
Advances in Mathematics of Communications doi:10.3934/amc.xx.xx.xx
Volume X, No. 0X, 20xx, X–XX

ON THE COMPUTATIONAL HARDNESS OF THE CODE

EQUIVALENCE PROBLEM IN CRYPTOGRAPHY

Alessandro Barenghi

Department of Electronics and Information

Politecnico di Milano

Jean-François Biasse

Department of Mathematics and Statistics

University of South Florida

Edoardo Persichetti

Department of Mathematical Sciences
Florida Atlantic University

Paolo Santini

Department of Information Engineering

Università Politecnica delle Marche

Abstract. Code equivalence is a well-known concept in coding theory. Re-

cently, literature saw an increased interest in this notion, due to the intro-
duction of protocols based on the hardness of finding the equivalence between

two linear codes. In this paper, we analyze the security of code equivalence,

with a special focus on the hardest instances, in the interest of cryptographic
usage. Our work stems from a thorough review of existing literature, identifies

the various types of solvers for the problem, and provides a precise complexity
analysis, where previously absent. Furthermore, we are able to improve on the

state of the art, providing more efficient algorithm variations, for which we in-

clude numerical simulation data. Our results include also a dedicated method
for solving code equivalence with a quantum algorithm, as well as a refinement

of quantum Information-Set Decoding (ISD) algorithms. In the end, the goal

of this paper is to provide a complete, single point of access, which can be used
as a tool for designing schemes that rely on the code equivalence problem.

1. Introduction

Code-based cryptography is one of the main areas of research aiming to provide
security in a post-quantum scenario. The area is largely based on the well-known
and understood Syndrome Decoding Problem (SDP), which leads to very good
solutions for key establishment [1, 2, 21], but has shown to be far from optimal when
designing signature schemes. With this in mind, a recent approach was presented
in 2020, leveraging the code equivalence problem as the main hardness assumption;
the result is the scheme known as LESS [11], a zero-knowledge protocol that can be
converted to signature scheme via the Fiat-Shamir transformation [15].

2010 Mathematics Subject Classification: 11T71, 94A60.
Key words and phrases: Code Equivalence, Linear Codes.

1 ©20xx AIMS

http://dx.doi.org/10.3934/amc.xx.xx.xx

The publication of LESS stirred the community into giving a deeper look at the
hardness of code equivalence in practice; for example, shortly after the appearance
of LESS, Beullens introduced an improved algorithm to solve the code equivalence
problem [10] for certain specific instances. This had an immediate effect on LESS;
new parameter choices were published in [6], alongside a variety of computational
optimizations aimed at improving the protocol’s efficiency. Such optimizations are
possible, in the first place, as code equivalence can be seen as a particular type of
cryptographic group action, thus drawing another line in the sand when compared
with previous solutions from code-based cryptography. In the end, it is clear that
the practical hardness of solving code equivalence is worthy of further investigation.

Our Contribution. In this work, we analyze and improve on the computational
methods to solve instances of the Code Equivalence problem (CE) for which a solu-
tion exists, with a particular emphasis on the instances that are relevant to cryptog-
raphy. This contribution is of fundamental interest, and it will have an important
impact on future developments regarding schemes based on code equivalence, such
as LESS. More specifically, we focus on the most efficient methods to solve the Lin-
ear Equivalence Problem (LEP) for codes over fields of cardinality q ≥ 5, i.e. the
overwhelming majority of the LEP instances. Note that CE efficiently reduces to
LEP, which means that the techniques described in this paper apply to the resolu-
tion of almost all instances of CE. For the instances of LEP that we focus on, no
efficient method applies, and the best known technique is due to Beullens [10].

• In Section 5 we study the costs of Leon’s and Beullens’ algorithms for LEP. We
provide new arguments to measure the performance, that were not available
previously, and that are essential to assess any further improvement.

• In Section 6, we describe a new technique for solving LEP, and we demonstrate
that it is an improvement over the state of the art (Leon and Beullens)1.

In Section 4, we also analyze Leon’s and Beullens’ algorithms for computationally
hard instances of the Permutation Equivalence Problem (PEP). Instances of PEP
are a narrow subset of the set of instances of LEP (almost all LEP instances are not
a PEP instance), but there are efficient methods for generating hard PEP instances
(i.e. when codes have large hull) which can be used in cryptography. Therefore, it
is essential to have a precise analysis of the best computational methods for solving
PEP in these special instances. Additionally, we describe in Section 7 quantum
algorithms for solving the hard instances of PEP and LEP presented above.

• In Appendix A, we present an adaptation of the quantum Information Set
Decoding (ISD) algorithm of Kachigar and Tillich [18] to q-ary codes. While
this adaptation is straightforward, to the best of our knowledge, it does not
appear in any prior works.

• In Section 7.1, we present a quantum adaptation Beullens’ algorithm for PEP
that offers an asymptotic speed-up over its classical counterpart.

• In Section 7.2, we present quantum adaptations of both Beullens’ algorithm
and of the new algorithm presented in Section 6 for LEP that offer an asymp-
totic speed-up over their classical counterparts.

• In Section 7.3, we present ideas for further improvements on these new quan-
tum methods.

1When possible, we validate our analysis with numerical simulations; the employed Sage scripts
are available at https://github.com/paolo-santini/LESS_project

2

https://github.com/paolo-santini/LESS_project

As for the classical algorithms presented in this paper, the quantum methods we
introduce offer the best performance on almost all instances of the Code Equivalence
problem, including all instances that are used in cryptography. However, they
are not competitive on special cases for which classical (quasi-)polynomial time
algorithms exist (i.e. PEP on codes of small hull, or LEP on codes over fields of
size q = 2, 3, 4).

Organization of the paper. We begin in Section 2 by recalling some background
notions about coding theory, as well as quantum search algorithms. In Section 3, we
describe the code equivalence problem and give a high level overview of its hardness,
and what are the main approaches for solvers. The permutation equivalence case is
treated first, in Section 4; we then describe solvers for linear equivalence separately,
in Section 5, including our improved technique. Quantum solvers are discussed, for
both cases together, in Section 7. Finally, we conclude in Section 8.

2. Background

We will use the conventions of Table 1 throughout the rest of the paper.

a a scalar
A a set
a a vector
A a matrix
a a function or relation
A an algorithm
In the n× n identity matrix

[a; b] the set of integers {a, a+ 1, . . . , b}
U(A) the uniform distribution over the set A

$←− A sampling uniformly at random from A

Table 1. Notation used in this document.

We denote with Zq the ring of integers modulo q, and with Fq the finite field
of order q, as is customary; obviously, we have Zq = Fq when q is a prime. The
multiplicative group of Fq is indicated as F∗q . Given a vector a ∈ Fnq , we denote
by Values(a) the ordered multiset formed by its entries. We denote with Aut(Fq)
the group of automorphisms of the field Fq. The sets of vectors and matrices with
elements in Zq (resp. Fq) are denoted by Znq and Zm×nq (resp. Fnq and Fm×nq).
We write GLk(q) for the set of invertible k × k matrices with elements in Fq, or
simply GLk when the finite field is implicit. Let Sn be the set of permutations over
n elements. Given a vector x = (x1, . . . , xn) ∈ Fnq and a permutation π ∈ Sn, we
write the action of π on x as π(x) = (xπ(1), . . . , xπ(n)). Note that a permutation can
equivalently be described as an n×n matrix with exactly one 1 per row and column.
Analogously, for linear isometries, i.e. transformations τ = (v;π) ∈ F∗nq o Sn, we
write the action on a vector x as τ(x) = (v1xπ(1), . . . , vnxπ(n)). Then, we can
also describe these in matrix form as a product Q = DP where P is an n × n
permutation matrix and D = {dij} is an n× n diagonal matrix with entries in F∗q .
We denote with Mn the set of such matrices, usually known as monomial matrices.

3

2.1. Coding Theory. An [n, k]-linear code C of length n and dimension k ≤ n
over Fq is a k-dimensional vector subspace of Fnq . It can be represented by a full-

rank matrix G ∈ Fk×nq with rank k, called generator matrix, whose rows form a

basis for the vector space, i.e. C = {uG, u ∈ Fkq}. Alternatively, a linear code can

be represented as the kernel of a full-rank matrix H ∈ F(n−k)×n
q , known as parity-

check matrix, i.e. C = {x ∈ Fnq : HxT = 0}. For both representations, there may
exist a standard choice, called systematic form, which corresponds, respectively, to
G = (Ik |M) and H = (−MT | In−k). Generator (resp. parity-check) matrices in
systematic form can be obtained very simply by calculating the row-reduced echelon
formstarting from any other generator (resp. parity-check) matrix. We denote such
a procedure by sf. The parity-check matrix is important also as it is a generator
for the dual code, defined as the set of words that are orthogonal to the code, i.e.
C⊥ = {y ∈ Fnq : ∀x ∈ C, x · yT = 0}. Codes that are contained in their dual, i.e.

C ⊆ C⊥, are called self-orthogonal or weakly self-dual, and codes that are equal to
their dual, i.e. C = C⊥, are called simply self-dual.

We now proceed by recalling some well known definitions and results, which we
will frequently use in the rest of the paper.

Definition 2.1. Let C ⊆ Fnq be a code with dimension k. We define the permutation
automorphism group of C as

AutSn
(C) = {π ∈ Sn | π(C) = C} .

Analogously, we define the monomial automorphism group of C as

AutMn
(C) = {µ ∈ Mn | µ(C) = C} .

Note that, if π ∈ AutSn
, then for any G that generates C, there must exist

S ∈ GLk such that G = Sπ(C). Clearly, analogous relation applies to the monomial
automophism group.

Definition 2.2 (Code support). For a linear code C ⊆ Fnq , we define the support
Supp(C) ⊂ {1, . . . , n} as the set of indexes i for which there is at least one codeword
c ∈ C such that ci 6= 0.

We now introduce another concept which will be fundamental for the analysis
we develop in this paper.

Definition 2.3. Let C ⊆ Fnq be a linear code with dimension k. A k′-dimensional
subcode C′ of C is a k′-dimensional vector space that can be generated by k′ code-
words of C. The set of all k′-dimensional subcodes with support size w is indicated

as A
(k′)
w (C). We refer to such a set as the k′-dimensional Hamming sphere with

radius w.

The concept of code support can be deemed as a direct generalization of the no-
tion of support for a vector (i.e. the set of indexes pointing at non null coordinates).
In particular, for a vector, the cardinality of its support is referred to as Hamming
weight :

wt(a) : Fnq 7→ N := wt(a) = |Supp(a)| .

Remark 1. For k′ = 1, the set A
(k′)
w (C) contains all the codewords that have

Hamming weight w and are distinct, even when considering multiple scalars. To
ease the notation, we will refer to such a set as Aw(C).

4

We now continue with some properties of linear codes, in terms of subcodes
having a desired support size.

Lemma 1. Let C ⊆ Fnq be a k-dimensional linear code. Then, the number of
subcodes of C with dimension k′ ≤ k is given by[

k
k′

]
q

=
(qk − 1) . . . (qk − qk′−1)

(qk′ − 1) . . . (qk′ − qk′−1)
=

k′−1∏
i=0

qk − qi

qk′ − qi
.

When a code is picked at random, it is safe to assume that the contained k′-
dimensional subcodes are random as well, that is, uniformly distributed over the
set of all possible k′-dimensional vector subspaces of Fnq . Starting from this con-
sideration (which is a standard assumption in coding theory), we can count the
number of subcodes having a certain support size.

Proposition 1. Let C ⊆ Fnq be a random linear code with dimension k. Then, the
average number of subcodes with dimension k′ and support size w is bounded from
above by

(qk
′ − 1)w

(
n
w

)∏k′−1
i=0 (qk′ − qi)

[
k
k′
]
q

[nk′]q
.

Proof. Let J ⊆ {1, · · · , n} of size w, and consider the codes with dimension k′ and
whose support is exactly J . We can upper bound the number of such codes by

(qk
′
−1)w∏k′−1

i=0 qk′−qi
. Indeed, (qk

′ − 1)w counts the number of matrices that have no null

column among those indexed by J , while all the other ones are null; we divide this

number by
∏k′−1
i=0 qk

′ − qi to take into account all possible bases. Note that this is
an upper bound since not all the considered matrices will have full rank k′. Since we

have
(
n
w

)
choices for J , we obtain

(n
w)(qk

′
−1)w∏k′−1

i=0 (qk′−qi)
as an upper bound for the number of

k′-dimensional subcodes of Fnq with support size w. We now assume that all of the[
k
k′
]
q

subcodes of C with dimension k′ are randomly and uniformly picked among the

set of [nk′]q subspaces of Fnq with dimension k′. Then, the probability that a specific

k′-dimensional subcode has support size w is
(qk
′
−1)w(n

w)∏k′−1
i=0 (qk′−qi)

1

[nk′]q
. Multiplying the

above probability by
[
k
k′
]
q

(that is, the number of subcodes in C with dimension

k′) we obtain the estimate.

Remark 2. When k′ = 1, the number of subcodes is equal to that of codewords
with Hamming weight w (without counting scalar multiples). For simplicity, we will
denote this quantity as Nw, and have

Nw = N (1)
w =

(
n

w

)
(q − 1)w−1 q

k − 1

qn − 1
.

Remark 3. When k′ = 2, we can improve upon the upper bound of Proposition 1
and obtain the average number of subcodes with support size w. To do this, it is
enough to subtract from (q2− 1)w (that is, the number of matrices with w non null
columns) the number of matrices that generate a one-dimensional space. Notice
that these matrices are such that both rows have weight w and are identical up to
a scalar multiplication; hence, they can be counted as (q− 1)w(q− 1) = (q− 1)w+1.

Consequently, we can set (q2−1)w−(q−1)w+1

(q2−1)(q2−1) as the number of subcodes of Fnq with

5

dimension 2 and support J of size w. Plugging this estimate into the proof of the
above Proposition, we can estimate the average number of support size w subcodes
of a random code as

N (2)
w =

(
n

w

)
(q2 − 1)w − (q − 1)w+1

(q2 − 1)(q2 − q)
[k2]q
[n2]q

.

2.2. ISD algorithms. Information Set Decoding (ISD) is the best technique to
produce low weight codewords in a given code. There is a vast literature on ISD
algorithms, most of which apply to the binary case; an extensive review can be
found for example in [4]. For the more general, q-ary case (which is of interest to
us), the work of Peters [22] is usually considered the go-to reference. In this paper,
we will denote as CISD(q, n, k, w) the cost of finding a specific codeword with weight
w, in a code with length n and dimension k, defined over Fq. In other words, if
c is a codeword with weight w, then CISD(q, n, k, w) is the cost to have an ISD
routine return exactly c. To assess CISD(q, n, k, w), we rely on the analysis in [22].
Note that ISD is a randomized algorithm and, in case a code contains Nw > 1
codewords with weight w, then ISD will randomly return one of these codewords.
In such a case, the complexity to find a codeword with weight w can be assessed as
CISD(q,n,k,w)

Nw
.

2.3. Quantum Search Algorithms. Our quantum algorithms for solving code
equivalence problems rely on two different building blocks related to search prob-
lems, namely Grover’s search algorithms and Quantum walks. Note that the former
is a special case of the latter. Grover’s algorithm assumes we know a set S and a
function f : S → {0, 1} that is implemented by a quantum algorithm Of . Grover’s
algorithm returns (with constant probability) a marked element, that is x ∈ S such
that f(x) = 1. If we denote by f−1({1}) = M ⊆ S and ε = |M |/|S|, the cost of
Grover’s algorithm is in

O

(
Cost(Of)√

ε

)
.

Grover’s search algorithm is generalized by the notion of random walk on a graph.
We assume that a graph G is given by a set of vertices V and edges E, and we assume
that we are looking for a marked element in M = f−1({1}) for some f : V → {0, 1}.
The general strategy of a random walk is to start from a vertex x ∈ V , check if
f(x) = 1, and if not, then walk in the graph by sampling neighboors uniformly
at random long enough to ensure the new vertex x′ attained is distributed almost
uniformly at random in V , then test if f(x′) = 1. This is repeated until a marked
element is found. In addition to running Of , there are two main steps in a quantum
walk that contribute to the overall cost:

- Setup: sampling the first vector and initializing the data structure.
- Update: sampling a neighboor and updating the data structure (we need to

update the current node and its neighbors).

Each of the aforementioned steps have a cost that depend on the data structure that
is chosen to navigate the graph (note that depending on the model of computation
chosen, memory-intensive data structures can penalize the cost). Moreover, the cost
is impacted by the shape of the transition matrix M . In the case of a d-regular
graph (which is relevant to our problem), M = 1

dA where A is the adjacency matrix
of the graph. The number of update steps required to reach a node almost uniformly
distributed is Õ

(
1
δ

)
where δ is the spectral gap of M , i.e. δ := 1−maxi>1 |λi| where

6

(λi)i>1 are the eigenvalues of M not equal to 1. The cost of a quantum walk is
given by

Cost(Setup) +
1√
ε

(
Cost(Of) +

1√
δ

Cost(Update)

)
.

The search for solutions of the 4-sum problem reduces to a walk in the product of
Johnson graphs of the Vi’s. A Johnson graph J(n, r) is an undirected graph whose
vertices are the subsets of size r of a given set of size n. There is an edge between
vertices S and S′ if and only if |S ∩ S′| = r− 1 (i.e. they differ by only 1 element).
The Johnson graph J(n, r) has

(
n
r

)
elements, is r(n−r)-regular and its spectral gap

is

δ =
n

r(n− r)
.

The product Jm(n, r) of m copies of J(n, r) is the graph whose vertices are of the
form (v1, . . . , vm) where each vi is a vertex of J(n, r), and there is an edge between
(v1, . . . , vm) and (v′1, . . . , v

′
m) if and only if there is an edge between vi and v′i for

some i, and vj = v′j for all j 6= i. As recalled in [18], Jm(n, r) has
(
n
r

)m
elements,

is mr(n− r)-regular, and its spectral gap satisfies

δ(Jm(n, r)) ≥ 1

m
δ(J(n, r)).

3. The Code Equivalence Problem

The concept of equivalence between two codes, in its most general formulation, is
defined as follows.

Definition 3.1 (Code Equivalence). We say that two linear codes C1 and C2 are
equivalent, and write C1 ∼ C2, if there exist a field automorphism α ∈ Aut(Fq)
and a linear isometry τ = (v;π) ∈ F∗nq o Sn that map C1 into C2, i.e. such that
C2 = τ(α(C1)) = {y ∈ Fnq : y = τ(α(x)), x ∈ C1}.

Clearly, if C1 and C2 are two codes with generator matrices G1 and G2, respec-
tively, it holds that

C1 ∼ C2 ⇐⇒ ∃(S; (α,Q)) ∈ GLk o (Aut(Fq)×Mn) s.t. G′ = Sα(GQ).

The notion we just presented is usually known as semilinear equivalence and it
is the most generic. If the field automorphism is the trivial one (i.e. α = id), then
the notion is simply known as linear equivalence. If, furthermore, the monomial
matrix is a permutation (i.e. Q = DP with D = In), then the notion is known as
permutation equivalence. Note that, in cryptographic applications (e.g. [11, 6]), the
fields considered are always prime, and therefore the last two notions are the only
ones of interest to us. Finally, we state the following computational2 problem.

Problem 1 (Code Equivalence). Let G1,G2 ∈ Fk×nq be two generator matrices for
two linearly equivalent codes C1 and C2. Find two matrices S ∈ GLk and Q ∈ Mn

such that G2 = SG1Q.

We normally refer, respectively, to permutation equivalence problem (PEP) or
linear equivalence problem (LEP), according to the notion of code equivalence con-
sidered, or simply to the code equivalence problem where such distinction is not
important.

2Note that this problem is traditionally formulated as a decisional problem in literature, yet
for our purposes it is more natural to present here the search version.

7

3.1. High Level Hardness Overview. As proven in [23], the permutation equiv-
alence problem is unlikely to be NP-complete, since this property would imply a
collapse of the polynomial hierarchy. Yet, while the problem can be efficiently solved
for some families of codes, there are many instances that, after almost 40 years of
study, are still intractable. In the remainder of the paper, we analyze the best known
solvers for the code equivalence problem. We first deal with the case of permuta-
tion equivalence, and report the complexity of all techniques to solve this problem.
Then, we show how these techniques adapt to the case of linear equivalences.

We begin by recalling a trivial property of code equivalence.

Proposition 2. Let C1,C2 ⊆ Fnq be two linear codes with dimension k, and let C⊥1 ,

C⊥2 be their duals. Then

i. if π ∈ Sn is such that π(C⊥1) = C⊥2 , then also π(C1) = C2;

ii. if τ ∈ Mn is such that τ(C⊥1) = C⊥2 , then also τ ′(C1) = C2, where τ ′ is derived
from τ by taking the inverses of the scaling factors.

The above proposition is crucial to understand the hardness of solving the code
equivalence problem. Indeed, the problem can equivalently be solved by looking at
the given codes, or at their duals. For the sake of simplicity, in this work, we will
describe all the algorithms and procedures by considering solely the codes initially
given; to derive the corresponding complexity for the attack on the duals, it is
enough to replace k with n− k in all the provided formulas.

To avoid studying vacuously hard instances (i.e., those represented by codes that
are not equivalent), we will always consider the case in which at least a solution is
guaranteed to exist. Namely, we consider that:

- the code C1 is chosen at random;

- for PEP, we have C2
$←− {π(C1) | π ∈ Sn};

- for LEP, we have C2
$←− {τ(C1) | τ ∈ Mn}.

Note that the number of solutions to PEP is equal to the size of the automorphism
group. Indeed, if π solves PEP and σ is such that σ(C1) = C1, then we have another
solution to PEP by combining π and σ. Clearly, the same considerations hold for
LEP. To the best of our knowledge, the behaviour of the autormorphism groups of
random codes under this perspective has never been formally studied. However, it
is essentially folklore that these groups is trivial. Consequently, in our study we are
going to make use of the following structural assumption.

Assumption 1. We assume that the permutation and monomial automorphism
groups of the considered codes are trivial.

As a result of the above assumption, all the code equivalence instances we con-
sider admit only one solution.

3.1.1. The easy cases. We begin our analysis by discussing algorithms that treat
special cases, leading to very efficient solvers. The first such algorithm is the Support
Splitting Algorithm (SSA), introduced by Sendrier [26]. This solver is based on the
idea of signature function, i.e. a function S that fixes the action of the permutation
on each position in the code. A signature function is said to be fully discriminant if
it returns a different value in each position, and this allows to reveal the permutation
linking the two codes. The signature function proposed by Sendrier in [26] is based

8

on the hull space of a code, that is, the intersection between a code and its dual, for
which the weight enumerator is computed. In particular, to create a dependence
between the signature value and the code positions, one can puncture the code,
i.e. remove coordinates from the codewords. Putting these considerations together,
in [26, Section 5.2] Sendrier proposes to build a signature as

S(Ci) :=

{
Wef

(
H
(
C\i
))

, Wef

(
H
(
C⊥\i
))}

,

where C\i is the code obtained from C punctured in position i, H denotes the
hull and Wef denotes the Weight Enumerator Function. The hull computation
requires simple linear algebra, and comes with a cost of O(n3) operations in the
finite field. To compute the weight enumerator of a code, one usually needs to
enumerate all of its codewords: assuming that the hull has dimension h, we can
use O(nqh) as an estimate for the cost of each Wef computation. On the other
hand, heuristically, we observe that using ln(n) refinements is enough to obtain a
fully discriminant signature. In the end, the complexity of SSA can be estimated as
O
(
n3 + n2qh ln(n)

)
. Thus, the hull dimension plays a crucial role in the analysis of

the performance of SSA. For random codes, this dimension is with high probability
equal to a small constant [27], de facto making SSA a polynomial-time solver for
PEP. On the other hand, SSA is very inefficient for codes that have a large hull.
This is, for instance, the case of (weakly) self-dual codes, for which SSA can be
made arbitrarily hard by choosing codes with a sufficiently large dimension. SSA
can be extended to solve the linear equivalence problem as well; however, in this
case, the algorithm is less efficient. In fact, such an adaptation requires applying
SSA to the closure of the code, i.e. the linear code defined as {c⊗a, c ∈ C}, where
a = (a1, · · · , aq−1) is any ordering of the non-zero elements of Fq. A fundamental
point is that, for q ≥ 5, the closure of a code is always weakly-self dual, and thus
has a hull of maximum dimension, leading to exactly the hardest instances for SSA
to solve. These results are corroborated by the analysis in [25].

Note that SSA trivially fails in the case of codes with an empty hull. In this
case, however, another approach is possible. In 2019, Bardet et al. [5] proposed a
new method to solve the permutation equivalence problem, which fully exploits the
connection between the permutation equivalence problem and the notion of graph
isomorphism. The core idea of [5] is to reduce code equivalence to an instance of the
Weighted Graph Isomorphism (WGI) problem. This is done by building matrices

of the form ACi
= G>i (GiGi)

−1
Gi from the codes considered, and observing that

AC1
= P>AC1

P allows to recover the permutation P that connects the two codes.
Indeed, AC1 and AC2 are interpreted as the adjacency matrices of two graphs,
and hence can be given as input to some routine which solves the WGI problem.
Given that, to compute AC1

and AC2
, only O(n2.373) operations in the finite field

are required (this is essentially the cost of matrix inversion), we have that this
approach gives a complexity of

O

(
n2.373CWGI(n)

)
,

where CWGI(n) denotes the complexity of a solver for the weighted graph isomor-
phism problem. Note that this problem can be solved, for many classes of graphs,
with very efficient algorithms. Furthermore, Babai’s recent breakthrough paper [3]
shows that the problem can be solved, in the worst case, with quasi-polynomial

9

complexity. Hence, even in the worst case scenario, this solver runs in a time that
is quasi-polynomial in the code length, on codes that have a trivial hull. For the
more general case of codes with a non-trivial hull, the reduction from graph isomor-
phism works in a different way. In this case the complexity scales heavily with the
dimension of the hull and thus the solver is, in practice, much less efficient; a proof
of this fact can be found in [5, Theorem 10].

Finally, an algebraic approach was investigated in [25], where the author shows
how it is possible to solve permutation equivalence by modeling it as a quadratic sys-
tem. When the hull is trivial, it is possible to add several linear equations (through
a technique called block linearization), which makes the system very easy to solve.
However, in the general case of a non-trivial hull, the methods proposed by the
author (using shortened codes or searching for the closest vector in the code) al-
ways end up in exponential complexity; for example, the latter scales proportionally
to qk. It follows that, as mentioned by the author himself, this approach can be
deemed efficient only for the case of trivial hulls, once again.

To conclude this first section, we clarify the main takeaway to the reader. All
the methods described above provide efficient solvers for very specific cases (small
or trivial hulls); however, for codes with large hulls, these methods become quickly
impractical. More to the point: when considering code equivalence in cryptography,
it is easy to avoid these attacks. In fact, for the linear equivalence problem, it is
enough to consider random codes defined over a large enough alphabet (q ≥ 5),
and then the value qh = qk is already large enough for any realistic choice of code
parameters. On the other hand, if one wants to use permutation equivalence, choos-
ing a weakly-self dual code is sufficient to guarantee maximum hull dimension. All
these considerations are already taken into account in the original LESS work, and
constitute essentially just a set of “best practices”, to be considered when design-
ing a cryptosystem based on code equivalence. We now move on to summarizing
algorithms that are relevant to the analysis of such systems.

3.1.2. Solvers for hard instances. There are other algorithms that are able to solve
the hard instances described above, for which the previous solvers are ineffective.
This is because the complexity of such algorithms does not depends on the size of
the hull. Instead, the algorithms are based on a different observation, namely, that
both permutation and monomial transformations preserve the Hamming weight
distribution of the codewords. In particular, if two codes C1 and C2 are linked by
some permutation or monomial transformation, say τ , then we have that for any
subset of weight-w codewords A1 ⊆ C1, there must exist some subset of weight-w
codewords A2 ⊆ C2 such that τ(A1) = A2. Starting from this basic reasoning, the
goal becomes that of finding sets of codewords that i) can efficiently been computed,
and ii) have enough structure to allow for the reconstruction of τ .

Leon’s algorithm [19], which dates as the first technique to solve code equivalence,
chooses A1 and A2 as the set of all codewords having some low Hamming weight
w. The choice of w is crucial to determine the algorithm effectiveness. On the one
hand, in fact, if w is too low then A1 and A2 may have not enough structure (i.e.,
they contain very few codewords) so that reconstructing τ may not be possible.
Yet, low-weight codewords can be found with ISD algorithms (see Appendix A),
with a cost that is significantly smaller than that of enumerating the whole code.
On the other hand, if w is too high, the number of codewords in A1 and A2 may
become too high, so that determining the sets becomes too time-consuming.

10

Recently, Beullens [10] proposed an algorithm which is able, in some cases, to
improve over Leon’s algorithm. For the permutation equivalence case (i.e., when
τ ∈ Sn), one observes that the multisets formed by the entries of the codewords are
preserved as well. Hence, one can construct the sets A1 and A2 by considering pairs
of codewords (one in A1, one in A2) having the same multisets of entries. To avoid
too many collisions (which would make the algorithm perform worse than Leon’s),
one can consider only the codewords having some moderately low weight. As a key
observation, Beullens has shown how it is not necessary to find all of these matching
codewords (differently from what one does in Leon’s algorithm).

For the remainder of this work, we will focus our analysis on algorithms of this
second type, as they constitute the most efficient attack avenue for cryptographic
schemes based on code equivalence.

4. Solvers for Hard Permutation Equivalence Instances

In this section we recall the algorithms for the permutation equivalence problem,
whose complexity does not depend on the hull size, that we anticipated in the
previous section.

Leon’s Algorithm. Chronologically, the first method capable of solving the code
equivalence problem is due to Leon [19], and is based on the following reasoning.
Let C1 and C2 be two linear codes with length n and dimension k, and π ∈ Sn
such that π(C1) = C2. Let X be a set of codewords picked from C1. Then, there
must exist a set Y formed by codewords of C2 and such that π(X) = Y : among all
the maps from X to Y , there must necessarily also be those mapping C1 into C2.
In [19], Leon proposes an algorithm that constructs the ensemble of permutations
between two sets, with a running time that is polynomial in the cardinality of
the sets. Starting from the observation that permutations preserve the Hamming
weight, Leon suggests to form X and Y using the codewords with a properly low
weight w. Let Aw(C1) and Aw(C2) denote such sets, and MorSn

(Aw
(
C1), Aw(C2)

)
be the set of all permutations π ∈ Sn such that π

(
Aw(C1)

)
= Aw(C2). In a nutshell,

Leon’s algorithm operates as follows:

1. compute Aw(C1) and Aw(C2);

2. construct MorSn

(
Aw(C1), Aw(C2)

)
;

3. check if there exists π ∈ MorSn

(
Aw(C1), Aw(C2)

)
such that π(C1) = C2.

As Leon proves in the original paper, the complexity of the second and third steps
is polynomial in the cardinality of Aw(C1) and Aw(C2), which we estimate with Nw
as in Proposition 1. This also allows us to properly choose the value of w. Indeed,
Nw grows (exponentially) with w: when w is too high, Nw may become so large
that the first and second steps of the algorithm become too time-consuming. On
the other hand, if w is too low, then the sets Aw(C1) and Aw(C2) are rather small
and do not possess enough structure, in the sense that there may exist a very large
number of maps from Aw(C1) to Aw(C2).

Heuristically, optimal values of w are those that are slightly larger than the
minimum distance of the codes (which can be estimated with the Gilbert-Varshamov
distance). Indeed, this normally guarantees that the sets Aw(C1) and Aw(C2) are
moderately small and, at the same time, contain a sufficient number of codewords.
A lower bound on the complexity of Leon’s algorithm can be estimated as follows.

11

Proposition 3 ([10]). Let C1 ⊆ Fnq be a random code with dimension k, π
$←− Sn

and C2 = π(C1). The cost of Leon’s algorithm, running with parameter w ∈ N,
w ≤ n, can be estimated3 as

O
(

ln(Nw)CISD(q, n, k, w)
)
.

For the sake of completeness, the proof of Proposition 3 is reported in Appendix
B, where we additionally (as a new result) derive a theoretical bound on the required
value for w. In practice, the attack is normally optimized when w is slightly larger
than the minimum distance (say, by 1 or 2).

Beullens’ Algorithm. In a recent work [10], Beullens introduced a novel approach to
solve the code equivalence problem. The algorithm can be thought of as a refinement
of Leon’s algorithm, in which one tries to reduce the computational complexity
by avoiding to compute the whole set of codewords with some fixed weight. The
algorithm is based on the simple, but effective, intuition that permutations preserve
also the multiset entries. Exploiting this observation, one can easily see how Leon’s
algorithm can be improved, by reducing the size of X and Y . In a nutshell, Beullens’
algorithm works by first finding a subset of codewords with weight w from each
code, and then searches for collisions among codewords having the same entries
multiset. Each found collision is then used to piece-wise reconstruct the action of
the permutation: if x ∈ C1 and y ∈ C2 have the same entries multiset and xi 6= yj ,
then we guess π(i) 6= j. When the number of collisions is sufficiently high, one
has enough information to fully retrieve the permutation π. As done in [10], we
can consider that the algorithm is successful whenever the number of collisions is
approximately 2n ln(n).

Note that, differently from Leon, Beullens’ algorithm is probabilistic, since it fails
in case i) bad collisions are found (i.e., codewords x and y that have the same entries
multiset but y 6= π(x)), and ii) the number of collisions is too low. The analysis
of these cases and a precise cost estimate (which is missing in Beullens’ original
paper) are based on several technical aspects, which we detail in Appendix C. A
compact and simple analysis of Beullens’ algorithm is encapsulated in the following
Proposition.

Proposition 4. The time complexity of Beullens’ algorithm, running with parame-

ters L and w such that i) L =
√

2Nwn ln(n) and ii) (1−1/Nw)(q−1)L2
(
w+q−3
w−1

)−1
<

1 is

O

√n ln(n)

Nw
CISD(q, n, k, w)

 .

Condition i) implies that we do not find all codewords with weight w, otherwise
the algorithm would reduce to Leon. Condition ii) sets a lower bound on the
number of codewords we need to find, in order to have enough information to run
the permutation recovery algorithm. Finally, condition iii) expresses the fact that
bad collisions do not happen.

3Here we use the same estimate derived in [10, Section 2.2], which corresponds to a lower
bound for the actual complexity since the cost of steps 2 and 3 is neglected. In other words, the

proposition takes into account only the cost of the codewords enumeration phase.

12

5. Solvers for Hard Linear Equivalence Instances

In this section, we recall the procedure of Beullens, which is a starting point for
our new algorithm. We provide lower bounds on the complexities of Leon’s and
Beullens’ algorithms to solve LEP, in order to make a comparison with our own
estimate. These algorithms have several features which are similar to the ones we
have already analyzed in the previous section; yet, using monomial transformations
instead of permutations lead, in some cases, to radical differences. Analogously to
what we have done for the permutation case, we will study LEP under the hypoth-
esis that a solution always exists and, recalling Assumption 1, that the monomial
isomorphism group is trivial. As a consequence, we have that the only solutions
for the LEP instance represented by (C1,C2), with C2 = τ(C1), are the monomial
τ and its scalar multiples. Note that all of these transformations use the same
permutation, and differ only for the scaling coefficients.

5.1. Leon’s algorithm. Leon’s algorithm can be used to solve the linear equiva-
lence problem, with an operating procedure that is essentially identical to the one
we have already discussed in Section 4. The only difference is in the fact that,
after the codewords enumeration, one searches for a monomial matrix instead of a
permutation. When the value of w is properly chosen, this can be reconstructed in
polynomial time, so that the bottleneck in the computational complexity is (again)
in the codewords enumeration. Hence, also in this case, we can rely on Proposition
3 to have an estimate for the cost of the algorithm.

5.2. Beullens’ algorithm. In [10], Beullens proposed a second algorithm, to
solve the linear equivalence problem. The algorithm principle is analogous to the
PEP case, but some modifications are necessary, since monomial transformations
do not preserve the multisets of codewords entries. To overcome this issue, Beul-
lens first observes that if τ ∈ Mn is such that τ(C1) = C2, then for any subcode
B1 ⊆ C1 there must exist a subcode B2 ⊆ C2 such that τ(B1) = B2. Considering
subcodes of small dimension and small support (we expect that very few such sub-
codes exist) instead of low weight codewords, we have that the same procedure as
the one to solve permutation equivalence (plus some tweaks) can retrieve the secret
monomial transformation. In particular, as in [10], we analyze the algorithm when
two-dimensional subcodes are employed. Note that, to obtain an algorithm solving
linear equivalence, we need the following three tweaks:

1. the codewords matching procedure shown in Algorithm 7 is replaced with
an algorithm that produces colliding subcodes. To do this, we need to i)
tweak ISD so that it returns subcodes with support size w, and ii) intro-

duce the function Lex(2) to take into account two-dimensional spaces. For
an example of how such functions may be computed, we refer the reader to
Appendix D while, for the sake of completeness, we report the full subcodes

collisions procedure in Algorithm 1. Note that computing Lex(2) has a cost of
O
(
n(q2 − 1)(q2 − q)

)
;

2. the list P produced by Algorithm 1 contains pairs {X,Y } ∈ F2×n
q ×F2×n

q for

which Lex(2)(X) = Lex(2)(Y);

3. in the reconstruction phase, one first finds the permutation, and then recovers
the scaling factors. To have an efficient permutation recovery method, we can
proceed in a way that is analogous to that of the permutation equivalence

13

case; again, for the sake of completeness, we have reported the procedure in
Algorithm 2. Once the permutation has been recovered, the scaling factors
can be found in many efficient ways. For instance, the permutation can be
applied to a generator for C1, obtaining G′. Then, we choose a parity-check
matrix for C2, and aim to determine a non-singular diagonal matrix D such
that G′DH>2 = 0. This linear system has k(n−k) equations for n unknowns,
so that in general it is over constrained and can be easily solved. The n non-
null entries of D are the unknown scaling coefficients v, which are used to
retrieve the desired monomial as π o v.

Algorithm 1: Algorithm to find and match subcodes

Data: Number of subcodes L ∈ N, support size w ∈ N, ISD routine
Input: linear codes C1,C2 ⊆ Fnq with dimension k

Output: list P containing pairs (X,Y) ∈ F2×n
q × F2×n

q , such that

Lex(2)(X) = Lex(2)(Y)

/* Produce a list X of L subcodes from C1 with support size w */

1 X = ∅;

2 while |X| < L do
3 Call ISD to find B ⊆ C1 with support size w;

4 X ← basis of B;

5 X ← X ∪ {SF(X)};

/* Produce a list Y of L subcodes from C2 with support size w */

6 Y = ∅;

7 while |Y | < L do
8 Call ISD to find B ⊆ C2 with support size w;

9 Y ← basis of B;

10 Y ← Y ∪ {SF(Y)};

/* Find collisions between the lists X and Y */

11 for {X,Y } ∈ X × Y do

12 if Lex(2)(X) = Lex(2)(Y) then
13 P ← P ∪ {X,Y };

14 return P ;

We now proceed with the complexity analysis of the algorithm. We first argue
that the complexity to find a specific 2-dimensional subcode with support size w
is (essentially) the same as finding a specific codeword with weight w. One can
indeed apply the same procedure of an ISD algorithm, with only minor tweaks so
that the algorithm searches (and returns) a subcode. Namely, the algorithm in
[10] can be seen as an adaptation of Lee & Brickell ISD, since it just consists in
first applying the typical gaussian elimination and then checking whether couples
of rows generate a subcode with support size w. The resulting time complexity is
(essentially) the same as Lee & Brickell algorithm to find low weight codewords. For
the rest of this work (and coherently with the codewords search version), we will

14

denote by CISD(q, n, k, w) the corresponding time complexity of finding a solution,
in the regime in which a unique solution exists.

Algorithm 2: Fast permutation recovery, for the linear equivalence version
of Beullens’ algorithm.

Input: list P , containing M pairs {X,Y } ∈ F2×n
q × F2×n

q with support size
w and such that Values(X) = Values(Y)

Output: permutation π, or report failure

1 U ← n× n matrix made of all ones;

2 for {X,Y } ∈ P do
3 for i ∈ {1, · · · , n} do
4 xi ← i-th column of X;

5 for j ∈ {1, · · · , n} do
6 yj ← j-th column of Y ;

/* Filter (i, j) */

7 if (xi == 0) 6= (yj == 0) then
8 ui,j = 0;

/* Use U to reconstruct the permutation; if not possible, report failure */

9 if U is a permutation matrix then
10 π ← permutation described by U ;

11 return π;

12 else
13 report failure;

To estimate the number of two-dimensional subcodes with support size w a ran-

dom code contains, on average, we use N
(2)
w , as in Remark 3. Taking all of this into

account, we have that the cost of each ISD call can be optimistically assessed as
CISD(q,n,k,w)

N
(2)
w

. Then, we can assess the cost of Algorithm 1 as follows.

Proposition 5. Let C1 ⊆ Fnq be a random linear code with dimension k, and let

C2 = τ(C1) with τ
$←− Mn. Let P be the list obtained by running Algorithm 1 with

parameters L and w, with w ≤ n− k + 2. The algorithm runs in time

O

(
L
(
log2(L) + (q2 − q)(q − 1)

)
+M ′ +M ′′ +

L

N
(2)
w

CISD(q, n, k, w)

)
,

and produces a list P with M = M ′ + M ′′ elements, where M ′ = L2/N
(2)
w is the

average number of good collisions and M ′′ ≤ t(2)
w (L2−M ′)

N
(2)
w

is that of bad collisions.

Proof. See Appendix F.

Remark 4. We expect
t(2)
w (L2−M ′)

N
(2)
w

to be a loose upper bound on the value of M ′′,

especially when q is not high. This is due to the fact that t
(2)
w is a rather loose

upper bound on the number of equivalent subcodes with support size w that one
code possesses.

15

Note that, with arguments similar to those of Proposition 17, we can estimate the
probability with which Algorithm 2 succeeds in retrieving the correct permutation.
Yet, to avoid computations that may be too complicated, we omit these details and
skip to the more interesting case in which a much more simpler, slightly optimistic
of the Algorithm is derived.

5.3. Heuristic analysis. For comparison purposes, it is interesting to provide a
crude lower bound on the cost of Beullens’ algorithm. Indeed, since we do not have
a precise estimate of the number M ′′ of bad collisions, we need to make sure that
heuristic assumptions, made to compare our LEP resolution algorithm described in
Section 6 with Beullens’ method, are to the advantage of the latter. So, we con-
servatively neglect M ′ and assume that bad collisions never happen. Furthermore,
we bound from below the number of good collisions we need to reconstruct the
permutation. To this end, we consider that we must filter n(n− 1) pairs of indexes,
and each pair of subcodes gives information about 2w(n − w) pairs of indices, so

that we need at least
⌈
n(n−1)

2w(n−w)

⌉
pairs of subcodes. Since we have that the number

of good collisions is heuristically given by M ′ = L2/N
(2)
w , then we can set

L =

√
N

(2)
w

⌈
n(n− 1)

2w(n− w)

⌉
.

With this in mind, we can greatly simplify the analysis of the algorithm as follows.

Proposition 6. The time complexity of Beullens’ algorithm, running with pa-

rameters L and w such that i) L < N
(2)
w , ii) L =

√
N

(2)
w

⌈
n(n−1)

2w(n−w)

⌉
and iii)

t(2)
w L2(1−1/N(2)

w)

N
(2)
w

< 1, is bounded from below by

Ω

(
L

N
(2)
w

CISD(q, n, k, w)

)
.

6. Improving Beullens’ algorithm for LEP

In this section, we analyze a method to improve Beullens’ approach to solve LEP.
Namely, we propose a new algorithm to choose the initial two-dimensional subcodes
from which the list P is built, which is based on first finding small weight codewords
and then combining them to obtain colliding subcodes.

6.1. Finding subcodes more efficiently. Our idea consists in constructing two
dimensional subcodes by first finding codewords with small Hamming weight, say
w′, and then considering only the subcodes which are generated by pairs of such
codewords and have support size w. Before analyzing our algorithm, we briefly
sketch the main intuition behind it. Remember that Beullens’ algorithm aims to
find pairs of subcodes with support size w and to produce a collision in the first
lexicographic basis. Note that no additional condition is required, apart from the
one on the support size. Heuristically, we expect any such subcodes to behave like a
length-w random code plus n−w coordinates that are always null. Consider a pair
of matrices such as those in Figure 1a: to have a matching in the computation of
Lex, the two matrices must lead to the same orange sub-matrix (which is expected
to contain a number of columns rather close to w). If, instead, we consider subcodes
generated by a pair of codewords with weight w′ (and, still, with support size w),

16

Lex(2)

(a)

Lex(2)

2w′ − w

w

(b)

Figure 1. Computation of Lex for two-dimensional subcodes with sup-
port size w. In Figure (A), the subcode is a random one, while in Figure
(B) it is generated by a pair of codewords with Hamming weight w′. The
rectangles in gray color indicate the parts containing only ones, while the
empty rectangles denote portions containing only zeros.

then the situation is depicted in Figure 1b. To have the same Lex value, the portions
that must collide now contain 2w′−w columns. If we choose w′ so that 2w′ is only
slightly larger than w, then we increase the probability to find collisions (because
the number of relevant columns gets lower). Also, given how ISD operates, finding
a sufficient number of low weight codewords should be easier than directly finding
some subcodes with small support. In the end, this reasoning can be summarized
as follows: we consider subcodes with a structure that i) allows to easily find them,
and ii) increases the probability to find collisions.

To formalize the above intuition, we consider the following procedure to search
for subcodes with small support:

1. use ISD to find L′ codewords with weight w′;

2. form 2× n matrices using all
(
L′

2

)
pairs of codewords;

3. keep only the matrices which generate a code with support size w.

Clearly, the values of L′ and w′ have a strong impact on the complexity of this
approach, which we derive in the sequel of this section.

We start our analysis with the following technical Lemma, which describes the
distribution probability of the support size of a subcode that is generated by two
codewords with known weights.

Lemma 2. Let a ∈ Fnq with Hamming weight wa. Let b ∈ Fnq be a random vector
with Hamming weight wb. Then, the code generated by a, b (i.e., admitting the
generator matrix whose rows are a and b) has dimension 2 with probability{

1 if wb 6= wa,

1− 1

(n
wa

)(q−1)wa−1
if wb = wa,

17

and support size w ∈ [0;n] with probability

ζwa,wb
(w) =


0 if w < max{wa;wb},
0 if w > min{n;wa + wb},
(wa
wa+wb−w)(n−wa

w−wa
)

(n
wb

)
otherwise.

Proof. First, we consider the probability that the two chosen vectors do not generate
a space with dimension 2. Note that this can happen only if b = va for some
v ∈ F∗q . In such a case, we clearly have wa = wb. There are q − 1 distinct values
for v (yielding to distinct vectors va), while the number of vectors with weight wa
is given by

(
n
wa

)
(q− 1)wa . Hence, the probability that b is one of them (that is, the

probability that a and b generate a space with dimension 1) is given by

q − 1(
n
wa

)
(q − 1)wa

=
1(

n
wa

)
(q − 1)wa−1

.

We now derive the probability distribution for the support size of C, which we
denote by w. Note that w = wa + wb − |Supp(a) ∩ Supp(b)|, from which we obtain
|Supp(a)∩Supp(b)| = wa+wb−w. It is immediately seen that it must be max{0;wa+
wb−n} ≤ |Supp(a)∩Supp(b)| ≤ min{wa;wb}, from which we find that the support
size of C is bounded as

max{wa;wb} ≤ w ≤ min{wa + wb;n}.

For all the admitted values, we have that we can have a support size w if and only
if the set entries of b overlap with those of a in exactly wa+wb−w positions. Since
b is random, this happens with probability

(
wa

wa+wb−w
)(
n−wa

w−wa

)(
n
wb

) .

Starting from a list of L′ codewords with weight w′, the number of subcodes with
support size w that we can form with pairs of such codewords can be estimated as

(
L′

2

)
ζw′,w′(w) ≈ L′2ζw′,w′(w)

2
.

18

100 110 120 130 140 150
100

150

200

250

w

C
os

t
(i

n
lo

g
2

u
n

it
s)

CISD(q,n,k,w)

N
(2)
w

, k = 125

Eq. (1), k = 125
CISD(q,n,k,w)

N
(2)
w

, k = 100

Eq. (1), k = 100

Figure 2. Cost of finding a subcode with support size w. All the con-
sidered codes have q = 29 and n = 250.

Setting
L′2ζw′,w′ (w)

2 ≈ 1, from which L′ ≈
√

1
ζw′,w′ (w) , we have that on average

the considered approach produces one subcode. Hence, considering the number of
ISD calls we need, in order to produce L′ distinct codewords with weight w′, we
have that our proposed approach can find a subcode with support size w with a
cost given by

(1)

ln

(
1− 1

Nw′
√
ζw′,w′ (w)

)
Nw′ ln

(
1− 1

Nw′

) CISD(q, n, k, w′).

Note that, by using ISD directly, we need to face a cost given by CISD(q,n,k,w)

N
(2)
w

. To

show that this approach is faster than using ISD to directly search for subcodes (as
proposed in [10]), we report a comparison between the costs of these two approaches
in Figure 2, where we have considered several values of w and, for our proposed
approach, we have computed the value of w′ which minimizes (1). In the next section
we describe how this reasoning affects the complexity of Beullens’ algorithm.

6.2. Improved LEP algorithm. We now analyze the application of our proposed
approach to Beullens’ algorithm. Technically, we propose to replace Algorithm 1
with Algorithm 3. Notice that the only difference with Algorithm 1 is in how the
lists X and Y are constructed. According to the analysis we have performed in the
previous section, we expect this approach to be faster when the values of w′ and L′

are properly chosen.

Notice that, as a little technical caveat, we have that the probability to have bad
collisions gets modified, because we are considering subcodes having a particular
structure. To this end, we consider the following Proposition.

19

Algorithm 3: Our algorithm to find and match subcodes

Data: Number of codewords L′ ∈ N, weight w′ ∈ N, support size w ∈ N,
ISD routine

Input: linear codes C1,C2 ⊆ Fnq with dimension k

Output: list P containing pairs (X,Y) ∈ F2×n
q × F2×n

q , such that
Values(Lex(X)) = Values(Lex(Y))

/* Produce a list X′ of L′ codewords from C1 with weight w′ */

1 X ′ = ∅;

2 while |X| < L do
3 Call ISD to find x ∈ C1 with weight w′;

4 X ′ ← X ′ ∪ {Lex(x)};
/* Use pairs of codewords to produce subcodes with support size w */

5 X ← ∅;

6 for a ∈ X ′ do
7 for b ∈ X ′ \ {a} do
8 X ← matrix with rows (a, b);

9 if Support of X has size w then
10 X ← X ∪ (Lex(X));

/* Produce a list Y ′ of L′ codewords from C2 with weight w′ */

11 Y ′ = ∅;

12 while |X| < L do
13 Call ISD to find y ∈ C2 with weight w′;

14 Y ′ ← Y ′ ∪ {Lex(y)};
/* Use pairs of codewords to produce subcodes with support size w */

15 Y ← ∅;

16 for a ∈ Y ′ do
17 for b ∈ Y ′ \ {a} do
18 Y ← matrix with rows (a, b);

19 if Support of Y has size w then
20 Y ← Y ∪ (Lex(Y));

/* Find collisions between the lists X and Y */

21 for {X,Y } ∈ X × Y do
22 if Values(LexX) = ValuesLex(Y) then
23 P ← P ∪ {X,Y };

24 return P ;

Proposition 7. Consider Algorithm 3, applied on two codes C1 and C2, where C1 is

random and C2 = τ(C1). Then, on average, P contains M ′ =
ζw′,w′ (w)

2

(
L′2

Nw′

)2

good

collisions and M ′′ = pw′(w)
L′4ζw′,w′ (w)

4

(
ζw′,w′(w)− 2

N2
w′

)
bad collisions, where

pw′(w) =

(
n

w−w′
)(
n−(w−w′)
w−w′

)(
n−2(w−w′)

2w′−w
)
(2w′ − w)!(q − 1)w−2w′+1

2
(
n
w′

)(
n−w′
w−w′

)(
w′

2w′−w
) .

20

Proof. We first derive the average number of good collisions. We consider that the
number of codewords in X ′ which are mapped into codewords in Y ′ (through τ) can

be estimated as M̃ = L′2

Nw′
. Indeed, for any codeword in X, we have only codeword

(among all the Nw′ ones in C2) which is its image through τ . Using any pair of
such codewords to construct subcodes, we obtain good collisions. Considering that
any of such subcodes will have the desired support size with probability ζw′,w′(w),
we can estimate the number of good collisions as

M ′ =

(
M̃

2

)
ζw′,w′(w) ≈ M̃2

2
ζw′,w′(w) =

ζw′,w′(w)

2

(
L′2

Nw′

)2

.

We now comment about the number of bad collisions. For any code, we dispose, on

average, of
(
L′

2

)
ζw′,w′(w) ≈ L′2

2 ζw′,w′(w) subcodes with support size w. Hence, we

have a total of
((
L′

2

)
ζw′,w′(w)

)2

≈
(
L′2

2 ζw′,w′(w)
)2

subcode pairs (one from X, one

from Y): since M ′ of these pairs are good collisions, the number of pairs which may

arise in bad collisions is
(
L′2

2 ζw′,w′(w)
)2

−M ′ =
L′4ζw′,w′ (w)

4

(
ζw′,w′(w)− 2

N2
w′

)
. If

each of these pairs is a bad collision with probability pw′(w), then we can estimate
the number of bad collisions as

pw′(w)
L′4ζw′,w′(w)

4

(
ζw′,w′(w)− 2

N2
w′

)
.

To conclude the proof, we need to estimate pw′(w). Any subcode in X is generated
by a 2 × n matrix in which i) the rows have weight w′, and ii) overlap in x =
2w′ − w positions (since the support has size w). The number of matrices with
these properties is obtained as

Uw′(w) =

(
n

w′

)(
n− w′

w′ − x

)(
w′

x

)
(q − 1)2w′ =

(
n

w′

)(
n− w′

w − w′

)(
w′

2w′ − w

)
(q − 1)2w′ .

Indeed, the term
(
n
w′

)(
n−w′
w′−x

)(
w′

x

)
counts all the possible supports for the rows of the

generator matrix, while the term (q − 1)2w′ is due to the fact that, for each row,

there are (q−1)w
′

choices for the set coefficients. We divide Uw′(w) by 2(q−1)(q−1)
to avoid multiple counting of the same matrix (since (q − 1)(q − 1) is the number
of matrices we can obtain by scaling each row, and the factor 2 is due to row

swapping). Finally, we multiply Uw′ (w)
2(q−1)2 by

[k2]
q

[n2]
q

to consider the probability that a

matrix generates indeed a subcode of C1. Now, we need to consider the number of
subcodes of C1 we can obtain by applying a monomial transformation to one of the
generator matrices in X. This quantity can be set as

t̃(2)
w =

(
n

w′ − x

)(
n− w′ + x

w′ − x

)
(q − 1)2(w′−x)

(
n− 2(w′ − x)

x

)
x!(q − 1)x−1

[k2]q
[n2]q

=

(
n

w − w′

)(
n− (w − w′)
w − w′

)(
n− 2(w − w′)

2w′ − w

)
(2w′ − w)!(q − 1)w−1

[k2]q
[n2]q

Indeed, for V ∈ X, we consider all possible matrices V ′ which can be obtained as
V ′ = σ(V), where σ ∈ Mn. In each V ′ we have w′ − x columns in which the entry
in the first row is set and the one in the second row is null; also, we must have w′−x
other columns in which the entry in the first row is null, and the one in the second

row is set. The number of such columns is counted as
(

n
w′−x

)(
n−w′+x
w′−x

)
(q−1)2∗(w′−x).

21

We then consider the number of monomial transformations of the columns con-
taining two set entries, which is equal to x: this number cannot be larger than(
n−2(w′−x)

x

)
x!(q−1)x. Indeed, it may happen that distinct transformations produce

the same matrix, but we neglect such a possibility to simplify the analysis. Finally,
we multiply again by the probability that the subcode generated by such a matrix
is contained in C1, and divide by (q − 1), to avoid multiple counting of matrices
that generate the same subcode. Given the above reasoning, we can set

pw′(w) =
t̃
(2)
w

Uw′ (w)
(q−1)

[k2]
q

[n2]
q

=

(
n

w−w′
)(
n−(w−w′)
w−w′

)(
n−2(w−w′)

2w′−w
)
(2w′ − w)!(q − 1)w−1

2
(
n
w′

)(
n−w′
w−w′

)(
w′

2w′−w
)
(q − 1)2w′−2

=

(
n

w−w′
)(
n−(w−w′)
w−w′

)(
n−2(w−w′)

2w′−w
)
(2w′ − w)!(q − 1)w−2w′+1

2
(
n
w′

)(
n−w′
w−w′

)(
w′

2w′−w
) .

We are now ready to evaluate the complexity of our new LEP algorithm.

Proposition 8. The time complexity of our LEP algorithm, using lists of L′ code-

words of weight w′ such that i) L′ = 4

√
4N2

w′
ζw′,w′ (w)n ln(n) and ii) M ′′ < 1, is in

O

(
ln (1− L′/Nw′)

Nw′ ln (1− 1/Nw′)
CISD(q, n, k, w′)

)
.

Conditions i) and ii) sets an estimate on the number of good collisions we need;
notice that condition ii) is obtained by setting M ′ = 2n ln(n). Finally, condition
iii) guarantees that, with high probability, bad collisions do not happen. For large
inputs, we have that L′/Nw′ = o(1), and therefore, the first order approximation of
the cost of our LEP algorithm simplifies as

O

(
CISD(q, n, k, w′)√

Nw′
4

√
n log(n)

ζw′,w′(w)

)
.

6.3. Performance of our new LEP algorithm. In this section we comment
about the effectiveness of our new approach. First, we present the results of numer-
ical simulations, to validate the statement of Proposition 7.

(n, k, q) (L′, w′, w)
Num subcodes M ′ M ′′

th. emp. th. emp. th. emp.

(40, 20, 7)
(10, 12, 19) 7.55 7.30 1.30 0.43 3.20 2.57
(100, 13, 20) 626.86 614.00 58.76 59.40 18558.74 15016.60

(30, 10, 13)
(11, 15, 21) 8.88 8.37 10.77 7.98 0.036 0.02
(40, 16, 24) 207.30 208.32 24.48 24.78 25.42 26.22

(30, 10, 19)
(25, 16, 24) 79.73 82.06 76.20 78.56 0.22 0.44
(50, 17, 24) 341.36 343.15 5.82 4.70 1.11 1.30

Table 2. Comparison between numerical results and theoretical esti-
mates on the composition of the list P obtained with Algorithm 3. For
each triplet (n, k, q), the empirical results have been averaged over 100
random codes.

22

To this end, for each parameter set, we have considered 100 different pairs of
codes C1 and C2. Then, for each pair, we have simulated Algorithm 3; in Table 2
we compare the empirical values of M ′ and M ′′ (averaged over all the trials) with
the theoretical ones, estimated though Proposition 7. As we can see from the table,
the theoretical estimates match the empirical ones; this provides a validation of the
heuristic we have employed to assess the performances of Algorithm 3.

In Figure 3 we compare the complexity arising from Proposition 8 with those of
Leon’s and Beullens’ algorithms. For our algorithm we rely on the average complex-
ity estimate resulting from Proposition 8, while for the other algorithms we have
considered the lower bounds resulting from Propositions 3 and 6. Remember that
for Leon’s algorithm we are underestimating the weight value which is necessary
to run the attack, so that, in practice, the actual complexity of the algorithm may
be much larger. For Beullens’ method, the lower bound comes from the fact that
Proposition 6 is derived assuming bad collisions never happen (i.e. M ′′ is set to 0).

11 53 103 151 199 251
70

80

90

100

110

120

130

140

150

q

C
os

t
(i

n
lo

g
2

u
n

it
s)

Leon
Beullens

This paper

(a) n = 200, k = 100, several q

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

n

C
os

t
(i

n
lo

g
2

u
n

it
s)

Leon
Beullens

This paper

(b) q = 251, k = 1
2
n, several n

Figure 3. Comparison between several methods to solve LEP.

This comparison shows that our proposed algorithm performs better than the
state-of-the-art solvers. Note that, in Figure 3, the cost of Beullens’ method gets
closer to ours for fixed q and n → ∞. In this regime, the simplifications made
in the cost analysis of Beullens’ algorithm might underestimate the real cost by a

significant margin. Indeed, the term M ′′ that we removed is dominated by t
(2)
w ∼

n!/(n− w)!, which is exponential in n. To give more insight on how our algorithm
operates, in Table 3 we have reported the optimal setting for the attack, for some
of the instances we have considered in Figure 3.

q L′ w′ w Cost

11 13 56 97 283.76

53 183 62 111 2105.34

103 8.83 · 107 80 124 2111.90

151 5.57 · 109 83 128 2114.19

199 4.48 · 1012 86 126 2115.17

251 3.39 · 1014 88 127 2115.78

Table 3. Optimal setting and resulting complexity for our algorithm to
solve LEP. All the considered codes have n = 200, k = 100.

23

7. Quantum Solvers

In this section, we show how to use existing quantum claw finding methods to
solve permutation and linear code equivalence problems. Indeed, both Leon and
Beullen’s algorithms can be easily recast as claw finding procedures that assume
access to an oracle for quantum ISD. We present a quantum ISD algorithm based
on Kachigar and Tillich’s work [18] in Appendix A. To the best of our knowledge,
this is the first analysis of the performance of quantum algorithms for the resolution
of permutation and linear code equivalence. We also note that the literature was
lacking a formal presentation of a q-ary variant of Kachigar and Tillich’s quantum
ISD method, which is the computational bottleneck of our quantum method for
solving the code equivalence. Since quantum ISD methods upon which we rely were
optimized for quantum time complexity (i.e. circuit depth), we chose this metric
in our analysis. In particular, we assume that getting the i-th element in quantum
memory of size N takes O(log(N)) time, following the assumptions made in [18].
The real cost of quantum memory in cryptanalysis has been the topic of recent
works, in particular from Jaques and Schanck [16]. It appears that focusing on
depth only tends to underestimate the cost of quantum algorithms. On the other
hand, for cryptographic purposes, security parameters derived from a cost analysis
based on circuit depth tend to be more conservative.

7.1. Permutation Code Equivalence. First, let us focus on the case of permu-
tation equivalence. We collect sets X ⊆ C1 and Y ⊆ C2 of weight-w codewords.
Let m = log2(|X|) = log2(|Y |) = log2(L), and assume that the quantum version of
Algorithm 6 for SDP returns a weight-w codeword that is distributed uniformly at
random. To collect 2m different weight-w codewords in C1 (resp. C2), we call the
quantum ISD algorithm O(m2m) times (this is an instance of the coupon collector’s
problem). Then we store these 2m elements in memory and we have two functions

f : x ∈ {0, 1}m 7→ Lex of weight-w codeword number i given by Algorithm 6 on C1

g : x ∈ {0, 1}m 7→ Lex of weight-w codeword number i given by Algorithm 6 on C2

As we have seen in the previous sections, we can derive the permutation between C1

and C2 from codewords of matching Lex in X and Y . Finding these matching Lex
values corresponds to finding claws of f and g, i.e. pairs x,y ∈ {0, 1}m such that
f(x) = g(y). Tani’s quantum algorithm [28] allows us to find such claws. Beullens
showed that p = Θ(log(n)) claws are needed to solve the code equivalence problem.
The procedure to reconstruct the permutation from these claws is described in
Algorithm 8.

Theorem 1. The time to find p unique pairs of vectors in X × Y with matching
Lex value with Tani’s claw finding algorithm is in

O(m2mCNw

ISD(q, n, k, w)) + Õ
(
CLex(n, q, w)2m

2p
2p+1

)
.

where CLex(n, q, w) = O(w(q−1)) is the cost of computing the Lex value of a vector,

and CNw

ISD(q, n, k, w)) = C1
ISD(q, n, k, w))/

√
Nw is the cost of finding a codeword

of weight w among (q − 1)Nw solutions with the quantum algorithm described in
Appendix A.

Proof. We construct the lists X and Y by calling the quantum ISD O(m2m) times
in C1 and O(m2m) times in C2. Then from [28], we know that we can find p unique

24

claws in O(2m
2p

2p+1) oracle calls. The cost of an oracle call is the calculation of the
Lex value of the i-th precomputed codeword.

As specified before, the cost of storing 2m codewords in quantum memory is
underestimated by focusing only on the time complexity. A näıve memory-less
version could consist in the hard-coding of all the 2m codewords of each set X in
the circuit of the oracle for f , and the 2m codewords of Y in the circuit of the
oracle for g. This would result in an extra 2m factor in the circuit depth of the

claw-finding subroutine, i.e. a cost of Õ
(
CLex(n, q, w)22m 2p

2p+1

)
.

7.2. Linear Code Equivalence. Beullens [10, Sec. 4] also proposed a claw-
finding procedure to solve the linear code equivalence. In this case, it is not suffi-
cient to compare vectors of low weight from C1 and C2 to infer information on the
hidden map from C1 to C2. However, this can be done if we consider 2-dimensional
subspaces of C1 and C2 of support bounded by w. We denote

X1(w) = {V ⊂ C1 | dim(V) = 2 and |Supp(V)| ≤ w}
X2(w) = {V ⊂ C2 | dim(V) = 2 and |Supp(V)| ≤ w}

Testing whether µ(V) = W for V ∈ X1(w) and W ∈ X2(w) and µ the secret mono-
mial permutation, is done by comparing lex(V) and lex(W). From pairs of matching
subcodes, we retrieve the secret monomial permutation as in the approach designed
for classical computers. Below, we propose quantum algorithms that achieve a
speed-up over the approach of [10, Sec. 4], as well as over the improvements we
proposed in Section 6.

7.2.1. Beullens’ approach. The bulk of the work in this procedure is the search for
elements of X1(w) and X2(w). Beullens proposes an adaptation of the general high
level routine of Algorithm 6. Here we present a quantum adaptation of this method.
First, assume we fix V ∈ X1(w), and let π ∈ Sn be chosen at random. Then the
probability that 2 indices of Supp(V) get mapped to [1, k] while the w−2 remaining
ones get mapped to [k + 1, n] is

P :=

(
n−k
w−2

)(
k
2

)(
n
w

) .

For each good permutation π, we apply π to the generating matrix of the code
and compute its row echelon form according to the first k columns (assuming linear

independence of its restriction to these columns). Then one of the
(
k
2

)
vector spaces

spanned by two rows of the resulting matrix is π(V).

Proposition 9. Using a Grover search, the cost C
N(2)

w

Q-LB(q, n, k, w) of Algorithm 4

on an instance with N
(2)
w solutions is in

O

(
log(n)√

ε
k2n log(q)

)
where ε := PN

(2)
w .

Proof. Let g : Sn → {0, 1} be the function that returns 1 if and only if a V ∈
X1(w) is found through the procedure of Steps 3 to 7. There are an average of

|X1(w)| = N
(2)
w different V ’s to be found, and thus the probability that a given

π ∈ Sn yields some V ∈ X1(w) is ε := P |X1(w)|. Thus, the cost of finding a V

25

Algorithm 4: 2-dimensional Quantum Lee-Brickell (Q-LB)

Input: H parity check matrix of C, w.
Output: V ⊆ C of dimension 2 and support weight w.

1: for all π ∈ Sn do
2: Compute row reduction M of π(H).
3: for all i, j ∈ [1, k], i 6= j do
4: V ← Span(Mi,Mj) (V is spanned by rows of indices i, j).
5: if V has support of weight w then
6: return V
7: end if
8: end for
9: end for

is in O
(

1√
ε
Cost(Og)

)
where Og is the quantum circuit implementing g. To assess

Cost(Og), we see that Step 2 costs O(k2) row operations (which cost O(n log(q))
each), while a Grover search can perform the search of Steps 3 to 7 (over a search
space of size O(k2)) in O(k) operations.

To find the list of 2m spaces V ∈ X1(w) and 2m spaces W ∈ X2(w), we simply
apply the above algorithm O(m2m) times sequentially. Then we use a claw finding
method to recover p ∈ Θ(log(n)) pairs V,W with Lex(V) = Lex(W), which costs

O
(
CLex(n, q, w)2m

2p
2p+1

)
time with Tani’s claw finding algorithm, as noted before.

Then the functions f, g used in Tani’s algorithm are:

f : i ∈ {0, 1}m 7→ Lex of ith space of X

g : j ∈ {0, 1}m 7→ Lex of jth space of Y

Proposition 10. (Quantized version of Beullens’ linear code equivalence
) Overall, the time complexity of finding p pairs of matching Lex value is in

O
(
m2mC

N(2)
w

Q-LB(q, n, k, w)
)

+ Õ
(
CLex(n, q, w)2m

2p
2p+1

)
,

where CLex(n, q, w) = O(n(q2 − q)(q2 − 1)) is the cost of computing the Lex value
of a subcode given by two codes.

7.2.2. Using pairs of codewords. We also introduce a quantum variant of our new
method for solving the linear code equivalence problem that consists in deriving
L′ = 2m

′
codewords of weight w′, and then creating a list of L = 2m subcodes

of dimension 2 with support size w. From a high level standpoint, the steps are
summarized in Algorithm 5

Step 2 is dealt with as a claw finding problem within C1 (resp. C2). Let X ′

and Y ′ the sets of codewords from C1 (resp. C2) created in Step 1. We define the
functions

f = g : i ∈ {0, 1}m 7→ i− th codeword of X ′.

Then finding p′ pairs of codewords of X ′ generating a support size w subcode is a
p, q-subset finding problem solved by Tani’s algorithm [28] where p = q = p′ and
(f(x1), . . . , f(xp′), g(y1), . . . , g(yp′) ∈ R if the subcode formed by all xi,yi has
support size w.

26

Algorithm 5: Linear code equivalence

Input: Codes C1, C1, weights w,w′, p.
Output: p pairs of 2-dimensional subcodes V1 ⊆ C1, V2 ⊆ C2 with

Lex(2)(V2) = Lex(2)(V2)

1: Create 2m
′

weight-w′ codewords in C1 and C2.
2: In each code, find p′ = 2m pairs of codewords that form a subcode of support

size w.
3: Find p claws for the functions f and g defined above.

Proposition 11. (Quantized linear code equivalence from pairs of code-

words) The time complexity of Step 2 is O

(
log(q)n22

m′ 2p′
2p′+1

)
. Hence the total

cost is

O(m′2m
′
C
Nw′
ISD(q, n, k, w′)) +O

(
log(q)n22

m′ 2p′
2p′+1

)
+O

(
CLex(n, q, w)2m

2p
2p+1

)
.

where CLex(n, q, w) = O(n(q2 − q)(q2 − 1)) is the cost of computing the Lex value
of a subcode given by two codes.

The parameters w and w′ need to be optimized, while p is still O(log(n)). The
other parameters follow from

- 2m
′

=
(

2N2
w′p

ζw′,w′ (w)

)1/4

.

- 2m = ζw′,w′(w)
(

2m′

2

)
.

- p′ = 2m.

The quantum algorithms we have presented (for both permutation and linear code
equivalence) focus on harvesting pairs of codewords (resp. subcodes) from C1 and

C2 with matching Lex(2) value. This is the bottleneck of the computation which is
then concluded by using Algorithm 8 (resp. Algorithm 2) to retrieve the secret map
between C1 and C2.

7.3. Further directions. The quantum algorithms for solving the code equiv-
alence problem presented in this section are the first to have been described, to
the best of our knowledge. While they do provide a speed-up with respect to the
classical methods discussed in this paper for solving the hardest instances of the
code equivalence problem (in particular: the linear code equivalence problem in
codes over a field of cardinality q ≥ 5), these approaches might not be optimal. In
the following, we present a few directions for future improvements on our quantum
methods.

7.3.1. ISD in superposition. The ISD algorithm returns a random solution to the
decoding problem. In the cases of interest for the resolution of the code equivalence
problem, there is a potentially large amount of solutions. The algorithms presented
in this paper require a list of codewords of a given weight w. In the quantum
algorithms of Section 7.1 and Section 7.2, such a list is collected by repeatedly
querying a quantum ISD algorithm, and thus constructing a list of codewords (stored
in classical memory). If the list is of small size (i.e. if the weight w is small), then
most of the effort is spent on the ISD calls, and the cost of matching codewords is
negligible. However, it is possible to consider a different trade-off where a longer

27

list of codewords with large weight w is created, and then processed through a claw-
finding procedure. In this case, it might be useful to incorporate the ISD routine
to the claw-finding algorithm. To do this, we need to be able to implement in
superposition

g : x ∈ {0, 1}m 7→ Lex of weight-w codeword number i given by Algorithm 6 on C2

Then, to derive a claw, we can use an approach based on the collision-finding
algorithm of Brassard, Høyer and Tapp [13]. In the following, we refer to this
approach as BHT. It is optimal in terms of query complexity, but requires access
to the O(2m) elements stored in memory. The approach to find one claw can be
summarized by the following steps:

1. Store {f(x1), . . . , f(x2m/3)} in memory for random x1, . . . ,x2m/3 ∈ {0, 1}m.
2. Use Grover’s search algorithm to find y ∈ {0, 1}m such that

g(y) ∈ {f(x1), . . . , f(x2m/3)}.

Let CNw

ISD-S(q, n, k, w) be the cost of ISD run in superposition on an instance with
(q−1)Nw solutions, and m such that Nw = 2m (i.e. X and Y are the sets containing
all of the weight-w codewords up to multiplication by λ ∈ F∗q). The probability ε to

draw y ∈ {0, 1}m such that g(y) ∈ {f(x1), . . . , f(x2m/3)} is ε ≈ Nw/N
1/3
w = N

2/3
w

because each element of X has only one match in Y (up to bad collisions which we
neglect here to simplify the analysis). Then the run time of the search for one claw
is in

O

(
1√
ε

(
CNw

ISD-S(q, n, k, w) + CLex(n, q, w)
))

= O
(
N1/3
w

(
CNw

ISD-S(q, n, k, w) + CLex(n, q, w)
))

.

The memory requirements of this procedure are O(N
1/3
w) vectors to store the list

{f(x1), . . . , f(x2m/3)} in addition to the memory cost of ISD in superposition. We
can see that the query complexity is lower than that of the approach described

in Section 7.1 (Õ(N
1/3
w) instead of Õ(N

1/2
w) while the memory bottleneck is likely

the ISD procedure. Currently, ISD returns a random solution to the decoding
problem, but in order to use it as a subroutine in superposition within a claw-
finding algorithm, we need it to consistently return solution number i on input
i.

7.3.2. Low memory routines. The approaches presented in this section require a non
trivial amount of memory, and make optimistic assumptions regarding the cost of
memory access. Time-memory trade-offs (and memory-less solutions) are important
to provide solutions to the code equivalence problem under conservative assumptions
regarding the cost of memory. There has been a significant amount of effort devoted
to find efficient collision finding methods with low memory requirement (see for
example [14, 17]), and it is likely that the strategies developed in the context of
collision for hash functions or claw finding for isogeny computation can be adapted
to the resolution of the code equivalence problem.

Additionally, the quantum ISD methods presented in this paper also have a high
memory cost due to the fact that they use quantum walks on the Johnson graph of
a large set. These methods are clearly optimized for time (i.e. circuit depth), and
better time-memory trade-offs can be achieved.

28

7.3.3. A quantum SSA algorithm. To conclude, we have a look at the quantum
complexity of the Support Splitting Algorithm. Recall that this essentially, boils
down to the computation of the Weight Enumerator Function (WEF) on the hull
of the considered codes. The hull computation requires simple linear algebra, and
comes with a cost of O(n3) operations in the finite field. The computation of
the WEF of a code is the bottleneck of SSA. By definition, Wef(C) is a bivariate
polynomial given by

Wef(C)(x, y) =

n∑
w=0

(q − 1)Nwx
wyn−w where (q − 1)Nw = |{c ∈ C | wt(c) = w}.

Hence, the computation of Wef(C) reduces to the counting of elements of weight w
for all w ∈ [0, n] of a code. This can be seen as n instances of the quantum counting
problem, which is defined as follows.

Definition 1. (Counting problem) Given a set X and a function f : X →
{0, 1}, find f−1({1}).

The computation of Wef(C) is thus directly rephrased as n counting problems
defined by the functions fw : c ∈ C 7→ 1 if and only if wt(c) = w. It is pretty clear
that the cost of evaluating fw is in O(n). We denote by Of the quantum circuit
that reversibly evaluates f . The cost of finding an approximation of Nw can be
obtained from a result of Brassard, Høyer and Tapp [12].

Proposition 12. (Cor. 4 of [12]) Let f : X → {0, 1} be a function, N = |X|,
and t = f−1({1}). Then there is an algorithm requiring an expected number of

Θ
(√

tN
)

evaluations of f an estimate t such that t = t with probability at least

3/4 using space linear in log(N).

Beals, Buhrman, Cleve, Mosca, and de Wolf [7] proved that any quantum al-
gorithm capable of deciding with high probability whether not a function F :
{0, . . . , N − 1} → {0, 1} is such that | F−1({1}) |≤ t, given some 0 < t < N/2,

must query F at least Ω(
√
Nt) times, showing the optimality of Proposition 12.

The issue to directly apply this result to the computation of Wef(C) is the prob-
ability of success of quantum counting. Indeed, Wef(C) is only successfully if the
n instances of the counting problems return the correct Nw. In [12, Sec. 4], it is
shown that an exact count can be reached with high probability through the use
of Θ(t) additional quantum memory. Further work could be done to analyse which
trade-off between success probability of quantum counting and quantum memory
required would procure us an acceptable probability of success for the computation
of Wef(C). Below, we analyse the circuit depth that could be achieved if these
precision issues were resolved.

Proposition 13. Let C be an [n, k] linear code over Fq. There is a quantum
algorithm for computing Wef(C) in time

O

(
n2qk/2

√
(q − 1) max

w≤n
Nw

)
,

where (q − 1)Nw is the number of codewords of weight w.

Proof. We simply apply the counting algorithm for each possible weight (i.e. at

most n times). For each call, the query complexity is O(
√
qk(q − 1)Nw) while the

cost of the oracle is O(n), hence the final result.

29

Then, solving the code equivalence problem via SSA can be rephrased as finding
claws for

f : i ∈ [1, n] 7−→ S(C1, i)

g : j ∈ [1, n] 7−→ S(C2, j)

This time, the space size is in O(n), and therefore, this step can be performed in
classical polynomial time in n rather than with expensive quantum methods.

8. Conclusions

The code equivalence problem is seeing an increasing presence in cryptographic
literature. Since protocols based on code equivalence have the potential to be very
efficient and lead to good solutions for code-based signature schemes (as well as other
functionalities), it is important to properly assess the hardness of the problem in
practical instances. In this paper, we provided a detailed analysis of the various
approaches for solvers, for both permutation and linear code equivalence.

We have briefly explained why solvers that exploit particular properties, such
as that of Bardet et al. [5] and Sendrier’s support splitting algorithm [26], do not
perform well in most instances of LEP, including the ones used in cryptography. In
fact, both solvers are only truly efficient for the case of codes with trivial hulls, and
it is thus easy to find hard instances. With regards to the latter, for example, it is
worth mentioning that, in the linear case, SSA needs to be applied to the closure of
the considered codes; however, for q ≥ 5, the closure of a code is always weakly-self
dual, and thus has a hull of maximum dimension k, leading to exactly the hardest
instances for SSA to solve.

As a consequence of the above considerations, we gave an extensive treatment
only to techniques that exploit the Hamming weight as an invariant, and utilize ISD
as a subroutine for searching codewords. We have summarized and given a precise
cost estimate of the two main algorithms of this type, Leon’s [19] and Beullens’ [10],
that can be originally applied to the case of permutation equivalence. We have then
shown how both can be adapted to the linear equivalence case, and produced a
concrete technical analysis, which was lacking in the original works. Furthermore,
we have presented an improved routine, that can considerably reduce the cost of
Beullens’ algorithm. We have given accurate complexity formulae, in all cases.

Finally, we have given consideration to the possibility of applying quantum tech-
niques to solve code equivalence as well. To do so, we have described a dedicated
technique, that uses a quantum version of ISD as a subroutine to find claws. The
analysis of such a quantum ISD, as well as a description of a q-ary version of it,
are both appearing for the first time, and therefore go to fill a significant gap in
literature.

References

[1] M. R. Albrecht et al. “Classic McEliece: conservative code-based cryptography”. In: (). url:
https://classic.mceliece.org/.

[2] N. Aragon et al. “BIKE: Bit Flipping Key Encapsulation”. In: NIST Post-Quantum Stan-
dardization, 3rd Round (2021). url: https://bikesuite.org/.

[3] L. Babai. “Graph Isomorphism in Quasipolynomial Time”. In: CoRR abs/1512.03547 (2015).
arXiv: 1512.03547. url: http://arxiv.org/abs/1512.03547.

30

https://classic.mceliece.org/
https://bikesuite.org/
https://arxiv.org/abs/1512.03547
http://arxiv.org/abs/1512.03547

[4] M. Baldi et al. “A Finite Regime Analysis of Information Set Decoding Algorithms”. In:
Algorithms 12.10 (2019). issn: 1999-4893. url: https://www.mdpi.com/1999-4893/12/10/

209.

[5] M. Bardet, A. Otmani, and M. Saeed-Taha. “Permutation Code Equivalence is Not Harder
Than Graph Isomorphism When Hulls Are Trivial”. In: IEEE ISIT 2019. July 2019, pp. 2464–

2468.
[6] A. Barenghi et al. “LESS-FM: Fine-tuning Signatures from the Code Equivalence Problem”.

In: International Conference on Post-Quantum Cryptography. Springer. 2021, pp. 23–43.

[7] R. Beals et al. “Quantum Lower Bounds by Polynomials”. In: 39th Annual Symposium on
Foundations of Computer Science, FOCS ’98, November 8-11, 1998, Palo Alto, California,

USA. IEEE Computer Society, 1998, pp. 352–361. doi: 10.1109/SFCS.1998.743485. url:

https://doi.org/10.1109/SFCS.1998.743485.

[8] A. Becker et al. “Decoding Random Binary Linear Codes in 2n/20: How 1 + 1 = 0 Improves

Information Set Decoding”. In: Advances in Cryptology - EUROCRYPT 2012 - 31st Annual
International Conference on the Theory and Applications of Cryptographic Techniques,

Cambridge, UK, April 15-19, 2012. Proceedings. Ed. by D. Pointcheval and T. Johansson.

Vol. 7237. Lecture Notes in Computer Science. Springer, 2012, pp. 520–536. doi: 10.1007/
978-3-642-29011-4_31. url: https://doi.org/10.1007/978-3-642-29011-4%5C_31.

[9] D. J. Bernstein et al. “Quantum Algorithms for the Subset-Sum Problem”. In: Post-Quantum

Cryptography - 5th International Workshop, PQCrypto 2013, Limoges, France, June 4-
7, 2013. Proceedings. Ed. by P. Gaborit. Vol. 7932. Lecture Notes in Computer Science.

Springer, 2013, pp. 16–33. doi: 10.1007/978-3-642-38616-9_2. url: https://doi.org/
10.1007/978-3-642-38616-9%5C_2.

[10] W. Beullens. “Not Enough LESS: An Improved Algorithm for Solving Code Equivalence

Problems over Fq”. In: International Conference on Selected Areas in Cryptography. Springer.
2020, pp. 387–403.

[11] J.-F. Biasse et al. “LESS is More: Code-Based Signatures Without Syndromes”. In: AFRICACRYPT.

Ed. by A. Nitaj and A. Youssef. Springer, 2020, pp. 45–65.
[12] G. Brassard, P. Høyer, and A. Tapp. “Quantum Counting”. In: Automata, Languages and

Programming, 25th International Colloquium, ICALP’98, Aalborg, Denmark, July 13-17,

1998, Proceedings. Ed. by K. G. Larsen, S. Skyum, and G. Winskel. Vol. 1443. Lecture
Notes in Computer Science. Springer, 1998, pp. 820–831. doi: 10.1007/BFb0055105. url:

https://doi.org/10.1007/BFb0055105.

[13] G. Brassard, P. Høyer, and A. Tapp. “Quantum Cryptanalysis of Hash and Claw-Free Func-
tions”. In: LATIN ’98: Theoretical Informatics, Third Latin American Symposium, Camp-

inas, Brazil, April, 20-24, 1998, Proceedings. Ed. by C. L. Lucchesi and A. V. Moura.
Vol. 1380. Lecture Notes in Computer Science. Springer, 1998, pp. 163–169. doi: 10.1007/

BFb0054319. url: https://doi.org/10.1007/BFb0054319.

[14] A. Chailloux, M. Naya-Plasencia, and A. Schrottenloher. “An Efficient Quantum Collision
Search Algorithm and Implications on Symmetric Cryptography”. In: Advances in Cryptol-

ogy - ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications

of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceed-
ings, Part II. Ed. by T. Takagi and T. Peyrin. Vol. 10625. Lecture Notes in Computer

Science. Springer, 2017, pp. 211–240. doi: 10.1007/978-3-319-70697-9_8. url: https:
//doi.org/10.1007/978-3-319-70697-9%5C_8.

[15] A. Fiat and A. Shamir. “How to prove yourself: Practical solutions to identification and
signature problems”. In: CRYPTO. Springer. 1986, pp. 186–194.

[16] S. Jaques and J. M. Schanck. “Quantum Cryptanalysis in the RAM Model: Claw-Finding
Attacks on SIKE”. In: Advances in Cryptology - CRYPTO 2019 - 39th Annual International

Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part
I. Ed. by A. Boldyreva and D. Micciancio. Vol. 11692. Lecture Notes in Computer Science.
Springer, 2019, pp. 32–61. doi: 10.1007/978-3-030-26948-7_2. url: https://doi.org/
10.1007/978-3-030-26948-7%5C_2.

[17] S. Jaques and A. Schrottenloher. “Low-Gate Quantum Golden Collision Finding”. In: Se-

lected Areas in Cryptography - SAC 2020 - 27th International Conference, Halifax, NS,

Canada (Virtual Event), October 21-23, 2020, Revised Selected Papers. Ed. by O. Dunkel-
man, M. J. J. Jr., and C. O’Flynn. Vol. 12804. Lecture Notes in Computer Science. Springer,

2020, pp. 329–359. doi: 10.1007/978-3-030-81652-0_13. url: https://doi.org/10.
1007/978-3-030-81652-0%5C_13.

31

https://www.mdpi.com/1999-4893/12/10/209
https://www.mdpi.com/1999-4893/12/10/209
https://doi.org/10.1109/SFCS.1998.743485
https://doi.org/10.1109/SFCS.1998.743485
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-29011-4%5C_31
https://doi.org/10.1007/978-3-642-38616-9_2
https://doi.org/10.1007/978-3-642-38616-9%5C_2
https://doi.org/10.1007/978-3-642-38616-9%5C_2
https://doi.org/10.1007/BFb0055105
https://doi.org/10.1007/BFb0055105
https://doi.org/10.1007/BFb0054319
https://doi.org/10.1007/BFb0054319
https://doi.org/10.1007/BFb0054319
https://doi.org/10.1007/978-3-319-70697-9_8
https://doi.org/10.1007/978-3-319-70697-9%5C_8
https://doi.org/10.1007/978-3-319-70697-9%5C_8
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-030-26948-7%5C_2
https://doi.org/10.1007/978-3-030-26948-7%5C_2
https://doi.org/10.1007/978-3-030-81652-0_13
https://doi.org/10.1007/978-3-030-81652-0%5C_13
https://doi.org/10.1007/978-3-030-81652-0%5C_13

[18] G. Kachigar and J.-P. Tillich. “Quantum Information Set Decoding Algorithms”. In: Post-
Quantum Cryptography - 8th International Workshop, PQCrypto 2017, Utrecht, The Nether-

lands, June 26-28, 2017, Proceedings. Ed. by T. Lange and T. Takagi. Vol. 10346. Lecture

Notes in Computer Science. Springer, 2017, pp. 69–89. doi: 10.1007/978-3-319-59879-
6_5. url: https://doi.org/10.1007/978-3-319-59879-6%5C_5.

[19] J. Leon. “Computing automorphism groups of error-correcting codes”. In: IEEE Transac-
tions on Information Theory 28.3 (May 1982), pp. 496–511.

[20] A. May, A. Meurer, and E. Thomae. “Decoding Random Linear Codes in 20.054n”. In:

Advances in Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory
and Application of Cryptology and Information Security, Seoul, South Korea, December 4-

8, 2011. Proceedings. Ed. by D. H. Lee and X. Wang. Vol. 7073. Lecture Notes in Computer

Science. Springer, 2011, pp. 107–124. doi: 10.1007/978-3-642-25385-0_6. url: https:
//doi.org/10.1007/978-3-642-25385-0%5C_6.

[21] C. A. Melchor et al. “HQC: Hamming Quasi-Cyclic”. In: NIST Post-Quantum Standardiza-

tion, 3rd Round (2021). url: http://pqc-hqc.org/.
[22] C. Peters. “Information-set decoding for linear codes over Fq”. In: International Workshop

on Post-Quantum Cryptography. Springer. 2010, pp. 81–94.

[23] E. Petrank and R. M. Roth. “Is code equivalence easy to decide?” In: IEEE Transactions
on Information Theory 43.5 (Sept. 1997), pp. 1602–1604.

[24] E. Prange. “The use of information sets in decoding cyclic codes”. In: IRE Trans. Inf.
Theory 8.5 (Sept. 1962), pp. 5–9.

[25] M. A. Saeed. In: PhD thesis (2017).

[26] N. Sendrier. “The Support Splitting Algorithm”. In: Information Theory, IEEE Transac-
tions on (Aug. 2000), pp. 1193–1203.

[27] N. Sendrier and P. Symbolique. “On the Dimension of the Hull”. In: SIAM Journal on

Discrete Mathematics 10 (Nov. 1995). doi: 10.1137/S0895480195294027.
[28] S. Tani. “An Improved Claw Finding Algorithm Using Quantum Walk”. In: Mathemati-

cal Foundations of Computer Science 2007, 32nd International Symposium, MFCS 2007,

Ceský Krumlov, Czech Republic, August 26-31, 2007, Proceedings. Ed. by L. Kucera and
A. Kucera. Vol. 4708. Lecture Notes in Computer Science. Springer, 2007, pp. 536–547. doi:

10.1007/978-3-540-74456-6_48. url: https://doi.org/10.1007/978-3-540-74456-

6%5C_48.

Appendix A. Information-Set Decoding algorithms

We begin this section by reviewing the well-known syndrome decoding problem
and its solvers, the information-set decoding algorithms.

Definition A.1 (Syndrome Decoding Problem (SDP)). Let C be a code of length n

and dimension k defined by a parity-check matrix H ∈ F(n−k)×n
q , and let s ∈ Fn−kq ,

w ≤ n, find e ∈ Fnq such that HeT = sT and e is of weight w.

Given that the matrix H has n columns but only n− k rows, SDP is equivalent
to solving an underdetermined linear system. As long as w < n − k, we can hope
that the solution e has k zero coefficients. Let π ∈ Sn be the permutation of the
columns of H that brings all these zeros to the last coefficients, then we have

HeT =
(
H1 H2

)(eT1
0

)
= H1e

T
1 = sT

where H1 ∈ F(n−k)×(n−k)
q , and e1 ∈ Fn−kq . We can then solve for e1 and recover e.

The original strategy to solve SDP due to Prange [24] (which is usually recognized
as the first instance of an ISD algorithm) consists in sampling random π ∈ Sn, and
for each π, apply the permutation to H and attempt to solve the system of n − k
unknowns H1e

T
1 = sT . When an appropriate π is found (which is the difficult

part), this yields a solution to SDP at little extra cost.

32

https://doi.org/10.1007/978-3-319-59879-6_5
https://doi.org/10.1007/978-3-319-59879-6_5
https://doi.org/10.1007/978-3-319-59879-6%5C_5
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-642-25385-0%5C_6
https://doi.org/10.1007/978-3-642-25385-0%5C_6
http://pqc-hqc.org/
https://doi.org/10.1137/S0895480195294027
https://doi.org/10.1007/978-3-540-74456-6_48
https://doi.org/10.1007/978-3-540-74456-6%5C_48
https://doi.org/10.1007/978-3-540-74456-6%5C_48

The above strategy puts the entire burden of the computation on the search for
a good permutation π and almost none on the resolution of the subsequent linear
system H1e

T
1 = sT . Instead, one can use a tradeoff where more permutations

are considered (thus making the search for permutations more likely to succeed)
at the cost of a more difficult system to solve. More specifically, we introduce two
parameters l, p, and denote by S a set of k + l indices, where instead of assuming
that all entries of the solution are zero on these indices, we rather assume that only
p of them are non-zero. Thus, the first construction corresponds to l = p = 0. The
probability that exactly p non-zero coordinates of a fixed e belong to S while the
remaining w − p are outside of it is denoted by

Pl,p :=

(
k+l
p

)(
n−k−l
w−p

)(
n
w

) .

Assuming a good permutation is found, one now needs to solve a new linear algebra
problem. By “good”, we mean that it moves the k + l coordinates of indices in
S to the left of the matrix. We apply this permutation π to the columns of H
and assume that the restriction of π(H) to its last n− k − l columns is of full row
rank. We perform a Gaussian elimination, which corresponds to the multiplication
of π(H) by an invertible matrix U on the left such that the resulting matrix has
the shape:

U · π(H) =

(
H ′ 0l
H ′′ In−k−l

)
We can write π(e) = (e′||e′′) where e′ ∈ Fl+kq has weight p and e′′ ∈ Fn−k−lq .
Then, given a good permutation, we can reduce our problem to the resolution of

the overdetermined system defined by H ′ ∈ Fl×(k+l)
q . Indeed. we have

U · sT =

(
s′T

s′′T

)
= U ·HeT =

(
H ′e′T

H ′′e′T + e′′T

)
Once we find a solution e′ to the system H ′e′T = s′T (which is somewhat expen-
sive), we can immediately derive e′′T as s′′T −H ′′e′T .

Algorithm 6: Generic ISD approach

Input: H, s, l, p, w.
Output: e of weight w such that HeT = sT .

1: for all π ∈ Sn do

2: Compute row reduction of π(H): U · π(H) =

(
H ′ 0l
H ′′ In−k−l

)
3: Compute s′, s′′ defined by U · sT =

(
s′T

s′′T

)
4: Find e′ of weight p such that H ′e′T = s′T . (method to be determined)

5: e′′T ← s′′T −H ′′e′
T

, e← (e′||e′′).
6: if e has weight w then
7: break
8: end if
9: end for

10: return e.

33

We are now concerned with solving the overdetermined linear system of Step 4

of Algorithm 6. This means that we are given H ′ ∈ Fl×(k+l)
q , and s′ ∈ Flq, and we

are trying to find e′ ∈ Fl+kq of weight p such that H ′e′T = s′T . This problem can
be rephrased as a k-sum problem.

Definition A.2 (Generalized k-sum problem). Consider an abelian group G, and
arbitrary set E, a map f : E → G, k subsets V0, V1, . . . , Vk−1 ⊆ E, a map g : Ek →
{0, 1}, and an element s ∈ G. Find (v0, . . . , vk−1) ∈ V0 × . . .× Vk−1 such that

1. f(v0) + f(v1) + . . .+ f(vk−1) = s.
2. g(v0, . . . , vk−1) = 0.

The search for e′ can be reduced to the 2-sum problem with the following pa-
rameters:

G = Flq, E = Fl+kq , f(v) = H ′TvT , s = s′

V0 = {(e0,0(k+l)/2) ∈ Fl+kq , e0 ∈ F(l+k)/2
q ,wt(e0) = p/2}

V1 = {(0(k+l)/2, e1) ∈ Fl+kq , e1 ∈ F(l+k)/2
q ,wt(e1) = p/2}

and g defined as g(v0, v1) = 0 if and only if e = (e′||e′′) is of weight w where
e′ = v0 + v1 and e′′T = s′′T −H ′′e′T . The cost of the resolution of the 2-sum
problem is a tradeoff between the size of the Vi’s and the size of G.

To further reduce the size of the sets involved and create more possibilities for
tradeoffs, we can reduce the search for e′ ∈ Fl+kq of weight p such that H ′e′T = s′T

to a 4-sum problem with the following parameters.

G = Flq, E = Fl+kq , f(v) = H ′T vT , s = s′

V00 = {(e00,03(k+l)/4) ∈ Fl+kq , e00 ∈ F(l+k)/4
q ,wt(e00) = p/4}

V01 = {(0(k+l)/4, e01,0(k+l)/2) ∈ Fl+kq , e01 ∈ F(l+k)/4
q ,wt(e01) = p/4}

V10 = {(0(k+l)/2, e10,0(k+l)/4) ∈ Fl+kq , e10 ∈ F(l+k)/4
q ,wt(e10) = p/4}

V11 = {(03(k+l)/4, e11) ∈ Fl+kq , e11 ∈ F(l+k)/4
q ,wt(e11) = p/4}

and g defined as g(v00, v01, v10, v11) = 0 if and only if e = (e′||e′′) is of weight w
where e′ = v00 + v01 + v10 + v11 and e′′T = s′′T −H ′′e′T .

A.1. Quantum Algorithms for SDP. Kachigar and Tillich in [18] presented
a method for solving SDP using a dedicated algorithm for a quantum computer,
which consists in rephrasing it as a 4-sum problem and then using a quantum walk
(and Grover search). To solve the 4-sum problem with a combination of Grover’s
search algorithm and a random walk in a product of 4 copies of a Johnson graph,
we make the assumption that |Vi| = V for all i, and that G = G0 ×G1. We denote
by πi : G → Gi the projection of G onto one of its components. We keep the
same notation as in the formulation of the search for e′ such that H ′e′T = s′T as
a 4-sum problem. The algorithm is a Grover search for an element r ∈ G1 such
that g(r) = 1 where g : G1 → {0, 1} evaluates to 1 if and only if there exists
(v00,v01,v10,v11) ∈ V00 × V01 × V10 × V11 such that

π1(f(v00)) + π1(f(v01)) = r

π1(f(v10)) + π1(f(v11)) = π1(s)− r
π0(f(v00)) + π0(f(v01)) + π0(f(v10)) + π0(f(v11)) = π0(s)

g(v00,v01,v10,v11) = 0

34

The overall cost of this procedure is O
(√
|G1|Cost(Og)

)
. The cost of the Grover

oracle Og is determined by the strategy we employ to find a quadruplet with the
desired properties. In [18], Kachigar and Tillich use a quantum walk in the product
of the 4 Johson graphs defined by the Vi’s and subsets Ui ⊆ Vi of cardinality
U = Θ

(
V 4/5

)
. By using a similar data structure and update strategy as in [9], they

show the following statement.

Proposition 1 (Prop. 3 of [18]). Assuming that |G1| = Ω(V 4/5), and |G| =
Ω(V 8/5), it is possible to set up a data structure of size O(U) such that the above

quantum walk takes time Õ
(
V 4/5

)
.

Hence the time (i.e. cost expressed in terms of circuit depth) taken to solve our

4-sum problem is in Õ
(
|G1|1/2V 4/5

)
(see [18, Prop. 2]).

Let us see how this applies to the time complexity of Algorithm 6 for solving the
ISD problem. We use Grover’s quantum search to determine an appropriate π ∈ Sn
(main “for” loop from Step 1 to Step 9). The oracle we denote by gperm : Sn → {0, 1}
satisfies gperm(π) = 1 if and only if Steps 2 to 7 lead to the creation of an appropriate
e ∈ Fnq . Hence, the cost of Ogperm

is dominated by that of solving the 4-sum problem
(i.e. Step 4 of Algorithm 6). We denote by ε the proportion of marked elements
(i.e. good permutation π leading to a solution of the 4-sum problem). Hence the
total cost of the procedure is

O

(
1√
ε

Cost
(
Ogperm

))
= Õ

(
1√
ε
|G1|1/2V 4/5

)
.

For a given e of weight w, a permutation π yields a solution to the 4-sum problem
if the k + l positions of S are split into 4 sets of size k+l

4 containing exactly p/4
non-zero coefficients each. We denote by (q − 1)Nw the number of possible e’s of
weight w, which yields

ε = (q − 1)Nw

(k+l
4
p
4

)4(
n−k−l
w−p

)(
n
w

) .

Meanwhile, G = Flq and G1 = Fl/2q , while the cardinality V of the Vi’s satisfies

V = (q − 1)
p
4

(k+l
4
p
4

)
.

Finally, the condition |G| = Ω
(
V 8/5

)
induces the constraint on l and p:

l ≥ 8

5
logq

(
(q − 1)

p
4

(k+l
4
p
4

))
.

The total time is obtained by finding the optimum of this cost when l and p vary.

A.2. Representation Technique and 1 + 1 = 0. The solution relying on the
quantum algorithm to solve the 4-sum problem can be optimized using techniques
of [20, 8]. This consists in restricting the search space of elements in G that yield a
solution (v00,v01,v10,v11) to the 4-sum problem. To do this, we need to increase
the ways we can represent a solution e′ to the system H ′e′T = s′T . The first
way we can do this, introduced in [20], is called the representation technique. It
consists in relaxing the conditions on the positions of the positions of the p/4 non-
zero coordinates of the solutions v00,v01,v10,v11. Previously, we assumed the
permutation π mapped the p indices in S to 4 groups of size p/4 each within

35

[1, (k+ l)/4], [(k+ l)/4+1, (k+ l)/2], [(k+ l)/2+1, 3(k+ l)/4], [3(k+ l)/4+1, k+ l].
Thus, we requested that the vi’ be of the form

v00 = (e00,03(k+l)/4)

v01 = (0(k+l)/4, e01,0(k+l)/2)

v10 = (0(k+l)/2, e10,0(k+l)/4)

v11 = (03(k+l)/4, e11)

for wt(e00) = wt(e01) = wt(e10) = wt(e11) = p/4. Instead of this, we may only
assume that π maps the p indices in S to 2 groups of size p/2 each within [1, (k+l)/2]
and [(k+ l)/2 + 1, k+ l]. In this case, we can write e′ = v00 + v01 + v10 + v11 with
v00,v01,v10,v11 of the shape

v00 = (e00,0(k+l)/2)

v01 = (0(k+l)/2, e01)

v10 = (e10,0(k+l)/2)

v11 = (0(k+l)/2, e11)

for wt(e00) = wt(e01) = wt(e10) = wt(e11) = p/4. This way, v00+v01 and v10+v11

both have weight p/2 with half of their non-zero coordinates in [1, (k + l)/2], and
the other half in [(k + l)/2 + 1, k + l]. Each choice of p/4 coordinates of e′ within
its p/2 non-zero coordinates in [1, (k + l)/2] and p/4 coordinates within its p/2
non-zero coordinates in [(k+ l)/2+1, k+ l] fixes a quadruplet v00,v01,v10,v11 with
the shape described above such that e′ =

∑
i vi. Therefore we can re-write e′ in(

p/2
p/4

)2
different ways. With this relaxation, a subset of the original search space

over the parameter r ∈ G yields the solution e′ to the system H ′e′T = s′T . In [8], a
further refinement of this technique was introduced to take advantage of potential
cancellations of coefficients in the sum (v00 + v01) + (v10 + v11) when the weight
of v00 + v01 and of v10 + v11 are p

2 + ∆p for some ∆p. Indeed, if the weight of
v00 + v01 is p

2 + ∆p, then if the ∆p extra non-zero coefficients of v00 + v01 are on
the same indices as the ∆p extra non-zero coefficients of v10 + v11, then these will
cancel and thus will not contribute to the weight of e′. This method was described
as “1 + 1 = 0” since it took advantage of the fact that over F2, 1’s in matching
indices canceled out. Over Fq, this could be rephrased as “x+(q−x) = 0” meaning
that if v00 +v01 has coefficient x 6= 0 at the index i, and if v10 +v11 has coefficient
q − x at index i, then the coefficient i of e′ = (v00 + v01) + (v10 + v11) is zero and
thus does not contribute to wt(e′). The search for a solution of the 4-sum problem
is therefore over the new Vi’s given by

V00 = V10 =

{
(e0,0(k+l)/2) ∈ Fl+kq , e0 ∈ F(l+k)/2

q ,wt(e0) =
p

4
+

∆p

2

}
V01 = V11 =

{
(0(k+l)/2, e1) ∈ Fl+kq , e1 ∈ F(l+k)/2

q ,wt(e1) =
p

4
+

∆p

2

}

The solution e′ ∈ Fl+kq of weight p can be represented in
(
p/2
p/4

)2(k+l
2 −

p
2

∆p
2

)2
(q − 1)∆p

different ways as e′ = v00 + v01 + v10 + v11 where vi ∈ Vi. This is due to the fact
that for each choice of the p/2 non-zero coordinates of v00 + v01, we can choose an
additional ∆p indices among the k+l−p indices where e′ has a zero coefficient (split

36

evenly between [1, (k + l)/2] and [(k + l)/2 + 1, k + l]), together with ∆p non-zero
coordinates of v00 + v01 at these indices.

Now that more r’s in G can yield a 4-tuple solution to the 4-sum problem, we
restrict the search space accordingly by writing G = G0 × G1 × G2. In this new
setting, G1 where we search r is replaced by G1 × G2, and we only search for an
r1 in G1 (having fixed the r2 coordinate of r = (r1, r2) arbitrarily). We denote by
π0, π2, π12 the projections of G onto G0, G1, and G1 ×G2 respectively. The size of
G2 is adjusted so that for a given (arbitrary) choice of r2 ∈ G2, there is only one
r = (r1, r2) ∈ G1 ×G2 such that there is (v00, v01, v10, v11) ∈ V00 × V01 × V10 × V11

such that

π12(f(v00)) + π12(f(v01)) = r

π12(f(v10)) + π12(f(v11)) = π12(s)− r
π0(f(v00)) + π0(f(v01)) + π0(f(v10)) + π0(f(v11)) = π0(s)

g(v00,v01,v10,v11) = 0

For a choice of r2, we define the search oracle gr2 : G1 → {0, 1} where gr2(r1) = 1 if
and only if r = (r1, r2) satisfies the above conditions for a 4-tuple (vi). As before,

the overall cost of this procedure is O
(√
|G1|Cost(Ogr2

)
)

. The cost of the Grover

oracle Ogr2
is determined by the cost of the quantum walk in the product of the 4

Johnson graphs defined by the Vi’s and subsets Ui ⊆ Vi of cardinality U = Θ
(
V 4/5

)
.

Proposition 2 (Prop. 4 of [18]). Assuming that |G1||G2| = Ω(V 4/5), |G| =
Ω(V 8/5), and that there are Ω(|G2|) solutions to the 4-sum problem, then the above

quantum walk takes time Õ
(
V 4/5

)
.

Hence the time (i.e. cost expressed in terms of circuit depth) taken to solve our

4-sum problem is in Õ
(
|G1|1/2V 4/5

)
.

Let us see how this applies to the time complexity of Algorithm 6 for solving SDP.
We use Grover’s quantum search to determine an appropriate π ∈ Sn (main “for”
loop from Step 1 to Step 9). The oracle we denote by gperm : Sn → {0, 1} satisfies
gperm(π) = 1 if and only if Steps 2 to 7 lead to the creation of an appropriate e ∈ Fnq .
Hence, the cost of Ogperm

is dominated by that of solving the 4-sum problem (i.e.
Step 4 of Algorithm 6). We denote by ε the proportion of marked elements (i.e.
good permutation π leading to a solution of the 4-sum problem). Hence the total
cost of the procedure is

O

(
1√
ε

Cost
(
Ogperm

))
= Õ

(
1√
ε
|G1|1/2V 4/5

)
.

For a given e of weight w, a permutation π yields a solution to the 4-sum problem if
the k+ l positions of S are split into 2 sets of size k+l

2 containing exactly p/2 non-
zero coefficients each. Still denoting the number of weight-w solutions by (q−1)Nw,
we get

ε = (q − 1)Nw

(k+l
2
p
2

)2(
n−k−l
w−p

)(
n
w

) .

37

Meanwhile, we still have G = Flq and to ensure that there are Ω(|G2|) solutions to

the 4-sum problem, we set G = Fl2q for

l2 := logq


(
p/2

p/4

)2(k+l
2 −

p
2

∆p
2

)2

(q − 1)∆p

︸ ︷︷ ︸
number of representations of e′


This yields G1 = F

l
2−l2
q , while the cardinality V of the Vi’s satisfies

V = (q − 1)
p
4 + ∆p

2

(k+l
2

p
4 + ∆p

2

)
.

Finally, the condition |G| = Ω
(
V 8/5

)
induces the constraint on l and p:

l ≥ 8

5
logq

(
(q − 1)

p
4 + ∆p

2

(k+l
2

p
4 + ∆p

2

))
.

The total time is obtained by finding the optimum of this cost when l, p, and ∆p
vary.

Appendix B. Leon’s algorithm

In this Appendix we provide further details about Leon’s algorithm. We start
by proving Proposition 3.

Proposition 3 ([10]). Let C1 ⊆ Fnq be a random code with dimension k, π
$←− Sn

and C2 = π(C1). The cost of Leon’s algorithm, running with parameter w ∈ N,
w ≤ n, can be estimated4 as

O
(

ln(Nw)CISD(q, n, k, w)
)
.

Proof. (Heuristic) We first consider the cost of the codewords enumeration in Step
1. For both codes C1, C2, we need to find all of the Nw codewords with weight w. To
this end, we model an ISD algorithm as an oracle that, in each call, returns a random
weight-w codeword. We first focus on C1: the first ISD call will take time complexity
CISD(q, n, k, w)/Nw. In the second call we desire to find a distinct codeword, so
that the time complexity of this second call is CISD(q, n, k, w)/(Nw − 1). If we
iterate this reasoning, we get that the codewords enumeration for C1 takes time

O

(
CISD(q, n, k, w) ·

Nw∑
i=1

1

i

)
.

When Nw is large, we consider that
∑Nw

i=1
1
i ≈ ln(Nw). The codewords enumera-

tion is repeated for C2, with analogous cost: this yields a constant factor 2 in the
complexity.

Under the assumption that w is properly chosen, we have that MorSn

(
Aw(C1), Aw(C2)

)
contains a very small number of elements (ideally, only one). So, we can neglect
the cost of steps 2 and 3, and consider only the cost of codewords enumeration.

4Here we use the same estimate derived in [10, Section 2.2], which corresponds to a lower
bound for the actual complexity since the cost of steps 2 and 3 is neglected. In other words, the

proposition takes into account only the cost of the codewords enumeration phase.

38

We now give some insight on how the choice of w is expected to affect the
algorithm. In the following Proposition we derive a heuristic lower bound on the
size of MorSn

(
Aw(C1), Aw(C2)

)
, which is obtained under the (realistic) assumption

that weight-w codewords of random codes have random supports.

Proposition 14. Let C1 ⊆ Fnq be a random code with dimension k, π
$←− Sn and

C2 = π(C1). Then, the set MorSn

(
Aw(C1), Aw(C2)

)
contains at least u! elements,

where u = max
{

1 ,
⌊
n
(
1− w

n

)Nw
⌋}

.

Proof. Since C1 is random, we use Nw to estimate the number of codewords with
weight w. For i = 1, 2, let Bi = {j ∈ [1;n] | ∀x ∈ Aw(Ci) : cj = 0} and Bi =
{1, · · · , n} \ Bi. Note that, for any index j ∈ Bi, we have that all the codewords
in Aw(Ci) have a null entry in position j, while for any j ∈ Bi there is at least a
codeword in Aw(Ci) whose j-th entry is non null. Let us now consider a permutation
σ 6= π such that σ(j) = π(j), for all j ∈ B1: this implies that σ(j) ∈ B2 for all
j ∈ B1. Then, clearly σ ∈ MorSn

(
Aw(C1), Aw(C2)

)
. Notice that the number of valid

permutations σ is equal to the number of bijections from B1 to B2, which is |B1|! =
|B2|!. Note that this is only a lower bound, since there may exist permutations that
map Aw(C1) into Aw(C2) even if σ(j) 6= π(j) for some j ∈ B1.
To complete the proof, we need to estimate the size of B1. To this end, we rely on

the following estimate |B1| = n
(
1− w

n

)Nw
. Indeed, since C1 is random, we see any

of its codewords as a random vector. Consequently, the probability that an index j
is in the support of a codeword with weight w is w/n. Since C1 has Nw codewords
with weight w, the probability that an index never appear in the supports of all

Nw weight-w codewords is
(
1− w

n

)Nw
. Multiplying the above probability by n, we

obtain an estimate for the average size of B1.

The result in the above Proposition de facto sets a theoretical lower bound on
the value of w which must be used when running Leon’s algorithm.

Appendix C. Beullens’ algorithm for PEP

In this appendix we provide details about Beullens’ algorithm to solve PEP.
Given a pair (x,y) ∈ C1 × C2 such that Values(x) = Values(y), we will say that
(x,y) is a good collision if π(x) = y, and a bad collision if π(x) 6= y. Once colliding
pairs of codewords have been obtained, one can employ a probabilistic procedure
to retrieve the permutation with some probability. In particular, in [10], the author
has considered an approach which works only in case bad collisions do not happen.

C.1. Finding matching codewords. We start by analyzing the routine which
produces pairs of colliding codewords. We briefly recall the approach of [10] and
provide a heuristic analysis on the number of bad and good collisions which one
expects to have, on average. To begin, we observe that for any pair of vectors
such that y = π(x), it must also be that vy = π(vx) for all v ∈ F∗q . This means
that, given a pair (x,y) of colliding codewords, we are able to produce additional
q−1 pairs of colliding codewords which, however, do not bring any new information
about π. Considering all of these pairs in the permutation reconstruction algorithm
is useless. Hence, we can get rid of such additional collisions with the following
approach (proposed by Beullens in [10]). Let Lex denote the function that on input
a vector a returns ba, with b ∈ F∗q such that Values(ba) comes first, in lexicographical
order, among the multiset entries of all scalar multiples of a. To understand how

39

this function operates, we have reported an example in Figure 4. Embedding the
function Lex into the codewords finding algorithm, one can get rid of all unnecessary
codewords.

Values(1a) = {1, 2, 2, 3, 3, 3, 4}
Values(2a) = {1, 1, 1, 2, 3, 4, 4}
Values(3a) = {1, 1, 2, 3, 4, 4, 4}
Values(4a) = {1, 2, 2, 2, 3, 3, 4}

(a)

1◦ -
2◦ -
3◦ -
4◦ -

Values(2a) = {1, 1, 1, 2, 3, 4, 4}
Values(3a) = {1, 1, 2, 3, 4, 4, 4}
Values(4a) = {1, 2, 2, 2, 3, 3, 4}
Values(1a) = {1, 2, 2, 3, 3, 3, 4}

(b)

Figure 4. Example of lexicograph ordering, for the finite field with q =
5 elements and a vector a = (0, 3, 2, 0, 0, 3, 3, 2, 4, 1), for which Lex(a) =
2a. Figure (A) shows the multisets of entries for all scalar multiples of
a, while figure (B) reports the lexicographic order of such multisets.

The full subroutine for finding colliding codewords is shown in Algorithm 7. We
observe that including the computation of Lex into the codewords search guarantees
that we do not put scalar multiples into the lists X and Y and, consequently, into
P . The number of codewords we draw from each code is indicated as L, while w is
the Hamming weight of the found codewords.

In the next proposition we compute the average size of P , as well as the number
of good and bad collisions.

Proposition 15. Let C1 ⊆ Fnq be a random linear code with dimension k, and

let C2 = π(C1) with π
$←− Sn. Then, on average P contains M = M ′ + M ′′

elements, when M ′ = L2/Nw is the average number of good collisions and M ′′ =

(1− 1/Nw)(q − 1)L2
(
w+q−3
w−1

)−1
is that of bad collisions.

Proof. We consider that C1 contains Nw codewords with weight w and, according
to Assumption 1, assume that the automorphism group of the code is trivial. We
first determine the number of good collisions. For each x ∈ C1, we have only one
codeword y ∈ C2 such that π(x) = y. Since ISD returns random codewords of
weight w, we have that on average the number of good collisions is given by

M ′ =

L∑
i=1

i ·
(
L
i

)(
Nw−L
L−i

)(
Nw

L

) =
L2

Nw
.

We now count the number of bad collisions; let us first make some preliminary
considerations. First, for any vector a, we have that Lex(a) contains at least a 1.
Hence, for each x ∈ X, we may assume that Values(x) is a random multiset with
one entry equal to 1, and the other w − 1 ones picked at random over F∗q . The
same goes for each y ∈ Y . To have {x,y} ∈ P , it must be Values(x) = Values(y):
since there are

(
q+w−3
w−1

)
ways to choose w − 1 elements from F∗q with repetitions,

40

Algorithm 7: Algorithm to find and match codewords

Data: Number of codewords L ∈ N, weight w ∈ N, ISD routine
Input: linear codes C1,C2 ⊆ Fnq with dimension k
Output: list P containing pairs (x,y) ∈ C1 × C2, such that

Values(x) = Values(y)

/* Produce a list X of L codewords from C1 with weight w */

1 X = ∅;

2 while |X| < L do
3 Call ISD to find x ∈ C1 with weight w;

4 X ← X ∪ {Lex(x)};

/* Produce a list Y of L codewords from C2 with weight w */

5 Y = ∅;

6 while |Y | < L do
7 Call ISD to find y ∈ C2 with weight w;

8 Y ← Y ∪ {Lex(y)};

/* Find collisions between the lists X and Y */

9 for {x,y} ∈ X × Y do
10 if Values(x) = Values(y) then
11 P ← P ∪ {x,y};

12 return P ;

assuming that such elements are drawn at random, we have that a collision between

Values(x) and Values(y) is expected to happen with probability
(
q+w−3
w−1

)−1
. Hence,

the number of bad collisions can be estimated as

M ′′ = (L2 −M ′)(q − 1)

(
w + q − 3

w − 1

)−1

.

Indeed, we have L2 −M ′ possible pairs that do not give rise to a good collision,

and a fraction
(
w+q−3
w−1

)−1
of these is expected to yield to a bad collision. Then, the

list size of P is given by M ′ +M ′′.

A confirmation of the heuristics we have used for the Proposition is shown in
Section C.3, where we compare the performances of the algorithm with those of
numerical simulations. The complexity of executing Algorithm 7 is computed in
the next proposition.

Proposition 16. Let C1 ⊆ Fnq be a random code with dimension k, and C2 = π(C1),
with π being a randomly picked permutation. Then, the complexity of running
algorithm 7 with parameter L and w is

O

L (log2(L) + (q − 1)w log2
2(q)

)
+M ′ +M ′′ +

CISD(q, n, k, w)

Nw
·

ln
(

1− L
Nw

)
ln
(

1− 1
Nw

)
 .

Proof. (Heuristic) We start by estimating the number of ISD calls to find L distinct
codewords. We consider that each ISD call costs CISD(n, k, q, w)/Nw. Now: the

41

average number of distinct codewords we find, after u calls, is Nw

(
1−

(
1− 1

Nw

)u)
.

Since we want this quantity to be equal to L, it must be u =
ln(1− L

Nw
)

ln(1− 1
Nw

)
. Then,

the average cost of calling ISD is O

(
CISD(q,n,k,w)

Nw
· ln(1− L

Nw
)

ln(1− 1
Nw

)

)
. For each found

codeword we compute the value of Lex, which comes with a cost of (q− 1)w log2
2(q)

(since we must compute the (q− 1) scalar multiple of each found codeword, having
weight w). Then, we have to produce the merged list, which can be done efficiently
if one firsts hashes the entries of lists X and Y and then uses a binary search
algorithm. This comes with a cost that is estimated as L log2(L). Finally, we
consider that the list P contains M ′ + M ′′ elements, and consider such a value as
the estimate for the complexity to build the list.

Remark 5. If L� Nw (as we expect), then ln(1− L
Nw

) ≈ − L
Nw

and ln(1
Nw

) ≈ − 1
Nw

.

Then, the cost of ISD becomes O
(
LCISD(q,n,k,w)

Nw

)
: this means that we call ISD for

L times, and that every call costs CISD(q,n,k,w)
Nw

. Embedding this simplification into
the expression of 16, we obtain a time complexity of

O

(
L log2(L) + L(q − 1)w log2

2(q) +M ′ +M ′′ +
LCISD(q, n, k, w)

Nw

)
.

Furthermore, considering that the cost of ISD is expected to be prevalent, with
respect to the other terms, we can simply assume that Algorithm 7 costs

O

(
LCISD(q, n, k, w)

Nw

)
C.2. Probabilistic permutation recovery. We now move on to assessing the
performance of the permutation reconstruction phase described in [10]. The algo-
rithm exploits the following crucial observation: if we know that π(x) = y for some
permutation π, and we have xi 6= yj , then we know that π does not map i to j.
Considering all pairs of indexes (i, j) for which xi 6= yj , we gather a significant
amount of information about π or, to put it differently, we filter out a wide number
of candidate permutations. Exploiting all pairs in P , and putting all the informa-
tion together, it may become possible to recover the secret π with a procedure as
simple as the one in Algorithm 8.

We note that, however, such an efficient permutation recovery is characterized
by a certain failure probability. Indeed, when P is not populated with a sufficient
number of elements, it may happen that the algorithm is not able to return a
valid matrix. To estimate the probability that Algorithm 8 is successful, and to
additionally derive the minimum number of elements that P should contain, we
rely on the following proposition.

Proposition 17. Let C1 ⊂ Fnq be a random linear code with dimension k and

C2 = π(C1), with π
$←− Sn. Let P be the list produced by Algorithm 7 with input

parameters L and w. Let L and w such that M ′′
(

1− 1
Nw

L2

(w+q−3
w−1)

)
≈ 0. Then,

Algorithm 8 runs in time O
(
n2 L2

Nw

)
, and retrieves the correct permutation with

probability (1− ρ
L2

Nw)n(n−1), where ρ =
(
1− w

n

)2
+ 1

q−1

(
w
n

)2
.

42

Algorithm 8: Probabilistic permutation recovery, for the permutation
equivalence version of Beullens’ algorithm

Input: list P , containing pairs {x,y} ∈ Fnq × Fnq
Output: permutation π ∈ Sn, or report failure

1 U ← n× n matrix made of all ones;

2 for {x,y} ∈ P do
3 for i ∈ {1, · · · , n} do
4 for j ∈ {1, · · · , n} do
5 if xi 6= yj then
6 ui,j = 0

/* Use U to reconstruct the permutation; if not possible, report failure */

7 if U is a permutation matrix then
8 return π;

9 else
10 report failure

Proof. We assume that L and w are such that P does not contain bad collisions.

Hence, we have |P | = M ′ = L2

Nw
. To check each pair in P , the algorithm uses

O(n2) operations (since it goes through all pairs of indexes (i, j) ∈ {1, . . . , n}2). We
now proceed to estimate the success probability. We consider a pair of codewords
{x,y} ∈ P and a pair of indexes (j, `), and consider the probability that we have
xj = y`. This probability is given by

ρ =
(

1− w

n

)2

+
1

q − 1

(w
n

)2

.

The algorithm will succeed if, for all possible pairs (j, `), we have at least a couple

of codewords {x,y} for which xj 6= y`. Given that P contains L2

Nw
pairs, and that

we have xj 6= y` must happen for n(n−1) pairs of indexes, we have that the success

probability can be estimated as
(

1− ρ
L2

Nw

)n(n−1)

.

Remark 6. The probability in Proposition 17 is an approximation of the actual
success probability. Indeed, the proof of the proposition assumes that all pairs
of indexes (j, `) for which we have xj = y` behave as random and uncorrelated
variables, which is clearly ideal. Indeed, the actual distribution depends on the
supports of the codewords which are present in P and, especially when P is small,
the pairs of indexes are heavily correlated. Taking this phenomenon into account in
a more accurate way would require a much more involved analysis. In any case, the
probability expressed by Proposition 17 offers a crude, but appropriate and simple,
approximation of the actual probability.

C.3. Numerical confirmation. In this section we present the results of some
numerical simulations we have run, in order to validate the analysis of Beullens’
algorithm we have performed in the previous sections. For our simulations, we
have fully implemented the algorithm using Sage; the code we have used for the
experiments is made fully available5.

5https://github.com/paolo-santini/LESS_project

43

https://github.com/paolo-santini/LESS_project

We start by considering the codewords finding algorithm; we have run the fol-
lowing experiment:

1. generate random pairs of codes, one being a permutation of the other;
2. for each couple of codes, cal ISD to find L distinct codewords with weight w;
3. for each couple of codes, run Algorithm 7 and have empirically measured the

values of M ′ and M ′′;
4. average the obtained values of M ′ and M ′′, and compare with the theoretical

estimates in Proposition 15.

In Table 4 we have reported a comparison between the theoretical values and the
empirical ones.

(n, k, q) w L
M ′ M ′′ |P |

th. emp. th. emp. th. emp.

(50, 25, 5)
13 12 7.2 8.2 1.2 3.3 8.4 11.5
14 100 47.3 47.6 71.1 268.9 118.4 316.5

(40, 10, 11)
23 40 31.5 31.0 7.78 · 10−4 0 31.5 31
24 145 58.4 58.2 7.4 · 10−3 0.1 58.3 58.3

(40, 10, 23)
26 250 52.7 54.2 1.9 · 10−7 0 52.7 54.2
28 2000 28.9 29.1 3.9 · 10−6 0 28.9 29.1

(30, 10, 31)
8 90 51.9 51.9 2.9 · 10−2 0 51.9 51.9
9 200 3.5 4.5 3.1 · 10−2 0 3.5 4.5

Table 4. Comparison between numerical results and theoretical esti-
mates on the composition of list P . For each triplet (n, k, q), the empir-
ical results have been averaged over 10 random codes.

Finally, we have considered also the success probability of the permutation recon-
struction algorithm; in Figure 5 we compare the obtained values with the theoretical
ones, obtained through Proposition 17. The results show that Proposition 17 offer
indeed a realistic approximation of the actual probability.

Appendix D. Computing First Lexicographic Basis

In this section we describe how the computation of Lex can be extended to the
case of two-dimensional spaces; to avoid confusion with the one-dimensional case,

we will refer to the operation as Lex(2). We define Lex(2) as the function that,
on input V ∈ F2×n

q , returns the matrix BV , with B ∈ GL2 and such that the
lexicographic minimum of {τ(BV) | τ ∈ Mn} does not come after the lexicographic
minimum of each {τ(B∗V) | τ ∈ Mn}, with B∗ ∈ GL2\B. Note that this definition
is a generalization to the two-dimensional case of the Lex function we have already
considered in Section C.1.

To compute the first lexicographic basis of all possible monomial transformations
of a matrix V , we can operate as follows. We multiply each column of V by the
inverse of the element in the first row, in order to remain with either zeros or ones
in the first row. Now, we permute the columns of the obtained matrix with the goal
of placing the zeros in the leftmost part of the first row. To do this, we consider the
element in the second row: when two columns have the same element in the first
row, we look at the element in the second row, and put on the left the one with
the lowest entry. Finally, if we have some non null entry in the second row which

44

15 30 45 60 75 90
0

0.2

0.4

0.6

0.8

1

L

S
u
cc

es
s

p
ro

b
ab

il
it

y

Emp., q = 31, n = 30, k = 20, w = 8
Th., q = 31, n = 30, k = 20, w = 8

Emp., q = 11, n = 30, k = 10, w = 15
Th., q = 11, n = 30, k = 10, w = 15

Emp., q = 19, n = 40, k = 15, w = 20
Th., q = 19, n = 40, k = 15, w = 20

Figure 5. Success probability of the probabilistic permutation recovery
as a function of L, for codes with different parameters. For every con-
figuration, we have tested the attack on 50 codes. The empirical success
probability has been computed by averaging over the trials.

corresponds to a null entry in the first row, we can scale the corresponding column
to put a one in the second row. For the sake of clarity, in Figure 6 we show an
example of this procedure.

Then, given an input matrix V ∈ F2×n
q , we compute the matrices BV , with

B ∈ GL2. We then perform the operations shown in Figure 6 and, for each BV ,
keep only the resulting lexicographically minimum matrix. Finally, we compare all
of such matrices and pick the one which comes first, in the lexicographically order.
Notice that, for each input matrix, we test a total of (q2 − 1)(q2 − q) basis, and
for each basis we use O(n) operations to find the lexicographic minimum matrix.

Each comparison requires O(2n) operations, so that the computation of Lex(2) costs
O
(
n(q2 − 1)(q2 − q)

)
operations.6

Appendix E. Considerations about Lex(2) and two-dimensional
equivalent codes

In this appendix we estimate the probability to have bad collisions when consid-

ering the computation of Lex(2) and Values on two-dimensional subcodes. We start
with the following technical Lemma.

Lemma 3. Let V 1,V 2 ∈ F2×n
q , with A1 = Lex(2)(V 1) and A2 = Lex(2)(V 2) being

such that Values(A1) = Values(A2). Then, the codes generated by V 1 and V 2 are
equivalent.

Proof. We observe that, if Values(A1) = Values(A2), then this means that there
exist two monomials τ1, τ2 ∈ Mn such that τ1(A1) = τ2(A2). Let Q1 and Q2 be
the associated matrices, and let A1 = B1V 1, A2 = B2V 2. Then, we have

B1V 1Q1 = B2V 2Q2 =⇒ V 1 = B−1
1 B2V 2Q2Q

−1
1 ,

6Clearly, one can improve the computation of Lex(2) using small weight codewords: this avoids

to consider all (q2 − 1)(q2 − q) changes of basis. However, taking this into account would burden
the description. Since this aspect does not affect significantly the complexity of the algorithms we

analyze, we chose to consider only the trivial (and, perhaps, naive) computation for Lex(2).

45

(
0 1 0 0 2 3 2 0 4
1 0 0 2 0 3 4 0 2

)
(a)(

0 1 0 0 1 1 1 0 1
1 0 0 2 0 1 2 0 3

)
(b)(

0 0 0 0 1 1 1 1 1
0 0 1 2 0 0 1 2 3

)
(c)(

0 0 0 0 1 1 1 1 1
0 0 1 1 0 0 1 2 3

)
(d)

Figure 6. Example of lexicographic ordering of a basis, for the finite
field with q = 5 elements. In figure (A) we show the initial basis, while in
the other figures we detail the steps we perform to find the corresponding
lexicographic minimum. The matrix in figure (B) is obtained by scaling
all columns so that the entry in the first row is a 1. To obtain the matrix
in figure (C), we sort the columns. Finally, we see that we have some
degrees of freedom, since the third and fourth columns have a zero in
the first row and a non null entry in the second row. Hence, we scale
these columns and finally obtain the minimum lexicograph basis as in
figure (D).

which corresponds to the definition of linear equivalence.

Proposition 3. Let C ⊆ Fnq be a random linear code with dimension k. Let V ⊆ C
be a randomly-chosen, two-dimensional subcode with support size w. Then, the
average number of two-dimensional subcodes B′ ⊆ C which are linearly equivalent
to B is upper bounded by

t(2)
w =

(
n

w

)
w!(q − 1)w−1

[k2]q
[n2]q

.

Proof. The bound is trivially obtained by considering all distinct monomial transfor-
mations of a code whose support is w, which is given by

(
n
w

)
w!(q−1)w−1 (excluding

monomial transformations which are identical, up to a scalar multiplication). Then,

we consider that for every such code, there is a probability equal to
[k2]

q

[n2]
q

that it is

in C (since C is random).

Appendix F. Proof of Proposition 5

Proposition 5. Let C1 ⊆ Fnq be a random linear code with dimension k, and let

C2 = τ(C1) with τ
$←− Mn. Let P be the list obtained by running Algorithm 1 with

46

parameters L and w, with w ≤ n− k + 2. The algorithm runs in time

O

(
L
(
log2(L) + (q2 − q)(q − 1)

)
+M ′ +M ′′ +

L

N
(2)
w

CISD(q, n, k, w)

)
,

and produces a list P with M = M ′ + M ′′ elements, where M ′ = L2/N
(2)
w is the

average number of good collisions and M ′′ ≤ t(2)
w (L2−M ′)

N
(2)
w

is that of bad collisions.

Proof. For the running time of the algorithm, it is enough to repeat the same
computation performed for Proposition 16. Hence, we only show how the number
of good and bad collisions can be computed. The value of M ′ is estimated with the
same reasoning we have adopted for the proof of Proposition 15. To estimate M ′′,
we consider the following facts:

1) let V 1 be the basis of a subcode V1 ∈ C1, and assume that V1 is equivalent
to u subcodes in C1. According to Lemma 3, this means that there are u
subcodes in C1 which lead to a collision in the computation of Lex;

2) since C2 is a monomial transformation of C1, this means that also C2 contains
u subcodes that are equivalent to B1;

2) we can use t
(2)
w to upper bound the value of u (to see how t

(2)
w is obtained,

check Appendix E). Then, for any pair of drawn subcodes V1 ⊆ C1, V2 ⊆ C2,

the probability that they are equivalent is upper bounded as
t(2)
w

N
(2)
w

;

4) given that we draw L subcodes from each code, we have a total of L2 pairs.
We know that M ′ of them are good collisions, while for each remaining one

there is a probability t
(2)
w /N

(2)
w that it is a bad collision. Then, on average,

the number of bad collisions is given by
t(2)
w (L2−M ′)

N
(2)
w

.

47

	1. Introduction
	2. Background
	2.1. Coding Theory
	2.2. ISD algorithms
	2.3. Quantum Search Algorithms

	3. The Code Equivalence Problem
	3.1. High Level Hardness Overview

	4. Solvers for Hard Permutation Equivalence Instances
	5. Solvers for Hard Linear Equivalence Instances
	5.1. Leon's algorithm
	5.2. Beullens' algorithm
	5.3. Heuristic analysis

	6. Improving Beullens' algorithm for LEP
	6.1. Finding subcodes more efficiently
	6.2. Improved LEP algorithm
	6.3. Performance of our new LEP algorithm

	7. Quantum Solvers
	7.1. Permutation Code Equivalence
	7.2. Linear Code Equivalence
	7.3. Further directions

	8. Conclusions
	References
	Appendix A. Information-Set Decoding algorithms
	A.1. Quantum Algorithms for SDP
	A.2. Representation Technique and 1+1=0

	Appendix B. Leon's algorithm
	Appendix C. Beullens' algorithm for PEP
	C.1. Finding matching codewords
	C.2. Probabilistic permutation recovery
	C.3. Numerical confirmation

	Appendix D. Computing First Lexicographic Basis
	Appendix E. Considerations about Lex(2) and two-dimensional equivalent codes
	Appendix F. Proof of Proposition 5

