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3 Eötvös Loránd University, Budapest, Hungary
4 University of Birmingham, UK p.kutas@bham.ac.uk

5 DGA-MI, Bruz, France antonin.leroux@polytechnique.org
6 Royal Holloway, University of London, Egham, UK research@simon-philipp.com

7 Academia Sinica, Taipei, Taiwan lorenz@yx7.cc
8 Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, F-33400, Talence, France

9 INRIA, IMB, UMR 5251, F-33400, Talence, France
10 ENS de Lyon, CNRS, UMPA, UMR 5669, Lyon, France

11 IRMAR, UMR 6625, Université de Rennes, France
12 LIX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris

13 INRIA

Abstract. We present SCALLOP: SCALable isogeny action based on
Oriented supersingular curves with Prime conductor, a new group ac-
tion based on isogenies of supersingular curves. Similarly to CSIDH and
OSIDH, we use the group action of an imaginary quadratic order’s class
group on the set of oriented supersingular curves. Compared to CSIDH,
the main benefit of our construction is that it is easy to compute the
class-group structure; this data is required to uniquely represent—and
efficiently act by—arbitrary group elements, which is a requirement in,
e.g., the CSI-FiSh signature scheme by Beullens, Kleinjung and Ver-
cauteren. The index-calculus algorithm used in CSI-FiSh to compute
the class-group structure has complexity L(1/2), ruling out class groups
much larger than CSIDH-512, a limitation that is particularly problem-
atic in light of the ongoing debate regarding the quantum security of
cryptographic group actions.
Hoping to solve this issue, we consider the class group of a quadratic or-
der of large prime conductor inside an imaginary quadratic field of small
discriminant. This family of quadratic orders lets us easily determine
the size of the class group, and, by carefully choosing the conductor,
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even exercise significant control on it— in particular supporting highly
smooth choices. Although evaluating the resulting group action still has
subexponential asymptotic complexity, a careful choice of parameters
leads to a practical speedup that we demonstrate in practice for a se-
curity level equivalent to CSIDH-1024, a parameter currently firmly out
of reach of index-calculus-based methods. However, our implementation
takes 35 seconds (resp. 12.5 minutes) for a single group-action evalua-
tion at a CSIDH-512-equivalent (resp. CSIDH-1024-equivalent) security
level, showing that, while feasible, the SCALLOP group action does not
achieve realistically usable performance yet.

1 Introduction

Isogeny-based cryptography was first proposed by Couveignes [21] in 1996, but
not published at the time. The same idea was independently rediscovered by Ros-
tovtsev and Stolbunov later [49]. Couveignes and Rostovtsev–Stolbunov (CRS)
suggested a post-quantum key exchange based on the group action of an ideal
class group on a class of ordinary elliptic curves. However, this scheme is very
slow.

A major breakthrough for isogeny-based group actions was the invention
of CSIDH [13]. The construction follows a similar blueprint as the CRS key
exchange but the class group of an imaginary quadratic order acts on the set of
supersingular elliptic curves defined over a prime field, rather, and this makes
the scheme a lot faster for various reasons. CSIDH was the first efficient post-
quantum action and its efficient public-key validation gives rise to non-interactive
key exchange. While it is well known that CSIDH, like CRS, is susceptible to
a quantum subexponential attack, the concrete size of parameters to achieve a
certain security level has been a matter of debate [47,10,16].

Colò and Kohel generalized CSIDH-like schemes to obtain the “Oriented
Supersingular Isogeny Diffie–Hellman” (OSIDH) key exchange [19], introducing
the notion of orientations to handle the action of a generic class group on a set of
supersingular curves. Since then, the OSIDH key exchange has been broken for
the suggested parameters [23], but its generalisation of CSIDH remains a useful
framework.

The first attempt to build isogeny-based signatures was outlined in Stol-
bunov’s PhD thesis, where the Fiat–Shamir transform is applied to a Σ-pro-
tocol [51]. However, to instantiate the scheme it would be necessary to sample
uniformly from the acting class group and, crucially, to compute a canonical rep-
resentative for each class group element efficiently. The first requirement could
be approximated sufficiently well, but the second one remained elusive. Instead
of using canonical representatives, De Feo and Galbraith proposed the signature
scheme SeaSign [25] which uses an abundantly redundant representation together
with rejection sampling to make the distribution of class group elements inde-
pendent from the secret key. Though it provides short signatures, signing time
is still impractical for the fastest parameter set (2 minutes), even after further
optimisations by Decru, Panny and Vercauteren [29].
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Computing the class group structure of the acting group solves both chal-
lenges left to instantiate Stolbunov’s signature scheme. By providing a simple
canonical representation for class group elements, it also gives an easy way to
sample uniformly, instead of resorting to expensive statistical methods. In 2019,
Beullens, Kleinjung and Vercauteren [9] conducted a record breaking class group
computation to find the class group structure and relation lattice of the class
group of the imaginary quadratic field corresponding to the smallest CSIDH
parameter set, CSIDH-512. This let them efficiently instantiate Stolbunov’s sig-
nature, leading to CSI-FiSh [9]. CSI-FiSh is very efficient and is a building
block for many other schemes such as threshold signatures [28,22,11], ring sig-
natures [8,39]) and group signatures [7,18]. Furthermore, it is a basis for other
primitives such as updatable encryption [41].

Unfortunately, the best known algorithms to compute the class group struc-
ture have complexity L∆(1/2), using the classic L-notation

Lx(α) = exp
(
O
(
(log x)α(log log x)1−α

))
,

where ∆ denotes the discriminant of the number field. Instantiating CSI-FiSh for
larger security levels of CSIDH would require class group computations that are
currently out of reach. Yet, especially in light of recent debate about CSIDH’s
concrete quantum security, it is desirable to have an efficient isogeny-based sig-
nature scheme (and all the aforementioned primitives) at higher security levels.

This motivates the search for other isogeny actions that have better control
on the class group, it is thus natural to look at orientations different from the
one in CSIDH. However, choosing an orientation poses several challenges. First,
it is usually hard to compute an orientation even if one knows that the curve is
oriented by a particular order as discussed in [24]. Secondly, disclosing the ori-
entation in the public key requires an efficient representation of the orientation.
Then, the resulting group action should be efficiently computable. Finally, for
a general orientation it is unclear how the structure of the class group can be
computed, whereas special orientations may not lead to cryptographically secure
group actions (see [19,23] and [2, Theorem 11.4]).

1.1 Contribution

We present SCALLOP, a new isogeny-based group action on supersingular curves.
Following a standard approach [13,19], we use the group action of the class group
of an imaginary quadratic order on a set of oriented supersingular curves. In an
attempt to solve the scaling issue of CSI-FiSh, we explore the situation where
the quadratic order O of discriminant ∆ has a large prime conductor f inside
an imaginary quadratic field of very small discriminant d0, i.e. ∆ = f2d0. There
are exact formulas and results to compute the structure of the class group in
this case.

To make the computation of the resulting group action efficient, we study how
to obtain effective and (hopefully) secure O-orientations for a generic quadratic
orderO, something known only in the special case of CSIDH, whereO = Z[

√
−p],
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prior to our work. In particular, we introduce a generic framework to evaluate
the group action when O contains a generator α such that the principal ideal
Oα can be factored as L2

1L2 for two ideals L1,L2 of smooth coprime norm.
We then show how to instantiate this framework when O is an order of large
prime conductor and we provide an algorithm to perform the computation as
efficiently as possible in this context. In particular, we provide a way to choose
the conductor such that O has a generator α of the correct form with essentially
optimal size. As is customary in isogeny-based cryptography, this setup also
requires to carefully select the characteristic of the finite field Fp for an efficient
evaluation of the group action.

To generate concrete parameters, we also provide an efficient algorithm to
generate an initial effective O-orientation, something that can always be done
in polynomial time (using the maximal-order-to-supersingular-elliptic-curve al-
gorithm from [31]) but might be very costly in practice.

Our new group action still requires a precomputation of complexity L∆(1/2):
Here the main algorithmic task is to compute a lattice of relations for the class
group, which can be used later to obtain a “short representative” of any given
class in Cl(O). Computing relations in the class group amounts to solving dis-
crete logarithms in a subgroup of some finite field (unrelated to Fp), whose order
we can somewhat control by choosing the conductor.

Despite the fact that our choice of conductor is very constrained by the
requirements on the generator α (see Section 5.1), we show that we have a
search space large enough to obtain a fairly smooth class number. Thus, we were
able to instantiate the SCALLOP group action for security levels that remain
entirely out of reach for the CSI-FiSh approach, using only modest computational
resources. Concretely, we give parameters for our group action with security
comparable to CSIDH-512 and CSIDH-1024. This leads to an isogeny-based
Fiat–Shamir signature analogous to CSI-FiSh for parameters twice as large as
CSI-FiSh.

1.2 Technical overview

We give below a list of tasks and constraints required to create a setup analogous
to CSI-FiSh. Then, we briefly explain how our new group action is evaluated and
how it compares to CSI-FiSh.

We distinguish two phases in setting-up an isogeny-based group action: an
offline and an online one. The offline phase is the main novelty introduced in
CSI-FiSh compared to CSIDH [13]. It is performed just once at parameter gen-
eration. We do not need it to be efficient, but we want it to be feasible. This
precomputation is crucial to the efficiency of the online phase, which is executed
at every group action evaluation (hence dozens of times for each signature) and
needs to be as fast as possible.

In the following, let O be an imaginary quadratic order.

Evaluating isogeny group actions. Abstractly, a group action is defined by a
group G, a set X, and a map ⋆ : G × X → X satisfying some set of axioms.
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Algorithmically, we ask that elements of G and X have a representation, and
that for any g ∈ G and x ∈ X it is feasible to compute g ⋆ x. These, and other
requirements, have been formalized under the names of Hard Homogenous Space
(HHS) [21] or Effective Group Action (EGA) [1].

In the specific case of isogeny actions, the set X is a set of elliptic curves,
which can be represented by an appropriate invariant, e.g. the j-invariant. The
group G = Cl(O) tends to be cyclic, or nearly cyclic, thus its elements could be
uniquely represented as powers ae of some generator a. However it is not true in
general that ae ⋆ E can be efficiently evaluated for every exponent e and every
curve E. Instead, there exist a list of ideals l1, . . . , ln of small norm, spanning
Cl(O) and such that the actions li⋆E can be efficiently evaluated for every li and
every E. Then, the action of any ideal of the form b =

∏n
i=1 l

ei
i can be efficiently

evaluated as soon as the exponent vector (e1, . . . , en) ∈ Zn has small norm. This
setup is called a Restricted EGA (REGA) in [1].

To go from a REGA to an EGA, we need a way to rewrite any ideal class
ae as a product ae =

∏n
i=1 l

ei
i with small exponents. The main advance in CSI-

FiSh was the computation of the lattice of relations of the ideals l1, . . . , ln in
CSIDH-512, i.e. the lattice L spanned by the vectors (e1, . . . , en) such that

∏
leii

is principal. If the li span Cl(O), then Zn/L is isomorphic to Cl(O). Then,
assuming a = l1, finding a decomposition of ae with short exponents amounts to
solving a Closest Vector Problem (CVP) in the lattice of relations for the vector
(e, 0, . . . , 0).

Our aim is to replicate this strategy for the relation lattices associated to the
class groups we are interested in.

The offline phase. The goal of this phase is to precompute the relation lattice
of the class group Cl(O), and produce a reduced basis of it. The main steps are:

1. Compute the class number and the structure of the class group.
2. Generate the lattice of relations L.
3. Compute a reduced basis of L suitable for solving approximate-CVP.

In CSI-FiSh, the first item is obtained as a byproduct of the second, which
is performed using index calculus, for an asymptotic cost of L∆(1/2). The last
step is a standard lattice-basis reduction (typically done using BKZ); although,
depending on the approximation factor, this step may even have exponential
complexity, it is the fastest one in practice.

In this work we change the way the first two steps are performed. First, we
choose O so that the class group structure comes for free: We select a quadratic
order O = Z + fO0 of large conductor f inside a maximal quadratic order O0

of small discriminant d0. Computing the class group structure, then, amounts
to factoring f , which we choose to be a prime.

Secondly, by choosing O0 and f carefully, not only can we compute the group
structure, but we can even control it to some extent. In particular, we search

for the prime f such that the class number of O, given by f −
(
d0
f

)
, is some-

what smooth, so that computing discrete logarithms in Cl(O) becomes feasible.
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Then, instead of using index calculus, we directly obtain the lattice of rela-
tions by computing the discrete logarithm relationships between the generators
l1, . . . , ln. Asymptotically, an Lf (1/2)-long search for f is expected to yield an
Lf (1/2)-smooth class number: At this level of detail in the analysis, no obvious
improvement over index calculus stands out, however the constants hidden in the
exponents turn out to be much more favorable to our setup, as our experiments
confirm.

The final step, BKZ reduction, is unchanged.

In the online phase we evaluate the group action. The inputs are an oriented
curve E and an integer e, the output is the oriented curve ae ⋆ E, where a is
some fixed generator (e.g. a = l1). This phase consists of two steps:

1. Solving approximate-CVP to find a decomposition ae =
∏

leii with small
exponents.

2. Using isogeny computations to evaluate
(∏

leii
)
⋆ E.

In SCALLOP the first step is identical to CSI-FiSh: We use Babai’s nearest
plane algorithm [4] to find a vector close to (e, 0, . . . , 0). The cost of this step
is negligible, however the quality of the output depends on the quality of the
basis computed in the offline phase, and has a big impact on the cost of the
next step. In practice, the dimension of the lattices we consider is small enough
that we can compute a nearly optimal basis, thus the approximation factor for
CVP will be rather small. However, from an asymptotic point of view, there is
a trade-off between the time spent reducing the lattice in the offline phase, and
the approximation factor achieved in the online phase. The break-even point
happens at L(1/2), exactly like in CSI-FiSh.

The isogeny computation step is where we deviate most from CSI-FiSh. In-
deed in CSI-FiSh there is an implicit orientation by the orderO = Z[

√
−p], which

is easily computed via Frobenius endomorphisms. In contrast, in SCALLOP we
need an explicit representation of the orientation, that we transport along the
group action. It is thus not surprising that, for the same parameter sizes, our
algorithms are significantly slower than CSI-FiSh. Nonetheless we show there
are choices of orientations for which it is at least feasible to run them.

Concretely, we choose a quadratic order O that contains a generator α of
smooth norm of size roughly equal to disc(O) (essentially, the smallest size we
could hope for). The orientation is then represented by an endomorphism ω
corresponding to the principal ideal Oα, encoded as the composition of two
isogenies of degree roughly equal to

√
disc(O). The endomorphism ω plays here

the same role as the Frobenius endomorphism in CSI-FiSh: An ideal li acts
through an isogeny of degree ℓi whose kernel is stabilized by ω, to compute li ⋆E
it is thus sufficient to evaluate ω on E[ℓi] and determine its eigenspaces.

In Section 5.1, we justify the concrete choices for O in more detail and we
present all required precomputations. The full description of the algorithm for
the online phase is given in Section 5.2.
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Organisation of the paper. The rest of this paper is organized as follows.
Section 2 introduces the necessary mathematical background. In Section 3, we
introduce our generic framework for effective orientation and group action com-
putation. Then, we introduce the security notions related to group actions in
Section 4. In Section 5, we explain in detail how the SCALLOP group action
works. In Section 6, we discuss the concrete instantiation of the scheme. Finally,
we analyze one particular angle of attack against the scheme in Section 7.

2 Preliminaries

2.1 Elliptic curves and isogenies

Elliptic curves. In this work we consider elliptic curves defined over a finite field
Fp2 , which can be represented, for example, by a Weierstrass equation

E : y2 = x3 + ax+ b, a, b ∈ Fp2 .

For a field extension k of Fp2 , we write E(k) for the group of k-rational points
of E. We denote by [n]P the nth scalar multiple of a point P , and by E[n] the
n-torsion subgroup of E(Fp2), so E[n] ≃ (Z/nZ)2 as soon as p ∤ n.

Isogenies. An isogeny φ : E1 → E2 is a non-constant morphism sending the
identity of E1 to that of E2. The degree of an isogeny is its degree as a rational
map (see [50]). An isogeny of degree d, or d-isogeny, is necessarily separable when
p ∤ d, which implies d = #kerφ. An isogeny is said to be cyclic when its kernel
is a cyclic group. For any φ : E1 → E2, there exists a unique dual isogeny
φ̂ : E2 → E1, satisfying φ ◦ φ̂ = [deg(φ)].

Endomorphism ring. An isogeny from a curve E to itself, or the constant zero
map, is an endomorphism. The set End(E) of all endomorphisms of E forms
a ring under addition and composition. For elliptic curves defined over a finite
field, End(E) is isomorphic either to an order of a quadratic imaginary field or a
maximal order in a quaternion algebra. In the first case, the curve is said to be
ordinary and otherwise supersingular. We focus on the supersingular case, here,
and we write S(p) for the set of isomorphism classes of supersingular curves
defined over a field of characteristic p. It is a finite set containing roughly p/12
classes, and each class admits a representative over Fp2 . The Frobenius isogeny
π : (x, y) → (xp, yp) is the only inseparable isogeny between supersingular curves
and it has degree p. We write π : E → Ep. For any supersingular curve E we
have End(E) ∼= End(Ep), but E ∼= Ep if and only if E has an isomorphic model
over Fp.

A concrete example: j = 1728. Let p ≡ 3 (mod 4), and let E0/Fp2 be the curve
y2 = x3 + x of j-invariant 1728. Its endomorphism ring is isomorphic to the
maximal orderO0 = ⟨1, i, i+j2 , 1+k2 ⟩ with i2 = −1, j2 = −p and k = ij. Moreover,
we have explicit endomorphisms π and ι such that End(E0) = ⟨1, ι, ι+π2 , 1+ιπ2 ⟩,
where π is the Frobenius isogeny and ι is the map (x, y) 7→ (−x,

√
−1y).
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2.2 Representing and evaluating isogenies

Vélu’s formulas [52] let us compute any separable isogeny φ of degree D, given

kerφ. They take Õ(
√
D) operations over the field of definition of kerφ [6]. An

isogeny of degree D can be decomposed into a sequence of isogenies of degrees
the prime factors of D, thus the efficiency of any isogeny computation mainly
depends on the largest prime factor ℓ|D, and the size of the field extension
containing E[ℓ]∩kerφ. Hence, we will focus on isogenies of smooth degree where
the related torsion groups E[ℓ] are defined over Fp2 .

In practice, we encode cyclic D-isogenies as tuples (E,P ), where P is a gen-
erator of kerϕ. We call this a kernel representation. It can be compressed to
only O(log(p) + log(D)) bits using techniques similar to SIDH key compres-
sion [3,20,55,45] (even when P is defined over a large field extension of Fp2).
Such compression becomes relevant when large degree isogenies are exchanged
as part of a key agreement message or cryptographic signature.

Pullback and push-forward. Let us take two coprime integers A,B. Any isogeny
of degree AB can be factored in two ways as φA ◦φB or ψB ◦ψA, where φA, ψA
(resp. φB , ψB) have degree A (resp. B). This creates a commutative diagram,
where kerφA = φB(kerψA) and kerψB = ψA(kerφB). Given ψA and φB we
define φA (resp. ψB) as the pushforward of ψA through φB (resp. φB through
ψA), which we denote by φA = [φB ]∗ψA (resp. ψB = [ψA]∗φB). There is also
a dual notion of pullback, denoted by [·]∗·, so that ψA = [φB ]

∗φA and φB =
[ψA]

∗ψB .

2.3 Orientation of supersingular curves and ideal group action

For the rest of this article, we fix a quadratic imaginary field K and a quadratic
order O of discriminant D < 0 in K. We will consider primitive O-orientations of
supersingular curves. The notion of orientation in Definition 1 below corresponds
to that of primitive orientation with a p-orientation in [19], and it is equivalent
under the Deuring correspondence to optimal embeddings of quadratic orders
inside maximal orders of Bp,∞. The same notion is referred to as normalized
optimal embeddings in [5].

Definition 1. For any elliptic curve E, a K-orientation is a ring homomor-
phism ι : K ↪→ End(E) ⊗ Q. A K-orientation induces an O-orientation if
ι(O) = End(E) ∩ ι(K). In that case, the pair (E, ι) is called a O-oriented curve
and E is an O-orientable curve.

In what follows, we consider the elements of S(p)/π rather than S(p) because
the Frobenius π creates two orientations (one in E and one in E(p)) from each
optimal embedding of O in a maximal quaternion order of Bp,∞. Note that this
is not the convention taken in [46,54], where orientations are not considered up
to Galois conjugacy.

Definition 2. SO(p) is the set of O-oriented curves (E, ι) up to isomorphisms
and Galois conjugacy.
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The following proposition follows from the results proven by Onuki [46,
Proposition 3.2, Proposition 3.3, Theorem 3.4] and gives a way to compute
#SO(p).

Proposition 3. The set SO(p) is not empty if and only if p does not split in
K and does not divide the conductor of O. When these conditions are satisfied,
and p is not ramified in K, we have #SO(p) = h(O).

When p is ramified in K, the situation is a bit more complicated but it can
be shown [2] that

#SO(p) ∈
{
1

2
h(O), h(O)

}
.

When SO(p) is not empty, the set of invertibleO-ideals acts onO-orientations
via an operation that we write a ⋆ (E, ι) = (Ea, ιa). Principal ideals act trivially,
thus the operation ⋆ defines a group action of Cl(O) on SO(p), which we also
denote by ⋆. Onuki proved that this group action is free and transitive.

Concretely, this action is computed using isogenies. For an ideal a in O and
an O-orientation (E, ιE), we define E[a] =

⋂
α∈a ker ιE(α) and write φEa for the

isogeny of kernel E[a]. We have

φEa : E → Ea = E/E[a] and ιEa (x) =
1

n(a)
φEa ◦ ι(x) ◦ φ̂Ea . (1)

When a does not factor as nb for some integer n > 1, we say that a is
primitive. In that case, the corresponding isogeny φEa is cyclic.

It will be useful for us to consider a generator α of O (an element such that
O = Z[α]). In that case, every ideal a can be written as ⟨x+ αy, n(a)⟩ for some
x, y ∈ Z. Note that this choice of generator is not unique: if α is a generator,
any α+ k will also be generators with k ∈ Z.

Although an orientation may exist it is not always clear how to represent it
and compute with it. Informally, an effective orientation is one that comes with
efficient representations and algorithms. We will give a more formal, and slightly
more specific definition in Section 3.2.

3 The generic group action

This section introduces our general framework for evaluating group actions of
oriented curves. The algorithm we outline below is not designed to be particularly
efficient. Later, in Section 5.2, we will describe in detail a version and parameter
choices that make it somewhat practical.

The key to our technique is having a generator of smooth norm for the
quadratic order. To simplify the exposition, we restrict to quadratic orders O
with a generator α of norm L2

1L2, where L1 and L2 are two smooth coprime
integers and the principal ideal Oα is equal to L2

1L2 for some primitive ideals
L1,L2. We will further refine these constraints in Section 5.1 for an efficient
instantiation.

We now present a few generic properties, then, in Section 3.2, we describe
how the orientation by such an order can be made effective.
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3.1 Factorization of ideals and decomposition of isogenies

We recall from Eq. (1) that if (E, ιE) is an oriented curve and a is an ideal, the
action a ⋆ (E, ιE) is computed via an isogeny denoted by φEa .

Proposition 4. If a can be factored as a1a2, then the isogeny φEa can be de-

composed as φ
Ea1
a2 ◦ φEa1

. Moreover, if a1 and a2 have coprime norms, then

φ
Ea1
a2 = [φEa1

]∗φ
E
a2
.

Proof. The fact that we can factor φEa is standard and the formula to compute

φ
Ea1
a2 follows from Lemma 5 below. ⊓⊔

Lemma 5. Let a, b be two ideals such that E[a] ∩ E[b] = {0}. Let φEa : E →
Ea := E/E[a] be the isogeny corresponding to the action of a on (E, ιE). Then
Ea[b] = φEa (E[b]).

Proof. Firstly, let us suppose that a = n(a) and b = n(b) are coprime. Then the
lemma follows from the usual commutative diagram obtained by decomposing
the isogeny φEab as φEa

b ◦ φEa with Ea[b] = kerφEa

b = φEa (E[b]).

Secondly, let us suppose that a = b. Then since E[a] ∩ E[b] = {0}, we have
b = a and b ⋆ a ⋆ (E, ιE) = (E, ιE). It follows that Ea[b] = Ea[a] = ker φ̂Ea =
φEa (E[a]) = φEa (E[a]⊕ E[b]) = φEa (E[b]).

Lastly, suppose generally that gcd(a, b) = c, writing a = ca′, b = cb′, a = ca′

and b = cb′. Then Ea[b] = Ea[c] ⊕ Ea[b
′]. Combining the first case and the

second one, we have Ea[c] = φ
Ea′
c (Ea′ [c]) = φ

Ea′
c ◦ φEa′(E[c]) = φEa (E[c]) and

Ea[b
′] = φ

Ea′
c (Ea′ [b′]) = φ

Ea′
c ◦φEa′(E[b′]) = φEa (E[b′]). Hence Ea[b] = φEa (E[b]).

⊓⊔

When using Lemma 5, we will in general specify the tuple (E, a, b) at hand.

3.2 Effective orientation

Let us take an O-orientation (E, ιE). Through ιE , we obtain an endomorphism
ωE ∈ End(E) as ιE(α). This endomorphism ωE has degree L2

1L2 and it can be
decomposed as ωE = φ̂E

L−1
1

◦φEL1L2
, as Proposition 4 shows. Thus, we obtain a rep-

resentation of ωE from the kernel representations of the two isogenies φ̂E
L−1

1

and

φEL1L2
. This idea of decomposing an endomorphism into a cycle of two isogenies

is now quite standard in isogeny-based cryptography (see for instance [48,27]).

Formally, we have the following definition.

Definition 6. Let (E, ιE) ∈ SO(p) where O = Z[α] with α = L2
1L2. An ef-

fective orientation for (E, ιE) is a tuple sE = (E,PE , QE) where (E,PE) and
(E,QE) are the respective kernel representations of the isogenies φEL1L2

and φEL1

(of respective degree L1L2 and L1).

10



Remark 7. When it comes to using an effective orientation as public key, it is
important to represent it in a canonical way. For example, when performing a key
exchange with SCALLOP, the shared key (which is an oriented curve), must be
canonically represented so that both parties can get the same shared key. Given
sE = (E,PE , QE), one computes canonical generators P ′

E and Q′
E of the groups

⟨PE⟩ and ⟨QE⟩ respectively. The effective representation s′E = (E,P ′
E , Q

′
E) is

then refered to as the canonical effective representation for (E, ιE).

Since L1 and L2 are coprime, PE = RE + SE where RE and SE are points
of order L1 and L2 respectively. Given PE , one recovers RE = [λ2L2]PE and
SE = [λ1L1]PE , where λ1 is the inverse of L1 mod L2 and λ2 is the inverse of
L2 mod L1. Conversely, given RE and SE , one recovers PE = RE +SE . In some
cases, such as the statement and proof of Proposition 9, we may directly assume
ωE is represented as (RE , SE , QE), for simplicity.

3.3 The group action computation from the effective orientation

Let a be an ideal of O, our goal now is to understand how to compute an effective
orientation ωEa

for a ⋆ (E, ιE) from the effective orientation ωE .

By Proposition 4, we know that we can focus on the case where a = l is a
prime ideal. If we know how to compute φEl and the effective orientation ωEl

for (El, ιEl
) = l ⋆ (E, ιE), from l and ωE , then we can recursively compute the

action of any ideal a from its factorization as a product of prime ideals. So we
need to focus on two operations: computing φEl and computing ωEl

.

Computation of the group action isogeny. The computation of φEl can be done
from kerφEl = E[l] using Vélu’s formulas [52]. Thus, the main operation is the
computation of E[l] from ωE . Proposition 8 provides this operation.

Proposition 8. When ℓ is split in O = Z[α], and l is a prime ideal above ℓ,
there exists λ ∈ Z such that l = ⟨α − λ, ℓ⟩. Then, kerφEl = E[l] = E[ℓ] ∩ ker ρE
where ρE = ωE − [λ]E.

Proof. It suffices to see that n(α − λ) = λ2 − λtr(α) + n(α) has two solutions
modulo ℓ if and only if discO = tr(α)2 − 4n(α) is a non-zero square modulo ℓ
which is exactly the case where ℓ splits in O. The ideal ⟨α − λ, ℓ⟩ has norm ℓ
because α − λ ̸∈ ℓO (because ℓ is split in O). Then the result follows from the
definition of φEl . ⊓⊔

The computation of a generator of kerφEl from Proposition 8 is quite stan-
dard in the literature on isogeny-based cryptography. It suffices, for instance, to
evaluate ωE − [n(α)/λ] (or ωE − tr(α) if λ = 0) on a basis P,Q of E[ℓ], then at
least one of the two images will generate E[l]. From this, we derive the kernel
representation of φEl .

11



Computation of the new effective orientation. Computing ωEl
is less straight-

forward. There are basically two cases depending on whether ℓ is coprime with
n(α) = degωE or not. The first case is by far the simplest: When ℓ and
n(α) are coprime, applying Proposition 4 to ωE = φ̂E

L−1
1

◦ φEL1L2
shows that

ωEl
= [φEl ]∗ωE . Thus, it suffices to push the generators of φ̂E

L−1
1

and φEL1L2

through φEl to get a kernel representation for ωEl
.

The story is more complicated when ℓ and n(α) are not coprime because the
pushforward of ωE is not well-defined in this case. Let us treat the simplified
case where L1 = ℓ (and so n(α) = ℓ2L2 for some L2 coprime with ℓ), as the
generic case can be handled with similar ideas. The full algorithm to handle the
generic case is given in Section 5.2.

When n(α) = ℓ2L2, there are two possibilities: either L1 = l or L1 = l−1 as
there are no further primitive ideals of norm dividing ℓ. If we have a method to
solve the former, we can derive a method to solve the latter by considering the
dual of the endomorphism ωE . Thus, we focus on L1 = l.

Proposition 9. Let α be a generator of O of norm ℓ2L2 with Oα = l2L2 as
above. Then ωE = ι(α) can be decomposed as φ̂E

l
◦φEl

L2
◦φEl . Suppose that ωE is

represented as (RE , SE , QE) where E[l] = ⟨RE⟩, E[L2] = ⟨SE⟩ and E[l] = ⟨QE⟩.
The effective orientation of the curve El is (REl

, SEl
, QEl

) where:

QEl
= φEl (QE)

REl
= φ̂El

L2
◦ φE

l
(RE)

SEl
= φEl (SE).

Proof. By the definitions of the group action and of the effective orientation,
ωE = ι(α) implies ωEl

= ιl(α). This is why we obtain the two decompositions

φ̂E
l
◦φEl

L2
◦φEl for ωE and φ̂El

l
◦φEl2

L2
◦φEl

l for ωEl
from the factorizationOα = l2L2.

The rest of the proposition follows by applying Lemma 5 to (E, l, l), (E,L2l, l),
and (E, l,L2) respectively. ⊓⊔

Note that Proposition 9 remains valid when we replace the ideal l by any
ideal of smooth norm dividing αO. This will be the case in Section 5 where we
evaluate the action of a product of prime ideals li where some l2i divide αO and
others do not.

In Section 5, we introduce a concrete instantiation of the general principle
described above. There, we provide a detailed and efficient version of the algo-
rithms outlined in this section.

Comparison with CSIDH. In CSIDH [13], the effective orientation is obtained
through the Frobenius endomorphism, which has norm p and is thus coprime
to the norm of all ideals we need to evaluate. Thus, we are in the easy case.
Moreover, the situation of CSIDH is particularly simple because the kernel of
φEl can be directly obtained as one of the two subgroups of order ℓ stable under
Frobenius.
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Fig. 1. A picture of the effective orientation computation from Proposition 9.

4 Security of a group action

In this section, we define the security notions associated to a cryptographic
group action—a (very) hard homogenous space—and we review the best known
attacks. A (free and transitive) group action ⋆ of a group G on a set X is a hard
homogenous space if it can be computed efficiently and the following problems
are hard.

Problem 10 (Vectorisation). Given x, y ∈ X, find g ∈ G such that y = g ⋆ x.

Problem 11 (Parallelisation). Given x, g⋆x, h⋆x ∈ X (for undisclosed g, h ∈ G),
find (gh) ⋆ x.

It is a very hard homogenous space if the following problem is hard.

Problem 12 (Decisional Parallelisation). Given x, y, u, v ∈ X, decide whether
there exists g ∈ G such that y = g ⋆ x and v = g ⋆ u.

The vectorisation and parallelisation problems, when instantiated with our
group action of the class group of O on SO(p), are also known as the problems
O-Vectorisation and O-DiffieHellman, studied in [54]. For simplicity, as-
sume that the factorization of disc(O) is known, and that it hasO(log log |disc(O)|)
distinct prime factors14, as will be the case of our construction.

The two problems O-Vectorisation and O-DiffieHellman are equiva-
lent under quantum reductions (see [34,44] for reductions that are polynomial in
the cost of evaluating the group action, or [54] for reductions that are polynomial
in the instance lengths).

Furthermore, these problems are closely related to the endomorphism ring
problem, a foundational problem of isogeny-based cryptography: given a super-
singular curve E, compute a basis of the endomorphism ring End(E) (i.e., four

14 Note that the average number of distinct prime factors of integers up to n is indeed
O(log logn).
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endomorphisms of E that generate End(E) as a lattice). More precisely, the
problem O-Vectorisation is equivalent to the following oriented version of
the endomorphism ring problem (see [54, Figure 1]).

Problem 13 (O-EndRing). Given an effectively oriented curve (E, ιE) ∈ SO(p),
compute a basis of the endomorphism ring End(E).

Clearly, O-EndRing reduces to the standard endomorphism ring problem,
but the converse is not known to be true. In fact, O-EndRing currently seems
simpler than the endomorphism ring problem as long as |disc(O)| < p2. Precisely,

– The endomorphism ring problem can be solved in time (log p)O(1)p1/2 (see [30,32]),
and

– The problem O-EndRing can be solved in time lO(1)|disc(O)|1/4 with l the
length of the input (see [54, Proposition 3]).

Write O = Z+fO0 where f is the conductor of O and O0 is the maximal order.
Better algorithms than the above are known when O0 has small class group and
f is powersmooth (see [54, Theorem 5]), or even smooth in certain situations (as
discussed in [19], or more generally [54, Corollary 6]). We will protect against
such attacks by choosing f a large prime. This is in fact one key difference
between OSIDH [19] and our construction. In OSIDH [19], the setting is similar,
but f is smooth (a power of two), and the f -torsion is defined over Fp2 . For this
not to be a vulnerability, OSIDH is forced to only reveal partial information on
the orientations, which must be done carefully, lest the attacks of [23] apply.
An unfortunate side effect is that, without the full orientation, OSIDH does not
actually provide an effective group action.

In summary, the fastest known generic classical method to solve the vectori-
sation problem associated to the group action has complexity

min
(
(log p)O(1)p1/2, log(p+ d)O(1)d1/4

)
= log(p+ d)O(1) min

(
p1/2, f1/2

)
,

where d = |disc(O)|. A precise estimate of the O(1) appearing in the complexity
of [54, Proposition 3] would provide a more precise estimation of the cost of an
attack.

Regarding quantum security, there is an asymptotically faster heuristic algo-
rithm, which runs in subexponential time (see [54, Proposition 4]). It relies on
Kuperberg’s algorithm [38] for the Abelian hidden shift problem, and runs in
time

log(p)O(1)Ldisc(O)(1/2).

Note that in special cases the hidden shift problem can be solved in polyno-
mial time as discussed in [17,36,14]. These include groups isomorphic to (Z/ℓZ)k
where ℓ is a small prime and groups of the form (Z/2Z)k × (Z/qZ)r where q is
a small prime. In general class groups rarely have this structure and for the
parameter sets proposed, we can easily see that these attacks do not apply.
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Finally, let us discuss the hardness of the Decisional Parallelisation problem.
Clearly, it is not harder than vectorisation, hence the algorithms discussed above
apply. The only known method that may outperform them is an algorithm to
distinguish the action of ideal classes up to squares. More precisely, to each
odd prime divisor m | disc(O) is associated a quadratic character, i.e., a group
homomorphism

χm : Cl(O) −→ {±1},

Given oriented curves (E, ι) and (Ea, ιa), the algorithm of [12] (a generalisation
of [15]) allows one to evaluate χm([a]) in time polynomial in m. In fact, the
algorithm requires finding random points in E[m], and solving a discrete loga-
rithm in a group of order m. Hence the quantum complexity may be as low as
polynomial in log(m) and k if the points of E[m] are defined over Fpk . There
may also be two additional computable characters if disc(O) is even. Clearly,
if [a] ∈ Cl(O)2 is a square, then χm([a]) = 1, so one can prevent this attack
by using Cl(O)2 instead of Cl(O). Another way to prevent this attack is to en-
sure that all prime factors of disc(O) are large, and E[m] lives in a large field
extension, so no character can be computed efficiently.

5 SCALLOP: a secure and efficient group action

We finally propose an efficient instantiation of the effective group action outlined
in Section 3. Our main algorithm is given in Section 5.2, but we need to motivate
our parameter choices first. This is what we do in Section 5.1, where we also
explain all the required precomputations.

5.1 Parameter choice and precomputation

The content of this section covers all the choices of parameters and precompu-
tations required to make the SCALLOP group action computation secure and
efficient. All the algorithms described here have to be run only once, at the
moment of generating public parameters. We refer the reader to Section 1.2 for
a list of all the requirements of that precomputation to obtain a construction
similar to CSI-FiSh.

Choice of quadratic order. Our main motivation is to obtain a quadratic order
O of large discriminant, but with an easy to compute structure of the class
group. In general, this is a very hard problem for classical computers, the best
algorithm being index calculus, with a complexity of Ldisc(O)(1/2). But there
are some special cases where the structure is easily determined, e.g. when

O = Z+ fO0, (2)

where O0 is a quadratic maximal order of small discriminant and f is in Z. In
that case, we deduce directly the structure of Cl(O) from that of Cl(O0) and
the factorization of f . In practice, we propose to take O0 of class number one
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(e.g. the Gauss integers) and f a prime number (also for security, as discussed
in Section 4).

We give below a formula for the class number of such an order. The group
structure, which turns out to be cyclic when O0 has class number one, will be
described in Appendix A.

Proposition 14. Let f be a prime integer and let O0 be a quadratic order of
class number h0, discriminant d0 and let u0 denote |O×

0 |/2. The class number

of Z+ fO0 is equal to
(
f −

(
d0
f

))
h0

u0
.

Note that u0 is one for all orders corresponding to curves with j-invariant dif-
ferent from 0 or 1728. From now on, we write d0 for disc(O0), and we assume
the class number is one. It is not too difficult to generalize the algorithms below
to larger class numbers, as long as d0 is small.

Choice of conductor. We argued that we need a prime f for security, and to
avoid factoring. Prime numbers also have the advantage of being abundant and
easy to generate. Apart from this, our choice of f will be determined by effi-
ciency constraints. In particular, to use the algorithm outlined in Section 3, we
require that there exists a generator α with norm equal to L2

1L2 to obtain effec-
tive O-orientations. Since the manipulation of this effective orientation requires
computing L1- and L2-isogenies, we need L1 and L2 to be smooth. Moreover,
we need L2 to be small for the algorithm SetUpCurve described below.

Finally, there is a third requirement that we will motivate a bit later: that
f − (d0f ) is as smooth as possible. This last constraint impacts the efficiency of
the offline phase of our scheme. As such, it is less important than the smoothness
of L1L2, which impacts the cost of the online phase. This is why our approach
consists in finding a set of candidates for f that closely match the first two
constraints, before sieving through the set to find the best candidate for the
last requirement. In Section 6.1, we provide more details on how we select the
parameters and we give some concrete examples of cryptographic size.

For a given O, finding a generator α of smooth norm is quite hard. Indeed,
for a generic O, the size of the α of smallest smooth norm will be very large
compared to f . This is why we choose the conductor f (and thus the order O)
at the same time as the generator α. Our method allows us to find a conductor
f and an α of smooth norm of optimal size (i.e, n(α) ≈ f2). To do that, we first
target a smooth norm L2

1L2, and then we find a suitable conductor f .
Concretely, we fix a collection of principal ideals of small prime norm in O0.

Let us write α0 for a generator of O0 and l1, . . . , lm for the collection of principal
ideals and ℓ1, . . . , ℓm for the associated split primes. Because the ℓi are split,
there are two principal ideals of norm ℓi in O0: li and its conjugate li, which, by
a slight abuse of notation, we write l−1

i . We denote by L the product
∏m
i=1 ℓi.

For some n1 < n2 ≤ m, we consider the products
∏n1

i=1 l
bi
i

∏n2

i=n1+1 l
ci
i where all

bi ∈ {−2, 2} and ci ∈ {−1, 1}, then we get 2n2 principal ideals of norm L2
1L2 with

L1 =
∏n1

i=1 ℓi and L2 =
∏n2

i=n1+1 ℓi. It suffices to obtain one such ideal of the form

⟨L2
1L2, α⟩ where α = x+fα0 for some prime number f to get that Z+fO0 = Z[α]

16



where α has norm L2
1L2 as we desire. Each product has probability roughly

1/ log(L2
1L2) to satisfy the desired property. This gives a set of size 2m/ log(L)

to sieve through in order to find the best candidate with respect to our third
requirement (we have the estimate m = O(log(L2

1L2)/ log log(L
2
1L2)), see for

instance [35, Chapter 22]). Up to exchanging li and l−1
i , we can assume that all

the bi and ci are positive and so we have O0α =
∏n1

i=1 l
2
i

∏n2

i=n1+1 li.

Remark 15. Note that for a fixed O0 of discriminant d0, the choice of class group

determines
(
d0
p

)
to be 1 or −1. This is the only condition imposed on the prime

characteristic p by the choice of class group. Thus, we will be able to choose p
in a way that enables efficient computations after a suitable O has been found.

Computing the relation lattice. Knowing the order of Cl(O) is not enough for
our application. Indeed, we want to be able to efficiently evaluate the action of
any ideal class, which, by virtue of Proposition 4, calls for a way to compute
for any class a representative that factors as a short product of ideals of small
norm. For that, we follow the method introduced in [9].

The first step is to choose a set {l1, . . . , lm, . . . , ln} of n = O(log(f)) ideals
of small prime norm,15 and to generate its lattice of relations L, i.e. the lattice
spanned by the vectors (e1, . . . , en) ∈ Zn such that the ideal

∏n
i=1 l

ei
i is principal

in O. [9] uses an index calculus method, with complexity Lf (1/2), to compute
a basis of L. But another basis is simply given by the relations ah(O) = 1 and
axi = li, where a is any generator of Cl(O) and the xi are the discrete logarithms
to base a. If we force Cl(O) to have smooth order, we can efficiently compute
these discrete logarithms using the Pohlig–Hellman method.

This explains why we search for f such that f − (d0f ) is as smooth as possible

(recall Proposition 14). Unfortunately, we could not find a method to signifi-
cantly bias f − (d0f ) towards being smooth, thus our method still has subex-

ponential complexity: Heuristically, if we sieve through Lf (1/2) candidates we
expect to find one that is Lf (1/2)-smooth, then solving discrete logarithms also
takes Lf (1/2) operations.

Although it looks like we haven’t improved over index calculus, the constant
hidden in (the exponent of) Lf (1/2) is better for our method—which indeed per-
forms much better in practice—and is the only reason we were able to instantiate
parameters twice as large as those of CSI-FiSh (see Section 6).

After having computed a basis for L, the second step, which we do identically
to [9], is to apply a lattice reduction algorithm to obtain a shorter basis. Here
we need to strike a balance between the time spent reducing and the quality
of the output: For example, using BKZ with block size in O(

√
n), running in

time Lexp(n)(1/2), we achieve an approximation factor of Lexp(n)(1/2) (see [42,
Theorem 3]). In practice, however, the lattice rank n tends to be relatively small,
letting us compute a nearly optimal basis in negligible time, as already observed
in [9].

15 This set contains the ideals l1, . . . , lm that divide O0α, but can be larger in general.
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Finally, any time we are given an ideal class, say le1, we use Babai’s nearest
plane algorithm [4] to find a vector v close to e = (e, 0, . . . , 0), whence we deduce
a representative le−v11

∏n
i=2 l

−vi
i ≡ le1. The cost of evaluating the group action by

this representative, using the algorithms of Section 3, will be proportional to the
norm of e− v. Hence the better the basis of L has been reduced, the faster the
evaluation will be.

Choice of prime characteristic. When it comes to the choice of p, we want to find
a prime that maximizes the efficiency of evaluating the group action. We have
two requirements: that the effective orientations (E,PE , QE) (see Definition 6)
can be manipulated efficiently, and that the isogenies associated to the ideals li
can be evaluated efficiently.

For the first requirement, we will force the points PE and QE representing
the kernel of ωE = ιE(α) to be defined over Fp2 . Recall that PE has order L1L2

and QE has order L1, hence it is sufficient to choose L1L2 | (p2 − 1).

Similarly, for the second requirement, we want each of the E[li] to be defined
over Fp2 in order to apply the most efficient versions of Vélu’s formulas, i.e. we
want n(li) = ℓi | (p2 − 1). Point in case, ℓ1, . . . , ℓm must already divide p2 − 1.
Write L = L1L2L3 =

∏n
i=1 ℓi, then it suffices to select p = cL±1 for some small

cofactor c.

Finally we want that SO0
(p) is not empty, implying that p must not split

in O0. For instance, if O0 = Z[i], we need p ≡ 3 (mod 4). In any case, finding
such a prime p can be done after a logarithmic number of tries for a cofactor c.
Alternatively, one might take c = 1 and play with the split prime factors dividing
L1L2L3 until L± 1 is prime and split in O0.

In fact, we also need p to be large enough to prevent generic attacks (see
Section 4). Luckily, with the choices outlined above, we will obtain a prime p
that is a lot larger than the minimal security requirement.

Generation of a starting curve. After we have chosen parameters O0, L, α, f, p,
generated and reduced the lattice of relations L, the last step of precomputation
is the generation of a first orientation (E, ιE) in SO(p). After this last part is
done, we will be able to do everything with the group action algorithm. This
algorithm will be described later in full detail as Algorithm 3, but for now,
we focus on the computation of one (E, ιE) with the corresponding embedding
ωE = ιE(α). The goal of this paragraph is to explain how the algorithm SetUp-
Curve works (see Algorithm 1).

First, let us take (E0, ι0) ∈ SO0(p), and O0
∼= End(E0) a maximal order

in Bp,∞. When d0 is small enough, O0 is a special extremal order as defined
in [37]. This means that we can efficiently find elements γ ∈ O0 of norm M
as soon as M > p. For instance, when p ≡ 3 (mod 4), we can do this in the
endomorphism ring of the curve of j-invariant 1728 with the FullRepresentInteger
algorithm from [27, Algorithm 1]. Moreover, we can evaluate any endomorphism
of End(E0) efficiently, because we have the nice representation explicited at the
end of Section 2.1. By a result from [43], the orientations in SO(p) are obtained
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from the orientations of SO0(p) through f -isogenies, this is what we explain in
Proposition 16.

Proposition 16. Let O0 be a quadratic order, and (E0, ι0) ∈ SO0
(p), let f be a

prime integer and O = Z+fO0. If φ : E0 → E is not one of the 1+(d0f ) isogenies

corresponding to prime ideals above f , then there exists ιE : O ↪→ End(E) and
(E, ιE) ∈ SO(p). Moreover ιE(α) = [φ]∗ι0(α) for any α ∈ O.

Now the idea is to compute the kernel of ι0(α) (in fact the kernel of the
two isogenies of degree L in the decomposition of ι0(α)) and push that kernel
through the isogeny φ. Let us write this kernel as G. The only problem is that
in our case f is a large prime, ruling out Vélu’s formulas for evaluating φ. Since
we know End(E0), our idea is to use the method described in [40, Algorithm 2]
(or [33]) to evaluate isogenies of large prime degree: represent φ as an ideal Iφ
of norm f and compute J ∼ Iφ where S = n(J), is smooth. Then, evaluate φ,
using ψ the isogeny corresponding to J . This is also similar to the key generation
of the SQISign signature protocol [26]. Here, we can even use the alternative key
generation method described in [26, Appendix D] for better efficiency. Indeed,
we can choose almost any isogeny of degree f (by Proposition 16, there are
at most two isogenies of degree f that do not create a O-orientation). Thus, we
need to find an endomorphism of norm fS for some smooth integer S. Of course,
the simplest situation would be to take S = 1, but this is not possible because
f ≈ L1

√
L2 is strictly smaller than p, and we can only find endomorphisms

of norm larger than p in End(E0). Another natural choice would be to take
S dividing L but we need S to be coprime with L1L2 because our goal is to
evaluate the isogeny of degree S on the L1L2-torsion to compute the kernel
representation of ωE . Thus, we can use only the L3-torsion which is not enough
in itself because fL3 < p. We are not going to assume anything specific about the
cofactor c (defined along with the prime p as p = cL± 1), in particular c might
not be coprime to L so we may not be able to use it in S. However, c quantifies
the size of the additional torsion we need, since we have c

√
L2 ≈ p/(fL3). What

we know for sure is that c is small. Thus, if L2 is small as well, we can select
a small prime ℓ0 coprime with L1L2 and take S = L3ℓ

h
0 for some h such that

ℓh0 > p/(fL3). Since h and ℓ0 are small, we can simply brute-force through all
ℓh0 -isogenies until one works, i.e., until we obtain an endomorphism of the right
norm and trace after pushing the kernel representation through the considered
isogeny of degree ℓh0 .

This yields the SetUpCurve algorithm that we describe below as Algorithm 1.
The orientation (E0, ι0) ∈ SO0(p), and an explicit isomorphism ρ0 : O0 ↪→
End(E0) are considered as implicit parameters of this algorithm. The output is
a kernel representation of ιEωE as in Definition 6.

For a kernel representation s and any morphism ψ, we write ψ(s) for the
kernel representation of the group obtained by pushing through ψ the kernel
corresponding to s.

Proposition 17. SetUpCurve is correct and terminates in O(c
√
L2poly(log(pcL2))

where c is one of (p± 1)/L.
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Algorithm 1 SetUpCurve(p, f)

Input: A prime p of the form p = cL1L2L3 ± 1 and a prime f such that there exists
O0 of discriminant d0 where p is not split and O = Z + fO0 contains an element
of norm L2

1L2.
Output: An effective orientation sE for (E, ιE) ∈ SO(p).
1: Let ℓ0 be the smallest prime coprime with L1L2.
2: Compute s0 the kernel representation of ω0 = ι0(α).
3: Set h such that ℓh0 > p/(fL3) and compute γ ∈ O0 of norm fL3ℓ

h
0 with Full-

RepresentInteger.
4: Compute the kernel representation s = ρ0(γ)(s0).
5: Use ρ0 to compute the isogeny ψ : E0 → E′ of norm L3 corresponding to the ideal

⟨γ, L3⟩.
6: Make the list (φi : E

′ → Ei)1≤i≤m of all isogenies of degree ℓh0 from E′.
7: for i ∈ [1,m]: do
8: Compute si = φi ◦ ψ(s) and verify that it is a kernel representation for an

endomorphism ωi of norm n(α) and that it is not s0.
9: If yes, verify that tr(ωi) is the same as tr(α). If yes, break from the loop.
10: end for
11: Set E = Ei, and sE = si.
12: return Output sE .

Proof. To prove correctness, we need to verify that the output sE is an effective
orientation in SO(p). Let us assume that the verification made in the loop passed.
We will start by proving correctness under that assumption, then we will justify
why the verification always passes. When the verification passes, it means that
sE is the kernel representation for an endomorphism ωE of the same norm and
trace as α. This implies that Z[ωE ] ∼= Z[α] and so by definition we get that sE
is a correct effective orientation.

Now, let us justify that there always is an i that passes the verification. The
element γ ∈ O0 provides us with a principal ideal O0γ, whose corresponding
isogeny ρ0(φγ) is an endomorphism of E0. Moreover, we have that (up to com-
posing with some isomorphisms if necessary) φγ = ψ′◦φ◦φf where φf : E0 → E
has degree f , φ : E → E′ has degree ℓh0 and ψ′ : E′ → E0 has degree L3. By
Proposition 16, E is an O-orientable curve unless φf corresponds to one of the

1 +
(
d0
f

)
horizontal f -isogenies of domain E0. Let us assume for now that it

is not. By Proposition 16, we know that the endomorphism ωE = ιE(α) can
be obtained by pushing forward ω0 through φf . Thus, we need to show that

s = φf (s0). By design, the ideal ⟨γ, L3⟩ corresponds to the isogeny ψ̂′. Thus,

we have that the isogeny ψ computed in Step 5, is the isogeny ψ̂′. Then, if we
take the index i0 such that φi0 = φ̂, we get that Ei0 is the curve E that we
are looking for. Then, si0 = φi0 ◦ ψ ◦ ψ′ ◦ φ ◦ ϕf (s) = φf (s) and this proves
the result. To finish the proof of correctness, we simply need to address the case
where φf might be one of the bad isogenies. What happens in that case, is that
[φf ]∗ι0(α) = ι0(α) (so we obtain an embedding that is not primitive, since it
is the corresponding to ι0). Thus, the additional verification that si is not s0
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prevents the bad case from happening and so we know that sE is an effective
orientation of SO(p).

Regarding complexity, we have ℓh0 < ℓ0p/(fL3) and since we have f =
O(L1

√
L2), the loop is repeated at most O(c

√
L2) times. The computations

over the quaternions are in O(poly(log(p)). Then, since we have the explicit
isomorphism ρ0, we can compute ψ and evaluate ρ0(γ) over the L-torsion in
O(poly(log(p)) (remember that the L-torsion is defined over Fp2 and L < p).
Then, the computation of each φi is in O(poly(log(pL2c)) and computing si and
checking the trace has O(poly(log(p)) complexity with the CheckTrace algorithm
introduced in [40]. This proves the result. ⊓⊔

5.2 The group action computation

Now that we have our starting curve E and an effective orientation ωE , it remains
to see how we can compute Ea and the kernel representation of ωEa

for any ideal
a. For efficiency reasons, we restrict ourselves to the case where a has a smooth
norm. Also, we target the case where n(a) =

∏n
i=1 ℓ

ei
i because this is the one

where we will be able to compute the corresponding isogeny efficiently.
Since we only have the L-torsion available, we can factor a as the product

of e = max1≤i≤n ei ideals whose norm is dividing L and treat each of them
independently.

Thus, our main algorithm is GroupActionSmall (Algorithm 2) that performs
the group action computation for one ideal of degree dividing L. The final algo-
rithm GroupAction (described as Algorithm 3) is simply the consecutive execu-
tion of this sub-algorithm on all factors.

When the ideal has degree dividing L. Let us fix some notation. We write L1 =∏n1

i=1 li, L2 =
∏n2

i=n1+1 li and L3 =
∏n
i=n2+1 li. With these definitions we have

Oα = L2
1L2. Equivalently, this means that we can write ωE as φ̂E

L−1
1

◦φEL1L2
. The

kernel of ωE is made of two subgroups that we write ⟨PE⟩, ⟨QE⟩ with ⟨PE⟩ =
kerφEL1L2

and ⟨QE⟩ = kerφE
L−1

1

. Let us take the input ideal a, it can be factored

as a1, a2, a3 where n(ai)|Li. And for i = 1, 2 we also factor ai as bici where bi|Li
and ci|L−1

i and gcd(n(bi), n(ci)) = 1. We write Ki = Li/bi and J1 = L−1
1 /c1.

Given an ideal a whose norm divides L, we use Algorithm 2 (GroupActionSmall)
to compute the action of a on (E, sE).

Fig. 2 provides a visualization of the different isogenies involved in Algo-
rithm 2.

Proposition 18. GroupActionSmall is correct and runs in time Õ(B) where B
is the largest factor of L.

Proof. To prove correctness, we need to verify that sEa
= (PEa

, QEa
) represents

the two correct subgroups, that is Ea[L1L2] = ⟨PEa
⟩ and Ea[L

−1
1 ] = ⟨QEa

⟩. By
definition of the effective orientation, we have E[L1L2] = ⟨PE⟩ and E[L−1

1 ] =
⟨QE⟩.
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Algorithm 2 GroupActionSmall((E, ιE), a)

Input: An effective O-orientation sE for (E, ιE) and an ideal a = b1b2c1c2a3 such that
bi|Li and ci|L−1

i for i = 1, 2 and n(a3)|L3.
Output: An effective O-orientation sEa for (Ea, ιEa).
1: Parse sE as E,PE , QE .

2: Compute φE
b1b2

from its kernel ⟨
[

L1L2
n(b1b2)

]
PE⟩

3: Compute P ∗
Eb1b2

= φE
b1b2

(PE), QEb1b2
= φE

b1b2
(QE) and φ

E
b1b2

(E[n(c2)L3]).

4: Compute φ
Eb1b2
K1K2

from its kernel ⟨P ∗
Eb1b2

⟩.

5: Compute QEL1L2
= φ

Eb1b2
K1K2

(QEb1b2
) and φ

Eb1b2
K1K2

(Eb1b2 [n(b1b2c2)L3]).

6: Compute φE
c1 from its kernel ⟨[ L1

n(c1)
]QE⟩

7: Compute PEc1
= φE

c1(PE), Q
∗
Ec1

= φE
c1(QE) and φ

E
c1(E[n(c2)L3]).

8: Compute φ
Ec1
J1

from its kernel ⟨Q∗
Ec1

⟩
9: Compute PEL1L2

= φ
Ec1
J1

(PEc1
) and φ

Ec1
J1

(E[n(c1c2)L3]).

10: From the action of φ
Eb1b2
K1K2

on Eb1b2 [n(b1b2)], compute φ̂
Eb1b2
K1K2

([ L1L2
n(b1b2)

]PEL1L2
)

and add it up to P ∗
Eb1b2

to recover PEb1b2
.

11: From the action of φ
Ec1
J1

on Ec1 [n(c1)], compute φ̂
Ec1
J1

([ L1
n(c1)

]QEL1L2
) and add it

up to Q∗
Ec1

to recover QEc1
.

12: From the action of φE
b1b2

, φ
Eb1b2
K1K2

, φE
c1 and φ

Ec1
J1

on the respective n(c2)L3-torsion
groups, compute ωEb1b2

(Eb1b2 [n(c2)L3]) and deduce Eb1b2 [c2a3].

13: Compute φ
Eb1b2
c1 from its kernel ⟨

[
L1

n(c1)

]
QEb1b2

⟩

14: Compute PEa1b2
= φ

Eb1b2
a1b2

(PEb1b2
) and Ea1b2 [c2a3] = φ

Eb1b2
c1 (Eb1b2 [c2a3]).

15: Compute φ
Ec1
b1b2

from its kernel ⟨
[

L1L2
n(b1b2)

]
PEc1

⟩

16: Compute QEa1b2
= φ

Ec1
b1b2

(QEc1
).

17: Compute φ
Ea1b2
c2a3 = φ

Ea1a2
a3 ◦ φEa1b2

c2 from its kernel Ea1b2 [c2a3].

18: Compute PEa = φ
Ea1b2
c2a3 (PEa1b2

) and QEa = φ
Ea1b2
c2a3 (QEa1b2

).
19: Compute the canonical effective orientation sEa for (Ea, ιEa) from Ea, PEa and

QEa (see Remark 7).
20: return sEa .
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φE
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φ
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c1

φ
Ec1
b1b2

φ
Ec1
J1

φ
Eb1b2
K1K2

φ
Ea1c1
c2 φ

Ea1a2
a3

Fig. 2. A picture of the isogenies and curves involved in GroupActionSmall.

From the computation of the isogenies φEb1b2
, φ

Eb1b2

K1K2
, φEc1 and φ

Ec1

J1
in step 2,

4, 6 and 8 respectively, and their evaluation on the respective n(c2a3) torsion
groups in step 3, 5, 7 and 9, we successfully recover the action of

ωEb1b2
= φEb1b2

◦ φ̂Ec1 ◦ φ̂
Ec1

J1
◦ φEb1b2

K1K2

on Eb1b2 [n(c2)L3] in step 12. Since n(c2)L3 is smooth, we efficiently solve some
two-dimensional discrete logarithms in the group Eb1b2

[n(c2)L3] to successfully
recover Eb1b2

[c2a3] in step 12.

Applying Lemma 5 to (E, b1b2,L
−1), we get that ⟨QEb1b2

⟩ = Eb1b2 [L
−1
1 ]

in step 3. Meanwhile, in step 3 ⟨P ∗
Eb1b2

⟩ = ⟨φEb1b2
(PE)⟩ generates the proper

subgroup of Eb1b2
[L1L2] of order L1L2/n(b1b2).

To recover the remaining part of the group Eb1b2
[L1L2], one applies the

formulas given in Proposition 9: that is, one recovers the part of Eb1b2
[L1L2]

lost when evaluating φEb1b2
on PE by evaluating

φE(L1K1K2)−1 = φ̂
Eb1b2

K1K2
◦ φEc1

J1
◦ φEc1

on [ L1L2

n(b1b2)
]PE . This is done in step 10 where Eb1b2

[L1L2] = ⟨PEb1b2
⟩.

Reasoning similarly for c1 and L1L2, we get that in step 7, we have the
equality ⟨PEc1

⟩ = Ec1 [L1L2] and that step 11 successfully recovers QEc1
such

that Ec1 [L
−1
1 ] = ⟨QEc1

⟩.
Applying Lemma 5 to (Ec1 , b1b2,L

−1), (Eb1b2
, c1,L1L2) and (Eb1b2

, c1, c2a3)
respectively, we get that

Ea1b2
[L−1

1 ] = φ
Ec1

b1b2

(
Ec1 [L

−1
1 ]

)
= φ

Ec1

b1b2
(⟨QEc1

⟩) = ⟨QEa1b2
⟩
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Algorithm 3 GroupAction((E, ιE), d)

Input: An effective O-orientation sE for (E, ιE) and d = le11 · · · lenn .
Output: An effective O-orientation sEd for (Ed, ιEd)
1: while some ei ̸= 0 do
2: a = 1
3: for i ∈ {1, · · · , n} do
4: if ei < 0 then
5: a = a ∗ l−1

i , ei = ei + 1
6: else if ei > 0 then
7: a = a ∗ li, ei = ei − 1
8: end if
9: end for
10: sE = GroupActionSmall(sE , a)
11: end while
12: return sE .

as computed in step 16,

Ea1b2 [L1L2] = φ
Eb1b2
c1 (Eb1b2 [L1L2]) = φ

Eb1b2
c1 (⟨PEb1b2

⟩) = ⟨PEa1b2
⟩

as computed in step 14 and

Ea1b2
[c2a3] = φ

Eb1b2
c1 (Eb1b2

[c2a3])

as computed in step 14.

In step 17 and 18, we compute φ
Ea1b2
c2a3 and applying Lemma 5 to (Ea1b2 , c2a3,L

−1)
and (Ea1b2 , c2a3,L1L2) respectively, we get

Ea[L
−1
1 ] = φ

Ea1b2
c2a3 (Ea1b1

[L−1
1 ]) = φ

Ea1b2
c2a3 (⟨Qa1b1

⟩) = ⟨QEa
⟩

and

Ea[L1L2] = φ
Ea1b2
c2a3 (Ea1b1

[L1L2]) = φ
Ea1b2
c2a3 (⟨Pa1b1

⟩) = ⟨PEa
⟩.

Algorithm 2 mostly consists of scalar multiplications, isogenies and discrete
logarithm computations. The running time of scalar multiplications is polyno-
mial in log(p) and log(L). Since the degrees of the isogenies computed, and the
orders of the groups in which the discrete logarithms are computed divide L,
then these operations can be performed in time Õ(B) where B is the largest
factor of L. Hence the overall complexity of Algorithm 2, ignoring logarithmic
factors, is Õ(B). ⊓⊔

The full algorithm. Now, Algorithm 3 describes the group action evaluation. It
is simply made of consecutive executions of GroupActionSmall preceded with a
little initialization.
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6 Concrete instantiation

In this section, we report on the concrete choices we made to instantiate a
signature scheme analogous to CSI-FiSh on top of our SCALLOP group action.

For the construction of the signature scheme it suffices to replace the CSIDH
group action by the SCALLOP group action. Since this does not provide any
new insights, we refer the reader to [9] for the detailed description of the scheme
instead. The security of the new signature scheme based on the SCALLOP group
action relies on the problems introduced in Section 4. For the concrete instantia-
tion we target two levels of security: matching the security of CSIDH-512 and of
CSIDH-1024. To obtain class groups of the same size, we take prime conductors
of size 256 and 512 bits respectively.

6.1 Parameter selection

As outlined in Section 5, we start by choosing the conductor f . To this end, we
fix O0 = Z[i] to be the Gaussian integers. Then, we consider the smallest n1+n2
split primes ℓi. As before, let li denote split ideals associated to the primes ℓi.
We partition the primes into two sets P1 and P2 of respective size n1 and n2
such that L1 =

∏
ℓi∈P1

ℓi and L2 =
∏
ℓi∈P2

ℓi. For such a fixed partition, we
iterate through choices for bi ∈ {−2, 2} and ci ∈ {−1, 1} to generate candidates
for the orientation α ∈ Z[i] as ∏

ℓi∈P1

lbii
∏
ℓi∈P2

lcii .

By construction, each candidate is of smooth norm L2
1L2.

For each candidate, we test whether the coefficient f of the imaginary part
is prime. If this is the case, we try to factor f + 1, if f ≡ 3 (mod 4), or f − 1
otherwise. Factoring is done using the ECM method with early abort in case
a factor larger than a given smoothness bound is found or no further factor is
discovered within a given time frame.

We ran this method and the algorithm SetUpCurve to find a conductor and a
starting oriented curve for parameters with the same security level as CSIDH-512
and CSIDH-1024 respectively. The result are reported in Appendix B. In both
cases, the computation ran in minutes on a laptop.

6.2 Performance

Size of public keys. Public keys are represented as effective orientations (E,PE , QE)
(see Definition 6), with all constants defined over Fp2 , so they are approximately
six times larger than CSIDH keys. However, using standard compression tech-
niques, we can represent them using only two Fp-elements and two integers mod-
ulo L1L2, which would give keys of approximately 1600 bits for SCALLOP-512
and 2300 bits for SCALLOP-1024.
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Implementation. We implemented our group action in C++, making use of
assembly-language field arithmetic. In our proof-of-concept implementation, ap-
plying the action of one arbitrary class-group element takes about 35 seconds
for the smaller parameter set and 12.5 minutes for the larger parameter set on
a single core of an Intel i5-6440HQ processor running at 3.5GHz. Note that our
implementation is not side-channel resistant.

While the current implementation is not fully optimized, for instance it does
not yet use the

√
élu algorithm [6], we do not expect to gain an order of magnitude

by implementing all the possible optimizations. Thus, even if our implementation
demonstrates feasibility, it seems that the SCALLOP group action is not yet
ready for cryptographic applications.

Our code is available at https://github.com/isogeny-scallop/scallop.

7 Security discussion: evaluating the descending isogeny

We discuss a conceivable strategy to break the hardness assumptions of our pro-
posed group action in the following. Recall that O-Vectorisation is essentially
equivalent to O-EndRing, hence it would be sufficient to devise an algorithm
that computes the endomorphism ring of any O-oriented curve, say (E1, ι1).
Given an O0-oriented curve (E0, ι0) with known endomorphism ring and O0 of
class number one, there exists a unique descending isogeny

φ : (E0, ι0) −→ (E1, ι1),

which has degree f . To compute End(E1), one could try the following:

1. Find an algorithm to evaluate φ on input points efficiently.
2. Using Step 1, try to convert φ into its corresponding left End(E0)-ideal Iφ.
3. Deduce End(E1) as the right-order of Iφ.

Note that this problem is related to the SubOrder to Ideal Problem (SOIP)
introduced by Leroux [40]. It is quite obvious that the problem we study here is
harder than the SOIP since the SOIP provides to the attacker several effective
orientations of different quadratic orders (instead of one in our case). We refer
to [40, section 4] for a study of the SOIP. Below, we will try to explain why
applying efficiently the attack outlined above appears complicated.

In particular, the first two steps seem challenging. Since we chose deg(φ) = f
to be a large prime, there is no hope to evaluate φ, Step 1, using standard
algorithms such as Vélu’s formulas, which have polynomial complexity in deg(φ).
However, even if one managed to solve Step 1, it is not clear how to solve Step 2
(which is somewhat equivalent to the SOIP, see [40, Proposition 14]). Known
algorithms to convert an isogeny into an ideal require working within the torsion
subgroup E[deg(φ)]. Our parameter choice ensures this torsion to be defined over
an extension field of exponentially large degree.

Despite these obstacles, let us investigate a possible solution to Step 1, which
does not necessarily need to rely on Vélu’s formulas, or knowing ker(φ).
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Let us introduce a vector notation for arithmetic on the curves. Given a
pair of points B = (P,Q), and a vector of two integers v = (x, y), we write
v ·B = xP + yQ. Fix a positive integer n coprime with p and the norm of a. Let
B0 = (P0, Q0) and B1 = (P1, Q1) be bases of E0[n] and E1[n] respectively. Let
ψ : E0 → E1 be an isogeny. The restriction of ψ on the n-torsion is characterised
by the matrix Mψ ∈ M2×2(Z/nZ) such that for any v ∈ (Z/nZ)2, we have
ψ(v · B0) = (Mψv) · B1. We call Mψ the matrix form of ψ with respect to B0

and B1.
In the following, we show that even for φ of large prime degree, it is possible

to learn information aboutMφ, effectively identifying a 1-dimensional subvariety
of M2×2(Z/nZ) containing it. Yet, this is not enough to solve Step 1.

Let en(−,−) denote the Weil pairing on points of order dividing n. The
following lemma fixes the determinant of Mφ.

Lemma 19. If en(P0, Q0) = en(P1, Q1), then det(Mφ) ≡ deg(φ) mod n.

Proof. Write Mφ =
(
a b
c d

)
. We have

en(P0, Q0)
deg(φ) = en(φ(P0), φ(Q0)) = en(aP1 + cQ1, bP1 + dQ1)

= en(P1, Q1)
ad−bc = en(P0, Q0)

det(Mφ).

The result follows from the non-degeneracy of the Weil pairing. ⊓⊔

For random bases B0 and B1, en(P0, Q0) = en(P1, Q1) is unlikely. However,
at the cost of solving one discrete logarithm in a group of order n, this condition
on the bases can be enforced. This can be done in classical exponential time
in the size of the largest prime factor of n, or in quantum polynomial time in
log(n).

Due to φ being a descending isogeny, we observe that Mφ satisfies further
certain linear relations: Writing O0 = Z[ω] and O = Z[fω], we have ι1(fω) =
φ ◦ ι0(ω) ◦ φ̂, hence

AMφ =MφB

where A is the matrix of ι1(fω) (with respect to B1), and B is the matrix of
fι0(ω) (with respect to B0). Note that the matrices A and B can be computed
in quantum polynomial time (or in classical exponential time in the size of the
largest prime factor). This is because the endomorphisms can be evaluated in
polynomial time on the points of the basis, and the matrix coefficients follow
from a discrete logarithm computation as above.

For simplicity, assume that n is prime. Then, M2×2(Z/nZ) is an Fn-vector
space. The space M of solutions M of AMφ =MφB has dimension 2. Indeed, if
M is one solution with non-zero determinant, then XM is a solution if and only
if X commutes with A. Note that a solution exists, since Mφ itself has non-zero
determinant by Lemma 19. The space of matrices that commute with A is the
span of A and the identity matrix I2, which has rank 1 if A is a scalar matrix, and
2 otherwise. Since n is coprime with the norm of a, the endomorphism ι1(fω)
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does not act like a scalar on the n-torsion, so A is not a scalar matrix, and the
space of solutions M has dimension 2.

Together with Lemma 19, we have reduced our search space for Mφ to the
one-dimensional Fn-variety

Mf = {M ∈ M|det(M) = f}.

It is unclear how to reduce this space further, narrowing down Mφ. One may be
tempted to use pairing equations as in Lemma 19 with the Tate pairing instead
of the Weil pairing. However, the curves having trace ±2p, the Tate pairing is
alternating (see [53, Theorem 3.17]), and thereby provides the same condition
as the Weil pairing. In conclusion, it appears that all the available information
is insufficient to evaluate the descending isogeny φ on any input efficiently.
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A Mapping finite fields and class groups

In this section, we investigate isomorphisms between certain ideal class groups
and finite fields. Let OK be the ring of integers of a quadratic field K. Write
OK = Z[X]/f(X) and ω = X mod f(X). Let ℓ be a prime number that is not
ramified in OK , and let O = Z+ ℓOK . We have the exact sequence

1 −→ O×
K/O

× −→ (OK/ℓOK)×/(O/ℓO)× −→ Cl(O) −→ Cl(OK) −→ 1.

Assuming Cl(OK) is trivial,

1 −→ O×
K/O

× −→ (OK/ℓOK)×/(O/ℓO)× −→ Cl(O) −→ 1.

In the following, we describe isomorphisms from (OK/ℓOK)×/(O/ℓO)× to either
F×
ℓ or F×

ℓ2/F
×
ℓ .

A.1 The split case

Lemma 20. If ℓ splits in OK as ll, the map

(OK/ℓOK)×/(O/ℓO)× −→ (OK/l)
× : α 7−→ α/α

is an isomorphism.

Proof. By the Chinese remainder theorem and the coprimality of l and l, the
map

χ : (OK/ℓOK)× −→ (OK/l)
× × (OK/l)

×, α 7−→ (α, α)
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is a group isomorphism. Furthermore, the map

δ : (OK/l)
× × (OK/l)

× −→ (OK/l)
×, (α, β) 7−→ α/β

is a well-defined, surjective homomorphism. We get a surjective homomorphism

δ ◦ χ : (OK/ℓOK)× −→ (OK/l)
×, α 7−→ α/α.

It is easy to verify that its kernel is (O/ℓO)×, and the result follows. ⊓⊔

Lemma 21. If ℓ splits in OK as ll where l = (ℓ, aω + b), the map OK/l → Fℓ
defined by ω 7→ −b/a is a ring isomorphism with inverse Fℓ → OK/l, n 7→ n.

Proof. We have (a, ℓ) = 1. Consider the ring homomorphism

π : Z[X] −→ Fℓ, X 7−→ −b/a.

Writing aω+ b = cω+ d, we have f(X) ≡ (aX + b)(cX + d) (mod ℓ), hence
π(f(X)) = 0 and so π induces a well-defined ring homomorphism

π′ : OK −→ Fℓ, ω 7−→ −b/a .

Clearly, l = (ℓ, aω+ b) ⊆ ker(π′), so OK/l → Fℓ, ω 7→ −b/a is well-defined. It is
surjective, and the source and target both have size ℓ, so it is an isomorphism.

⊓⊔

Proposition 22. If ℓ splits in OK as ll where l = (ℓ, aω+b), and aω+b = cω+d,
the map

(OK/ℓOK)×/(O/ℓO)× −→ F×
ℓ , xω + y 7−→ (−xb/a+ y)/(−xd/c+ y)

is a group isomorphism.

Proof. It is the composition of the isomorphisms from Lemmata 20 and 21. ⊓⊔

Hence, we have an efficiently computable map (OK/ℓOK)×/(O/ℓO)× → F×
ℓ .

Now if we start from an O-ideal a, we first find a generator α of aOK , and map
it to F×

ℓ through the isomorphism. The choice of generator is non-canonical,
and may lead to an ambiguity in the definition of this map: it actually is a
map to a quotient F×

ℓ /G where G is a subgroup of order |O×
K/O

×|. In the case
K = Q(

√
−1), we have G = {±1}.

In summary, to map an O-ideal a to the group F×
ℓ /G:

1. Find α such that aOK = αOK ;

2. Write α/α = xω + y for x, y ∈ Z;
3. Output y − xb/a mod ℓ.
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A.2 The inert case

When ℓ is inert in OK , the polynomial f(X) is irreducible in Fℓ, so one can
define Fℓ2 = Fℓ[X]/f(X).

Lemma 23. If ℓ is inert in OK , the map

OK/ℓOK −→ Fℓ2 , ω 7−→ X

is a field isomorphism.

Proof. The ring homomorphism Z[X] → Fℓ2 , X → X is surjective and has f(X)
and ℓ in its kernel, so induces a surjective homomorphism OK/ℓOK → Fℓ2 . The
source and target are both fields of order ℓ2, so it is an isomorphism. ⊓⊔

Proposition 24. If ℓ is inert in OK , the map

(OK/ℓOK)×/(O/ℓO)× −→ F×
ℓ2/F

×
ℓ , ω 7−→ X

is a group isomorphism.

Proof. The isomorphism from Lemma 23 maps the subfield O/ℓO ⊂ OK/ℓOK

to Fℓ ⊂ Fℓ2 . ⊓⊔

B Parameters

128-bit parameters. We choose n1 + n2 = 37 such that f > 2256 as long as L2 is
sufficiently small. Taking L2 = 5, we found

α = − 600591808385180536757881465597002302416458558485126821764359031606300809784518

+ 813882587493810077851957456371883857713360998173103581924791873490003540502291i

with f ≈ 2259 and f + 1 being 234-smooth.
With the values given above, we choose to consider L = L1L2L3 as the

product of the 65 smallest primes split in O0. We choose the prime characteristic
to be p = 4cL − 1 for a cofactor c = 335 and it is of 528 bits. In that case, we
ran SetUpCurve and found the curve E y2 = x(x2 +Ax+ 1) and the generators
PE +RE = (XP : ZP ) and QE = (XQ : ZQ) with

A = 6097131856309720106709355598531442247201172015501563397293294692913861525438243

05586404027203286371218559576094219612254895492407385077835353293836473582216156i

+ 6154203050263327294185007468577116825020016879693623450232515562571184399039780

74239505844517514411499242170968625179487146013956635387122252006310139961458627

XP = 6496627669559872627126426534954341866567752062881984427313982186012133760934868

2053267403977612866044608709977202489719633085395505798729152245974957138874364i

+ 3056346286256169607822658527595684519952244095716914363015882401497402419031238
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84067062444498174462757100863123084027477649307746921497178333469289043565995389

ZP = 1899739089838571960321465644011738013032576761685494928063181811040671772336871

8960821783070258517210561361301741028000188914609283796546407836389139273245673i

+ 1475362903454741694322410222776475294859933687514144615142470101682544785852701

3717351300531972522264790185598118174449016749578295230692028885632016095180151

XQ = 2469818792475575457639930872370341390449003677032813053810716121452318949264386

93935785318433362583747698473264146540339779183840067932009812209007329466955538i

+ 4673692447828914954394995382663393198855870520104061296682435639678627264243608

28941690624656664550571842480155725302787142201839669528155442075391877673039043

ZQ = 2481377063499690506232037287156303560272663468881817170817458747171635178338879

15372933044705906891680845109908810627498064202940421960548161243298726554555947i

+ 5387944227157394708375710104815860305251081484910498424429234423442202342380850

72105701529147575802448514849470103019165742967961778570505788500695645374180032

over Fp2 = Fp[i] = Fp[X]/⟨X2 + 1⟩.

256-bit parameters. We choose n = 68 and taking L2 = 5 we obtained

α = −1732789171287999248865840014371615621781101280436793273723405210

526356347946603557614710265303485229586472132988844003836753101468

59057269270267622717600758

+ 111067294716243081975130937217528372885477020011478178590825958748

137054759443760832676453989566903528901601602870671704714448434265

277819658117244388003679i.

In this case, f ≈ 2516 and f + 1 is 274-smooth.
With the values given above, we choose to consider L = L1L2L3 as the

product of the 75 smallest primes split in O0. We choose the prime characteristic
to be p = 4cL − 1 for a cofactor c = 256 and it is of 625 bits. In that case, we
ran SetUpCurve and found the curve E y2 = x(x2 +Ax+ 1) and the generators
PE +Re = (XP : ZP ) and QE = (XQ : ZQ) with

A = 147275998382645776665008425032549727015261439838745102087356793299

4602207568162203688423845772132160199000373457269445389371361539465

7032790161720120235152509434377407352876150073244122362i

+ 119077054972255322960390267599689318914164103457996137020065802336

8705460476252906808842052600604128224501684481662076224641109840534

5507104748871500047123475604126711073313864874934324924

XP = 492555444431645203474344564742527593139043136885801237701636936324

9512321072358408124769514841143750007578202805786829603451881581246

7117902012178442976919626562751512480123868300475638582i
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+ 160728320760902619108152017541647965397628920335381690975773174016

1345373841514432658803135480959287600240206000259275797274253916296

9648571264928742822920418372676348677776788679955809937

ZP = 508856872348785710159152814624363239736852521142590779448941887712

0093767370002342556132637018592901373081443010181013296131507986831

7613826543803409890933507777497697852107749649449140072i

+ 652483897787328979568655540089891443070986122621973121391553673615

1833206930732814463148469026767115548638891741012079561679044477842

0027011367209710594277710901122981203914047875599523144

XQ = 8288790445250350064839699147723505455046784996434709459114263301451

13555366994534893915039828011404242096316309402192844877740264807437

68290532664434976573982687738156363392189216850588623i

+ 3841153250318664329707927176022953223337846295759540419318894044227

41873758876927107378405774778546263315680724522558971565667653319001

88588214966739680468020271926250543359268691203618367

ZQ = 7632506641709948071231387782881695957036755405739448884185396304973

67028512609698993522424798527887517852952889696552274845489095323007

55463467566133229061065390077081896687856794158932892i

+ 7041471146738903041490132396241268700802113200139966332869051682626

26131679016289683615028815480043907036563543582528941777513336648179

68449585096463852399500535832511947622241108071785464

over Fp2 = Fp[i] = Fp[X]/⟨X2 + 1⟩.
Note that we were far from exhausting the search spaces in either case and

it may be possible to find smoother solutions and, consequently, to further ac-
celerate the setup.
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