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Abstract. In this paper, we investigate the security of several recent
MAC constructions with provable security beyond the birthday bound
(called BBB MACs) in the quantum setting. On the one hand, we give
periodic functions corresponding to targeted MACs (including PMACX,
PMAC with parity, HPxHP, and HPxNP), and we can recover secret s-
tates using Simon algorithm, leading to forgery attacks with complexity
O(n). This implies our results realize an exponential speedup compared
with the classical algorithm. Note that our attacks can even break some
optimally secure MACs, such as mPMAC+-f, mPMAC+-p1, mPMAC+-
p2, mLightMAC+-f, etc. On the other hand, we construct new hidden
periodic functions based on SUM-ECBC-like MACs: SUM-ECBC, Poly-
MAC, GCM-SIV2, and 2K-ECBC−Plus, where periods reveal the infor-
mation of the secret key. Then, by applying Grover-meets-Simon algo-
rithm to specially constructed functions, we can recover full keys with
O(2n/2n) or O(2m/2n) quantum queries, where n is the message block
size and m is the length of the key. Considering the previous best quan-
tum attack, our key-recovery attacks achieve a quadratic speedup.

Keywords: Beyond-Birthday-Bound · MAC · Quantum cryptanalysis ·
Quantum algorithm

1 Introduction

In recent years, a variety of fast quantum algorithms have been proposed for
solving equations [1–3], dimensionality reduction [4–8], linear regression [9–13],
anomaly detection [14, 15], classification [16–18], and so on [19–21]. The po-
tential applications of quantum computation are expanding and deepening in
various fields. Cryptography would undoubtedly be seriously impacted. For ex-
ample, asymmetric primitives (e.g. RSA, ECC) would suffer from devastating
attacks due to Shor’s algorithm [22]. In symmetric cryptography, it has long
been thought that the only threat was the quantum acceleration on exhaustive
search [23], which leads to the fact that the best security a key of length n can
offer is 2n/2 [24]. This was changed with the appearance of a Simon-based attack
proposed by Kuwakado and Morii [25, 26], that is, they proved Even-Mansour
? Corresponding author: Fei Gao.
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and 3-round Feistel constructions would be broken in polynomial time. Sever-
al years later, more generic constructions were broken using different quantum
algorithms, including the Simon-based attacks [27–31], the Grover-meets-Simon-
based attacks [32–34], and the Bernstein-Vazirani (BV)-based attacks [35–38],
etc.

Message Authentication Code (MAC) is a fundamental symmetric-key prim-
itive to ensure the authenticity of data. Most popular MACs such as CBC-MAC
[39], CMAC [40], OMAC [41], and GMAC [42], only achieve security up the
birthday bound, i.e., the number of queries by the adversary is bounded by 2n/2,
where n is the state size. However, the birthday-bound security might not be
enough in practice, especially when a MAC is instantiated with a lightweight
block cipher such as PRESENT [43], PRINCE [44], and GIFT [45] whose block
size is small. In such a case, the birthday bound becomes 232 as n = 64 and is
vulnerable in certain practical applications. To go beyond the birthday bound,
a series of block cipher-based MACs, which are secure for above 2n/2 queries
(called BBB MACs), have been proposed, including SUM-ECBC [46], PolyMAC
[47], GCM-SIV2 [48], 2K-ECBC−Plus [49], and some optimally secure MACs
(such as mPMAC+-f, mLightMAC+-f, which are secure up to 2n queries) [50],
etc.

Previous attacks. At CRYPTO 2016, Kaplan et al. [29] showed that several
widely used modes of operation for authentication and authenticated encryp-
tion, such as CBC-MAC [39], GMAC [42], PMAC [51], and some CAESAR
candidates, could be broken by Simon algorithm. Recently, Bonnetain et al. [37]
further introduced quantum forgery attacks on PolyMAC [47], GCM-SIV2 [48],
LightMAC+ [52], PMAC-TBC3k [53], etc., with polynomial quantum queries by
applying Simon algorithm. The crucial point is to construct a periodic function
corresponding to the targeted block cipher, and then use Simon algorithm to
recover the period. Recovering the period, which is a secret state, then allows
to break the confidentiality or authenticity of these cryptographic primitives by
recovering a key or distinguishing them from a random function. This kind of
Simon-based attack provides an exponential speedup in the number of queries
compared to classical attacks.

In addition to the Simon algorithm, the Grover-meets-Simon algorithm is also
used to attack MACs. At ASIANCRYPT 2017, Leander and May used combi-
nations of Simon algorithm and Grover algorithm to design the key recovery
attack on FX-construction. The main idea is to construct a special period func-
tion with two inputs based on the targeted construction, say f(u, x). That is,
when the first input u equals a special value k, the function has a hidden period
s such that f(k, x) = f(k, x ⊕ s) for all x. Here we call this kind of function a
hidden periodic function. Leander and May proposed to use a Grover search for
u ∈ {0, 1}m. In order to test if a guess of u is the good one, they ran Simon
algorithm with the function f(u, x), which is periodic of period s if and only if
u = k, and random otherwise. Thus, Grover acts as an outer loop with running
time roughly 2m/2, and Simon acts as an inner loop with polynomial complex-
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ity. With this technique, Guo et al. [54] proposed for the first time quantum
secret state recovery and key recovery attacks for a series of BBB MACs that
were not vulnerable to the Simon algorithm, leading to forgery attacks. Unlike
the exponential speedup of the Simon-based attack, these attacks only provide a
polynomial speedup compared with classical attacks, i.e., the complexity reduces
from O(23n/4) to O(2n/2).

Our contributions. Till now, for most BBB MACs, there are no successful Si-
mon attacks (which generally achieve exponential speedup). Only Grover-meets-
Simon attacks (which achieve polynomial speedup) were given for some BBB
MACs. In this work, we further study the BBB MACs’ security in quantum
circumstances and answer the following two questions. Table 1 summarizes our
main results and comparison with previous works.

1. Can we give Simon attacks for BBB MACs?
For some MACs such as PMACX, PMAC with parity, HPxHP, HPxNP,
etc., we give periodic functions corresponding to targeted MACs and then
utilize Simon algorithm to recover the secret state, which leads to a success-
ful forgery attack. The proposed attacks need only O(n) quantum queries
and realize an exponential speedup compared with their classical versions.
Besides, our attacks are more efficient than some related results, i.e., it ex-
ponentially improves previous quantum attacks (with complexity O(2n/2))
[54] on mPMAC+-f, mPMAC+-p1, and mPMAC+-p2 from the viewpoint
of quantum query complexity.

2. Are there any better Grover-meets-Simon attacks for those BBB MACs
which were attacked in Ref. [54]?
For SUM-ECBC-like MACs such as SUM-ECBC, PolyMAC, GCM-SIV2,
and 2K-ECBC-Plus, we construct new condition-period functions based on
targeted MACs, where periods reveal the information of the secret key.
Therefore, we can apply Grover-meets-Simon algorithm to recover the se-
cret key with a complexity of O(2n/2n) or O(2m/2n), where n is the message
block size and m is the length of the key of the underlying block cipher.
For the case of usual block ciphers (i.e., m = O(n)), our result achieves a
quadratic speedup compared with the previous quantum attacks.

Organization. The paper is organized as follows. In Sect. 2, we introduce some
basic notations, the quantum algorithms (Grover, Simon, and Grover-meets-
Simon algorithms) used in this paper, and the quantum security of MACs. In
Sect. 3, we propose secret state recovery attacks on several BBB MACs by ap-
plying Simon algorithm. In Sect. 4, we give some new quantum key-recovery
attacks by applying the Grover-meets-Simon algorithm. Finally, we conclude in
Sect. 5.
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Table 1: Summary of the main results, where n is the block size, and m is the
length of the key of the underlying block cipher.

Goal Construction # Keys3Provable classical security query bound [54] ours
queries qubits algorithm queries qubits algorithm

SR1

mPMAC+-f [50] 5 Ω(2n) [50] O(2n/2n) O(n2) Grover-meets-Simon O(n) O(n) Simon
mPMAC+-p1 [50] 5 Ω(2n) [50] O(2n/2n) O(n2) Grover-meets-Simon O(n) O(n) Simon
mPMAC+-p2 [50] 5 Ω(2n) [50] O(2n/2n) O(n2) Grover-meets-Simon O(n) O(n) Simon
mLightMAC+-f [50] 5 Ω(2n) [50] - - - O(n) O(n) Simon
mLightMAC+-p1 [50] 5 Ω(2n) [50] - - - O(n) O(n) Simon
mLightMAC+-p2 [50] 5 Ω(2n) [50] - - - O(n) O(n) Simon

PMACX [55] 2 Ω(2n/2) [55] - - - O(n) O(n) Simon
HPxHP [56] 2 Ω(22n/3) [56] - - - O(n) O(n) Simon
HPxNP [56] 2 Ω(22n/3) [56] - - - O(n) O(n) Simon

PMAC with parity [57] 4 Ω(2n/2) [57] - - - O(n) O(n) Simon

KR2

SUM-ECBC [46] 4 Ω(23n/4)[47] O(2mn) O(m+ n2) Grover-meets-Simon O(2m/2n) O(m+ n2) Grover-meets-Simon
PolyMAC [47] 4 Ω(23n/4)[47] O(2(m+n)/2n) O(m+ n2) Grover-meets-Simon O(2n/2n) O(n2) Grover-meets-Simon
GCM-SIV2 [48] 6 Ω(22n/3)[48] O(2(m+n)/2n) O(m+ n2) Grover-meets-Simon O(2n/2n) O(n2) Grover-meets-Simon

2K-ECBC−Plus [49] 3 Ω(22n/3) [49] O(2mn) O(m+ n2) Grover-meets-Simon O(2m/2n) O(m+ n2) Grover-meets-Simon

1 secret state recovery
2 key recovery
3 the number of block cipher keys used in the construction

2 Preliminaries

Let F2 denote the prime field with two elements 0 and 1. And the n-dimensional
vector space of F2 is denoted by Fn2 . We let “⊕ ” denote the XOR (addition in
Fn2 ), “ � ” denote multiplication in Fn2 , and “ · ” denote the scalar product of
bit-strings seen as n-bit vectors. Let |X| be the number of the elements in set
X.

2.1 Quantum algorithm

In the following, we review Grover, Simon, and Grover-meets-Simon algorithms
used in this paper. We refer to [34, 58] for a broader presentation.

1) Grover algorithm. Grover algorithm [23] is a well-known quantum algo-
rithm that achieves quadratic speedups on database searching tasks compared
with classical algorithms. Precisely, it solves the following problem.

Grover problem. Let f : X → {0, 1} be a test function. Given oracle to f , find
x ∈ X such that f(x) = 1.

Classically, one preimage is expected to be found in time (and oracle access to
f) O( |X|e ) if there are e preimages of 1 (|{x : f(x) = 1}| = e). Quantumly, Grover

algorithm finds one preimage in time (and oracle access to Of ) O(
√
|X|
e ). Grover

algorithm works first by producing a uniform superposition |ψ〉 = 1√
|X|

Σx∈X |x〉.
Next, it repeatedly applies the unitary operator (2|ψ〉〈ψ| − I)Of on the state
|ψ〉. The process increases the amplitude of success roughly by a constant on
each iteration. Then a final measurement will produce a good state with an
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overwhelming probability. Generally, the checking procedure can be done only
with some errors. The test function always returns 1 for elements in the target
set, but for elements not in the target set, it also returns 1 with a negligible
probability. The following theorem tackles this case.

Theorem 1 [59, 54]. Let X ∈ {0, 1}m, p0 := e
2m and f : {0, 1}m → {0, 1} be a

test function such that {
Pr[f(x) = 1] = 1 if x ∈ X,
Pr[f(x) = 1] ≤ p1 if x /∈ X. (1)

Assume the quantum implementation of f(x) costs O(n) qubits. Then Grover
algorithm with t = d π

4arcsin
√
p0
e quantum queries to f(x) and O(m+ n) qubits

will output an x ∈ X with probability at least p0
p0+p1

[1 − (p1p0 +
√
p0 + p1 +

2
√
1 + p1

p0

3
p0)

2].

In particular, if e ≤ 2 and p1 ≤ 1
22m , the error decreases exponentially with

m.

2) Simon algorithm. Simon algorithm [60] gives the first example of an ex-
ponential quantum time speedup relative to an oracle. That is, it can find the
period of a periodic function in polynomial time.

Simon problem. Given a function f : {0, 1}n → {0, 1}d and promise that there
exists s ∈ {0, 1}n such that for any (x, y) ∈ {0, 1}n, [f(x) = f(y)] ⇔ [x ⊕ y ∈
{0, s}], the goal is to find s.

This problem can be solved classically by searching collisions with O(2n/2)
queries. As the quantum superposition of queries of form Σx,yλx,y|x〉|y〉 7→
Σx,yλx,y|x〉|f(x)⊕y〉 is introduced into Simon algorithm, its query complexity is
only O(n). After repeating the following subroutine (Algorithm 1) cn times, we
can obtain s by solving a system of linear equations. The algorithm can be ap-
plied to the problem of which condition “f(x) = f(y) if and only if x⊕y ∈ {0, s}”
is replaced with the weaker condition “f(x ⊕ s) = f(x) for any x”, under the
assumption that f satisfies some good properties. Concretely, Kaplan et al. [29]
have proved the following theorem.

Theorem 2 [29]. Let ε(f, s) := max
t∈{0,1}n\{0,s}

Prx[f(x) = f(x ⊕ t)]. If ε(f, s) ≤

p0 < 1, then Simon algorithm returns s with cn queries and O(n + d) qubits,
with probability at least 1− (2( 1+p02 )c)n.

3) Grover-meets-Simon algorithm. In Ref. [34], Leander and May proposed
to combine Simon algorithm with Grover algorithm (i.e., Grover-meets-Simon

1 When there is no ambiguity, we write 0 for the vector (0, 0, · · · , 0) of appropriate
length.
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Algorithm 1 Quantum subroutine of Simon algorithm.
Input: n, Of : |x〉|0〉 7→ |x〉|f(x)〉
Output: y orthogonal to s
1: Applying a Hadamard transform H⊗n to the initial state |ψ0〉 = |0〉|0〉 1 (a (n+d)-

qubit state) to obtain the quantum superposition

|ψ1〉 =
1√
2n
Σx∈Fn2 |x〉|0〉.

2: A quantum query to the function f maps to the state

|ψ2〉 =
1√
2n
Σx∈Fn2 |x〉|f(x)〉.

3: Measuring the second register gives a value f(z) and the first register is collapsed
to

|ψ3〉 =
1√
2
(|z〉+ |z ⊕ s〉).

4: Applying again the Hadamard transform H⊗n to the first register yields

1√
2

1√
2n
Σy∈Fn2 (−1)y·z(1 + (−1)y·s)|y〉.

5: Measuring the state yields a value of y, which meets that y · s = 0.

algorithm) to attack the construction with whitening keys. This algorithm solves
the following problem.

Grover-meets-Simon problem. Let f : {0, 1}m × {0, 1}n → {0, 1}d be a
function such that there exist some u ∈ {0, 1}m such that f(u, ·) hide a non-
trivial period su. Find any tuple (u, su) ∈ Us, where Us := {(u, su) : u ∈
{0, 1}m, su is the period of f(u, ·)}.

Leander and May define a Grover search over u ∈ {0, 1}m, where they test
for the periodicity of every f(u, ·) via Simon algorithm. Thus, they have Grover
algorithm as an outer loop with a running time of roughly 2m/2, and Simon
algorithm as an inner loop with polynomial complexity. The following theorem
shows the effect of the parameter

ε(f) := max
(u,t)∈{0,1}m×{0,1}n\{0,Us}

Prx[f(u, x) = f(u, x⊕ t)] (2)

on the success probability of the Grover-meets-Simon algorithm.

Theorem 3 [59, 54]. Let c be a positive integer, p0 := e
2m and p1 := [2 ·

( 1+ε(f)2 )c]n. Then Grover-meets-Simon algorithm with d π
4arcsin

√
p0
e·cn quantum
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queries to f and O(m + cn2 + cdn) qubits outputs a tuple (u, su) ∈ Us with

probability at least (1−p1)p0
p0+p1

[1− (p1p0 +
√
p0 + p1 + 2

√
1 + p1

p0

3
p0)

2].

In particular, if ε(f) ≤ 1/2 and e ≤ 2, the error decreases exponentially with
n. In the case d = m = n, the Grover-meets-Simon algorithm solves this problem
with O(2n/2n) quantum queries and O(n2) qubits.

2.2 Quantum security of MACs

Message Authentication Code (MAC) is a fundamental symmetric-key primitive
to ensure the authenticity of data. A MAC system contains two algorithms: a
MAC signing algorithm S(k,m) and a MAC verification algorithm V (k,m, T ).
Here k denotes the secret key, m denotes a message and T denotes the MAC
tag. Classically, a MAC system is considered to be secure if an efficient attacker
capable of mounting a chosen message attack cannot produce an existential
MAC forgery. To translate this security notion to the quantum setting, Boneh
and Zhandry [61] assumed that the adversary can make quantum queries to
the signing oracle, and defined the existential unforgeability against quantum
chosen message attack (EUF-qCMA). That is, a MAC is EUF-qCMA security
if the adversary cannot generate q + 1 valid classical message-tag pairs after
making q quantum chosen message queries.

3 Quantum secret state recovery attack for BBB MACs

In this section, we focus on quantum secret state recovery attacks against BBB
MACs. In particular, we give polynomial-time attacks on PMACX, PMAC with
parity, HPxHP, and HPxNP, and show that they can also be extended to some
optimally secure MACs. Recovering the secret state leads to a forgery attack. We
improve some previous superposition attacks by reducing the query complexity
from exponential [54] to polynomial. See Table 1 for a comparison of attack
complexity.

3.1 Attack strategy

In the following, we give a strategy for attacking BBB MACs by using Simon
algorithm. Our attack is described as the following procedure:

1. Construct a periodic function f corresponding to the targeted MAC, where
the period s satisfies f(x) = f(x⊕ s) for all x;
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2. Run Simon algorithm for the above f to find s.

Recovering the period s allows one to recover a key, distinguish, carry out forgery
attacks, etc. Note that our strategy requires that the attacker has quantum oracle
access to f .

Quantum linearization attacks. In fact, the core step of this attack strategy
is to construct a periodic function. The common method (like those of [29, 30])
is invalid for BBB MACs. Here, we introduce a new technique. At Asiacrypt
2021 [37], Bonnetain et al. showed a quantum linearization attack against the
EUF-qCMA security of MACs. Specifically, they use inputs of multiple blocks
as an interface of a function to hide a linear structure. The main idea is to
linearize the function by limiting the block inputs to obtain an affine function.
Consider a function of l blocks x1, x2, · · · , xl with the form of G(x1, x2, · · · , xl) =
g1(x1)⊕ g2(x2)⊕ · · · ⊕ gl(xl)⊕C, where C is an independent constant, and the
attacker has no access to the gi (1 ≤ i ≤ l), which are independent random
functions. Then they make each block xi (1 ≤ i ≤ l) takes only a one-bit value,
and define the following function

F (x) = F (b1‖ · · · ‖bl) = G(0n−1‖b1, · · · , 0n−1‖bl). (3)

Now, F is an affine function of b1, · · · , bl, and BV algorithm1 can distinguish
it from a random function in polynomial time. In particular, the linearization
attack can serve as an efficient method to construct a periodic function. For
example, by linearizing the function G′(x1, x2, · · · , xl) = g(G(x)) = g(g1(x1) ⊕
g2(x2) ⊕ · · · ⊕ gl(xl) ⊕ C), we can obtain a periodic function G′(x) = g(F (x)),
where F (x) is an affine function, g is a random function and is unknown to the
attacker.

3.2 Quantum secret state recovery attack for BBB MACs

From the above claim, we need to construct a periodic function based on the
targeted MAC, and then the Simon algorithm to recover the period is used. In
what follows, taking PMAC with parity as an example, we give the detailed
attack process and the complexity analysis for quantum adversaries.

1) Secret state recovery attack for PMAC with parity. PMAC with
parity [57] is a variant of PMAC (Parallelizable Message Authentication Code).
It uses four permutations P1, P2, P3 and P4, which are in practice realized via
a block cipher using four keys. PMAC with parity with a 2i-block message is
shown in Fig. 1, which can be written as

1 The BV algorithm [38] offers a polynomial speedup for finding the slope of an affine
function over Fn2 .
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m1 ⊕m2

L3

P3

P1 P2

L1 L2

m1 m2

m3 ⊕m4

2L3

P3

P1 P2

2L1 2L2

m3 m4

m2i−1 ⊕m2i

2i−1L3

P3

P1 P2

2i−1L1 2i−1L2

m2i−1 m2i

P4 T

Fig. 1: PMAC with parity [57].

MAC(m1,m2, · · · ,m2i) = P4(

i⊕
j=1

P1(m2j−1 ⊕ 2j−1L1)⊕
i⊕

j=1

P2(m2j ⊕ 2j−1L2)

⊕
i⊕

j=1

P3(m2j−1 ⊕m2j ⊕ 2j−1L3)), (4)

where L1 = P1(0), L2 = P2(0), L3 = P3(0), and the size of the block is n.

We now show that the PMAC with parity is not secure in a quantum setting.
We consider the case that each even-block message is an arbitrary constant, and
define the following function for the odd-block messages, with some arbitrary
constants m0

2j−1 and m1
2j−1 such that m0

2j−1 6= m1
2j−1 (1 ≤ j ≤ i):

F (b) ≡ MAC(mb1
1 ,m2,m

b2
3 ,m4, · · · ,mbi

2i−1,m2i)

= P4(

i⊕
j=1

P1(m
bj
2j−1 ⊕ 2j−1L1)⊕

i⊕
j=1

P2(m2j ⊕ 2j−1L2)⊕
i⊕

j=1

P3(m
bj
2j−1 ⊕m2j ⊕ 2j−1L3))

= P4(f(b)), (5)

where b = b1b2 · · · bi forms an i-bit input. It is easy to see that f is an affine
function of b:

f(b) =
i⊕
j=1

P1(m
bj
2j−1 ⊕ 2

j−1
L1)⊕

i⊕
j=1

P2(m2j ⊕ 2
j−1

L2)⊕
i⊕
j=1

P3(m
bj
2j−1 ⊕m2j ⊕ 2

j−1
L3)

=

i⊕
j=1

((P1(m
0
2j−1 ⊕ 2

j−1
L1)⊕ P1(m

1
2j−1 ⊕ 2

j−1
L1))� bj ⊕ P1(m

0
2j−1 ⊕ 2

j−1
L1))

⊕
i⊕
j=1

((P3(m
0
2j−1 ⊕m2j ⊕ 2

j−1
L3)⊕ P3(m

1
2j−1 ⊕m2j ⊕ 2

j−1
L3))� bj ⊕ P3(m

0
2j−1 ⊕m2j ⊕ 2

j−1
L3))

⊕
i⊕
j=1

P2(m2j ⊕ 2
j−1

L2)
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= (P1(m
0
1 ⊕ L1)⊕ P1(m

1
1 ⊕ L1), · · · , P1(m

0
2i−1 ⊕ 2

i−1
L1)⊕ P1(m

1
2i−1 ⊕ 2

i−1
L1))×


b1
b2
...
bi



⊕(P3(m
0
1 ⊕m2 ⊕ L1)⊕ P3(m

1
1 ⊕m2i ⊕ L1), · · · , P3(m

0
2i−1 ⊕m2i ⊕ 2

i−1
L1)⊕ P3(m

1
2i−1 ⊕m2i ⊕ 2

i−1
L1))×


b1
b2
...
bi


⊕

i⊕
j=1

P1(m
0
2j−1 ⊕ 2

j−1
L1)⊕

i⊕
j=1

P3(m
0
2j−1 ⊕m2j ⊕ 2

j−1
L3)⊕

i⊕
j=1

P2(m2j ⊕ 2
j−1

L2)

= (Am ⊕ A′m)×


b1
b2
...
bi

⊕ C, (6)

where the columns of Am correspond to P1(m
0
2j−1 ⊕ 2j−1L1) ⊕ P1(m

1
2j−1 ⊕

2j−1L1), the columns ofA′m correspond to P3(m
0
2j−1⊕m2j⊕2j−1L3)⊕P3(m

1
2j−1⊕

m2j ⊕ 2j−1L3) and C =
⊕i

j=1 P1(m
0
2j−1 ⊕ 2j−1L1) ⊕

⊕i
j=1 P3(m

0
2j−1 ⊕m2j ⊕

2j−1L3)⊕
⊕i

j=1 P2(m2j ⊕ 2j−1L2). Then,

F (b) = P4

(Am ⊕A′m)×


b1
b2
...
bi

⊕ C
 , (7)

where the matrix Am⊕A′m has n rows and i columns, and its kernel is nontrivial
if and only if i ≥ n+ 1. That is, there exists a non-zero vector s such that

(Am ⊕A′m)× s =


0
0
...
0

 . (8)

Obviously, F satisfies F (b⊕ s) = F (b):

F (b⊕ s) = P4((Am ⊕A′m)× (b⊕ s)⊕ C) = F (b). (9)

That is the function F is a periodic function of b. Since the “inner" function f
is an affine function and P4 is a permutation function, they do not contain any
unwanted collisions. Therefore, according to Theorem 2, we can apply Simon
algorithm to recover the secret state with a high probability.

Note that the subspace of periods will become larger as the i increases. In
particular, if i = n, there will be a non-trivial period with a probability around
1 − 1/e. Recovering the secret state, i.e. the period s, allows to forge messages
easily:
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1. Query the tag of (mb1
1 ,m2,m

b2
3 ,m4, · · · ,mbi

2i−1,m2i) for an arbitrary b;
2. The same tag is valid for (mb1⊕s1

1 ,m2,m
b2⊕s2
3 ,m4, · · · ,mbi⊕si

2i−1 ,m2i).

As for SUM-ECBC, these two steps can be repeated q′ + 1 times, where q′ is
the number of quantum queries issued. The adversary then produces 2(q′ + 1)
messages after only 2q′ + 1 queries to the cryptographic oracle.

2) Secret state recovery attack for PMACX. In 2015, Zhang [55] combined
the construction of PMAC with parity and MDS-coding to design PMACX. It
can be viewed as a generalization of PMAC with parity, whose “parity process-
ing" part is replaced with a general MDS generator matrix multiplication. The
message blocks M1,M2, · · · ,Ms are processed as follows: Xi = Xi[1] ‖ Xi[2] ‖
· · · ‖ Xi[m] = G ·Mi and then

PMACX(M1,M2, · · · ,Ms) = P2(

s⊕
i=1

m⊕
j=1

P1(Xi[j]⊕ 2i−1Lj)), (10)

where the message blocks Mi are of size ln, G is an m× l matrix over GF (2n),
and Lj = P1(j − 1).

In a similar way, we define the following function using the given random
constants m0

i and m1
i :

PMACX(M b1
1 ,M

b2
2 , · · · ,M bs

s ) = P2

Am

b1
b2
...
bs

⊕ C
 ≡ f(b), (11)

where the columns ofAm correspond to
⊕m

j=1

(
P1(X

0
i ⊕ 2i−1Lj)⊕ P1(X

1
i ⊕ 2i−1Lj)

)
,

C =
⊕s

i=1

⊕m
j=1 P1(X

0
i [j]⊕ 2i−1Lj). When s ≥ n+ 1, we can obtain a periodic

function, and break PMACX.

3) Secret state recovery attack for HPxHP and HPxNP. In 2019, Alexan-
der and Eik proposed [56] two constructions based on permutations and universal
hashing, providing a security proof up to 22n/3 queries. The first structure (H-
PxHP) is a stateless deterministic scheme that uses two hash functions, whereas
the second structure (HPxNP) is a nonce-based scheme with one hash-function
call and a nonce. As shown in Fig. 2 and Fig. 3 respectively, these two MACs
can be written as

HPxHP(m1,m2, · · · ,ml) = P1(k
l
1m1 ⊕ kl−11 m2 ⊕ · · · ⊕ k11ml)⊕ P2(k

l
2m1 ⊕ kl−12 m2 ⊕ · · · ⊕ k21ml)

HPxNP(m1,m2, · · · ,ml) = P1(k
l
1m1 ⊕ kl−11 m2 ⊕ · · · ⊕ k11ml ⊕N)⊕ P2(N), (12)

where P1 and P2 represent two permutations over {0, 1}n, h1 and h2 are two
universal hash functions and N is a nonce. By fixing each block message as m0

i
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T

P1 P2

h1

m

h2

Fig. 2: HPxHP.

T

P1 P2

h1

m N

Fig. 3: HPxNP.

and m1
i , we can recover a period with Simon algorithm such that⊕

i

sik
l+1−i
1 = 0 and

⊕
i

sik
l+1−i
2 = 0. (13)

This provides a forgery attack, then we can recover multiple such periods and
solve the corresponding equations to obtain K1 and K2.

Role of the nonce. In this paper, we focus on two different kinds of quantum
access constructions: those that use a nonce (e.g. HPxNP) and those that do
not (e.g. HPxHP). In the nonce case, we use a weaker security notion (following
the IND-qCPA definition of [62, 29]) where the nonce is chosen randomly by the
oracle, and not repeated. The oracle OfN is then M 7→ (N,MAC(N,M)). If we
can break the MAC construction in this model, the attack will also be valid with
any reasonable CPA security definition. In this setting, applying the subroutine
of Simon algorithm to the function fN always gives a vector orthogonal to s, for
any random choice of N . Therefore, we can still recover s after O(n) steps, even
if each step uses a different value of N .

4) Secret state recovery attack for some optimally secure MACs. In Ref.
[50], Cogliati et al. introduced several constructions to build optimally secure
variable-input-length (VIL) PRFs from secret random permutations, such as
mPMAC+-f, mPMAC+-p1, mPMAC+-p2, mLightMAC+-f, mLightMAC+-p1
and mLightMAC+-p2. They are secure up to 2n queries, where n denotes the
block size. Here only take mPMAC+-p2 as an example:

mPMAC+-p2(m1,m2, · · · ,ml) = P3(P1(

l−1⊕
i

P0(mi ⊕4i) ⊕ml) ⊕
l−1⊕
i=1

2
l−i

P0(mi ⊕4i) ⊕ml)

⊕P4(P2(

l−1⊕
i

2
l−i

P0(mi ⊕4i) ⊕ml) ⊕
l−1⊕
i=1

P0(mi ⊕4i) ⊕ml), (14)

where 4i = 2iP0(0
n) ⊕ 22iP0(10

n−1) and P is a random permutation. Let ml

be a fixed value, and define the following function for the l − 1 block messages
with some arbitrary constants m0

i and m1
i such that m0

i 6= m1
i (1 ≤ i ≤ l − 1):

F (b) ≡ mPMAC+-p2(mb1
1 ,m

b2
2 , · · · ,m

bl−1

l−1 ,ml). (15)
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In that case, we can remark that there exists a period s such that Ams = A′ms =
0, where matrices Am and A′m have n rows and l − 1 columns. The columns of
Am correspond to P0(m

0
i ⊕4i)⊕P0(m

1
i ⊕4i) and the columns of A′m correspond

to 2l−i(P0(m
0
i ⊕4i)⊕ P0(m

1
i ⊕4i)). Therefore, the period s can be recovered

with O(n) quantum queries and O(n) qubits by Theorem 2.

4 Quantum key-recovery attack for BBB MACs

This section gives new quantum key-recovery attacks on SUM-ECBC-like MACs,
such as SUM-ECBC, PolyMAC, GCM-SIV2, and 2K-ECBC−Plus, withO(2m/2n)
or O(2n/2n) superposition queries. They achieve a quadratic acceleration of the
query complexity of some previous attacks [54]. See Table 2 for a comparison of
attack complexity.

Table 2: Summary of previous and new quantum key-recovery attacks, where n
is the block size, and m is the length of the key of the underlying block cipher.

Construction # Keys Provable classical
security query bound

Query complexity
of classical attack

[54] ours
queries qubits queries qubits

SUM-ECBC [46] 4 Ω(23n/4) [47] O(23n/4) [63] O(2mn) O(m+ n2) O(2m/2n) O(m+ n2)

PolyMAC [47] 4 Ω(23n/4) [47] O(23n/4) O(2(m+n)/2n) O(m+ n2) O(2n/2n) O(n2)

GCM-SIV2 [48] 6 Ω(22n/3) [48] O(23n/4) [63] O(2(m+n)/2n) O(m+ n2) O(2n/2n) O(n2)

2K-ECBC−Plus [49] 3 Ω(22n/3) [49] O(23n/4) O(2mn) O(m+ n2) O(2m/2n) O(m+ n2)

4.1 Attack strategy

The SUM-ECBC-like MACs follow a generic design paradigm called Double-
block Hash-then-Sum (in short DbHtS) [49]. In this paradigm, it computes a
double block hash on the message and then sums the encrypted output of these
two hash blocks:

DbHtS(M) = G(M)⊕H(M). (16)

Note that MACs of single-chain, such as ECBC-MAC, can be broken by using
the quantum period finding algorithm [54, 29]. Considering the single-chain G
(resp. H), we can use the same method C [29] to construct a period function
g(b, x) = CG(b, x) (resp. h(b, x) = CH(b, x)). The period of g (resp. h) is denoted
as 1‖s1 (resp. 1‖s2). In particular, the period value s can be determined by the
underlying block cipher with key k and a fixed pair of messages (α0, α1), i.e.,
s1 = Ek1(α0)⊕Ek1(α1) and s2 = Ek3(α0)⊕Ek3(α1). Then, applying the method
C to DbHtS = G⊕H will give

CDbHtS(b, x) = CG(b, x)⊕ CH(b, x) = g(b, x)⊕ h(b, x). (17)
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More precisely, we define the following function, with two arbitrary constants α0

and α1 such that α0 6= α1:

f(u, x) = CDbHtS(0, x)⊕ CDbHtS(1, x⊕ Eu(α0)⊕ Eu(α1))

= g(0, x)⊕ h(0, x)⊕ g(1, x⊕ Eu(α0)⊕ Eu(α1))

⊕h(1, x⊕ Eu(α0)⊕ Eu(α1)). (18)

In particular, this function is periodic if and only if u = k1/k3. Then, we can
apply the Grover-meets-Simon algorithm to recover k1/k3.

4.2 Key recovery attack for SUM-ECBC-like MACs

1) Key recovery attack for SUM-ECBC. SUM-ECBC [46] was presented
by Yasuda in 2010, inspired by MAC constructions summing two encrypted
CBC-MACs. It uses a block cipher keyed with four independent keys in {0, 1}m,
denoted as E1, E2, E3, and E4. For a message M = m1‖m2, SUM-ECBC is
defined as (see Fig. 4):

SUM-ECBC(m1,m2) = E2(E1(E1(m1)⊕m2))⊕ E4(E3(E3(m1)⊕m2)). (19)

Here, we only describe the modes with full-block messages for simplicity, the

m1

E3

m2

E3 E4

m1

E1

m2

E1 E2

T

Fig. 4: SUM-ECBC with a two-block message.

attacks can trivially be extended to the more general modes with arbitrary in-
puts.

In what follows, based on the Grover-meets-Simon algorithm, we present a
new quantum key recovery attack on SUM-ECBC and the complexity analysis
for quantum adversaries. We first focus on the partial key recovery.

Partial key recovery. We fix two arbitrary message blocks α0, α1 with α0 6= α1,
and define the following function

φ : {0, 1} × {0, 1}n → {0, 1}n

b, x 7→ SUM-ECBC(αb‖x) = g(b, x)⊕ h(b, x), (20)
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where g(b, x) = E2(E1(E1(αb)⊕ x)), h(b, x) = E4(E3(E3(αb)⊕ x)). It is easy to
see that the function g (resp. h) satisfies g(0, x) = g(1, x ⊕ s1) (resp. h(0, x) =
h(1, x ⊕ s2)), where s1 = E1(α0) ⊕ E1(α1), s2 = E3(α0) ⊕ E3(α1). By the
randomness of k1 and k3, the probability of s1 = s2 is negligible. To realize partial
key recovery with the Grover-meets-Simon algorithm, we define the following
function (see Fig. 5)

f : {0, 1}m × {0, 1}n → {0, 1}n

u, x 7→ SUM-ECBC(α0, x)

⊕SUM-ECBC(α1, x⊕ Eu(α0)⊕ Eu(α1)). (21)

In particular, this function is periodic if and only if u = k1/k3, and we take
u = k1 as an example:

f(k1, x) = SUM-ECBC(α0, x)⊕ SUM-ECBC(α1, x⊕ E1(α0)⊕ E1(α1))

= g(0, x)⊕ h(0, x)⊕ g(1, x⊕ E1(α0)⊕ E1(α1))⊕ h(1, x⊕ E1(α0)⊕ E1(α1))

= h(0, x)⊕ h(1, x⊕ E1(α0)⊕ E1(α1)). (22)

The third equation follows from the fact that g has a period 1‖s1. Moreover,

|α0〉 / |α0〉
|α1〉 /

Eu Eu
MAC

Eu Eu
MAC

|α1〉

|x〉 / |x〉

|0〉 / |f(u, x)〉

Fig. 5: Grover-meets-Simon’s function f for ECBC-MAC.

f(k1, x
′) = f(k1, x)⇔ h(0, x′)⊕ h(1, x′ ⊕ E1(α0)⊕ E1(α1)) = h(0, x)⊕ h(1, x⊕ E1(α0)⊕ E1(α1))

⇔ E4(E3(E3(α0)⊕ x′))⊕ E4(E3(E3(α1)⊕ x′ ⊕ E1(α0)⊕ E1(α1)))

= E4(E3(E3(α0)⊕ x))⊕ E4(E3(E3(α1)⊕ x⊕ E1(α0)⊕ E1(α1)))

⇔
{
x′ = x
x′ = x⊕ E1(α0)⊕ E1(α1)⊕ E3(α0)⊕ E3(α1).

(23)

Therefore, the function f(k1, x) has a period s = s1 ⊕ s2, where s1 =
E1(α0) ⊕ E1(α1), s2 = E3(α0) ⊕ E3(α1). Furthermore, the parameter ε(f) :=

max
(u,t)∈{0,1}m×{0,1}n\{0,Us}

Prx[f(u, x) = f(u, x⊕t)] is bounded with overwhelming

probability, assuming that E behaves as a random permutation. We will prove
ε(f) < 1/2 with overwhelming probability. Indeed, if ε(f) > 1/2, there exists
(u, t) /∈ {0, Us} such that Prx[f(u, x) = f(u, x⊕ t)] > 1/2, i.e.,

Prx


E2(E1(E1(α0) ⊕ x)) ⊕ E4(E3(E3(α0) ⊕ x))
⊕E2(E1(E1(α1) ⊕ x ⊕ Eu(α0) ⊕ Eu(α1))) ⊕ E4(E3(E3(α1) ⊕ x ⊕ Eu(α0) ⊕ Eu(α1)))
⊕E2(E1(E1(α0) ⊕ x ⊕ t)) ⊕ E4(E3(E3(α0) ⊕ x ⊕ t))
⊕E2(E1(E1(α1) ⊕ x ⊕ Eu(α0) ⊕ Eu(α1) ⊕ t)) ⊕ E4(E3(E3(α1) ⊕ x ⊕ Eu(α0) ⊕ Eu(α1) ⊕ t)) = 0

 > 1/2.

(24)
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This corresponds to a higher order differential for f(u, x) with probability 1/2,
which only happens with negligible probability for a random choice of E [64].
Then Grover-meets-Simon algorithm can recover k1 and k3 with O(2m/2n) quan-
tum queries and O(m+ n2) qubits, using Theorem 3.

We now turn to the full key recovery.

Full key recovery. For the full key recovery, we fix two arbitrary message blocks
α0, α1 with α0 6= α1, and we define the following function (see Fig. 6)

ϕ : {0, 1}m × {0, 1} × {0, 1}n → {0, 1}n

u, b, x 7→ SUM-ECBC(αb‖x)⊕ Eu(E1(E1(αb)⊕ x)). (25)

In particular, we have

|b〉 Uα
E1

MAC
E1

Uα |b〉

|x〉 / E1

Eu
E1 |x〉

|0〉 / |ϕ(u, b, x)〉

Fig. 6: Grover-meets-Simon’s function ϕ for ECBC-MAC.

ϕ(k2, b
′, x′) = ϕ(k2, b, x)⇔ E2(E1(E1(αb′)⊕ x′))⊕ E4(E3(E3(αb′)⊕ x′))⊕ E2(E1(E1(αb′)⊕ x′))

= E2(E1(E1(αb)⊕ x))⊕ E4(E3(E3(αb)⊕ x))⊕ E2(E1(E1(αb)⊕ x))
⇔ E4(E3(E3(αb′)⊕ x′)) = E4(E3(E3(αb)⊕ x))

⇔
{
x′ ⊕ x = 0, if b′ = b;
x′ ⊕ x = E3(α0)⊕ E3(α1), if b′ 6= b.

(26)

Therefore, this function is periodic if and only if u = k2. From the above analysis,
we can show that ε(ϕ) ≤ 1/2 with overwhelming probability, and running the
Grover-meets-Simon algorithm on the function f will return k2. Then, we can
obtain k4 in the same way.

Forgery attack. Finally, we conclude that ε(f) ≤ 1/2 and ε(ϕ) ≤ 1/2, un-
less the SUM-ECBC has higher order differentials with probability 1/2. If Ek is
a random permutation, these differentials are only found with negligible prob-
ability. Therefore, we can apply the Grover-meets-Simon algorithm to recover
k1, k2, k3, and k4 following Theorem 3. This allows one to create forgeries as
follows:

1. Query the tag T1 of α0‖m1 for an arbitrary block m1;
2. Query the tag T2 of α1‖m1 ⊕ E1(α0)⊕ E1(α1);
3. Query the tag T3 of α0‖m1 ⊕ E1(α0)⊕ E1(α1)⊕ E3(α0)⊕ E3(α1);
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4. The new tag T1 ⊕ T2 ⊕ T3 is valid for α1‖m1 ⊕ E3(α0)⊕ E3(α1).

To break the formal notion of EUF-qCMA security, we need to produce q+1 valid
classical message-tag pairs with only q queries to the oracle of SUM-ECBC. Let
q′ = O(2m/2n) denote the number of quantum queries made to recover k1, k2, k3,
and k4. The attacker will repeat the forgery step q′+1 times to produce 4q′+4
message-tag pairs, after a total of 4q′ + 3 classical and quantum queries to the
MAC oracle. Therefore, SUM-ECBC is broken by a quantum existential forgery
attack.

2) Key recovery attack for PolyMAC. PolyMAC [47] is a Double-block
Hash-then-Sum construction based on the polynomial evaluation. It uses two
hashing keys k1, k3 ∈ {0, 1}n and two encryption keys k2, k4 ∈ {0, 1}m. More
precisely, the PolyMAC algorithm with two-block messages is defined as (see
Fig. 7):

PolyMAC(m1,m2) = E2(k
2
1m1 ⊕ k1m2)⊕ E4(k

2
3m1 ⊕ k3m2). (27)

m1
k3

m2
k3

E4

m1
k1

m2
k1

E2

T

Fig. 7: PolyMAC with a two-block message.

We now give the quantum attacks to realize the partial key recovery and full
key recovery, respectively.

Partial key recovery. For a two-block message, we use the same f as in the
SUM-ECBC attack, with fixed blocks α0 and α1:

f : {0, 1}n × {0, 1}n → {0, 1}n

u, x 7→ PolyMAC(α0, x)⊕ PolyMAC(α1, x⊕ u(α0 ⊕ α1)),(28)

where PolyMAC(αb, x) = E2(k
2
1αb⊕k1x)⊕E4(k

2
3αb⊕k3x). It satisfies f(k1/k3, x) =

f(k1/k3, x ⊕ k1(α0 ⊕ α1) ⊕ k3(α0 ⊕ α1)), for any x, and ε(f) ≤ 1/2 with over-
whelming probability if E is a random function. Moreover (take u = k1 as an
example):

f(k1, x) = PolyMAC(α0, x)⊕ PolyMAC(α1, x⊕ k1(α0 ⊕ α1))
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= g(0, x)⊕ h(0, x)⊕ g(1, x⊕ k1(α0 ⊕ α1))⊕ h(1, x⊕ k1(α0 ⊕ α1))

= h(0, x)⊕ h(1, x⊕ k1(α0 ⊕ α1))

= h(1, x⊕ k3(α0 ⊕ α1))⊕ h(0, x⊕ k1(α0 ⊕ α1)⊕ k3(α0 ⊕ α1))

= f(k1, x⊕ k1(α0 ⊕ α1)⊕ k3(α0 ⊕ α1)), (29)

where PolyMAC(αb, x) = g(b, x)⊕h(b, x), g(b, x) = E2(k
2
1αb⊕k1x) and h(b, x) =

E4(k
2
3αb⊕ k3x). Here the third and fourth equations follow from the fact that g

has a period 1‖k1(α0⊕α1) and h has a period 1‖k3(α0⊕α1). It is easy to see that
the function f is periodic if and only if u = k1/k3. Therefore, an application of
the Grover-meets-Simon algorithm returns k1 and k3, with complexity O(2n/2n).

Full key recovery. The above attack of recovering partial keys can be gener-
alized to be the following attack. For the full key recovery, we fix two arbitrary
message blocks α0, α1 with α0 6= α1, and we define the following function

ϕ : {0, 1}m × {0, 1} × {0, 1}n → {0, 1}n

u, b, x 7→ PolyMAC(αb‖x)⊕ Eu(k21αb ⊕ k1x). (30)

In particular, we have

ϕ(k2, b
′, x′) = ϕ(k2, b, x)⇔ E2(k

2
1αb′ ⊕ k1x′)⊕ E4(k

2
3αb′ ⊕ k3x′)⊕ E2(k

2
1αb′ ⊕ k1x′)

= E2(k
2
1αb ⊕ k1x)⊕ E4(k

2
3αb ⊕ k3x)⊕ E2(k

2
1αb ⊕ k1x)

⇔ E4(k
2
3αb′ ⊕ k3x′) = E4(k

2
3αb ⊕ k3x)

⇔
{
x′ ⊕ x = 0, if b′ = b;
x′ ⊕ x = k3(α0 ⊕ α1), if b′ 6= b.

(31)

Note that this function satisfies ϕ(k2, 0, x) = ϕ(k2, 1, x⊕k3(α0⊕α1)) and ε(ϕ) ≤
1/2, with the same arguments as previously. Therefore, we can apply the Grover-
meets-Simon algorithm to recover k1, k2, k3, and k4. Again, this leads to a forgery
attack.

3) Key recovery attack for GCM-SIV2. GCM-SIV2 is a provably secure au-
thenticated encryption mode designed by Iwata and Minematsu [48] as a double-
block-hash version of GCM-SIV. For simplicity, we focus on the authentication
part of GCM-SIV2, and the tag with an l-block message and a nonce N is defined
as follows

GCM-SIV2(N,M) = E1(Σ(M))⊕ E2(Θ(M))‖E3(Σ(M))⊕ E4(Θ(M)), (32)

where

Σ(M) = N ⊕ l �H1 ⊕
l⊕
i=1

mi �H l+2−i
1

Θ(M) = N ⊕ l �H2 ⊕
l⊕
i=1

mi �H l+2−i
2 . (33)
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The structure of the authentication part of GCM-SIV2 is similar to the structure
of SUM-ECBC, where the block cipher calls E1 and E3 are replaced by multi-
plication by hash keys H1 and H2. Thus, we can essentially repeat the above
attack to recover the full key, with O(2n/2n) quantum queries and O(m + n2)
qubits.

4) Key recovery attack for 2K-ECBC−Plus. 2K-ECBC−Plus [49] is the
sequential mode of block cipher-based instantiation of two-keyed DbHtS. In full
generality, there are three keys k1, k2, and k3. The two-block message m1, m2

is processed as

2K-ECBC−Plus(m1,m2) = E3(fix0(E1(E1(m1)⊕m2)))⊕E3(fix1(E2(E2(m1⊕m2)))),
(34)

where the functions fix0 and fix1 take an n-bit binary string x and return x with
its least significant bit set to 0 and 1 respectively. This falls into our framework,
and then we can recover k1, k2, and k3 by applying the Grover-meets-Simon
algorithm.

5 Conclusion

In this paper, we give secret state recovery attacks and key recovery attacks for
some BBB MACs in a quantum setting, leading to forgery attacks. The first
kind of attack costs O(n) quantum queries by using Simon algorithm, where
n is the size of the block. Notice that our secret recovery attack for HPxHP
and HPxNP can also recover the full key K = (k1, k2). It gives an exponential
speedup compared with the classical attack. The second kind of attack cost-
s O(2n/2n) quantum queries by applying Grover-meets-Simon algorithm. This
leads to a better analysis of BBB MACs, that is, the complexity of some previous
key-recovery attacks reduces from O(2nn) to O(2n/2n). Our results show that
these MAC constructions cannot achieve security beyond the birthday bound of
O(2n/2) in the quantum model.
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