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Abstract.
SPHINCS+ is a hash-based digital signature scheme that was selected by NIST in
their post-quantum cryptography standardization process. The establishment of
a universal forgery on the seminal scheme SPHINCS was shown to be feasible in
practice by injecting a fault when the signing device constructs any non-top subtree.
Ever since the attack has been made public, little effort was spent to protect the
SPHINCS family against attacks by faults. This paper works in this direction in
the context of SPHINCS+ and analyzes the current algorithms that aim to prevent
fault-based forgeries.
First, the paper adapts the original attack to SPHINCS+ reinforced with randomized
signing and extends the applicability of the attack to any combination of faulty and
valid signatures. Considering the adaptation, the paper then presents a thorough
analysis of the attack. In particular, the analysis shows that, with high probability,
the security guarantees of SPHINCS+ significantly drop when a single random bit
flip occurs anywhere in the signing procedure and that the resulting faulty signature
cannot be detected with the verification procedure. The paper shows both in theory
and experimentally that the countermeasures based on caching the intermediate
W-OTS+s offer a marginally greater protection against unintentional faults, and that
such countermeasures are circumvented with a tolerable number of queries in an
active attack. Based on these results, the paper recommends real-world deployments
of SPHINCS+ to implement redundancy checks.
Keywords: SPHINCS+ · fault attack · countermeasures · post-quantum signature
· hash-based cryptography

1 Introduction
In 2016, the National Institute of Standards and Technology (NIST) started a post-quantum
project that aimed to standardize one or more public-key cryptographic schemes in order
to complement current cryptosystems (i.e., RSA and ECDSA) with quantum-resistant
alternatives. Six years later, after three rounds of meticulous examination, NIST finally
delivered a verdict and selected one key encapsulation mechanism along with three digital
signature schemes to be standardized while four other schemes advanced to a fourth round
of evaluation.

Among the digital signature schemes that were selected for standardization by NIST,
SPHINCS+—a stateless hash-based digital signature scheme—was chosen thanks to its
unique security assumption [GDD+22], as the entire security of the scheme relies solely
on the cryptographic properties of the hash function adopted. Such a characteristic is
achieved by committing with said hash function to secret values that are revealed as part
of a signature depending on the bit values of the message to be signed.

mailto:aymeric.genet@epfl.ch
mailto:aymeric.genet@nagra.com


2 On Protecting SPHINCS+ Against Fault Attacks

As SPHINCS+ is going to be standardized, the scheme will require to operate in a
real-world environment in which implementations are exposed to common abuses. In
particular, faulty behaviors (e.g., data corruption) are of notable interest, since software
or hardware failures may accidentally cause a cryptographic scheme to reveal information
that, once disclosed, allows an adversary to compromise the security guarantees of the
scheme. A classic example of a fault vulnerability is presented in [BDL97], in which Boneh,
DeMillo, and Lipton show that a faulty RSA signature along with its message enables the
recovery of the signing key. As such faults may occur naturally or be deliberately injected
(see [BBB+12] for techniques), studying cryptosystems in presence of errors is therefore
vital to their real-world deployment.

In 2018, Castelnovi, Martinelli, and Prest have shown in [CMP18] that SPHINCS—the
seminal scheme that led to SPHINCS+—was subject to a critical fault attack which was
experimentally verified by Genêt et al. in [GKPM18]. The attack enables the forgery of a
valid signature for any chosen message once both a valid and faulty signatures for the same
message have been collected. This is because the scheme involves hash trees which are
normally invariant from one execution to another and which are thus signed with one-time
signatures. However, the introduction of a fault during their recomputation violates the
invariability requirement that is necessary for the security of one-time signatures, as the
fault forces the one-time signature to be used a second time, which goes against its intended
purpose. This enables the existential forgery of a counterfeit tree that is validly signed by
the compromised one-time signature and can then be used to forge a valid signature for
any desired message. Since the attack exploits the design of the scheme rather than a flaw
in its implementation, all existing implementations of SPHINCS+ are impacted, as well as
all other variations of SPHINCS. For example, Amiet et al. mounted the same attack on a
custom hardware implementation of SPHINCS+ in [ALCZ20].

Even though the attack critically impacts the security of the scheme, an effective
countermeasure has not been discovered yet. In the work of [CMP18] by Castelnovi,
Martinelli, and Prest, the authors failed to find a specific countermeasure and recommend
classical redundancy instead. The work by Mozaffari Kermani, Azarderakhsh, and Aghaie
in [KAA17] proposes specific error-detection mechanisms in hash function implementations
which therefore do not entirely cover the SPHINCS+ signing procedure, as well as a
generic countermeasure based on recomputing hash trees with swapped nodes (i.e., also
redundancy). In [GKPM18], Genêt et al. show that caching the one-time signatures
of the hash trees in stateful hash-based signature schemes effectively protects against
similar fault-based forgeries. This countermeasure prevents the recomputation of one-time
signatures by storing the signatures of the hash trees that can still provide new signatures.
However, the authors assert that the same countermeasure applied to stateless schemes is
ineffective but do not provide any evidence for the claim. As a result, the extent to which
SPHINCS+ can be protected against fault attacks with this technique is unclear.

1.1 Contributions
The official specifications of SPHINCS+ [HBD+20] present two mechanisms that address
fault attacks: randomizing the signing procedure, and including the public key in the signing
procedure so the resulting signatures can be verified. The current paper therefore analyzes
fault injections against SPHINCS+ in presence of these two mechanisms. Specifically, the
contributions are the following:

• First, the paper starts by expanding the universal forgery with fault injections of
Castelnovi, Martinelli, and Prest from [CMP18] to SPHINCS+ when any types of
faulty signatures are obtained. While the core of the attack is identical, the paper
particularly shows that the attack is still applicable even if the adversary has collected
two non-verifiable faulty signatures of the same W-OTS+ keypair.
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• Considering the extension, the paper presents a deep analysis of the universal forgery
with a particular attention to the faulty signature collection. The analysis shows
that for all parameter sets the number of queries required to circumvent the first
mechanism is on average within the limit of 264 signatures established by NIST, and
that the probability is very high that a random faulty signature is still verifiable,
defeating thus the second mechanism.

• The paper then revisits the countermeasures based on caching the W-OTS+ signa-
tures in between the intermediate subtrees as suggested in previous work (see [AE17,
GKPM18]) and shows that such countermeasures are ineffective, as an active adver-
sary can always work around the caching system with a tolerable query complexity,
and as a random fault still leads to an exploitable faulty signature with a marginally
lower probability than without the countermeasure. This analysis is then experimen-
tally verified on the SPHINCS+ reference implementation using the ChipWhisperer
framework.

As a consequence of the above points, the paper concludes that SPHINCS+ is extremely
sensitive to any kinds of faults, that no other current solution apart from redundancy
effectively protects SPHINCS+ against fault attacks, and so that all real-world deploy-
ments of SPHINCS+ are recommended to implement redundancy checks to mitigate the
risk. Lastly, all source code used to derive each result in the paper is made available
at https://github.com/AymericGenet/SPHINCSplus-FA. The repository notably fea-
tures a SPHINCS+ implementation entirely developed in Python, as well as tools to mount
the fault attack in practice.

1.2 Structure
The current paper is structured as follows: Section 2 gives an overview in high level of
the principles of SPHINCS+. Section 3 describes the fault attack on SPHINCS+ which is
analyzed in Section 4. Countermeasures are discussed and analyzed in Section 5. Finally,
the paper reports experimental results of the countermeasures analyses in Section 6, and
concludes with a discussion in Section 7.

2 Background
Hash-based digital signatures are cryptographic primitives that provide authentication,
integrity, and non-repudiation with the sole use of cryptographic hash functions. Three
categories of hash-based digital signatures are usually identified:

• One-Time Signatures (OTS) where any signing key should be used at most once,
• Multiple-Time Signatures (MTS) which combine multiple instances of OTSs to

provide a limited number of signatures only,
• Few-Time Signatures (FTS) in which the security of one key pair slowly declines

with the number of uses.
Because classical hash-based digital signatures require to keep track of the number of

signatures used, hash-based digital signatures were considered stateful for a long time.
This limitation was overcome by the scheme SPHINCS [BHH+15], the first stateless
hash-based digital signature scheme, which achieves practicality along with strong secu-
rity levels by combining a large tree of MTS on top of a wide layer of FTS. Recently,
SPHINCS+ [BHK+19] has been proposed to NIST’s post-quantum standardization process
as an improved version of SPHINCS.

This section presents a comprehensive summary of SPHINCS+ and of all its components.
For a thorough description of the SPHINCS+ signature scheme, the reader is advised to
read the full submission to the NIST standardization process in [HBD+20].

https://github.com/AymericGenet/SPHINCSplus-FA
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2.1 Definitions and notations
In the original submission of SPHINCS+, different1 hash functions are used depending on
the operation. Table 1 summarizes all the hash functions and pseudorandom functions
involved in SPHINCS+. Given a SPHINCS+ signing key sk1, sk2, and public key pk1,
pk2, the parameters column includes public and secret seeds (resp., pk1, pk2, and sk2)
that make hash function calls unique per key pair, and contextual information (i.e., ADRS,
R, opt) that makes hash function calls unique per use. These are sometimes considered
implicitly given in the notations. B denotes the set of bytes (i.e., B ∼= {0, 1, . . . , 255}).

Table 1: Hash functions involved in SPHINCS+.
Function Parameters Input Output

Tl (pk2, ADRS) ∈ Bn × Bα (x1, . . . , xl) ∈ Bln y ∈ Bn

F (pk2, ADRS) ∈ Bn × Bα x ∈ Bn y ∈ Bn

H (pk2, ADRS) ∈ Bn × Bα (xl, xr) ∈ B2n y ∈ Bn

PRF (pk2, ADRS) ∈ Bn × Bα sk1 ∈ Bn s ∈ Bn

PRFmsg (sk2, opt) ∈ B2n msg ∈ B∗ R ∈ Bn

Hmsg (pk1, R) ∈ B2n msg ∈ B∗ (md, ADRS) ∈ Bm

In SPHINCS+, a (binary hash) tree refers to a structure of (hash) nodes in which an
initial number of 2x leaf values (x > 0) are compressed two by two with H until a single
value—referred to as the (tree) root—is reached. The process of hashing nodes two by two
until reaching a single node is referred to as treehash (sometimes called as a subroutine,
by abuse of notation). An authentication path refers to the nodes that are adjacent to
the ones in the path from a leaf to the root and which allow a recomputation of the root
(see Figure 1 for an illustration). Finally, an address is represented by a unique bytestring
(of size α = 32) which is composed of different fields, including notably the tree index
that is used to uniquely address every tree involved in the scheme, and the leaf index to
uniquely address all the leaves. When such fields are updated, the resulting addresses are
differentiated using subscripts and superscripts (the corresponding field is understood in
context).

root

a1

ν a0

λ = 2

Figure 1: Example of an authentication path in a tree of four leaves. Starting from ν, the
leaf indexed at λ = 2, the root can be recomputed using only auth = {a0, a1}.

2.2 FORS
FORS (Forest Of Random Subsets) is a few-time signature scheme which, in SPHINCS+,
is used to produce the actual signature of a message digest.

1Even though such functions are listed separately, all the hash functions involved in SPHINCS+ are
instantiable from a single cryptographic hash function such as SHA2-256.



Aymeric Genêt 5

A FORS instance requires the following parameters:
• n : number of bytes of security.
• η : number of bits in a message digest.
• k : number of trees.
• t = 2a : number of leaves in a tree (of height a).

Note that η = ka.

Key generation. Given a SPHINCS+ signing key sk1 and an address ADRS, the key pair
(skF

i , pkF
i ) of the ith FORS tree is computed as follows (1 ≤ i ≤ k):

skF
i ← (s(i)

1 , . . . , s
(i)
t ),

pkF
i ← treehash(F(s(i)

1 ), . . . , F(s(i)
t )),

where s
(i)
j = PRF(pk2, ADRS(i)

j )(sk1). The overall key pair (skF , pkF ) of a FORS is a
collection of the keys of k trees:

skF ← (skF
1 , . . . , skF

k ),
pkF ← Tk(pk2, ADRS)(pkF

1 , . . . , pkF
k ).

Signing procedure. Given a FORS signing key skF , the scheme signs an η-bit digest md
with the following procedure:

1. Split md into chunks (m1, . . . , mk) of a bits.
2. For each chunk i ∈ {1, . . . , k}, compute auth(i) as the authentication path starting

from F(s(i)
mi), the leaf indexed at mi in the ith FORS subtree.

3. Return σF = ((s(1)
m1 , auth(1)), . . . , (s(k)

mk , auth(k))).

Public key extraction. Given σF = ((s(1), auth(1)), . . . , (s(k), auth(k))) bound to a known
message md, the public key of the corresponding FORS can be extracted with the following
procedure:

1. Split md into chunks (m1, . . . , mk) of a bits.
2. For each chunk i ∈ {1, . . . , k}, recompute the public keys pkF

i of the ith FORS tree
from F(s(i)) and auth(i).

3. Return pkF = Tk(pk2, ADRS)(pkF
1 , . . . , pkF

k ).
The public key extraction requires a total of k(a + 1) + 1 hash calls.

2.3 W-OTS+
W-OTS+ (Winternitz One-Time Signature) is a one-time signature scheme which, in
SPHINCS+, is used to authenticate subtrees by signing their roots (each time with a
unique key pair).

W-OTS+ uses a chaining pseudorandom function Ci(pk2, ADRS)(x) which consists of
consecutively applying F a specified number of times i ≥ 0 on an initial input, as illustrated
in Figure 2. The position of an element y in the chaining function is referred to as the
number i such that Ci(pk2, ADRS)(x) = y. Such a position is updated in ADRS at each
hashing step (denoted by ADRS(i) where 0 ≤ i < W − 1).

A W-OTS+ instance is parameterized with:
• n : number of bytes of security.
• ω : a (short) window of bits signed at a time.
• W = 2ω : the length of the hash chains.
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x C7(x)

FADRS(0) FADRS(1) FADRS(2) FADRS(3) FADRS(4) FADRS(5) FADRS(6)

Figure 2: The chaining pseudorandom function.

Moreover, the total number of n-byte elements in a W-OTS+ signature is given by ℓ = ℓ1+ℓ2
where

ℓ1 =
⌈

8n

ω

⌉
, ℓ2 =

⌊
log2((W − 1)ℓ1)

ω

⌋
+ 1.

Key generation. Given a SPHINCS+ signing key sk1 and an address ADRS, the generation
of a W-OTS+ key pair (skW , pkW ) works as follows:

skW ← (s1, . . . , sℓ), si = PRF(pk2, ADRS(0)
i )(sk1),

pkW ← (p1, . . . , pℓ), pi = CW −1(pk2, ADRS(0)
i )(si).

Signing procedure. Given a W-OTS+ signing key skW , the scheme signs an n-byte digest
msg with the following procedure:

1. Split msg into chunks (b1, . . . , bℓ1) of ω bits.
2. Compute and split csum =

∑ℓ1
i=1 W − 1− bi into ω-bit chunks (bℓ1+1, . . . , bℓ1+ℓ2).

3. Let σi = Cbi(pk2, ADRS(0)
i )(si) for 1 ≤ i ≤ ℓ = ℓ1 + ℓ2.

4. Return σW = (σ1, . . . , σℓ).

Public key extraction. Given σW = (σ1, . . . , σℓ) bound to a known message msg, the
public key of the corresponding W-OTS+ can be extracted with the following procedure:

1. Split msg into chunks (b1, . . . , bℓ1) of ω bits.
2. Compute and split csum =

∑ℓ1
i=1 W − 1− bi into ω-bit chunks (bℓ1+1, . . . , bℓ1+ℓ2).

3. Let pi = CW −1−bi(pk2, ADRS(bi)
i )(σi) for 1 ≤ i ≤ ℓ = ℓ1 + ℓ2.

4. Return pkW = (p1, . . . , pℓ).

Supposing that all bi are uniformly distributed for 1 ≤ i ≤ ℓ, the probability that
recomputing pi requires 0 ≤ x < W hash function calls is 1/W . As a result, the public
key extraction requires ℓ(W − 1)/2 hash function calls on average.

2.4 XMSS
An XMSS (eXtended Merkle Signature Scheme), parameterized with a height h′, is a
multiple-time signature scheme which combines 2h′ W-OTS+ in a hash tree. SPHINCS+

uses a hypertree of XMSS to authenticate FORSs.

Key generation. Given a SPHINCS+ signing key sk1 and an address ADRS, the key
generation starts by generating 2h′ W-OTS+ key pairs (skW

i , pkW
i ) (for 1 ≤ i ≤ 2h′).

Thus, an overall XMSS key pair consists of:

skX ← (skW
1 , . . . , skW

2h′ ),
pkX ← treehash(Tℓ(pk2, ADRS1)(pkW

1 ), . . . , Tℓ(pk2, ADRS2h′ )(pkW
2h′ )).



Aymeric Genêt 7

Signing procedure. Given an XMSS signing key skX , the scheme signs an n-byte digest
msg at leaf index 1 ≤ λ ≤ 2h′ with the following procedure:

1. Use skW
λ to produce σW

λ ; the W-OTS+ signature of msg.
2. Compute the authentication path authλ from the leaf index λ.
3. Return σX = (σW

λ , authλ).
Note that each leaf index can be used to sign at most one message.

Public key extraction. Given σX = (σW
λ , authλ) bound to a known digest msg at leaf

index 1 ≤ λ ≤ 2h′ , the public key of the corresponding XMSS can be extracted with the
following procedure:

1. Extract the W-OTS+ public key pkW
λ from σW

λ using the message msg.
2. Recompute the XMSS public key pkX from Tℓ(pk2, ADRSλ)(pkW

λ ) and authλ.
3. Return pkX .

The public key extraction requires ℓ(W − 1)/2 + 1 + h′ hash function calls on average,
since the procedure depends on the extraction of a W-OTS+ public key.

2.5 Hypertree
In the context of SPHINCS+, a hypertree consists of a tree of XMSS key pairs in which
the XMSSs above sign the XMSSs below (with respect to a tree with the root at the top).

A hypertree is parameterized with a height h′, where
• h : total height of the hypertree,
• d : number of layers in the hypertree.

Key generation. Given a SPHINCS+ signing key sk1, the public key of the hypertree
consists of the public key of the top-most XMSS pkX

d−1 at layer d − 1 (addressed at
τd−1 = 0) generated with sk1:

skHT ← sk1,
pkHT ← pkX

d−1.

Addresses derivation. Due to their structure, the addresses of the subtrees above can
be entirely derived from the address of the subtree below. Let τi be the tree index of an
XMSS at layer 0 ≤ i < d− 1, such an XMSS is signed with the XMSS at tree index τi+1
and leaf index λi+1 derived as follows:{

τi+1 = the h− h′(i + 1) most significant bits of τi,
λi+1 = the h′ least significant bits of τi.

All addresses involved in the above XMSSs are reconstructed from these indices.

Signing procedure. Given a hypertree signing key skHT , the scheme signs an n-byte
digest r at hyperleaf index 1 ≤ λ ≤ 2h with the following procedure:

1. For 0 ≤ i < d:
(a) Derive τi, λi from τi−1 (starting with τ−1 = λ).
(b) Generate the XMSS key pair (skX

i , pkX
i ) at the address corresponding to τi.

(c) Sign r with skX
i using λi as leaf index to produce σi and update r with pkX

i .
2. Return σHT = (σ0, . . . , σd−1).

Note that each hyperleaf index should be used to sign at most one message.
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Public key extraction. Given a hypertree signature σHT = (σX
0 , . . . , σX

d−1) which corre-
sponds to a known digest r at hyperleaf index 1 ≤ λ ≤ 2h, the public key can be extracted
with the following procedure:

1. For 0 ≤ i < d:
(a) Derive τi, λi from τi−1 (starting with τ−1 = λ).
(b) Extract the XMSS public key pkX

i from σX
i using msg at the address corre-

sponding to τi and using the λi as leaf index.
(c) Update r with pkX

i .
2. Return the last r computed, i.e, pkX

d−1.
The public key extraction requires d(ℓ(W − 1)/2 + 1 + h′) hash function calls on average.

2.6 SPHINCS+
SPHINCS+ is a stateless signature scheme which combines FORSs with a hypertree, as
illustrated in Figure 3.

SPHINCS+ is parameterized with the following:
• n : number of bytes of security.
• m : number of bytes of the digest.
• k, t = 2a : FORS parameters.
• W = 2ω : W-OTS+ parameters.
• h′ = h/d : hypertree parameters.

pk1

XMSS

W σW
2

XMSS

W σW
1

XMSS

W σW
0

pkF

FORS FORS FORS FORS

σF
0 σF

1 σF
2 σF

3

Figure 3: The SPHINCS+ structure.

Key generation. The SPHINCS+ signing key consists of two secret n-byte seeds sk1 and
sk2 picked uniformly at random:

• sk1 is used to derive the key pairs of all the hash-based instances involved in the
scheme.

• sk2 is used to choose a starting FORS in an unpredictable way.
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The SPHINCS+ public key pk1 consists of the public key of hypertree as well as a public
seed pk2 that makes hash function calls unique per user.

Signing procedure. Given a SPHINCS+ signing key (sk1, sk2), the scheme signs a
message msg of arbitrary bit length with the following procedure:

1. Generate R = PRFmsg(sk2, opt)(msg) where opt ∈ Bn is uniformly drawn at random
to enable randomized signing.

2. Compute (md, ADRS) = Hmsg(pk1, R)(msg).
3. Sign md with the FORS at ADRS using sk1 to produce σF , and let pkF be the FORS

public key.
4. Sign pkF with the hypertree to produce σHT = (σX

0 , . . . , σX
d−1).

5. Return Σ = (R, σF , σHT ).

Verification procedure. Given a SPHINCS+ public key pk1, the scheme verifies that a
SPHINCS+ signature Σ = (R, σF , σHT ) corresponds to the message msg with the following
procedure:

1. Compute (md, ADRS) = Hmsg(pk1, R)(msg).
2. Extract pkF , the public key of the FORS at ADRS, from md and σF .
3. Extract pkHT , the public key of the hypertree at the leaf index given by ADRS, from

pkF and σHT = (σX
0 , . . . , σX

d−1).
4. Return true if pkHT = pk1, false otherwise.

Summing up all the calls from all the components, the verification procedure requires
1 + (k(a + 1) + 1) + d(ℓ(W − 1)/2 + 1 + h′) hash function calls on average.

3 Fault attack
In their original attack in [CMP18], Castelnovi, Martinelli, and Prest present a fault
attack that forces a W-OTS+ key pair to sign a corrupted message by injecting a fault
during the construction of any non-top subtree. Along with the valid (i.e., non-faulted)
signature of the subtree, the resulting W-OTS+ faulty signature is used to compromise
the corresponding W-OTS+ key pair under a two-message attack and provide a valid
signature for another subtree for which the secrets are known. This process—similar to a
tree grafting—enables the forgery of an overall signature for any message.

This section expands the fault attack from Castelnovi, Martinelli, and Prest to any
combination of valid and faulty signatures obtained.

Attack preliminaries

Target. In the following, we consider a target device which runs any instance of SPHINCS+

with a fixed and unknown signing key, but a known public key. Furthermore, such instance
is supposed hardened with randomized signing (as described in Section 2.6) using a source
of true randomness.

Adversarial model. The threat model considers an adversary who has access to a number
of valid and faulty signatures (along with their messages) produced by the target device.
The goal of the adversary is to forge a SPHINCS+ signature that verifies any chosen
message under the target device’s public key.
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Fault characteristics. The faulty signatures consist of outputs from the target device
when a single unconstrained corruption of one-to-many bits occurs in any value involved
in the entire SPHINCS+ signing procedure. Such an outcome can happen due to the
accidental or intentional effect of, e.g., the target device overheating [BBB+12], voltage
disturbances [BBB+12], or row-hammer [KDK+14]. The typical use cases where the fault
model is relevant include all scenarios in which a large number of signatures may be queried,
such as with embedded devices, or TLS.

Due to their significant cost compared to other instructions, the fault is further assumed
to occur in a hash function call. Moreover, such a fault is supposed to cause the output of
the hash function to completely deviate from its intended value and be uniformly drawn at
random in the co-domain of the hash function. This is aligned with the avalanche property
of cryptographic hash functions in which a single bit flip early in the procedure causes
an extremely different output. Besides, even if a bit flip occurs in the output of a hash
function, such a bit flip will propagate in subsequent hash function calls and eventually
cause uniform outputs (unless, of course, the fault hits the output of the very last hash
function call of the hash structure).

3.1 Signatures collection
In a first phase, the adversary requires to collect both valid and faulty SPHINCS+ signatures
from the target device.

Verifiability. Distinguishing between valid and faulty signatures is not straightforward,
as faulty signatures can still verify their message under the right public key. Instead, we
differentiate two types of signatures:

1. Verifiable signatures: signatures that still verify their associated message under the
public key of the device.
These signatures generally correspond to valid signatures, but can also correspond to
faulty signatures for which a fault occurred during the derivation of any node in an
authentication path. This property enables the correct rederivation of all the subtree
roots that were involved in the signature, as well as a necessarily valid top part.

2. Non-verifiable signatures: signatures that do not verify their associated message
under the public key of the device.
While these signatures are necessarily faulty, there are two further distinctions of
non-verifiable signatures that can be made:

• Non-verifiable but correct: all W-OTS+ signatures still correspond to actual
W-OTS+ values at correct addresses.
This type of signatures is obtained when a fault occurs on the path from the
leaf to the root of a subtree. No subtree root can be recovered for sure from this
kind of signature (unless the layer index at which the fault occurred is known).

• Non-verifiable and incorrect: the W-OTS+ signatures do not correspond to
W-OTS+ values.
This type of signatures is typically obtained when the entire output is corrupted.
These signatures do not divulge any information and need to be discarded.

Fault exploitability. In addition to the above nomenclature, a faulty signature is said to
be exploitable when the resulting signature contains a faulty W-OTS+ signature which
discloses unintentional secret values of the associated W-OTS+ key pair. Such an outcome
occurs only when a fault hits any non-top subtree (including the ones in FORS).
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An exploitable signature alone is not sufficient to compromise a W-OTS+ key pair. At
least one more signature of the same W-OTS+ (such as the valid one) is needed as well.
As a result, the next step of the attack aims to determine the compromised W-OTS+s by
identifying the different signatures that correspond to a same key pair.

Compromised W-OTS+ identification. Once valid and faulty SPHINCS+ signatures
{Σi : 0 ≤ i < N} have been collected, the W-OTS+ signatures in the SPHINCS+ signatures
need to be arranged by layer and address:

1. Derive the ADRS of each W-OTS+ signature in all Σi (0 ≤ i < N) from the hypertree
leaf index obtained in (_, ADRS) = Hmsg(R)(msg) (see Section 2.5).

2. Map all the W-OTS+ signatures in Σi to their respective layer and ADRS.

If two or more different W-OTS+ signatures are mapped to a same ADRS at the end of
the arrangement, then the corresponding W-OTS+ key pair is said to be compromised.
In this case, such collection of W-OTS+ signatures is referred to as the faulty W-OTS+

signatures and are denoted by (σ̂(i))M
i=0, while their respective full SPHINCS+ signatures

are denoted by (Σ̂(i) : σ̂(i) ∈ Σ̂(i))M
i=0. We denote their layer index2 by l∗ ∈ {0, . . . , d},

and denote their address by ADRS∗. Finally, we refer to all layers below (resp. above) the
faulted layer as the bottom part (resp. as the top part) of the hypertree, as illustrated in
Figure 4.

...

W σl∗+1

XMSS

W {σ̂(i)
l∗ }M

i=0

XMSS

W σl∗−1

...

Compromised subtree

Compromised W-OTS+ Faulty W-OTS+ signatures

Faulted layer
−1 ≤ l∗ − 1 < d− 1

Top part

Bottom part

Figure 4: Terminology used throughout the description of the attack.

3.2 Faulty signatures processing

The next step processes the faulty SPHINCS+ signatures identified in the previous section
to extract the information that enables the universal forgery.

Secret values identification. As the elements in a W-OTS+ signature correspond to
secret values associated to chunks of ω bits (see Section 2.3), the following process aims to
identify the value of the chunks that are associated to each element.

2Note that l∗ = 0 means that the fault has hit the FORS layer, and that l∗ = d means that the fault
has hit the top XMSS which does not lead to an exploitable signature.



12 On Protecting SPHINCS+ Against Fault Attacks

Such a process depends on the types of signatures obtained:
• Case 1: At least one verifiable signature is available.

Given a verifiable signature, the correct public key of the compromised W-OTS+

can be extracted from the SPHINCS+ signature (see Section 2.3). Note that the
integrity of the extracted public key must be preserved even when its corresponding
subtree was faulted, as the signature verifies the extracted key under the correct
SPHINCS+ public key.
The extracted W-OTS+ public key can then be used to identify all the secret values in
the other signatures, including the non-verifiable (but valid) ones. Strictly speaking,
given the W-OTS+ public key pkW = (p1, . . . , pℓ) and any type of W-OTS+ signature
σ̂W = (σ̂1, . . . , σ̂ℓ), the secret values are identified with the following exhaustive
search:

1. Create the next ω-bit chunk bi corresponding to σ̂i (1 ≤ i ≤ ℓ).
2. Check that the value is correct with CW −1−bi

(pk2, ADRS∗(bi))(σ̂i) = pi.
If no value leads to the W-OTS+ public key element, then the σ̂W is incorrect.

Complexity. Extracting the public key of the compromised W-OTS+ is equivalent to
running a truncated SPHINCS+ verification procedure with l∗ layers (see Section 2.6),
which therefore amounts to an average number of hash function calls of:

2 + k(a + 1) + l∗(ℓ(W − 1)/2 + 1 + h′).

Now, suppose that the ω-bit chunks (b̂(i)
1 , . . . , b̂

(i)
ℓ ) that correspond to the W-OTS+

signature (σ̂(i)
1 , . . . , σ̂

(i)
ℓ ) are uniformly distributed. For 1 ≤ j ≤ ℓ, finding the value

of the chunk b̂
(i)
j that corresponds to σ̂j requires W − 1− x applications of F for a

hypothesized initial position 0 ≤ x ≤W − 1 until the resulting value equals pi. As
each value occurs with probability 1/W , the average number of hash function calls
is:

W −1∑
x=0

(
1

W

)
(W − 1− x) = (W − 1)/2.

As there are ℓ blocks in each σ̂W , the overall number of hash function calls for this
case is ℓ(W − 1)/2.

• Case 2: Only non-verifiable signatures are available.

Since none of the subtree roots can be recovered for sure, the adversary cannot
extract the compromised W-OTS+ public key from the non-verifiable signatures.
However, the adversary can determine the positions of each W-OTS+ value by using
one value as a reference for the other.
In other words, given a pair of different W-OTS+ signatures, i.e., (σ̂(0), σ̂(1)) where
σ̂(0) = (σ̂(0)

1 , . . . , σ̂
(0)
ℓ ) and σ̂(1) = (σ̂(1)

1 , . . . , σ̂
(1)
ℓ ), consider the two values σ̂

(0)
i , σ̂

(1)
i

at a same index 1 ≤ i ≤ ℓ. There are two possibilities:

– σ̂
(0)
i ̸= σ̂

(1)
i : in this case, if both signatures are correct, then there must exist

positions 0 ≤ u < v < W such that

Cv(pk2, ADRS∗(u))(σ̂(0)
i ) = σ̂

(1)
i , or Cv(pk2, ADRS∗(u))(σ̂(1)

i ) = σ̂
(0)
i .

The above property enables confirming guesses on u and v, which directly leads
to the ith ω-bit chunk of both roots, since the hash applications use different
addresses at each step of the chaining pseudorandom function. As a result, the
values are extracted as follows:
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1. Create the next ω-bit chunks u, v respectively corresponding to σ̂
(0)
i , σ̂

(1)
i

(1 ≤ i ≤ ℓ).
2. Check that the values are correct with Cv(pk2, ADRS∗(u))(σ̂(0)

i ) = σ̂
(1)
i or

Cv(pk2, ADRS∗(u))(σ̂(1)
i ) = σ̂

(0)
i .

If no such u and v exist, then at least one of the signatures is incorrect.

Complexity. Supposing that all chunks are uniformly distributed, the probability
that b̂

(0)
j and b̂

(1)
j take different values is 1/(W (W − 1)). Since, for a fixed u,

the exhaustive search on v can apply F on the previous hash result, the average
number of hash calls is:

W (W −1)∑
x=1

(
1

W (W − 1)

)
x = W (W − 1) + 1

2 .

– σ̂
(0)
i = σ̂

(1)
i : in this case, if both signatures are correct, then the two values must

correspond to the same ω-bit chunk, but of unknown position in the chaining
pseudorandom function. Another signature with a different value at index i is
required to identify the value of the chunks.
If there are still chunks of unknown positions at the end of the secret values
identification, such positions can be retrieved while extracting the top part of
the SPHINCS+ signature (see below).

An illustration for the two possibilities for σ̂
(0)
i , σ̂

(1)
i in a chaining pseudorandom

function is shown in Figure 5.

. . .

σ
(0)
i σ

(1)
i

. . .
FADRS(u)

i

FADRS(v)
i

(a) Different positions in C.

. . .

σ
(0)
i = σ

(1)
i

. . .
FADRS(u)

i

FADRS(v)
i

(b) Same (unknown) position in C.

Figure 5: Identifying W-OTS+ values within non-verifiable signatures.

The above process is applied to all faulty W-OTS+ signatures in order to retrieve as
many secret values as possible to forge a signature for a variety of different ω-bit chunks.

Note that since the values at lower positions in the chaining function enable the
recomputation of values at higher positions, the identification of W-OTS+ secret values
can keep track of the values at the lowest positions only. As a result, in the following, we
refer to the lowest positions learnt by the secret extraction as the most secret elements
which are denoted by (θ̃1, . . . , θ̃ℓ) and are respectively associated to the ω-bit chunks of
(b̃1, . . . , b̃ℓ).

Top part extraction. Extracting a valid top part is required so that the verification of
the forged SPHINCS+ signature leads to the target device’s public key.

The extraction considers the case in which multiple top parts are available due to our
fault model. Under these circumstances, all the top parts available need to be tried out
starting from the compromised W-OTS+ public key until one leads to the target device’s
public key.

Let (σX (i)
l∗+1, . . . , σX (i)

d−1) be the top part of the SPHINCS+ signature Σ̂i (0 ≤ i < M),
and pk1 be the SPHINCS+ public key, and suppose that the compromised W-OTS+ public
key pkW = (p1, . . . , pℓ) has been successfully extracted (see above):
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1. Extract the hypertree public key pkHT from Tℓ(pk2, ADRS∗)(pkW ) and the XMSS
signatures (σX (i)

l∗+1, . . . , σX (i)
d−1) (see Section 2.5).

2. Check that pkHT = pk1.
In case there were still ω-bit chunks of unknown values at the end of the secrets

extraction, such chunks may be identified during this part by guessing all of the unknown
chunks at once, deriving the corresponding W-OTS+ public key, and trying this public
key with the above steps. Such a process both confirms the values of the unknown chunks,
and extracts a valid top part of the signature.

Complexity. Verifying that a selected top part is valid requires a truncated SPHINCS+

verification procedure starting from the compromised W-OTS+. Along with all the top
parts available, there may be chunks that need to be exhaustively searched in case no
verifiable signature was available (see above). Supposing that the blocks are uniformly
distributed, the probability that, for a fixed index 1 ≤ j ≤ ℓ, all W-OTS+ elements σ̂

(i)
j are

the same is 1/W M−1. Therefore, on average, the number of chunks of unknown value is:

E(Non-id. chunks) = ℓ/W M .

Given pkW = (p1, . . . , pℓ), each trial requires one application of Tℓ and the recomputation
of the root of the XMSS right above the faulted layer, as well as the full public key
extraction of (d − 1) − l∗ XMSS public keys. Therefore, the average number of hash
function calls is:

1 + h′ + (d− l∗ − 1)(ℓ(W − 1)/2 + 1 + h′).

3.3 Tree grafting
Once the most secret values of a compromised W-OTS+ key pair were successfully extracted
from the faulty signatures, the adversary aims to graft a subtree (or a forest) to the extracted
top part, i.e., find another XMSS (or FORS) for which a valid W-OTS+ signature can be
forged in order to spoof the compromised instance at its own address.

During this step, the adversary attempts to sign the root of a forged FORS or XMSS
with the W-OTS+ secret values at disposal. Let (θ̃1, . . . , θ̃ℓ) be the most secret W-OTS+

values extracted which correspond to the ω-bit chunks (b̃1, . . . , b̃ℓ), the grafting procedure
repeats the following until successful:

1. Draw sk′ ∈ Bn uniformly at random.
2. If l∗ = 0, create a FORS of public key r′ with sk′ at ADRS∗ (see Section 2.2),

else, create an XMSS of public key r′ with sk′ at ADRS∗ (see Section 2.4).
3. Split r′ and its checksum into chunks (r′

1, . . . , r′
ℓ) of ω bits.

4. Check that r′
i ≤ bi for all 1 ≤ i ≤ ℓ.

Once found, the secret key of the grafted subtree is sk′ and its signature is:

σ′X
l∗ = (Cr′

1−b̃1
(pk2, ADRS∗(b̃1))(θ̃1), . . . , Cr′

ℓ
−b̃ℓ

(pk2, ADRS∗(b̃ℓ))(θ̃ℓ)).

Complexity. The tree grafting depends on the layer hit:
• In case a FORS needs to be forged (l∗ = 0), the public key derivation amounts to k

generations of FORS trees, each of them requiring a treehash procedure of height
log2(t) = a, in addition to a final application of Tk with all the FORS tree roots:

k

(
t +

a∑
i=0

2i−1

)
+ 1 = k(3t− 1) + 1.
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• In case an XMSS needs to be forged (1 ≤ l∗ ≤ d − 1), the public key derivation
amounts to 2h′ W-OTS+ public keys generation and a treehash procedure of height h′:

2h′
(ℓ + ℓ(W − 1) + 1) +

h′∑
i=1

2i−1 = 2h′
(ℓW + 2)− 1.

The probability that one attempt is successful is given by an extension of the work of
Bruinderink and Hülsing in [BH17]. Given M > 1 different W-OTS+ signatures, supposing
that the chunks (b1, . . . , bℓ) are uniformly3 distributed, each chunk x occurs with probability
1/W and enables the forgery of all chunks from x to W − 1. Thus, the overall probability
that the root of a forged XMSS can be signed is:

P(Grafting) ≤ 1
W ℓ

(
W −1∑
x=0

(
1−

(
W − 1− x

W

)M
))ℓ

≈ e−ℓ/(M+1) +O(1).

3.4 Path seeking
The SPHINCS+ signing procedure follows a path in the hypertree depending on the
message and a value R. As a result, the adversary requires to find an adequate value R
that makes the forged signature visit the compromised subtree.

Straightforwardly, given the message msg’ to be maliciously signed, the value R is
brute-forced until the corresponding tree index at layer l∗ is the same as the grafted
subtree:

1. Draw R′ ∈ Bn uniformly at random.
2. Check that the hypertree leaf index in (_, ADRS) = Hmsg(pk1, R′)(msg’) leads to the

tree index of the grafted subtree (see Section 2.5).
While a single grafted subtree allows the adversary to forge valid SPHINCS+ signatures for
as many messages as desired, note that path seeking depends on the message and therefore
needs to be repeated for each new message.

Complexity. Finding R′ is equivalent to an exhaustive search of n bytes such that the
h− h′l∗ most significant bits of the tree index give the index of the grafted subtree (see
Section 2.5). Each trial requires only a single hash function application, and its probability
of success is simply 2−(h−h′l∗). Consequently, the adversary requires 2h−h′l∗ hash function
calls on average to find an appropriate value for R′.

3.5 Universal forgery
Piecing everything together, the adversary uses the grafted subtree and the value R′ to
forge a bottom part of the signature, then plugs the extracted top part onto the forged
part to craft a valid signature for the malicious message (selected in Section 3.4). The
procedure goes as follows:

1. Generate arbitrary key pairs to forge (σ′F , σ′X
0 , . . . , σ′X

l∗−1), i.e., all the signatures in
the layers below the grafted subtree (see Section 2.2 and Section 2.5).

2. Sign σ′X
l∗−1 with the grafted XMSS at address ADRS∗ using sk′ (see Section 2.4).

3. Copy the top part for the rest of the signatures.
The final signature that verifies msg′ under the device’s public key is therefore:

Σ′ = ( R′

↑
sought

Section 3.4

, σ′F , σ′X
0 , . . . , σ′X

l∗−1︸ ︷︷ ︸
forged

Section 3.5

, σ′X
l∗
↑

grafted
Section 3.3

, σX
l∗+1, . . . , σX

d−1︸ ︷︷ ︸
extracted

Section 3.2

).

3We call attention to the fact that the uniform hypothesis of the blocks (bℓ1+1, . . . , bℓ1+ℓ2 ) is not rigorous
as these blocks are actually sums of uniform random variables. However, simulations in [CMP18, GKPM18]
show that such a discrepancy is tolerable for our use cases.
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The average computational complexity of each step in the universal forgery is shown in
Table 2 for all SPHINCS+ parameters sets. These numbers suggest that the fault attack
is feasible in all scenarios, although the number of required hashes varies significantly
depending on the specific layer targeted by the attack. However, even though the reported
numbers seem high, the overall number of required hashes can still be attainable in
practice4. This result is especially important as the fault attack can therefore be successful
even if the fault is uncontrolled. The latter will be analyzed in the next section.

Table 2: Average complexity of each step of the universal forgery for all SPHINCS+

parameters (the ‘f’ instances stand for “fast”, while the ‘s’ instances stand for “small”).
Processing (Section 3.2) Path seeking (Section 3.4)

Case 1 Case 2 E(Non-id. chunks) (hashes)
(hashes) (hashes) M = 2 3 4 l∗ = 0 1 . . . d−1

128s 28.04 212.04 2.12 0.14 0.01 264 256 . . . 28

128f 28.04 212.04 2.12 0.14 0.01 260 257 . . . 23

192s 28.58 212.59 3.19 0.20 0.01 264 256 . . . 28

192f 28.58 212.59 3.19 0.20 0.01 266 263 . . . 23

256s 28.97 212.98 4.19 0.26 0.01 264 256 . . . 28

256f 28.97 212.98 4.19 0.26 0.01 268 264 . . . 24

Grafting (Section 3.3)
FORS (hashes) XMSS (hashes)

M = 2 4 8 16 32 2 4 8 16 32
128s 238.11 229.32 224.25 221.59 220.36 235.34 226.55 221.48 218.81 217.58

128f 233.70 224.90 219.84 217.17 215.94 230.34 221.55 216.48 213.81 212.58

192s 247.92 235.11 227.72 223.84 222.05 244.21 231.39 224.01 220.12 218.33

192f 241.16 228.34 220.96 217.07 215.28 239.21 226.39 219.01 215.12 213.33

256s 254.90 238.06 228.36 223.26 220.91 252.92 236.09 226.39 221.28 218.93

256f 251.35 234.51 224.81 219.71 217.35 248.92 232.09 222.39 217.28 214.93

4 Attack analysis
This section analyzes the fault attack described in Section 3.

4.1 Fault analysis
Since our fault model considers that faults only affect the results of hash functions, the
following counts the number of hash function calls in the entire SPHINCS+ signing
procedure to determine the proportion of calls that, when faulted, lead to an exploitable
or a verifiable faulty signature.

1. Path derivation: R = PRFmsg(sk2, opt)(msg).
• Total hash function calls: 1.
• Fault exploitability: No.
• Signature verifiability: The resulting signature is verifiable (even valid), as R is

anyway included in the signature and the result of a random selection.

4For reference, for SHA2-256, an Nvidia RTX 3090 is reported to perform 236.95 hashes per second
(see [Onl22]). The actual performance may vary since, in our use cases, the results of previous hash
function calls need to be used as inputs to the next ones.
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2. Digest and initial address: (md, ADRS) = Hmsg(pk1, R)(msg).
• Total hash function calls: 1.
• Fault exploitability: No.
• Signature verifiability: The resulting signature is non-verifiable and incorrect,

as an improper FORS is used to sign an improper digest.

3. FORS signature (i.e., l∗ = 0).
• Total hash function calls: #TotalF = k(3t− 1) + 1.
• Fault exploitability: Yes.
• Signature verifiability: The verifiability of the resulting signature depends on

the location of the fault in the subtrees:
– A verifiable signature is obtained when a fault hits any value involved in an

authentication path of a FORS tree. Each authentication path requires the
derivation of t− 1 secret values, as well as 2a−i − 1 nodes in level 0 ≤ i ≤ a
of a tree. As there are k trees, this amounts to a total number of verifiable
signatures of:

#VerifF = k

(
(t− 1) +

a∑
i=0

(2a−i − 1)
)

= k(3t− a− 3).

– A non-verifiable but correct signature is obtained when a fault hits any
value on the path from a leaf to the root of a FORS tree. The values in a
path consist of the secret leaf derivation, in addition to a single node in all
levels of a tree, and the computation of the FORS public key. As there are
k trees of t = 2a leaves, this amounts to a total number of non-verifiable
but correct signatures of:

#Non-verifF = k

(
1 +

a∑
i=0

1
)

+ 1 = k(a + 2) + 1.

4. XMSS signature at a non-top layer (i.e., 1 ≤ l∗ < d).
• Total hash function calls: #TotalX = 2h′(ℓW + 2)− 1.
• Fault exploitability: Yes.
• Signature verifiability: The verifiability of the resulting signature depends on

the location of the fault in the subtree:
– A verifiable signature is obtained when a fault hits any value involved in

the authentication path of a non-top XMSS. Such an authentication path
starts with the derivation of 2h′ − 1 W-OTS+ public keys, as well as the
computation of 2h′−i − 1 nodes at each level 1 ≤ i ≤ h′ of the subtree.
Every W-OTS+ public key requires the derivation of ℓ secret values; each
of them chained W − 1 times with the chaining pseudorandom function, so
that all the results can be compressed with Tℓ. This amounts to a total
number of verifiable signatures of:

#VerifX = (2h′ − 1)(ℓ + ℓ(W − 1) + 1) +
∑h′

i=1(2h′−i − 1)
= (2h′ − 1)(ℓW + 1) + 2h′ − h′ − 1.

– A non-verifiable but correct signature is obtained when a fault hits any value
on the path from a leaf to the root of a non-top XMSS. The values in a path
consist of a single W-OTS+ public key, in addition to a single node in all
levels of a tree. As above, the W-OTS+ public key requires the derivation
of ℓ secret values; each of them chained W − 1 times with the chaining
pseudorandom function, so that all the results can be compressed with Tℓ.
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Since there are h′ levels, this amounts to a total number of non-verifiable
but correct signatures of:

#Non-verifX = ℓW + 1 +
h′∑

i=1
1 = ℓW + 1 + h′.

5. XMSS signature at the top layer (i.e., l∗ = d).
• Total hash function calls: #TotalX = 2h′(ℓW + 2)− 1.
• Fault exploitability: No.
• Signature verifiability: The resulting signature is non-verifiable but correct, as

the reconstruction of this XMSS does not lead to the SPHINCS+ public key.
All the W-OTS+ signatures involved are valid, however no valid top part can
be extracted.

Summing up the hash function calls of all the components above, the grand total of hash
function calls in a single SPHINCS+ signature is therefore given by:

#Total = 1 + 1 + #TotalF + d ·#TotalX = 3 + k(3t− 1) + d(2h′
(ℓW + 2)− 1).

Table 3 computes the total numbers of possible verifiable and non-verifiable faulty
signatures for both FORS and non-top XMSS in all SPHINCS+ parameters sets. This
table shows that a random fault is much likelier to give a verifiable signature rather than
a non-verifiable one, and so that verifying the signature is not effective in detecting faulty
signatures.

Table 3: Proportion of verifiable vs. non-verifiable signatures for faulty FORS and (non-
top) XMSS for all SPHINCS+ parameters sets.

FORS (l∗ = 0) XMSS (1 ≤ l∗ < d)
Verif. Non-verif. Verif. Non-verif.

Total Ratio Total Ratio Total Ratio Total Ratio
128s 982,860 0.9998 171 0.0002 143,302 0.9960 569 0.0040
128f 45,720 0.9928 331 0.0072 3,931 0.8745 564 0.1255
192s 2,752,246 0.9999 253 0.0001 208,582 0.9961 825 0.0039
192f 24,981 0.9869 331 0.0131 5,723 0.8747 820 0.1253
256s 1,080,970 0.9997 353 0.0003 273,862 0.9961 1,081 0.0039
256f 91,770 0.9961 361 0.0039 16,106 0.9373 1,077 0.0627

Suppose that a fault can hit any hash function call uniformly at random. The above
enumerations lead to the following probabilities:

Fault exploitability. The probability that the faulty signature is exploitable is given by
the proportion of faulty signature outcomes that leads to an exploitable signature:

P(Expl.) = #TotalF + (d− 1) ·#TotalX

#Total = k(3t− 1) + 1 + (d− 1)(2h′(ℓW + 2)− 1)
3 + k(3t− 1) + d(2h′(ℓW + 2)− 1) .

Fault verifiability. Similarly, the probability that the faulty signature is verifiable is given
by the proportion of the faulty signature outcomes that leads to a verifiable signature:

P(Verif.) = 1 + #VerifF + (d− 1) ·#VerifX

#Total

= 1 + k(3t− a− 3) + (d− 1)((2h′ − 1)(ℓW + 1) + 2h′ − h′ − 1)
3 + k(3t− 1) + d(2h′(ℓW + 2)− 1) .
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Layer hit. Let L = l∗ denote the event that a fault has affected σX
l∗ (i.e., that a hash

function call in the layer l∗ − 1 is hit by a fault). The probability that L = l∗ is therefore
given by the total number of hash function calls at layer l∗ − 1:

P(L = l∗) =


#TotalF

#Total = k(3t− 1) + 1
3 + k(3t− 1) + d(2h′(ℓW + 2)− 1) if l∗ = 0,

#TotalX

#Total = 2h′(ℓW + 2)− 1
3 + k(3t− 1) + d(2h′(ℓW + 2)− 1) if 1 ≤ l∗ ≤ d.

Table 4 computes the above probabilities given all SPHINCS+ parameters sets. This
table shows that the probability that a random fault leads to both an exploitable and a
verifiable faulty signature is high.

Table 4: Fault analysis results for all SPHINCS+ parameters.
P(Expl.) P(Verif.) P(L = l∗)

l∗ = 0 1 . . . d− 1 d

128s 0.9326 0.9306 0.4607 0.0674 . . . 0.0674 0.0674
128f 0.9669 0.8857 0.3387 0.0331 . . . 0.0331 0.0331
192s 0.9527 0.9513 0.6216 0.0473 . . . 0.0473 0.0473
192f 0.9613 0.8576 0.1495 0.0387 . . . 0.0387 0.0387
256s 0.9162 0.9138 0.3296 0.0838 . . . 0.0838 0.0838
256f 0.9553 0.9095 0.2398 0.0447 . . . 0.0447 0.0447

4.2 Universal forgery analysis: one-fault model
This section analyzes the use case where the adversary has access to many valid signatures
(i.e., Mv > 1) but only a single faulty one (i.e., Mf = 1) which is supposed exploitable and
which corresponds to layer 0 ≤ l∗ < d. Let N = 2h−h′l∗ be the total number of W-OTS+

key pairs on layer l∗.

Collecting the corresponding valid signature. The probability that the valid signature
corresponding to the same key pair as the faulty signature is included in the collected Mv

signatures is simply given by:

P(W-OTS+ break) = 1−
(

1− 1
N

)Mv

.

Alternatively, the expected number of valid queries to obtain the corresponding valid
signature is given by a geometric random variable with probability 1/N :

E(Mv) = N.

Table 5 computes the expected numbers of valid queries to obtain in order to mount
the universal forgery for each SPHINCS+ parameters set. The average number of queries
required to mount the forgery is in most cases lower than NIST’s security definition for
digital signatures of 264 (see [NIS16]).

4.3 Universal forgery analysis: multiple-fault model
This section analyzes the use case where the adversary has access to multiple valid and
faulty signatures (i.e., Mv > 1, Mf > 1) which are all supposed to be exploitable, different,
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Table 5: Average numbers of valid signatures to collect the valid signature corresponding
to a single faulty signature for all SPHINCS+ parameters.

E(Mv)
l∗ = 0 1 . . . d− 1 d

128s 264 256 . . . 28 –
128f 260 257 . . . 23 –
192s 264 256 . . . 28 –
192f 266 263 . . . 23 –
256s 264 256 . . . 28 –
256f 268 264 . . . 24 –

and which all correspond to the same layer 0 ≤ l∗ < d. Let N = 2h−h′l∗ be the total
number of W-OTS+ key pairs on layer l∗. Also, let

{
a
b

}
denote the Stirling number of the

second kind which counts the number of ways to distribute a objects into b non-empty
subsets.

Faulty signatures collision. As the universal forgery can be mounted with only faulty
signatures, the probability that two faulty signatures correspond to the same W-OTS+

key pair is an instance of the birthday paradox [FGT92]:

P(W-OTS+ break) = 1− N !
NMf (N −Mf )! .

Pair of valid and faulty signatures. Combining the faulty signatures with the valid ones,
the probability that a faulty signature corresponds to the same W-OTS+ key pair as a
valid signature is an instance of the occupancy problem with two types of balls [NS88]:

P(W-OTS+ break) = 1− 1
NMv+Mf

Mv∑
tv=1

Mf∑
tf =1

{
Mv

tv

}{
Mf

tf

}
N !

(N −Mv −Mf )! .

Table 6 computes the above probabilities with N = 256 (i.e., when l∗ = d− 1 for the
128s, 192s, and 256s parameters sets of SPHINCS+, or l∗ = d− 2 for SPHINCS+-256f).
This table shows that the randomness plays in the favor of the adversary, as only very
few faulty queries are required to break a W-OTS+. This number drops even lower when
combined with very few valid queries.

Table 6: Probability of collision with either only faulty queries (under Mv = 0) or with
Mf faulty and Mv valid queries (N = 256). Symmetrical values were omitted.

Mf\Mv 0 4 8 16 32 64
4 0.0233 0.0607 0.1177 0.2215 0.3939 0.6325
8 0.1046 0.2215 0.3939 0.6325 0.8647
16 0.3803 0.6325 0.8647 0.9815
32 0.8676 0.9815 0.9996
64 0.9997 1.0000

Increasing the numbers of faulty signatures. While a single pair of different W-OTS+

signatures corresponding to a same key pair is enough to mount the universal forgery,
the grafting step becomes easier the more faulty W-OTS+ signatures are obtained for a
same key pair (see Section 3.3). In order to study this, notice that collecting Mf faulty
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signatures from N key pairs can be modeled as a multinomial distribution with uniform
probabilities (i.e., pk = 1/N for 1 ≤ k ≤ N).

The probability that at least one W-OTS+ key pair has been reused c times is an
instance of the maximal frequency in a multinomial distribution. Let sk determine the
accumulated number of W-OTS+ signatures counting from the first W-OTS+ key pair to
the kth key pair (so s0 = 0 and sN = Mf ). Then, from the analysis by Corrado in [Cor11],
the transition probability from sk−1 to sk is given by:

P(sk | sk−1) =
(

Mf − sk−1
sk − sk−1

)
πk

sk−sk−1(1− πk)Mf −sk ,

where πk = pk/(
∑N

i=k pk) = (1/N)/(
∑N

i=k 1/N) = 1/(N − k).
Given the above probabilities, the stochastic matrix that determines the transitions

from sk−1 to sk is defined as follows:

Qk =


P(0 | 0) P(1 | 0) . . . P(Mf | 0)

0 P(1 | 1) . . . P(Mf | 1)
...

. . .
...

0 . . . 1

 for 1 ≤ k ≤ N − 1,

QN =
(

1 1 . . . 1
)⊤

.

Let Q̄k be the result of culling the transition probabilities that assign more than c
signatures to a key pair (i.e., by setting P(sk − sk−1 > C) = 0 for the relevant sk, sk−1)
and let Q̄(1)

1 be the first row of Q̄1.
The probability that the maximum load is no more than c is given by the transition

from s1 to sn which is determined by the following product of stochastic matrices:

P(Max. load ≤ c |Mf ) = Q̄(1)
1 × Q̄2 × · · · × Q̄N .

Alternatively, the expected maximum load given Mf faulty signatures is:

E(Max. load |Mf ) =
Mf −1∑

c=0
P(Max. load > c |Mf ).

Combining this result with the valid signatures, notice that the maximum load is
increased by one by collecting the valid signature of the W-OTS+ for which the maximum
load is reached. As such an event can be modeled as a Bernoulli random variable with
probability 1− (1− 1/N)Mv , we ultimately have:

E(Max. load |Mv, Mf ) = E(Max. load |Mf ) +
(

1−
(

N − 1
N

)Mv
)

.

Table 7 computes the maximum load averages with Mf signatures for the N that
correspond to the few first top layers of the SPHINCS+ parameters sets, as increasing the
number of signatures is especially relevant when targeting such layers.

Layer coverage. The probability that the collected valid signatures cover the entire layer—
in which case, all valid signatures are known—is an instance of the coupon collector’s
problem [FGT92]:

P(Layer is covered) = N !
NMv

{
Mv − 1
N − 1

}
.



22 On Protecting SPHINCS+ Against Fault Attacks

Table 7: Maximum load averages with various numbers of faulty signatures Mf in different
layers of N signatures.

N\Mf 64 128 256 512 1,024
23 12.23 21.90 40.26 75.60 144.31
24 7.88 13.35 23.43 42.36 78.50
26 3.96 5.97 9.37 15.33 26.10
28 2.46 3.38 4.77 6.99 10.69
29 2.12 2.74 3.68 5.16 7.48

Alternatively, the expected number of valid queries to cover the entire layer is given by:

E(Mv to cover layer) = N

N∑
i=1

1
i
, which is Θ(N log N).

Table 8 computes the expected numbers of queries required to cover the few first top
layers of the SPHINCS+ parameters sets, as obtaining all valid signatures are especially
practical when targeting such layers.

Table 8: Average numbers of valid signatures to cover various layers of N signatures.
N 23 24 26 28 29 212 216

E(Mv) 24.44 25.76 28.25 210.61 211.77 215.15 219.54

5 Caching countermeasures analysis
In order to prevent faulty signatures from being collected, the W-OTS+ signatures com-
puted throughout a SPHINCS+ signing procedure can be cached (i.e., stored in memory,
sometimes temporarily, and then retransmitted without recomputation when requested).
Such a process not only prevents accidental faulty recomputations of a W-OTS+ signature,
but also improves the performances of the SPHINCS+ signature generation. Notice also
that the valid W-OTS+ signatures are leakage-agnostic, so the cache can therefore be
shared with verifiers (in a read-only fashion).

In this section, we consider two different strategies of caching W-OTS+s: caching layers
and caching branches.

5.1 Caching layers
This strategy, originally proposed in Gravity-SPHINCS [AE17], consists of caching all the
W-OTS+ within one or more layers (starting from the top layer). Since the cache is not
updated with new signature requests, the cache is static and can therefore be added to the
public key.

Algorithms. Let c be the number of layers for which all W-OTS+ signatures and public
keys are cached. The countermeasure consists of changing the key generation algorithm
and the signing procedure algorithm of the hypertree and XMSS with the following:

• The new key generation procedure consists of discovering all the XMSSs from layers
d − 1 − c to d − 1 and storing all the W-OTS+ signatures and public keys on the
way to the top XMSS. The secret and public keys are the same.
This strategy increases the complexity of the key generation by a factor of

∑c
i=0 2h′i =

(2ch′+h′ − 1)/(2h′ − 1).
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• The new signing procedure derives the XMSS signatures for the cached layers by
using the W-OTS+ signatures and public keys from the cache. An n-byte digest msg
at hyperleaf index 1 ≤ λ ≤ 2h is therefore signed as follows:

1. For 0 ≤ i < d− c:
(a) Derive τi, λi from τi−1 (starting with τ−1 = λ).
(b) Generate the XMSS key pair (skX

i , pkX
i ) at the address corresponding

to τi.
(c) Sign r with skX using λi as leaf index to produce σi and update r with pkX

i .
2. For d− c ≤ i < d:

(a) Derive τi, λi from τi−1 (starting with τ−1 = λ).
(b) Read σW

i from the cache at tree index τi and leaf index λi.
(c) Compute the XMSS authentication path authi starting from the leaf λi

and using, as leaves, the cached W-OTS+ public keys at tree index τi.
(d) Let σi = (σW

i , authi).
3. Return σHT = (σ0, . . . , σd−1).

This strategy decreases the signing procedure complexity of c× 2h′(ℓW + 1) hash
function calls.

Analysis. While the algorithm prevents faulting c W-OTS+ signatures, the new algorithm
features a reduced total number of hash function calls which therefore impacts the propor-
tion of vulnerable hash function calls, hence the chance that a random fault produces an
exploitable faulty signature.

In a cached XMSS, the total number of hash function calls is: #TotalX̃ = 2h′−1 − 1.
This leads to a new grand total of hash function calls in the SPHINCS+ signing procedure:

#Total = 2 + #TotalF + (d− c) ·#TotalX + c ·#TotalX̃

= 3 + k(3t− 1) + (d− c)(2h′(ℓW + 2)− 1) + c(2h′ − 1).

As a result, since a fault in an XMSS below a cached layer is not exploitable anymore,
the proportion of hash function calls that lead to an exploitable faulty signature is:

P(Expl.) = #TotalF + (d− c− 1) ·#TotalX

#Total

= 1 + k(3t− 1) + (d− c− 1)(2h′(ℓW + 2)− 1)
3 + k(3t− 1) + (d− c)(2h′(ℓW + 2)− 1) + c(2h′ − 1)

where 0 < c < d (P(Expl.) = 0 if c = d).
Table 9 shows how the probability that a single random fault is exploitable decreases

with c for all SPHINCS+ parameter sets. This table shows that the probability that a
random fault gives an exploitable faulty signature stays fairly high, especially for the fast
variants of SPHINCS+.

In terms of memory, let C denote the total number of W-OTS+ signatures cached.
We therefore obtain:

C =
c∑

i=1
2h′i = 2h′

(2ch′
− 1)/(2h′

− 1).

As a W-OTS+ signature consists of ℓ elements of n bytes and since a W-OTS+ public
key consists of a single element of n bytes, caching c layers requires C(ℓ+1)n bytes in total.
Table 10 shows how the cost of caching layers evolves with c for all SPHINCS+ parameter
sets. This table demonstrates that the memory requirements for this countermeasure blows
up very early and that only the first few top layers can be cached in practice.
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Table 9: Analysis of the layer caching countermeasure for all SPHINCS+ parameter sets.
P(Expl.)

c = 1 2 3 4 . . . d− 1 d

128s 0.8972 0.8591 0.8179 0.7733 . . . 0.6141 0.0000
128f 0.9505 0.9335 0.9158 0.8975 . . . 0.5076 0.0000
192s 0.9287 0.9034 0.8767 0.8486 . . . 0.7539 0.0000
192f 0.9420 0.9218 0.9007 0.8787 . . . 0.2625 0.0000
256s 0.8711 0.8216 0.7670 0.7066 . . . 0.4784 0.0000
256f 0.9327 0.9090 0.8840 0.8578 . . . 0.3864 0.0000

Table 10: Analysis of the layer caching countermeasure for all SPHINCS+ parameter sets.
Memory (bytes)

c = 1 2 3 4 . . . d

128s 1.43× 105 3.68× 107 9.43× 109 2.41×1012 . . . 1.04×1022

128f 4.48× 103 4.03× 104 3.27× 105 2.62× 106 . . . 7.38×1020

192s 3.13× 105 8.05× 107 2.06×1010 5.28×1012 . . . 2.27×1022

192f 9.79× 103 8.81× 104 7.15× 105 5.73× 106 . . . 1.03×1023

256s 5.49× 105 1.41× 108 3.61×1010 9.24×1012 . . . 3.97×1022

256f 3.43× 104 5.83× 105 9.36× 106 1.50× 108 . . . 6.75×1023

5.2 Caching branches
This strategy consists of caching all the W-OTS+ signatures and public keys in a path
during a signing procedure. The cache is dynamic and may require to be updated for each
new signature.

As reported in [GKPM18], this strategy completely prevents similar fault-based univer-
sal forgeries in stateful hash-based signature schemes (such as XMSSMT [HRB13]). This is
because the subtrees involved in stateful schemes provide only a limited number of signa-
tures whose availability is remembered by the signer. Thus, once computed, the signature
of a subtree can be retained as long as the subtree is involved in new signatures, at which
point it is replaced by the next subtree in line. This prevents faulty recomputations of the
signatures by caching only one W-OTS+ per layer. This section shows that applying the
same idea to SPHINCS+ is ineffective, even when multiple W-OTS+s per layer are cached.

Algorithms. The countermeasure consists of adding a cache of size Cl to each layer
0 ≤ l < d of XMSSs, where Cl ≤ 2h′l denotes the number of W-OTS+ signatures and
public keys that can be stored in the cache at layer l. The new XMSS signing procedure
therefore signs an n-byte digest msg at leaf index 1 ≤ λ ≤ 2h′ as follows:

1. Check if the W-OTS+ signature at leaf index λ is in the cache:
• On cache hit, read the signature σW

λ and pkW
λ from the cache.

• On cache miss:
(a) If the cache is full, evict the least recent signature.
(b) Use skX

λ to produce pkW
λ and σW

λ ; the W-OTS+ signature of msg.
(c) Put σW

λ and pkW
λ in the cache.

2. Compute the authentication path authλ starting from pkW
λ (using cached W-OTS+

public keys when accessible).
3. Return σX = (σW

λ , authλ).
When all caches are filled, this strategy enhances the XMSS signing procedure complexity
of an average of

∑d−1
l=0 2h′(ℓW + 1)(Cl/2h−h′l) fewer hash function calls. We suppose all

caches empty at the device startup.
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Analysis. As not all branches of the hypertree can realistically be cached, in order for
the countermeasure to be effective, we suppose that we cache only a significant ratio of
a layer. We furthermore focus on the significantly cached layer, as the layers above are
necessarily all cached while the layers below are only marginally covered.

A faulty signature is exploitable if the fault hits a layer for which the corresponding
W-OTS+ signature is uncached. As the cache is dynamically filled, the probability of a
cache miss depends on the number of distinct signatures visited after M queries to the
signing procedure.

Let Dl denote the number of distinct visited W-OTS+ signatures in layer 0 ≤ l < d
after M queries, and N = 2h−h′l the total number of W-OTS+ signatures in such layer.
Then, the distribution of Dl is an instance of the occupancy problem [Fel67]:

P(Dl = i) = N !αi,M

(N − i)!NM
, where αi,M = 1

i!

i∑
k=1

(−1)i−k

(
i

k

)
kM (1 ≤ i ≤ N).

Now, suppose that a total of Dl ≤ 2h−h′l signatures are cached at each layer 0 ≤ l < d
(after a certain number M of queries). Then, as before, the probability that a fault leads to
an exploitable faulty W-OTS+ signature is derived by counting the number of vulnerable
hash function calls in the procedure. However, in this case, the totals of hash function calls
at all layers behave as random variables which depend on the cache status of every leaf in
each XMSS. So, instead of deriving the exact totals, we evaluate the following heuristic:

P(Expl.) = E(#Expl.)
E(#Total)

where E(#Expl.) denotes the average number of hash function calls that lead to an
exploitable faulty signature when faulted, and E(#Total) the average total number of hash
function calls in a SPHINCS+ signing procedure.

Starting with the average total of hash function calls, notice that only the XMSS
signing procedure was changed. Supposing that the cache is uniformly filled, we obtain:

E(#Total) = 2 + #TotalF +
d−1∑
l=0

E
(

#TotalX̃l

)
= 2 + #TotalF +

d−1∑
l=0

2h′
− 1 +

2h′∑
i=1

P(Cache miss at layer l)(ℓW + 1)


= 2 + #TotalF +

d−1∑
l=0

(
2h′
− 1 + 2h′

(
1− Dl

2h−h′l

)
(ℓW + 1)

)
.

The average total of vulnerable hash function calls is determined by the average total
number of hash function calls in each layer of the SPHINCS+ structure. At each layer,
such a number now depends on the number of W-OTS+ cached on the layer, as well as
the number of W-OTS+ cached on the layer above. Again, supposing that the cache is
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uniformly distributed, we obtain:

E(#Expl.) = E
(

#Expl.F̃
)

+
d−2∑
l=0

E
(

#Expl.X̃
)

= P(Cache miss at layer 0) ·#TotalF +
d−2∑
l=0

P(Cache miss at layer l + 1) · E
(

#TotalX̃
)

=
(

1− D2h

2h

)
(3 + k(3t− 1)) +

d−2∑
l=0

(
1− Dl+1

2h−h′(l+1)

)(
2h′
− 1 + 2h′

(
1− Dl

2h−h′l

)
(ℓW + 1)

)
.

Table 11 shows how the probability that a random fault is exploitable decreases with b
for all SPHINCS+ parameter sets supposing that all the caches are filled to capacity (i.e.,
Dl = min(b, 2h−h′l), so after a sufficiently large number of queries M were made). As with
caching layers, since the total number of hash function calls in the entire signing procedure
decreases with the number of vulnerable hash function calls, the proportion of exploitable
faulty signatures stays fairly high, especially for the fast variants of SPHINCS+. Note
however that such a countermeasure still leaves fewer hash function calls vulnerable than
an unprotected SPHINCS+.

Table 11: Analysis of the branch caching countermeasure for all SPHINCS+ parameter
sets. The numbers b are rounded up to the next integer.

P(Expl.)
b = (2/3)2h′ (2/3)22h′ (2/3)23h′ (2/3)24h′

. . . (2/3)2dh′

128s 0.9292 0.9238 0.9174 0.9098 . . . 0.3172
128f 0.9647 0.9634 0.9620 0.9605 . . . 0.3219
192s 0.9511 0.9485 0.9457 0.9425 . . . 0.3249
192f 0.9585 0.9568 0.9549 0.9528 . . . 0.3052
256s 0.9111 0.9023 0.8917 0.8785 . . . 0.3068
256f 0.9530 0.9507 0.9481 0.9453 . . . 0.3130

Since the universal forgery requires at least two recomputations of the same W-OTS+

signature, we study the number of queries before a W-OTS+ signature needs to be
recomputed (i.e., two cache misses for a same W-OTS+). We solve this problem with a
Markov chain (see, e.g., [GS97] for a reference on the methodology) as shown in Figure 6.
The corresponding transition matrix P =

(
pi,j

)
is defined as follows (for 0 ≤ i, j ≤ N + 2):

pi,j =


min(i, Cl)/N if j = i ̸= N + 1,
(N − i)/N if j = i + 1,
(i− Cl)/N if j = N + 1 and i > Cl,
1 if j = i = N + 1,
0 otherwise.

The fundamental matrix that counts the average number of discrete steps spent in each
state is computed as follows:

N = (I−Q)−1,

where I is the (N + 1)× (N + 1) identity matrix, and Q is the (N + 1)× (N + 1) submatrix
of P without the last column and row. As we start with the cache being empty, the
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1/N 2/N Cl/NCl/N Cl/N

1

Figure 6: Markov chain representing the transitions from the cache being empty to any
W-OTS+ being recomputed. The states (others than “Recomp.”) count the number of
cache misses without recomputation.

expected number of queries M before a W-OTS+ is recomputed is given by summing the
first row of the fundamental matrix:

E(M to recomp.) =
N∑

j=0
N0,j .

Table 12 computes the expected numbers of queries required so that any W-OTS+ gets
recomputed for few first layers of all the SPHINCS+ parameter sets, given various cache
sizes. This table shows that the recomputation of a W-OTS+ signature can be triggered
with very few queries.

Table 12: Average number of queries such that a W-OTS+ is recomputed for various cache
sizes Cl and different layers of N signatures.

N\Cl (1/2)N (2/3)N (3/4)N N − 1
23 23.53 24.30 24.30 24.89

24 24.26 24.85 25.07 26.13

26 25.89 26.49 26.78 28.52

28 27.69 28.31 28.63 210.83

29 28.63 29.26 29.58 211.97

In terms of memory, let C denote the total number of W-OTS+ signatures cached
when b branches are fully cached. As Cl ≤ 2h′l, we have that:

C =
d−1∑
l=0

min(b, 2h−h′l).

As with caching layers, a W-OTS+ signature consists of ℓ elements of n bytes and a
W-OTS+ public key consists of a single element of n bytes, so caching b layers requires
C(ℓ + 1)n bytes in total. Table 13 shows the cost of caching various numbers of branches
for all SPHINCS+ parameter sets. The memory requirements for this countermeasure
blows up very early, so only the first few top layers are expected to be covered in practice.

6 Practical experiments
The following section aims to experimentally verify the fault attack as described in
Section 3, the analysis of the fault attack from Section 4, and the analysis of the caching
countermeasures from Section 5.
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Table 13: Analysis of the branch caching countermeasure for all SPHINCS+ parameter
sets. The numbers b are rounded up to the next integer.

Memory (bytes)
b = (2/3)2h′ (2/3)22h′ (2/3)23h′ (2/3)24h′

. . . (2/3)2dh′

128s 8.14× 105 1.82× 108 4.00× 1010 8.53× 1012 . . . 7.36× 1021

128f 7.14× 104 4.91× 105 3.71× 106 2.80× 107 . . . 5.55× 1020

192s 1.74× 106 3.90× 108 8.56× 1010 1.83× 1013 . . . 1.58× 1022

192f 1.68× 105 1.16× 106 8.81× 106 6.69× 107 . . . 7.62× 1022

256s 3.02× 106 6.77× 108 1.49× 1011 3.17× 1013 . . . 2.74× 1022

256f 4.13× 105 6.08× 106 9.12× 107 1.36× 109 . . . 4.79× 1023

6.1 Setup

Hardware. As the fault attack does not require sophisticated glitching technology, our
proof of concept uses the ChipWhisperer framework to perform experiments, which includes:

• The Chipwhisperer-Lite Level 2 starter kit.
• A NAE-CW308T-STM32F4 as the Device Under Testing (DUT).
• A common laptop running linux 5.18.6-arch1-1.

The DUT is configured to run at its maximal clock frequency (i.e., 180 MHz).

Software. We attack the reference implementation of SPHINCS+ from [FKN+22] which
was slightly adapted to run on the Cortex-M4 of the DUT. The instance attacked is
sphincs-shake-256s-robust which is claimed to achieve the maximal theoretical secu-
rity guarantees. The hash function SHAKE was instantiated with a portable software
implementation.

For practicality purpose, the software was further modified to limit the signing procedure
to the computation of a single layer. As a result, the software would use the W-OTS+

keypair of an XMSS at a fixed layer 0 < l∗ < d to sign the XMSS root at layer l∗ − 1
addressed by a given index. The output signature consists of the W-OTS+ signature along
with the authentication path in the XMSS of layer l∗ − 1.

The laptop communicates with the DUT through UART and the protocol is implemented
using ChipWhisperer’s simpleserial library. The DUT can be commanded to:

• Program the SPHINCS+ secret and public seeds sk1 and pk2.
• Given an address, compute the W-OTS+ signature and the authentication path of

the XMSS at layer l∗ − 1.
• Retrieve the bytes of the last W-OTS+ signature and authentication path computed.

See https://github.com/AymericGenet/SPHINCSplus-FA for the source code.

Fault injection. To collect faulty signatures, the ChipWhisperer is used to inject a
glitch in the system clock of the DUT. We do not synchronize the glitch injection with
a trigger signal as we do not require to hit a precise instruction to collect exploitable
signatures. Instead, the glitch is manually injected after a (progressive) delay that follows
the communication with the DUT.

The glitch characteristics were explored experimentally to favor faulty signatures. Using
a width of 20 samples and a clock offset of −4 samples, we report ≈ 1/3 of output signatures
to be faulty (so ≈ 2/3 of valid outputs).

https://github.com/AymericGenet/SPHINCSplus-FA


Aymeric Genêt 29

6.2 Experiment 1: randomized + cached layer
In the first experiment, we simulate the layer caching countermeasure (see Section 5) by
pretending that all the W-OTS+ signatures on the last layer are cached. In practice, such
a cache would amount to 0.55 MB of ROM. The experiment therefore aims to show the
feasibility of an attack on the second last layer (i.e., l∗ = d− 2 = 6).

The experiment protocol to query a signature goes as follows:
1. The laptop sends to the DUT three bytes that correspond to the XMSS address at

layer l∗ − 1, i.e.:
• τl∗−1 = the first two bytes sent.
• λl∗−1 = the last byte sent.

2. The DUT computes:
(a) The authentication path of the XMSS at layer l∗ − 1 and tree index τl∗−1,

starting from the leaf index λl∗−1.
(b) The root r of the XMSS at layer l∗ − 1 and tree index τl∗−1.
(c) The W-OTS+ signature of r, using the W-OTS+ key pair from the XMSS at

layer l∗, tree index τl∗ , and leaf index λl∗ , where:
• τl∗ = the first byte of τl∗−1.
• λl∗ = the last byte of τl∗−1.

3. The laptop then retrieves the W-OTS+ signature and authentication path.
The DUT takes around 79 seconds to compute a single XMSS authentication path and

W-OTS+ signature, during which the clock glitch is blindly injected. We conduct N = 5
trials where a single trial consists of repeating the above with a fixed SPHINCS+ secret
seed to collect 1,024 potentially faulty signatures.

Results. The faulty signature collection is successful across all trials, as a W-OTS+ is
always found to be compromised at the end of the collection. Table 14 reports the types
of signatures collected during the trials which were identified by recomputing the correct
W-OTS+ signature and authentication path from the programmed secret seed.

Table 14: Analysis of the collected signatures in N = 5 fault attacks against SPHINCS+-
shake-256s-robust at layer l∗ = 6.

Signatures Faulty signatures Non-verif. signatures
Valid Faulty Verif. Non-verif. Correct Incorrect

Mean 660.4 363.6 269.6 94 1.8 92.2
SD 14.8762 14.8762 14.8257 11.2694 1.3038 10.1094
Min. 639 346 257 83 1 82
Max. 678 385 295 113 4 109

Table 15 reports the results related to the universal forgery. Given the analysis from
Section 4 and using Mf ≈ (1/3)1024 and Mv ≈ (2/3)1024, we have that a W-OTS+

signature is compromised with a probability of 0.5877 using only faulty signatures, and
of 0.9714 using both valid and faulty signatures. The maximum load is expected to be
1.59 + 0.01. On average, the probability that the grafting step is successful with two
different W-OTS+ signatures is 2−34.85. All these numbers are aligned with the ones
obtained in practice.

Conclusion. The experiment has demonstrated that despite the fact that the layer
presents 216 signatures, as few as 210 signature queries with a fault probability of ≈ 1/3 are
enough to compromise at least one W-OTS+ and, therefore, mount a SPHINCS+ universal
forgery.
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Table 15: Analysis of the universal forgery in N = 5 fault attacks against SPHINCS+-
shake-256s-robust at layer l∗ = 6.

Compromised
W-OTSs+

Maximum
load

Best
P(grafting)

Mean 2.2 2 2−35.7388

SD 1.7889 0 2−35.5089

Min. 1 2 2−47.0379

Max. 5 2 2−34.2432

6.3 Experiment 2: randomized + cached branches

In the second experiment, we simulate the branch caching countermeasure (see Section 5) by
implementing an internal cache of C addresses for which we pretend that the corresponding
W-OTS+ are transmitted without recomputation. When requesting a W-OTS+ at a
certain address, the computation is triggered only if the given address was not previously
cached.

The experiment aims to show that an attack is possible even when a significant portion
of the layer is cached. For practicality purpose, we target the last layer (i.e., l∗ = d−1 = 7)
and use a cache of size C = 171 to cover two thirds of the 2h′ = 256 possible addresses. In
theory, such a cache would amount to 2.93 MB of RAM.

At the beginning of the experiment, the DUT’s cache is empty. The experiment protocol
to query a signature goes as follows:

1. The laptop sends to the DUT two bytes that correspond to the XMSS address at
layer l∗ − 1, i.e.:

• τl∗−1 = the first byte sent.
• λl∗−1 = the last byte sent.

2. If τl∗−1 is in the DUT’s cache, then the DUT computes nothing and the protocol
stops here.

3. Else, if τl∗−1 is not cached, then the DUT saves τl∗−1 in the cache (after evicting
the least recent address cached if the cache is full), and computes:
(a) The authentication path of the XMSS at layer l∗−1 at tree index τl∗−1, starting

from the leaf index λl∗−1.
(b) The root r of the XMSS at layer l∗ − 1 and tree index τl∗−1.
(c) The W-OTS+ signature of r, using the W-OTS+ key pair from the XMSS at

layer l∗, tree index τl∗ , and leaf index λl∗ , where:
• τl∗ = 0.
• λl∗ = τl∗−1.

4. The laptop then retrieves the W-OTS+ signature and authentication path.

On a cache miss, the DUT takes around 79 seconds to compute a single XMSS
authentication path and W-OTS+ signature, during which the clock glitch is blindly
injected. The glitch is not injected on a cache hit. We conduct a total of N = 10 trials
where a single trial consists of repeating the above with a fixed SPHINCS+ secret seed to
collect 512 potentially faulty signatures.

Results. The faulty signature collection is successful across all trials, as a W-OTS+ is
always found to be compromised at the end of the collection. Table 16 reports the types
of signatures collected during the trials which were identified by recomputing the correct
W-OTS+ signature and authentication path using the programmed secret seed.
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Table 16: Analysis of the collected signatures in N = 10 fault attacks against SPHINCS+-
shake-256s-robust at layer l∗ = 7 when 171 branches are cached.

Signatures Faulty signatures Non-verif. signatures
Valid Faulty Verif. Non-verif. Correct Incorrect

Mean 419.3 92.7 76.4 16.3 0.2 16.1
SD 7.4841 7.4841 5.1251 4.7854 0.42 4.7714
Min. 409 81 67 9 0 9
Max. 431 103 84 25 1 25

Table 17 reports the results related to the universal forgery. Given the analysis from
Section 5, the number of queries before a W-OTS+ is recomputed is 318.09. Using a
probability of successful fault injection of 1/3, a W-OTS+ is successfully compromised
upon recomputation with a probability of 1− (1− 1/3)2 = 0.5555. This number is aligned
with the ones obtained in practice.

Table 17: Analysis of the universal forgery in N = 10 fault attacks at layer l∗ = 7 against
SPHINCS+-shake-256s-robust when 171 branches are cached.

Queries
before first

recomp.

Compromised
W-OTSs+

Maximum
load

Best
P(grafting)

Mean 318.6 14.1 2 2−30.4274

SD 25.3693 3.7253 0 2−30.3094

Min. 284 7 2 2−35.7972

Max. 374 20 2 2−28.8953

Conclusion. The experiment has demonstrated that despite the fact that two thirds of
the attacked layer are cached, as few as 29 signature queries with a fault probability of
≈ 1/3 are enough to compromise at least one W-OTS+ and, thus, mount a SPHINCS+

universal forgery.

7 Discussion & Conclusion
In this paper, a refined fault attack against SPHINCS+ that is less restrictive than the
original attack from Castelnovi, Martinelli, and Prest in [CMP18] has been presented. The
complexity of the attack in terms of required queries, hashes, and success probability has
also been scrupulously analyzed. Finally, the effectiveness of countermeasures based on
caching both layers and branches has been shown to be underwhelming; a result which
was experimentally verified.

The main takeaway of the current analysis is that SPHINCS+ is extremely fragile
against faults. As Section 4 shows, a single unconstrained corruption of almost any
computation has a catastrophic impact on the security guarantees of all SPHINCS+

parameters sets. This amounts to millions of hash function calls that need to be carried
out faultlessly in order to sign a single message; a number that is not considering other
subroutines (such as, e.g., the checksum in W-OTS+) which are at least equally vulnerable.

While the other post-quantum signature algorithms selected by NIST in 2022 are
also susceptible to fault attacks, this vulnerability makes SPHINCS+ the most sensitive
candidate to faults. For example, Bruinderink and Pessl have demonstrated in [BP18] that
the lattice-based signature scheme CRYSTALS-Dilithium is also vulnerable to a universal
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forgery using an equivalent fault model. However, the attack on CRYSTALS-Dilithium
can only be mounted when an adversary obtains the valid and faulty signatures of the
same message, while SPHINCS+ is vulnerable even when the device signs different and
uncontrolled messages. Additionally, while the authors of [BP18] suggest that verifying
signatures or randomization can serve as effective countermeasures against differential
fault attacks on CRYSTALS-Dilithium, both of these approaches have been shown to be
ineffective when applied to SPHINCS+. The current attacks against Falcon—another
lattice-based signature scheme chosen by NIST—only work when these faults result in an
early abortion and zeroing of values, which requires a higher precision and more capabilities
than the fault model considered in this paper (see [MHS+19]).

Such a fragility needs to be taken seriously, as faults are reported to naturally happen
in conventional hardware such as, e.g., in DRAM. For instance, Schroeder, Pinheiro, and
Weber have reported 25,000 to 70,000 errors in DRAM per billion device hours per MBit
in Google’s 2009 fleet [SPW11]. As a result, with long enough deployments of SPHINCS+

on standard computers, the fault attack is eventually going to affect real-world users.
As ordinary hardware cannot be fully trusted to protect against faults, and since faults

can also be maliciously injected, a proper countermeasure that entirely prevents the fault
attack is preferable. However, the problem is not obvious to solve, as the universal forgery
exploits the fact that the signing procedure recomputes one-time signatures; a core feature
of the SPHINCS family that makes the scheme practical and stateless. Yet, as long as
one-time signatures are being recomputed on the fly, the risk of reusing a one-time key pair
to sign an unexpected message will always be present (which, in practice, is accomplished
with a fault injection). While this problem is solved in stateful schemes such as XMSSMT

by caching the relevant one-time signatures, Section 5 shows that the same countermeasure
fails to properly protect SPHINCS+.

Since the threat of a fault can never be completely eliminated, the current best
solution to protect the signature scheme against accidental and intentional faults is
through redundancy; an observation that is shared by others (see [CMP18, ALCZ20]).
Redundancy consists of recomputing a same signature multiple times (ideally, with different
implementations) and abort the procedure in case a mismatch is detected. Even though
parallelizable, this solution at least doubles the signing time which strikes a huge blow to the
performance of the scheme which was already lacking in the original submission. Specially
protected implementations on the hardware level, as recommended in the SPHINCS+

specifications [HBD+20], may also offer an adequate protection against faults but would
require fault-protection mechanisms not only in the hash function implementation, but
also in the other subroutines of the scheme, as well as in the device memory.

In conclusion, the results of this paper urge all real-world deployments of SPHINCS+

to come with redundancy checks, even if the use case is not prone to faults (such as, e.g.,
with firmware updates). Unless an adversary can query the signature for any message,
randomized signing may be disabled as such measure is not a reliable way to prevent the
fault attack. Verification, on the other hand, is still recommended as non-verifiability (even
though unlikely) implies the occurrence of a fault.

Future work. The results of this paper call for novel countermeasures that make SPHINCS+

inherently resistant to fault attacks. As argued above, such a solution should avoid the
accidental or intentional recomputation of one-time signatures which will likely necessi-
tate a new way of performing hash-based signatures. For instance, an ambitious reader
might come up with a solution that changes the one-time signatures in SPHINCS+ by
one-message signatures which, if such a primitive makes sense, might even lead to an
entirely new scheme. Other solutions that, for instance, make faulty signatures always
non-verifiable would also be a desirable step forward, so a signing device could at least
block bad signatures by running the verification procedure on the produced signatures.
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Aside from researching countermeasures that make the scheme resistant to faults,
investigating countermeasures that make the scheme resilient to faults could be of equal
interest. A fault-resilient countermeasure does not prevent faulty signatures from being
collected but from being exploited by hindering at least one step of the universal forgery.
While preventing secret extraction or tree grafting would be difficult to achieve without
significantly impacting the signing procedure performance (e.g., by replacing the one-time
signatures by few-time signatures), a countermeasure that makes path seeking hard to find
may reveal to be effective. Such a direction is left as an open problem.

At last, regarding the offensive side of the attack, as the current work is limited to
faulting the hash functions, deriving similar attacks by faulting other subroutines of the
scheme may lead to equally critical forgeries. Also, tampering with the control flow of
a SPHINCS+ software to force one-time signatures to sign unexpected messages would
be an interesting direction to consider. Finally, differential fault attacks to recover secret
values is yet another breach to explore.
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