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Abstract

We review the two RSA-based accumulators introduced by Camenisch
and Lysyanskaya in [CL02b] in the setting of revocation for anony-
mous credential schemes, such as Idemix or BBS+. We show that in
such a setting, the lower and upper bounds placed on the accumulated
values in the paper are unnecessarily strict; they can be removed al-
most entirely (up to the group order of the credential scheme). This
allows the accumulators to be used on elliptic curves of ordinary sizes,
such as the ones on which BBS+ is commonly implemented. We also
offer some notes and optimizations for implementations of anonymous
credential schemes that use these accumulators to enable revocation.

Contents
1 Introduction 2

2 The lower bound of accumulated values 3

3 The proof of knowledge 6

4 Revocable credentials 10

5 Instantiations 13

6 The RSA-B accumulator 14

A Number-theoretic preliminaries 15

1



1 Introduction
The RSA-based accumulator schemes from [CL02b] allow anonymous
credentials such as those from Identity Mixer (Idemix) [CL02a; IBM12]
or BBS+ [ASM06; CDL16] to be revoked, without compromising the
anonymity features of the credential scheme. Camenisch and Lysyan-
skaya introduce two accumulators in [CL02b] that work in an RSA-like
setting, one of which is such that it has a trivial addition operation:
only deleting values from the accumulator constitutes work. We follow
the lead of [Bal+17] and refer to the two accumulator schemes as the
RSA and RSA-B accumulators.

Let q be the order of the group of the anonymous credential scheme.
In [CL02b], the prime numbers e that are accumulated have to be cho-
sen from a set contained within [A,B] which is such that B2k

′+k′′+2 <
A2 − 1 < q/2, in which k′ is the bit length of challenges chosen in
the zero-knowledge proofs and k′′ is the statistical zero-knowledge se-
curity parameter of the zero-knowledge proofs. In practice one would
want k′′ = 128, and since one generally uses the SHA256 hash func-
tion in the Fiat-Shamir heuristic to compute the challenges, whose
output is 256 bits, this means that q has to be at the very minimum
128 + 256 + 2 + 1 = 387 bits. However, if one wants the set [A,B]
to have a reasonable size, for example so large that one can randomly
choose primes from them with a negligible probability for collisions,
the birthday paradox combined with the prime counting theorem will
push this minimum size for q to at least some 500 bits, and probably
larger. This would make it impractical to use these accumulators in
generally available elliptic curves, which are currently usually between
256 and some 400 bits. That is, using these accumulators in existing
BBS+ implementations would be impossible.

In this paper, we show that both the lower bound A and upper
bound B can be relaxed to such a degree that this becomes feasible
again. In addition, we suggest a number of optimizations that can be
made in implementations. The contents of this paper largely follows
that of [CL02b], to which we will sometimes refer as just “the paper”.
At some points we remark in footnotes on minor notational mistakes
in the paper, or small differences between it and this paper.

The outline of this paper is as follows.

• In Section 2, we show that the lower bound A does not need to
be related to the upper bound B. Instead, it suffices to require
that A > 1.

• In Section 3, we review the proof of security for the zero-knowl-
edge proof of a witness for an accumulated value, adding extra
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explanation here and there and fixing some minor notational er-
rors present in [CL02b].

• In Section 4 we apply the accumulator to anonymous credential
schemes, and we show that in such a setting the upper bound
B does not need to satisfy B2k

′+k′′+2 < q/2; instead requiring
B < q suffices.

• In Section 5, we suggest a number of optimizations that can be
made when implementing the accumulator for BBS+ and Idemix.

• In Section 6, we finally consider the differences between the RSA
and RSA-B accumulators, ending with the conclusion that RSA-
B is superior. (Up to that point in the paper we restrict our
attention to the RSA accumulator, to stay closer in our consid-
erations and notation to [CL02b].)

We keep our notation as close as possible to that of [CL02b]. If a is an
integer we denote with a mod b the remainder of division of a by b, i.e.,
the unique integer r < b such that a = ⌊a/b⌋b+r. The modulus n = pq
is a product of two safe primes; that is, writing p = 2p′+1 and q = 2q′+
1, p′ and q′ are also primes. Z∗

n = (Z/nZ)∗ is the multiplicative group
of integers modulo n, and QRn ⊂ Z∗

n is the subgroup of quadratic
residues, i.e., QRn = (Z∗

n)
2 = {x ∈ Z∗

n | ∃y ∈ Z∗
n : x = y2}, whose

order is p′q′. When dealing with elements of QRn or Zn we often
omit writing modn after multiplication, exponentiation, or modular
division; this is implied (although when we work with groups of other
moduli we will be more careful with this to avoid confusion).

We denote with ν the accumulator. In the RSA accumulator a
prime number e may be accumulated into ν by setting u = ν and
then ν 7→ νe. In the RSA-B accumulator, the number u is instead
calculated by u = νe

−1 mod p′q′ , and the value of the accumulator ν
stays the same. The number u ∈ QRn, which in both cases satisfies
ν = ue by construction, is called the witness for e. The number e can
be removed from the accumulator by ν 7→ νe

−1 mod p′q′ .

2 The lower bound of accumulated val-
ues
Theorem 3 in Section 3.2 of [CL02b] proves security of the RSA accu-
mulator, assuming that the set XA,B ⊂ [A,B] from which the primes
e are chosen is such that B < A2. In this section, we show that this
assumption is not necessary: it is possible to prove security without
it. This allows us to choose these parameters smaller than they would
otherwise need to be, increasing the efficiency of the scheme.

3



Recalling the definition of security of an accumulator from the
paper, we say that an accumulator f , which adds a value e to the
accumulator ν by ν 7→ f(ν, e), is secure when the following holds.
Let X be the set of values that may be accumulated, and let X ′ be
the range of the second parameter of f (so that X ⊂ X ′). For any
ν, no probabilistic polynomial-time algorithm can compute a sub-
set X = {x1, . . . , xn} ⊂ X as well as some x ∈ X ′ and u such
that x /∈ X and f(u, x) = f(ν,X) (where with f(ν,X) we mean
f(f(· · · (f(ν, x1), . . . ), xn).)

Note that this definition says that it must be impossible to come up
with any element from the larger set X ′, which contains X as a subset,
as a “forgery”. In the case of the RSA(-B) accumulator, this means
any integer x unequal to ±1 mod n such that ux = νX . However, the
legitimately accumulated values xi ∈ X are elements of X .

Theorem 1. Let XA,B ⊂ [A,B] with A > 1 be the set of numbers from
which the number e such that ν = ue is chosen. Under the strong RSA
assumption, the RSA accumulator is a secure dynamic accumulator.

Proof. We set everything up just as in the first part of the proof of
Theorem 3 in the paper.1 In particular, let u be the number of which
we wish to compute a root, and suppose the adversary came up with
numbers u′, x′ ̸= ±1 mod n, and x1, . . . , xk ∈ XA,B such that x′ ̸= xi
for all k and

(u′)x
′
= ux,

in which x =
∏k
i=1 xi. The first step is to derive from this a similar

equation in which the exponents are relatively prime.
Set d = gcd(x, x′) and let y = x/d and y′ = x′/d. Then (u′)x

′
= ux

becomes
((u′)y

′
)d = (uy)d.

If d is even then (u′)y
′ need not be a quadratic residue, but by Lemma 1

we can always write (u′)y
′
= sr mod n for some s2 = 1 mod n and

1This proof differs from the one in the paper in the following respects. (1) We place
no requirements on the subset XA,B ⊂ [A,B] except for A > 1: any number as long
as it exceeds 1 may be accumulated, including composites. (2) We are more explicit in
handling the square root s of 1 that necessarily shows up when relating elements of Z∗

n

and QRn ⊂ Z∗
n with each other. (3) To ease notational burden, we write y and y′ instead

of x̃ and x̃′ throughout the proof.
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r ∈ QRn. Then

(uy)d = ((u′)y
′
)d mod n

= (sr)d mod n

= sdrd mod n

= rd mod n,

where the last step follows because the left hand side shows that we
are comparing quadratic residues. Now uy and r are both quadratic
residues, and since d mod #QRn is invertible by Lemma 4, the outer
ends of the above equations imply

uy = r mod n = s(u′)y
′
mod n with s2 = 1 mod n.

By Lemma 3 the number s must be ±1. If y′ is even, then s = 1 since
then both uy and (u′)y

′ are elements of QRn, while −1 /∈ QRn (as −1
is of order 2). If y′ is odd, then we may move s within the brackets to
obtain uy = (su′)y

′ for s = ±1. Setting v = su′, in all of these cases
we have

uy = vy
′
mod n with gcd(y, y′) = 1,

since d = gcd(x, x′) = gcd(yd, y′d).
The rest of the proof is the same as in the paper. Using the ex-

tended Euclidian algorithm for gcd we can compute integers a, b such
that ay + by′ = 1 holds. Set z = vaub. Then2

zy
′
= (zyy

′
)1/y =

(
(vy

′
)ay(uy)by

′
)1/y

=
(
(uy)ay+by

′
)1/y

= u;

note that 1/y mod #QRn exists again by Lemma 4. Thus the tuple
(z, y′) breaks the strong RSA assumption.

The claim that d = gcd(x, x′) implies d = 1 or d = xj found in the
middle of the proof in the paper, which requires A2 > B for its proof,
is thus not necessary to use in the proof of Theorem 3. The paper uses
this to infer that d is invertible modulo #QRn, but Lemma 4 shows
that under the Strong RSA assumption any number computed by a
polynomial-time algorithm is with overwhelming probability going to
be invertible modulo #QRn, regardless of their size or how they are
constructed.

Going further, for this proof to work it is not even necessary to
require that the set XA,B of values e that may be accumulated must
consist only of primes, since this proof nowhere uses that the numbers
xi are prime. Instead, any numbers xi > 1 may be used.

2The paper writes ũ instead of u′ here, and it misses the second and last equality signs.
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The corresponding proof in the paper seems to use the fact that the
numbers e are prime only in the Claim inside the proof, which as noted
is not necessary to use. This is the only place in the paper where the
requirement that the numbers e are prime numbers is used; all other
security results about the RSA(-B) accumulators ultimately reduce to
this one. Therefore it seems unnecessary to require the accumulated
numbers e to be prime.

In the remainder of this document, therefore, we drop these re-
quirements; instead we only require that A > 1. What B needs to
satisfy is discussed in Section 4.

3 The proof of knowledge
When using accumulators one generally wishes to prove that some-
thing is not revoked. In this paper we assume that we are dealing
with an anonymous credential scheme, such as the Identity Mixer
(Idemix) [CL02a; IBM12] or BBS+ [ASM06; CDL16]. In such cases,
for the system to work we have to tie the witness (u, e) to the credential
that needs to be revocable. This can be done by including the number
e as one of the attributes signed by the issuer, and during verification
letting the user prove equality of the signed attribute and the number
e such that ue = ν.

Generally, such an issuer signature takes the form of a signature
over a commitment to e and the credential’s attributes, in the group
G in which the credential scheme lives. The precise form of this com-
mitment will depend on the details of the credential scheme. The
particular identities being zero-knowledge proved in what follows may
have to be correspondingly adjusted, according to analysis of the spe-
cific form of the commitment to e and the attributes, the signature over
that, and the group structure of G (in particular, its order q). Indeed,
the paper does this too in its example application of the accumulator,
in section 4.2. We will come back to this in Sections 4 and 5.

For now we ignore all details of the credential scheme being used by
assuming, like the paper, that the commitment to e in G is of the form
Ce = gehr, where g, h ∈ G. We denote with q the order of G. Note
that any commitment in G can then only commit to integers reduced
modulo q.

To prove knowledge of u and e such that ν = ue and the number
e mod q is committed to by Ce, the prover forms a commitment Cu to
u and proves that this commitment corresponds to an e-th root of the
value ν. This is carried out as follows.

• Denote with k′′ the statistical zero-knowledge security parameter.
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The prover chooses r1, r2, r3 ∈ Z⌊n/4⌋ (i.e., having as upper bound
the largest number known by everyone that is below the order of
QRn), computes Ce = gehr1 , Cu = uhr2 , Cr = gr2hr3 , and sends
Ce, Ce, Cu and Cr to the verifier.

• The prover and verifier carry out the following proof of knowl-
edge:3, 4

PK

{
(α, β, γ, δ, ϵ, ζ, φ, ψ, η, σ, ξ) :

Ce = gαhφ ∧ g =

(
Ce
g

)γ
hψ ∧ g = (gCe)

σhξ ∧

Cr = gϵhζ ∧ Ce = gαhη ∧

ν = Cαu

(
1

h

)β
∧ 1 = Cαr

(
1

g

)δ (1

h

)β }
(1)

In these expressions, for honest users the following would hold:

• α = e

• β = er2

• φ = r

• η = r1

• ζ = r2

• ϵ = r3

We will however keep the paper’s notation and use the greek letters.
The reason for the fractions in these expressions is to force various

relations between these numbers that are required to convince the
verifier, as will become clear in the proof.

The identities above require us to prove knowledge of exponents
involving the group G ∋ g, h which is of order q, as well as the group
QRn which is of the unknown order p′q′. Proving knowledge in the
latter relies on not reducing the response modulo the unknown p′q′.
On the other hand, proving knowledge of an exponent involving G nec-
essarily requires the prover as well as the verifier to perform reductions
modulo q of all exponents.

3In the second line of this proof in the paper, the g and h factors are erroneously
switched. We can tell that this is an error and not done on purpose because α plays the
role of e, and Ce is defined as Ce = gehr1 , which is inconsistent with Ce = hαgη in the
second line of the PK in the paper. We have swapped g and h to their expected order,
and swapped some of the greek indices as well in such a way that in the proof, the greek
letters have to change as little as possible.

4Contrary to the corresponding proof in the paper our proof gives no guarantees on
the size of the number α, because we do not need it in our use of this proof later in the
paper, in Section 4.
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In particular, the number α occurs in each of the lines in the equal-
ities above, as exponents involving G ∋ g, h as well as QRn. The zero-
knowledge proof must be able to convince the verifier that the prover
uses one and the same number α in each of the expression where α
occurs, up to reduction modulo q in expressions that involve G. As
one normally does, we implement this by having the prover send a
single response sα that the verifier uses for all identities involving α.
This is an integer, i.e., not reduced modulo q or anything else. How-
ever, as noted above, if the identity involves G then in computations
a reduction modulo q of α and sα is implied.

Theorem 2. Under the strong RSA assumption this is a proof of
knowledge of two integers e ̸= 0,±1 and u such that ν = ue mod n
and Ce is a commitment to e mod q.

Proof. Showing that the protocol is statistical zero-knowledge is stan-
dard. Also, it is easy to see that Ce, Ce, Cu and Cr are statistically
independent from u and e.

It remains to show that if the verifier accepts, then numbers e ̸=
0,±1 and u such that (1) Ce commits to e mod q and (2) ue = ν can
be extracted from the prover. We do this with the standard rewinding
technique, i.e., presenting the prover with different challenges c and
c′, and using its output to construct such numbers. We proceed as
follows.

• The first line of the proven equalities in the proof of knowledge (1)
involving Ce allows us to extract the modular number e mod q
that Ce commits to, and conclude that it is unequal to ±1 mod q.

• The second and third lines allow us to extract integers u, e such
that (1) ν = ue and (2) the reduction modulo q of e equals the
number extracted in the previous step.

Therefore we may conclude that e ̸= ±1 as integers, because otherwise
e ̸= ±1 mod q. Additionally, since ν ̸= 1 we have e ̸= 0.

In the remainder of the proof, we drop the variables u and e and
work exclusively with what the adversary gave us. First we set up
some notation.

• Denote with sα and s′α the responses for α that the prover emits
when presented with c and c′, respectively. Similarly for all other
greek letters.

• Set ∆α = sα − s′α, and similarly for all other greek letters. Ad-
ditionally, set ∆c = c′ − c.

• Set α̃ = ∆α∆c−1 mod q, and similarly for all other greek letters,
for the relations involving G.
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Then after completing the proof, we have

C∆c
e = g∆αh∆φ g∆c =

(
Ce
g

)∆γ

h∆ψ g∆c = (gCe)
∆σh∆ξ (2)

C∆c
r = g∆ϵh∆ζ C∆c

e = g∆αh∆η (3)

ν∆c = C∆α
u

(
1

h

)∆β

1 = C∆α
r

(
1

g

)∆δ (1

h

)∆β

(4)

We first show that Ce commits to a number different from ±1 mod q,
using (2). The left equation yields Ce = gα̃hφ̃ and the middle yields
g = (Ce/g)

γ̃ hψ̃, and substituting the one in the other results in5

g =

(
Ce
g

)γ̃
hψ̃ = g(α̃−1)γ̃hφ̃γ̃+ψ̃.

Using Lemma 5, the exponents of g and h in the left hand side (i.e.,
1 mod q and 0 mod q respectively) and right hand side of this must
be equal up to the order of the group, so 1 ≡ (α̃ − 1)γ̃ mod q must
hold6 and therefore α̃ ̸= 1 mod q, as otherwise γ̃ would not exist.
Similarly, from the first and third equation of (2) one can conclude
that α̃ ̸= −1 mod q.

We next construct a root of ν. From the next two equations (3)
and Lemma 6, we can derive that ∆c divides ∆α, ∆η, ∆ϵ and ∆ζ. Let
α̂ = ∆α/∆c (i.e., using integer division), and similarly for the other
greek letters. Taking the first equation of (3), we get that Cr = agϵ̂hζ̂

for some a such that a2 = 1 mod n (by Lemma 1). Since c, c′ < p′, q′,
by Lemma 3 the value a must be ±1. Plugging Cr into the second
equation of (4) we get

1 = a∆αg∆αϵ̂h∆αζ̂
(
1

g

)∆δ (1

h

)∆β

.

Here a∆α must be 1, since if a∆α = −1 then the product of the other
factors in the right hand side of this expression would also have to be
−1. But g, h ∈ QRn so that that product is also an element of QRn,
while on the other hand −1 /∈ QRn. Taking the above expression
without a∆α in it, then, using Lemma 5 again we can conclude that7

5The paper is missing the rightmost equality sign in this formula.
6The paper erroneously writes q here instead of q.
7The paper erroneously writes β̂ here instead of ∆β. Additionally, for the remainder

of the argument to work, β and its cousins with hats and ∆’s must be an exponent of h
instead of g, so that this identity is mod ord(h) instead of mod ord(g).
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∆β = ∆αζ̂ mod ord(h). When put into the first equation of (4), this
results in

ν∆c =

(
Cu

hζ̂

)∆α

which results in ν = b

(
Cu

hζ̂

)α̂
,

with some b such that b∆c = 1, which must again be ±1. Actually, if
α̂ is even then b = −1 is not possible since ν ∈ QRn, while otherwise
we may move b within the brackets of the above expression for ν.
Now, without loss of generality we may assume that α̂ > 0 (otherwise,
simply swap sα with s′α and similarly for the other responses emitted
by the adversary). Then we finally find

ν = uα̂ with u = ±Cu
hζ̂
,

where the sign is + if α̂ is even. If α̂ is odd, then the two ± possibilities
may simply both be tried in order to find the one for which ν = uα̂

holds.
Comparing the definitions of α̃ and α̂, we find that α̂ mod q = α̃.

This completes the proof.8

4 Revocable credentials
In this section, we use this accumulator as part of a credential scheme
such as Idemix or BBS+ to add revocation support to that credential
scheme. We also discuss what the upper limit B of XA,B ⊂ [A,B]
becomes in such a context.

Denote the attributes of a credential with m1, . . . ,mk. Without
going much detail of either Idemix or BBS+, we note that both of
them involve an issuer signature over a Pedersen commitment to the
attributes:9

• In Idemix, A = (Z/(Sv
∏
iR

mi
i ))e

−1 ,

• In BBS+, A = (ghs0
∏
i h

mi
i )(e+x)

−1 .

(In both cases, e is part of the issuer signature and not to be confused
with the accumulated primes that we also denote with e.) The verifi-
cation protocol consists in both cases of the user proving knowledge of

8In the paper, the proof concludes with a paragraph containing an analysis on the upper
bound of α̂ using bounds enforced on sα. For our use of it in the remainder of this paper
we do not need the zero-knowledge proof to deal with such bounds, so we don’t include
this analysis here, but we do note that this paragraph in the paper contains a formula α̂ =
(∆αĉ rem q)(α̃ rem q), that should instead be as follows: α̂ = (∆α/∆c rem q) = (α̃ rem q).

9In fact, this section should work for any credential scheme that is structured like this.
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a valid issuer signature over such a commitment, as well as the expo-
nents that that commitment commits to. Therefore, one can combine
this with the zero-knowledge proof for ue = ν from the previous section
as follows:

• The issuer includes e as one of the signed attributes.

• Ce is replaced by one of the identities above.

• The zero-knowledge proof from Section 3 is joined with that of
the credential scheme for proving knowledge of a valid credential
containing e and the attributes.

Note that since the keys for revoking and for issuing a credential are
distinct, it is possible to let the tasks of issuance and revoking be
done by different parties. In what follows, for ease of terminology
and notation we just write “issuer” for both of those parties, but in
implementations they may be separated.

We wish to prove security of such a system, given that the credential
scheme and accumulator scheme by themselves are secure. By security,
we mean that it is not possible to make the verifier accept attributes
that have not been issued, or attributes that have been issued but
revoked.

The zero-knowledge proof of a valid credential and a valid witness
(u, e) such that ue = ν, which lies at the heart of this scheme, guar-
antees to the verifier only that e mod q has been signed by the issuer;
it provides no guarantees as to the size of e. However, using its signa-
tures over the credentials the issuer can still enforce that only proper
numbers e ∈ XA,B are ever accumulated. As we will see below this is
sufficient to prove security, and it allows us to relax the upper limit on
B from B2k

′+k′′+2 < q/2 (as specified in the paper) to the upper limit
of the message space of the attributes, i.e., B < q. This is because the
paper uses the factor 2k′+k′′+2 in the zero-knowledge proof to enforce a
maximum on the number e of which knowledge is being proven, while
in our setup the issuer can enforce that maximum during issuance.

Schematically, we do this as follows. If we have an adversary that
can break security in this sense, then as in the proof of security for
the zero-knowledge proof (Theorem 2), we can extract from the zero-
knowledge proof a valid credential as well as (u, e) such that e mod q
is one of the attributes and ue = ν. Then an algorithm that uses
the adversary in this fashion, simply throws away the credential and
returns (u, e), breaks the security of the accumulator. Intuitively, if
breaking the accumulator in the sense of coming up with (u, e) such
that ue = ν is hard without the presence of a credential scheme, then
coming up with such (u, e) as well as a valid signature over e is certainly
also hard.
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Let us make this reduction more formal. As in the existential un-
forgeability game for signature schemes under adaptive chosen message
attacks, the adversary is allowed to query the challenger as much as
it wants for a signature over any set of attributes of its choosing. In
these queries, the adversary A is additionally allowed to choose the
number e of which it wants a witness u such that ue = ν, as long as
e ∈ XA,B. In response, the adversary obtains a valid credential over
the required attributes and e, as well as a witness u for e.

This proof is very similar to the proof of Theorem 2 in the paper,
in which an adversary that can break the accumulator if it can choose
the numbers e adaptively is reduced to one that does not get to choose
them adaptively. The only difference is the addition of a credential
scheme, of which the challenger of the adversary holds the private key
with which it answers issuance queries of the adversary.

For the set XA,B ⊂ [A,B] from which the primes e are chosen, we
require the following for A and B.

• As the lower bound we take A > 1, so that Theorem 1 applies.

• For the upper bound the size limit of the message space of the
signature scheme suffices; i.e., B < q.

Theorem 3. Let XA,B ⊂ [2, q− 1] be the set from which the primes e
are chosen. Under the strong RSA assumption, no probabilistic poly-
nomial algorithm A exists that with non-negligible probability can con-
vince the verifier that it possesses a valid credential along with a valid
witness, whose attributes have not previously been issued in a query, or
whose witness has either not been added to the accumulator, or removed
from it.

Proof. Suppose that such an adversary A does exist. We use it to
contradict Theorem 1 as follows. Below, we denote with X the set of
primes that have occurred in previous queries of the adversary. We
proceed as follows.

• First take a random 1 ̸= z ∈ QRn, and generate a private/public
key pair for the credential scheme.

• When the adversary makes an issuance query for some set of
attributes and a number e ∈ XA,B, set u to the current accumu-
lator, compute the updated accumulator as ν = ue, and add e to
X. Thus ν = zX (where with exponentiation of z with the set
X we mean the successive exponentiation of z with the elements
of X). Additionally, create a new credential over the attributes
and e. Return the credential and (u, e).
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• When the adversary makes a revocation query for e, check that
e ∈ X, set the updated accumulator to ν = zX\{e}, and remove
e from X.

• When the adversary performs the zero-knowledge proof of its
credential and witness to a verifier, extract from it the credential
and the witness (u, e), and return these.

If the adversary wins, then using the extractor constructed in the pre-
vious section we can extract numbers ê and ẽ from the adversary such
that ẽ = ê mod q and ν = uê. The zero-knowledge proof provides no
assurances about the size of ê, but this is not necessary: either ê < q so
that ẽ = ê, or not. In the latter case ê /∈ X, because the issuer would
not have added such an ê to X. Combined with uê = ν = zX , this
constitutes a contradiction with the security of the RSA accumulator
as proved in Theorem 1.

Therefore, ẽ = ê; henceforth we just write e. Then by the un-
forgeability of the credential scheme, the attributes of the credential
including e must correspond to one of the issuance queries. Therefore
the number e was added to the accumulator by the challenger, during
the issuance query of that credential. That means that the adversary
can only win the game by ensuring it is removed from the accumulator
using a revocation query for that e before the game ends, which in turn
means that e /∈ X when the adversary finishes. Again, combined with
ue = ν = zX this contradicts the security of the RSA accumulator as
proved in Theorem 1.

5 Instantiations
The proof of knowledge of Section 3 shows not only that the prover
knows an accumulated number e such that e mod q is committed to
by Ce = gehr, but also that e ̸= ±1 mod q. If the verifier does not
ensure that, then the prover might be able to fool the verifier by using
the trivial witnesses (u, e) = (ν±1,±1), which would indeed satisfy
the required identity ν = ue. The proof achieves this using the two
equations for g in Equation (1):

g =

(
Ce
g

)γ
hψ ∧ g = (gCe)

σhξ.

As explained in the proof of Theorem 2, the numbers γ, σ are then
the inverse modulo q of α± 1, which is therefore unequal to 0 mod q.

Here we can provide an optimization using the fact that the num-
bers e are signed by the issuer. By simply requiring the issuer to never
issue a witness (u, e) such that e = ±1 mod q, there is no need for the
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holder of the credential and witness to prove this in the zero-knowledge
proof. In the security proof from Section 4 the unforgeability of the
credential scheme allows us to conclude that e ̸= ±1, so that the re-
mainder of the proof keeps working.

This means that in anonymous credential scheme implementations
these two equations can be omitted from the proof of knowledge of a
valid witness, increasing efficiency. The exact same is done in [CL02b]
in the example application of the accumulator, in section 4.2.

The above works for any anonymous credential scheme. In the case
of Idemix, we can go further. If it is acceptable that only the issuer
is able to revoke credentials, we can use the same private key (p, q)
to issue Idemix credentials as well as to generate witnesses (u, e). In
that case, the group QRn ∋ u, ν and the group G coincide. Referring
to the equations being proved by the prover in Equation (1), we can
remove all three equations involving G, and replace Ce = gehr1 with
the Idemix identity Z = AeSvRm1

1 · · ·Rmk
k Rek+1, with which the prover

proves knowledge of a valid issuer signature over (m1, . . . ,mk, e), since
this also constitutes a Pedersen commitment to e. This reduces the
equations that the prover has to prove knowledge of from 8 to 4.

6 The RSA-B accumulator
So far, we have considered the accumulator as introduced in the main
body of the paper, in which an element e is added and removed to
the accumulator by ν 7→ νe and ν 7→ νe

−1 , respectively. In a small
remark in Section 4.2 of the paper, it is however remarked that this
accumulator can be turned into a different one in which the deletion
algorithm is kept the same, but the addition operator does nothing;
i.e., f(ν, e) = ν. It is clear that this is a substantial improvement to
the scalability and indeed the feasibility of the system.

However, contrary to the RSA accumulator, the algorithm f(ν, e) =
ν that updates the accumulator and the algorithm f ′ that verifies that
u is a witness for e by f ′(u, e) = ue

?
= ν now no longer coincide. In fact,

strictly speaking this means that RSA-B does not completely satisfy
the definition from the paper for an accumulator, so we have to review
our security proofs to see if they still work.

For this, it is sufficient to require the adversary to commit in ad-
vance (before performing the unforgeability game with the challenger)
to all of the elements ei ∈ X that it is going to use in its queries. In
the proof of Theorem 3, one can then in the setup phase construct the
accumulator ν = zX , where X is the set of values committed to by
the adversary, and respond to revocation queries as in the proof. In
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the terminology of [Bal+17] this accumulator is only non-adaptively
secure, which is a weaker security notion than the more generally used
adaptive security (in which the adversary is allowed to choose the num-
bers ei during the unforgeability game, so that it can let them depend
on the queries so far).

In this notion of non-adaptive security, however, the adversary still
has some control over the numbers ei that it may use in its queries.
In practice, it makes more sense to instead let the issuer decide on
these numbers ei in each issuance query. This removes control over
the numbers ei completely from the adversary. As noted in [Bal+17],
this solves the issue: if no adversary exists that can break the RSA
accumulator if it has (non-adaptive) control over the ei, then an ad-
versary without such control over the ei certainly also cannot exist.
Indeed, it is easy to adapt the proof from the previous section to such
a setting. In the setup phase, the challenger chooses some primes ei
itself and accumulates them. In an issuance query, the challenger takes
one of the ei, embeds that in a credential and creates a witness for it,
and returns that to the adversary. The challenger can then answer
revocation queries as in the proof.

We note that in implementations, it is not actually necessary to
commit to all of the ei in advance. Just the fact that such a thing is
possible makes the security proof above work, which is sufficient.

Summarizing, in anonymous credential use cases the RSA-B has a
significant advantage over the RSA accumulator, while its only down-
side (the non-adaptive security) is not an issue. Therefore, in imple-
mentations RSA-B is preferred.

A Number-theoretic preliminaries
Lemma 1. Let n = pq = (2p′+1)(2q′+1) be a product of safe primes.
Then any element of Z∗

n can be written as sr mod n for some r ∈ QRn
and s such that s2 = 1 mod n.

Proof. Using the Chinese Remainder theorem (CRT), the fact that Z∗
p

and Z∗
q are cyclic, and then CRT again, we have

Z∗
n
∼= Z∗

p × Z∗
q
∼= Z2p′ × Z2q′

∼= Z2 × Z2 × Zp′ × Zq′ .
(5)

From this we see that if x ∈ Z∗
n is arbitrary then xp′q′ must be of order

1 or 2; either way it is a square root of 1. Therefore,

x = xp
′q′xp

′q′x mod n = xp
′q′xp

′q′+1 mod n,
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in which the first factor is a square root of 1 and the second is a
quadratic residue, since p′q′ + 1 is even.

From equation (5) we also see that the maximal order that elements
of Z∗

n can attain is 2p′q′, and that such elements exist, for example
(1, 1, 1, 1) under the inverse of the isomorphisms (5). If x ∈ Z∗

n is
such an element, then ⟨x2⟩ is a subgroup of Z∗

n of order p′q′. In this
subgroup each element has a square root, since 2−1 mod p′q′ exists
since gcd(2, p′q′) = 1. Therefore this group is precisely the subgroup
of quadratic residues, which thus has order p′q′.

Lemma 2. Let n be a product of safe primes. If one knows any element
x ∈ QRn that is not a generator of QRn, then one can factor n.

Proof. Suppose x is not a generator; that is, its order is not the max-
imal order p′q′. By Lagrange’s theorem, the order of x must divide
#QRn = p′q′. Without loss of generality let its order be p′, so that
1 = xp

′
mod n. Since n = pq, reducing modulo q gives the identity

1 = xp
′
mod q = (x mod q)p

′
mod q.

Now x mod q is an element of Z∗
q , whose group order is 2q′, and since

x is a quadratic residue the order of x mod q cannot be 2q′, so it must
be either 1 or q′. In the latter case, our identity (x mod q)p

′
= 1 mod q

would imply that q′ divides p′ which is impossible because p′ is prime.
Therefore, the order of x mod q in Z∗

q is 1, i.e. x = 1 mod q. This
implies that x− 1 = aq for some a, i.e., gcd(n, x− 1) = q.

Lemma 3. Let n = pq be a product of safe primes. Under the Strong
RSA assumption, no probabilistic polynomial-time algorithm can com-
pute with non-negligible probability a nontrivial root of 1 ∈ Z∗

n, i.e. a
pair (x,m) such that xm = 1 mod n, with ±1 mod n ̸= x ∈ Z∗

n and
m > 1.

Proof. Suppose we have (x,m) such that xm = 1 mod n. Note that
m is a multiple of the order c of ⟨x⟩ ⊂ Z∗

n. Since #Z∗
n = ϕ(n) =

(p− 1)(q− 1) = 4p′q′, by Lagrange’s theorem c can equal only 2, 4, p′,
or q′, or some multiplication of those four numbers. We consider the
options.

Suppose c = 2. Then 0 mod n = x2 − 1 = (x + 1)(x − 1); i.e. for
some integer a, (x+1)(x−1) is of the form (x+1)(x−1) = an = apq,
with a ̸= 0 since x ̸= ±1. Now since p is prime, it must divide one of
the two factors, x+1 or x−1. Since x+1 ̸= pq = n (as we assumed the
square root was nontrivial) and x−1 < n, it follows that q must divide
the other factor. So the factors of n are gcd(n, x−1) and gcd(n, x+1).
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Next, the proof of Lemma 1 above shows that Z∗
n has no elements

of order c = 4 or of an order divided by 4.
If c = p′ or c = q′ then the previous lemma allows us to factor n

using x. The same holds if c = 2p′ or 2q′, because then x2 will have
order p′ or q′.

Thus c must be p′q′ or 2p′q′. Going back to m, either way we find
that m is a multiple of p′q′, i.e., m = ap′q′ for some a. Taking any
e coprime to m, then, the extended Euclidian algorithm allows us to
compute e−1 mod m = e−1 mod ap′q′, which reduces to e−1 mod p′q′.
Given some y ∈ QRn that means that u = ye

−1 is a root of y, so that
(u, e) is a Strong RSA instance for y.

Lemma 4. Let n = (2p′ + 1)(2q′ + 1) be a product of safe primes.
Under the Strong RSA assumption, no probabilistic polynomial-time
algorithm can compute with non-negligible probability a number d such
that gcd(d, p′q′) ̸= 1.

Proof. If gcd(d, p′q′) ̸= 1 then the number d must be a multiple of p′

or q′ (or both). Without loss of generality we may assume d = ap′

for some number a. Taking any 1 ̸= w ∈ QRn, then by Lagrange’s
theorem we find that the order of the element wd = wap

′ must be one
of the following:

• q′, which is impossible by Lemma 2,

• 1, meaning that wd = 1 mod n which is impossible by Lemma 3.

Lemma 5. Let G be a group in which the discrete logarithm problem
holds. Then no probabilistic polynomial-time algorithm can, on input
(g1, . . . , gk) where the gi are randomly generated, compute with non-
negligible probability numbers a1, . . . , ak satisfying

ga11 g
a2
2 . . . gakn = 1 ∈ G.

When one encounters such an expression, this allows us to conclude
that with overwhelming probability a1 = · · · = ak = 0. We will not
prove this here, but see e.g. [Bra00, p. 60].

Lemma 6. Under the strong RSA assumption, given a modulus n
along with random elements g, h ∈ QRn, no probabilistic polynomial-
time algorithm can compute with non-negligible probability an element
w ∈ Z∗

n and integers a, b, c such that

wc = gahb mod n and c does not divide a or b.

When one encounters such an expression, this allows us to conclude
that with overwhelming probability, c divides a and b. For a proof,
see [CS03].
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