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Abstract—Since the post-quantum crypto system CRYSTALS-
KYBER has been chosen for standardization by the National
Institute for Standards and Technology (US), a formal verification
of its correctness and security properties becomes even more
relevant. Using the automated theorem prover Isabelle, we are
able to formalize the algorithm specifications and parameter
sets of Kyber’s public key encryption scheme and verify the δ-
correctness and indistinguishability under chosen plaintext attack
property. However, during the formalization process, several gaps
in the pen-and-paper proofs were discovered. All but one gap
concerning the error bound δ could be filled. Calculations in
smaller dimensions give examples where the bound δ is less
than the actual error term, violating the correctness property.
Since the correctness proof could be formalized up to an
application of the module-Learning-with-Errors assumption, we
believe that the discrepancy of the original error bound and the
formalized version is relatively small. Thus the correctness could
be formalized up to a minimal change to the error bound.

Index Terms—post-quantum cryptography, CRYSTALS-
KYBER, number theoretic transform, security, verification,
Isabelle.

I. INTRODUCTION

With large-scale quantum computers all crypto systems
based on RSA and Diffie-Hellman can be broken using Shor’s
algorithm. Since recent developments in quantum computing
lead to believe that these feasible quantum computers are not
too far off in the future, methods for cryptography which
are resistant even to attacks by quantum computers are hot
research topics. In the course of the standardization process
initialized by the National Institute of Standards and Tech-
nology (NIST) of the US, a variety of post-quantum crypto
systems have been designed [33]. Most prominent are the so-
called lattice-based crypto schemes.

The winner of the NIST standardization process for public
key encryption (PKE) and key encapsulation methods (KEM)
was announced in July 2022. It is the KEM CRYSTALS-
KYBER (abbreviated as Kyber throughout this presentation)
which was originally developed by Bos et al. [11]. In the
first submission to the NIST standardization process [6], the
algorithms from the original paper are extended by sam-
pling methods using pseudorandom functions and an encoding
and decoding function for mapping bits to polynomials and
vice versa. A main change to the submission in the second
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round [5] was excluding the compression and decompression
functions in the key generation and encryption functions.
The reason is that a problem in the security proof for the
indistinguishability under chosen plaintext attack (IND-CPA)
was found by D’Anvers [11, footnote 6]. Furthermore the
use of a slightly different algorithm for fast multiplication
allowed the use of a smaller prime for the finite field. For
the last submission in round three [4] in October 2020, some
parameter changes have been made. Most notable is the change
of splitting the variances of the centred binomial distribution
for the error terms in the encryption. This could not be
formalized since the underlying hardness assumption requires
the errors to be of the same distribution. However, this only
affects the proofs for Kyber512, since in Kyber 768 and
Kyber1024 there is no such split. Throughout this paper, we
focus on the formalization of the most recent version (namely
3rd round with security levels Kyber768 and Kyber1024) for
Kyber’s PKE scheme which we refer to as Kyber if not stated
otherwise.

The underlying hard problem for Kyber is the module-
Learning-with-Errors (module-LWE) problem. It states that
it is hard to recompute a small vector when given a matrix
and the matrix-vector-product perturbed by additional small
errors. Without the error term, this problem can be solved by
Gaussian elimination, but with the error it becomes NP-hard
under certain conditions [25].

Since Kyber’s key generation and encryption are based on
masking the output with an error using module-LWE instances,
this may result in a positive probability that the errors get
too large so that we cannot decrypt correctly. We therefore
need to consider δ-correctness, where δ bounds the correctness
error. The correctness error is defined as the probability of an
incorrect decryption in the worst case over all messages and
in the mean over the generated public and secret key pairs.

As cryptography is used in many safety critical areas,
security of the schemes and correctness of their mathematical
proofs is crucial. The standard to ensure correctness of proofs
for many years was to check and recheck proofs manually.
However since humans are inevitably prone to errors, flaws in
proofs may go unnoticed for years. Formalization in automated
theorem provers can help to uncover such flaws, inconsis-
tencies or simple calculus errors. Especially in cryptography,
formal analysis and verification can uncover a number of



vulnerabilities of crypto systems or protocols. Some examples
are vulnerabilities found in the Matrix messenger [1] and the
Jitsi video conference tool [29] during a formalization. In
recent years, formalizing proofs in cryptography has gained
more and more attention. This motivates checking correctness
and security properties also for post-quantum crypto systems
like Kyber.

A. Our Contribution

With this paper, we introduce a formalization of Kyber’s
PKE scheme, its correctness and IND-CPA security property
in Isabelle. The formalization includes the algorithms for key
generation, encryption and decryption of both the original
[6], [11] and the latest versions [4], [5]. Using minimal
assumptions in the formalization, we allow for instantiations
with various parameter sets.

During the formalization of the correctness of Kyber, we
encountered two problems: Firstly, we could only verify the
δ-correctness for a modified δ′. We give a counter-example
for a small parameter set where the originally claimed δ
[11] violates the δ-correctness property. Further experiments
with different parameter sets result in similar findings. This
issue has been acknowledged by Kyber authors in private
communication. Secondly, we notice that the function ‖ · ‖∞
as defined in [11] is not the usual maximum norm, but only
a pseudo-norm. This results in a failing proof step which can
be resolved by adding an assumption on the modulus q. The
additional assumption is fulfilled by all Kyber parameter sets.
Overall, the correctness of Kyber could be formally proved
with only a small change on the error bound.

Kyber uses the number theoretic transform (NTT) for fast
multiplication. The aforementioned additional assumption is
implied by assumptions on Kyber for the NTT. The NTT in
the case of Kyber, as well as its convolution theorem have also
been formalized for this article. However, we will not go into
detail in this presentation, but include a short overview in the
Appendix for the readers convenience.

The formalization is foundational, i.e. that everything is
proven with respect to the higher order logic (HOL) kernel of
Isabelle/HOL. The only computational assumption we make
is that the underlying hardness assumption of the module-
Learning-with-Errors problem (module-LWE) holds.

B. Related Work

A short version on the formalization of the δ-correctness of
the original version of Kyber can be found in [24]. Meijers
et al. [9], [10] announced a formalization of Kyber in Easy-
Crypt [14]. Furthermore, a post-quantum version of EasyCrypt
called EasyPQC is being developed [8]. Recently, Almeida et
al. [2] introduced a formalization of the implementation code
to the specification in the frameworks EasyCrypt and Jasmin.
The formalization in EasyCrypt/Jasmin is complementary to
this presentation, since it does not verify the mathematical
proofs of correctness or security properties of the specifica-
tions. To the best of the authors’ knowledge, there is, up
to now, no publication or publicly accessible formalization

of Kybers correctness proof or the IND-CPA security proof.
Private conversation with Kyber authors showed that the flaw
uncovered by this formalization effort in the correctness proof
was known, but a solution was not yet found.

In 2022, the NTT was verified in CryptoLine by Hwang
et al. in [18]. CryptoLine is a tool for low-level verification
of implementations which stands in contrast to our high level
verification of the mathematics behind Kyber.

C. Isabelle

All formalizations and verifications were implemented in
the theorem prover Isabelle. An introduction to Isabelle can
be found in [32] and [31]. In contrast to other cryptographic
verification tools, Isabelle is foundational meaning everything
is proved from the axioms of higher order logic. The formal-
izations for this work are performed on the specification level
of Kyber and are not restricted to an implementation.

Two main features in Isabelle support abstraction over a
context of assumptions: The type class constraints (introduced
in [15]) and explicit assumptions summarized in a context
called locale (introduced in [7]). These abstractions allow
instantiations with several parameter sets, making changes for
example on the underlying prime (e.g. [6] to [5]) easy.

For our formalizations, we make extensive use of several
libraries for Isabelle, including algebra, analysis, probability
theory and CryptHOL [26] (a library for cryptography). Tuto-
rials on the latter can be found in [27].

D. Structure

In this paper, we discuss the formalization and verification
of Kyber and its δ-correctness proof, as well as the game-based
IND-CPA security proof for Kyber. First, we have a look at
the specifications and parameters of Kyber in Section II-A. We
elaborate on the representation of the ring Zq[x]/(xn+1) as a
type class in Isabelle. Since the formalization is independent
from the actual parameters, in Section II-B we look at the
instantiation of our formalization for some parameter sets.
Next, we describe the formalization of the algorithms for
compression, decompression, key generation, encryption and
decryption of Kyber in Section III. In Section IV, we proceed
with the verification of the δ-correctness proof of Kyber. Here,
we recognize two problems in the proof: On the one hand, we
can only show δ-correctness for a modified δ′ as described in
Section IV-C. We analyse why the original proof could not
be formalized and how a modification on δ can fix this issue.
Indeed, we showcase small dimensional examples where the
proof fails for the original δ. On the other hand, we inspect
a problem with the inequalities in the proof which we can
solve by adding an assumption on the modulus q. This is
discussed in Section IV-F. This newly found assumption is
already fulfilled when working in the NTT domain. More
on the formalization of the NTT on polynomials and its
convolution theorem can be found in the Appendix X-D.
In Section V, we give a short introduction to game-based
cryptography and define the game versions of the IND-CPA
security game and the module-LWE problem. As the security



proof was formalized using the framework CryptHOL [26],
we point out important concepts for formalizing cryptographic
security proofs in Isabelle in Section VI. The formalization
of the game-based security proof of Kyber against IND-CPA
follows in Section VII. In the end, we give a short outlook
on further research questions. The full formalization can be
found in [21] and [22].

Throughout this paper, we will use bold font to highlight
vectors and matrices (e.g. v, A) and roman font for polyno-
mials (e.g. x).

II. FORMALIZING THE CONTEXT OF KYBER

Starting a formalization of the specification of Kyber re-
quires a framework to state and calculate with Kyber’s poly-
nomial quotient ring. Isabelle offers possibilities to implement
the framework and parameter set in a flexible way using type
classes and locales.

A. Formalizing the Polynomial Quotient Ring

Let q be a prime and n a power of two, i.e., there is an n′

such that n = 2n
′
. Let Rq denote the ring Zq[x]/(xn + 1).

This is the space where the Kyber algorithms work in. Note
that xn + 1 is the 2n

′+1-th cyclotomic polynomial which is
irreducible over the integers Z, but reducible over the finite
field Zq .

There are various concepts behind this construct which are
not easy to formalize in Isabelle. To still be able to work
over these complicated spaces without too many premises, we
chose to use type class constructs.

First of all, the existing formalization of the finite field uses
the type class mod ring over a finite type. The modulus prime
is encoded as the cardinality of the finite type. It represents
the residue classes of the ring Zq where q is the cardinality
of the finite type.

Polynomials can be easily constructed using the poly type
constructor. The poly constructor defines a polynomial to be
a function from the natural numbers to the coefficient space
which is 0 almost everywhere. A polynomial p in R[x] is thus
represented by the function of coefficients f : N −→ R such
that p =

∑∞
i=0 f(i)xi. Since p has only finitely many non-

zero coefficients, f is 0 almost everywhere. For example the
polynomial p = x2 + 2 is represented as the function f with:

f(i) =


if i = 0 then 2

if i = 2 then 1

else 0

The most difficult part is to construct the quotient ring
Rq . First, an equivalence relation needs to be established
for residue classes modulo xn + 1. Then, one can factor
out the equivalence relation using the command quotient type
[19]. The concrete Isabelle formalization is explained in Ap-
pendix X-A1. The resulting structure inherits basic properties
like the zero element, addition, subtraction and multiplication
from the original polynomial ring through lifting and transfer
[17].

Vectors are implemented using a fixed finite type as an index
set. Since Isabelle does not allow dependent types, a separate
finite type for indexing is used to encode the length of a vector.
This idea was introduced by Harrison [16]. For example, when
working with vectors in Zk, we use the type (int, ’k) vec. Here,
’k is a finite type with cardinality exactly k used for indexing
the integer coefficients.

An important fact to note when dealing with formalizations
is that the functions translating between the different types
always need to be stated explicitly. In the mathematical
literature, this distinction is often abstracted away to enable
a shorter presentation.

B. Formalizing the Parameters of Kyber

Kyber depends on a number of parameters defining the
module, the compression and decompression. These are:
• n = 2n

′
, the degree of the cyclotomic polynomial

• q, the prime number and modulus
• k, the dimension of vectors in the module
• du and dv , the number of digits for compression and

decompression of u and v, respectively
Since the framework for the context of Kyber is formalized

independently from the actual parameters, we can instantiate
the formalization with any parameters sufficing all required
properties:
• n, n′, q, k, du, dv are positive integers
• n = 2n

′
is a power of 2

• q > 2 is a prime with q mod 4 = 1 (the latter
is an additional assumption and will be discussed in
Section IV-F)

This is especially of interest for eventual changes in the
parameter set. Furthermore, different security level implemen-
tations use different parameters. For example, the initial pa-
rameter of the modulus q in [11] is 7681, but since round two
of the NIST standardization process [4], [5], Kyber uses the
modulus 3329 and adapted du and dv . Furthermore, different
sizes k of vectors (and adapted du and dv) define different
security levels. The parameter sets for different security levels
from the second (and third) round specification of Kyber [4],
[5] can be found in Table I.

The Isabelle formalization of the parameter set can be found
in Appendix X-A2. In our formalization, we instantiate the lo-
cale containing the Kyber algorithm and proof of δ-correctness
with the parameter set given in Table I for Kyber768.

III. FORMALIZING THE KYBER ALGORITHM

The PKE scheme Kyber consists of three algorithms: the
key generation, the encryption and the decryption. The key
generation produces a public and secret key pair given a
random input. The keys are then applied in the en- and
decryption. In order to discard some lower order bits to
make the ciphertext smaller, a compression and decompression
function is added. The compression function is also used to
extract the message in the decryption. In the first versions of
Kyber, the compression of the public key invalidates the IND-
CPA security proof. Therefore, since the submission to round



Table I: Parameter set of round two and three Kyber [4], [5]

n n′ q k du dv

Kyber512 (round 2) 256 8 3329 2 10 3
Kyber768 (round 2 & 3) 256 8 3329 3 10 4
Kyber1024 (round 2 & 3) 256 8 3329 4 11 5

two of the NIST standardization process, this compression of
the public key was left out. We focus on the newer versions
in this presentation.

For a clearer presentation, we omit explicit type casts when
they are unambiguous. For example, the embedding of integers
in the reals or vice versa has an explicit type cast. An important
type cast that we will state explicitly is the cast from an integer
to the module Rq which we denote as the function to module.
In the actual formalization, all type casts are stated.

A. Input to the Algorithm

The key generation requires the inputs A ∈ Rk×kq , s ∈ Rkq
and e ∈ Rkq which are chosen randomly. A is chosen
uniformly at random from the finite set Rk×kq . In the imple-
mentation, the matrix A is generated from a uniformly random
seed via an XOF. This expansion has not been formalized.
Instead, we require that A itself is uniformly random. A is
also part of the public key. For elements of the secret key s and
the error term e, we define the centred binomial distribution
βη .

Choose η values ci with P (ci = −1) = P (ci = 1) = 1/4
and P (ci = 0) = 1/2 and return the value x =

∑η
i=1 ci. For

generating a polynomial in Rq according to βη , every coeffi-
cient is chosen independently from βη . Similarly, a vector in
Rkq is generated according to βkη by independently choosing all
entries according to βη . Both s and e are generated according
to βkη .

For our formalization of Kyber, we use η = 2 [4], [5]. Note
that in the more recent submissions of Kyber, the value η
determining the variance of the centred binomial distribution
was changed as well. Again, the formalization in locales allows
us to easily change these values of η. However, for Kyber
512 in the third submission round [4], two separate values
η1 and η2 have been introduced. This distinction has not
been formalized. The reason is that the following definition
of the module-LWE problem only allows the distribution on
the elements of the error vector to be the same. Since the
security proofs reduces a module-LWE instance where e1 and
e2 appear in one vector, the formalization does not allow the
splitting of η1 and η2.

The sampled values A, s and e constitute an instance of
the module-LWE problem which is defined in the following.

Definition 1 (Module-LWE). Given a uniformly random
A ∈ Rk×kq and s, e ∈ Rkq chosen randomly according to the
distribution βkη . Let t = As + e, then the (decision) module-
LWE problem asks to distinguish (A, t) from uniformly
random (A′, t′) ∈ Rk×kq ×Rkq .

There is a probabilistic reduction proof for the average-case
NP-hardness of the module-LWE by Langlois and Stehlé [25].
Therefore, the key generation of Kyber returns a public key
and secret key pair where it is (in average) NP-hard to recover
the secret key from the public key alone. This property is also
called the module-LWE hardness assumption.

Note that the module-LWE problem without the error term
would be easy to solve using the Euclidean Algorithm. Thus,
the error term cannot be reused but has to be chosen according
to the distribution βkη again. The random choices and the
reduction to the module-LWE have been formalized in the
IND-CPA security proof for Kyber’s PKE scheme. The NP-
hardness proof of the module-LWE has not been formalized.

B. Compression and Decompression

The compression and decompression functions in Kyber
help to reduce ciphertext size and obscure the message. In the
decryption, the message is also extracted by a compression
to one bit. In order to define these functions, we introduce a
positive integer d with 2d < q. Thus, we have d < dlog2(q)e.
In this section, we write “mod 2d” to denote the modulo
operation with modulus 2d, yielding the unique representative
in {0, . . . , 2d − 1}.

When compressing a value x, we omit the least important
bits and reduce the representation of x to d bits. Decompres-
sion rescales to the modulus q. Compression and decompres-
sion functions are defined for integers in the following way.

compd x =

⌈
2d · x
q

⌋
mod 2d

decompd x =
⌈q · x

2d

⌋
Note that the round function is defined as dxc = bx + 1

2c.
The compression and decompression functions are extended to
functions over Zq by working with the unique representative
in {0, . . . , q− 1}. We denote compression and decompression
over polynomials as comp and decomp and over vectors
as comp and decomp. They are defined to perform the
compression or decompression coefficient- and index-wise,
respectively.

We call the value decompd (compd x)−x the compression
error cx. The rounding in the compression and decompression
may introduce such a compression error. For example, consider
the values d = 2 and q = 5. Then, the compression of 2 is
comp2 2 = d1.6c mod 4 = 2 and decomp2 2 = d2.5c = 3.
Here, the compression error is decomp2 (comp2 2) − 2 =
3 − 2 = 1. Another reason for a compression error is the
modulo operation in the compression function. For example



consider d = 2 and q = 11. Then the compression of 10 is
comp2 10 = d3.63c mod 4 = 0 and decomp2 0 = 0. Here,
the compression error for integers is decomp2 (comp2 10)−
10 = −10. Interpreting this as a number over Z11, we get a
compression error of 1.

In the following, for a value x, we will denote the compres-
sion of x by x∗ and the decompression of the compression as
x′ to avoid overly lengthy expressions.

C. Key Generation, Encryption and Decryption

We now want to state the actual algorithms. For the con-
venience of the reader, we append the formal definitions of
key generation, encryption and decryption in Isabelle in the
Appendix X-A3. The calculation of the key generation is
defined in the following way:

key gen A s e = A · s + e

We denote by t = key gen A s e the output of the key
generation. Together, the matrix A and the vector t constitute
the public key, whereas the vector s is the secret key. When
we say that the public and secret key pair (A, t) and s
are generated by the key generation algorithm, we mean the
probabilistic program where A, s and e are chosen according
to their distributions, t is calculated by key gen and (A, t)
and s are the output.

Note that in the original version of Kyber [11], the key
generation included a compression of t. However, this resulted
in a major flaw of the IND-CPA proof. Thus, since the second
round of NIST’s standardization [5], the compression in the
key generation was omitted.

The pair (A, t) also forms an instance of the module-LWE
problem. The module-LWE hardness assumption states that in
average cases it is hard to recuperate the secret key s from the
pair (A, t).

To encrypt a bit-string m̄ with at most n bits, we con-
sider the message polynomial m ∈ Rq obtained by m =∑n−1
i=0 m̄(i)xi. Thus, the message polynomial m only has

coefficients in {0, 1}. For the encryption, we also need to
generate another secret r ∈ Rkq together with errors e1 ∈ Rkq
and e2 ∈ Rq according to the distribution βkη and βη . We then
calculate the encryption:

encrypt t A r e1 e2 du dv m =

(compdu (AT · r + e1),

compdv (tT r + e2+

+ to module(dq/2c) ·m))

Let u = AT ·r+e1 and v = tT r+e2+to module(dq/2c)·
m. Then, the encryption outputs the compressed values u∗ and
v∗ in a pair (u∗, v∗). When referring to the encryption without
the input of r, e1 and e2, we mean the probabilistic program
that first generates r, e1 and e2 according to their distributions
and then calculates the encryption function as stated above.

Using the secret key s, we can recover the message m from
u∗ and v∗ in the decryption function. We extract the message

as the highest bit in v′− sTu′ using the compression function
with depth 1.

decrypt u∗ v∗ s du dv =

comp1 ((decompdv v∗)−
sT (decompdu u∗))

During the algorithms, the compression and decompression
induce errors which should not affect the correctness of
the decryption result. This problem is investigated in the δ-
correctness proof of Kyber. The following section describes a
verification of this proof in Isabelle.

IV. VERIFYING THE δ-CORRECTNESS PROOF OF KYBER

To verify the δ-correctness of the specification of Kyber
in Isabelle, we look at the pen-and-paper proof from [11,
Theorem 1]. This proof shows the correctness of the original
version of Kyber, but can also be easily adapted to the
recent versions omitting the compression of the public key.
Formalizations can be found in [21] and [22].

A. ‖ · ‖∞ – a Wolf in Sheep’s Clothing

In order to estimate values, the authors of Kyber [11] use
a function ‖ · ‖∞. However, it is defined slightly differently
from what one would expect: Instead of using a regular modulo
operation, the re-centred operation mod± is defined as the rep-
resentative with smallest norm. That means ā := (a mod± q)
is the unique element with −q/2 < ā ≤ q/2 such that
ā ≡ a mod q. As q is an odd number in Kyber, we get that
a mod± q ∈ {−q+1

2 , . . . , q−12 }. Using this re-centred modulo
operation, we define the function ‖ · ‖∞ on polynomials as:

p =

deg p∑
i=1

pi · xi 7−→ ‖p‖∞ = max
i∈{0,...,deg p}

|pi mod± q|

Analogously, for vectors v ∈ Rkq we define:

‖v‖∞ = max
i∈{1,...,k}

‖vi‖∞

Unfortunately with the re-centring one loses the absolute
homogeneity, i.e., for a scalar s and vector v only ‖s ·v‖∞ ≤
|s| · ‖v‖∞ holds with an inequality instead of equality. For
example consider the case q = 3, s = 2 and v = (2). We then
have the strict inequality:

‖2 · (2)‖∞ = |2 · 2 mod± 3| = 1 <

< 2 = |2| · |2 mod± 3| = |2| · ‖(2)‖∞

Therefore, the ‖ · ‖∞ function is not a norm, but a pseudo-
norm. It is positive definite and fulfils the triangle inequality.
This is not explicitly mentioned in [11] and indeed poses a
problem in the proof of the following correctness theorem.



B. Correctness of the Kyber Algorithms

A crypto system is correct, if it always returns the original
message. However, since Kyber uses errors to mask the
ciphertext, there is a chance that the error may be too large
to decipher correctly. Thus, we need to consider a failure
probability and can only state the δ-correctness. This is defined
in the following:

Definition 2 (δ-correct PKE). Let key gen, encrypt and
decrypt constitute a public key encryption scheme A where
key gen outputs a public key pk and a secret key sk. Let M
be the space of all possible messages. Then the public key
encryption scheme is δ-correct, if and only if:

E[ max
m∈M

P[decrypt(sk, encrypt(pk,m)) 6= m]] ≤ δ

where the expectation is taken over (pk, sk) generated by
key gen.

The intuition is that the probability of a decryption failure
in the worst-case scenario over the message space and in a
mean over the secret and public key pair should be bounded
by a constant δ.

The δ-correctness of the PKE is a necessary requirement
for the Fujisaki-Okamoto transform (verified by Unruh [37]
in qrhl-tool). When connected with Unruh’s formalization, the
formalization presented in this paper results in a formal ver-
ification of Kyber’s KEM with a verified indistinguishability
under chosen ciphertext attack security property. A connection
to Unruh’s formalization was out of scope.

For the Kyber algorithms [11, Theorem 1], the δ-correctness
theorem is proved in two steps:

1) An assumption sufficient for the correct decryption can
be calculated deterministically. This is the main argu-
ment of the proof. The assumption is incorporated in
the definition of δ.

2) The distributions in the compression errors are claimed
to be uniformly random due to a reduction using the
module-LWE problem.

The first, deterministic part is stated in the following theorem.
Its formalization can be found in the Appendix X-A4.

Theorem IV.1. Let A ∈ Rk×kq , s, r, e, e1 ∈ Rkq , e2 ∈ Rq and
let the message m ∈ Rq with coefficients in {0, 1}. Define:

• t = key gen A s e, the output of the key generation
• (u∗, v∗) = encrypt t A r e1 e2 du dv m, the output of

the encryption
• cu and cv, the compression errors of u and v, respectively

If ‖eT r + e2 + cv − sTe1 − sT cu‖∞ < dq/4c, then the
decryption algorithm returns the original message m:

decrypt u∗ v∗ s du dv = m

We have that Kyber is correct when assuming the inequality:

‖eT r + e2 + cv − sTe1 − sT cu‖∞ < dq/4c (1)

C. Modifying the Error Bound

Using Theorem IV.1 and the definition of δ-correctness, we
deduce the following.

Corollary. Let:

δ′ = E

max
m∈M

P





e, r, e1 ← βkη ; e2 ← βη;

u = AT r + e1;

v = tT r + e2 + d q2cm;

‖eT r + e2 + cv − sTe1−
−sT cu‖∞ ≥ dq/4c



 (2)

where the expectation is taken over ((A, t), s) generated by
key gen. Then Kyber is δ′-correct.

Note that in this proposition, the δ′ is not the same as in
[11, Theorem 1]. Using the second proving step, [11] claims
δ-correctness for:

δ = P



s, e, r, e1 ← βkη ; e2 ← βη;

cu ← Ψk
du, cv ← Ψdv

‖eT r + e2 + cv − sTe1+

−sT cu‖∞ ≥ dq/4c

 (3)

Here, Ψd is the distribution of the compression error of x to
d bits for a uniformly generated x← Rq .

The main difference between δ′ and δ is that in δ′ the values
of cu and cv are calculated as the correct compression errors,
whereas in δ they are the compression errors of uniformly
random values u and v. The intuitive idea given in [11,
Proof of Theorem 1] is that this change is negligible since
its value can be bounded by the advantage against module-
LWE problems. A detailed, formal proof is missing at this
point.

Despite this idea making sense intuitively, we were un-
able to formalize this reduction. Indeed, we claim that this
reduction is incorrect in our general framework. The rea-
son is that the change from a module-LWE instance to a
uniformly random instance loses all information about the
secret key. However, in the definition of δ-correctness, we
cannot omit the information about the secret key during
the encryption since we need it for the decryption. There-
fore, we cannot separate the module-LWE instance from
P[decrypt(sk, encrypt(pk,m)) 6= m] in order to bound this
value with the advantage against the module-LWE.

To substantiate the claim that this reduction to δ does
not respect the inequality of Definition 2, we perform a
comparative analysis of δ′ (eq. (2)), δ (eq. (3)) and the actual
correctness error:

E[ max
m∈M

P[decrypt(sk, encrypt(pk,m)) 6= m]] (4)

In the following, the value δ is calculated using a Python script
by Léo Ducas [12] that was also used for the evaluation in [11].

We showcase two comparisons: First, we calculate the
exact values of δ, δ′ and the correctness error for very small
parameters. We set n = 2, q = 17, k = η = dv = 1 and
du = 3. The expectation, maximum and probabilities can be



computed by considering all possible values. Using a simple
Python script [23], the outcomes are the following:

δ = 0.211

corr error = 0.223

δ′ = 0.267

The experiment shows, that for these small parameters, the
inequality between the correctness error and δ is violated. This
is a counterexample to the claimed proof in [11] since it should
hold for any parameters sufficing Kyber’s assumptions.

Second, we substantiate our claim also for (slightly) bigger
parameter sets. In this experiment, we approximate δ′ and the
correctness error using Monte-Carlo sampling. Python scripts
for the calculation of δ′ and the correctness error can be found
in [23]. For all the parameter sets that we tested, the inequality

E[ max
m∈M

P[decrypt(sk, encrypt(pk,m)) 6= m]] ≤ δ

is violated. Results are shown in Figure 1 (and Appendix X-B).
As parameters, we consider n between 5 and 16 and choose

Figure 1: Comparison of absolute values of δ, δ′ and the cor-
rectness error for small dimensional examples over variation
on n

q to be a prime with approximatively the same ratio to n as
the original parameters for Kyber (q/n = 3329/256 ≈ 13)
and q ≡ 1 mod 4. Furthermore, we set k = η = dv = 2 and
du = 5. In Figure 1, we see that the correctness error (green)
consistently lies below our proposed δ′ (blue), but violates the
relation to the calculated δ (red) from [11].

Private correspondence with an author of Kyber confirmed
that this problem with δ was known. Indeed, they explained
that the module-LWE reduction was more of a heuristic nature.
With this heuristic module-LWE reduction, the error terms
can be easily approximated using union bounds, as in [12].
However, since this proof was not formalized in detail, the
dependency relations with the secret key may have been
overlooked. The above calculations give a counter-example
disproving this reduction via module-LWE for our general

setting. It may be the case that additional assumptions for
the Kyber parameters make the module-LWE reduction valid.
An interesting future research question is to find suitable
hypotheses to allow the module-LWE reduction or find a
counter-example with the actual Kyber parameters.

Fortunately, our findings do not invalidate the correctness
of the scheme itself since we could prove correctness with the
bound δ′. Still, this issue may affect the level of security of
Kyber. This leads us to two more important research questions:

1) Can we estimate/approximate δ′ or the relation between
δ and δ′?

2) Can we find another more easily calculable bound on
the correctness error?

For this paper, our main focus was a foundational formaliza-
tion of Kyber: indeed, we succeeded to show δ′-correctness.

D. Auxiliary Lemma

Before we can start the proof of Theorem IV.1, we need to
show an auxiliary lemma on the estimation of the compression
error.

Lemma IV.2. Let x be an element of Zq and x′ =
decompd (compd x) its image under compression and de-
compression with 2d < q. Then we have:

|x′ − x mod± q| ≤ dq/2d+1c

The proof of the auxiliary lemma can be found in Ap-
pendix X-C.

A non-trivial step in the formalization of the proof was
to ensure that all calculations are conform with the residue
classes modulo the polynomial xn + 1. Indeed, in Isabelle
the type casting is explicit, so one always has to channel
through all type casts. Especially, one always has to show that
the implications hold independently from the representative
chosen from a residue class. In some cases, we also presume
natural embeddings and isomorphisms to hold in pen-and-
paper proofs which have to be stated explicitly in Isabelle (for
example the to module function mentioned in the previous
section). Thus, formalizations are much more verbose.

E. Proof of Correctness

The formalization of the proof of Theorem IV.1 can be
found in [22] (and the version with compression of the
public key in [21]). One problem encountered during the
formalization was that ‖ · ‖∞ is only a pseudo-norm (recall
Section IV-A). This is not explicitly mentioned in [11] and
indeed poses a problem in the proof which we will discuss in
greater detail in the next section. In short: We cannot conclude
a correct decryption in the last step of the correctness proof
unless q ≡ 1 mod 4.

The proof of Theorem IV.1 proceeds as follows. Given A,
s, r, e, e1, e2 and the message m, we calculate t, u∗ and
v∗ using the key generation and encryption algorithm. We
define u′ and v′ to be the decompressed values of u∗ and



v∗, respectively. With the compression errors cu and cv, we
get the equations:

u′ = AT r + e1 + cu

v′ = t′ T r + e2 + dq/2c ·m + cv

This leads to the calculation in the decryption:

v′ − sTu′ = eT r + e2 + cv − sTe1 − sT cu + dq/2c ·m
We accumulate all error terms in a new variable w:

w := eT r + e2 + cv − sTe1 − sT cu

and get ‖w‖∞ < dq/4c from the assumptions of Theo-
rem IV.1.

Now, we need to show that m′ := decrypt(u∗, v∗, s) is
indeed the original message m. We consider the value of
v′ − sTu′, its compression with d = 1, namely m′, and
the decompressed value decomp1 m′. Since the compression
depth is 1, we get m′ ∈ {0, 1}. Thus:

decomp1 m′ = dq/2 ·m′c = dq/2c ·m′

Using Lemma IV.2, it follows that:

‖w + dq/2c(m−m′)‖∞
=‖v′ − sTu′ − decomp1 (comp1 (v′ − sTu′))‖∞
≤dq/4c

Using the triangle inequality on ‖ · ‖∞, we calculate

‖dq/2c(m−m′)‖∞ = ‖w + dq/2c(m−m′)− w‖∞
≤‖w + dq/2c(m−m′)‖∞ + ‖w‖∞
<dq/4c+ dq/4c = 2dq/4c

It remains to show that we can indeed deduce m = m′ which
concludes the proof of Theorems IV.1. According to the last
step of [11, Proof Thm 1], this follows directly for any odd
q. However, therein lies a hidden problem. [11, Proof Thm 1]
makes use of the homogeneity of ‖·‖∞. Since ‖·‖∞ is only a
pseudo-norm and not a norm, we needed to find an alternative
proof in the formalization. Interestingly enough, in the case
of q ≡ 3 mod 4, we cannot conclude the proof. In the next
section, we discuss why we can only deduce this step under
the assumption that q ≡ 1 mod 4 and give a counterexample
for the case q ≡ 3 mod 4.

F. Additional Assumption q ≡ 1 mod 4

The following remains to be shown for the proof of Theo-
rem IV.1: Given the inequality

‖dq/2c · (m−m′)‖∞ < 2 · dq/4c
we need to deduce that indeed m = m′.

We prove this statement by contradiction. Assume that m
is not equal m′, i.e., there exists a coefficient of m−m′ that
is different from zero. Since m and m′ are polynomials with
coefficients in {0, 1}, a non-zero coefficient can either be 1 or
−1. Then we get

‖dq/2c · (m−m′)‖∞ = |dq/2c · (±1) mod± q| = . . .

Since we cannot use the homogeneity of ‖ · ‖∞ to pull out
the absolute value of ±1, we need to find a different proof.
We break down the formula to find the remaining problems.
All primes q greater than two are odd. Thus we have dq/2c =
(q + 1)/2. We continue our calculation:

· · · =
∣∣∣∣q + 1

2
mod± q

∣∣∣∣ =

∣∣∣∣−q + 1

2

∣∣∣∣ =
q − 1

2
= 2·q − 1

4
= . . .

since the mod± operation reduces q+1
2 to the representative

−q+1
2 . Now we need to relate q−1

4 to dq/4c. We have two
cases:

Case 1: For q ≡ 1 mod 4 we indeed get the equality
q−1
4 = dq/4c that we need. In this case we have

‖dq/2c · (m−m′)‖∞ = 2 · dq/4c

which is a contradiction to our assumption. In this case, the
proof of Theorems IV.1 is completed.

Case 2: For q ≡ 3 mod 4 we get the strict inequality
q−1
4 < q+1

4 = dq/4c resulting in

‖dq/2c · (m−m′)‖∞ < 2 · dq/4c

which is no contradiction to the assumption. Indeed in this
case we cannot deduce m = m′, since it is possible that a
coefficient of m−m′ is non-zero.

Example IV.1. Consider this short example: Let q = 7 (≡ 3
mod 4, thus we are in case 2), m = 0 and m′ = 1. In this
case, the inequality of the assumption holds

‖dq/2c · (m−m′)‖∞ = 3 < 4 = 2 · dq/4c

but m 6= m′. This is a counterexample for the correctness of
the proof of Theorem IV.1 in the case q ≡ 3 mod 4.

In conclusion, Theorem IV.1 only holds if the modulus q
fulfils the assumption q ≡ 1 mod 4.

In the specification of Kyber, concrete values for the param-
eters of the system are given (see Section II-B). For example
in the recent version of Kyber [4], [5], the modulus q is
chosen to be 3329, whereas in early versions [6], [11], the
modulus was chosen as 7681. Considering possible changes
to these variables (for different versions or security levels), it
is important to enable the verified proof to cover all possible
cases. Therefore, the implementation of the formalization was
chosen to be as adaptive and flexible as possible. This resulted
in the discovery of the additional assumption q ≡ 1 mod 4.

Indeed, the modulus q is chosen according to a much
more rigid scheme: In order to implement the multiplication
to compute faster, the Number Theoretic Transform (NTT)
is used. In the case of Kyber, the NTT is computed on
Rq = Zq[x]/(xn + 1). The requirement for NTT on the
modulus q is:

q ≡ 1 mod n

For n = 256 and q = 7681 we have 7681 = 30 · 256 + 1,
whereas for q = 3329 we get 3329 = 13 · 256 + 1. Since n is



a power of 22, we can automatically infer the property q ≡ 1
mod 4.

The NTT is analysed in more detail in Appendix X-D. A
formalization for the NTT in the case of Kyber was included
in this project. There is also a formalization of the NTT for
the third round Kyber by Hwang et al. [18] in the low-level
tool CryptoLine.

V. GAME-BASED CRYPTOGRAPHY

An important cryptographic property of public key encryp-
tion schemes is IND-CPA security. This attack describes a
game where an adversary tries to gain information about self-
chosen plaintexts.

More formally, the IND-CPA game for a PKE (given by
the key generation, encryption and decryption algorithms) is
defined as follows.

Definition 3 (IND-CPA game). Two parties, the challenger
and the adversary, play the following game.

1) The challenger generates a public and secret key pair
using the key generation algorithm and publishes the
public key.

2) The adversary sends the challenger two messages m0

and m1 with the same length.
3) The challenger chooses uniformly at random a bit b. He

encrypts the message mb with the encryption algorithm
and sends the ciphertext to the adversary.

4) The adversary returns a guess b′ which of the two given
messages m0 and m1 the challenger has encrypted. He
wins if b = b′.

The advantage AdvIND−CPA of the adversary A is defined
as AdvIND−CPA(A) = |P[b′ = b] − 1

2 |. A PKE scheme is
IND-CPA secure if and only if the advantage of the adversary
is negligible, that means sufficiently small.

Figure 2 depicts the IND-CPA game.

Challenger Adversary

(pk, sk)← key gen pk

choose m0, m1

with |m0| = |m1|
m0 and m1

b← coin flip

c = encrypt(mb,pk) c

Output b′

as a guess for b

ti
m
e

Figure 2: A diagram of the IND-CPA game.

The formalization of the IND-CPA game was taken from
the CryptHOL Tutorial [27]. The flexible formalization in an
Isabelle locale allows the user to instantiate this concept in
any context fulfilling the properties of the locale. In this way,
the IND-CPA game definition could easily be applied to the
case of Kyber by instantiating with the Kyber algorithms for
key generation, encryption and decryption.

We can also state the module-LWE from Definition 1 in
game form.

Definition 4 (module-LWE game). Two parties, called the
challenger and the (module-LWE) adversary, play the follow-
ing game.

1) The challenger chooses A0 ∈ Rm×kq uniformly at
random, s according to βkη and e according to βmη . He
then computes t0 = A0s + e. ((A0, t0) is an instance
of the module-LWE problem.)

2) The challenger chooses A1 ∈ Rm×kq and t1 ∈ Rmq
uniformly at random. ((A1, t1) is a random instance.)

3) The challenger chooses a random bit b and sends the
adversary the value of (Ab, tb).

4) The adversary returns a guess b′ whether the tuple
(Ab, tb) was generated as a module-LWE instance or
is uniformly random. He wins, if his guess is correct.

The advantage AdvmLWE
m of the module-LWE adversary A

is defined as

AdvmLWE
m (A) = |P[b′ = 0 ∧ b = 0]− P[b′ = 0 ∧ b = 1]|

The module-LWE hardness assumption states that the advan-
tage of an adversary in the module-LWE game is negligible.

Figure 3 depicts the module-LWE problem in game form.

Challenger Adversary

A0 ← uniform(Rm×kq )

s← βkη , e← βmη
t0 = A0s+ e

mLWE

A1 ← uniform(Rm×kq )

t1 ← uniform(Rmq ) random

b← coin flip (Ab, tb)

Output b′

as a guess for b

ti
m
e

Figure 3: A diagram of the module-LWE game.

In the proof of the IND-CPA security property for Kyber, the
advantage of a module-LWE adversary is used twice, but with
different dimensions m. The key generation corresponds to a
module-LWE with m = k such that A is a quadratic matrix.
However, in the encryption, the matrix A is extended by the
vector t, resulting in a (k + 1) × k matrix. This corresponds
to the module-LWE with m = k + 1.

The module-LWE was again formalized in an Isabelle locale
in order to allow for two separate instantiations (once with
m = k and once with m = k+1). However, the instantiations
needed an additional twist. Since the vector type in Isabelle
has a fixed dimension implemented as a finite type (in our
case type ′k of cardinality k), it is more difficult to work over
vectors whose dimension is a function over k. In our case,
this could be solved using the option type. The option type
′k option embeds elements a of type ′k as Some a and adds
the element None. Thus ′k option has exactly k+1 elements.
This solves our problem.



VI. USING CRYPTHOL IN ISABELLE

CryptHOL [26] is a library for game-based security proofs
in cryptography. It is based on the extensive libraries for
probability theory in Isabelle. Its main contributions are sub-
probability mass function as the type class spmf and generative
probabilistic values as the type class gpv. We give a short
intuitive understanding of these type classes.

A. Sub-probability Mass Functions

The spmf type class is a superclass of probability mass
functions. We consider a finite set S. A probability mass
function f : S 7−→ [0, 1] is the probability distribution of
a discrete random variable X , i.e., f(x) = P[X = x] such
that the weight equals one:∑

x∈S
f(x) = 1

For sub-probability mass functions, we allow the weight to be
less than one: ∑

x∈S
f(x) ≤ 1

A sub-probability mass function is called lossless, if it has
weight equal to one. Indeed, in our setting we need to model
the probability that a security game is compromised by inten-
tional malicious input and may not terminate. For example in
the IND-CPA game, the adversary can intentionally input two
messages of different length and thus gain information about
the ciphertext or simply not answer at all.

B. Generative Probabilistic Values

To model cryptographic primitives such as hash functions,
we need a method to generate and store random values.
This idea is developed in the gpv type class which describes
probabilistic algorithms. The type class gpv depends on three
input types: the type of the algorithm, the input state type and
the output state type.

When running a gpv, we connect it with a random oracle
(that models for example a hash function) and hand through
the current state. Whenever we query the oracle, we generate
a new state. It needs to be included in the input for the next
call to the oracle using a gpv.

The Kyber public key encryption does not use hash func-
tions. Thus we could model the security proof with sub-
probability mass functions only. However, to stay consistent
with the CryptHOL library, we generalized the formalization
of the security proof to use generative probabilistic values
whenever we query the adversary or the encryption algorithm.
The proofs do not get significantly harder and the automation
can handle this generalization step most of the time.

C. Using Monads for Describing Probabilistic Algorithms

Functional programming hands us tools to easily define
probabilistic algorithms and distributions. The concept of
choice is the Giry-monad. Monads are a concept from category
theory applied to functional programming. We give a short
introduction to monads in general and the Giry-monad in

particular. More about monads can be found in [34] and the
introduction of monads into functional programming in [30]. A
good introduction to the Giry-monad in the context of Isabelle
is given in [13].

Monads give a pattern to design type classes. They consist
of a type constructor M and two operations:
• return: receives a value A and hands back a monadic

value M a
• bind: receives a monadic value Ma and a function
f : a −→ M b and returns the application of f to the
unwrapped value A, yielding an element M b

Monads need to fulfil three laws: the left and right identities
and associativity. Let us look at a short example.

Example VI.1. The option type class is a monad. As de-
scribed at the end of Section V, a type ′a option takes the
values Some a or None. In this case, the option monad is
defined over the type ′a. The return function takes an element
a of type ′a and returns an element Some a of type ′a option.
The bind function on a function f is defined by:

bind None f = None

bind (Some a) f = f(a)

Another notation for the bind function is:

bind a f ≡ a >>= f

Another example is the Giry-monad. It assigns to each
measurable space the space of probability measures over it
(see [35]).

Example VI.2. The type class of probability mass functions
pmf for discrete distributions is a monad, called the Giry-
monad. The return function for an element A is defined as
the Dirac measure on a. The bind function on an probability
mass function pX using a function f is defined as:

(bind pX f)(y) =
∑
x

pX(f(x)(y))

Thus, the Giry-monad can model successive execution of
random experiments and probabilistic algorithms using the
bind and return functions.

Both the type class spmf and gpv are monads with respective
return and bind functions. This gives us a tool to model
probabilistic algorithms in Isabelle.

VII. IND-CPA SECURITY PROOF FOR KYBER

Since round two of the NIST standardization process [5], the
compression of the public key in Kyber has been omitted. The
reason was that otherwise the IND-CPA security proof [11,
Theorem 2] does not hold. The problem lies in the second
reduction step where the decompression of the compression
of the public key is not distributed uniformly at random any
more. This entails that we cannot apply the reduction from
the module-LWE. The security of Kyber without compression
under IND-CPA is stated in the following theorem. Its formal-
ization can be found in [22]



Theorem VII.1. Given any adversary A to the IND-CPA
game of Kyber and assuming that A is lossless, the advantage
of A in the IND-CPA game can be bounded by twice the
advantage in the module-LWE game.

Loosely speaking: the public key encryption scheme Kyber
without compression of the public key is IND-CPA secure
against the module-LWE hardness assumption. The formal-
ization in Isabelle can be found in Appendix X-A5.

Proof. Let AdvKyber be the advantage in the IND-CPA game
instantiated with the Kyber algorithms key gen, encrypt and
decrypt. Let f1 be the reduction function from A to the first
module-LWE instance and f2 the reduction function from A
to the second module-LWE instance. Then the exact formula
of the theorem above reads:

AdvKyber(A) ≤ AdvmLWE
k (f1(A)) +AdvmLWE

k+1 (f2(A))
(5)

Note that in the formalization we state the reduction func-
tions for the adversary precisely. They need to have a polyno-
mial running time. Since a formal framework for analysing the
running time is out of scope for this project, we assume the
running time hypothesis to be correct. The reason is that the
reduction functions use only one call to the given adversary
and (for f1) one to the Kyber encryption algorithm. Otherwise,
the functions are non-recursive, polynomial time probabilistic
algorithms.

The proof of equation (5) proceeds in three steps (also called
game-hops).

1) Reduction of key generation from the first module-LWE
instance with m = k

2) Reduction of encryption from the second module-LWE
instance with m = k + 1

3) Interpretation of the rest as a coin flip
In every game-hop, we define an intermediate game and

analyse the difference in the advantage. The initial game
game0 is exactly the IND-CPA game. That implies:

P[b = b′] = P[game0 = true]

The first intermediate game game1 is defined by the following
steps:

1) The challenger generates a public key (A, t) uniformly
at random and publishes the public key.

2) The adversary sends the challenger two messages m0

and m1 with the same length.
3) The challenger chooses a bit b uniformly at random. He

encrypts the message mb with the encryption algorithm
and sends the ciphertext to the adversary.

4) The adversary returns a guess b′ for which of the two
given messages m0 and m1 the challenger has encrypted.
He wins if b = b′.

Figure 4 illustrates game1. The change to the initial game
game0 (marked in green) is in the first step where the public
and secret key pair is now generated uniformly at random
instead of being created by the key generation algorithm.

Challenger Adversary

(pk, sk)← uniform pk

choose m0, m1

with |m0| = |m1|
m0 and m1

b← coin flip

c = encrypt(mb,pk) c

Output b′

as a guess for b

ti
m
e

Figure 4: A diagram of game1.

The key generation algorithm creates a module-LWE in-
stance. Distinguishing a module-LWE instance from a uni-
formly random instance is exactly the module-LWE game.
Hence, for a suitable reduction function f1 have:

|P[game0 = true]−P[game1 = true]| = AdvmLWE
k (f1(A))

The second intermediate game game2 is defined by the
following steps:

1) The challenger generates a public key (A, t) uniformly
at random and publishes the public key.

2) The adversary sends the challenger two messages m0

and m1 with the same length.
3) The challenger chooses a bit b uniformly at random. He

chooses a ciphertext uniformly at random from Rkq ×Rq
and sends the ciphertext to the adversary.

4) The adversary returns a guess b′ for b. He wins if b = b′.
Figure 5 illustrates game2. The change to game1 (marked

in green) is that the ciphertext is not generated by the encryp-
tion but chosen uniformly at random.

Challenger Adversary

(pk, sk)← uniform pk

choose m0, m1

with |m0| = |m1|
m0 and m1

b← coin flip

c← uniform c

Output b′

as a guess for b

ti
m
e

Figure 5: A diagram of game2.

In the encryption, the reduction to the module-LWE is not
as straightforward as for the key generation. This is caused by
the addition of the message m to the module-LWE instance.
Indeed, in the formalization, we need to make two separate
steps.

First, we show that the probability of distinguishing an
instance of the form (

A
t

)
r +

(
e1
e2

)
and a uniformly random instance (u v′)T is exactly the
module-LWE advantage for m = k + 1. Note that it is



important to look at (k + 1)-dimensional vectors instead of
splitting the instance in k- and 1-dimensional parts because r
is chosen to be the same for the multiplication with both A and
t. This is also the reason, why we cannot split the variance for
the centred binomial distribution into η1 and η2, since e1 and
e2 together form the error vector of the module-LWE instance,
thus needing the same distribution.

Second, we need to show that v′ + dq/2c · m is also
distributed uniformly. That is, we cannot distinguish between
the probabilities of the value v′ + dq/2c ·m for a uniformly
random v′ and a uniformly random v. Since we are working
over a finite field and v′ and m are independent, we can show
this property using the law of total probability.

For a suitable reduction function f2, we deduce:∣∣∣∣P[game1 = true]−P[game2 = true]

∣∣∣∣ = AdvmLWE
k+1 (f2(A))

In the last step, we have a closer look at game2. Since the
ciphertext sent to the adversary is now independent from the
chosen message, the guess of the adversary is a coin flip. Thus
the probability of guessing correctly is exactly 1/2. We get

P[game2 = true] = 1/2

Finally, we can put together all the previous steps.

AdvKyber(A) =

∣∣∣∣P[b = b′]− 1

2

∣∣∣∣ =

∣∣∣∣P[game0 = true]− 1

2

∣∣∣∣
This equality is inferred from the definition of the adversary
for the IND-CPA game for Kyber. The game0 is the initial
IND-CPA game. We continue by applying the triangle inequal-
ity. ∣∣∣∣P[game0 = true]− 1

2

∣∣∣∣
≤
∣∣∣∣P[game0 = true]− P[game1 = true]

∣∣∣∣
+

∣∣∣∣P[game1 = true]− 1

2

∣∣∣∣
= AdvmLWE

k (f1(A)) +

∣∣∣∣P[game1 = true]− 1

2

∣∣∣∣
The last equality is deduced from the reduction of game0 to
game1 as a module-LWE instance. We proceed by applying
the triangle inequality again on the second part.∣∣∣∣P[game1 = true]− 1

2

∣∣∣∣
≤
∣∣∣∣P[game1 = true]− P[game2 = true]

∣∣∣∣
+

∣∣∣∣P[game2 = true]− 1

2

∣∣∣∣
= AdvmLWE

k+1 (f2(A)) +

∣∣∣∣P[game2 = true]− 1

2

∣∣∣∣
Here, the last equality is deduced from the reduction of game1
to game2 as a module-LWE instance with m = k+1. Finally,
we have

∣∣P[game2 = true]− 1
2

∣∣ = 0 as game2 behaves like

a coin flip. In total, the claim is proven as we have shown the
formula:

AdvKyber(A) ≤ AdvmLWE
k (f1(A)) +AdvmLWE

k+1 (f2(A))

During the formalization process, it became clear that
this proof does not work for the first version of Kyber as
remarked by the authors of Kyber [11, Sec. Security of
the real scheme]. The proof for the current scheme could
be formalized analogously to the pen-and-paper proof. The
most time-consuming parts were getting familiar with the
CryptHOL library environment and working out the details
of the pen-and-paper proof which was extremely short.

CryptHOL works with sub-probability mass functions and
generative probabilistic values and supplies a huge library of
fundamental lemmas. Since the example game-based proof of
the CryptHOL Tutorial [27] is based mainly on the automation,
understanding the formal proof and rewriting steps is not
straightforward. However, once the necessary lemmas are
located and added to the automation, the automatic proof
finder can solve most rewriting steps.

Some steps where the automation fails are for example when
commutativity laws need to be applied in both directions. Then
the simplifier runs in loops and cannot terminate. Making
smaller proof steps or explicitly initializing the commutativity
laws solves these issues.

VIII. IMPLEMENTATION DETAILS

Figure 6: Distribution of lines
of code on different topics

The implementation in
Isabelle comprises about
6.7k lines of code. The pro-
portions on the topics is
depicted in Figure 6. Since
many concepts from al-
gebra, analysis, probability
theory and cryptographic
primitives could be reused,
the authors could focus
solely on the formalization
of Kyber. Furthermore, the automation greatly helped short-
ening the proofs.

Due to the various dependencies and invocations of the
library, loading the formalization theories might take some
time, especially when the required theories on analysis and
probability need to be built for the first time.

IX. CONCLUSION

In this presentation, we described the formalization of
key-generation, encryption and decryption algorithms of
CRYSTAL-KYBER’s public key encryption scheme.

During the formalization of the δ-correctness proof two
problems were uncovered: One could be solved by modi-
fying the value of δ, the other by adding the assumption
q ≡ 1 mod 4. Under these conditions, the δ′-correctness
could be verified. Differences between the original proof



and the formalization were discussed and counterexamples
for failing proof-steps were given. The additional assumption
q ≡ 1 mod 4 is already fulfilled by necessary properties for
the number theoretic transform. Therefore, the correctness of
Kyber itself is not compromised but minimal changes to the
error bound δ are needed. However, the authors of Kyber
acknowledged the need for an alternative bound in private
communication. Moreover, a verification of the IND-CPA
security proof for Kyber was presented.

Building on these results, the Fujisaki-Okamoto transform
can be applied to the current algorithm formalization to obtain
a verified key encapsulation mechanism that is secure against
the indistinguishability under chosen ciphertext attack (IND-
CCA). However, our proposed δ′ cannot be approximated as
easily as the original δ. Finding a calculable bound or an
approximation on δ′ remains an important question. Another
very interesting aspect is to formalize the hardness results of
the module-LWE that Kyber is building on.
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Léchenet, T. Oliveira, H. Pacheco, M. Quaresma, P. Schwabe, A. Séré,
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X. APPENDIX

A. Isabelle Formalizations

1) Isabelle Code for the Quotient Ring Rq: The quotient
ring Rq in Isabelle is defined in three steps:

1) Define a type class containing the modulus q and the
polynomial xn + 1 as qr_poly’ and ascertain their
compatibility.

2) Define the equivalence relation for polynomials in Zq[x]
modulo qr_poly’

3) Define the final type class qr of the quotient ring Rq
using the constructor quotient_type by modding
out the equivalence relation

class qr_spec = prime_card +
fixes qr_poly’ :: ’a itself ⇒ int poly
assumes ¬ int CARD(’a) dvd

lead_coeff (qr_poly’ TYPE(’a))
and degree (qr_poly’ TYPE(’a)) > 0

definition qr_rel where
qr_rel P Q ↔ [P = Q] (mod qr_poly)

quotient_type (overloaded)
’a qr = ’a :: qr_spec mod_ring poly / qr_rel

2) Isabelle Code for Parameter Sets: The parameter set of
Kyber with the required properties is encoded as a locale.

locale kyber_spec =
fixes type_a :: (’a :: qr_spec) itself
and type_k :: (’k ::finite) itself
and n q::int and k n’::nat

assumes n = 2 ˆ n’
and n’ > 0
and q > 2
and prime q
and int (CARD(’a :: qr_spec)) = q
and int (CARD(’k :: finite)) = k
and qr_poly’ TYPE(’a) =

Polynomial.monom 1 (nat n) + 1
and q mod 4 = 1

3) Isabelle Code for Kyber Algorithms: The key generation
in Isabelle is defined in two steps: First we sample the inputs
A, s, e according to their distributions, and second we calculate
the formula As + e. The second part is implemented in
the function key_gen, whereas the sampling in the first
step is implemented in the function pmf_key_gen. Here
pmf_of_set return a uniform distribution on an input set

and beta_vec samples a vector of polynomials according
to the distribution βη . The latter returns a probability mass
function on the output, corresponding to the probability mass
function on the key generation.

definition key_gen where
key_gen A s e = A * s + e

definition pmf_key_gen where
"pmf_key_gen = do {
A ← pmf_of_set (UNIV::

((’a qr,’k) vec,’k) vec set);
s ← beta_vec;
e ← beta_vec;
let t = key_gen A s e;
return_pmf ((A, t),s)

}"

As with the key generation, the encryption is also split
into the calculation and the sampling part. The calculation
is implemented in the function encrypt and the sampling in
the function pmf_encrypt. Again, pmf_encrypt returns
a probability mass function on the ciphertext. One important
fact on the formalization is that the types cast always have to
be included, for example to_module casts the integer bq/2e
to the type of the module Rq and bitstring_to_module
casts the bit-string of the message to an element in Rq .

definition encrypt where
encrypt t A r e1 e2 du dv m =
(compress_vec du (AT * r + e1),
compress_poly dv (tT * r + e2 +

to_module (round(q/2)) *
bitstring_to_module m))

definition pmf_encrypt where
"pmf_encrypt pk m = do{
r ← beta_vec;
e1 ← beta_vec;
e2 ← beta;
let c = encrypt (snd pk) (fst pk)

r e1 e2 dt du dv m;
return_pmf c

}"

Note that the compression and decompression on Rkq are
defined as an index- and coefficient-wise application. However,
we need to separate these definitions in Isabelle using the
suffix _vec and _poly.

Since the decryption is purely deterministic, we only im-
plement its calculation in decrypt.

definition decrypt where
decrypt u v s du dv =
compress_poly 1 ((decompress_poly dv v)
- sT * (decompress_vec du u))

https://ncatlab.org/nlab/show/monad
https://ncatlab.org/nlab/revision/monad/97
https://ncatlab.org/nlab/show/monads%20of%20probability%2C%20measures%2C%20and%20valuations
https://ncatlab.org/nlab/show/monads%20of%20probability%2C%20measures%2C%20and%20valuations
https://ncatlab.org/nlab/revision/monads%20of%20probability%2C%20measures%2C%20and%20valuations/32
https://electricdusk.com/ntt.html
https://electricdusk.com/ntt.html


lemma kyber_correct:
fixes A s r e e1 e2 du dv cu cv t u v
assumes t = key_gen A s e
and (u,v) = encrypt t A r e1 e2 du dv m
and cu = compress_error_vec du

((transpose A) *v r + e1)
and cv = compress_error_poly dv

(scalar_product t r + e2 +
to_module (round(q/2)) * m)"

and abs_infty_poly (scalar_product e r
+ e2 + cv - scalar_product s e1
- scalar_product s cu)
< round (q / 4)

and set ((coeffs ◦ of_qr) m) ⊆ {0,1}
shows decrypt u v s du dv = m

Then the corollary that Kyber is delta_kyber-correct is
formalized as follows:

lemma
shows
expectation pmf_key_gen (λ(pk, sk).
MAX m ∈ Msgs. pmf (do {
(u,v) ← pmf_encrypt pk m;
return_pmf (decrypt u v sk du dv 6= m)

})) True)
≤ delta_kyber

5) Isabelle Code for IND-CPA property: The Isabelle for-
malization of Theorem VII.1 is the following:

theorem concrete_security_kyber:
assumes lossless: ind_cpa.lossless A
shows
ind_cpa.advantage (ro.oracle, ro.initial) A ≤
mlwe.advantage (kyber_reduction1 A) +
mlwe.advantage (kyber_reduction2 A)
Here ro initialized the random oracle that needs to be

specified for the existing definition of the IND-CPA security
game in CryptHOL. The lossless property states that the
adversary A terminates.

B. Comparative results on δ, δ′ and the correctness error

Figure 7 shows the relations between δ, δ′ and the actual
correctness error for small parameter sets. Two values are
portrayed on the x- and y-axis. If the experimental results
of a parameter set lies above the diagonal, then the value
on the y axis is bigger. If the results lie below the diagonal,
then the value on the x-axis is bigger. These plots show that
the inequality between δ and the correctness error is violated,
whereas with δ′, the inequality is preserved.

C. Proof of the Auxiliary Lemma IV.2

Proof. Let x be the representative in {0, . . . , q − 1}. Then
consider two cases, namely x < dq− q

2d+1 e and x ≥ dq− q
2d+1 e.

These cases arise from the distinction whether the modulo
reduction in the definition of the compression function is

triggered or not. Indeed, we have compd x = d 2dq xc mod 2d

where 2d

q x < 2d, but d 2dq xc = 2d if and only if x ≥ dq− q
2d+1 e.

In the latter case, the modulo operation in the compression
function is activated and returns compd x = 0. In the
following, we will abbreviate compd x by x∗.

Case 1: Let x < dq − q
2d+1 e. Then the modulo reduction

in the compression function x∗ = d 2dq xc mod 2d = d 2dq xc is
not triggered. Thus we get:

|x′ − x| = |decompd (x∗)− x|

=

∣∣∣∣decompd (x∗)− q

2d
· x∗ +

q

2d
· x∗ − q

2d
· 2d

q
· x
∣∣∣∣

≤
∣∣∣decompd (x∗)− q

2d
· x∗
∣∣∣+

q

2d
·
∣∣∣∣x∗ − 2d

q
· x
∣∣∣∣

=
∣∣∣⌈ q

2d
· x∗
⌋
− q

2d
· x∗
∣∣∣+

q

2d
·
∣∣∣∣⌈2d

q
· x
⌋
− 2d

q
· x
∣∣∣∣

≤1

2
+

q

2d
· 1

2
=

q

2d+1
+

1

2

Since x′ − x is an integer, we also get:

|x′ − x| ≤
⌊

q

2d+1
+

1

2

⌋
=
⌈ q

2d+1

⌋
Therefore also |x′−x| ≤ bq/2c such that the mod± operation
does not change the outcome. Finally for this case, we get

|x′ − x mod± q| ≤
⌈ q

2d+1

⌋
Case 2: Let x ≥ dq − q

2d+1 e. Then the modulo operation
in the compression results in the compression to zero, i.e.,
compd x = 0. Using the assumption on x, we get:

|x′ − x mod± q| = |decompd 0− x mod± q|
= | − x mod± q| = | − x+ q|
≤
∣∣∣⌈q − q

2d+1

⌉
− q
∣∣∣ =

⌊ q

2d+1

⌋
≤
⌈ q

2d+1

⌋

D. NTT and the Convolution Theorem

The NTT is used to speed up the multiplication on Rq =
Zq[x]/(xn + 1) and is based on the concepts of the Discrete
Fourier Transform. An introduction to the use of the NTT
for lattice-based cryptography can be found in [28] or for the
special case of the CRYSTALS suite in [36]. The NTT as a
nega-cyclic convolution is described in [20]. To shorten this
presentation, we omit all proofs which can be found in the
aforementioned references.

The standard multiplication for f =
∑n−1
k=0 fkx

k and g =∑n−1
k=0 gkx

k in Rq is given by:

f · g =

n−1∑
k=0

n−1∑
j=0

(−1)k−j div nfjgk−j mod n

xk

Thus, multiplication in Rq is done using O(n2) multiplications
on coefficients. Unlike multiplication, addition is calculated in



Figure 7: Relational comparisons between δ, δ′ and the correctness error for small parameters

O(n) since addition is done entry-wise. Therefore, the most
expensive part of the calculations in Kyber crypto algorithms
is multiplication. Using a smarter way to multiply will make
the calculations in Kyber faster.

The usual NTT requires the field Zq to have a n-th root
of unity, that is an element ω with ωn = 1. This can be
achieved by setting q ≡ 1 mod n. However, since we work
over the quotient ring Zq[x]/(xn + 1), we have to consider
the nega-cyclic property that xn ≡ −1 mod xn + 1 instead
of the cyclic properties required by the NTT. Moreover, the
original Kyber uses a “twisted” alternative which is easier to
implement but requires the existence of a 2n-th root of unity.

Considering all the constraints mentioned above, let ψ be
a 2n-th root of unity in Rq . Then we define the nega-cyclic
twisted NTT on Rq for Kyber [11] as follows:

Definition 5 (NTT). Let f =
∑n−1
k=0 fkx

k ∈ Rq , then the NTT
of f is defined as:

NTT (f) =

n−1∑
k=0

n−1∑
j=0

fjψ
j(2k+1)

xk

The inverse transform is scaled by the factor of n−1 and is
given by the following.

Definition 6 (inverse NTT). Let g =
∑n−1
k=0 gkx

k ∈ Rq be in
the image of the NTT, then the inverse NTT of g is defined
as:

invNTT (g) =

n−1∑
k=0

n−1

n−1∑
j=0

gjψ
−k(2j+1)

xk

We formalized a proof of correctness of the NTT and its
inverse [21].

Theorem X.1. Let f be a polynomial in Rq and g a polyno-
mial in NTT domain. Then NTT and invNTT are inverses:

invNTT (NTT (f)) = f and NTT (invNTT (g)) = g

Using this transformation, we can reduce multiplications
to compute within O(n log(n)) using a fast version of the
NTT. To apply the NTT to the Kyber algorithms, we need

the convolution theorem. It states that multiplication of two
polynomials in Rq can be done index-wise over the NTT
domain.

Theorem X.2. Let f and g be two polynomials in Rq . Let (·)
denote the multiplication of polynomials in Rq and (�) the
coefficient-wise multiplication of two polynomials in the NTT
domain. Then the convolution theorem states:

NTT (f · g) = NTT (f)�NTT (g)

Together with Theorem X.1 this yields the fast multiplica-
tion formula.

Theorem X.3. Let f and g be two polynomials in Rq . Let
(·) denote the multiplication of polynomials in Rq and � the
coefficient-wise multiplication of two polynomials in the NTT
domain. Then multiplication in Rq can be computed by:

f · g = invNTT (NTT (f)�NTT (g))

The formalization of the NTT for the original Kyber [11]
was relatively straight-forward since it is based on the for-
malization of the standard NTT by Ammer in [3]. The only
minor hindrances were the conversion between the types and
working with representatives over Rq as well as the rewriting
of huge sums.

Since the NTT for the recent version of Kyber [4] was also
formalized in [18], we verified only the NTT for the original
Kyber specifications. Note that the NTT for the latest versions
of Kyber [4], [5] is a bit different, since the finite field Z3329

does not contain a 2n-th root of unity, but only an n-th root
of unity.
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