
DLPFA: Deep Learning based Persistent Fault
Analysis against Block Ciphers

Yukun Cheng1, Changhai Ou1, Fan Zhang2 and Shihui Zheng3

1 School of Cyber Science & Engineering, Wuhan University, Wuhan, China,
ouchanghai@whu.edu.cn

2 College of Computer Science and Technology, Zhejiang University, China,
fanzhang@zju.edu.cn

3 School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing,
China, shihuizh@bupt.edu.cn

Abstract. Deep learning techniques have been widely applied to side-channel analysis
(SCA) in recent years and shown better performance compared with traditional
methods. However, there has been little research dealing with deep learning techniques
in fault analysis to date. This article undertakes the first study to introduce deep
learning techniques into fault analysis to perform key recovery. We investigate the
application of multi-layer perceptron (MLP) and convolutional neural network (CNN)
in persistent fault analysis (PFA) and propose deep learning-based persistent fault
analysis (DLPFA). DLPFA is first applied to advanced encryption standard (AES)
to verify its availability. Then, to push the study further, we extend DLPFA to
PRESENT, which is a lightweight substitution–permutation network (SPN)-based
block cipher. The experimental results show that DLPFA can handle random faults
and provide outstanding performance with a suitable selection of hyper-parameters.
Keywords: Deep Learning · Fault Analysis · PFA · AES · PRESENT

1 Introduction
1.1 Overview
To provide a reliable and efficient computing environment, cryptographic algorithms are
implemented in particular cryptographic devices. Security in such devices relies not only
on the mathematical security of the cryptographic algorithm, but also on the physical
security of the cryptographic implementation. Nowadays, implementation-based attacks
have attracted intensive attentions. Such attacks pose a serious threat to cryptographic
security, as they can exploit leakage of physical information that is neglected in conventional
cryptanalysis.

Depending on the leakage of physical information, implementation-based attacks can be
classified into passive and active attacks. Side-channel analysis (SCA) is the representative
of passive attacks. The adversary does not interfere with the work of the cryptographic
device. The adversary plays the role of an observer and collects key-related information from
the power consumption[KJJ99], electromagnetic emanation[GMO01] and other leakages of
physical information while the cryptographic device is in operation. There are kinds of SCA
to recover the key using different methods, such as simple power analysis (SPA)[Man02],
correlation power analysis (CPA)[BCO04] and template analysis (TA)[CRR02]. On the
other hand, fault analysis (FA), which is the representative of active attacks, aims to induce
cryptographic device faults using some physical methods, such as voltage glitch[BMM00],
temperature[GA03] and laser[CLFT14]. The adversary analyzes the faulty outputs of the

mailto:ouchanghai@whu.edu.cn
mailto:fanzhang@zju.edu.cn
mailto:shihuizh@bupt.edu.cn

2 DLPFA: Deep Learning based Persistent Fault Analysis against Block Ciphers

cryptographic device to recover the secret key. Differential fault analysis (DFA)[BS97] and
statistical fault analysis (SFA)[FJLT13] are the most prominent fault analysis over the
years. Additionally, statistical ineffective fault analysis (SIFA)[DEK+18] and persistent
fault analysis (PFA)[ZLZ+18] also show their tremendous potential as new analysis methods
in recent years.

In the traditional FA, the exploitation of the fault leakage depends solely on the analysis
method. However, these methods are more concerned with how to successfully recover the
key than how to fully exploit the fault leakage. To improve the exploitation of the fault
leakage, deep learning techniques are ideal tools as neural networks can learn from the
data automatically and fully. However, how to introduce deep learning techniques into FA
has not been investigated yet.

In this article, we first apply deep learning techniques to fault analysis to perform key
recovery. Given some feature information from the faulty cryptographic implementation,
our ultimate goal is to recover the secret key that has been processed internally. We
propose a novel method, named deep learning-based persistent fault analysis (DLPFA), to
solve this complex problem using a divide-and-conquer approach.

1.2 Related Works
The application of neural networks in the field of cryptography was first published in [Riv91].
The combination of machine learning techniques and SCA was first proposed by Backes et
al. [BDG+10], who recovered the printed text from a printer using acoustic side channel.
Hospodar et al. proposed the first study on the application of machine learning techniques
in SCA[HGM+11]. From here, a large number of works have been proposed to break
both unprotected[BL12, LPB+15] and protected cryptographic implementations[GHO15,
LBM15] using machine learning techniques.

In recent years, more researchers have focused on deep learning techniques, such
as multilayer perceptron networks (MLP)[MZVT15, MDM16] and convolutional neural
networks (CNN)[PSK+18] to go with the trend in the machine learning community. Of the
various SCA, profiled attacks, represented by TA, are the most powerful ones and in some
cases can recover the key with only one power trace. These attacks can be composed of
two phases: profiling and matching, which are similar to the training phase and test phase
in deep learning. On this basis, deep learning techniques have been introduced into SCA as
an alternative to TA[KPH+19, CDP17a, BPS+20]. Compared to TA, deep learning-based
SCA is more robust to noise and shows comparable or better performance[Tim19].

On the other hand, there is less research on the combination of machine learning or
deep learning techniques with FA. Several researchers have introduced FA into deep neural
networks for misclassification[LWLX17, BHJ+18]. Moreover, Saha et al. have applied deep
learning techniques to the leakage assessment of FA[SAB+20]. However, to the best of
our knowledge, the investigation of the application of machine learning or deep learning
techniques in the key recovery of FA is a void in the field of cryptography.

1.3 Contributions
Our contributions in this article can be summarized as follows:

• To improve the exploitation of the fault leakage, we initiate the first comprehensive
study of the application of deep learning based key recovery in the context of fault
analysis and propose DLPFA as a novel FA method. The complex key-recovery
problem is decomposed into three tractable sub-problems: fault model selection,
feature selection and classification.

• We analyze the effect of faults and propose an effective feature selection method. The
fault model of PFA is selected as the target model and the probability distributions of

Yukun Cheng, Changhai Ou, Fan Zhang and Shihui Zheng 3

the faulty outputs of the S-box, which contains a large amount of relevant information
about the key, is selected as the feature. Moreover, we prepare the dataset containing
all the cases of faults in PFA fault model.

• We select MLP and CNN as neural network models and comb the attack process.
In the training phase, a large dataset is fed to the network to teach it the relevant
knowledge of the key. In the attack phase, another dataset is provided to the network
to mount the actual attack.

• To reasonably evaluate the potency of our attack, we perform DLPFA on advanced
encryption standard (AES), which is the classical substitution–permutation network
(SPN)-based block cipher, and PRESENT, which is a lightweight SPN-based cipher.
Moreover, we discuss several parametrization options in the experiments and present
tuned hyper-parameters. The given hyper-parameters can be viewed as a proposal to
help future researchers to make their own choice for the design of new deep learning
models.

1.4 Organizations
The rest of the article is organized as follows: We begin with the selection of the fault
model and features in Section 2. Section 3 introduces the neural network models used
in this work and describes the whole process of DLPFA. The experimental results on
two different ciphers are presented in Sections 4 and 5. We also discuss the impact of
hyper-parameters on the results in these two sections. Finally, we conclude this article
with a summary of our attack and an outlook for the future work in Section 6.

2 Fault Model and Feature Selection
In this section, we first give a brief introduction to the fault model of PFA selected in this
article. We then describe the method of feature selection, which is a necessary preliminary
step in deep learning. Finally, the dataset is given to assist in solving the classification
problem.

2.1 Fault Model
For a systematic study of FA, faults are categorized by effects, such as altering the control
flow, skipping commands or changing the storage information. The most typical one in
each category is chosen as the representative to build the fault model. The fault model
explains the position (e.g. before or after specific operation), the property (e.g. transient,
permanent or persistent), the effect of the fault and the ability of the adversary.

In this article, we focus on the fault model of PFA in [ZLZ+18], which can be described
as follows:

• The faults are injected into the cryptographic device before the encryption of the
block cipher.

• The injected faults randomly corrupt the stored constants of the algorithm (i.e. the
elements in the S-box) in the storage of the device.

• The injected faults are persistent, meaning that the faulty constants are used during
the encryption until the storage is refreshed or the device is rebooted.

• The adversary is able to feed plaintexts into the faulty device and collect ciphertexts
for subsequent fault analysis.

4 DLPFA: Deep Learning based Persistent Fault Analysis against Block Ciphers

Such a choice of fault model has several advantages. In contrast to traditional fault
models, which are mostly transient, the fault model of PFA places minor restrictions on
the adversary’s capabilities, such as his ability to inject faults within a relatively loose time
window. Then, according to the persistence property, the fault can be exploited multiple
times with only one injection. Also, note that the faults lead to a non-uniform distribution
of the outputs of the S-box. This non-uniform distribution favors feature selection, as will
be explained in detail below.

2.2 Feature Selection
Before solving the classification problem, feature selection is used as a preliminary step in
deep learning, which filters out and preprocesses the given raw data. The significance of
feature selection can be mainly represented in two aspects. On one hand, this step filters
out erroneous features and thus improves the accuracy of the neural network. On the other
hand, the features containing larger relevant pieces of information are extracted, which
reduce the computational cost of the neural network.

In the traditional SCA, power traces carry a large amount of relevant information
about the key, and are thus usually used to recover the key. Moreover, from the data
format perspective, power traces can be treated like the two-dimensional image, which has
been widely studied in the field of deep learning. Therefore, in the deep learning-based
SCA, the adversary can directly select features from the power traces with some statistical
methods, such as Pearson correlation coefficient or principal component analysis.

Unfortunately, in the field of FA, the problem of feature selection is more complicated.
The effects of faults are various, leading to a variety of data used in different fault analysis
methods. For example, DFA performs an analysis based on the differential values between
the correct and faulty ciphertexts which are generated from the same plaintext. SFA takes
advantage of the bias caused by the fault to recover the key. Moreover, the adversary
of PFA pays extra attention to the distribution of ciphertexts after a large number of
encryptions. It is difficult to find a uniform criterion for feature selection.

There is, however, one thing that all faults have in common. From the circuit point of
view, the effect of all faults can be seen as a change of a particular intermediate variable
from a correct value x to a faulty value x′ . The distribution of the intermediate variable
is disrupted with an abnormal bias by the change. Actually, this fact has already been
exploited in the case of SFA[FJLT13] and SIFA[DEK+18]. In both studies, the adversary
evaluates the difference between the uniform distribution, which is expected in the fault-free
scenario, and the practical distribution, which is operating with a byte-level fault, using a
metric named Squared Euclidean Imbalance (SEI), which can be described as follows:

SEI(k̂) =
2s−1∑
δ=0

(
{i | x = δ}

N
− 1

2s

)2
, (1)

where k̂ denotes the hypothesis of the key and s denotes the bit length of the intermediate
variable x. Thus the number of different values of x can be expressed as 2s. We use
#{i|x=δ}

N and 1
2s to denote the practical distribution of x and the uniform distribution,

respectively. The SEI of each k̂ is computed as the sum of squared difference between the
practical and the uniform distribution in all values of x. In the fault-free scenario, with
the increase of encryption, the two distributions are almost equal thus the SEI of each k̂
is close to 0. In the faulty scenario, for the wrong hypothesis of the key, each value of x
occurs randomly in the same probability. However, for the correct hypothesis of the key,
with the bias caused by the fault, the distribution of x becomes non-uniform, which leads
to the increase of the SEI. Hence, the hypothesis that the key has the highest SEI can be
considered correct.

Yukun Cheng, Changhai Ou, Fan Zhang and Shihui Zheng 5

Reviewing the fault model used in this article, we focus on the SPN-based block ciphers
(e.g. AES and PRESENT) and the fault is injected into the S-box of the cipher. Hence,
the output of the S-box can be considered as the intermediate variable affected by the
fault. Due to the avalanche effect, for the correct encryption, the distribution of the
output of the S-box converges to a uniform distribution, which is consistent with the SEI
requirement. Unfortunately, the SEI is merely a calculated value that is too brief to be
directly selected as the feature. However, the feature selection problem can be solved with
the help of the concept of SEI. Note that the distribution of the intermediate variable
in the fault-free scenario is a constant (i.e. 1

2s), which is associated only with the bit
length of the intermediate variable. Thus, from the information theoretic point of view,
the key-related information is contained in the practical distribution of the intermediate
variable. That is, the adversary can select the practical distribution of the intermediate
variables as the features.

2.3 Details of the Dataset

At the completion of feature selection, the dataset is prepared for the training and test of
the neural network in the next stage. As mentioned above, we select the distribution of
the output of the S-box of the SPN-based block cipher as the features. More specifically,
the distribution of the output of the S-box in the last round is selected to reduce the
computational overhead. The key of the last round is selected as the label for each group
of features. Due to the nature of the block cipher, the features and labels are processed
in bytes or nibbles. For the sake of simplicity, the term sample is used to denote a set of
features. The examples of the sample on each cipher are given in Fig. 1.

(a) Example on AES (b) Example on PRESENT

Figure 1: Examples of the samples.

In addition to this, other relevant information, such as the plaintext, the ciphertext and
the master key, can also be selected as the metadata. The efficiency of the neural network
in deep learning techniques can be confirmed by the mere use of the labels. However,
since these data are necessary to check for the correctness of the features and labels, the
metadata are helpful for the adversary.

In consideration of the storage, all above data are stored in the current version 5 of the
Hierarchical Data Format (HDF5), which is a cross-platform data storage format capable
of accommodating extremely large, complex, high-dimensional, and heterogenous data.
The structure of the dataset is shown in Fig. 2.

6 DLPFA: Deep Learning based Persistent Fault Analysis against Block Ciphers

Dataset Label 1Samples

Metadata

Label N

...

Metadata 1

Metadata N

...

Plaintext 1 Ciphertext 1 Master key 1

Plaintext N Ciphertext N Master key N

...

...

Sample 1

...

Sample N

...

Figure 2: Structure of the dataset.

3 Deep Learning-Based Fault Analysis
With all our preparation behind us, we present our DLPFA in this section. The deep
learning techniques used in this article are MLP and CNN. We first introduce the basic
information about the two neural network models. The method of how to implement FA
using deep learning techniques is shown later. Finally, we provide a general description of
DLPFA in detail.

3.1 MLP and CNN
MLP and CNN are two widely used neural network models in deep learning techniques.
Both of them fall into supervised learning, where a neural network is trained on data
labeled with the corresponding labels. When the training phase is complete, the neural
network is able to give the prediction for another set of inputs based on the rank of some
indicators, such as probability or likelihood score.

MLP is a classical artificial neural network, inspired by the human nervous system.
The artificial neuron (i.e. perceptron), whose basic structure is shown in Fig. 3(a), is the
basic element of the network. In a mathematical sense, an artificial neuron consists of an
affine transformation nested in an activation function, which can be defined as follows:

(a) Structure of single artificial neuron

Input 1

Input 2

Input 3

Output 1

Output 2

Output 3

Input Layer Hidden Layers Output Layer

(b) Structure of a four-layer MLP

Figure 3: Structure of the artificial neuron and MLP.

y = α(~w · ~x+ b), (2)

where ~x, y, α denote the input, output, and activation function of the artificial neuron,
respectively. The weight and bias parameters of the affine transformation are denoted

Yukun Cheng, Changhai Ou, Fan Zhang and Shihui Zheng 7

as ~w and b. Naturally, a single artificial neuron is powerless to deal with complex
problems. Therefore, MLP is designed by joining artificial neurons together to adapt to
the complicated situations. As shown in Fig. 3(b), the output of one layer is connected to
the following layer as input. Let λ denote the fully-connected layer, which is the set of the
affine transformation with the same input, then the model of MLPM can be defined as
follows:

M(~x) = s ◦ λn ◦ αn−1 ◦ λn−1 ◦ ... ◦ α1 ◦ λ1(~x). (3)

Note that s denotes the last activation function which is the special one. The activation
functions from λ1 to λn−1 have a variety of options, such as sigmoid or ReLU. However, s
is invariably chosen from the softmax function or its variants, which can be written as:

s(zj) = ezj∑C
i=1 e

zi

, (4)

where C denotes the number of classes of the network’s output. The softmax function ren-
ders the output of the network as a probability distribution of all classes. The classification
problem can be solved by choosing the class with the highest one or several probabilities
as the final output of the neural network model.

Compared to MLP, CNN is better at learning the internal representations of two-
dimensional images. On one hand, CNN inherits the hierarchical structure from MLP. On
the other hand, CNN broadens the type of layers to improve the efficiency of the network.
In general, a CNN starts from the convolutional layer followed by the activation function.
The convolutional layer extracts high-level abstract features from the input through the
filters, and the activation function introduces non-linearities to increase the goodness-of-fit
of the network. Then, the pooling layer is introduced to limit the number of neurons. The
convolutional layer, the activation function and the pooling layer form the main block
of the CNN, which is reused in the network until desired output. Moreover, the batch
normalization layer is sometimes used as an option to improve the generalization ability of
the network. After that, the flatten layer compresses the data into one dimension, and
some fully-connected layers followed by a softmax function at the end of the network are
added to summarize the global information and produce the final output. The structure of
CNN is given in Fig. 4.

Input Layer Conv Layer 1

Conv Layer 2
Pool Layer 1

Pool Layer 2

...

Flatten Layer

Fully-connected Layers
Outputs

...

Figure 4: Structure of CNN.

Similarly, the model of CNN C can be characterized as follows:

C : s ◦ [λ]n1 ◦ [ρ ◦ α ◦ ι]n2 , (5)

8 DLPFA: Deep Learning based Persistent Fault Analysis against Block Ciphers

where ι denotes the convolutional layer and ρ denotes the pooling layer. Moreover, we
recall that α, λ and s denote the activation function, the fully-connected layer and the
softmax function, respectively.

3.2 Combination of Fault Analysis and Deep Learning
To combine fault analysis and deep learning, our attack can be composed of two phases:
the training phase and the attack phase. Thus, two independent datasets, the training set
and the attack set, are prepared for the analysis. As mentioned above, the training set ST
of size NT consists of a quantity of independent identically distributed samples and the
corresponding labels, which can be described as:

ST : {(~si, ki)|1 ≤ i ≤ NT }, (6)

where ~si denotes the sample, and ki denotes the label due to it represents the last round
key in our dataset. In the training phase, the adversary aims to construct a generative
model. The parameters of the network, denoted by θ, will be updated iteratively to fit the
estimation gk of every k from the key space K. The model Mθ can be described with the
following conditional probability distribution function:

Mθ : {gk : (~s, k)→ Pr[~S = ~s|K = k]}k∈K, (7)

where the upper-case letter ~S and K denote the random variables over the set of ~s and k,
respectively.

After the training phase, the adversary is able to perform the fault analysis in the
attack phase with the attack set SA, which can be described as:

SA : {(~si)|1 ≤ i ≤ NA}. (8)

Unlike the training set, the label (i.e. the key) of the attack set is unknown to the
adversary. The goal of the attack phase is to recover the key from the dataset. Since
the generative model has been constructed, the adversary needs to determine which of
the key candidates is the most likely correct key. This problem is normally solved via
the maximum likelihood method, which calculates a likelihood score dSA

[k] for every key
candidate k ∈ K with the help of Bayes’ theorem as follows:

dSA
[k] =

NA∏
i=1

Pr[K = k|~S = ~si]

=
NA∏
i=1

Pr[~S = ~si|K = k]
f~S(~si)

× fK(k),

(9)

where f~S and fK denote the probability distribution function of ~S and K respectively.
The key candidate with the highest dSA

[k] can be selected as the correct key.

3.3 General Description of DLPFA
Consistent with the previous analysis, we can give a general description of DLPFA here.
To perform DLPFA, the following steps are required for the adversary:

Injection: At the beginning, the adversary injects the persistent fault into the S-box
of the block cipher prior to the encryption. The faulty S-box will be used in the following
encryption, and the effect of the fault will persist until the cryptographic device is rebooted.
The persistent fault does not affect a single output of the S-box, but all outputs of the
S-box in all rounds. However, we only focus on the effect of the fault in the last round.

Yukun Cheng, Changhai Ou, Fan Zhang and Shihui Zheng 9

Preparation: When the injection is complete, the next task of the adversary is to
prepare the dataset. Similar to TA, we consider that the adversary is able to manipulate
the faulty cryptographic device (or a cloned device) for encryption. For one sample in the
dataset, the adversary performs encryption several times with the same key and random
plaintexts. The metadata are collected to compute the distribution of the output of the
S-box in the last round as features and the key of the last round as the label. The dataset
is divided into the training set and attack set in a certain proportion. Although the labels
in the attack set are useless for the adversary, we retain them to evaluate the performance
of the attack.

Training: After that, the adversary needs to select the model and train the neural
network. The parameters of the network are initialized with random values. These
parameters are then updated to ensure that the predictions of the network are close to the
labels. The loss function and the optimizer are usually used as hyper-parameters to aid
training. The former measures the difference between the prediction and the label, and the
latter determines the range of parameters to update based on the difference. The choice of
the hyper-parameters will be discussed later, as it has a huge impact on the performance
of the network.

Attack: Eventually, the adversary is able to use the trained network to mount a
practical attack. One input of the attack set is presented to the network at a time, and the
network computes a score vector containing the likelihood scores of all the key candidates.
The candidate with the highest score is considered as the right key under attack. The
adversary can evaluate the performance of the attack based on the metric, which is similar
to the loss function but has no effect on the update of the parameters.

4 Experiments on AES-128

The experiments of DLPFA on AES are presented in this section. We first introduce the
setup of our experiments. A brief overview of AES is then provided. The experiments are
divided by the level of restriction on the position and value of the fault. We investigate
the impact of the choice of the hyper-parameters on the training phase and present the
experimental results on different datasets individually. Moreover, we separately discuss
the experiments on the dataset with the highest level of restrictions due to their undesired
performance.

4.1 Setups

The experiments are implemented at the software level on an ordinary computer with
the following configuration: IntelCore i5-12400 CPU at 3.20 GHz, 32-GB DDR5 memory,
1-TB Samsung SSD-980-PRO drive and Nvidia GeForce RTX 3060 GPU. The development
language is Python (version 3.9.7) and the development environment is Jupyter Notebook
(version 6.4.5).

The fault injection of our experiments is realized by means of simulation. The persistent
faults are injected by altering the value of the corresponding element in the S-box. For
simplicity, a serial cryptographic implementation is considered in our experiments. However,
our attack can also be applied to the parallelized cryptographic implementation as the
fault scale is byte-level.

Our implementations of the deep learning neural network are developed with Keras
library (version 2.9.0) as the frontend and Tensorflow library (version 2.9.1) as the backend.
CUDA (version 11.7) is used to accelerate the training process. The entire computation of
the tuning process takes approximately 300 hours.

10 DLPFA: Deep Learning based Persistent Fault Analysis against Block Ciphers

4.2 Brief Overview of AES
AES is a widely used block cipher, which was published by NIST in 2001 as a standard for
symmetric encryption. It comes with a block size of 128 bits and three standard key sizes
of 128, 192 and 256 bits. In this article, we focus on the 128-bit variant AES-128, which
consists of 10 rounds.

The round function of AES-128 operates on a 4× 4-byte matrix (i.e. state matrix) and
includes four byte-oriented operations: AddRoundKey (AK), SubBytes (SB), ShiftRows
(SR) and MixColumns (MC). AK combines the state with the round key via bitwise
exclusive-or. SB substitutes the state byte by byte with the S-box. SR cyclically shifts
each row of the state a different offset. MC mixes each column of the state by multiplying
it with a fix matrix. Note that the MC operation is missing in the last round based on
the specification. Moreover, a KeyExpansions operation is applied to generate round keys
from the master key using a key generation schedule.

4.3 Position and Value of the Fault
The position and value of the fault are the two requirements of the original PFA. In the
DLPFA, we ignore these requirements and assume that the adversary has no knowledge of
these information. However, the position and value of the fault can affect our attack in
another way. The randomization of the position and value implies a variety of faults in
the dataset. Given a fixed-size dataset, the more types of faults there are in the dataset,
the less information each fault provides for the training of the neural network.

To evaluate our attack in stages, we prepare four different datasets representing four
levels of restriction on the position and value of the fault. The first dataset, named FPFV
dataset, assumes that the position and value of the fault are fixed. That is, all samples in
the dataset are collected with one fixed fault. The FPRV and RPFV datasets are then
prepared for the case where the position or value of the fault is random, respectively.
Finally, in the RPRV dataset, we assume that the position and value of the fault are
random, which is the highest level of restriction. Note that the dataset with higher level
restriction is closer to the real situation, hence the experimental results in the RPRV
dataset can best reflect the capabilities of our attack.

The initial size of each dataset is 50, 000, where the training set size is 45, 000 and the
attack set size is 5, 000. We tune the hyper-parameters and show the experimental results
for the four datasets separately.

4.4 Choice of the Hyper-Parameters
The discussion of tuning the hyper-parameters can be divided into two parts. We first
focus on the parameters that define the network architecture (i.e. architecture parameters).
Then the parameters that affect the training phase (i.e. training parameters) are discussed
in the second part.

In the experiments of MLP model, three parameters are selected to characterize
the architecture of MLP: the number of layers, the number of units in each layer
and the activation function. The parameterization of an MLP architecture can be de-
scribed as MLParch(nlayers, nunits, function). In the same way, we select the number
of epochs, the batch size and the optimizer as the three training parameters and use
MLPtrain(nepochs, batch_size, optimizer) to denote the parameterization of a training
procedure.

The strategy of selecting the hyper-parameters for CNN model is inherited from the
research in MLP context for fair comparison. However, the number of hyper-parameters
of CNN model is too large for an exhaustive test of all the possible configurations. Hence,
some representative parameters are selected to be tuned and the others are set up utilizing

Yukun Cheng, Changhai Ou, Fan Zhang and Shihui Zheng 11

the work of Benadjila et al. in [BPS+20]. We consider a convolutional layer followed by
a pooling layer as a block. Then the number of blocks, the number of fully-connected
layers and the activation functions are selected as architecture parameters, which can be
described as CNNarch(nblocks, nFC_layers, function). Moreover, we fix the optimizer to
Adam and select the number of epochs and the batch size as training parameters with the
description of CNNtrain(nepochs, batch_size).

4.5 Evaluation Metrics
To evaluate the performance of our attack, we choose guessing entropy (GE) [SMY09] as the
metric in this article. GE is a widely used metric in SCA, which can give information about
the trend of the attack and the size of data required for a successful attack. Compared
with traditional deep learning metrics like accuracy, GE can give a more fair evaluation of
the attack as it assesses the attack by the mean rank of the secret key rather than the
success rate of the attack, which gives a more objective assessment of the failed attack.

As mentioned above, for an attack set SA of size NT with the right key k∗, the adversary
is able to calculate the likelihood score dSA

[k] for every key candidate k. Then the adversary
can sort the scores from the largest to the smallest to get a rank vector. GE calculates the
mean position of the right key k∗ in the rank vector, which can be described as:

GE = E
SA

[|{k ∈ K|dSA
[k] > dSA

[k∗]}|]. (10)

4.6 Experiments of MLP Model
For the sake of fairness, we tune the architecture parameters with the fixed training
parameters MLPtrain(40, 150, Adam), which denotes 40 epochs, batch size 150 and the
Adam optimizer. Then in the second part of the experiment, different training parameters
are tested with the tuned architecture parameters.

Choice of Architecture Parameters: We start the experiment with an evaluation
on the number of layers. We fix the number of units at 200 and select the eLU as the
activation function. Then MLP model is trained with different nlayers ∈ {3, · · · 8, }. As
shown in Fig. 5, the 3-layer MLP has the lowest GE on the first three datasets. However,
due to the confusion in the results, we are unable to derive anything from the experiments
on the RPRV dataset.

The number of units in each layer is then evaluated. We train a 3-layer MLP model
with the eLU activation function and different nunits ∈ {50, 100, · · · , 250, 300}. As Fig. 6
shows, our attack has a better performance on the first three datasets with the increase of
nunits. However, the larger value of nunits will lead to higher computational complexity
of the model. Taking the trade-off between efficiency and complexity into account, a
compromise of nunits is 150.

The last architecture parameter we tune is the activation function. We select three
activation functions as candidates: sigmoid, tanh and eLU. The first two are common
deep learning activation functions and the last one is a modified version of ReLU, which
has achieved remarkable performance in the field of image recognition. The experimental
results in Fig. 7 show that each candidate performs well and eLU has a slight advantage
on the complicated dataset.

Note that the experimental results on the first three datasets are consistent. Hence, we
present the experimental results on the RPFV dataset as a representative in the following
study. Moreover, we temporarily put aside the experiments on the RPRV dataset due to
its poor performance and discuss the issue with this dataset in the last subsection.

Choice of Training Parameters: When the choice of architecture parameters is
finished, the training parameters are tuned with the determined architecture parameters

12 DLPFA: Deep Learning based Persistent Fault Analysis against Block Ciphers

0 10000 20000 30000 40000
Number of Samples

0

20

40

60

80

100

120
G

u
es

si
n

g
E

n
tr

o
p
y

number of layers = 3

number of layers = 4

number of layers = 5

number of layers = 6

number of layers = 7

number of layers = 8

(a) Experiments on the FPFV dataset (b) Experiments on the FPRV dataset

0 10000 20000 30000 40000
Number of Samples

0

20

40

60

80

100

120

G
u

es
si

n
g

E
n
tr

o
p
y

number of layers = 3

number of layers = 4

number of layers = 5

number of layers = 6

number of layers = 7

number of layers = 8

(c) Experiments on the RPFV dataset

0 10000 20000 30000 40000
Number of Samples

124

126

128

130

132

G
u

es
si

n
g

E
n

tr
o
p

y

number of layers = 3

number of layers = 4

number of layers = 5

number of layers = 6

number of layers = 7

number of layers = 8

(d) Experiments on the RPRV dataset

Figure 5: GE of MLParch(nlayer, 200, eLU) trained with MLPtrain(40, 150, Adam).

0 5000 10000 15000 20000 25000
Number of Samples

0

25

50

75

100

125

G
u
es

si
n
g

E
n
tr

o
p
y

number of units = 50

number of units = 100

number of units = 150

number of units = 200

number of units = 250

number of units = 300

(a) Experiments on the FPFV dataset

0 5000 10000 15000 20000 25000
Number of Samples

0

20

40

60

80

100

120

G
u
es

si
n
g

E
n
tr

o
p
y

number of units = 50

number of units = 100

number of units = 150

number of units = 200

number of units = 250

number of units = 300

(b) Experiments on the FPRV dataset

0 5000 10000 15000 20000 25000
Number of Samples

0

20

40

60

80

100

120

G
u
es

si
n
g

E
n
tr

o
p
y

number of units = 50

number of units = 100

number of units = 150

number of units = 200

number of units = 250

number of units = 300

(c) Experiments on the RPFV dataset

0 10000 20000 30000 40000
Number of Samples

124

126

128

130

G
u

es
si

n
g

E
n
tr

o
p
y

number of units = 50

number of units = 100

number of units = 150

number of units = 200

number of units = 250

number of units = 300

(d) Experiments on the RPRV dataset

Figure 6: GE of MLParch(3, nunits, eLU) trained with MLPtrain(40, 150, Adam).

Yukun Cheng, Changhai Ou, Fan Zhang and Shihui Zheng 13

0 5000 10000 15000 20000 25000
Number of Samples

0

25

50

75

100

125

G
u

es
si

n
g

E
n
tr

o
p

y
elu

sigmoid

tanh

(a) Experiments on the FPFV dataset

0 5000 10000 15000 20000 25000
Number of Samples

0

25

50

75

100

125

G
u
es

si
n
g

E
n

tr
o
p

y

elu

sigmoid

tanh

(b) Experiments on the FPRV dataset

0 5000 10000 15000 20000 25000
Number of Samples

0

20

40

60

80

100

120

G
u
es

si
n
g

E
n

tr
o
p
y

elu

sigmoid

tanh

(c) Experiments on the RPFV dataset

0 10000 20000 30000 40000
Number of Samples

125

126

127

128

129

130

131

G
u

es
si

n
g

E
n

tr
o
p

y

elu

sigmoid

tanh

(d) Experiments on the RPRV dataset

Figure 7: GE of MLParch(3, 150, function) trained with MLPtrain(40, 150, Adam).

MLParch(3, 200, eLU). Initially, we fix the batch size at 150 and the optimizer at Adam to
select the best value for the number of epochs. Based on the experimental results in Fig.
8(a), we choose nepochs = 40 as a good trade-off between efficiency and computation time.

The next training parameter we tune is the batch size. As shown in Fig. 8(b), 100 is a
sound choice of batch size due to its efficiency in small data size and stability in large data
size.

Finally, we evaluate the effect of the optimizer on the performance of the neural network.
We provide three options: RMSprop, SGD and Adam. The learning rate for the first two
is fixed to 10−5 and the last one is an adaptive optimizer which can dynamically adjust
the learning rate by itself. The experimental results in Fig. 8(c) show that the choice of
optimizer has a significant effect on GE. We manage to obtain good results with the Adam
optimizer.

In summary, approximately 25, 000 training samples are sufficient to perform a successful
attack with these architecture and training parameters. Moreover, these tuned hyper-
parameters are used for reference in the rest of the experiments in this article.

4.7 Experiments of CNN Model
Due to the large search space of the hyper-parameters of CNN model, the goal of the
following experiments is not to find the optimal value, but rather to obtain a better value
that leads to satisfactory results. Before starting the experiment, some initial configurations
should be set up following the experience of the predecessors. We initially fix the kernel
size of the convolutional layer at 11. Then the number of filters in the i-th convolutional
layer is set to 64× 2i−1 with an upper limit of 512. We choose the average pooling as the
pooling method and set the padding option to the same padding. Ultimately, the number
of units in a fully-connected layer is fixed at 4096.

14 DLPFA: Deep Learning based Persistent Fault Analysis against Block Ciphers

0 5000 10000 15000 20000 25000
Number of Samples

0

20

40

60

80

100

120
G

u
es

si
n

g
E

n
tr

o
p
y

number of epochs = 20

number of epochs = 40

number of epochs = 60

number of epochs = 80

number of epochs = 100

(a) Experiments of nepochs

0 5000 10000 15000 20000 25000
Number of Samples

0

20

40

60

80

100

120

G
u

es
si

n
g

E
n

tr
o
p

y

batch size = 50

batch size = 100

batch size = 150

batch size = 200

batch size = 250

(b) Experiments of batch size

0 5000 10000 15000 20000 25000
Number of Samples

0

20

40

60

80

100

120

G
u

es
si

n
g

E
n
tr

o
p

y

Adam

SGD

RMSprop

(c) Experiments of optimizer

Figure 8: GE of MLPtrain(nepochs, batch_size, optimizer) trained with
MLParch(3, 150, eLU) for different nepochs, batch size and optimizer.

We present the benchmark parameters of CNN model below. We start the experi-
ment with the architecture parameters CNNarch(1, 1, eLU) and the training parameters
CNNtrain(40, 100). First, we are concerned with the experiments on the RPRV dataset.
The results in Fig. 9 show that CNN model cannot handle this dataset better than MLP
model. Therefore, we continue to investigate the effect of the hyper-parameters from the
experimental results on the RPFV dataset.

0 10000 20000 30000 40000
Number of Samples

125

126

127

128

129

130

G
u

es
si

n
g

E
n

tr
o
p

y

Figure 9: Experimental results of CNN model on the RPRV dataset.

Choice of Architecture Parameters: We first evaluate the impact of the number
of blocks. As Fig. 10(a) shows, the efficiency of the model is dimly impacted by nblocks.
One block is sufficient for CNN model to mount a successful attack. Hence, we set the
number of blocks to 1 and fix the number of filters in the convolutional layers at 64.

We then investigate the effect of the number of fully-connected layers. Unexpectedly,

Yukun Cheng, Changhai Ou, Fan Zhang and Shihui Zheng 15

Fig. 10(b) shows that the network without fully-connected layers performs equally well.
This fact can be explained by the functionality of the fully-connected layer. The fully-
connected layer integrates and reduces the dimensionality of the characteristics extracted
by the network. Since the dataset is lower dimensional and the network model is compact,
the fully-connected layer is unnecessary for our experiments. However, the best results are
obtained with one fully-connected layer. We recommend keeping the value nFC_layers = 1
to improve the performance of our CNN model.

Finally, the effect of the activation function is evaluated. Results given in Fig. 10(c)
show that all the activation functions are suitable for our attack. We select eLU as it has
less overhead than the other two functions.

0 10000 15000 20000
Number of Samples

0

20

40

60

80

100

120

G
u
es

si
n

g
E

n
tr

o
p
y

number of blocks = 1

number of blocks = 2

number of blocks = 3

5000 25000

(a) Experiments of nblocks

0 5000 10000 15000 20000 25000
Number of Samples

0

20

40

60

80

100

120

G
u
es

si
n
g

E
n

tr
o
p

y

0 FC layers

1 FC layers

2 FC layers

(b) Experiments of nF C_layers

0 5000 10000 15000 20000 25000
Number of Samples

0

20

40

60

80

100

120

G
u
es

si
n
g

E
n
tr

o
p
y

elu

sigmoid

tanh

(c) Experiments of activation function

Figure 10: GE of CNNarch(nblocks, nFC_layers, function) trained with CNNtrain(40, 100)
for different nblocks, nFC_layers and activation function.

Choice of Training Parameters: We first investigate the impact of the number of
epochs on the model efficiency. The experimental results are plotted in Fig. 11(a). Similar
to MLP model, the efficiency of the model increases when the number of epochs increases.
However, the experiments need to be performed in a reasonable amount of time. We select
40 as an appropriate value of nepochs.

Then we evaluate the performance of CNN model with different values of the batch
size. Fig. 11(b) shows that each batch size can perform well with a large size of training
set. However, when the size of training set is smaller than 5, 000, GE decreases more
steeply for smaller batch size. Therefore, we recommend fixing the batch size to 50 to
obtain decent global results.

The experimental results show that our CNN model with tuned hyper-parameters is
efficient for the fault analysis. However, since the optimization of the hyper-parameters is
not our goal, we believe that more appropriate parameters may be found to obtain better
results in the following studies.

16 DLPFA: Deep Learning based Persistent Fault Analysis against Block Ciphers

0 5000 10000 15000 20000 25000
Number of Samples

0

20

40

60

80

100

G
u

es
si

n
g

E
n
tr

o
p
y

number of epochs = 20

number of epochs = 40

number of epochs = 60

number of epochs = 80

number of epochs = 100

(a) Experiments of nepochs

0 5000 10000 15000 20000 25000
Number of Samples

0

20

40

60

80

100

G
u
es

si
n

g
E

n
tr

o
p
y

batch size = 50

batch size = 100

batch size = 150

batch size = 200

batch size = 250

(b) Experiments of batch size

Figure 11: GE of CNNtrain(nepochs, batch_size) trained with CNNarch(1, 1, eLU) for
different nepochs and batch size.

4.8 Discussion about the Experiments on the RPRV Dataset
The experiments demonstrate that MLP and CNN models can mount successful attacks as
expected on the FPFV, FPRV and RPFV datasets. Unfortunately, these models perform
poorly on the RPRV dataset. We attribute the failure to the increased randomness of
the dataset. The randomness can be roughly quantified in terms of the possibility of the
fault. Reviewing the configuration of the dataset, there is only one possibility of the fault
in the FPFV dataset as the position and value of the fault are fixed. According to the
characteristics of AES, the faults of the S-box have 256 random values and 256 random
positions. Thus, there are 256 possible faults in the FPRV and RPFV datasets and 65, 536
possible faults in the RPRV dataset.

Considering the training set size of 45, 000 in the experiments, the network is hardly to
learn enough knowledge for all the possibilities of faults in the RPRV dataset. To overcome
this challenge, we expand the training set size to more than 800, 000. The experimental
results of CNN model are plotted in Fig. 12. The decreasing trend of GE confirms that
the increase of training set is beneficial for our attack in the RPRV dataset.

0 800000

90

100

110

120

G
u

es
si

n
g

E
n

tr
o
p

y

200000 400000 600000
Number of Samples

Figure 12: Experimental results of CNN model on the expanded RPRV dataset.

To further validate our point of view, we extend our attack to the lightweight SPN-based
cipher in the next section. We choose PRESENT as the target due to its pint-sized S-box.

5 Experiments on PRESENT
DLPFA has been successfully applied on AES-128 to the first three datasets. In this section,
our attack is extended to PRESENT to undertake a further study of its performance on

Yukun Cheng, Changhai Ou, Fan Zhang and Shihui Zheng 17

the RPRV dataset. Moreover, we end this section with some comparisons of DLPFA and
related works.

5.1 Brief Overview of PRESENT

PRESENT is an AES-like lightweight block cipher which was proposed in [BKL+07]. It
is designed with area and power constraints and is more suitable for extremely resource-
constrained environments.

PRESENT consists of 31 rounds and comes with a block size of 64 bits. Two key
lengths of 80 and 128 bits are supported. We focus on the version with 128-bit key in
this article. Compared to AES, PRESENT has a similar round function consisting of
AddRoundKey, sBoxlayer and pLayer. However, PRESENT uses a 4-bit to 4-bit S-box to
substitute these nibbles in the state matrix. Smaller S-box decreases the possibilities of
the fault.

5.2 Preparation of the Dataset

The dataset is reprepared for the experiments on PRESENT. We locate our attack in the
last round of the cipher as before. However, due to the 4-bit S-box, the features and labels
are processed in nibbles. Since the effectiveness of DLPFA on the first three datasets has
already been demonstrated, we only focus on the experiments on the RPRV dataset.

The size of the dataset is enlarged to increase the amount of information contained.
We prepare 150, 000 samples for the training set and 15, 000 samples for the attack set.

5.3 Experiments on the RPRV Dataset

We start the experiments of MLP and CNN models with the hyper-parameters tuned in
the previous section. As shown in Fig. 13, both models have decent results on the RPRV
dataset. GE eventually approximately converges to 3, which implies the existence of an
average of three possible key candidates. The adversary can easily recover the key with a
brute force search.

0 50000 100000 150000
Number of Samples

4

5

6

7

8

G
u
es

si
n

g
E

n
tr

o
p
y

(a) Experiments of MLP model

0 50000 100000 150000
Number of Samples

4

5

6

7

G
u
es

si
n
g

E
n

tr
o
p
y

(b) Experiments of CNN model

Figure 13: Experimental results of MLP and CNN model on PRESENT cipher.

Then we tune the hyper-parameters of both models. We search for parameters from
a wider range and the tuned hyper-parameters are summarized in Tables 1 and 2. We
recommend the more sophisticated models to improve the efficiency in the training phase.

18 DLPFA: Deep Learning based Persistent Fault Analysis against Block Ciphers

Table 1: Summary of the tuned hyper-parameters of MLP model

Hyper-Parameter Reference Range Choice
Architecture Parameters

Layers nlayer {1,2,3,4,5} 5
Units nunits {50,100, · · · ,350,400} 400

Activation Function - eLU, Sigmoid, Tanh eLU
Training Parameters

Epochs nepochs {10,15, · · · ,55,60} 20
Batch Size - {50,100, · · · ,450,500} 500
Optimizer - Adam, SGD, RMSprop Adam

Table 2: Summary of the tuned hyper-parameters of CNN model

Hyper-Parameter Reference Range Choice
Architecture Parameters

Blocks nblocks {1,2,3,4} 4
FC Layers nFC_layers {0,1,2} 1

Activation Function - eLU, Sigmoid, Tanh eLU
Training Parameters

Epochs nepochs {10,20, · · · ,40,50} 20
Batch Size - {50,100, · · · ,450,500} 500

5.4 Comparisons of DLPFA and Related Works
At the end of this section, we present some comparisons of DLPFA and related works to
give a thorough analysis of our attack. We first compare our attack with classical transient
fault analysis like DFA and SFA. Our attack has a more relaxed time window for fault
injection thanks to the persistent fault model. Moreover, at least one fault is sufficient to
mount our attack, but the transient analysis usually requires multiple faults from multiple
injections.

Then we compare our attack with the persistent fault-based attacks like PFA and
EPFA[XZY+21]. Indeed, all the faulty ciphertexts used in the analysis of these persistent
fault-based attacks are collected from the same fault, which corresponds to the case of the
FPFV dataset in our attack. However, DLPFA is able to perform successful attacks on
the FPRV, RPFV and RPRV datasets, which have higher level of restriction. That is, our
attack is closer to the actual situation.

The final comparison is between DLPFA and deep learning-based SCA, since they both
belong to the applications of neural networks in the field of cryptography. The dataset in
the deep learning-based SCA consists of the power traces, which contain the computation
of the entire or some rounds of the cipher and are collected from multiple encryptions. The
adversary has to solve the problems of the choice of Points-of-Interest (POIs) [ZZY+14]
and the synchronization of the traces [CDP17b]. However, thanks to our feature selection
method, there is no need to preprocess the dataset of DLPFA. This greatly reduces the
work of the adversary.

6 Conclusions
In this article, we conduct the first thorough study on the application of deep learning
based key recovery in the field of fault analysis. One of the main motivations for using
deep learning techniques is their outstanding results in side-channel analysis. We propose
DLPFA as a novel FA method and mount successful attacks with MLP and CNN models

Yukun Cheng, Changhai Ou, Fan Zhang and Shihui Zheng 19

on several classical and modern block ciphers. In particular, we discuss the choice of
hyper-parameters and present the tuned parameterization options as a reference for the
design of new models. Since the current state of deep learning theory does not yet provide
a clear basis for such analysis, we believe that having a methodology is a first necessary
step that opens the way for further research in this domain.

For future work, it might be interesting to improve the performance of DLPFA on the
RPRV dataset. Another potential future direction is to change the fault model and seek
more efficient feature selection methods. Moreover, how to break protected cryptographic
implementations is also an interesting topic for future work.

References
[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis

with a leakage model. In Cryptographic Hardware and Embedded Systems -
CHES 2004: 6th International Workshop Cambridge, MA, USA, August 11-13,
2004. Proceedings, volume 3156, pages 16–29. Springer, 2004.

[BDG+10] Michael Backes, Markus Dürmuth, Sebastian Gerling, Manfred Pinkal, and
Caroline Sporleder. Acoustic side-channel attacks on printers. In 19th USENIX
Security Symposium, Washington, DC, USA, August 11-13, 2010, Proceedings,
pages 307–322. USENIX Association, 2010.

[BHJ+18] Jakub Breier, Xiaolu Hou, Dirmanto Jap, Lei Ma, Shivam Bhasin, and Yang
Liu. Practical fault attack on deep neural networks. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, CCS
2018, Toronto, ON, Canada, October 15-19, 2018, pages 2204–2206. ACM,
2018.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In Cryptographic Hardware and
Embedded Systems - CHES 2007, 9th International Workshop, Vienna, Austria,
September 10-13, 2007, Proceedings, volume 4727, pages 450–466. Springer,
2007.

[BL12] Timo Bartkewitz and Kerstin Lemke-Rust. Efficient template attacks based
on probabilistic multi-class support vector machines. In Smart Card Research
and Advanced Applications - 11th International Conference, CARDIS 2012,
Graz, Austria, November 28-30, 2012, Revised Selected Papers, volume 7771,
pages 263–276. Springer, 2012.

[BMM00] Ingrid Biehl, Bernd Meyer, and Volker Müller. Differential fault attacks on
elliptic curve cryptosystems. In Advances in Cryptology - CRYPTO 2000, 20th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 20-24, 2000, Proceedings, volume 1880, pages 131–146. Springer, 2000.

[BPS+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Deep learning for side-channel analysis and introduction to ASCAD
database. J. Cryptogr. Eng., 10(2):163–188, 2020.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Advances in Cryptology - CRYPTO ’97, 17th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 1997,
Proceedings, volume 1294, pages 513–525. Springer, 1997.

20 DLPFA: Deep Learning based Persistent Fault Analysis against Block Ciphers

[CDP17a] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neu-
ral networks with data augmentation against jitter-based countermeasures -
profiling attacks without pre-processing. In Cryptographic Hardware and Em-
bedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings, volume 10529, pages 45–68. Springer,
2017.

[CDP17b] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neu-
ral networks with data augmentation against jitter-based countermeasures -
profiling attacks without pre-processing. In Cryptographic Hardware and Em-
bedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings, volume 10529, pages 45–68. Springer,
2017.

[CLFT14] Franck Courbon, Philippe Loubet-Moundi, Jacques J. A. Fournier, and Assia
Tria. Adjusting laser injections for fully controlled faults. In Constructive Side-
Channel Analysis and Secure Design - 5th International Workshop, COSADE
2014, Paris, France, April 13-15, 2014. Revised Selected Papers, volume 8622,
pages 229–242. Springer, 2014.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
Cryptographic Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers,
volume 2523, pages 13–28. Springer, 2002.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard, Flo-
rian Mendel, and Robert Primas. SIFA: exploiting ineffective fault inductions
on symmetric cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2018(3):547–572, 2018.

[FJLT13] Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard. Fault
attacks on AES with faulty ciphertexts only. In 2013 Workshop on Fault
Diagnosis and Tolerance in Cryptography, Los Alamitos, CA, USA, August 20,
2013, pages 108–118. IEEE Computer Society, 2013.

[GA03] Sudhakar Govindavajhala and Andrew W. Appel. Using memory errors to
attack a virtual machine. In 2003 IEEE Symposium on Security and Privacy
(S&P 2003), 11-14 May 2003, Berkeley, CA, USA, pages 154–165. IEEE
Computer Society, 2003.

[GHO15] Richard Gilmore, Neil Hanley, and Máire O’Neill. Neural network based attack
on a masked implementation of AES. In IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2015, Washington, DC, USA,
5-7 May, 2015, pages 106–111. IEEE Computer Society, 2015.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
analysis: Concrete results. In Cryptographic Hardware and Embedded Systems
- CHES 2001, Third International Workshop, Paris, France, May 14-16, 2001,
Proceedings, volume 2162, pages 251–261. Springer, 2001.

[HGM+11] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede,
and Joos Vandewalle. Machine learning in side-channel analysis: a first study.
J. Cryptogr. Eng., 1(4):293–302, 2011.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology

Yukun Cheng, Changhai Ou, Fan Zhang and Shihui Zheng 21

Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings,
volume 1666, pages 388–397. Springer, 1999.

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Hanjalic.
Make some noise. unleashing the power of convolutional neural networks for
profiled side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2019(3):148–179, 2019.

[LBM15] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. A machine
learning approach against a masked AES - reaching the limit of side-channel
attacks with a learning model. J. Cryptogr. Eng., 5(2):123–139, 2015.

[LPB+15] Liran Lerman, Romain Poussier, Gianluca Bontempi, Olivier Markowitch, and
François-Xavier Standaert. Template attacks vs. machine learning revisited
(and the curse of dimensionality in side-channel analysis). In Constructive Side-
Channel Analysis and Secure Design - 6th International Workshop, COSADE
2015, Berlin, Germany, April 13-14, 2015. Revised Selected Papers, volume
9064, pages 20–33. Springer, 2015.

[LWLX17] Yannan Liu, Lingxiao Wei, Bo Luo, and Qiang Xu. Fault injection attack
on deep neural network. In 2017 IEEE/ACM International Conference on
Computer-Aided Design, ICCAD 2017, Irvine, CA, USA, November 13-16,
2017, pages 131–138. IEEE, 2017.

[Man02] Stefan Mangard. A simple power-analysis (SPA) attack on implementations of
the AES key expansion. In Information Security and Cryptology - ICISC 2002,
5th International Conference Seoul, Korea, November 28-29, 2002, Revised
Papers, volume 2587, pages 343–358. Springer, 2002.

[MDM16] Zdenek Martinasek, Petr Dzurenda, and Lukas Malina. Profiling power analysis
attack based on MLP in DPA contest V4.2. In 39th International Conference
on Telecommunications and Signal Processing, TSP 2016, Vienna, Austria,
June 27-29, 2016, pages 223–226. IEEE, 2016.

[MZVT15] Zdenek Martinasek, Ondrej Zapletal, Kamil Vrba, and Krisztina Trasy. Power
analysis attack based on the MLP in DPA contest v4. In 38th International
Conference on Telecommunications and Signal Processing, TSP 2015, Prague,
Czech Republic, July 9-11, 2015, pages 154–158. IEEE, 2015.

[PSK+18] Stjepan Picek, Ioannis Petros Samiotis, Jaehun Kim, Annelie Heuser, Shivam
Bhasin, and Axel Legay. On the performance of convolutional neural networks
for side-channel analysis. In Security, Privacy, and Applied Cryptography
Engineering - 8th International Conference, SPACE 2018, Kanpur, India,
December 15-19, 2018, Proceedings, volume 11348, pages 157–176. Springer,
2018.

[Riv91] Ronald L. Rivest. Cryptography and machine learning. In Advances in
Cryptology - ASIACRYPT ’91, International Conference on the Theory and
Applications of Cryptology, Fujiyoshida, Japan, November 11-14, 1991, Pro-
ceedings, volume 739, pages 427–439. Springer, 1991.

[SAB+20] Sayandeep Saha, Manaar Alam, Arnab Bag, Debdeep Mukhopadhyay, and
Pallab Dasgupta. Leakage assessment in fault attacks: A deep learning
perspective. IACR Cryptol. ePrint Arch., page 306, 2020.

22 DLPFA: Deep Learning based Persistent Fault Analysis against Block Ciphers

[SMY09] François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework
for the analysis of side-channel key recovery attacks. In Advances in Cryptology
- EUROCRYPT 2009, 28th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Cologne, Germany, April 26-30,
2009. Proceedings, volume 5479, pages 443–461. Springer, 2009.

[Tim19] Benjamin Timon. Non-profiled deep learning-based side-channel attacks with
sensitivity analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):107–
131, 2019.

[XZY+21] Guorui Xu, Fan Zhang, Bolin Yang, Xinjie Zhao, Wei He, and Kui Ren.
Pushing the limit of PFA: enhanced persistent fault analysis on block ciphers.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 40(6):1102–1116, 2021.

[ZLZ+18] Fan Zhang, Xiaoxuan Lou, Xinjie Zhao, Shivam Bhasin, Wei He, Ruyi Ding,
Samiya Qureshi, and Kui Ren. Persistent fault analysis on block ciphers. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):150–172, 2018.

[ZZY+14] Yingxian Zheng, Yongbin Zhou, Zhenmei Yu, Chengyu Hu, and Hailong Zhang.
How to compare selections of points of interest for side-channel distinguishers
in practice? In Information and Communications Security - 16th International
Conference, ICICS 2014, Hong Kong, China, December 16-17, 2014, Revised
Selected Papers, volume 8958, pages 200–214. Springer, 2014.

	Introduction
	Overview
	Related Works
	Contributions
	Organizations

	Fault Model and Feature Selection
	Fault Model
	Feature Selection
	Details of the Dataset

	Deep Learning-Based Fault Analysis
	MLP and CNN
	Combination of Fault Analysis and Deep Learning
	General Description of DLPFA

	Experiments on AES-128
	Setups
	Brief Overview of AES
	Position and Value of the Fault
	Choice of the Hyper-Parameters
	Evaluation Metrics
	Experiments of MLP Model
	Experiments of CNN Model
	Discussion about the Experiments on the RPRV Dataset

	Experiments on PRESENT
	Brief Overview of PRESENT
	Preparation of the Dataset
	Experiments on the RPRV Dataset
	Comparisons of DLPFA and Related Works

	Conclusions

