
Privacy when Everyone is Watching
An SOK on Anonymity on the Blockchain

Roy Rinberg †

Department of Computer Science
Columbia University

New York, USA
rr3426@columbia.edu

Nilaksh Agarwal †

Department of Computer Science
Columbia University

New York, USA
na2886@columbia.edu

Abstract

Blockchain technologies rely on a public ledger, where typically all transactions are pseudoanonymous
and fully traceable. This poses a major flaw in its large scale adoption of cryptocurrencies, the primary
application of blockchain technologies, as most individuals do not want to disclose their finances to the pub-
lic. Motivated by the explosive growth in private-Blockchain research, this Statement-of-Knowledge (SOK)
explores the ways to obtain privacy in this public ledger ecosystem. The authors first look at the underly-
ing technology underling all zero-knowledge applications on the blockchain: zk-SNARKs (zero-knowledge
Succinct Non-interactive ARguments of Knowledge). We then explore the two largest privacy coins as of
today, ZCash and Monero, as well as TornadoCash, a popular Ethereum Tumbler solution. Finally, we look at
the opposing incentives behind privacy solutions and de-anonymization techniques, and the future of privacy
on the blockchain.
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Introduction

The Blockchain is Intrinsically Not-Private

At its core, blockchain technologies remove the need for centralization during a transaction by broadcasting
each transaction to all nodes on the blockchain. Cryptocurrencies like Bitcoin are often naively believed to be
anonymous because one does not need to use their real name to make transactions. However, it is also not
difficult to establish a link between a Bitcoin address and a real-world identity. As a toy example, if you buy
a cookie from a cafe and pay with Bitcoin, while you would not need to reveal your real name, your physical
identity gets tied to the Bitcoin transaction.

Deanonymization Techniques

One powerful and common privacy attack goal is to link UTXO-wallet addresses, by tracking how money is
spent in shared ways. For instance, if two Bitcoin payments (inputs) are used to purchase a book (output), one
can infer that the transactions are likely controlled by the same user. [Narayanan et al., 2016]

In “A Fistful of Bitcoins: Characterizing Payments Among Men with No Names” by Meiklejohn et al. (2013)
[Meiklejohn et al., 2013], researchers traced a transaction graph analysis to de-anonymize Bitcoin transactions.
They generated a graph of blockchain transactions, and then to reliably infer addresses as owned by particular
identities, the researchers transacted with various service providers through purchasing items with BTC. By
interacting with exchanges, gambling sites, and wallet services, the researchers are able to identify Bitcoin
addresses that that merchants own. This in turn allows researchers to observe transactions with these merchants
in real-time.

Deanonymization in itself could be a paper, and lots of work has been done on this (and continues to be);
however, as our focus centers on privacy, we will only offer one more major form of deanonymization. Cryp-
tocurrency transactions can be deanonymized through the network-layer. When a transaction is initiated, it
connects to many nodes at once and broadcasts the transaction to peers in the network. Unless proper VPNs or
Onion-Routing protocols are set up, the first agent (a light-client or full-node) to broadcast a transaction is the
source of the transaction. The transaction could then be linked to the node’s IP address, in which there exists
numerous ways to unmask a person’s identity behind an IP address, posing another threat to Bitcoin’s privacy
[Narayanan et al., 2016].

Deanonymization is becoming increasingly researched as it’s dual, the anonymization techniques develop.
For example, In September 2020, the United States Internal Revenue Service’s criminal investigation division
(IRS-CI), posted a $625,000 bounty for contractors who could develop tools to help trace Monero, other privacy-
enhanced cryptocurrencies. With such high emphasis being given to deanonymization, we believe that there is a
“forever war” between these two groups to shape the blockchain landscape.

Case Study: Colonial Pipeline

Deanonymization is not only a theoretical concept, it’s been seen all over. One of the most public deanonymiza-
tions was the FBI identifying ransomware hackers who were paid in Bitcoin in the spring of 2021.

Colonial Pipeline is the largest fuel pipeline in the US, supplying approximately 45% of the East Coast’s
fuel, including gasoline, diesel, home heating oil, jet fuel, and military supplies. On May 7, 2021, Colonial
Pipeline’s billing system suffered a ransomware cyberattack. They paid 75 bitcoin in ransom (which at the time
was 4.2 million USD).
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Tuan Phan, founder of Zero Friction LLC publicly reconstructed the FBI’s recovery process using only
publicly available information and tools. Tuan started with a query to search the Bitcoin network for all addresses
that partially match the partial address provided by the FBI. There was only one partial match; then, using a
Bitcoin explorer, the author found that three transactions belonged to this address, with two being sent and one,
the earliest, received. Following the transactions, the author was able to produce the transaction hash list. In fact,
we tried our hand at following the money flow and finding the final retrieval of 63.7 BTC of the ransom payment
and were successful. Specifically, the transaction hash:

0677781a5079eae8e5cbd5e6d9dcc5c02da45351a3638b85c88e5e3ecdc105a7
is the key, as of the 75 BTC sent as a ransom payment, the receiving address,
bc1qxu83k5qkj8kcqdqqenwzn7khcw4llfykeqwg45,
received only 63.7 BTC. Since DarkSide is a ransomware as a service organization, affiliates pay the service

for the use of the ransom tools. Therefore the payment of 63.7 BTC is likely the fees to the affiliate, and the
remaining balance is likely the share for the DarkSide developer. [Tuan Phan, 2021]

Figure 1: The original payment from Colonial Pipeline to DarkSide [Tuan Phan, 2021].

What is a Zero-Knowledge Proof?

As an introduction to a solution to some of the qualms of a public blockchain, we must introduce one of the great
cryptographic wonders of the world: zero-knowledge proofs (ZKP). ZKP are proofs that an agent knows some
particular piece of information, without revealing what you know. Imagine you are playing “Where’s Waldo”
with a friend and they claim that they have found Waldo. The simplest way to prove to you that they found him
is to point him out directly. However, there are many reasons why they wouldn’t want to do this; notably, this
ruins the game for you. In order to really race, without ruining the game, you would need a trusted 3rd party, to
whom both of you could point out where you believe Waldo is.

Why is this useful?

Finding Waldo is nice, but the application of ZKP extends to anything that involves asymmetric information.
You imagine something as extreme as proving to a rival nation that you do indeed have a nuclear bomb (without
having to set one off). Alternatively, on the blockchain, ZKP could be used to prove that someone does in fact
have enough money to pay a transaction, without revealing the transaction. However, it’s worth observing that
the ability to prove something is true without revealing information about the nature of the truth is ultimately
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only useful with regards to privacy and asymmetric information. If all parties are trusted and their values are
aligned, there is no need for anyone to create a zero-knowledge proof, when they could simply create a proof.

Ali Baba’s Cave

One of the most canonical examples of a ZKP is Ali Baba’s Cave.
Imagine a cave with two entrances; at the back of the cave there is a wall that can only be opened with a

special password. My goal is to convince you that I know the password. One way to convince a verifier that I
know the password without sharing the password itself is as follows:

1. Prover enters the cave along one of the two tunnels (the verifier cannot see them enter)

2. Once the prover has entered, the verifier shouts to them which side (left or right) they wish the prover to
exit from.

3. If the prover entered on that side, the prover simply walks out the way they came in. If the prover entered
on the other side, they must use the passcode to exit on the verifier’s stated side.

4. After one round, the verifier believes there is a 50% chance the prover knows the code; as either the prover
knew the code, or they happened to be on the right side. The verifier and prover can repeat the previous
steps as many times, each time halving the possibility that the prover doesn’t know the code, and was just
getting lucky.

Figure 2: Ali Baba’s Cave : Zero Knowledge Proof [Wikipedia, 2021b]

It should be noted that this is an interactive proof, and in Ali Baba’s Cave you only prove to a single verifier
that you in fact know the passcode, as to any onlooker, it is possible the verifier and prover colluded and agreed
the commands ahead of time. Later in the paper we will discuss zk-SNARKs which are non-interactive zero-
knowledge proofs, which eliminate this trust assumption.

So... Where is Waldo?

Returning to the game of “Where’s Waldo”, we present a simple algorithm for proving that you know where
Waldo is.

1. Take a large piece of construction paper (at least 3 times the height and width of the page with Waldo in
it), and cut a hole the exact shape and size of Waldo out.

2. Move the book behind the construction paper, so that your partner cannot see the book, and orient the book
so that waldo directly falls behind the hole in the page.

At the end of this, your partner should be able to see Waldo, but not see the book or any of Waldo’s surroundings.
You have just proven that you know where Waldo is, without revealing information about where he is.

It should be noted that it is impossible (as far as we can tell) to create a zero-knowledge proof that is not
probabilistic. The proof of knowing Waldo’s location might seem like a deterministic proof, but it is actually
probabilistic, as the prover could randomly orient the book behind the construction paper and happen to land on
Waldo. Zero-knowledge proofs may be probabilistic, but they are typically structured such that it is incredibly
improbable.
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Privacy Coins

The rest of this report will be on tools that enable people to use the blockchain without sharing information
with others about what they are doing. Privacy coin is a colloquial term for a cryptocurrencies that do not
directly broadcast transactions, but rather cryptographic proofs to ensure that they have the capacity to pay for
the transaction they wish. As an example, a regular transaction would look like this:

• Buyer sees: Price of a coffee

• Seller sees: Buyer’s wallet/UTXO address (and from there, any linkable UTXO addresses).

• Everyone else sees: Buyer’s wallet, or any linkable UTXO addresses.

A transaction over a privacy-coin blockchain looks like this :

• Buyer sees: Price of a coffee.

• Seller sees: Buyer has at least the price of the coffee in their account, but how much is unknown.

• Everyone else sees: A transaction occurs between two unknown parties, for an unknown sum of money.

Why Tumblers

Rather than using a completely off chain solution for privacy, sometimes users need to remain anonymous on
non-private blockchains (for example, Bitcoin/Ethereum might be the only currencies accepted for a certain pur-
chase, would still like anonymity).

For these solutions, Tumblers come into the picture, by pooling together transactions from various sources,
and “mixing” them together, to hide their source and destination linkages. This still reveals transaction amounts,
but no longer broadcasts the sender-receiver linkage.
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zk-SNARKs: Zero-Knowledge to
Hero-Knowledge

“A zk-SNARK is a collection of words that computer scientists arranged in order to spell ‘zk-SNARK’” - Anony-
mous [Gabizon, 2018]

What is a zk-SNARK

ZK Zero-Knowledge
S Succinct
N Non-interactive
AR ARgument
K of Knowledge

A zk-SNARK is one the basic building blocks of privacy on the blockchain. The acronym is a Zero-
Knowledge Succinct Non-interactive ARgument of Knowledge. Rearranging the words, a zk-SNARK is an
short proof that you know something that reveals no information about what you know, and does not require
interactivity from a verifier. In this chapter we will dig deeply into the specifics of a zk-SNARK; and while
ZK-proofs are very fashionable, we hope to impart that the truly impressive part of a zk-SNARK is succinct, and
non-interactive.

Note: much of this chapter is drawn from “Why and How zk-SNARK Works: Definitive Explanation”
[Petkus, 2019]; though the authors have shortened sections for brevity and clarity. The goal of this chapter is
not to enable the reader to create a zk-SNARK from scratch, but for the reader to understand each part of a
zk-SNARK construction well enough that with only an hour or two per section, the reader could. Much of
the theoretical work for zk-SNARKs was introduced in “Short Pairing-based Non-interactive Zero-Knowledge
Arguments” by Jens Groth in 2010 [Groth, 2010]. Though a lot of important improvements were added shortly
after, in 2013, in both “Quadratic Span Programs and Succinct NIZKs without PCPs” [Gennaro et al., 2013]
and in the first big zk-SNARK paper proposing a real implementation “Pinocchio: Nearly Practical Verifiable
Computation” [Parno et al., 2013].

Why this particular acronym?

Acronym What is stands for What it is/Why it’s useful
ARK ARgument of Knowledge A proof of something being true
S Succinct So it can fit on the blockchain
N Non-interactive To make proofs that are verifiable forever, and avoid worries of collusion
ZK Zero-Knowledge In order to prevent verifiers from learning what the prover knows

To define a zk-SNARK, you need to specify a function f , which will take some kind of (typically on-chain)
data u as an argument. Let the output of f on u is f(u) = c. A zk-SNARK will be constructed from intermediate
values of the compute f, and will reveal no information about the prover’s (nor the verifier’s) private information.

The goal of this chapter is to describe a zk-SNARK algorithm, which will take as its arguments f and input
u, and return a proof z, such that the verifier will evaluate the proof z as valid IFF f(u) = x. With the one caveat
being that : no verifier should learn any information about what the prover knows, except for the concrete proof
itself. E.g. if the zk-SNARK seeks to prove that P has at least 100 ETH, it should be impossible to tell if P has
100.1 or 1 billion ETH.
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What can a zk-SNARK be used for?

ZK-SNARKs are general purpose, so the specific problem doesn’t matter. However, typically they are used for
one of two things: 1. to prove that you have done an expensive computation, or 2. you wish to prove something
about an encrypted value that is on-chain, which you have the secret key for.

Some examples of what you may want to prove are :

• Anonymous authorization:

– Proving a user is on a whitelist (or blacklist), without revealing personally identifiable information.

– Proving a user pays for a service without revealing their identity.

• Outsourcing computation:

– Outsourcing an expensive computation and validating that the result is correct without redoing the
execution.

• Proving statement on private data:

– A user has more than X in their wallet

– A bank did not transact with a particular user, in the last X amount of time

– Accurately paying taxes without revealing one’s earnings

[Petkus, 2019]

Outline of zk-SNARK structure

The high-level outline we have is:

• First we map the function f to a polynomial problem

1. We first do this by breaking apart a function into a series of computations of the form l(x)× r(x) =
o(x).

2. Then, we observe that the roots of t(x) = (l(x)× r(x))− o(x) will also be the solutions that satisfy
the computation.

• Publicly share the “target polynomial” t(x).

• As the prover does the computation, they map the steps of the function-computation to scalar-values.
Then the prover will interpolate the scalars (with the x-value loosely as a function of time), to produce a
polynomial p(x).

• By construction, if the prover really did the computation, then their polynomial p(x), should be able to
compute a h(x) such that p(x) = t(x) · h(x).

• The verifier sends the prover some encrypted points s, and the the prover evaluates p(x) and h(x) on s,
and sends p(s) and h(s) back.

• The verifier(s) confirm that p(s) = h(s) · t(s) (in encrypted space). Noting that if the prover did not
know p(x) = h(x) · t(x) the points p(s) and h(s) · t(s) would almost certainly not be equal, because 2
polynomials of degree d will only intersect at most d points. If s is sampled over the reals, the probability
of accidentally sampling one of the d points goes to 0 as d increases. † †

†We note that sharing the prover’s polynomial directly is bad for 2 reasons 1. it reveals information about the prover’s computation
to everyone, and 2. it is not succinct (in theory, the degree d of the polynomial is not bounded. So instead.

†We also observe that the prover could simply fit the polynomial to the points given, if they are explicitly given; so we prevent the
prover from being able to cheat, by making them must evaluate the polynomial over homomorphically encrypted points.
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• We add ZK to the SNARK we evaluating the polynomial at random shifts from the homomorphically
hidden points, which are not known to the verifier, but preserve the validity of the polynomial equation.

For most of this we will assume that we have access to random values, but, later we will describe where
these come from in the section called Trusting-One-of-Many.

We are going to go a bit backwards, first we will show how to prove-knowledge-of-a-polynomial, succinctly
(we call this SNARKOP) in a trusted setup. Then we will relax the trust requirements from ”trusted third-party”,
to trusting one-of-many (a goal commonly used in cryptographic protocols, including TOR). Then add ZK, to
create a zk-SNARKOP. Then we will show how to map solving a function to the derivation of a polynomial, thus
by showing that if we know the polynomial, we must have done the computation. [Petkus, 2019][Groth, 2010]

SNARKOP

Our first (contrived) problem is for a a prover P to prove to a verifier V that they know a polynomial p(x), has
some set of roots {xi}. We observe that having {xi} as roots is equivalent to there existing a polynomial h(x)
such that p(x) = h(x) · t(x), where t(x) =

∏
i=0(x− xi)

ARK-OP: ARgument of Knowledge Of a Polynomial

If p(x) = h(x) · t(x) then Prover P can derive h(x) = p(x)
t(x) . To verify that p(x) has the solutions to t(x), P can

send V h(x) and p(x), and V can easily verify that p(x) = t(x) · h(x).

S ARK-OP: Succinct ARgument of Knowledge Of a Polynomial.

Evaluation at a point rather than the entire polynomial.
One major problem is that the polynomials in question are typically very long, and sharing an entire polynomial
would not be succinct. Additionally, jumping ahead, sharing the entire polynomial would prevent us from being
able to apply zero-Knowledge, later. However, we make the important observation that if a(x) = b(x) · c(x),
then we can evaluate a(x) by evaluating its factors b(x) and c(x) then multiplying.

So, the first version of our algorithm will look like this:
Before the interaction: V selects a random r, computes t(r). P computes h(x) = p(x)

t(x)

Verifier Prover

send r

send p(r), h(r)

Verifier confirms h(r) · t(r) = p(r)

To put this into words, and provide a concrete example: let’s take t(x) = (x−10)·(x−11) = x2−21x+110,
and p(x) = ((x− 10) · (x− 11)) · ((x− 1) · (x− 0)) = t(x) · (x2 − x)

• Verifier V selects a random value r and sends to P. V also computes t(r). As an example, let r = 3, so
t(r) = 7 · 8 = 56

• P has already computed p(x) (this is what they are trying to prove they know). And now computes
h(x) = p(x)

t(x) . Here, h(x) = x2 − x

• P computes h(r) and p(r) and sends them back to V. Here, h(r) = h(r) = 9−3 = 6; p(r) = 7·8·−2·−3 =
336

• V confirms that h(r) · t(r) = p(r). Here 56 · 6 = 336. (Which is true!).
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Soundness: It should be clear by construction, that the prover P would convinces verifier V that P knows
p(x) with shared roots of t(x), specifcally in the case p(x) = t(x) · h(x)

Completeness: (Prover cannot convince Verifier that it knows P when it does not).
In the case that prover P did NOT know a polynomial p(x) with the roots x0 and x1, but instead knew p′(x),
then h′(x) = p′(x)

t(x) , which will produce a divisor and a remainder (e.g. of the form h(x) = x+ 7 + 3x+1
t(x) ).

One way to exclude solutions that have a remainder is for Verifier V to require that p(r) and h(r) are
integer values for all r, which eliminates solutions with remainders, for almost all values r. However, we note
that this kind of constraint requires that p(x) has only integer coefficients; so later, we will seamlessly replace
this constraint, and instead, we will require the evaluation of p(x) and h(x) in an encrypted format, whose
cryptographic primitives do not allow division.

There are 2 main things to observe with the above:

• p(x) may be a d-dimensional vector, and so, very long. Instead h(r) and p(r) are just 2 scalars, and so
very short. We have achieved Succinctness!

• It is in fact possible that the polynomial h(x) · t(x) and p(x), as can be seen by this very simple diagram :

However! for polynomials of degree d (or less), two polynomials intersect at most in d locations. Since
points are sampled over the reals, which are infinite, the probability of randomly selecting one such point
is P = 0.

Fixing SARK-OP

We observe 3 issues with the above SARK-OP algorithm. We overlooked (some of) them, by requiring that the
prover be honest, but we wish to remove that now. Note: While this is its own section, we are not only adding
Non-interactivity, we are also identifying and fixing a few issues.

1. if P knows t(x), P could pretend to have computed p(x), by taking t(x), and then multiply it by some
trivial-to-compute polynomial h(x). (And in fact, P could do this even more simply by waiting to receive
t(x) and r, computing the scalar t(r), then setting h(x) = c to a random number, and p(x) = c · t(r)

2. if P knows r, P could compute an infinite number of polynomials that intersect with t(r) · h(r)

3. The prover claimed to know a polynomial of degree d, but we have no enforcement of degree of p(x) so
far. There are actually an infinite number of polynomials p(x) that intersect with h(x) · t(x), with higher
than d degree.

Issues 1 and 2 arise because P has access to both t(r) and r. We resolve this using a weaker form of
homomorphic encryption : homomorphic hiding.

Homomorphic Encryption is a form of encryption, which describes an encryption function E, decryption
function D, and a set of functions {fi}, such that: E(fi(x)) = fi(E(x)) and D(E(x)) = x. In words this means
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that if you apply a function on the a value and then encrypt it, this is equivalent to applying the function on the
encrypted value.

Homomorphic Hiding (HH) is a weaker form of Homomorphic encryption that does not require a decryp-
tion function; it only requires E(fi(x)) = fi(E(x)).

We now can see that if prover P is not able to actually see the values of r and t(r), but only use them in
a homomorphically hidden fashion, prover P cannot compute p(x) by multiplying t(x) by a trivial-to-compute
h(x). As this encryption does not have well-defined division, we have created a SNARKOP

Our encryption scheme is roughly: Choose a base number g and n (which is carefully chosen, as a function
of two large primes), and then to encrypt value v, we exponentiate gvmodn. We take it on faith that this in fact
does encrypt something (and it is hard to decrypt).

We specifically choose an encryption scheme that fulfills properties of ”strong homomorphic encryption”.
Such that the encryption is homomorphic under both multiplication and addition. As a toy example:

encryption : 53 = 6(mod 7)

multiplication : 62 = (53)2 = 56 = 1(mod 7)

addition : 53 · 52 = 55 = 3(mod )

It is important to state that exponentiation is not possible under this kind of encryption. We can multiply an
unencrypted value by an encrypted value. We are unable to multiply or divide two encrypted values (and subse-
quently, we cannot exponentiate an encrypted value).

So, we observe that to encrypt a polynomial p(x) = x2+3x−3, we get gp(x) = gx
2+3x−3 = gx

2 ·g3x ·g3. †

As if we are given E(x), it is impossible to compute E(x2), thus the prover must be given the encrypted powers
of E(x) ahead of time (this will occur during setup, described later).

E(x2 + 3x− 3) = gx
2+3x−3

= gx
2 · g3x · g−3

= E(x2) · E(x) · 3 · g−3

This way, our protocol changes slightly. P computes h(x) = p(x)
t(x) . V selects r, and computes powers of E(ri).

V shares both r and its encrypted powers with P. V computes h(r) and p(r) using the encrypted values shared,
and returns them to the verifier V. V confirms E(p(r)) = E(h(r)) · E(t(r)).

Protocol X

1. Verifier:

(a) samples a random value s

(b) calculates powers E(si) = gs
i
. And sends them to the prover

(c) evaluates unencrypted target polynomial on s

2. Prover:

(a) calculates h(x) = p(x)
t(x)

(b) Using E(si) = gs
i
, prover computes h(s) and p(s) in encrypted forms and sends them to verifier.

3. Verifier:

(a) verifier checks p(s) = t(s) · h(s), in encrypted space.

(b) in other words: gp = (gh)t(s). Which is gp(s) = gt(s)·h(s)

†Note: for the rest of this paper we leave out the term mod p for all exponentations.
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Restricting the Degree of the Polynomials

Now, we have shown that the prover is able to find a polynomial that has the roots t(x). The only part to the
proof-of-polynomial that remains is to prove the degree of a polynomial. We have tried to restrict that the prover
only uses a selection of encrypted powers of s (E(si)). However, if we observe what the verifier is actually
checking, it is: gp(s) = gt(s)·h(s). So, the prover could find any point bp = b

t(s)
h , and submit that as a proof

instead of gp(s), gh(s).
So, we need some way to ensure that the prover is actually using the values the verifier is providing them.
Because we are operating in a space that preserves multiplication, one intuitive solution is to provide another

data point alongside s, which is scaled by some value α. In short, the verifier provides 1 point, and 1 point
that is multiplicatively scaled from the first point (alongside, any necessary encrypted values to evaluate the
polynomials on those points) ; the prover evaluates both points and returns their evaluations; and the verifier not
only validates the accuracy of those points, but that the relationship to one another is the same α as the verifier
specified originally.

This concept is ”Knowledge-of-Exponent” and was introduced in 1991 by Ivan Damgård [Damgård, 1991].
We now present how the Knowledge-of-Exponent scheme works, and then will explain how to use it as a black-
box.

Knowledge-of-Exponent Our goal is to confirm that another agent (Bob) exponentiated a value:

1. Alice chooses value a and a random value r. Alice sends Bob (a, ar).

2. Bob chooses whatever value v they wish to exponentiate a by. And returns to Alice (av, (ar
v
)).

3. Alice exponentiates the first value, and verifies that (av)r = (ar
v
) .

Alice is confident that Bob exponentiated a by some value, but cannot compute v. Alice cannot learn v, and Bob
cannot learn r, for the same reason : they are encrypted.

Our goal is to use this tool, so that the prover return gp(s), gh(s) and gα·p(s), gα·h(s) to the verifier, and the
verifier is able to confirm both a statement about the relationship of p and h, and that the prover really did
compute them only using the exponentials provided.

Note : Verifier does not provide g(αs)
i

values, but rather provides gα(s
i) values.

Consider Protocol X (stated in Fixing SARK-OP) as a black box that we have.

1. Verifier chooses some α.

2. We initiate protocol X on randomly selected value s and on value αs (this requires sending encrypted s,
si, and α(s)i.

3. At the end of protocol X, the verifier checks gp(s) = gt(s)·h(s), and now, also checks gp(αs) = gt(s)·αh(s).

4. Now the verifier also issues the check that (gp(s))α = (gαp(s)). And (gh(s))α = (gαh(s))

Now we have completed a large part of our zk-SNARK proof! The verifier is able to validate that the prover
knows a polynomial p(x) that contains the roots t(x). No one can take this away from us.

ZK-SARK-OP : Zero-Knowledge

Zero knowledge is perhaps the easiest part of the zk-SNARK. We observe that using encrypted multiples of r
)(E(r), E(r2), ...), we seek to satisfy :

gp(r) =
(
gh(r)

)t(r)
p(x) has roots shared with t(x)

gp(r)
α
= gp

′(r) correct degree is used
(1)

So we observe that if both sides were multiplied by a random value q (in the exponent) that the prover
selects, the equation still holds, while so long as the verifier doesn’t learn the value q, they will be unable to learn
anything about p(x).

gp(r)·q =
(
gh(r)·q

)t(r)

gp(r)·q
α
= gp

′(r)·q
(2)

13



Figure 3: Relevent properties of a bilinear map [Petkus, 2019]

This is possible, because P computes h(r) and p(r), and so can simply multiply by value q.

Bilinear Maps and Elliptic Curves

So far we have been manually requiring the verifier to check things like (gp(s))α = gα·p(s). But that requires the
verifier knowing α. Ideally, we would have a tool that allows us to forget α, and only store encrypted-α (gα);
then to share encrypted-α with many verifiers.

With that in our minds, we take a short detour, to introduce a mathematical term ”Elliptic Curve Encryption”
(ECE). zk-SNARKs rely on ECE; explicitly, the following section on trusted-parties (and trusting-one-of-many)
is why zk-SNARKs commonly rely on ECE.

We will ignore nearly all of the mathematics of ECE and just introduce a single concept : a bilinear map. A
bilinear map deterministically maps 2 values in encrypted space, to 1 value in another encrypted space.

The core property we care about is :

e(ga, gb) = e(gb, ga) = e(g, gb)a = e(ga, g)b = e(g, g)ab (3)

We will not go into greater detail; rather we will trust that this bilinear map is a one-way function that preserves
the above properties.

zk-SNARK-OP : Non-interactivity

Now we come back to our discussion of zk-SNARK-OP. So far we have had an important trust assumption that
required that there was no collusion between the verifier and the prover. The ZK-SARK-OP we have so far
enables a prover to prove to a single verifier that they know some polynomial. Why? Because, we have not
removed the possibility of collusion between the prover and verifier (the verifier could share α and s with the
prover through a side channel. This can be useful sometimes, but not on a blockchain.

So, now our goal is to create a means to remove this trust assumption of a single party. We will replace
trust-in-one, with trust-in-one-of-many.

So far, we have been describing a 3 stage interaction : 1. verifier computes values and sends encrypted
versions to prover (deleting the unecrypted versions), 2. prover uses encrypted values to compute p(x) and
h(x), 3. verifier checks prover’s response, without having to remember the unencrpyted values. The first step
is actually entirely reusable; if different provers have different polynomial that have roots t(x), they can use the
same setup values.

For this reason, the first stage is usually called ”Common Reference String” (CRS):

1. Proving Key : (gs
i
, gαs

i
)

2. Verifier values : (gt(s), gα)

Rather than the previous protocols which compare gα·p(s) and (gp(s)), where the verifier computes (gp(s))α,
because they know α. With bilinear maps, the verifier can forget α, and only remember gα.

Because, under bilinear map m, to check p(s) = h(s) · t(s) (in encrypted space):
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• The verifier just confirms m(gp(s), g) = m(gh(s), gt(s)) (to confirm p = t · h on encrpyted point s).

• And m(gp(s), gα) = m(gα·p(s), g)) (to confirm the polynomial restriction).

If we have a single trusted-party, we trust that they will compute the Proving Key, Verifier Key, and the delete
the “toxic waste” si and αsi.

Which leads us to our next section:

Trusting-One-of-Many

In order to destroy the need for a single trusted party, we wish to create a different way to generate si and αsi, as
a joint effort between many agents, and if even one agent destroys their secret values, the CRS is protected (this
will be called a ceremony).

Each agent, 0, 1, 2, ... N (for N participants) will select a random value alphai and si. Agent 0 will publish
(gs

i
0 , gα0si0) for i in 0...d (d, agreed-upon degree of polynomial). Agent 1, also generates their values s1 and α1.

Then augments Agent 0’s values:

((g(s0)
i
)s1, (g

α0(s0)i)α1s1) = (g(s0·s1)
i
, gα0α1(s0·s1)i) (4)

And this continues through all the agents.
At this point, the only risk of a prover being able to prove something incorrect is if ALL the agents in the

CRS-generating ceremony collude.
However, there is one last catch that needs to be qualified : an agent j could insert random values for their

αis
i
j and sij for each value i ∈ [d]. This would make the CRS invalid and useless.
So, to confirm that each actor is behaving properly, we once again use the bilinear map:
Using bilinear map m, for each user, we confirm:

m
(
gs

i
, g1)

)
= m

(
gs

i−1
, gs

1
)
)
= ... (5)

This is done for all powers, and so each participant shows that all their si’s come from the same base value. And
the same is done with αsi

m
(
gαs

i
, g1)

)
= m

(
gs

i−1
, gαs

1
)
)
= ... (6)

That is it. We have just created a zk-SNARK-OP. We are able to prove that an agent knows a polynomial
p(x), that has roots t(x), without learning anything about p(x), and only having to trust that at least one agent
of those participating in a CRS-ceremony was trustworthy.

We now review the protocol of zk-SNARK-OP as a whole. [Petkus, 2019][Groth, 2010]

From Computations to Polynomials

We have made some pretty incredible progress on a goal that seems a bit contrived - knowledge of a polynomial.
We now tackle the problem of taking an arbitrary function/computation, and mapping it onto the Knowledge-
Of-Polynomial problem, which we can create a zk-SNARK-OP for.

Quadratic Arithmetic Programs (QAP)

“Qapla”† - Lieutenant Worf, Son of Mogh, Starship Enterprise

First we must introduce a problem in NP : Quadratic Span Programs (QSP), and a variant of QSPs: Quadratic
Arithmetic Programs (QAP). At a high-level, a QSP consists of a set of polynomials and the goal is to a find
a linear combination, which is a multiple of another given polynomial. Later we will describe how to assign a
QAP to represent each computation in a program (in section Map Problem to R1CS).

†“Qapla” means “Success” in Klingon
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An example computation to a polynomial

Let us start with a computation that is intuitive to convert to a polynomial.

Algorithm 1 Example computation 1

function F(x, a, b):
if x == 1 then

return a× b
else if x == 0 then

return a+ b
end if

end function

For x ∈ [0, 1], f can be easily mapped to the polynomial f(x, a, b) = x(a× b) + (1− x)(a+ b).
At a high-level, we have a function which we can have some agent P compute, which a verifier (any verifier)

can confirm that P accurately computed f1, on inputs (x, a, b) and returned value y, without the verifier having
to actually compute f1 themselves!

Arbitrary computations to polynomial

Functions (in the computer science sense) are composed of multiple steps, so we need to show 2 things: 1. how
to map an arbitrary computation to a polynomial, and 2. how to compose computations/polynomials together.

Arbitrary computation

While it is possible to specify an operator that takes any number of arguments, the concept of an operation can
be reduced and simplified to the form :

(left-operand) operator (right-operand) = output

So, if the prover seeks to claim that they made such an operation, we can map this onto:

(l(x) operator r(x) = o(x)

p(x) = (l(x) operator r(x)− o(x) = 0

If value a solves the above equality, then t(x) = x− a is a factor of the above polynomial (p(x)).
For example, let us consider f(a) = 3 = 15.

Observe: pay attention that we are not solving f(a), we are verifying that f(a) = 15.
This can be expressed as l(x) = 3x, r(x) = 5x, o(x) = 15x, for a = 1.
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Figure 4: Arbitrary Polynomial Computation

This polynomial can rewritten as : (3x× 5x)− 15x = 0, which is 15x2 − 15x = 0, which is (15x)(x− 1)

Figure 5: Arbitrary Polynomial Computation (15x2 − 15x = 0)

However, this set of polynomials is entirely arbitrary! It can also be written as l(x) = 2x2 − 1.5, r(x) =
3x+ 0.5, o(x) = 15, for a = 1.5.
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Figure 6: Arbitrary Polynomial Computation

This would be rewritten as : l(x) · r(x)− o(x) = 0.
6x3 + x2 − 4.5x− 15.75 = 0

Figure 7: Arbitrary Polynomial Computation (6x3 + x2 − 4.5x− 15.75)

In both these polynomials, it is clear (both algebraically and visually) that the to solution to the function is a
root of the polynomial (x = 1 and x = 1.5, respectively), for the two polynomial setups.

This means that if we were to specify l(x), r(x), o(x) ahead of time, we could cleanly map the zk-SNARKOP
scheme, to confirm that a prover does in fact know a solution to the equation. The only change we make to the
zk-SNARKOP protocol is that p(x) = l(x) · r(x)− o(x). However, since we are operating in encrypted space,
and subtraction is more difficult to compute than addition, we rewrite it is

l(x)r(x)− o(x) = h(x) · t(x) original polynomial proof

l(x)r(x) = h(x) · t(x) + o(x) removing the need for subtraction
(7)

In encrypted space, the verifier checks:

• m
(
gl(s), gr(s)

)
= m

(
gh(s), gt(s)

)
·m

(
go(s), g

)
• m (g, g)l(s)r(s) = m (g, g)t(s)h(s)+o(s)
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We have continued to keep doing it! Given a operation (3× 5 = 15), and 3 polynomials that represent it, we
have now been able to prove its validity.

All we did was :

1. select a value a

2. select 3 polynomials that preserve the validity of our operation at point a, for l(a) · r(a) = o(a).

3. Have the prover show that they know a polynomial with root a.

Multiple Operations

The operation of mapping a function into a polynomial seems pretty clear, but it’s easy to gloss over where the
details are. It’s more obvious when you attempt to combine multiple operations together. For example, consider
the equation y = a× b× c. Using binary operators, this looks like

a× b = p

p× c = y
(8)

We observe that we can actually pick polynomials l(x), r(x), and o(x) that can encode both the first and the
second equations that represent y = a× b× c.

We first select x0; and then l(x0) = a, r(x0) = b, o(x0) = p; then we select x1; and then l(x1) = p,
r(x1) = c, o(x1) = y.

Let us pick x0 = 1, x1 = 2, as well as our previous l(x), r(x); l(x) = 2x2 − 1.5, r(x) = 3x + 0.5. There
are an infinite number of o(x) we can pick, but for this first exercise, let us derive by hand one solution that
works for x0 = 1, x1 = 2. l(1) = 0.5, l(2) = 6.5, r(1) = 3.5, r(2) = 6.5. So o(x) must travel between points
(1, 1.75) and (2, 42.25).

We pick o(x) = 19.375x2 − 17.625

You may be wondering : if we are able to derive l(x), r(x), and o(x) what do we need the prover for. Good
question. This leads us to our next point, which we only implicitly mentioned so far: polynomial interpolation.

Polynomial Interpolation

Given d points (such that no points have the same x-value), there exists a unique d-degree polynomial that passes
through each of those points. There are plenty of techniques to solve for this, the simplest to understand being
simply a set of equations with unknowns, but also one can use Fast Fourier Transforms, Newton polynomials, or
Lagrange polynomials.

During set up, a verifier specifies polynomials l(x), r(x), and d unencrypted points x. The prover will
evaluate l(x) and r(x) on the unencrypted points x. Then once the d points are evaluated, the prover will
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interpolate a polynomial o(x). Once prover has o(x) they can evaluate o(x), along with l(x), r(x), t(x), and
h(x) on the homomorphically hidden points s, as before.

At first glance, interpolation would only make sense for polynomials l(x)r(x) − o(x) of a single variable.
However one can define pi(x) for each variable i, and then combine them into a single polynomial p(x) by
evaluating each pi(x) on a distinct set of points, then interpolating between them.

Note: here l(x) and r(x) represent the actual computation that the prover is doing, so this should require
minimal overhead to compute these evaluations.

QAP expressivity

We have described how to do polynomial interpolation for representing multiplicative computations, but the
same is possible for addition, subtraction, and division.

Previously, in An example computation to a polynomial we informally showed that you can create condi-
tional statements.

Addition and subtraction can be expressed by a simple operand

(a+ b)× 1 = o(x)

(a+ (−1 · b))× 1 = o′(x)

We have already shown how to express multiplication, and so division falls out naturally. If we wish to prove
that a

b = x, this can be expressed as b× x = a, and verified as a multiplication.
Using QAPs it’s also possible to define arbitrary constant constraints; for example (x− 2)× 1 = 0, requires

that x is equal 2; x× x = x ensures that x is a binary number (1 or 0).
Informally we have just shown that zk-SNARKs can verify any Turing complete computation.

Map Problem to R1CS

Each operation is also called a “constraint,” because the operation does not represent the computation, but rather
only verifies that the prover already knows the results. In other words the prover is required to provide values
that are consistent with the constraints [Petkus, 2019].

This collection of constraints is specified as a Rank-1 Constraint System (R1CS). And mapping a series of
computation in a function to these polynomials constraints is the job of a zk-SNARK compiler.

Note: we must ensure that any variable can only have a single value across every operation it is used in
(otherwise, you create a free variable, and the prover can modify it, without using the intended l(x) and r(x)).

Zero-Knowledge R1CS

We previously added Zero-Knowledge to a polynomial expression p(x) = h(x) · t(x), by allowing the prover
choose a random q to shift the polynomials by. In this new QAP constructions l(x) × r(x) = o(x), we again
attain Zero-Knowledge by shifting by a random values ql, qr, qo. To maintain the equality, the prover computes
a value:

∆ = f(ql, qr, qo) =
ql · l(s)× qr · r(s)− qo · o(s)

t(s)h(s)
(9)

And then instead sends to the verifier the points (l(s) + ql), (r(s) + qr), (o(s) + qo), which correspond with:

(l(s) + ql) · (r(s) + qr)− (o(s) + qo) = t(s) · (∆× h(s)) (10)

[Petkus, 2019][Groth, 2010]
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zk-SNARK Protocol Summary

We now summarize the entirety of the generation of a zk-SNARK.

• Setup (done publicly through a trust-ceremony)

1. select cryptographic bilinear map m. Select encryption generator g.

2. For a given function f , compile the function into R1CS polynomial (degree d) form:(
{(li(x), ri(x), oi(x)}i∈[n], t(x)

)
.

3. Generate a CRS proving key and verification key:

(a) Sample s, {αl, αr, αo}
(b) Set the proving key : 

{gsk}k∈[d],
{gli(s)l , g

ri(s)
r , g

oi(s)
o }i∈[n],

{gli(s)l , g
ri(s)
r , g

oi(s)
o }αi∈[n],

{gt(s)l , g
t(s)
r , g

t(s)
o },

{gαt(s)l , g
αt(s)
r , g

αt(s)
o }


(c) Set the verifying key  g, g

t(s)
o ,

{gli(s)l , g
ri(s)
r , g

oi(s)
o }i∈[m],

gαl , gαr , gαo


• Proving

1. Prover executes computation f(u), storing the intermediary values vi as they execute the computation.

2. Interpolate a unencrypted polynomials for L(x), R(x), O(x); following the form: L(x) = l0(x) +∑n
i=1 vi · li(x)

3. sample random values ql, qr, qo.

4. Compute h(x) = L(x)R(x)−O(x)
t(x) + (qlL(x) + qrR(x) + qlqrt(x)− qo)

5. Compute h(s), p(x) using the encrypted values provided in the CRS (shifted both by a random q for
zero-knowledge, and by α in order to restrict the polynomial).

6. Send the verifier(s)
(
g
Lp(s)
l , g

Rp(s)
r , g
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)

• Verifying

1. Compute the polynomials (gLv(s)
l , gRv(s)

r , gOv(s)
o )from the values sent by the prover; following the

form g
Lv(s)
l =

∏m
i=0

(
g
li(s)
l

)vi
.

2. issue checks on the polynomials; notably:

(a) e
(
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Lp

l · gLv(s)
l , g

Rp
r · gRv(s)

r

)
= e

(
g
t(s)
o , gh
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o · gOv(s)
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)

(b) and the polynomial degree restriction check for L(x), R(x), O(x), of the form: e
(
g
Lp

l , gαl

)
=

e
(
g
L′
p

l , g
)

[Petkus, 2019][Groth, 2010][Gennaro et al., 2013]
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zk-SNARK Conclusions

How zk-SNARKs are Applied to Create a Shielded Transaction

Looking at Z-Cash, the zk-SNARKs are applied in the following fashion: If you have sent an encrypted coin
c = h(v) to the chain. You know the value v coin, which represents an encrypted coin present in the list of
encrypted coins available. In ZCash, there is a single zk-SNARK setup required, which computes the proof
which ensures that the withdrawer of the coins knows the nullifier and the randomness needed to compute the
coin value. For more details refer to section Construction.

Beyond zk-SNARKs

zk-SNARKs rely on a trusted setup (i.e. a public CRS for the prover and the verifier). If this reference string is
leaked, an adversary can create undetectable fake proofs (Toxic Waste) - though multi-party ceremony reduces
the risk of this. Furthermore, this string is tied to a circuit and a implementation, that means that the zk-SNARK
produced cannot scale for arbitrary computation and moreover, if any modifications or error corrections need to
be done in the code, it will require a new trusted setup.

In recent times, there have been efforts to develop universal zk-SNARKs, that is arbitrary code like smart
contracts can be run as a zk-SNARK. Furthermore, with the ever increasing threat of Quantum-Computing’s
ability to break our current encryption, research efforts have been focused on building quantum-resistant hash
functions and zk-SNARK alternatives to this paradigm.

Figure 8: Classification of zk-SNARKs based on the type of reference string [Mannak, 2019]

Recent approaches in this field have been through zk-STARKs [Ben-Sasson et al., 2018], Fractal [Chiesa et al., 2020b],
Halo [Bowe et al., 2019], SuperSonic [Bünz et al., 2020], Marlin [Chiesa et al., 2020a] and Plonk [Gabizon et al., 2019].
However, a lot of these suffer from large proof sizes, sizeable proof/verification times, and in a lot of these im-
plementations, the verification time is no longer constant.

Figure 9: The three types of zk-SNARK compilers (colors match the above table). [Mannak, 2019]

The reason why these Universal zk-SNARKs are better is due to the non-dependence on a trusted setup (using
publicly verifiable randomness to create trustless verifiable computation systems). Furthermore, they are resis-
tant to attacks from quantum-computers. Furthermore, as with some L2 zk-SNARK implementations, moving
these universal zk-SNARKs off-chain would result in significant scalibility of computation and size when moved
off chain. https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-starks/
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Conclusion to ZK-snarks

We have now shown, at a decently low-level degree, how a zk-SNARK can be constructed, given an arbitrary
computation. We now recall the properties that we wished to have in our ZK-SNARK. The last ≈ 12 pages have

ZK Zero-Knowledge
S Succinct
N Non-interactive
ARK ARgument of Knowledge

ideally shown how to: take a function, deconvolve it into a set of computations, translate those computations into
polynomials, evaluate those polynomials as scalars; then to interpolate those scalars into a single polynomial,
and then to evaluate that polynomial as a series of homomorphically hidden points. Ensuring that no matter the
length of the function, the verification would be a constant (short) length, non-interactive, and zero-knowledge.
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Privacy Solutions

In blockchain privacy is particularly tricky to achieve due to its design that all transactions are transparent and
the supply of coins is verifiable. Hence, privacy solutions have to ensure these mechanisms are preserved while
protecting privacy.

However, privacy coins handle two different aspects; anonymity and untraceability. Anonymity hides the
identity behind a transaction, while untraceability makes it virtually impossible for third-parties to follow the
trail of transactions using services such as blockchain analysis.

The two major ways blockchain solutions implement privacy is using Tumblers (Layer-2 solutions) or a
creating a separate blockchain itself.

In the next sections we do a deep-dive into ZeroCash (the protocol beind ZCash) and Monero, two of the
most popular privacy coins as well as Tornado Cash, a Ethereum L2 tumbler.
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ZCash/ZeroCash

ZCash is based on the ZeroCash protocol [Sasson et al., 2014] with certain improvements to their protocol [More
information on the z.cash website]. In the following section, we will describe the ZeroCash protocol, and the
privacy guarantees they achieve.

The main feature of ZeroCash was Decentralized Anonymous Payment Schemes (DAP schemes), which
hides the payments origin, destination and amount.

Construction

The construction of this scheme follows 6 incremental steps:

Step 1: User Anonymity with Fixed-Value Coins

To start, the authors assume a simple construction, where all transactions have the same value (e.g. 1 Z-Coin).
This step showcases how to hide the sender’s information. In addition to zk-SNARKs, they also utilize a com-
mitment scheme (defined below)

If COMM is a statistically hiding non-interactive commitment scheme, that is, given randomness r and
message m, the commitment o is

o := COMMr(m)

Also, o is opened by revealing r and m, and one can verify that COMMr(m) equals o
In this construction, a new coin c is minted as follows:

1. The user u samples a random serial number sn

2. The user u also samples a trapdoor randomness r (a random number generated using a trapdoor function)

3. The user u computes coin commitment cm := COMMr(sn)

4. The coin is set to c := (r, sn, cm)

5. A minting transaction txMint containing only cm is sent to the blockchain ledger

6. txMint is appended to the ledger only if user u has deposited 1 Z-Coin into a escrow pool (maintained by
chain). This payment proof can be encoded into the memo/plaintext information of txMint

7. Let CMList be a list of all coins (like txMint) committed onto the blockchain

8. The user u may spend the coin c by executing a spending transaction txSpend

9. txSpend contains the coin’s serial number sn as well as a zk-SNARK proof π of that statement I know r
such that COMMr(sn) exists in CMList.

10. As long as sn belongs to a UTXO (doesn’t appear in any previous txSpend transactions), the user u can
get back the deposited 1 Z-Coin from the escrow pool (which can be kept, transferred or deposited again)
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Firstly, we note that Mint transactions are thus certificates of deposit, deriving their value from the backing
pool. Secondly, if sn already appeared on the ledger, this is considered double spending, and the transaction is
discarded.

Finally, this construction guarantees anonymity of user u as the proof π is zero-knowledge, i.e., even though
sn is revealed, no information about r is given, so finding which of the numerous transactions txMint in CMList
corresponding to inverting the commitment scheme f(x) := COMMx(sn), which is assumed to be infeasible
and hence, the payment sender is anonymous.

Step 2: Compressing the List of Coin Commitments

In the zk-SNARK proof statement in Step 1, CMList is defined as a list of coin commitments. However, this
limits scalability as this time and space complexity of searching, verifying etc. would grow linearly [O(n)] with
the size of this list. Moreover, even if we wanted to drop spent coins from this list, we wouldn’t be able to do
that since they cannot be identified (due to the Zero Knowledge property that provides anonymity)
Similar to other blockchains (Bitcoin/Ethereum) they use a collision resistant hash function (CRH) to create
a merkle tree of these transactions. This datastructure is append-only and the time and space for verifica-
tion/insertion algorithms is now proportional to the depth of the tree [O(log n)]. So, the zk-SNARK proof π
statement is updated as I know r such that COMMr(sn) exists as a leaf in a merkle tree with a root rt. Specif-
ically, ZeroCash uses merkle trees of height 64, so they can support 264 coins. (For reference ZCash only has
21 million coins totally planned. Which means each coin can be used on average for ∼ 1 Billion shielded
transactions)

Step 3: Extending Coins for Direct Anonymous Payments

In our current model. the commitment of a coin c is the commitment of it’s serial number sn. However this
creates three problems.

Firstly, when transferring the coin to another user uA
c−→ uB , since the sender uA knows sn the reciever uB

cannot spend this coin anonymously, (since uA knows sn and hence can track the spendings of coin c, also the
user uA can spend the coin himself. Hence, uB must immediately spend c and mint a new coin c′ to protect their
anonymity.

Secondly, if uA wants to transfer 100 BTC to uB they must use 100 seperate transfers which is impractical
as well as non-anonymous (since now the amount is leaked).

Thirdly, any denominations of fractional BTC are not supported.
To combat this, the ZeroCash authors modify the derivation of a coin commitment, and use pseudorandom

functions to target payments and to derive serial numbers. They create three psudorandom functions (derived
from a single one). For a seed x, they are denoted by PRF addr

x (·), PRF sn
x (·) and PRF pk

x (·), with the assump-
tion that PRF sn

x (·) is collision resistant.
Firstly, to provide targets for payments, addresses are used: each user u generates an address key pair

(apk, ask), the address public key and address private key respectively. The coins of u contain the value apk
and can be spent only with knowledge of ask. A key pair (apk, ask) is sampled by selecting a random seed ask
and setting apk := PRF addr

ask
(0). A user can generate and use any number of address key pairs.

Next, the minting policy is redesigned to increase functionality. To mint a coin c with a value v, the user u
first samples ρ, a secret value to calculate the coin’s serial number as sn := PRF sn

ask
(ρ). Then u commits to the

tuple (apk, v, ρ). This happens in two phases:

1. u computes k := COMMr(apk||ρ) for a random r

2. u computes cm := COMMs(v||k) for a random s

This results in a coin c = (apk, v, ρ, r, s, cm) and minting transaction txMint := (v, k, s, cm). The major
advantage of this method is, due to nested nested commitment, anyone can verify that cm in txMint is a coin
commitment of a coin of value v (by checking that COMMs(v||k) equals cm) but cannot discern the owner (by
learning the address key apk) or serial number (derived from ρ) because these are hidden in k

To describe coin spending, they define a pour operation as follows:
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1. User u with address key pair (aoldpk , a
old
sk ) wishes to spend his coin cold = (aoldpk ,vold, ρold, rold, sold, cmold)

and produce two new coins cnew1 and cnew2 with total value vnew
1 + vnew

2 = vold , respectively targeted at
address public keys anew

pk,1 and anew
pk,2. (The addresses anew

pk,1 and anew
pk,2 may belong to u or to some other user.)

2. The user u, for each i ∈ {1, 2}, proceeds as follows:

(i) u samples serial number randomness ρnew
i

(ii) u computes knew
i := COMMrnew

i

(
anew
pk,i∥ρnew

i

)
for a random rnew

i

(iii) u computes cmnew
i := COMMsnew

i
(vnew

i ∥knew
i ) for a random snew

i .

3. This yields the coins cnew
1 :=

(
anew
pk,1, v

new
1 , ρnew

1 , rnew
1 , snew

1 , cmnew
1

)
and cnew

2 := (anew
pk,2, v

new
2 , ρnew

2 ,

rnew
2 , snew

2 , cmnew
2 ). Next, u produces a zk-SNARK proof πPour for the following statement, which we

call POUR:

“Given the Merkle-tree root rt, serial number snold , and coin commitments cmnew
1 , cmnew

2 , I know coins
cold , cnew

1 , cnew
2 , and address secret key aold

sk such that:

• The coins are well-formed: for cold it holds that kold = COMMrold

(
aold
pk ∥ρold

)
and cmold =

COMMsold

(
vold ∥kold

)
; and similarly for cnew

1 and cnew
2 .

• The address secret key matches the public key: aoldpk = PRFaddr
aold8d

(0).

• The serial number is computed correctly: snold := PRFsn
aold
sk

(
ρold

)
.

• The coin commitment cmold appears as a leaf of a Merkle-tree with root rt.

• The values add up: vnew
1 + vnew

2 = vold. .” A resulting pour transaction txpour : = (rt, snold ,
cmnew

1 , cmnew
2 , πPOUR ) is appended to the ledger (As before, the transaction is rejected if the serial

number sn appears in a previous transaction.)

Now suppose that u does not know, say, the address secret key anew
sk,1 that is associated with the public key

anew
pk,1. Then, u cannot spend cnew

1 because he cannot provide anew
sk,1 as part of the witness of a subsequent pour

operation. Furthermore, when a user who knows anew
sk,1 does spend cnew

1 , the user u cannot track it, because he

knows no information about its revealed serial number, which is snnew
1 := PRFsnn+1

ansk,1
(ρnew

1 ).
Also observe that txpour reveals no information about how the value of the consumed coin was divided

among the two new fresh coins, nor which coin commitment corresponds to the consumed coin, nor the address
public keys to which the two new fresh coins are targeted. The payment was conducted in full anonymity.

More generally, a user may pour Nold ≥ 0 coins into Nnew ≥ 0 coins. For simplicity they consider the case
Nold = Nnew = 2, without loss of generality. Indeed, for Nold < 2, the user can mint a coin with value 0 and
then provide it as a ”null” input, and for Nnew < 2, the user can create (and discard) a new coin with value 0.
For Nold > 2 or Nnew > 2, the user can compose logNold + logNnew of the 2-input/2-output pours.

Step 4: Sending Coins

Suppose that anewpk,1 is the address public key of u1. In order to allow u1 to actually spend the new coin cnew
1

produced above, u must somehow send the secret values in cnew
1 to u1. One way is for u to send u1 a private

message, but the requisite private communication channel necessitates additional infrastructure or assumptions.
They build this capabilities directly into the blockchain as follows:

1. They modify the structure of an address key pair.

2. Each user now has a key pair (addr pk, addr sk ), where addrpk = (apk, pkenc ) and addrsk = (ask , sk
enc ).

3. The values (apk, ask) are generated as before.

4. In addition, (pkenc , skenc ) is a key pair for a key-private encryption scheme.
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5. Then, u computes the ciphertext C1 that is the encryption of the plaintext (vnew
1 , ρnew

1 , rnew
1 , snew

1 ), under
pknew

enc 1 (which is part of u1 ’s address public key addr new
sk ), and includes C1 in the pour transaction txpour.

6. The user u1 can then find and decrypt this message (using his sknewenc,1 ) by scanning the pour transactions
on the blockchain.

7. Note that adding C1 to txpour leaks neither paid amounts, nor target addresses due to the key-private
property of the encryption scheme (The user u does the same with cnew

2 and includes a corresponding
ciphertext C2 in txpour.)

Step 5: Public Outputs

The construction so far allows users to mint, merge, and split coins But how can a user redeem one of his coins,
i.e., convert it back to the base currency (Bitcoin)? For this, they modify the pour operation to include a public
output. When spending a coin, the user u also specifies a nonnegative vpub and a transaction string info ∈ {0, 1}∗.
The balance equation in the NP statement POUR is changed accordingly: ” vnew

1 + vnew
2 + vpub = vold” . Thus,

of the input value vold , a part vpub is publicly declared, and its target is specified, somehow, by the string info
The string info can be used to specify the destination of these redeemed funds (e.g., a Bitcoin wallet public key).
5 Both vpub and info are now included in the resulting pour transaction txpour. (The public output is optional, as
the user u can set vpub = 0.)

Step 6: Non-Malleability

To prevent malleability attacks on a pour transaction txpour (e.g., embezzlement by re-targeting the public out-
put of the pour by modifying info), they further modify the NP statement POUR and use digital signatures.
Specifically, during the pour operation, the user u

1. Samples a key pair
(
pksig, sksig

)
for a one-time signature scheme

2. Computes hSig := CRH
(
pksig

)
3. Computes the two values h1 := PRFpk

aolsk,1
(hSig) and h2 := PRFpk

aoldsk,2

(hSig), which act as MACs to “tie”

hSig to both address secret keys

4. Modifies POUR to include the three values hSig, h1, h2 and prove that the latter two are computed correctly

5. Uses sksig to sign every value associated with the POUR operation, thus obtaining a signature σ, which is
included, along with pksig, in txPour. Since the aoldsk,i are secret, and with high probability hSig changes
for each pour transaction, the values h1, h2 are unpredictable

Figure 11: (a) Illustration of the CRH-based Merkle tree over the list CMList of coin commitments. (b) A coin c.
(c) Illustration of the structure of a coin commitment cm. (d) Illustration of the structure of a coin serial number
sn. Source:[Sasson et al., 2014]
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Figure 10: Anatomy of a ZCash Transaction : https://electriccoin.co/blog/
anatomy-of-zcash/

Security

Their protocol construction satisfies three security guarantees:

• Ledger Indistinguishability: This property captures the requirement that the blockchain reveals no new in-
formation to the adversary beyond the publicly-revealed information, even when the adversary can induce
honest parties to perform the Anonymous Payments of their choice. The public information available on
the blockchin is of the kind values of minted coins, public values, information strings, total number of
transactions, etc.

• Transaction non-malleability. This property requires that no bounded adversary A can alter any of the data
stored within a (valid) pour transaction txPour. This implies that malicious attackers cannot modify the
contents of a POUR transaction before it is added to the blockchain

• Balance. This property requires that no bounded adversary A can own more money than what they minted
or received via payments from others.

These three conditions are guaranteed by zeroCash, using relatively few assumptions (non-invertibility of
cryptographic hash functions, existance of a trusted setup, etc). Furthermore, even if a trusted setup fails to gen-
erate unknown public parameters, the Ledger Indistinguishability is still maintained, but the other two properties
fail. The new ZCash update - Sapling will target this vulnerability through using a new elliptical curve called
JubJub.

Even then, there are a few considerations to keep in mind to guarantee anonymity. Firstly, Network traffic
which is used to interact with the Blockchain (announce transactions, retrieve blocks, contact merchants etc)
leaks information (IP Address, Geo-Timezone etc). A fix for this is using Tor [Dingledine et al., 2004] or Mix
[Chaum, 1981] Networks. Moreover, a powerful adversary can simulate an additional block purely for a targeted
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user, resulting in the loss of anonymity. But again, to combat this a user can wait a fixed number of blocks before
interacting with recent blocks on the chain, or verify the existance of new blocks with trusted parties.

Privacy Concerns

An issue with z-cash is, it allows both shielded and unshielded transactions. However regulatory agencies
(Government) disincentivize using the shielded transactions. According to CoinTelegraph (reference link) only
about 6% of transactions are completely shielded and only about 15% are shielded in some form. These numbers
indicate the due to multiple reasons (regulations to showcase origin of funds at exchanges, most wallets not
supporting anonymous addresses etc) there is a long way to go before privacy solutions become mainstream.
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Monero

Unlike Z-Cash, which has selective shielding, Monero [Alonso et al., 2020] is a cryptocurrency where every user
is anonymous by default. This is done through the use of three important techniques:

Stealth Addresses

Stealth addresses are an important part of Monero’s inherent privacy. They allow and require the sender to create
random one-time addresses for every transaction on behalf of the recipient. The recipient can publish just one
address, yet have all of his/her incoming payments go to unique addresses on the blockchain, where they cannot
be linked back to either the recipient’s published address or any other transactions’ addresses. By using stealth
addresses, only the sender and receiver can determine where a payment was sent.

When you create a Monero account you’ll have a private view key, a private spend key, and a Public Address.
The spend key is used to send payments, the view key is used to display incoming transactions destined for your
account, and the Public Address is for receiving payments. Both the spend key and view key are used to build
your Monero address. Moreover, you can decide who can see your Monero balance by sharing your view key.
Monero is private by default and optionally disclosure compliant.

Ring Signatures

In cryptography, a ring signature is a type of digital signature that can be performed by any member of a group
of users that each have keys. Therefore, a message signed with a ring signature is endorsed by someone in a
particular group of people. One of the security properties of a ring signature is that it should be computationally
infeasible to determine which of the group members’ keys was used to produce the signature.

In Monero, a ring signature makes use of account keys and a number of public keys (also known as outputs)
pulled from the blockchain using a triangular distribution method. Over the course of time, past outputs could
be used multiple times to form possible signer participants. In a “ring” of possible signers, all ring members are
equal and valid. There is no way an outside observer can tell which of the possible signers in a signature group
belongs to your account. So, ring signatures ensure that transaction outputs are untraceable. Moreover, there are
no fungibility issues with Monero given that every transaction output has plausible deniability (e.g. the network
can not tell which outputs are spent or unspent).

Ring Confidential Transactions

RingCT [Noether, 2015], short for Ring Confidential Transactions, is how transaction amounts are hidden in
Monero.

Ring CT was implemented in block #1220516 in January 2017. After September 2017, this feature became
mandatory for all transactions on the network.

RingCT introduces an improved version of ring signatures called “A Multi-layered Linkable Spontaneous
Anonymous Group signature”, which allows for hidden amounts, origins and destinations of transactions with
reasonable efficiency and verifiable, trustless coin generation.
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Privacy Concerns

The internet traffic to Monero nodes is not hidden, so anyone monitoring your internet can see that you are using
Monero and think that you have something to hide. This is scheduled to be fixed by implementing Invisible
Internet Project (I2P). The project, called Kovri, protects users at the protocol level.

Another interesting result was that for transactions between 2014-2016, about 62% have been successfully
linked [Miller et al., 2017]
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Comparisons Between Coins

As we notice, not just the two privacy coins we covered, but many others like Dash, Verge, Horizen etc. are
also forks of Bitcoin. In contrast, there exist very few privacy coin forks for Ethereum (Zether is one of the only
ones).
There are multiple reasons for this, the primary being UTXO based cryptocurrencies (bitcoin) already have some
level of privacy in-built compared to Account based blockchains (Ethereum) since in a UTXO based chain, the
receiver of the transaction is unknown until the coins are spent. Hence, already there is a basic level of privacy.
Moreover, in Ethereum, it is harder to implement Layer-1 solutions for privacy (in forks) since specifying a
receiver account is essential by the design of the blockchain. Furthermore, Layer-2 solutions are popular and
scalable on Ethereum, and hence more developers are incentivized to develop the same for Ethereum based
cryptocurrencies.

A major difference between ZCash and Bitcoin (apart from the privacy features) are the distribution of
mining rewards. While miners receive 80% of a block reward, 20% is given to the “Zcash development fund”:
8% to Zcash Open Major Grants, 7% to Electric Coin Co., and 5% to The Zcash Foundation (https://z.
cash/zcash-development-and-governance/).

Monero on the other hand, differs from bitcoin in two major (non-privacy) aspects. Monero is ASIC resistant,
which leaves CPU mining as the only option. Furthermore, Monero incorporates a variable block size to handle
high transaction volume periods.

The major difference between ZCash and Monero is the optional shielding available in ZCash whereas
Monero shields every transaction. We can see the impact this has, since only about 10% of transactions on the
ZCash network are shielded in any way. When we look at the daily numbers, this comes to 500 transactions
per day being shielded. In contrast, Monero had about 12k transactions everyday, all of which were shielded
https://bitinfocharts.com/.

33

https://z.cash/zcash-development-and-governance/
https://z.cash/zcash-development-and-governance/
https://bitinfocharts.com/


Tornado Cash

Tornado Cash [Pertsev et al., 2019] is a coin mixer / tumbler, which aims to hide transactions on a blockchain by
mixing them with multiple other transactions, such that each transaction’s links are untraceable. Tornado Cash is
a non-custodial solution which allows users to make their Ethereum of other ERC-20 tokens private by sending
them through this smart contract.

After sending a deposit to the Tornado Cash smart contract the coins can be withdrawn to a new Ethereum
address. This process ensures that the withdrawn funds can’t be linked to the deposit source, thus ensuring the
privacy and anonymity of the assets. Unlike some other tools meant to create privacy the Tornado Cash protocol
is fully owned and governed by its community. This was accomplished in May 2020, when the development
team relinquished control over the protocol’s multi-signature wallet in a Trusted Setup Ceremony. Now it can be
considered to be fully decentralized, assuming atleast one honest user participated in the Trusted Setup.

Moreover, there is a governance token associated with the project. The TORN token is an ERC-20 token with
a fixed supply of 10 million tokens. Holding the TORN token gives a user the ability to submit proposals and to
vote on protocol changes. In addition, the users of Tornado Cash accrue Anonymity Points as they interact with
the protocol. These are deposited to a shielded account, and once enough are accumulated they can be converted
to TORN tokens in a unique process known as Anonymity Mining.

Deposit

To deposit a coin, a user proceeds as follows:

1. Generate two random numbers k, r ∈ B248 and computes C = H1(k∥r)

Here H1 is the Pedersen Hash function which maps a sequence of bits to a compressed point on an elliptic
curve. [Ref: Iden3 Documentation]

We call k the nullifier and r the randomness.

2. Send Ethereum transaction with N ETH to contract C with data C interpreted as an unsigned 256 -bit
integer. If the tree is not full, the contract accepts the transaction and adds C to the tree as a new non-zero
leaf.

Withdrawal

To withdraw a coin (k, r) with position l in the tree a user proceeds as follows:

1. Select a recipient address A and fee value f ≤ N ;

2. Select a root R among the stored ones in the contract and compute opening O(l) that ends with R.

Here O(l) is the value value of sister nodes on the way from leaf l to the root in Merkle Tree.

3. Compute nullifier hash h = H1(k).

Here H1 is again the Pedersen Hash function.
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4. Compute proof P by calling Prove on dp.

Here, the statemnt of Knowledge is the follows :

S[R, h,A, f, t] = {I KNOW k, r, l, O SUCH THAT h = H1(k)

AND O is the opening of H2(k∥r) at position l to R}

Here H2 is the MiMC hash function [Albrecht et al., 2016]. We can construct a zk-SNARK for the above
statement of Knowledge which will result in (dp, dv) which are the Proof Constructor and the Proof Veri-
fier.

5. Perform the withdrawal in one of the following ways:

• Send an Ethereum transaction to contract C supplying R, h,A, f, t, P in transaction data.

• Send a request to Relayer supplying transaction data R, h,A, f, t, P . The Relayer is then supposed
to make a transaction to contract C with supplied data.

The contract verifies the proof and uniqueness of the nullifier hash. In the successful case it sends (N − f)
to A and f to the Relayer t and adds h to the list of nullifier hashes.

Smart Contracts

Let C be the smart contract that has the following functionality:

• It stores the last n = 100 root values in the history array. For the latest Merkle tree T it also stores the
values of nodes on the path from the last added leaf to the root that are necessary to compute the next root.

• It accepts payments for N ETH with data C The value C is added to the Merkle tree, the path from the
last added value and the latest root is recalculated. The previous root is added to the history array.

• It verifies the alleged proof P against the submitted public values (R, h,A, f, t). If verification succeeds,
the contract releases (N − f) ETH to address A and fee f ETH to the Relayer address t.

• It verifies that the coin has not been withdrawn before by checking that the nullifier hash from the proof
has not appeared before and if so, adds it to the list of nullifier hashes.

Privacy Considerations

Tornado cash is only able to create anonymity sets for 4 discrete deposit amounts (0.1, 1, 10, 100) ETH. And the
anonymity sets for these are in the order of 20,000 Each. However, each denomination has a separate set, hence
a certain lull of traffic on one particular denomination can lead to a loss/reduction of privacy.

Tornado cash also requires a trusted setup assumption, which assumes atleast one party which helped gener-
ate the randomness is honest. Even though this is not an extreme assumption, it leaves the protocol vulnerable
to attack.

Tornado cash allows the ETH to be withdrawn into an account directly (as long as the acceptor has enough
ETH to cover gas fees) or a new ETH wallet as well (though relayer nodes). This ensures an additional level of
privacy.

As per the creators of Tornado cash, the users need to wait between a deposit and the withdrawal to ensure
anonymity (as it increases the anonymity set). However, this poses potential concerns when we are looking at
instantaneous applications of privacy, which is required for many scaling scenarios of cryptocurencies.
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The Current Cost of Privacy

Average Transaction Fee

Before we start, some information about the ZCash and Monero Transactions. The transaction size for ZCash
: unshielded, 500 bytes; shielded, 2,000 bytes [Ref] . In contrast a Monero Transaction is 2380 bytes [Ref] .
In contrast the Bitcoin Transaction with 1 input and 2 outputs (one to self one to sender) is approximately 250
Bytes [ref]

The average fees per Bitcoin transaction is 20 USD [ref] . For ZCash, the per transaction fee is roughly
0.00001 ZEC which is roughly 0.0015 USD. Similarly for Monero, the fees is about 0.05 USD.

Hence, if a Monero or ZCash transaction was to occur in Bitcoin (being 8-9 times as large as a Bitcoin
Transaction) it’s fees would be 150-180 USD. (Which is 105 as high as ZCash and 3600 as high as Monero’s.

Here we see that despite having significantly more privacy considerations, both ZCash and Monero are
cheaper than their alternative (Bitcoin).

In tornado cash, being part of the EVM, we will showcase the fees in terms of gas [Tornado forum] A deposit
transaction takes about 1m gas (0.05 ETH at 50 GWEI, 0.1 ETH at 100 GWEI). A withdrawal transaction takes
about 400k gas ((0.02 ETH at 50 GWEI and 0.04 ETH at 100 GWEI). On top of this, there is a withdrawal
relayer fee of 0.05% - 0.2%. On top of this there is the gas that the relayer uses for their transaction. All in
all, assuming the smallest possible gas fee, and no relayer charges, we get a cost of about 270 USD. This is
significant compared to the cost of a simple Ethereum transaction (which requires 21,000 gas - 0.001 ETH at 50
GWEI, 0.002 ETH at 100 GWEI) which is about 4-8 USD per transaction. Hence, we see a 3000% increase in
the cost of privacy for Tornado Cash.
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Block Visualization

Figure 12: ZCash Explorer : https://explorer.zcha.in/

Here we can see that in any ZCash explorer, any shielded transaction showcases two values (Transparent/Shielded)
for both the input and output of a transaction. Only the Transparent components have their values displayed.

Figure 13: Monero Explorer : https://localmonero.co/

In Monero’s explorer, things are even more hidden with only the transaction fees being displayed. Moreover,
each transaction has a value of MixIns which are the number of users who have signed the RingCT. (From a
quick check, it seems to be around 10 for most recent blocks)
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Figure 14: Tornado Cash Explorer : https://etherscan.io/

In Tornado cash, there are 4 separate smartcontracts, one for each denomination the tumbler supports. For
every transaction, the only visible components are a user sending money to this contract, and the contract sending
money to another user. As shown, through a relayer node, the gas fee and other components are also handled by
them.
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The Forever War

CryptoWars

Law enforcement has always wanted a secret key to unlock doors, both digital and physical. With every increase
in capabilities for privacy and security, we see an outcry that this will only increase criminal activity; in the
same breath, they say “if you have nothing to hide, you should feel comfortable revealing your information.”
In the digital world, since the 1970s, law enforcement has been fighting to have increased centralized power
to audit and monitor its people in order to “catch the bad guys,” as cryptographers have fought to increase
privacy and security. These legal, technological, and moral debates have been lovingly termed the CryptoWars
[Wikipedia, 2021a].

KYC laws

As the development of blockchain technologies emerges, governments seek to create processes for tracking
assets and catching criminals, as new markets emerge. One of the biggest tools in the financial quadrants of
governments is Know-Your-Customer laws (KYC). KYC laws are ethical requirements within the investment
and financial services industry, to ensure that a customer is who they claims to be. Typically, KYC laws require
the collection of social security numbers, date-of-birth, address, and sometimes ID documents like a passport
[Chen, 2021].

Selective Disclosure

KYC laws are an important part of a regulated marketplace, and if blockchains are to expand, they need to
be able to comply with laws. Further drawing inspiration from financial markets, zk-SNARK-based privacy
coins can selectively disclose information to regulators and auditors. At a high-level, this simply means sharing
secret information with auditors and regulators that remove the Zero-Knowledge component of zk-SNARKs.
If we recall how Zero Knowledge is implemented in zk-SNARKs, it is through a prover selecting a random
value (q, though sometimes denoted by δ), and not sharing it with anyone; the random value does not change
anything about the correctness of the polynomial equality, but it does prevent the verifiers from learning the actual
coefficients of the polynomials. And so, a prover that generated a zk-SNARK is selectively disclose information
to regulators/auditors by sharing the random value with them, and removing ZK from their zk-SNARKs.

The Future

If every time Apple paid a VR company any amount of money, the whole world knew, corporate secrets would
scarcely exist. As money makes the world go round, it seems highly unlikely that cryptocurrencies will remain
a public transaction. We do not expect that either the blockchain or the demand for privacy on the blockchain
will diminish. As cryptographers and computer scientists we sit in a unique position to develop mathematical
tools and levers for ordinary citizens to protect themselves for exploitation. And as blockchain experts, we sit in
a unique position to empower the financial means of its users in an equitable and trustless fashion.
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Conclusion

In this report we will not make a judgement call about which side you should fall on in the CryptoWars or the
PrivacyWars. But from the duration and vigor that the CryptoWars have continued with, it seems clear that
both 1. reasonable people can disagree, 2. there will never be a perfect solution. However, we do remark
that exploitation and abuse-of-power by powerful, central bodies is always possible. We also note that without
perfect knowledge of each person, it is impossible to only let the “right” people have privacy and security. And
so, while developing tools and levers to protect the privacy and security of people will never be without nuance,
it will always be a tool that makes it possible for ordinary people to stand up to such abuses.

We conclude this report with quote from Dr. Eran Tromer (Co-founder of ZCash), who said in an interview
with us, “I think that a world devoid of financial privacy is scary, deplorable and unlikely. Cryptocurrencies and
decentralized finance will not fulfill their promise until you can buy a book without broadcasting your transaction
on-chain. Therefore, for the DeFi vision to happen in earnest and with widespread adoption, privacy solutions
must become ubiquitous. Our job, as cryptographers, is to help ensure it’s the safe and secure privacy solutions
that get used. As for Bitcoin, specifically: for the aforementioned reason, it would have to either evolve to
provide privacy (the recent Taproot protocol upgrade is a tiny step in that direction), or more likely: become
a reserve asset that people hesitate to directly transact in because who’s crazy enough to “tweet” their account
balances and transaction, but that can be bridged, tokenized and securitized to other platforms that do provide
privacy.” [Tromer, 2021]
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Appendix

Here is a list of the resources that we found particularly helpful and relevant:

Theory, Primers, and Explainers

• Why and How zk-SNARK Works by Maksym Petkus

• zkSNARKs in a nutshell — Ethereum Foundation Blog

• A (Relatively Easy To Understand) Primer on Elliptic Curve Cryptography : https://blog.cloudflare.com/a-
relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/

• Deep Dive in to Bellman Library

• Trilogy Tutorial by Vitalik Buterin. (All linked from https://medium.com/@VitalikButerin/
zk-snarks-under-the-hood-b33151a013f6.)

– Quadratic Arithmetic Programs: from Zero to Hero

– Exploring Elliptic Curve Pairings

– ZK SNARKS : Under the Hood

Code resources

• Libsnark: https://github.com/scipr-lab/libsnark

• Bellman: https://github.com/zkcrypto/bellman

• WASM SNARK: https://github.com/iden3/wasmsnark

• SNARKjs: https://github.com/iden3/snarkjs
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