
Caulk+: Table-independent lookup arguments
Jim Posen1 and Assimakis A. Kattis2

1 Ulvetanna jimpo AT ulvetanna.io
2 New York University kattis AT cs.nyu.edu

Abstract. The recent work of Caulk [ZBK+22] introduces the security notion of
position hiding linkability for vector commitment schemes, providing a zero-knowledge
argument that a committed vector’s elements comprise a subset of some other
committed vector. The protocol has very low cost to the prover in the case where the
size m of the subset vector is much smaller than the size n of the one containing it.
The asymptotic prover complexity is O(m2 + m log n), where the log n dependence
comes from a subprotocol showing that the roots of a blinded polynomial are all nth
roots of unity. In this work, we show how to simplify this argument, replacing the
subprotocol with a polynomial divisibility check and thereby reducing the asymptotic
prover complexity to O(m2), removing any dependence on n.
Keywords: polynomial committments · vector commitments · zero-knowledge

1 Introduction
The work in [ZBK+22], named Caulk, introduces the notion of position-hiding linkability

for vector commitment schemes. Two efficient schemes for linking to a committed n-length
vector are provided: one for arguing membership of a single committed element and one for
arguing multimembership of an m-length subvector. The two protocols use the polynomial
commitment scheme of [KZG10], or KZG commitment, over appropriately sized subgroups
as the vector commitment scheme of choice. In particular, an n-length vector commitment
can be constructed as a commitment to the polynomial interpolation of the vector elements
over an order-n multiplicative subgroup of the field.

The asymptotic prover efficiency for the single-element and m-element subvector
membership arguments are O(log n) and O(m log n + m2) respectively. Caulk achieves
sublinear proving times by precomputing vector commitment opening witnesses that take
O(n) time to compute naively. Since the evaluation set over which the vector elements lie
is a multiplicative subgroup, there is an efficient method to aggregate the precomputed
witnesses into a batched witness [TAB+20]. These elements are blinded with randomly
sampled elements during the proving phase to provide the position-hiding property.

1.1 Our Contribution
We present an improvement to the position-hiding linkability arguments of Caulk which

reduces the prover complexity to O(m2) for an m-element membership proof, removing
any dependence on the value of n. The log n asymptotic factor in Caulk comes from
a subprotocol for the claim that certain blinded evaluation points of the committed
polynomial are n-th roots of unity. Our optimization stems from replacing this with a
pairing check constraining the evaluation points to be roots of a polynomial dividing
Xn − 1. While this modification requires the prover to precompute and store one extra
witness element per vector index in addition to the one already required in the original
scheme, it enjoys improved concrete efficiency and a simpler implementation.

2 Caulk+

There are two challenges to overcome in constructing this protocol. The prover generates
a randomized polynomial of the form Z(X) = r

∏
i∈I(X−ωi) with a multiplicative blinding

factor r, where ω is a primitive n-th root of unity and I is a non-empty subset of [n]. A
divisibility check that Z(X)H(X) = Xn − 1 for some quotient polynomial H guarantees
the claim, except for the condition that Z has at least one root. Since Z has only a single
degree of blinding, we must be careful when showing that Z has a root so as not to leak
any information about that root. The other challenge is that computing the quotient
polynomial H can take O(n) time. To circumvent this, we leverage even further the ability
to precompute and store witness elements for pairing checks, which is already a core part
of the original proof system.

Scheme Proof size Prover work Verifier work
Caulk, lookup table 14G1, 1G2, 4F Oλ(m2 + m log n) Oλ(log m), 4P
Caulk, Pedersen link 6G1, 2G2, 4F Oλ(log n) Oλ(1), 4P
This work, lookup table 7G1, 1G2, 2F Oλ(m2) Oλ(log m), 3P
This work, Pedersen link 10G1, 1G2, 5F Oλ(1) Oλ(1), 3P

Figure 1: Comparison of this work with prior work

2 Preliminaries
2.1 Notation

Let G1,G2,GT be cyclic groups of prime order p, written with additive notation. The
finite field Fp with p elements will sometimes be abbreviated as F. Let e : G1 ×G2 → GT

be a pairing: an efficiently computable, non-degenerate bilinear map. Let there be
generators [1]1, [1]2, [1]T of G1,G2,GT , respectively, with [1]T = e([1]1, [1]2). For all
elements α ∈ F and γ ∈ {1, 2, T}, the notation [α]γ represents the element α[1]γ ∈ Gγ .
The set of polynomials over F of degree at most d is written as F≤d[X]. For any set
S ⊂ F, ZS(X) :=

∏
v∈S(X − v) ∈ F[X] is the monic polynomial of degree |S| which

vanishes on S. The set of powers of a value can be written xS := {xi}i∈S for S ⊂ Z.

2.2 Algebraic Group Model
We analyze security of our protocols in the Algebraic Group Model (AGM) [FKL18].

In the AGM, whenever an adversary outputs a group element aaa ∈ Gγ with γ ∈ {1, 2}, they
also output an algebraic representation as a linear combination of the Gγ elements that the
adversary has access to from the public parameters and structured reference string (SRS).

2.3 Real and Ideal Pairing Checks
We borrow the terminology of real and ideal pairing checks from [GWC19]. An SRS

has degree q if its elements equal SRSi = [f(x)]i for uniformly sampled x ∈R F and some
f ∈ F<q[X], where i ∈ [q]. Let fi,j denote the corresponding polynomial for the j-th
element of SRSi and a, b be the vectors in Fq whose encodings in G1,G2 are returned by
algebraic adversary A. A real pairing check is defined as:

(a · T1) · (T2 · b) = 0,

for some matrices T1, T2 over F. Real pairing checks can be efficiently computed from the
encoded elements and pairing function e : G1 ×G2 → GT .

Jim Posen and Assimakis A. Kattis 3

If we operate in the AGM, for each output [aj]i, A also outputs a vector v for which
aj =

∑
vℓfi,ℓ(x) = Ri,j(x) for Ri,j(X) :=

∑
vℓfi,ℓ(X). For i ∈ {1, 2}, let Ri = (Ri,j)j be

a vector of polynomials over F. The corresponding ideal check then is given by:

(R1 · T1) · (T2 ·R2) ≡ 0.

2.4 Cryptographic Assumptions
We use the formulation of the q-DLOG assumption from [GWC19], Definition 2.1.

Definition 1 (q-DLOG assumption, [GWC19] Definition 2.1, verbatim). Fix integer q.
The q-DLOG assumption states that given

[1]1, [x]1, ..., [xq]1, [1]2, [x]2, ..., [xq]2

for uniformly chosen x ∈ F, the probability of an efficient A outputting x is negligible.

We also use Lemma 2.2 from [GWC19], which follows from the q-DLOG assumption in
the AGM.

Lemma 1 ([GWC19] Lemma 2.2, verbatim). Assume the q-DLOG for (G1,G2). Given
an algebraic adversary A participating in a protocol with a degree q SRS, the probability of
any real pairing check passing is larger by at most an additive negligible factor than the
probability the corresponding ideal check holds.

2.5 Vector Commitments
We recall vector commitment schemes with a trusted setup. Here PP denotes the

public parameters of the protocol.

Setup(PP) → (SRS, x). Given the public parameters, perform the trusted setup, pro-
ducing structured reference string SRS and trapdoor x.

Commit(PP, SRS, c⃗, r) → C. Given an input vector c⃗ and randomness r, produce a
commitment C.

ProveOpen(PP, SRS, C, i, ci, c⃗, r) → πi. Given a commitment C and claimed opening
(i, ci) along with the committed vector c⃗ and randomness r, produce a proof πi.

VerifyOpen(PP, SRS, C, i, ci, πi)→ {0, 1}. Given a commitment C and claimed opening
(i, ci), verify the opening proof πi.

ProveOpen and VerifyOpen can be generalized to public-coin interactive protocols
allowing interaction between prover and verifier. We write VerifyP

Open for the verification
algorithm interacting with a prover P. The following security property is associated with
vector commitments:

Definition 2 (Position Binding). A vector commitment is position binding if for all
efficient adversaries A the following probability is negligible:

Pr

 ci ̸= c′
i

VerifyA
Open(PP, SRS, C, i, ci, π) = 1

VerifyA
Open(PP, SRS, C, i, c′

i, π′) = 1

∣∣∣∣∣∣ SRS ← Setup(PP)
(C, i, ci, π, c′

i, π′) ← A(PP, SRS)

 .

4 Caulk+

2.6 Position-Hiding Linkability
We restate the definition of position-hiding linkable vector commitments as stated

in [ZBK+22], which extends the definition of a vector commitment scheme. A vector
commitment scheme has position-hiding linkability if there is a zero-knowledge argument
of knowledge for the following witness relation:

RLink :=


 PP, SRS ;

C, A, n, m ;
c⃗, rc, a⃗, ra

∣∣∣∣∣∣
Commit(c⃗, rc) = C
Commit(⃗a, ra) = A
∀i ∈ [m],∃j ∈ [n], ai = cj

 .

2.7 Zero-Knowledge with Precomputation
We use the standard definition of honest-verifier zero-knowledge for public-coin inter-

active protocols: informally, that there exists an efficient algorithm Simulate which can
produce an accepting transcript that is computationally indistingushable from a real one
between a prover and an honest verifier. In our setting, the prover is allowed to precompute
advice inputs from the public parameters and SRS to reduce its online execution time
when given an instance. We consider a model where the distinguisher cannot discriminate
based on timing information between an execution where the prover has precomputed
advice and one where they have not, assuming the precomputation is polynomial-time. In
practice, if timing information is available the prover will precompute and store advice for
all instances it may generate proofs for.

3 Lookup Argument Construction
Our protocol is based on the one in section 7 of [ZBK+22]. The commitments ccc and aaa

are to vectors c⃗ ∈ Fn and a⃗ ∈ Fm respectively. Assume both n and m are powers of two1.
Let H and V be multiplicative subgroups of F of size n and m. The vector commitment
scheme used is a KZG commitment over a polynomial which evaluates to the committed
vector over some multiplicative subgroup of F. In particular, ccc commits to a polynomial
C(X) which evaluates to c⃗ over H and aaa commits to a polynomial A(X) which evaluates
to a⃗ over V. Let ω be a generator of H and ν be a generator of V. The protocol is then a
zero-knowledge argument for the following relation RKZG

Link , which instantiates RLink with
KZG commitments:

RKZG
Link :=


 {[xk−1]1, [xk−1]2}k∈[d] ;

ccc,aaa,H,V, ω, µ ;
C(X), A(X), I ⊂ [n]

∣∣∣∣∣∣
ccc = [C(x)]1
aaa = [A(x)]1
∀i ∈ [m],∃j ∈ I, A(µi) = C(ωj)

 . (1)

Let I ⊂ [n] be the set of indices in c⃗ that a⃗ takes values from and u : [m] → I be
a mapping such that ai = cu(i) for all i ∈ [m]. The protocol begins with the prover
computing polynomials ZI , CI , U ∈ F≤m[X] so that the following polynomial identities
hold over ZI :

C(X)− CI(X) = 0 mod ZI , (2)
ZH = 0 mod ZI , (3)

and the following identities hold over ZV:
1The vectors can always be padded with duplicate elements up to the nearest power of two length.

Jim Posen and Assimakis A. Kattis 5

CI(U(X))−A(X) = 0 mod ZV, (4)
ZI(U(X)) = 0 mod ZV. (5)

Intuitively, ZI is a low-degree polynomial which vanishes on ωI , CI is a low-degree
polynomial which agrees with C on ωI , and U maps V to ωI . Concretely, the prover com-
putes the Lagrange polynomials {τi}i∈I ⊂ F<|I|[X] over ωI and the Lagrange polynomials
{µj}j∈[m] ⊂ F<m[X] over V. They then define:

ZI(X) =
∏
i∈I

X − ωi,

CI(X) =
∑
i∈I

ciτi(X),

U(X) =
∑

j∈[m]

u(j)µj(X).

Now, we could proceed with the standard compilation of polynomial IOPs to regular
IOPs. However, equations 2 and 3 involve polynomials with degree up to n, so computing
a KZG commitment opening would take O(n) time. We notice that neither equation
involves polynomial composition and so we can enforce the constraints with real pairing
checks at the point x from the structured reference string SRS. This approach has the
benefit that the quotient elements for the pairing check can be computed in O(m2) time
from precomputed values.

Define W1, W2 ∈ F<n[X] to be such that C − CI = ZIW1 and ZH = ZIW2. The
prover will look up precomputed values {[W (i)

1 (x)]2, [W (i)
2 (x)]2}i∈I , where W

(i)
1 (X) =

(C(X)− ci)/(X − ωi), W
(i)
2 (X) = ZH/(X − ωi), and then compute:

[W1(x)]2 =
∑
i∈I

[W (i)
1 (x)]2∏

j∈I,i̸=j ωi − ωj
,

[W2(x)]2 =
∑
i∈I

[W (i)
2 (x)]2∏

j∈I,i̸=j ωi − ωj
.

After sending these quotient elements for the pairing checks corresponding to equations
2 and 3, the verifier will query equations 4 and 5 at a challenge point α. The prover will
provide polynomial commitment opening proofs which can be computed in O(m log m)
time due to the lower degree bound on the polynomials involved.

The final ingredient is to blind ZI , CI , U appropriately to preserve zero-knowledge.
While CI and U can be blinded by respectively adding multiples of ZI and ZV, ZI can
only be blinded by a single multiplicative factor. At first glace, this presents a problem
because the prover must present the evaluation of ZI at a challenge point during the last
step of the protocol and there may not be sufficient degrees of randomness to blind both
the evaluation and commitment to ZI itself. Fortunately however, the KZG openings
can be batched together using verifier-supplied randomness in such a way that additional
blinding of CI prevents information leakage.

6 Caulk+

Figure 2: Interactive Protocol for RKZG
Link

Public inputs:

• Prime order cyclic groups G1,G2,GT with bilinear map e and generators [1]1, [1]2
• Scalar field F
• Structured reference string [x]1, ..., [xd−1]1, [x]2, ..., [xd−1]2

Common inputs:

• Multiplicative subgroup H < F∗ with order n and generator ω

• Multiplicative subgroup V < F∗ with order m and generator ν

• KZG commitment ccc to C(X) with evaluation points in H
• KZG commitment aaa to A(X) with evaluation points in V

Witness inputs:

• Set of indices I ⊂ [n]
• Values {ci}i∈I

• Polynomials C(X), A(X)
• Mapping u : [m]→ I

Precomputed inputs:

• [W (i)
1 (x)]2 for all i ∈ I where W

(i)
1 (X) = (C(X)− ci)/(X − ωi)

• [W (i)
2 (x)]2 for all i ∈ I where W

(i)
2 (X) = ZH(X)/(X − ωi)

Round 1 Prover:

• Randomly sample blinding factors r1, ..., r6

• Compute the Lagrange basis polynomials {τi(X)}i∈[m] over ωj
j∈I

• Define Z ′
I(X) = r1

∏
i∈I(X − ωi)

• Define CI(X) =
∑

i∈I ciτi(X)
• Define blinded C ′

I(X) = CI(X) + (r2 + r3X + r4X2)Z ′
I(X)

• Define U(X) to be the degree m−1 interpolation over V with U(νi) = ωu(i),∀i ∈
[m]

• Define blinded U ′(X) = U(X) + (r5 + r6X)ZV(X)
• Publish zIzIzI = [Z ′

I(x)]1, cIcIcI = [C ′
I(x)]1,uuu = [U ′(x)]1

Round 2 Verifier: Send random challenge χ1, χ2
Round 2 Prover:

• Compute [W1(x) + χ2W2(x)]2 =
∑

i∈I
[W (i)

1 (x)]2+χ2[W (i)
2 (x)]2∏

j∈I,i̸=j
ωi−ωj

• Compute H(X) = (Z ′
I(U ′(X)) + χ1(C ′

I(U ′(X))−A(X)))/ZV(X)
• Publish www = r−1

1 [W1(x) + χ2W2(x)]2 − [r2 + r3x + r4x2]2, hhh = [H(x)]1

Jim Posen and Assimakis A. Kattis 7

Round 3 Verifier: Send random challenge α
Round 3 Prover: Output v1, v2, π1, π2, π3 where

P1(X)← Z ′
I(X) + χ1C ′

I(X)
P2(X)← Z ′

I(U ′(α)) + χ1(C ′
I(U ′(α))−A(X))− ZV(α)H(X)

(v1, π1)← KZG.Open(U ′(X), α)
(v2, π2)← KZG.Open(P1(X), v1)
(0, π3)← KZG.Open(P2(X), α)

Verifer: Compute p1p1p1 = zIzIzI + χ1cIcIcI and p2p2p2 = [v2]1 − χ1aaa− ZV(α)hhh and verify

1← KZG.Verify(uuu, α, v1, π1)
1← KZG.Verify(p1p1p1, v1, v2, π2)
1← KZG.Verify(p2p2p2, α, 0, π3)

e((CCC − cIcIcI) + χ2[xn − 1]1, [1]2) = e(zIzIzI ,www)

Prover complexity is O(m2), with the limiting steps being polynomial interpolations of
ZI and CI in round 1 and the aggregation of the precomputed KZG witnesses to produce
www in round 2. The verifier verifies three KZG commitment openings and one additional
pairing check. Notice that we can drop one degree of blinding from U ′(X) as compared to
Caulk because U ′(X) is not opened as a KZG commitment in the subprotocol to show
well-formedness. Furthermore, one fewer pairing is required for verification because the
degree bound check used in the subprotocol is eliminated. We can use the same standard
batching techniques described in section 8 of [ZBK+22] to reduce the number of pairing
checks from 4 to 3 and the number of G1 elements in the proof from 8 to 7.

Theorem 1. The protocol in Figure 2 is a zero-knowledge argument of knowledge for
the relation in equation 1 with verifier complexity Oλ(1) and prover complexity Oλ(m2),
granted the prover has precomputed KZG witnesses for C and Xn − 1 at all indices in I.

Proof. The proof of knowledge soundness for Theorem 1 is given in Appendix A and
the proof of zero-knowledge is given in Appendix B.

Theorem 2. There exists a vector commitment scheme with position-hiding linkability,
verifier complexity Oλ(1), and prover complexity Oλ(m2), for m the size of the subset and
n the size of the table. The commitment scheme requires a trusted setup and requires the
prover to precompute and store a constant number of elements per linked index that take
O(n) time to compute each or O(n log n) time to compute as a batch.

Proof. The KZG polynomial commitment scheme over evaluation domains which are
multiplicative subgroups is a vector commitment scheme per Section 4.6, “KZG as Vector
Commitment Scheme”, of [ZBK+22]. The protocol in Figure 2 provides position-hiding
linkability with the required asymptotic complexity per Theorem 1.

4 Linking to Pedersen Commitments
Section 6 of [ZBK+22] presents a specific argument for linking a Pedersen commitment

to an element in a committed vector. In this setting, the SRS contains one additional
random element hhh ∈ G1 for which the discrete log relations to all other SRS elements are
unknown. Then we can construct a zero-knowledge argument for the witness relation:

8 Caulk+

RPC-Link :=


 {[xk−1]1, [xk−1]2}k∈[d],hhh ;

ccc,vvv,H, ω ;
C(X), j, v, r

∣∣∣∣∣∣
ccc = [C(x)]1
vvv = [v]1 + rhhh
v = C(ωj)

 .

Care must be taken when modifying the argument from section 6 of [ZBK+22] to
replace the unity subprotocol with a divisibility check. The divisibility check does not
guarantee that ZI has a root, and if it is a constant polynomial then the main pairing
check does not correspond to a blinded KZG opening. In the generalized argument this is
not an issue because equation 5 ensures that ZI has a root.

Instead, we will compose the generalized lookup argument with a generalized Schnorr
proof to produce an efficient argument for the single element case. It is well known that
the classic Schnorr argument of knowledge of a discrete logarithm can be generalized to
more complex group homomorphisms from a scalar field to a prime order group [Sch91].
In this setting we generalize Schnorr’s protocol to an argument of knowledge of the shared
opening to two Pedersen commitments with different bases in G1.

The prover samples k ← F and computes a polynomial A(X) = v + k(X − 1). The
commitment to A(X) is aaa = v[1]1 + k[x − 1]1. The prover and verifier run the lookup
argument as a subprotocol with aaa and V = {1}. Finally they engage in a proof of knowledge
of v, r, k such that:

vvv = v[1]1 + rhhh,

aaa = v[1]1 + k[x− 1]1.

Figure 3: Interactive Protocol for RPC-Link

Public inputs:

• Prime order cyclic groups G1,G2,GT with bilinear map e and generators [1]1, [1]2
• Scalar field F
• Structured reference string [x]1, ..., [xd−1]1, [x]2, ..., [xd−1]2
• Independent G1 generator hhh

Common inputs:

• Multiplicative subgroup H < F∗ with order n and generator ω

• KZG commitment CCC to C(X) with evaluation points in H
• Pedersen commitment vvv

Witness inputs:

• Value v, Pedersen commitment randomness r, index i

• Polynomial C(X)

Precomputed inputs:

• [W (i)
1 (x)]2 where W

(i)
1 (X) = (C(X)− ci)/(X − ωi)

• [W (i)
2 (x)]2 where W

(i)
2 (X) = ZH(X)/(X − ωi)

Jim Posen and Assimakis A. Kattis 9

Round 1 Prover:

• Randomly sample blinding factors k, v̂, r̂, k̂ ← F
• Prover outputs aaa = [v]1 + k[x− 1]1
• Prover and verifier engage in Link protocol with ccc,aaa, A(X) = v + k(X − 1),V =
{1}, I = {i} (Figure 2)

Round 2 Prover: Output ṽ̃ṽv = [v̂]1 + r̂hhh, ã̃ãa = [v̂]1 + k̂[x− 1]1

Round 3 Verifier: Sample random χ
Round 3 Prover: Output sv = v̂ + χv, sr = r̂ + χr, sk = k̂ + χk

Verifier: Verify that

[sv]1 + srhhh = ṽ̃ṽv + χvvv

[sv]1 + sk[x− 1]1 = ã̃ãa + χaaa.

5 Acknowledgements
We thank Arantxa Zapico for discussions and clarifications on the original Caulk

protocol. We thank Oana Ciobotaru for identifying several mistakes in the presentation,
including the statement of the verifier complexity. We thank Michal Zajic, Janno Siim,
Helger Lipmaa, and Roberto Parisella for identifying mistakes in the protocol specification
which violated correctness and zero-knowledge guarantees.

References
[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model

and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
Advances in Cryptology – CRYPTO 2018, pages 33–62, Cham, 2018. Springer
International Publishing.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Per-
mutations over lagrange-bases for oecumenical noninteractive arguments of
knowledge. Cryptology ePrint Archive, Paper 2019/953, 2019. https:
//eprint.iacr.org/2019/953.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commit-
ments to polynomials and their applications. In Masayuki Abe, editor, Advances
in Cryptology - ASIACRYPT 2010, pages 177–194, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[Sch91] C. P. Schnorr. Efficient signature generation by smart cards. J. Cryptol.,
4(3):161–174, jan 1991.

[TAB+20] Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin Drake, Dankrad Feist,
and Dmitry Khovratovich. Aggregatable subvector commitments for stateless
cryptocurrencies. In Clemente Galdi and Vladimir Kolesnikov, editors, Security
and Cryptography for Networks, pages 45–64, Cham, 2020. Springer International
Publishing.

https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953

10 Caulk+

[ZBK+22] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca
Nitulescu, and Mark Simkin. Caulk: Lookup arguments in sublinear time.
Cryptology ePrint Archive, Paper 2022/621, 2022. https://eprint.iacr.
org/2022/621.

A Proof of Theorem 1: Knowledge Soundness
The protocol for position-hiding linking has knowledge soundness in the Algebraic

Group Model of [FKL18]. Knowledge soundness is defined by a game GameKS involving an
algebraic adversary A and an efficient extractor E . Given an SRS, the adversary outputs
an instance ccc,aaa, ω, µ and produces an interactive argument for the verifier. The extractor
then outputs polynomials C, A. The adversary wins if 1) the verifier accepts and 2) it
is not the case that ccc = [C(x)]1 ∧ aaa = [A(x)]1 ∧ ∀i ∈ [m],∃j ∈ [n], A(µi) = C(ωj). The
protocol has knowledge soundness if there exists an E so that no adversary wins the game
with greater than negligible probability over the verifier’s randomness.

Because the structured reference string consists of the powers of x up to xd−1 lifted to G1
and G2, an algebraic representation of a group element in either group can be interpreted as
the coefficients of a polynomial in Fd[X]. The adversary outputs zIzIzI , cIcIcI ,uuu,hhh ∈ G1,www ∈ G2
along with their representations, and so the extractor learns the corresponding polynomials
Z ′

I , C ′
I , U ′, W, H. The real pairing check

e((CCC − cIcIcI) + χ2[xn − 1]1, [1]2) = e(zIzIzI ,www),

corresponds to the ideal pairing check

C − C ′
I + χ2(Xn − 1) = Z ′

IW.

Consequently by Lemma 1, the above polynomial identity holds except with negligible
probability. Therefore, Z ′

I | C − C ′
I + χ2(Xn − 1). Since χ2 is sampled after the prover

commits to C ′
I , Z ′

I , except with probability 1
|F| it must be that Z ′

I | C−C ′
I and Z ′

I | Xn−1.
Let I be the set of roots of Z ′

I . Since Z ′
I | Xn − 1, it follows that I ⊂ H, and since

Z ′
I | C − C ′

I , it follows that C(y) = C ′
I(y) for all y ∈ I.

By the knowledge soundness of the KZG polynomial commitment scheme and the
Schwartz-Zippel lemma, the following polynomial identity holds except with negligible
probability because the evaluation holds at a random point α:

Z ′
I(U ′(X)) + χ1(C ′

I(U ′(X))−A(X)) = ZV(X)H(X).
Therefore, ZV(X) | Z ′

I(U ′(X)) + χ1(C ′
I(U ′(X))−A(X)). Since χ1 is sampled after the

prover commits to Z ′
I , C ′

I , U ′, except with probability 1
|F| it must be that ZV | Z ′

I(U ′(X))
and ZV | C ′

I(U ′(X)) − A(X). Then, Z ′
I(U ′(y)) = 0 and C ′

I(U ′(y)) = A(y) for all y ∈ V.
Furthermore, U ′(y) ∈ I for all y ∈ V, since I is the set of roots of Z ′

I by definition. Now,
for any i ∈ [m], A(µi) = C ′

I(U ′(µi)). There exists a y ∈ I with U ′(µi) = y since U ′ maps
V to I. For all y ∈ I, A(µi) = C ′

I(y) = C(y). Let j be such that y = ωj , which we know
to exist because I ⊂ H and ω generates H. Then when the extractor outputs C, A, it holds
that for all ∀i ∈ [m],∃j ∈ [n], A(µi) = C(ωj), meaning the adversary loses the game.

B Proof of Theorem 1: Zero Knowledge
We describe the SimulateLink algorithm that, given an instance ccc,aaa and the trapdoor

value x convinces an interactive verifier to accept. This is similar to the argument in
Appendix F of [ZBK+22]. The simulator samples s1, ..., s8 ← F at random and outputs
zIzIzI = [s1]1, cIcIcI = ccc − [s2]1,uuu = [s3]1. The simulator then receives χ1, χ2 and outputs

https://eprint.iacr.org/2022/621
https://eprint.iacr.org/2022/621

Jim Posen and Assimakis A. Kattis 11

www = s−1
1 [s2 + χ2ZH(x)]2,hhh = [s4]2. As in Appendix F, the simulator receives α, outputs

v1 = s5, v2 = s6, and computes KZG evaluation proofs:

π1 = (x− α)−1(uuu− [v1]1),
π2 = (x− v1)−1(zIzIzI + χ1cIcIcI − [v2]1),
π3 = (x− α)−1([v2]1 − χ1aaa− ZV(α)hhh).

It can be seen that the simulator’s outputs satisfy the pairing check.

e((CCC − cIcIcI) + χ2[xn − 1]1, [1]2)
=e([s2]1 + χ2[ZH(x)]1, [1]2)
=e([1]1, [s2]2 + χ2[ZH(x)]2)
=e([s1]1, s−1

1 ([s2]2 + χ2[ZH(x)]2))
=e(zIzIzI ,www)

We note the distribution of output elements matches a valid distribution because:

• zIzIzI is blinded by r1 for the prover and s1 for the simulator,
• cIcIcI is blinded by r2 for the prover and s2 for the simulator,
• uuu is blinded by r5 for the prover and s3 for the simulator,
• www uniquely satisfies the pairing check,
• hhh is blinded by r3 for the prover and s4 for the simulator,
• v1 is blinded by r6 for the prover and s5 for the simulator,
• v2 is blinded by r4 for the prover and s6 for the simulator,
• π1, π2, π3 uniquely satisfy the KZG openings.

	Introduction
	Our Contribution

	Preliminaries
	Notation
	Algebraic Group Model
	Real and Ideal Pairing Checks
	Cryptographic Assumptions
	Vector Commitments
	Position-Hiding Linkability
	Zero-knowledge with Precomputation

	Lookup Argument Construction
	Linking to Pedersen Commitments
	Acknowledgements
	Proof of Theorem 1: Knowledge Soundness
	Proof of Theorem 1: Zero Knowledge

