Quantum Attacks on Beyond-Birthday-Bound
MACs

Hong-Wei Sun¹, Bin-Bin Cai¹, Su-Juan Qin¹, Qiao-Yan Wen¹, and Fei Gao¹

1 State Key Laboratory of Networking and Switching Technology, Beijing University
of Posts and Telecommunications, Beijing, 100876, China
gaof@bupt.edu.cn

Abstract. In this paper, we investigate the security of several recent
MAC constructions with provable security beyond the birthday bound
(called BBB MACs) in the quantum setting. On the one hand, we give
periodic functions corresponding to targeted MACs (including PMACX,
PMAC with parity, HPxHP, and HPxNP), and we can recover secret s-
tates using Simon algorithm, leading to forgery attacks with complexity
O(n). This implies our results realize an exponential speedup compared
with the classical algorithm. Note that our attacks can even break some
optimally secure MACs, such as mPMAC+-f, mPMAC+-p1, mPMAC+-p2, mLightMAC+-f, etc. On the other hand, we construct new hidden
periodic functions based on SUM-ECBC-like MACs: SUM-ECBC, Poly-
MAC, GCM-SIV2, and 2K-ECBC−Plus, where periods reveal the infor-
mation of the secret key. Then, by applying Grover-meets-Simon algo-
rithm to specially constructed functions, we can recover full keys with
O(2^{n/2}) or O(2^{m/2}) quantum queries, where n is the message block
size and m is the length of the key. Considering the previous best quan-
tum attack, our key-recovery attacks achieve a quadratic speedup.

Keywords: Beyond-Birthday-Bound · MAC · Quantum cryptanalysis ·
Quantum algorithm.

1 Introduction

In recent years, a variety of fast quantum algorithms have been proposed for
solving equations [1–3], dimensionality reduction [4–8], linear regression [9–13],
anomaly detection [14, 15], classification [16–18], and so on [19–21]. The po-
tential applications of quantum computation are expanding and deepening in
various fields. Cryptography would undoubtedly be seriously impacted. For ex-
ample, asymmetric primitives (e.g. RSA, ECC) would suffer from devastating
attacks due to Shor’s algorithm [22]. In symmetric cryptography, it has long
been thought that the only threat was the quantum acceleration on exhaustive
search [23], which leads to the fact that the best security a key of length n can
offer is 2^{n/2} [24]. This was changed with the appearance of a Simon-based attack
proposed by Kuwakado and Morii [25, 26], that is, they proved Even-Mansour

* Corresponding author: Fei Gao.
and 3-round Feistel constructions would be broken in polynomial time. Several years later, more generic constructions were broken using different quantum algorithms, including the Simon-based attacks [27–30], the Grover-meets-Simon-based attacks [31–33], and the Bernstein-Vazirani (BV)-based attacks [34–37], etc.

Message Authentication Code (MAC) is a fundamental symmetric-key primitive to ensure the authenticity of data. Most popular MACs such as CBC-MAC [38], CMAC [39], OMAC [40], and GMAC [41], only achieve security up the birthday bound, i.e. the number of queries by the adversary is bounded by $2^{n/2}$, where n is the state size. However, the birthday-bound security might not be enough in practice, especially when a MAC is instantiated with a lightweight block cipher such as PRESENT [42], PRINCE [43], and GIFT [44] whose block size is small. In such a case, the birthday bound becomes 2^{32} as $n = 64$ and is vulnerable in certain practical applications. To go beyond the birthday bound, a series of block cipher-based MACs, which are secure for above $2^{n/2}$ queries (called BBB MACs), have been proposed, including SUM-ECBC [45], PolyMAC [46], GCM-SIV2 [47], 2K-ECBC-Plus [48], and some optimally secure MACs (such as mPMAC+-f, mLLightMAC+-f, which are secure up to 2^n queries) [49], etc.

Previous attacks. At CRYPTO 2016, Kaplan et al. [29] showed that several widely used modes of operation for authentication and authenticated encryption, such as CBC-MAC [38], PMAC [50], GMAC [41], and some CAESAR candidates, could be broken by Simon algorithm. Recently, Bonnetain et al. [36] further introduced quantum forgery attacks on PolyMAC [46], GCM-SIV2 [47], LightMAC+ [51], PMAC-TBC3k [52], etc., with polynomial quantum queries by applying Simon algorithm. The crucial point is to construct a periodic function corresponding to the targeted block cipher, and then use Simon algorithm to recover the period. Recovering the period, which is a secret state, then allows to break the confidentiality or authenticity of these cryptographic primitives by recovering a key or distinguishing them from a random function. This kind of Simon-based attack provides an exponential speedup in the number of queries compared to classical attacks.

In addition to the Simon algorithm, the Grover-meets-Simon algorithm is also used to attack MACs. At ASIANCRYPT 2017, Leander and May used combinations of Simon algorithm and Grover algorithm to design the key recovery attack on FX-construction. The main idea is to construct a special period function with two inputs based on the targeted construction, say $f(u, x)$. That is, when the first input u equals to a special value k, the function has a hidden period s such that $f(k, x) = f(k, x \oplus s)$ for all x. Here we call this kind of function a hidden periodic function. Leander and May proposed to use a Grover search for $u \in \{0,1\}^m$. In order to test if a guess of u is the good one, they ran Simon algorithm with the function $f(u, x)$, which is periodic of period s if and only if $u = k$, and random otherwise. Thus, Grover acts as an outer loop with running time roughly $2^m/2$, and Simon acts as an inner loop with polynomial complex-
ity. With this technique, Guo et al. [53] proposed for the first time quantum secret state recovery and key recovery attacks for a series of BBB MACs that were not vulnerable to the Simon algorithm, leading to forgery attacks. Unlike the exponential speedup of the Simon-based attack, these attacks only provide a polynomial speedup compared with classical attacks, i.e., the complexity reduces from $O(2^{3n/4})$ to $O(2^{n/2})$. Then a natural question arises: are there any better quantum attacks against this kind of BBB MACs?

Our contributions. Till now, for most BBB MACs, there are no successful Simon attacks (which generally achieve exponential speedup). Only Grover-meets-Simon attacks (which achieve polynomial speedup) were given for some BBB MACs. In this work, we further study the BBB MACs’ security in quantum circumstances and answer the following two questions. Table 1 summarizes our main results and comparison with previous works.

1. Can we give Simon attacks for BBB MACs?
 For some MACs such as PMACX, PMAC with parity, HPxHP, HPxNP, etc., we give periodic functions corresponding to targeted MACs and then utilize Simon algorithm to recover the secret state, which leads to a successful forgery attack. The proposed attacks need only $O(n)$ quantum queries and realize an exponential speedup compared with their classical versions. Besides, our attacks are more efficient than some related results, i.e., it exponentially improves previous quantum attacks (with complexity $O(2^{n/2})$) [53] on mPMAC+-f, mPMAC+-p1, and mPMAC+-p2 from the viewpoint of quantum query complexity.

2. Are there any better Grover-meets-Simon attacks for those BBB MACs which were attacked in Ref. [53]?
 For SUM-ECBC-like MACs such as SUM-ECBC, PolyMAC, GCM-SIV2, and 2K-ECBC-Plus, we construct new condition-period functions based on targeted MACs, where periods reveal the information of the secret key. Therefore, we can apply Grover-meets-Simon algorithm to recover secret key with a complexity of $O(2^{n/2}n)$ or $O(2^{m/2}n)$, where n is the message block size and m is the length of the key of the underlying block cipher. For the case of usual block ciphers (i.e., $m = O(n)$), our result achieves a quadratic speedup compared with the previous quantum attacks.

Organization. The paper is organized as follows. In Sect. 2, we introduce some basic notations, the quantum algorithms (Grover, Simon, and Grover-meets-Simon algorithms) used in this paper, and the quantum security of MACs. In Sect. 3, we propose secret state recovery attacks on several BBB MACs by applying Simon algorithm. In Sect. 4, we give some new quantum key-recovery attacks by applying the Grover-meets-Simon algorithm. Finally, we conclude in Sect. 5.
2 Preliminaries

Let F_2 denote the prime field with two elements 0 and 1. And the n-dimensional vector space of F_2 is denoted by F_2^n. We let “\oplus” denote the XOR (addition in F_2), “\odot” denote multiplication in F_2, and “\cdot” denote the scalar product of bit-strings seen as n-bit vectors. Let $|X|$ be the number of the elements in set X.

2.1 Quantum algorithm

In the following, we review Grover, Simon, and Grover-meets-Simon algorithms used in this paper. We refer to [33, 57] for a broader presentation.

1) Grover algorithm. Grover algorithm [23] is a well-known quantum algorithm that achieves quadratic speedups on database searching tasks compared to classical algorithms. Precisely, it solves the following problem.

Grover problem. Let $f : X \to \{0, 1\}$ be a test function. Given oracle to f, find $x \in X$ such that $f(x) = 1$.

Classically, one preimage is expected to be found in time (and oracle access to f) $O(\frac{|X|}{\epsilon})$ if there are ϵ preimages of 1 ($|\{x : f(x) = 1\}| = \epsilon$). Quantumly, Grover algorithm finds one preimage in time (and oracle access to O_f) $O(\sqrt{\frac{|X|}{\epsilon}})$. Grover algorithm works first by producing a uniform superposition $|\psi\rangle = \frac{1}{\sqrt{|X|}} \sum_{x \in X} |x\rangle$.

Next, it repeatedly applies the unitary operator $(2|\psi\rangle\langle\psi| - I)O_f$ on the state $|\psi\rangle$. The process increases the amplitude of success roughly by a constant on each iteration. Then a final measurement will produce a good state with an
overwhelming probability. Generally, the checking procedure can be done only with some errors. That is, the test function always returns 1 for elements in the target set, but for elements not in the target set that it also returns 1 with a negligible probability. The following theorem tackles this case.

Theorem 1 [58, 53]. Let \(X \in \{0, 1\}^m \), \(p_0 := \frac{e}{2^m} \) and \(f : \{0, 1\}^m \to \{0, 1\} \) be a test function such that

\[
\begin{align*}
Pr[f(x) = 1] &= 1 \quad \text{if} \ x \in X, \\
Pr[f(x) = 1] &\leq p_1 \quad \text{if} \ x \notin X.
\end{align*}
\]

Assume the quantum implementation of \(f(x) \) costs \(O(n) \) qubits. Then Grover algorithm with \(t = \lceil \frac{\pi}{\arcsin \sqrt{p_0}} \rceil \) quantum queries to \(f(x) \) and \(O(m + n) \) qubits will output an \(x \in X \) with probability at least

\[
p_0 \left[1 - \left(\frac{2}{p_0} \right)^2 \right].
\]

In particular, if \(e \leq 2 \) and \(p_1 \leq \frac{1}{2^m} \), the error decreases exponentially with \(m \).

2) **Simon algorithm.** Simon algorithm [59] gives the first example of an exponential quantum time speedup relative to an oracle. That is, it can find the period of a periodic function in polynomial time.

Simon problem. Given a Boolean function \(f : \{0, 1\}^n \to \{0, 1\}^d \) and promise that there exists \(s \in \{0, 1\}^n \) such that for any \((x, y) \in \{0, 1\}^n \), \([f(x) = f(y)] \iff [x \oplus y \in \{0, s\}]\), the goal is to find \(s \).

This problem can be solved classically by searching collisions with \(O(2^{n/2}) \) queries. As the quantum superposition of queries of form \(\Sigma_{x,y} \lambda_{x,y} |x\rangle |y\rangle \mapsto \Sigma_{x,y} \lambda_{x,y} |x\rangle |f(x) \oplus y\rangle \) is introduced in Simon algorithm, its query complexity is only \(O(n) \). After repeating the following subroutine (Algorithm 1) \(cn \) times, we can obtain \(s \) by solving a system of linear equations. The algorithm can be applied to the problem of which condition “\(f(x) = f(y) \) if and only if \(x \oplus y \in \{0, s\}\)” is replaced with the weaker condition “\(f(x \oplus s) = f(x) \) for any \(x \)” under the assumption that \(f \) satisfies some good properties. Concretely, Kaplan et al. [29] have proved the following theorem.

Theorem 2 [29]. Let \(\varepsilon(f, s) := \max_{t \in \{0, 1\}^n \setminus \{0, s\}} Pr_x[f(x) = f(x \oplus t)] \). If \(\varepsilon(f, s) \leq p_0 < 1 \), then Simon algorithm returns \(s \) with \(cn \) queries and \(O(n + d) \) qubits, with probability at least

\[
1 - \left(\frac{1}{p_0} \right)^c n.
\]

3) **Grover-meets-Simon algorithm.** In Ref. [33], Leander and May proposed to combine Simon algorithm with Grover algorithm (i.e., Grover-meets-Simon

\footnote{When there is no ambiguity, we write 0 for the vector \((0, 0, \ldots, 0)\) of appropriate length.}
Algorithm 1 Quantum subroutine of Simon algorithm.

Input: $n, O_f : |x⟩|0⟩ \mapsto |x⟩|f(x)⟩$

Output: y orthogonal to s

1: Applying a Hadamard transform $H^\otimes n$ to the initial state $|ψ_0⟩ = |0⟩|0⟩$ (a $(n+d)$-qubit state) to obtain the quantum superposition

$$|ψ_1⟩ = \frac{1}{\sqrt{2^n}} \sum_{x \in F_2^n} |x⟩|0⟩.$$

2: A quantum query to the function f maps to the state

$$|ψ_2⟩ = \frac{1}{\sqrt{2^n}} \sum_{x \in F_2^n} |x⟩|f(x)⟩.$$

3: Measuring the second register gives a value $f(z)$ and the first register is collapsed to

$$|ψ_3⟩ = \frac{1}{\sqrt{2}}(|z⟩ + |z ⊕ s⟩).$$

4: Applying again the Hadamard transform $H^\otimes n$ to the first register yields

$$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2^n}} \sum_{y \in F_2} (−1)^{y \cdot z} (1 + (−1)^{y \cdot s})|y⟩.$$

5: Measuring the state yields a value of y, which meets that $y \cdot s = 0$.

algorithm) to attack the construction with whitening keys. This algorithm solves the following problem.

Grover-meets-Simon problem. Let $f : \{0,1\}^m \times \{0,1\}^n \rightarrow \{0,1\}^d$ be a function such that there exist some $u \in \{0,1\}^m$ such that $f(u, ·)$ hide a non-trivial period s_u. Find any tuple $(u, s_u) \in U_s$, where $U_s := \{(u, s_u) : u \in \{0,1\}^m, s_u \text{ is the period of } f(u, ·)\}$.

Leander and May define a Grover search over $u \in \{0,1\}^m$, where they test for the periodicity of every $f(u, ·)$ via Simon algorithm. Thus, they have Grover as an outer loop with a running time of roughly $2^{m/2}$, and Simon as an inner loop with polynomial complexity. The following theorem shows the effect of the parameter

$$\varepsilon(f) := \max_{(u,t) \in \{0,1\}^m \times \{0,1\}^n \setminus \{0, U_s\}} Pr_x[f(u, x) = f(u, x ⊕ t)]$$

on the success probability of the Grover-meets-Simon algorithm.

Theorem 3 [58, 53]. Let c be a positive integer, $p_0 := \frac{\pi}{2\varepsilon}$ and $p_1 := [2 \cdot (1 + \varepsilon(f))^2] n$. Then Grover-meets-Simon algorithm with $\lceil \frac{\pi}{4\sqrt{\varepsilon} \sin \sqrt{p_0}} \cdot cn$ quantum
queries to f and $O(m + cn^2 + cdn)$ qubits outputs a tuple $(u, s_n) \in U_s$ with probability at least $(1 - \epsilon_1)p_0 + \sqrt{p_0 + p_1} + 2\sqrt{1 + \epsilon_1 p_0}^3 p_0^2$.

In particular, if $\epsilon(f) \leq 1/2$ and $e \leq 2$, the error decreases exponentially with n. In the case $d = m = n$, the Grover-meets-Simon algorithm solves this problem with $O(2^{n/2})$ quantum queries and $O(n^2)$ qubits.

2.2 Quantum security of MACs

Message Authentication Code (MAC) is a fundamental symmetric-key primitive to ensure the authenticity of data. A MAC system contains two algorithms: a MAC signing algorithm $S(k, m)$ and a MAC verification algorithm $V(k, m, T)$. Here k denotes the secret key, m denotes a message and T denotes the MAC tag. Classically, a MAC system is considered to be secure if an efficient attacker capable of mounting a chosen message attack cannot produce an existential MAC forgery. To translate this security notion to the quantum setting, Boneh and Zhandry [60] assumed that the adversary can make quantum queries to the signing oracle, and defined the existential unforgeability against quantum chosen message attack (EUF-qCMA). That is, a MAC is EUF-qCMA security if the adversary cannot generate $q + 1$ valid classical message-tag pairs after making q quantum chosen message queries.

3 Quantum secret state recovery attack for BBB MACs

In this section, we focus on quantum secret state recovery attacks against BBB MACs. In particular, we give polynomial-time attacks on PMACX, PMAC with parity, HPxHP, and HPxNP, and show that they can also be extended to some optimally secure MACs. Recovering the secret state leads to a forgery attack. We improve some previous superposition attacks by reducing the query complexity from exponential [53] to polynomial. See Table 1 for a comparison of attack complexity.

3.1 Attack strategy

In the following, we give a strategy for attacking BBB MACs using Simon algorithm. Our attack is described as the following procedure:

1. Construct a periodic function f corresponding to the targeted MAC, where the period s satisfies $f(x) = f(x \oplus s)$ for all x;
2. Run Simon algorithm for the above f to find s.

Recovering the period s allows to recover a key, distinguish, carry out forgery attacks, etc. Note that our strategy requires that the attacker has quantum oracle access to f.

Quantum linearization attacks. In fact, the core step of this attack strategy is to construct a periodic function. The common method (like those of [29, 30]) is invalid for BBB MACs. Here, we introduce a new technique. At Asiacrypt 2021 [36], Bonnetain et al. showed a quantum linearization attack against the EUF-qCMA security of MACs. Specifically, they use inputs of multiple blocks as an interface to a function hiding a linear structure. The main idea is to linearize the function by limiting the block inputs to obtain an affine function. Consider a function of l blocks x_1, x_2, \ldots, x_l with the form of $G(x_1, x_2, \ldots, x_l) = g_1(x_1) \oplus g_2(x_2) \oplus \cdots \oplus g_l(x_l) \oplus C$, where C is an independent constant, and the attacker has no access to the g_i ($1 \leq i \leq l$), which are independent random functions. Then they make each block x_i ($1 \leq i \leq l$) takes only one-bit value, and define the following function

$$F(x) = F(b_1 || \cdots || b_l) = G(0^{n-1} || b_1, \cdots, 0^{n-1} || b_l). \tag{3}$$

Now, F is an affine function of b_1, \ldots, b_l, and BV algorithm1 can distinguish it from a random function in polynomial time. In particular, the linearization attack can serve as an efficient method to construct a periodic function. For example, by linearizing the function $G'(x_1, x_2, \ldots, x_l) = g(G(x)) = g(g_1(x_1) \oplus g_2(x_2) \oplus \cdots \oplus g_l(x_l) \oplus C)$, we can obtain a periodic function $G'(x) = g(F(x))$, where $F(x)$ is an affine function, g is a random function and is unknown to the attacker.

3.2 Quantum secret state recovery attack for BBB MACs

From the above claim, we need to construct a periodic function based on the targeted MAC, and then Simon algorithm to recover the period is used. In what follows, taking PMAC with parity as an example, we give the detailed attack process and the complexity analysis for quantum adversaries.

1) **Secret state recovery attack for PMAC with parity.** PMAC with parity [56] is a variant of PMAC (Parallelizable Message Authentication Code). It uses four permutations $P_1, P_2, P_3, \text{ and } P_4$, which are in practice realized via a block cipher using four keys. PMAC with parity with a $2i$-block message is shown in Fig. 1, which can be written as

1 The BV algorithm [37] offers a polynomial speedup for finding the slope of an affine function over F_2^n.

8 Hong-Wei Sun et al.
where b is an arbitrary constant, and define the following function for the odd-block messages, with some arbitrary constants m^{0}_{2j-1} and m^{1}_{2j-1} such that $m^{0}_{2j-1} \neq m^{1}_{2j-1}$ ($1 \leq j \leq i$):

$$F(b) \equiv MAC(m^{b}_{1}, m^{b}_{2}, m^{b}_{3}, m^{b}_{4}, \ldots, m^{b}_{2i-1}, m_{2i})$$

$$= P_{3}(i \bigoplus_{j=1}^{i} P_{1}(m^{b}_{2j-1} \oplus 2^{j-1}L_{1}) \oplus i \bigoplus_{j=1}^{i} P_{2}(m^{j}_{2j} \oplus 2^{j-1}L_{2})$$

$$\oplus i \bigoplus_{j=1}^{i} P_{3}(m^{b}_{2j-1} \oplus m^{j}_{2j} \oplus 2^{j-1}L_{3}))$$

$$= P_{4}(f(b)), \quad \text{(5)}$$

where $b = b_{1}b_{2} \cdots b_{i}$ forms an i-bit input. It is easy to see that f is an affine function of b:

$$f(b) = i \bigoplus_{j=1}^{i} P_{1}(m^{b}_{2j-1} \oplus 2^{j-1}L_{1}) \oplus i \bigoplus_{j=1}^{i} P_{2}(m^{b}_{2j} \oplus 2^{j-1}L_{2}) \oplus i \bigoplus_{j=1}^{i} P_{3}(m^{b}_{2j-1} \oplus m^{j}_{2j} \oplus 2^{j-1}L_{3})$$

$$= i \bigoplus_{j=1}^{i}((P_{1}(m^{0}_{2j-1} \oplus 2^{j-1}L_{1}) \oplus P_{1}(m^{1}_{2j-1} \oplus 2^{j-1}L_{1})) \oplus b_{j} \oplus P_{1}(m^{0}_{2j-1} \oplus 2^{j-1}L_{1}))$$

$$\oplus i \bigoplus_{j=1}^{i}((P_{3}(m^{0}_{2j-1} \oplus m^{1}_{2j} \oplus 2^{j-1}L_{3}) \oplus P_{3}(m^{1}_{2j-1} \oplus m^{1}_{2j} \oplus 2^{j-1}L_{3})) \oplus b_{j} \oplus P_{3}(m^{0}_{2j-1} \oplus m^{1}_{2j} \oplus 2^{j-1}L_{3}))$$
Obviously, -1 easily: in particular, if

where the matrix P_{\cdot} if and only if

That is the function F is a periodic function of b. Since the “inner” function f is an affine function and P_4 is a permutation function, they do not contain any unwanted collisions. Therefore, according to Theorem 2, we can apply Simon algorithm to recover the secret state with a high probability.

Note that the subspace of periods will become larger as the i increases. In particular, if $i = n$, there will be a non-trivial period with probability around $1 - 1/e$. Recovering the secret state, i.e. the period s, allows to forge messages easily:
As for SUM-ECBC, these two steps can be repeated after only the number of quantum queries issued. The adversary then produces messages after only $2q' + 1$ queries to the cryptographic oracle.

2) Secret state recovery attack for PMACX. In 2015, Zhang [54] combined the construction of PMAC with parity and MDS-coding to design PMACX. It can be viewed as a generalization of PMAC with parity, whose "parity processing" part is replaced with a general MDS generator matrix multiplication. The message blocks M_1, M_2, \cdots, M_s are processed as follows: $X_i = X_i[1] \parallel X_i[2] \parallel \cdots \parallel X_i[m] = G \cdot M_i$ and then

$$PMACX(M_1, M_2, \cdots, M_s) = P_2(\bigoplus_{i=1}^{s} \bigoplus_{j=1}^{m} P_1(X_i[j] \oplus 2^{i-1}L_j)),$$

where the message blocks M_i are of size ln, G is an $m \times l$ matrix over $GF(2^n)$, and $L_j = P_4(j-1)$.

In a similar way, we define the following function using the given random constants m_i^0 and m_i^1:

$$PMACX(M_i^{b_i}, M_2^{b_2}, \cdots, M_s^{b_s}) = P_2 \left(A_m \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_s \end{pmatrix} \oplus C \right) \equiv f(b),$$

where the columns of A_m correspond to $\bigoplus_{i=1}^{m} (P_1(X_i^0 \oplus 2^{i-1}L_j) \oplus P_1(X_i^1 \oplus 2^{i-1}L_j))$, $C = \bigoplus_{i=1}^{s} \bigoplus_{j=1}^{m} P_1(X_i^0[j] \oplus 2^{i-1}L_j)$. When $s \geq n + 1$, we can obtain a periodic function, and break PMACX.

3) Secret state recovery attack for HPxHP and HPxNP. In 2019, Alexander and Eik proposed [55] two constructions based on permutations and universal hashing, providing a security proof up to $2^{2n/3}$ queries. The first structure (HPxHP) is a stateless deterministic scheme that uses two hash functions, whereas the second structure (HPxNP) is a nonce-based scheme with one hash-function call and a nonce. As shown in Fig. 2 and Fig. 3 respectively, these two MACs can be written as

$$HPxHP(m_1, m_2, \cdots, m_i) = P_1(k_1^i m_1 \oplus k_1^{i-1} m_2 \oplus \cdots \oplus k_1^1 m_i) \oplus P_2(k_2^i m_1 \oplus k_2^{i-1} m_2 \oplus \cdots \oplus k_2^1 m_i)$$
$$HPxNP(m_1, m_2, \cdots, m_i) = P_1(k_1^i m_1 \oplus k_1^{i-1} m_2 \oplus \cdots \oplus k_1^1 m_i \oplus N) \oplus P_2(N),$$

where P_1 and P_2 represent two permutations over $\{0,1\}^n$, h_1 and h_2 are two universal hash functions and N is a nonce. By fixing each block message as m_i^0
and m_1^1, we can recover with Simon algorithm a period such that
\[\bigoplus_i s_i k_1^{l+1-i} = 0 \quad \text{and} \quad \bigoplus_i s_i k_2^{l+1-i} = 0. \] (13)

This obviously provides a forgery attack, then we can recover multiple such periods and solve the corresponding equations to obtain K_1 and K_2.

Role of the nonce. In this paper, we focus on two different kinds of quantum access constructions: those that use a nonce (e.g. HPxNP) and those that do not (e.g. HPxHP). In the nonce case, we use a weaker security notion (following the IND-qCPA definition of [61, 29]) where the nonce is chosen randomly by the oracle, and not repeated. The oracle O_f is then $M \mapsto (N, MAC(N, M))$. If we can break the MAC construction in this model, the attack will also be valid with any reasonable CPA security definition. In this setting, applying the subroutine of Simon algorithm to the function f_N always gives a vector orthogonal to s, for any random choice of N. Therefore, we can still recover s after $O(n)$ steps, even if each step uses a different value of N.

4) **Secret state recovery attack for some optimally secure MACs.** In Ref. [49], Cogliati et al. introduced several constructions to build optimally secure variable-input-length (VIL) PRFs from secret random permutations, such as $mPMAC^+-f$, $mPMAC^+-p1$, $mPMAC^+-p2$, $mLightMAC^+-f$, $mLightMAC^+-p1$, $mLightMAC^+-p2$. They are secure up to 2^n queries, where n denotes the block size. Here only take $mPMAC^+-p2$ as an example:

\[\text{mPMAC}^+-p2(m_1, m_2, \ldots, m_l) = P_3(P_1(\bigoplus_i P_0(m_i \oplus \Delta_i) \oplus m_l) \oplus \bigoplus_{i=1}^{l-1} 2^{l-i} P_0(m_i \oplus \Delta_i) \oplus m_l) \] (14)

where $\Delta_i = 2^i P_0(0^n) \oplus 2^{2i} P_0(10^{n-1})$ and P is a random permutation. Let m_l be a fixed value, and define the following function for the $l-1$ block messages with some arbitrary constants m_1^0 and m_1^1 such that $m_1^0 \neq m_1^1$ (1 $\leq i \leq l-1$):

\[F(b) \equiv \text{mPMAC}^+-p2(m_1^{b_1}, m_2^{b_2}, \ldots, m_{l-1}^{b_{l-1}}, m_l). \] (15)
In that case, we can remark that there exists a period \(s \) such that \(A_m s = A'_m s = 0 \), where matrices \(A_m \) and \(A'_m \) have \(n \) rows and \(l - 1 \) columns. The columns of \(A_m \) correspond to \(P_0 (m^0_i \oplus \Delta_i) \oplus P_0 (m^1_i \oplus \Delta_i) \) and the columns of \(A'_m \) correspond to \(2^{l-i} (P_0 (m^0_i \oplus \Delta_i) \oplus P_0 (m^1_i \oplus \Delta_i)) \). Therefore, the period \(s \) can be recovered with \(O(n) \) quantum queries using \(O(n) \) qubits by Theorem 2.

4 Quantum key-recovery attack for BBB MACs

This section gives new quantum key-recovery attacks on SUM-ECBC-like MACs, such as SUM-ECBC, PolyMAC, GCM-SIV2, and 2K-ECBC-Plus, with \(O(2^{m/2} n) \) or \(O(2^{m/2} n) \) superposition queries. They achieve a quadratic acceleration of the query complexity of some previous attacks [53]. See Table 2 for a comparison of attack complexity.

<table>
<thead>
<tr>
<th>Construction</th>
<th># Keys</th>
<th>Provable classical security query bound</th>
<th>Query complexity of classical attack</th>
<th>[53]</th>
<th>ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUM-ECBC [45]</td>
<td>4</td>
<td>(O(2^{3n/4}))</td>
<td>(O(2^{3n/4}))</td>
<td>(O(2^{2n}))</td>
<td>(O(m+n^2))</td>
</tr>
<tr>
<td>PolyMAC [46]</td>
<td>4</td>
<td>(O(2^{3n/4}))</td>
<td>(O(2^{3n/4}))</td>
<td>(O(2^{2n}))</td>
<td>(O(m+n^2))</td>
</tr>
<tr>
<td>GCM-SIV2 [47]</td>
<td>6</td>
<td>(O(2^{3n/4}))</td>
<td>(O(2^{3n/4}))</td>
<td>(O(m+n^2))</td>
<td>(O(m+n^2))</td>
</tr>
<tr>
<td>2K-ECBC-Plus [48]</td>
<td>3</td>
<td>(O(2^{3n/4}))</td>
<td>(O(2^{3n/4}))</td>
<td>(O(m+n^2))</td>
<td>(O(m+n^2))</td>
</tr>
</tbody>
</table>

4.1 Attack strategy

The SUM-ECBC-like MACs follow a generic design paradigm called Double-block Hash-then-Sum (in short DbHtS) [48]. In this paradigm, it computes a double block hash on the message and then sums the encrypted output of these two hash blocks:

\[
DbHtS(M) = G(M) \oplus H(M).
\]

Note that MACs of single-chain, such as ECBC-MAC, can be broken by using the quantum period finding algorithm [53, 29]. Considering the single-chain \(G \) (resp. \(H \)), we can use the same method \(C \) [29] to construct a period function \(g(b, x) = C^G (b, x) \) (resp. \(h(b, x) = C^H (b, x) \)). The period of \(g \) (resp. \(h \)) is denoted as \(1 \| s_1 \) (resp. \(1 \| s_2 \)). In particular, the period value \(s \) can be determined by the underlying block cipher with key \(k \) and a fixed pair of messages \((\alpha_0, \alpha_1)\), i.e., \(s_1 = E_{k_1} (\alpha_0) \oplus E_{k_1} (\alpha_1) \) and \(s_2 = E_{k_2} (\alpha_0) \oplus E_{k_2} (\alpha_1) \). Then, applying the method \(C \) to \(DbHtS = G \oplus H \) will give

\[
C^{DbHtS} (b, x) = C^G (b, x) \oplus C^H (b, x) = g(b, x) \oplus h(b, x).
\]
More precisely, we define the following function, with two arbitrary constants α_0 and α_1 such that $\alpha_0 \neq \alpha_1$:

$$f(u, x) = C^{DbHtS}(0, x) \oplus C^{DbHtS}(1, x \oplus E_u(\alpha_0) \oplus E_u(\alpha_1))$$

$$\quad \oplus h(1, x \oplus E_u(\alpha_0) \oplus E_u(\alpha_1)).$$

In particular, this function is periodic if and only if $u = k_1/k_3$. Then, we can apply the Grover-meets-Simon algorithm to recover k_1/k_3.

4.2 Key recovery attack for SUM-ECBC-like MACs

1) **Key recovery attack for SUM-ECBC.** SUM-ECBC [45] was presented by Yasuda in 2010, inspired by MAC constructions summing two encrypted CBC-MACs. It uses a block cipher keyed with four independent keys in $\{0, 1\}^m$, denoted as $E_1, E_2, E_3,$ and E_4. For a message $M = m_1 \parallel m_2$, SUM-ECBC is defined as (see Fig. 4):

$$\text{SUM-ECBC}(m_1, m_2) = E_2(E_1(E_1(m_1) \oplus m_2)) \oplus E_4(E_3(E_3(m_1) \oplus m_2)).$$

Here, we only describe the modes with full-block messages for simplicity, the attacks can trivially be extended to the more general modes with arbitrary inputs.

In what follows, we present a new quantum key recovery attack on SUM-ECBC using the Grover-meets-Simon algorithm and give the complexity analysis for quantum adversaries. We first focus on the partial key recovery.

Partial key recovery. We fix two arbitrary message blocks α_0, α_1 with $\alpha_0 \neq \alpha_1$, and define the following function

$$\phi : \{0, 1\} \times \{0, 1\}^n \rightarrow \{0, 1\}^n$$

$$b, x \rightarrow \text{SUM-ECBC}(\alpha_b \parallel x) = g(b, x) \oplus h(b, x).$$
where \(g(b, x) = E_2(E_1(\alpha_1 \oplus x)) \), \(h(b, x) = E_4(E_3(\alpha_1 \oplus x)) \). It is easy to see that the function \(g \) (resp. \(h \)) satisfies \(g(0, x) = g(1, x \oplus s_1) \) (resp. \(h(0, x) = h(1, x \oplus s_2) \)), where \(s_1 = E_1(\alpha_0) \oplus E_1(\alpha_1) \), \(s_2 = E_2(\alpha_0) \oplus E_3(\alpha_1) \). By the randomness of \(k_1 \) and \(k_3 \), the probability of \(s_1 = s_2 \) is negligible. To realize partial key recovery with the Grover-meets-Simon algorithm, we define the following function (see Fig. 5)

\[
\begin{align*}
\begin{array}{l}
f : \{0,1\}^m \times \{0,1\}^n \to \{0,1\}^n \\
u, x \mapsto \text{SUM-ECBC}(\alpha_0, x) \\
& \oplus \text{SUM-ECBC}(\alpha_1, x \oplus E_u(\alpha_0) \oplus E_u(\alpha_1)).
\end{array}
\end{align*}
\]

In particular, this function is periodic if and only if \(u = k_1/k_3 \), and we take \(u = k_1 \) as an example:

\[
\begin{align*}
f(k_1, x) &= \text{SUM-ECBC}(\alpha_0, x) \oplus \text{SUM-ECBC}(\alpha_1, x \oplus E_1(\alpha_0) \oplus E_1(\alpha_1)) \\
&= g(0, x) \oplus h(0, x) \oplus g(1, x \oplus E_1(\alpha_0) \oplus E_1(\alpha_1)) \oplus h(1, x \oplus E_1(\alpha_0) \oplus E_1(\alpha_1)) \\
&= h(0, x) \oplus h(1, x \oplus E_1(\alpha_0) \oplus E_1(\alpha_1)).
\end{align*}
\] (22)

The third equation follows from the fact that \(g \) has a period \(1\|s_1 \). Moreover,

\[
\begin{align*}
f(k_1, x') &= f(k_1, x) \\
&= h(0, x') \oplus h(1, x' \oplus E_1(\alpha_0) \oplus E_1(\alpha_1)) \\
&= h(0, x) \oplus h(1, x \oplus E_1(\alpha_0) \oplus E_1(\alpha_1)) \\
&= E_4(E_3(E_3(\alpha_0) \oplus x') \oplus E_2(E_4(E_3(\alpha_1) \oplus x \oplus E_1(\alpha_0) \oplus E_1(\alpha_1))) \\
&= E_4(E_3(E_3(\alpha_0) \oplus x) \oplus E_2(E_4(E_3(\alpha_1) \oplus x \oplus E_1(\alpha_0) \oplus E_1(\alpha_1))) \\
&= \begin{cases} x' = x \\
\text{x'} = x \oplus E_1(\alpha_0) \oplus E_1(\alpha_1) \oplus E_3(\alpha_0) \oplus E_3(\alpha_1).
\end{cases}
\end{align*}
\] (23)

Therefore, the function \(f(k_1, x) \) has the period \(s = s_1 \oplus s_2 \), where \(s_1 = E_1(\alpha_0) \oplus E_1(\alpha_1) \), \(s_2 = E_2(\alpha_0) \oplus E_3(\alpha_1) \). Furthermore, the parameter \(\varepsilon(f) := \max_{(u, t) \in \{0,1\}^m \times \{0,1\}^n \setminus \{0, U_s\}} P_{Rx}[f(u, x) = f(u, x \oplus t)] \) is bounded with overwhelming probability, assuming that \(E \) behaves as a random permutation. We will prove \(\varepsilon(f) < 1/2 \) with overwhelming probability. Indeed, if \(\varepsilon(f) > 1/2 \), there exists \((u, t) \notin \{0, U_s\} \) such that \(P_{Rx}[f(u, x) = f(u, x \oplus t)] > 1/2 \), i.e.,

\[
\left[\begin{array}{l}
\begin{array}{l}
E_2(E_1(\alpha_0) \oplus x) \\
\cap \begin{array}{l}
\quad E_1(\alpha_1) \\
\quad \oplus E_2(\alpha_0) \\
\quad \oplus E_3(\alpha_1)
\end{array}
\end{array}
\end{array}
\right] > 1/2.
\] (24)
This corresponds to a higher order differential for \(f(u, x) \) with probability 1/2, which only happens with negligible probability for a random choice of \(E \) [62]. Then Grover-meets-Simon algorithm can recover \(k_1 \) and \(k_3 \) with \(O(2^{m/2}n) \) quantum queries and \(O(m + n^2) \) qubits, using Theorem 3.

We now turn to the full key recovery.

Full key recovery. For the full key recovery, we fix two arbitrary message blocks \(\alpha_0, \alpha_1 \), with \(\alpha_0 \neq \alpha_1 \), and we define the following function (see Fig. 6)

\[
\varphi : \{0, 1\}^m \times \{0, 1\} \times \{0, 1\}^m \rightarrow \{0, 1\}^n
\]

\[
u, b, x \mapsto \text{SUM-ECBC}(\alpha_b || x) \oplus E_\alpha(E_1(\alpha_b \oplus x)).
\] (25)

In particular, we have

\[
|b\rangle \xrightarrow{U_\alpha} \text{MAC} \xrightarrow{E_1} |b\rangle
\]

\[
|x\rangle \xrightarrow{E_\alpha} \text{MAC} \xrightarrow{E_1} |x\rangle
\]

\[
|0\rangle \xrightarrow{E_\alpha} \text{MAC} \xrightarrow{E_1} |0\rangle \xrightarrow{\varphi(u, b, x)}
\]

Fig. 6: Grover-meets-Simon’s function \(\varphi \) for ECBC-MAC.

\[
\begin{aligned}
\varphi(k_2, b', x') &= \varphi(k_2, b, x) \iff E_2(E_1(E_1(\alpha_{b'}) \oplus x')) + E_4(E_3(E_3(\alpha_{b'}) \oplus x')) + E_2(E_1(\alpha_{b'}) \oplus x') \\
&= E_2(E_1(\alpha_b \oplus x)) + E_4(E_3(\alpha_b \oplus x)) + E_2(E_1(\alpha_b \oplus x)) \\
&\iff E_4(E_3(E_3(\alpha_{b'}) \oplus x')) = E_4(E_3(\alpha_{b'}) \oplus x) \\
&\iff \begin{cases}
 x' \oplus x = 0, & \text{if } b' = b \\
 x' \oplus x = E_3(\alpha_0) \oplus E_3(\alpha_1), & \text{if } b' \neq b.
\end{cases}
\end{aligned}
\] (26)

Therefore, this function is periodic if and only if \(u = k_2 \). From the above analysis, we can show that \(\varepsilon(\varphi) \leq 1/2 \) with overwhelming probability, and running the Grover-meets-Simon algorithm with the function \(f \) returns \(k_2 \). Then, we can obtain \(k_4 \) in the same way.

Forgery attack. Finally, we conclude that \(\varepsilon(f) \leq 1/2 \) and \(\varepsilon(\varphi) \leq 1/2 \), unless the SUM-ECBC has higher order differentials with probability 1/2. If \(E_k \) is a random permutation, these differentials are only found with negligible probability. Therefore, we can apply the Grover-meets-Simon algorithm to recover \(k_1, k_2, k_3 \), and \(k_4 \) following Theorem 3. This allows to create forgeries as follows:

1. Query the tag \(T_1 \) of \(\alpha_0 || m_1 \) for an arbitrary block \(m_1 \);
2. Query the tag \(T_2 \) of \(\alpha_1 || m_1 \oplus E_1(\alpha_0) \oplus E_1(\alpha_1) \);
3. Query the tag \(T_3 \) of \(\alpha_0 || m_1 \oplus E_1(\alpha_0) \oplus E_1(\alpha_1) \oplus E_3(\alpha_0) \oplus E_3(\alpha_1) \);
4. The new tag \(T_1 \oplus T_2 \oplus T_3 \) is valid for \(\alpha_1 || m_1 \oplus E_3(\alpha_0) \oplus E_3(\alpha_1) \).
To break the formal notion of EUF-qCMA security, we need to produce \(q+1 \) valid classical message-tag pairs with only \(q \) queries to the oracle of SUM-ECBC. Let \(q' = O(2^{m/2n}) \) denote the number of quantum queries made to recover \(k_1, k_2, k_3, \) and \(k_4 \). The attacker will repeat the forgery step \(q' + 1 \) times to produce \(4q' + 4 \) message-tag pairs, after a total of \(4q' + 3 \) classical and quantum queries to the MAC oracle. Therefore, SUM-ECBC is broken by a quantum existential forgery attack.

2) **Key recovery attack for PolyMAC.** PolyMAC [46] is a Double-block Hash-then-Sum construction based on the polynomial evaluation. It uses two hashing keys \(k_1, k_3 \in \{0, 1\}^n \) and two encryption keys \(k_2, k_4 \in \{0, 1\}^m \). More precisely, the PolyMAC algorithm with two-block messages is defined as (see Fig. 7):

\[
\text{PolyMAC}(m_1, m_2) = E_2(k_1^2 m_1 \oplus k_3 m_2) \oplus E_4(k_2^2 m_1 \oplus k_3 m_2). \quad (27)
\]

![Fig.7: PolyMAC with a two-block message.](image)

We now give the quantum attacks to realize the partial key recovery and full key recovery, respectively.

Partial key recovery. For a two-block message, we use the same \(f \) as in the SUM-ECBC attack, with fixed blocks \(\alpha_0 \) and \(\alpha_1 \):

\[
f : \{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\}^n \\
u, x \mapsto \text{PolyMAC}(\alpha_0, x) \oplus \text{PolyMAC}(\alpha_1, x \oplus u(\alpha_0 \oplus \alpha_1)), \quad (28)
\]

where PolyMAC\((\alpha_0, x) = E_2(k_1^2 \alpha_0 k_1 x) \oplus E_4(k_2^2 \alpha_0 k_3 x)\). It satisfies \(f(k_1 / k_3, x) = f(k_1 / k_3, x \oplus k_1(\alpha_0 \oplus \alpha_1) \oplus k_3(\alpha_0 \oplus \alpha_1)) \), for any \(x \), and \(\varepsilon(f) \leq 1/2 \) with overwhelming probability if \(E \) is a random function. Moreover (take \(u = k_1 \) as an example):

\[
f(k_1, x) = \text{PolyMAC}(\alpha_0, x) \oplus \text{PolyMAC}(\alpha_1, x \oplus k_1(\alpha_0 \oplus \alpha_1)) \\
= g(0, x) \oplus h(0, x) \oplus g(1, x \oplus k_1(\alpha_0 \oplus \alpha_1)) \oplus h(1, x \oplus k_1(\alpha_0 \oplus \alpha_1)) \\
= h(0, x) \oplus h(1, x \oplus k_1(\alpha_0 \oplus \alpha_1))
\]
where \(\text{PolyMAC}(\alpha_b, x) = g(b, x) = h(b, x) = E_3(k_3^2 \alpha_b \oplus k_3 x) \) and \(h(b, x) = E_4(k_3^2 \alpha_b \oplus k_3 x) \). Here the third and fourth equations follow from the fact that \(g \) has a period \(1 \| k_1 (\alpha_0 \oplus \alpha_1) \) and \(h \) has a period \(1 \| k_3 (\alpha_0 \oplus \alpha_1) \). It is easy to see that the function \(f \) is periodic if and only if \(u = k_1 / k_3 \). Therefore, an application of the Grover-meets-Simon algorithm returns \(k_1 \) and \(k_3 \), with complexity \(O(2^{n/2}) \).

Full key recovery. The above attack of recovering partial keys can be generalized to be the following attack. For the full key recovery, we fix two arbitrary message blocks \(\alpha_0, \alpha_1 \), with \(\alpha_0 \neq \alpha_1 \), and we define the following function

\[
\varphi: \{0, 1\}^m \times \{0, 1\} \times \{0, 1\}^n \rightarrow \{0, 1\}^n
\]

\[
\quad u, b, x \mapsto \text{PolyMAC}(\alpha_b \| x) \oplus E_u(k_2^2 \alpha_b \oplus k_1 x). \tag{30}
\]

In particular, we have

\[
\varphi(k_2, b', x') = \varphi(k_2, b, x) \iff E_2(k_2^2 \alpha_b \oplus k_1 x') \oplus E_4(k_3^2 \alpha_b \oplus k_3 x') \oplus E_2(k_2^2 \alpha_b \oplus k_1 x') = E_2(k_2^2 \alpha_b \oplus k_1 x) \oplus E_4(k_3^2 \alpha_b \oplus k_3 x) \oplus E_2(k_1^2 \alpha_b \oplus k_1 x)
\]

\[
\iff E_4(k_3^2 \alpha_b \oplus k_3 x') = E_4(k_3^2 \alpha_b \oplus k_3 x)
\]

\[
\iff \begin{cases}
 x' \oplus x = 0, & \text{if } b' = b; \\
 x' \oplus x = k_3 (\alpha_0 \oplus \alpha_1), & \text{if } b' \neq b.
\end{cases} \tag{31}
\]

Note that this function satisfies \(\varphi(k_2, 0, x) = \varphi(k_2, 1, x \oplus k_3 (\alpha_0 \oplus \alpha_1)) \) and \(\varepsilon(\varphi) \leq 1/2 \), with the same arguments as previously. Therefore, we can apply the Grover-meets-Simon algorithm to recover \(k_1 \), \(k_2 \), \(k_3 \), and \(k_4 \). Again, this leads to a forgery attack.

3) Key recovery attack for GCM-SIV2. GCM-SIV2 is a provably secure authenticated encryption mode designed by Iwata and Minematsu [47] as a double-block-hash version of GCM-SIV. For simplicity, we focus on the authentication part of GCM-SIV2, and the tag with an \(l \)-block message and a nonce \(N \) is defined as follows

\[
\text{GCM-SIV2}(N, M) = E_1(\Sigma(M)) \oplus E_2(\Theta(M)) \| E_3(\Sigma(M)) \oplus E_4(\Theta(M)), \tag{32}
\]

where

\[
\Sigma(M) = N \oplus l \| H_1 \oplus \bigoplus_{i=1}^{l} m_i \| H_1^{l+2-i}
\]

\[
\Theta(M) = N \oplus l \| H_2 \oplus \bigoplus_{i=1}^{l} m_i \| H_2^{l+2-i}. \tag{33}
\]

The structure of the authentication part of GCM-SIV2 is similar to the structure of SUM-ECBC, where the block cipher calls \(E_1 \) and \(E_3 \) are replaced by multiplication by hash keys \(H_1 \) and \(H_2 \). Thus, we can essentially repeat the above
attack to recover the full key, with $O(2^{n/2}n)$ quantum queries and $O(m + n^2)$ qubits.

4) Key recovery attack for 2K-ECBC−Plus. 2K-ECBC−Plus [48] is the sequential mode of block cipher-based instantiation of two-keyed DbHtS. In full generality, there are three keys k_1, k_2, and k_3. The two-block message m_1, m_2 is processed as

$$2K-ECBC−Plus(m_1, m_2) = E_3(fix0(E_1(E_1(m_1) \oplus m_2))) \oplus E_3(fix1(E_2(E_2(m_1 \oplus m_2))))$$

where the functions $fix0$ and $fix1$ take an n-bit binary string x and return x with its least significant bit set to 0 and 1 respectively. This falls into our framework, and then we can recover k_1, k_2, and k_3 by applying the Grover-meets-Simon algorithm.

5 Conclusion

In this paper, we give secret state recovery and key recovery attacks for some BB-B MACs in a quantum setting, leading to forgery attacks. The first kind of attack costs $O(n)$ quantum queries by using Simon algorithm, where n is the size of the block. Notice that our secret recovery attack for HPxHP and HPxNP can also recover the full key $K = (k_1, k_2)$. It gives an exponential speedup compared with the classical attack. The second kind of attack costs $O(2^{n/2}n)$ quantum queries by applying Grover-meets-Simon algorithm. This leads to a better analysis of BBB MACs, that is, the complexity of some previous key-recovery attacks reduces from $O(2^n n)$ to $O(2^{n/2}n)$. Our results show that these MAC constructions cannot achieve security beyond the birthday bound of $O(2^{n/2})$ in the quantum model.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 62272056, 61972048, 61976024).

References