 =
d2.5c = 3. Here, the compression error is decompress2 (compress2 2) − 2 =
3 − 2 = 1. Another reason for a compression error is the modulo operation in
the compression function. For example consider d = 2 and q = 11. Then the
compression of 10 is compress2 10 = d3.63c mod 4 = 0 and decompress2 0 = 0.
Here, the compression error for integers is decompress2 (compress2 10)− 10 =
−10. Interpreting this as a number over Z11, we get a compression error of 1.

In the following, for a value x, we will denote the compression of x by x∗ and
the decompression of the compression as x′.

4.3 Key Generation, Encryption and Decryption

We now want to state the actual algorithm. Let t = A · s + e and dt be the
compression depth associated to t. Then the algorithm for key generation as in
the original version of Kyber [9] is defined in the following way:

key_gen dt A s e = compress_vecdt
(A · s+ e)

We denote by t∗ = key_gen dt A s e the output of the key generation algorithm
with compression.

Since round two of the NIST standardisation process [3], the key genera-
tion is defined without the compression of the output. The new key generation
algorithm reads:

key_gen′ A s e = A · s+ e

The output of the key generation without compression is t. Together, the matrix
A and t(∗) constitute the public key, whereas the vector s is the secret key. When
we say that the public and secret key pair (A, t(∗)) and s are generated by the
key generation algorithm, we mean the probabilistic program where A, s and e
are chosen according to their distributions, t(∗) is calculated by key_gen(′) and
(A, t(∗)) and s are the output.

The pair (A, t) also forms an instance of the module-LWE problem. The NP-
hardness of the module-LWE states that it is hard to recuperate the secret key
s from the pair (A, t). Therefore, the security of Kyber is based on the hardness
of module-LWE.

To encrypt a bitstring m̄ with at most n bits, we consider the message poly-
nomial m ∈ Rq obtained by m =

∑n−1
i=0 m̄(i)xi. Thus, the message polynomial

m only has coefficients in {0, 1}. We also need to generate another secret r ∈ Rkq
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together with errors e1 ∈ Rkq and e2 ∈ Rq according to the distribution βkη and
βη. (Note that in round three, the value of η in the distributions of e1 and e2
have been slightly changed.) We then calculate the encryption in the original
scheme:

encrypt t∗ A r e1 e2 dt du dv m =
(compress_vecdu (AT · r + e1),
compress_polydv ((decompress_vecdt t∗)T r + e2 + to_module(dq/2c) ·m))

Since round two of the NIST standardisation process, a decryption of the
public key is no longer necessary. Thus, the encrytion algorithm reads:

encrypt′ t A r e1 e2 du dv m =
(compress_vecdu (AT · r + e1),
compress_polydv (tT r + e2 + to_module(dq/2c) ·m))

Let u = AT · r + e1 and v = t(∗)T r + e2 + to_module(dq/2c) ·m. Then, the
encryption outputs the compressed values u∗ and v∗ in a pair (u∗, v∗). When
referring to the encryption without the input of r, e1 and e2, we mean the proba-
bilistic program that first generates r, e1 and e2 according to their distributions
and then calculates the encryption functions as stated above.

Using the secret key s, we can recover the message m from u∗ and v∗ in
the decryption function. We extract the message as the highest bit in v∗− sTu∗
using the compression function with depth 1.

decrypt u∗ v∗ s du dv =
compress_poly1 ((decompress_polydv v∗)− sT (decompress_vecdu u∗))

During the algorithms, the compression and decompression induce errors
which should not affect the correctness of the decryption result. This problem is
investigated in the δ-correctness proof of Kyber. The following section describes
a verification of this proof in Isabelle.

5 Verifying the δ-Correctness Proof of Kyber

To verify the δ-correctness of the specification of Kyber in Isabelle, we look at
the pen-and-paper proof from [9, Theorem 1]. This proof shows the correctness
of the original version of Kyber, but can also be easily adapted to the recent
versions omitting the compression of the public key. We will have a look at the
ensuing changes in the correctness proof in Section 5.5 (formalized in [?]).

5.1 ‖ · ‖∞ – a Wolf in Sheep’s Clothing

In order to estimate values, the authors [9] use a function ‖ · ‖∞. However, it
is defined slightly differently from what one would expect: Instead of using a
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regular modulo operation, we define the recentered operation mod± to be the
representative with smallest norm. That means ā := (a mod± q) is the unique
element with −q/2 < ā ≤ q/2 such that ā ≡ a mod q. As q is an odd number
in our case, we get that a mod± q ∈ {−q+1

2 , . . . , q−1
2 }. Using this recentered

modulo operation, we define the function ‖ · ‖∞ on polynomials as:

p =
deg p∑
i=1

pi · xi 7−→ ‖p‖∞ = max
i∈{0,...,deg p}

|pi mod± q|

Analogously, for vectors v ∈ Rkq we define:

‖v‖∞ = max
i∈{1,...,k}

‖vi‖∞

Unfortunately with the recentering one looses the absolute homogeneity, i.e., for
a scalar s and vector v only ‖s ·v‖∞ ≤ |s| ·‖v‖∞ holds with an inequality instead
of equality. For example consider the case q = 3, s = 2 and v = (2). We then
have the strict inequality:

‖2 · (2)‖∞ = |2 · (2) mod± 3| = 1 < 2 = |2| · |2 mod± 3| = |2| · ‖(2)‖∞

Therefore, the ‖ · ‖∞ function is not a norm, but a pseudonorm. It is positive
definite and fulfils the triangle inequality. This is not explicitly mentioned in [9]
and indeed poses a problem in the proof of the following theorem.

5.2 Correctness of the Original Kyber Algorithms

A crypto system is correct, if it always returns the original message. However,
this can only be guaranteed under a certain condition. Thus, we need to consider
a failure probability and can only state the δ-correctness. This is defined in the
following:

Definition 2 (δ-correct PKE). Let key_gen, encrypt and decrypt constitute
a public key encryption scheme A where key_gen outputs a public key pk and a
secret key sk. Let M be the space of all possible messages. Then the public key
encryption scheme is δ-correct, if and only if:

E[ max
m∈M

P[decrypt(sk, encrypt(pk,m)) 6= m]] ≤ δ

where the expectation is taken over (pk, sk) generated by key_gen.

The notion of a δ-correct PKE was taken from the requirements for the
verified Fujisaki-Okamoto transform given by Unruh in [35].

For the original Kyber algorithms [9, Theorem 1], the δ-correctness theorem
is proven in two steps: First, the distributions for the compression errors are
related with the module-LWE problem. Second, the main proof follows by a
deterministic calculation under a assumption given by the definition of δ. If the
assumption is not fulfilled, the proof cannot guarantee correctness of the Kyber
scheme. The second, deterministic part is stated in the following theorem which
is formalized in [21].
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Theorem 1. Let A ∈ Rk×kq , s, r, e, e1 ∈ Rkq , e2 ∈ Rq and let the message m ∈
Rq with coefficients in {0, 1}. Define:
– t∗ = key_gen dt A s e, the output of the key generation
– (u∗, v∗) = encrypt t∗ A r e1 e2 dt du dv m, the output of the encryption
– ct, cu and cv, the compression errors of t, u and v, respectively

If ‖eT r+ e2 + cv − sT e1 + cTt r− sT cu‖∞ < dq/4c, then the decryption algorithm
returns the original message m:

decrypt u v s du dv = m

We have that Kyber is correct when assuming the inequality:

‖eT r + e2 + cv − sT e1 + cTt r − sT cu‖∞ < dq/4c

Using Theorem 1 and the definition of δ-correctness, we deduce the following.
Corollary 1. Let:

δ′ = E

max
m∈M

P



e, r, e1 ← βkη ; e2 ← βη;
u = AT r + e1; v = tT r + cTt r + e2 + d q2cm;
‖eT r + e2 + cv − sT e1 + cTt r − sT cu‖∞ ≥ dq/4c




where the expectation is taken over ((A, t∗), s) generated by key_gen. Then the
original version of Kyber is δ′-correct.

Note that in this proposition, the δ′ is not the same as in [9, Theorem 1],
where the authors set

δ = P



s, e, r, e1 ← βkη ; e2 ← βη;
ct, cu, cv ← Ψkd
‖eT r + e2 + cv − sT e1 + cTt r − sT cu‖∞ ≥ dq/4c


Here, Ψkd is the distribution of the compression error of x in pseudonorm for a
uniformly generated x← Rkq .

The main difference between δ′ and δ is that in δ′ the values of ct, cu and
cv are calculated as the correct compression errors whereas in δ, they are the
compression errors of uniformly random values t, u and v. The authors claim
in [9, Proof of Theorem 1] that this change is negligible since its value can be
bounded by the advantage against module-LWE problems.

However, when formalizing this claim, this implication could not be proven.
The reason is that the change from a module-LWE instance to a uniformly
random instance looses all information about the secret key. As the secret key
is dependent on the chosen public key but independent of a uniformly random
instance, this definition of the module-LWE makes sense. In the definition of δ-
correctness, we cannot omit the information about the secret key since we need
it for the decryption. Therefore, we cannot separate the module-LWE instance
from P[decrypt(sk, encrypt(pk,m)) 6= m] in order to bound this value with the
advantage against the module-LWE.

The formalization shows only δ′-correctness for Kyber. δ′ and δ could not be
related.
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5.3 Correctness of Kyber without Public Key Compression

The deterministic part of the correctness proof for the later versions of Kyber
[2, 3] is analogous to the previous Theorem 1, only omitting the compression of
the public key t , which is formalized in [?]:

Theorem 2. Let A ∈ Rk×kq , s, r, e, e1 ∈ Rkq , e2 ∈ Rq and let the message m ∈
Rq with coefficients in {0, 1}. Define:

– t = key_gen′ A s e, the output of the key generation
– (u∗, v∗) = encrypt′ t A r e1 e2 du dv m, the output of the encryption
– cu and cv, the compression errors of u and v, respectively

If ‖eT r+e2 +cv−sT e1−sT cu‖∞ < dq/4c, then the decryption algorithm returns
the original message m:

decrypt u∗ v∗ s du dv = m

Again, we have that Kyber is correct when assuming the inequality:

‖eT r + e2 + cv − sT e1 − sT cu‖∞ < dq/4c

Using Theorem 2, we deduce the δ′-correctness of Kyber without compression
of the public key.

Corollary 2. Let:

δ′ = E

max
m∈M

P



e, r, e1 ← βkη ; e2 ← βη;
u = AT r + e1; v = tT r + e2 + d q2cm;
‖eT r + e2 + cv − sT e1 − sT cu‖∞ ≥ dq/4c




where the expectation is taken over ((A, t), s) generated by key_gen′. Then Kyber
without compression of the public key is δ′-correct.

Again, the δ′ from the corollary above is different from the δ claimed in [2,3]:

δ = P



s, e, r, e1 ← βkη ; e2 ← βη;
cu, cv ← Ψkd
‖eT r + e2 + cv − sT e1 − sT cu‖∞ ≥ dq/4c


The reason is the same as discussed at the end of Section 5.2 for the original
Kyber algorithms. The formalization shows only δ′-correctness for Kyber. δ′ and
δ could not be related.

5.4 Auxiliary Lemma

Before we can start the proof of Theorem 1 (and Theorem 2), we need to show
an auxiliary lemma on the estimation of the compression error.
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Lemma 1. Let x be an element of Zq and x′ = decompressd (compressd x) its
image under compression and decompression with 2d < q. Then we have:

|x′ − x mod± q| ≤ dq/2d+1c

Proof. Let x be the representative in {0, . . . , q − 1}. Then consider two cases,
namely x < dq− q

2d+1 e and x ≥ dq− q
2d+1 e. These cases arise from the distinction

whether the modulo reduction in the definition of the compression function is
triggered or not. Indeed, we have compressd x = d 2d

q xc mod 2d where 2d

q x < 2d,
but d 2d

q xc = 2d if and only if x ≥ dq − q
2d+1 e. In the latter case, the modulo

operation in the compression function is activated and returns compressd x = 0.
In the following, we will abbreviate compressd x by x∗.

Case 1: Let x < dq − q
2d+1 e. Then the modulo reduction in the compression

function x∗ = d 2d

q xc mod 2d = d 2d

q xc is not triggered. Thus we get:

|x′ − x| =|decompressd (x∗)− x| =

=
∣∣∣∣decompressd (x∗)− q

2d · x
∗ + q

2d · x
∗ − q

2d ·
2d

q
· x
∣∣∣∣ ≤

≤
∣∣∣decompressd (x∗)− q

2d · x
∗
∣∣∣+ q

2d ·
∣∣∣∣x∗ − 2d

q
· x
∣∣∣∣ =

=
∣∣∣⌈ q2d · x∗⌋− q

2d · x
∗
∣∣∣+ q

2d ·
∣∣∣∣⌈2d

q
· x
⌋
− 2d

q
· x
∣∣∣∣ ≤

≤1
2 + q

2d ·
1
2 = q

2d+1 + 1
2

Since x′ − x is an integer, we also get:

|x′ − x| ≤
⌊

q

2d+1 + 1
2

⌋
=
⌈ q

2d+1

⌋
Therefore also |x′ − x| ≤ bq/2c such that the mod± operation does not change
the outcome. Finally for this case, we get

|x′ − x mod± q| ≤
⌈ q

2d+1

⌋
Case 2: Let x ≥ dq − q

2d+1 e. Then the modulo operation in the compression
results in the compression to zero, i.e., compressd x = 0. Using the assumption
on x, we get:

|x′ − x mod± q| = |decompressd 0− x mod± q| =
= | − x mod± q| = | − x+ q| ≤

≤
∣∣∣⌈q − q

2d+1

⌉
− q
∣∣∣ =

⌊ q

2d+1

⌋
≤
⌈ q

2d+1

⌋
ut
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A non-trivial step in the formalization of the proof was to ensure that all
calculations are conform with the residue classes modulo the polynomial xn + 1.
Indeed, in Isabelle the type casting is explicit, so one always has to channel
through all type casts. Especially, one always has to show that the implications
hold independently from the representative chosen from a residue class. In some
cases, we also presume natural embeddings and isomorphisms to hold in pen-
and-paper proofs which have to be stated explicitly in Isabelle (for example the
to_module function mentioned in the previous section). Thus, formalizations
are much more verbose.

5.5 Proof of Correctness

The formalization of the proof of Theorem 1 can be found in [21], the proof of
Theorem 2 in [?]. One problem encountered during the formalization was that
‖ · ‖∞ is only a pseudonorm (recall Section 5.1). This is not explicitly mentioned
in [9] and indeed poses a problem in the proof which we will discuss in greater
detail in the next section. In short: We cannot conclude a correct decryption in
the last step of the correctness proof unless q ≡ 1 mod 4.

The proof of Theorem 1 proceeds as follows. Given A, s, r, e, e1, e2 and the
message m, we calculate t∗, u∗ and v∗ using the key generation and encryption
algorithm. We define t′, u′ and v′ to be the decompressed values of t∗, u∗ and
v∗, respectively. With the compression errors ct, cu and cv, we get the equations:

t′ = As+ e+ ct

u′ = AT r + e1 + cu

v′ = t′ T r + e2 + dq/2c ·m+ cv

This leads to the calculation in the decryption:

v′ − sTu′ = eT r + e2 + cv + cTt r − sT e1 − sT cu + dq/2c ·m

We accumulate all error terms in a new variable w:

w := eT r + e2 + cv + cTt r − sT e1 − sT cu

and get ‖w‖∞ < dq/4c from the assumptions.
In the case of Theorem 2 where the compression is omitted, we have v′ =

tT r + e2 + dq/2c ·m+ cv. Then we calculate in the decryption:

v′ − sTu′ = eT r + e2 + cv − sT e1 − sT cu + dq/2c ·m

Again, accumulating all error terms in a new variable w̃, we define:

w̃ := eT r + e2 + cv − sT e1 − sT cu

and get ‖w̃‖∞ < dq/4c from the assumptions. In the rest of the proof, we calcu-
late with w. An analogous proof for Theorem 2 can be obtained by exchanging
w with w̃.
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Now, we need to show that m′ := decrypt(u, v, s) is indeed the original
message m. We consider the value of v′ − sTu′, its compression with d = 1,
namely m′, and the decompressed value decompress1 m

′. Since the compression
depth is 1, we get m′ ∈ {0, 1}. Thus:

decompress1 m
′ = dq/2 ·m′c = dq/2c ·m′

Using Lemma 1, it follows that:

‖w + dq/2c(m−m′)‖∞ =
=‖v′ − sTu′ − decompress1 (compress1 (v′ − sTu′))‖∞ ≤ dq/4c

Using the triangle inequality on ‖ · ‖∞, we calculate

‖dq/2c(m−m′)‖∞ = ‖w + dq/2c(m−m′)− w‖∞ ≤
≤ ‖w + dq/2c(m−m′)‖∞ + ‖w‖∞ <

< dq/4c+ dq/4c = 2dq/4c

It remains to show that we can indeed deduce m = m′ which concludes the proof
of Theorems 1 and 2. According to the last step of [9, Proof Thm 1], this follows
directly for any odd prime q. However, therein lies a hidden problem. [9, Proof
Thm 1] makes use of the homogeneity of ‖·‖∞. Since ‖·‖∞ is only a pseudonorm
and not a norm, we needed to find an alternative proof in the formalization.
Interestingly enough, in the case of q ≡ 3 mod 4, we cannot conclude the proof.
In the next section, we discuss why we can only deduce this step under the
assumption that q ≡ 1 mod 4 and give a counterexample for the case q ≡ 3
mod 4.

5.6 Additional Assumption q ≡ 1 mod 4

The following remains to be shown for the proof of Theorem 1 and 2: Given the
inequality

‖dq/2c · (m−m′)‖∞ < 2 · dq/4c
we need to deduce that indeed m = m′.

We prove this statement by contradiction. Assume that m −m′, i.e., there
exists a coefficient of m − m′ that is different from zero. Since m and m′ are
polynomials with coefficients in {0, 1}, a non-zero coefficient can either be 1 or
−1. Then we get

‖dq/2c · (m−m′)‖∞ = |dq/2c · (±1) mod± q| = . . .

Since we cannot use the homogeneity of ‖ · ‖∞ to pull out the absolute value
of ±1, we need to find a different proof. We break down the formula to find
the remaining problems. All primes q greater than two are odd. Thus we have
dq/2c = (q + 1)/2. We continue our calculation:

· · · =
∣∣∣∣q + 1

2 mod± q
∣∣∣∣ =

∣∣∣∣−q + 1
2

∣∣∣∣ = q − 1
2 = 2 · q − 1

4 = . . .
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since the mod± operation reduces q+1
2 to the representative −q+1

2 . Now we need
to relate q−1

4 to dq/4c. We have two cases:
Case 1: For q ≡ 1 mod 4 we indeed get the equality q−1

4 = dq/4c that we
need. In this case we have

‖dq/2c · (m−m′)‖∞ = 2 · dq/4c

which is a contradiction to our assumption. In this case, the proof of Theorems 1
and 2 is completed.

Case 2: For q ≡ 3 mod 4 we get the strict inequality q−1
4 < q+1

4 = dq/4c
resulting in

‖dq/2c · (m−m′)‖∞ < 2 · dq/4c

which is no contradiction to the assumption. Indeed in this case we cannot deduce
m = m′, since it is possible that a coefficient of m−m′ is non-zero.

Example 1. Consider this short exapmle: Let q = 7 (≡ 3 mod 4, thus we are in
case 2), m = 0 and m′ = 1. In this case, the inequality of the assumption holds

‖dq/2c · (m−m′)‖∞ = 3 < 4 = 2 · dq/4c

but m 6= m′. This is a counterexample for the correctness of the proof of Theo-
rem 1 (and 2) in the case q ≡ 3 mod 4.

In conclusion, Theorem 1 only holds if the modulus q fulfils the assumption
q ≡ 1 mod 4. ut

In the specification of Kyber, concrete values for the variables of the system
are given (see Section 3). For example in the recent version of Kyber [2, 3], the
modulus q is chosen to be 3329, whereas in early versions [4,9], the modulus was
chosen as q = 7681. Considering possible changes to these variables (for different
versions or security levels), it is important to enable the verified proof to cover
all possible cases. Therefore, the implementation of the formalization was chosen
to be as adaptive and flexible as possible. This resulted in the discovery of the
additional assumption q ≡ 1 mod 4.

Indeed, the modulus q is chosen according to a much more rigid scheme: In
order to implement the multiplication to compute faster, the Number Theoretic
Transform (NTT) is used. In the case of Kyber, the NTT is computed on Rq =
Zq[x]/(xn + 1). The requirement for NTT on the modulus q is:

q ≡ 1 mod n

For n = 256 and q = 7681 we have 7681 = 30 · 256 + 1, whereas for q = 3329
we get 3329 = 13 · 256 + 1. Since n is a power of 2, we can automatically infer
the property q ≡ 1 mod 4. We have a more thorough look at the NTT used in
Kyber in the next section.
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6 NTT and the Convolution Theorem

The NTT is used to speed up the multiplication on Rq = Zq[x]/(xn + 1) and
is based on the concepts of the Discrete Fourier Transform. An introduction
to the use of the NTT for lattice-based cryptography can be found in [27] or
for the special case of the CRYSTALS suite in [34]. The NTT as a nega-cyclic
convolution is described in [20].

The standard multiplication for f =
∑n−1
k=0 fkx

k and g =
∑n−1
k=0 gkx

k in Rq
is given by:

f · g =
n−1∑
k=0

n−1∑
j=0

(−1)k−j div nfjgk−j mod n

xk

Thus, multiplication in Rq is done using O(n2) multiplications on coefficients.
Unlike multiplication, addition is calculated in O(n) since addition is done entry-
wise. Therefore, the most expensive part of the calculations in Kyber crypto
algorithms is multiplication. Using a smarter way to multiply will make the
calculations in Kyber faster.

The usual NTT requires the field Zq to have a n-th root of unity, that is an
element ω with ωn = 1. This can be achieved by setting q ≡ 1 mod n. However,
since we work over the quotient ring Zq[x]/(xn + 1), we have to consider the
nega-cyclic property that xn ≡ −1 mod xn + 1 instead of the cyclic properties
required by the NTT. Moreover, the original Kyber uses a “twisted” alternative
which is easier to implement but requires the existence of a 2n-th root of unity.

Considering all the constraints mentioned above, let ψ be a 2n-th root of
unity in Rq. Then we define the nega-cyclic twisted NTT on Rq for Kyber [9] as
follows:

Definition 3 (NTT). Let f =
∑n−1
k=0 fkx

k ∈ Rq, then the NTT of f is defined
as:

NTT (f) =
n−1∑
k=0

n−1∑
j=0

fjψ
j(2k+1)

xk

The inverse transform is scaled by the factor of n−1 and is given by the
following.

Definition 4 (inverse NTT). Let f =
∑n−1
k=0 gkx

k ∈ Rq be in the image of the
NTT, then the inverse NTT of f is defined as:

invNTT (f) =
n−1∑
k=0

n−1

n−1∑
j=0

gjψ
−k(2j+1)

xk

We formalized a proof of correctness of the NTT and its inverse [21] .

Theorem 3. Let f be a polynomial in Rq and g a polynomial in NTT domain.
Then NTT and invNTT are inverses:

invNTT (NTT (f)) = f and NTT (invNTT (g)) = g
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Proof. We show the equality for every coefficient. Here, pk denotes the coefficient
of xk in the polynomial p.

invNTT (NTTf))k = n−1

n−1∑
i=0

n−1∑
j=0

fjψ
j(2i+1)

ψ−k(2i+1)

 =

= n−1
n−1∑
j=0

fjψ
j−k

(
n−1∑
i=0

ψ(j−k)(2i)

)
= . . .

We want to compute the geometric sum
∑n−1
i=0 (ψ2(j−k))i. If j = k, then the

whole sum collapses to a sum over ones, resulting in n. But if j 6= k, we get

n−1∑
i=0

(ψ2(j−k))i = ψ2(j−k)n − 1
ψ2(j−k) − 1

= 0

using that ψ is a 2n-th root of unity, that is ψ2n = 1. We continue our calculation:

· · · = n−1
n−1∑
j=0

fjψ
j−k(if j = k then n else 0) = n−1nfk = fk

This finishes the first inversion property.
The proof of the second property proceeds similarly, but with inverted roles

of ψ and ψ−1. ut

Using this transformation, we can reduce multiplications to compute within
O(n log(n)) using a fast version of the NTT. To apply the NTT to the Kyber
algorithms, we need the convolution theorem. It states that multiplication of two
polynomials in Rq can be done index-wise over the NTT domain.

Theorem 4. Let f and g be two polynomials in Rq. Let (·) denote the multi-
plication of polynomials in Rq and (�) the coefficient-wise multiplication of two
polynomials in the NTT domain. Then the convolution theorem states:

NTT (f · g) = NTT (f)�NTT (g)

Proof. We show the equality for every coefficient. Again, pk denotes the coeffi-
cient of xk in the polynomial p.

NTT (f · g)k =
n−1∑
i=0

n−1∑
j=0

(−1)i−j divnfjgi−jmodn

ψi(2k+1) =

=
n−1∑
j=0

fjψ
j(2k+1) ·

(
n−1∑
i=0

(−1)i−j divnψi(2k+1)ψ−j(2k+1)gi−jmodn

)
=

= . . .



20 K. Kreuzer

Using ψn(2k+1) = −1, we can deduce that (−1)i−j div nψ(i−j)(2k+1) = ψ(i−j mod n)(2k+1)

and thus our calculation continues:

. . . =
n−1∑
j=0

fjψ
j(2k+1)

(
n−1∑
i=0

ψ(i−j mod n)(2k+1)gi−j mod n

)
=

=
n−1∑
j=0

fjψ
j(2k+1)

(
n−1∑
i′=0

ψi
′(2k+1)gi′

)
=

=

n−1∑
j=0

fjψ
j(2k+1)

 ·(n−1∑
i′=0

ψi
′(2k+1)gi′

)
=

= NTT (f)k ·NTT (g)k

where we reindex the sum over i to a sum over i − j mod n using the cyclic
property of the modulo function. This shows that multiplication is indeed per-
formed coefficient-wise on the NTT domain. ut

Together with Theorem 3 this yields the fast multiplication formula.

Theorem 5. Let f and g be two polynomials in Rq. Let (·) denote the multi-
plication of polynomials in Rq and � the coefficient-wise multiplication of two
polynomials in the NTT domain. Then multiplication in Rq can be computed by:

f · g = invNTT (NTT (f)�NTT (g))

The formalization of the NTT for the original Kyber [9] was realtively straight-
forward since it is based on the formalization of the standard NTT by Ammer
in [1]. The only minor hindrances were the conversion between the types and
working with representatives over Rq as well as the rewriting of huge sums.

Since the NTT for the recent version of Kyber [2] was also formalized in [17],
we verified only the NTT for the original Kyber specifications. Note that the
NTT for the latest versions of Kyber [2,3] is a bit different, since the finite field
Z3329 does not contain a 2n-th root of unity, but only an n-th root of unity.

7 Game-Based Cryptography

An important cryptographic property of public key encryption schemes is the
security against IND-CPA. This attack describes a game where an adversary
tries to gain information or knowledge from the ability of choosing plaintexts.

More formally, the IND-CPA game for a PKE (given by the key generation,
encryption and decryption algorithms) is defined as follows.

Definition 5 (IND-CPA game). Two parties, the challenger and the adver-
sary, play the following game.

1. The challenger generates a public and secret key pair using the key generation
algorithm and publishes the public key.
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2. The adversary sends the challenger two messages m0 and m1 with the same
length.

3. The challenger chooses uniformly at random a bit b. He encrypts the message
mb with the encryption algorithm and sends the ciphertext to the adversary.

4. The adversary returns a guess b′ which of the two given messages m0 and
m1 the challenger has encrypted. He wins if b = b′.

The advantage AdvIND−CPA of the adversary A is defined as AdvIND−CPA(A) =
|P[b′ = b]− 1

2 |. A PKE scheme is IND-CPA secure if and only if the advantage
of the adversary is negligible, that means sufficiently small.

Figure 1 depicts the IND-CPA game.
Challenger Adversary

(pk, sk)← key gen pk

choose m0, m1

with |m0| = |m1|
m0 and m1

b← coin flip

c = encrypt(mb, pk) c

Output b′

as a guess for b

ti
m
e

Fig. 1: A diagram of the IND-CPA game.

The formalization of the IND-CPA game was taken from the CryptHOL
Tutorial [26]. The flexible formalization in an Isabelle locale allows the user to
instantiate this concept in any context fulfilling the properties of the locale. In
this way, the IND-CPA game definition could easily be applied to the case of
Kyber by instantiating with the Kyber algorithms for key generation, encryption
and decryption.

We can also state the module-LWE from Definition 1 in game form.

Definition 6 (module-LWE game). Two parties, called the challenger and
the (module-LWE) adversary, play the following game.

1. The challenger chooses A0 ∈ Rm×kq uniformly at random, s according to
βkη and e according to βmη . He then computes t0 = A0s + e. ((A0, t0) is an
instance generated by the module-LWE problem.)

2. The challenger chooses A1 ∈ Rm×kq and t1 ∈ Rmq uniformly at random.
((A1, t1) is a random instance.)

3. The challenger chooses a random bit b and sends the adversary the value of
(Ab, tb).

4. The adversary returns a guess b′ whether the tuple (Ab, tb) was generated
as a module-LWE instance or is uniformly random. He wins, if his guess is
correct.

The advantage AdvmLWE
m of the module-LWE adversary A is defined as

AdvmLWE
m (A) = |P[b′ = 0 ∧ b = 0]− P[b′ = 0 ∧ b = 1]|
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The module-LWE hardness assumption states that the advantage against an ad-
versary in the module-LWE game is negligible, that means sufficiently small.

Figure 2 depicts the module-LWE problem in game form.
Challenger Adversary

A0 ← uniform(Rm×kq )

s← βkη , e← βmη
t0 = A0s+ e

mLWE

A1 ← uniform(Rm×kq )

t1 ← uniform(Rmq ) random

b← coin flip (Ab, tb)

Output b′

as a guess for b

ti
m
e

Fig. 2: A diagram of the module-LWE game.

In the proof of the IND-CPA security property for Kyber, the advantage of a
module-LWE adversary is used twice, but with different dimensions m. The key
generation corresponds to a module-LWE with m = k such that A is a quadratic
matrix. However, in the encryption, the matrix A is extended by the vector t,
resulting in a (k + 1) × k matrix. This corresponds to the module-LWE with
m = k + 1.

The module-LWE was again formalized in an Isabelle locale in order to allow
for two separate instantiations (once with m = k and once with m = k + 1).
However, the instantiations needed an additional twist. Since the vector type in
Isabelle has a fixed dimension implemented as a finite type (in our case type
′k of cardinality k), it is more difficult to work over vectors whose dimension
is a function over k. In our case, this could be solved using the option type.
The option type ′k option embeds elements a of type ′k as Some a and adds
the element None. Thus ′k option has exactely k + 1 elements. This solves our
problem.

8 Using CryptHOL in Isabelle

CryptHOL [25] is a library for game-based security proofs in cryptography. It is
based on the extensive libraries for probability theory in Isabelle. Its main contri-
butions are subprobability mass function as the type class spmf and generative
probabilistic values as the type class gpv. We give a short intuitive understanding
of these type classes.

8.1 Subprobability Mass Functions

The spmf type class is a superclass of probabilistic mass functions. We consider
a finite set S. A probabilistic mass function f : S 7−→ [0, 1] is the probability
distribution of a discrete random variable X, i.e., f(x) = P[X = x] such that
the weight equals one: ∑

x∈S
f(x) = 1
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For subprobabilistic mass functions, we allow the weight to be less than one:∑
x∈S

f(x) ≤ 1

A subprobabilistic mass function is called lossless, if it has weight equal to
one. Indeed, in our setting we need to model the probability that a security game
is compromised by intentional malicious input. For example in the IND-CPA
game, the adversary can intentionaly input two messages of different length and
thus gain information about the ciphertext. As we only want to look at correctly
played security games, we use subprobability mass functions.

8.2 Generative Probabilistic Values

To model cryptographic primitives such as hash functions, we need a method to
generate and store random values. This idea is developed in the gpv type class
which describes probabilistic algorithms. The type class gpv depends on three
input types: the type of the algorithm, the input state type and the output state
type.

When running a gpv, we connect it with a random oracle (that models for
example a hash function) and hand through the current state. Whenever we
query the oracle, we generate a new state. It needs to be included in the input
for the next call to the oracle using a gpv.

The Kyber public key encryption does not use hash functions. Thus we could
model the security proof with subprobability mass functions only. However, to
stay consistent with the CryptHOL library, we generalized the formalization of
the security proof to use generative probabilistic values whenever we query the
adversary or the encryption algorithm. The proofs do not get significantly harder
and the automation can hadle this generalization step most of the time.

8.3 Using Monads for Describing Probabilistic Algorithms

Functional programming hands us tools to easily define probabilistic algorithms
and distributions. The concept of choice is the Giry-monad. Monads are a con-
cept from category theory applied to functional programming. We give a short
introduction to monads in general and the Giry monad in particular. More about
monads can be found in [31] and the introduction of monads into functional pro-
gramming in [28]. A good introduction to the Giry monad in the context of
Isabelle is given in [10].

Monads give a pattern to design type classes. They consist of a type con-
structor M and two operations:

– return: recieves a value a and hands back a monadic value M a
– bind: recieves a monadic valueMa and a function f : a −→M b and returns

the application of f to the unwrapped value a, yielding an element M b
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Monads need to fulfil three laws: the left and right identities and the associativity.
An example of monads is the Giry monad. It assigns to each measurable space
the space of probability measures over it (see [32]).

Example 2. The type class of probability mass functions pmf of discrete proba-
bility is a monad. The return function for an element a is defined as the Dirac
measure on a. The bind function on an probability mass function pX using a
function f is defined as:

(bind pX f)(y) =
∑
x

pX(f(x)(y))

Thus, the Giry monad can model successive execution of random experiments
and probabilistic algorithms using the bind and return functions.

Both the type class spmf and gpv are monads with respective return and
bind functions. This gives us a tool to model probabilistic algorithms in Isabelle.

9 IND-CPA Security Proof for Round 2 and 3 Kyber

Since round two of the NIST standardization process [3], the compression of the
public key in Kyber has been omitted. The reason was that otherwise the IND-
CPA security proof [9, Theorem 2] does not hold. The problem lies in the second
reduction step where the decompression of the compression of the public key is
not distributed uniformly at random any more. This entails that we cannot apply
the reduction to the modul-LWE. The security of Kyber without compression
under IND-CPA is stated in the following theorem. Its formalization can be
found in [?]

Theorem 6. The public key encryption scheme Kyber without compression of
the public key is IND-CPA secure against the module-LWE hardness assumption.

More formally, this theorem states the following: Given any adversary A to
the IND-CPA game of Kyber and assuming that A is lossless (i.e., does not act
maliciously), the advantage of A in the IND-CPA game can be bounded by twice
the advantage in the module-LWE game.

Proof. Let AdvKyber be the advantage in the IND-CPA game instantiated with
the Kyber algorithms key_gen′, encrypt′ and decrypt. Let f1 be the reduction
function from A to the first module-LWE instance and f2 the reduction function
from A to the second module-LWE instance. Then the exact formula of the
theorem above reads:

AdvKyber(A) ≤ AdvmLWE
k (f1(A)) +AdvmLWE

k+1 (f2(A)) (1)

Note that in the formalization we state the reduction functions for the ad-
versary precisely. They need to have a polynomial running time. Since a formal
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framework for analyzing the running time is out of scope for this project, we as-
sume the running time hypothesis to be correct. The reason is that the reduction
functions use only one call to the given adversary and one for f1 the Kyber en-
cryption algorithm. Otherwise, the functions are non-recursive, polynomial time
probabilistic algorithms.

The proof of equation (1) proceeds in three steps (also called game-hops).
1. Reduction of key generation to the first module-LWE instance with m = k
2. Reduction of encryption to the second module-LWE instance with m = k+1
3. Reduction of the rest to a coin flip

In every game-hop, we define an intermediate game and analyze the difference
in the advantage. The initial game game0 is exactly the IND-CPA game. That
implies:

P[b = b′] = P[game0 = True]
The first intermediate game game1 is defined by the following steps:
1. The challenger generates a public key (A, t) uniformly at random and pub-

lishes the public key.
2. The adversary sends the challenger two messages m0 and m1 with the same

length.
3. The challenger chooses a bit b uniformly at random. He encrypts the message
mb with the encryption algorithm and sends the ciphertext to the adversary.

4. The adversary returns a guess b′ for which of the two given messages m0 and
m1 the challenger has encrypted. He wins if b = b′.

Figure 3 illustrates game1. The change to the initial game game0 (marked in
green) is in the first step where the public and secret key pair is now generated
uniformly at random instead of being created by the key generation algorithm.

Challenger Adversary

(pk, sk)← uniform pk

choose m0, m1

with |m0| = |m1|
m0 and m1

b← coin flip

c = encrypt(mb, pk) c

Output b′

as a guess for b

ti
m
e

Fig. 3: A diagram of game1.

The key generation algorithm creates a module-LWE instance. Distinguish-
ing an module-LWE instance from a uniformly random instance is exactly the
module-LWE game. Hence, the difference

|P[game0 = True]− P[game1 = True]|

is the same probability as the advantage AdvmLWE
k for an adversary f1(A) where

f1 is a suitable reduction function.
The second intermediate game game2 is defined by the following steps:
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1. The challenger generates a public key (A, t) uniformly at random and pub-
lishes the public key.

2. The adversary sends the challenger two messages m0 and m1 with the same
length.

3. The challenger chooses a bit b uniformly at random. He chooses a ciphertext
uniformly at random from Rkq×Rq and sends the ciphertext to the adversary.

4. The adversary returns a guess b′ for b. He wins if b = b′.

Figure 4 illustrates game2. The change to game1 (marked in green) is that the
ciphertext is not generated by the encryption but chosen uniformly at random.

Challenger Adversary

(pk, sk)← uniform pk

choose m0, m1

with |m0| = |m1|
m0 and m1

b← coin flip

c← uniform c

Output b′

as a guess for b

ti
m
e

Fig. 4: A diagram of game2.

In the encrpytion, the reduction to the module-LWE is not as straightforward
as for the key generation. This is caused by the addition of the message m to
the module-LWE instance. Indeed, in the formalization, we need to make two
separate steps.

First, we show that the probility of distinguishing an instance of the form

(
A t
)
r +

(
e1
e2

)
and a uniformly random instance (u v′)T is exactly the module-LWE advantage
for m = k + 1. Note that it is important to look at (k + 1)-dimensional vectors
instead of splitting the instance in k- and 1-dimensional parts because r is chosen
to be the same for the multiplication with both A and t.

Second, we need to show that v′ + dq/2c · m is also distributed uniformly.
That is, we cannot distinguish between the probabilites of the value v′+dq/2c·m
for a uniformly random v′ and a uniformly random v. Since we are working over
a finite field and v′ and m are independent, we can show this property using the
law of total probability.

We deduce that

|P[game1 = True]− P[game2 = True]|

equals the advantage AdvmLWE
k+1 for an adversary f2(A) where f2 is a suitable

reduction function.
In the last game-hop, we have a closer look at game2. Since the ciphertext

sent to the adversary is now independent from the chosen message, the guess of
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the adversary is a coin flip. Thus the probability of guessing correctly is exactly
1/2. We get

P[game2 = True] = 1/2

Finally, we can put together all the previous steps.

AdvKyber(A) =
∣∣∣∣P[b = b′]− 1

2

∣∣∣∣ =
∣∣∣∣P[game0 = True]− 1

2

∣∣∣∣
This equality is infered from the definition of the adversary for the IND-CPA
game for Kyber. The game0 is the initial IND-CPA game. We continue by ap-
plying the triangle inequality.∣∣∣∣P[game0 = True]− 1

2

∣∣∣∣ ≤
≤ |P[game0 = True]− P[game1 = True]|+

∣∣∣∣P[game1 = True]− 1
2

∣∣∣∣ =

= AdvmLWE
k (f1(A)) +

∣∣∣∣P[game1 = True]− 1
2

∣∣∣∣
The last equality is deduced from the reduction of game0 to game1 as a module-
LWE instance. We proceed by applying the triangle inequality again on the
second part.∣∣∣∣P[game1 = True]− 1

2

∣∣∣∣ ≤
≤ |P[game1 = True]− P[game2 = True]|+

∣∣∣∣P[game2 = True]− 1
2

∣∣∣∣ =

= AdvmLWE
k+1 (f2(A)) +

∣∣∣∣P[game2 = True]− 1
2

∣∣∣∣
Here, the last equality is deduced from the reduction of game1 to game2 as a
module-LWE instance withm = k+1. Finally, we have

∣∣P[game2 = True]− 1
2
∣∣ =

0 as game2 behaves like a coin flip. In total, the claim is proven as we have shown
the formula:

AdvKyber(A) ≤ AdvmLWE
k (f1(A)) +AdvmLWE

k+1 (f2(A)) ut

During the formalization process, it became clear that this proof does not
work for Kyber with compression of the public key as remarked by the authors
of Kyber [9, Sec. Security of the real scheme]. The proof for the scheme without
compression of the public key could be formalized analogously to the pen-and-
paper proof. The most time-consuming parts were getting familiar with the
CryptHOL library environment and working out the details of the pen-and-
paper proof which was extremely short.

CryptHOL works with subprobability mass functions and generative prob-
abilistic values and supplies a huge library of fundamental lemmas. Since the
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example game-based proof of the CryptHOL Tutorial [26] is based mainly on the
automation, understanding the formal proof and rewriting steps is not straight-
forward. However, once the necessary lemmas are located and added to the
automation, the automatic proof finder can solve most rewriting steps.

Some steps where the automation fails are for example when commutativity
laws need to be applied in both directions. Then the simplifier runs in loops
and cannot terminate. Making smaller proof steps or explicitly initialising the
commutativity laws solves these issues.

10 Conclusion
In this presentation, we described the formalization of CRYSTAL-KYBER’s key-
generation, encryption and decryption algorithms. Both the original version and
the latest version omitting the compression of the public key were formalized.

During the formalization of the δ-correctness proof two problems were un-
covered: One could be solved by modifying the value of δ, the other by adding
the assumption q ≡ 1 mod 4. Under these conditions, the δ′-correctness of both
versions could be verified. Differences between the original proof and the formal-
ization were discussed and counterexamples for failing proofsteps were given.

As Kyber was designed to compute fast multiplications using the NTT, the
property q ≡ 1 mod 4 is obtained from the necessary requirements for the NTT.
Therefore, the NTT used in the original version of Kyber and its convolution
theorem were formalized as well. Moreover, a verification of the IND-CPA secu-
rity proof for Kyber without compression of the public key was presented. The
IND-CPA security property does not hold for the original version of Kyber.

Building on these results, the Fujisaki-Okamoto transform can be applied
to the current algorithm formalization to obtain a verified key encapsulation
mechanism that is secure against the indistinguishability under chosen ciphertext
attack (IND-CCA). However, this is not very significant, since the value of the
modified δ′ has not been estimated or related to the originally claimed δ. A
different approach to achieve a formally verified IND-CCA secure transform is
to use a different version of the Fujisaki-Okamoto transform. In this case, both
the transform and necessary assumptions need to be formalized. Another very
interesting aspect is to formalize the hardness results of the module-LWE that
Kyber is building on.
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