
Searchable Encryption with randomized

ciphertext and randomized keyword search

Marco Calderini∗, Riccardo Longo∗, Massimiliano Sala∗, Irene Villa∗
∗Department of Mathematics, University of Trento

Abstract

The notion of public key encryption with keyword search (PEKS) was
introduced to efficiently search over encrypted data. In this paper, we
propose a PEKS scheme in which both the encrypted keyword and the
trapdoor are randomized, so that the cloud server is not able to recognize
identical queries. Our scheme is CI-secure in the single user setting and
TI- secure in the multi-user setting with multi-trapdoor.

1 Introduction

With the rapid development of cloud computing technology, more and more en-
terprises and individuals are willing to share their own data on cloud platforms.

Since the data owner loses its control of the data and cloud servers may be
untrusted, several security and privacy issues arise in cloud storage. So, sensitive
data should be encrypted before uploading to cloud server, to protect the data
from being leaked. However, data encryption makes it extremely difficult to
search for a specific file in a large number of encrypted files.

In the last years, many prominent cryptographic primitives have been pro-
posed for achieving secure and efficient cloud-data usage, such as searchable
encryption (SE) [2, 18]. Searchable encryption allows a remote server to search
in the encrypted data on behalf of a client without the knowledge of plaintext
data.

Almost all SE techniques provide search ability over encrypted documents by
extracting the keywords of those documents and generating searchable cipher-
texts corresponding to these keywords [6, 7, 14, 15, 17]. Then, data receivers
can search uploaded encrypted documents to find those containing a keyword
by generating a trapdoor to send to the server. Once received the trapdoor,
the server runs an algorithm to test which documents contains the searched
keyword. If there is a match, then the server returns the associated encrypted
document.

The first SE schemes that appeared in the literature use a symmetric setting
[18].

1

In 2004, Boneh et al. [2] proposed the first public key encryption with
keyword search (PEKS). In a multi-user setting, PEKS ([2]) allows any user to
encrypt keywords for searching by designated searching key holders. However,
PEKS schemes are vulnerable to off-line Keyword Guessing Attacks (KGA)
[5, 9]. That is, given a trapdoor, the adversary can generate a ciphertext of a
guessing keyword and then test whether it matches with a the trapdoor. If the
keyword space has low entropy, this attack will be very efficient. Indeed, several
PEKS schemes are shown to be insecure against KGAs [5, 9, 11, 14, 19, 20].

Public-key Authenticated Encryption with Keyword Search (PAEKS) has
been proposed by Huang and Li [8], in 2017, to defend against keyword guessing
attacks. Its security model guarantees two security goals: cipher-keyword in-
distinguishability (CI-security) and trapdoor indistinguishability (TI-security).
However, recently, Noroozi et al. [13] showed that the PAEKS scheme in [8]
is not secure in the multi-user setting, and Qin et al. [15] showed that it is
not secure in the multi-cipher-keyword setting. Both [13, 15] proposed some
adjustment to the scheme.

Qin et al., in [16], proposed a PAEKS scheme and they prove that their
scheme is secure in the multi-cipher-keyword setting for CI-security and in the
multi-user setting. However, in [16], the trapdoor is deterministic, thus, if an
attacker is allowed to issue a trapdoor query for any challenge keyword, then
the scheme is not secure in a multi-trapdoor-keyword setting.

In this paper, we propose a PAEKS scheme with an improved TI-security
model with respect to [16]. In particular, our PAEKS scheme is CI-secure in
the single-user scenario and TI-secure in the multi-trapdoor and multi-user sce-
nario. Moreover, both the encryption and the trapdoor are randomized, that is,
encrypting two times the same keyword (or creating the trapdoor for the same
keyword) will produce different results, differently from [16] where the trapdoor
is not randomized. Note that, if we exchange the role of the of the encryption
and trapdoor algorithm, we would obtain a PAEKS scheme CI-secure in the
multi-user setting and TI-secure in the single user setting.

This paper is structured as follows. In Section 2 we provide some preliminary
notions, useful to understand the rest of the paper. Section 3 presents PEKS and
PAEKS schemes, together with the security models for trapdoor indistinguisha-
bility and ciphertext indistinguishability. In Section 4 we describe our PAEKS
scheme, commenting on the possibility of combining multiple keywords, and
in Section 5 we provide the security proofs of our scheme. In particular, we
prove that our PAEKS scheme is fully secure in a multi-user setting for trap-
door indistinguishability, and it is secure in a single-user setting for ciphertext
indistinguishability. The conclusions of our work are in Section 6.

2 Preliminaries

In this section, we collect the notations and preliminaries needed for the rest of
this work. The symbol Z stands for the ring of integers and, for n a positive

2

integer, Zn is the ring of integers modulo n.

2.1 Bilinear pairing

Let G, GT be two multiplicative cyclic groups of prime order p. An admissible
pairing is a map e : G×G→ GT satisfying the following properties.

• Bilinearity: for any g, h ∈ G and a, b ∈ Z, e(ga, hb) = e(g, h)ab.

• Non-degeneracy: for any generator g of G, e(g, g) ∈ GT is a generator
of GT .

• Computability: for any g, h ∈ G, we can compute e(g, h) efficiently.

Bilinear pairings play an important role in the construction of many crypto-
graphic schemes such as Identity-Based Encryption schemes [3], Attribute-Based
Encryption schemes [1], Key-Agreement protocols [10], Signature schemes [4],
etc. Many schemes based on pairings can be found in a recent survey on Func-
tional Encryption in [12].

2.2 Complexity Assumptions

We recall some problems that are believed to be hard. The related assumptions
will be used in the proof of security of the proposed scheme.

A function f : N → R is called negligible if for any positive integer d there
exists an integer Nd such that |f(k)| < 1

kd for any k ≥ Nd.
We define the advantage of an algorithm A that outputs a guess β′ of a bit

β as AdvA = |Pr[β′ = β]− 1
2 |.

Definition 1 (CDH). The Computational Diffie-Hellman (CDH) Problem over
a group G of order p is the following. Given a generator g ∈ G and two elements
gx, gy ∈ G, for x, y randomly chosen from Zp, compute the element gxy. We
say that CDH is intractable (i.e. the CDH assumption holds) if all polynomial
time algorithms have a negligible probability of solving CDH.

Notice that, when we are considering an admissible bilinear map, solving the
decisional version of the above problem is easy.

Definition 2 (DBDH). The Decisional Bilinear Diffie–Hellman (DBDH) Prob-
lem over a bilinear pairing (G,GT , e) of order p is the following. Given a gener-
ator g ∈ G and elements gx, gy, gz ∈ G where x, y, z are randomly chosen from
Zp, distinguish e(g, g)xyz from a random element of GT . We say that DBDH is
intractable (i.e. the DBDH assumption holds) if all polynomial time algorithms
have a negligible advantage in solving DBDH.

If we assume that the DBDH is intractable, then also the CDH is intractable.

Definition 3 (DLIN). The Decisional Linear (DLIN) Problem over a group
G of order p is the following. Given a generator g ∈ G and the elements
gx, gy, xxr, gys ∈ G, for x, y, s, r randomly chosen from Zp, distinguish gr+s

from a random element of G.

3

As in [8], we consider the modified Decisional Linear (mDLIN) problem,
which is defined as below.

Definition 4 (mDLIN). Given a generator g ∈ G and the elements gx, gy, gxr, gs/y ∈
G, for x, y, s, r randomly chosen from Zp, distinguish gr+s from a random el-
ement of G. We say that mDLIN is intractable (i.e. the mDLIN assumption
holds) if all polynomial time algorithms have a negligible advantage in solving
mDLIN.

Similarly as before, if we assume that the mDLIN is intractable, then also
the CDH is intractable.

3 Preliminaries on public-key searchable encryp-
tion schemes

In this section, we introduce PEKS and PAEKS schemes and the related security
notions.

3.1 Public-key encryption with keyword search

A public-key encryption with keyword search (PEKS) consists of the following
(probabilistic) polynomial-time algorithms [2].

• Setup(λ): given in input a security parameter λ, the algorithm outputs a
global system parameter Param.

• KeyGen(Param): given the system parameter, it outputs a pair of public
and secret keys (pk, sk). The algorithm is run by the data receiver.

• Encrypt(W, pk): given a keyword W and the receiver’s public key, it out-
puts a ciphertext CW of W . The algorithm is run by the data sender.

• Trapdoor(W, sk): given a keyword W and the secret key, it outputs a
trapdoor TW . The algorithm is run by the data receiver.

• Test(pk, CW ′ , TW): given the receiver’s public key, a ciphertext CW ′ and
a trapdoor TW , it outputs 1 (true) indicating that CW ′ and TW contain
the same keyword (W ′ = W), and 0 otherwise. The algorithm is run by
the cloud server.

The first bilinear pairing-based PEKS scheme was proposed in 2004 [2].
This type of scheme is vulnerable to the inside keyword guessing attack.

Indeed, to recover the keyword contained in a trapdoor TW , a honest-but-curious
cloud server could check whether W ′ equals to the keyword W contained in TW

by computing the ciphertext CW ′ and performing the test algorithm. Since in
real applications the keyword space is usually not that big, the server would be
able to finish the keyword guessing attack in a reasonably short time.

To address to this issue, the notion of publick-key authenticated encryption
with keyword search was introduced in 2017 [8].

4

3.2 Public-key authenticated encryption with keyword search

A public-key authenticated encryption with keyword search (PAEKS) scheme
consists of the following (probabilistic) polynomial-time algorithms.

• Setup(λ): given in input a security parameter λ, the algorithm outputs a
global system parameter Param.

• KeyGenS(Param): given the system parameter, the sender’s key pair gen-
eration algorithm outputs a pair of public and secret keys (pkS , skS) for
the sender.

• KeyGenR(Param): given the system parameter, the receiver’s key pair
generation algorithm outputs a pair of public and secret keys (pkR, skR)
for the receiver.

• Encrypt(W, skS ,pkR): given a keyword W , the receiver’s public key and
the sender’s private key, it outputs a ciphertext CW of W . The algorithm
is run by the data sender.

• Trapdoor(W, pkS , skR): given a keyword W , the sender’s public key and
the receiver’s secret key, it outputs a trapdoor TW . The algorithm is run
by the data receiver.

• Test(pkS ,pkR, CW ′ , TW): given the receiver’s public key, the receiver’s
public key, a ciphertext CW ′ and a trapdoor TW , it outputs 1 (true)
indicating that CW ′ and TW contain the same keyword, and 0 otherwise.
The algorithm is run by the cloud server.

As explained in [8], the notion of PAEKS prevents a third-party, even the cloud
server, from generating a valid ciphertext-keyword. It provides both confiden-
tiality and integrity of the plaintext.

3.3 Security models

Similar with PEKS, security of PAEKS requires that there is no probabilis-
tic polynomial-time adversary which could distinguish trapdoors or ciphertexts.
Therefore, a semantic security model for PAEKS includes both ciphertext in-
distinguishability (CI-security) and trapdoor indistinguishability (TI-security or
Trapdoor Privacy). Related to the security of PAEKS schemes, we recall the
notation presented in [16], declined to the purposes of our scheme. Suppose
that (pkS , skS) and (pkR, skR) are the key pairs of the attacked data sender
and data receiver respectively. In a multi-user settings, an adversary may have
the following two abilities to attack a PAEKS scheme.

5

Chosen keyword to ciphertext (CKC) attacks In a CKC attack, the ad-
versary has the ability to obtain a ciphertext for any keyword W of its choice
under a receiver’s public key pkR specified by the adversary. That is, the ad-
versary will obtain the ciphertext CW = Encrypt(W, skS ,pkR). Formally, CKC
attacks are modelled by giving the adversary A access to a ciphertext oracle
EncryptskS

(·, ·), viewed as a “black box”; the adversary can repeatedly submit

any keyword W and a (data receiver’s) public key pkR of its choice to this ora-
cle, and is given in return a ciphertext CW = Encrypt(W, skS ,pkR).

Chosen keyword to trapdoor (CKT) attacks In a CKT attack, the ad-
versary has the ability to obtain a trapdoor of any keyword W of its choice
under a sender’s public key pkS specified by the adversary. That is, the ad-
versary will obtain the trapdoor TW = Trapdoor(W, pkS , skR). Similarly, CKT
attacks are modelled by giving the adversary A access to a trapdoor oracle
TrapdoorskR

(·, ·), viewed as a “black box”; the adversary can repeatedly sub-

mit any keyword W and a (data sender’s) public key pkS of its choice to this
oracle, and is given in return a trapdoor TW = Trapdoor(W, pkS , skR).

Clearly, the adversary’s access to the above-mentioned oracles has to be re-
stricted to some trivial instances. Let W ∗

0 and W ∗
1 be the challenge keywords,

then, in the CI-security model, the adversary cannot request trapdoors of the
challenge keywords for the target public keys, lest the challenge become trivial.
In many PAEKS schemes, such as [8], there are other limitations on the cipher-
text oracle. For example, the adversary is not allowed to request the ciphertext
corresponding to either W ∗

0 or W ∗
1 . In [16], they consider full CKC attacks,

where this limitation is removed.
Similarly, for TI-security, the adversary cannot request ciphertext of the

challenge keywords. Also in this case, many PAEKS schemes (see [8, 16]) im-
pose other limitations such as the adversary is not allowed to request trapdoors
corresponding to either W ∗

0 or W ∗
1 . In this paper we consider full CKT attacks,

where this limitation is removed.
In the following, we present the formal definitions of the security notions we

will use.

3.3.1 (MU) Full TI-Security Model

We describe the Full TI-Security Game for an adversary A in the multi-user
setting.

1. Initializationn: Given a security parameter λ, the challenger runs the setup
algorithm to generate the global system parameter Param. Then, it runs
KeyGenS(Param) and KeyGenR(Param) to generate the target sender’s key
pair (pkS , skS) and the target receiver’s key pair (pkR, skR) respectively.
The challenger invokes the adversary A on input (Param,pkS ,pkR).

6

2. Phase 1: The adversary is allowed to adaptively issue queries to the fol-
lowing oracles for polynomially many times.

• Trapdoor Oracle OT : Given a keyword W and a public key pkS ,
the oracle computes the corresponding trapdoor TW with respect to
pkS and skR, and returns TW to A.

• Ciphertext Oracle OC : Given a keyword W and a public key pkR,
the oracle computes the corresponding ciphertext CW with respect
to skS and pkR, and returns CW to A.

3. Challenge: At some point, A chooses two keywords (W ∗
0 ,W

∗
1) with the re-

striction that (W ∗
0 ,pkR) and (W ∗

1 ,pkR) have never been queried to OC in
Phase 1. These keywords are submitted to the challenger as the challenge
keywords. The challenger randomly chooses a bit β ∈ {0, 1}, computes
TW∗

β
← Trapdoor(W ∗

β ,pkS , skR) and returns TW∗
β
to A.

4. Phase 2: The adversary continues to issue queries to OT and OC as above,
with the restriction that neither (W ∗

0 ,pkR) nor (W ∗
1 ,pkR) could be sub-

mitted to the ciphertext oracle.

5. Guess: Finally, A outputs a bit β′ ∈ {0, 1}. It wins the game if and only
if β′ = β.

We define A’s advantage of successfully distinguishing the trapdoors of the
scheme as AdvTA(λ) = |Pr[β′ = β]− 1

2 |.

Definition 5 ((MU) Full TI-security). A PAEKS scheme satisfies trapdoor
indistinguishability under a full CKT attack and a CKC attack in the multi-
user setting, if for all probabilistic polynomial-time adversaries A, the advantage
AdvTA(λ) is negligible in λ.

3.3.2 CI-Security Model

We describe the CI-Security Game for an adversary A, in the single-user sce-
nario.

1. Initializationn: Given a security parameter λ, the challenger generates
Param and prepares pkS ,pkR as in the previous Game. It then invokes
the adversary A on input (Param,pkS ,pkR).

2. Phase 1: The adversary issues queries to oracles OQ and OC as before,
but declined to a single-user setting (no public key is given in input to the
oracles).

3. Challenge: At some point, A chooses two keywords (W ∗
0 ,W

∗
1) which have

not been requested for trapdoors nor ciphertexts, and submits them to the
challenger as the challenge keywords. The challenger randomly chooses a
bit β ∈ {0, 1}, computes CW∗

β
← Encrypt(W ∗

β , skS ,pkR) and returns CW∗
β

to A.

7

4. Phase 2: The adversary continues to issue queries to OQ and OC as above,
with the restriction that neither W ∗

0 nor W ∗
1 could be submitted to either

oracle.

5. Guess: Finally, A outputs a bit β′ ∈ {0, 1}. It wins the game if and only
if β′ = β.

We define A’s advantage of successfully distinguishing the ciphertexts of our
scheme as AdvCA(λ) = |Pr[β′ = β]− 1

2 |.

Definition 6 (CI-Security). A PAEKS scheme satisfies ciphertext indistin-
guishability under a CKT attack and a CKC attack, if for all probabilistic
polynomial-time adversaries A, the advantage AdvCA(λ) is negligible in λ.

4 The new scheme

In this section, we describe a new public-key authenticated searchable encryp-
tion scheme. For the sake of brevity, we condense the two algorithms KeyGenS
and KeyGenR into a single step KeyGen.

• Setup. Given a security parameter λ, the algorithm constructs two mul-
tiplicative groups of prime order p, G and GT , a random generator g of
group G and an admissible bilinear map e : G×G→ GT . Then, it selects
two hash functions H : {0, 1}∗ → G and H2 : G→ Z∗

p. The global system
parameters are Param = (G,GT , e, p, g,H,H2).

• KeyGen. Given Param, the algorithm produces the following pair of keys
for sender and receiver: (pkS , skS) = (ga, a) and (pkR, skR) = (gb, b),
with a, b ∈ Z∗

p chosen randomly. From them, the sender and the receiver
can construct three common secrets: h, t ∈ G and s ∈ Z∗

p. In particular,

h = gab, t = gH2(h) and s = H2(t).

• Encrypt. Given a keyword W ∈ {0, 1}∗, pkR and skS , the common secrets
h, t, s are obtained. The sender selects a random r ∈ Z∗

p and outputs the
pair

CW =
[
C1, C2

]
=

[
t ·H(pkS ||pkR||W)s · gr, hr

]
.

• Trapdoor. Given a keyword W ∈ {0, 1}∗, pkS and skR, the common
secrets h, t, s are obtained. The receiver selects a random ρ ∈ Zp and
outputs the tuple

TW =
[
Q1, Q2, Q3

]
=

[
e(t ·H(pkS ||pkR||W)s, hρ), gρ, hρ

]
.

• Test. Given in input any trapdoor TW ′ =
[
Q1, Q2, Q3

]
, corresponding

to a keyword W ′, and any ciphertext CW =
[
C1, C2

]
, corresponding to a

keyword W , the test consists in checking the equivalence

e(C1, Q3) = Q1 · e(C2, Q2).

8

The correctness of the scheme is verified as follows. Since

e(C1, Q3) =e(t ·H(pkS ||pkR||W)s · gr, hρ)

=e(t ·H(pkS ||pkR||W)s, hρ) · e(gr, hρ),

Q1 · e(C2, Q2) =e(t ·H(pkS ||pkR||W ′)s, hρ)e(hr, gρ)

=e(t ·H(pkS ||pkR||W ′)s, hρ)e(gr, hρ),

if the keywordsW andW ′ are the same, thenH(pkS ||pkR||W) = H(pkS ||pkR||W ′)
and the equivalence is satisfied. If the keywords are different (W ̸= W ′), then
H(pkS ||pkR||W) ̸= H(pkS ||pkR||W ′) due to collision resistance of the hash
function H, and thus Q1 ̸= e(t ·H(pkS ||pkR||W)s · gr, hρ).

Remark 1. The aim of the KeyGen algorithm is to generate three secrets only
known by the sender and the receiver. Notice that there are also other options
in order to construct these secrets.

4.1 On the combination of keywords

Suppose that we want to allow the search also for combinations of keywords.
That is, given two distinct keywords, we want to allow the search of documents
containing the first keyword, the second keyword or both keywords.

A trivial way to do this is, for the sender, to generate a ciphertext for
each keyword characterizing the document. The receiver, who wants to find a
document containing n different keywords W1, . . . ,Wn, will have to verify that,
among these ciphertexts, the test algorithm is satisfied at least once for all the
trapdoors TW1

, . . . , TWn
.

Another possible solution is to generate a ciphertext and a trapdoor for the
combination of keywords. This allows to generate only one trapdoor and so to
reduce the number of tests needed.

To simplify the explanation, consider the case of two keywords. A document
is characterized by the keywordsW1 andW2. The sender generates the following
ciphertexts

CW1
=
[
t ·H(pkS ||pkR||W1)

s · gr1 , hr1
]
,

CW2
=
[
t ·H(pkS ||pkR||W2)

s · gr2 , hr2
]
,

CW1&W2
=
[
t ·H(pkS ||pkR||W1)

s ·H(pkS ||pkR||W2)
s · gr3 , hr3

]
.

So, if the receiver wants to search for both W1 and W2, it can create the
trapdoor TW1&W2

=
[
e(t ·H(pkS ||pkR||W1)

sH(pkS ||pkR||W2)
s, hρ), gρ, hρ

]
.

Another solution is to encrypt the combination of W1 and W2 as[
t ·H(pkS ||pkR||W1||W2)

s · gr3 , hr3)
]

and then create the trapdoor for W1||W2. However, in this way first of all the
sender and the receiver should agree on an keyword ordering (e.g. lexicographic),
so that it is used always the same concatenation (since using W1||W2 instead

9

of W2||W1 would change the output of the hash). Then, the sender needs to
compute alsoH(pkS ||pkR||W1||W2)

s, while, for the previous solution, the sender
has already computed H(pkS ||pkR||W1)

s and H(pkS ||pkR||W2)
s, so it does not

need to perform another hashing and exponentiation.
As final remark, let us note that, if we do not use the shared secret t in the

encryption and in the trapdoor, then the server is able to generate valid cipher-
texts corresponding to combinations of keywords. Indeed, given two ciphertexts
CW1

=
[
H(pkS ||pkR||W1)

s ·gr1 , hr1)
]
and CW2

=
[
H(pkS ||pkR||W2)

s ·gr2 , hr2)
]
,

the server, just by multiplying them entry-by-entry, will obtain a valid cipher-
text for the combination of the keywords. That is,

CW1
∗ CW2

=
[
H(pkS ||pkR||W1)

s · gr1 , hr1)
]
∗
[
H(pkS ||pkR||W2)

s · gr2 , hr2)
]

=
[
H(pkS ||pkR||W1)

sH(pkS ||pkR||W2)
s · gr1+r2 , hr1+r2)

]
= CW1&W2

.

5 Security Proofs

In this section, we prove that our PAEKS scheme is CI-secure and (MU) fully
TI-secure. Notice that, if we exchange the role of the Encrypt and Trapdoor

algorithms, then we obtain a scheme TI-secure and (MU) fully CI-secure.

5.1 Trapdoor Indistinguishability

Before stating the security result, recall that if we assume that the DBDH
problem over (G,GT , e) is intractable, then also the CDH problem over G is
intractable.

Theorem 1. Under the DBDH assumption, our PAEKS scheme is (MU) fully
TI-secure in a random oracle model.

Proof. To prove the theorem, we show that, for the proposed scheme, winning
the related game with a non-negligible advantage implies solving the DBDH
problem with a non-negligible advantage. Assume that there is a PPT adver-
sary A which breaks the trapdoor privacy of our scheme with a non-negligible
advantage ϵT . We show in the following that there exists an algorithm B that
is able to solve the DBDH problem with a non-negligible advantage.

Consider an instance of the DBDH problem, (G,GT , e, p, g, g
x, gy, gz, Z)

where x, y, z ∈ Zp are chosen randomly, and Z is either a random element
of GT or equal to e(g, g)xyz. Let β be a bit such that β = 0 if Z = e(g, g)xyz

and β = 1 otherwise. The goal of B is to guess the bit β and it does so by
simulating the (MU) full TI-security game for A as follows.

Initialization B controls the random oracles that define the hash functions
H and H2 and sets the system parameter to Param = (G,GT , e, p, g,H,H2).
Then, it select two random values a, b ∈ Zp and set pkR = ga, pkS = gb, so
skR = a and skS = b. Therefore h = gab. Moreover, it selects another random

10

value u ∈ Zp and sets t = gu. This implies that H2(g
ab) = u. The last secret s

is set to be equal to x, so H2(g
u) = x. To simplify the notation, we set v = ab.

Then, B calls A on input (Param,pkS ,pkR).

Phase 1 In this phase, four oracles are involved. The oracle for H2 only
requires an element in G as input. The oracle for H requires in input a tuple
in G×G× {0, 1}∗. The oracles for encryption and trapdoor require in input a
pair in G × {0, 1}∗. The number of queries for the different oracles is limited,
specifically at most qH2 , qH , qT , and qC queries for oracles OH2 , OH , OT , and
OC respectively. To simplify the description of the game, we assume that the
adversary would not issue a pair (gi,Wi) to OT with gi ̸= ga (or OC with
gi ̸= gb) before issuing the following queries: (gi,pkR,Wi) (or (pkS , gi,Wi)) to
OH ; gai (or gbi) to OH2

; gα to OH2
, with α the output of the previous query. To

the hash oracles we associate two lists LH2 and LH (initially empty) collecting
the outcomes of the hashes. The mentioned oracles operate as follows.

• Hash Oracle OH2
. Given an element gi ∈ G if there is an element in LH2

of the form ⟨gi, ni⟩, B returns ni. If gi = gu, then B aborts and outputs a
random bit β′ as its guess of β. If gi = gab, then B sets ni = u. Otherwise,
it selects a random ni ∈ Zp. The pair ⟨gi, ni⟩ is added to the list LH2 . B
returns H2(gi) = ni as the hash value of gi to A.

• Hash Oracle OH . Given a tuple (pkS ,pkR,Wi), if there is a tuple in
LH of the form ⟨(pkS ,pkR,Wi), hi, ai, ci⟩, then B returns hi. Other-
wise, B selects a random ai ∈ Zp and a biased ci ∈ {0, 1} such that
Pr[ci = 0] = δ. Then B sets hi = gz · gai if ci = 0 and hi = gai otherwise.
The tuple ⟨(pkS ,pkR,Wi), hi, ai, ci⟩ is added to the list LH . B returns
H(pkS ||pkR||Wi) = hi as the hash value of Wi to A.

• Trapdoor Oracle OT . Given a pair (pkS ,Wi), B retrieves from LH the
tuple ⟨(pkS ,pkR,Wi), hi, ai, ci⟩. B selects a random ρi ∈ Zp. If pkS =
ga, then B computes the trapdoor Ti as follows. If ci = 1, then B
sets Ti =

[
e(gu(gx)ai , gvρi), gρi , gvρi

]
. Otherwise, if ci = 0, then B sets

Ti =
[
e(gu(gx)ai , gvρi) · e(gz, (gx)vρi), gρi , gvρi

]
. Notice that Ti is a cor-

rect well-distributed trapdoor since H(pkS ||pkR||Wi) = gai in the first
case and H(pkS ||pkR||Wi) = gai · gz in the second one.

Otherwise, if pkS ̸= pkS , then B sets h = (pkS)
b, and retrieves ⟨h, ni⟩

from LH2
. It sets t = gni , then it retrieves ⟨t, s⟩ from LH2

. Then it
returns the trapdoor Ti =

[
e(t · hs

i , h
ρ
), gρ, h

ρ]
.

• Ciphertext Oracle OC . Given a pair (pkR,Wi), B retrieves the tuple
⟨(pkS ,pkR,Wi), hi, ai, ci⟩ from LH . If ci = 0 then it aborts and out-
puts a random bit β′ as its guess of β. Otherwise, it selects a random
ri ∈ Zp. If pkR = gb, then it returns the ciphertext Ci =

[
Ci,1, Ci,2

]
=

[
gu+ri(gx)ai , gvri

]
. Notice that Ci is a well-distributed ciphertext.

11

Otherwise, if pkR ̸= pkR, it sets h = (pkR)
a, it retrieves ⟨h, ni⟩ from

LH2 . It sets t = gni , then it retrieves ⟨t, s⟩ from LH2 . Then it returns the
ciphertext Ci =

[
Ci,1, Ci,2

]
=

[
t · hs

i · gr, h
r]
.

Challenge The adversary A submits two keywords W ∗
0 and W ∗

1 , we assume
that (pkS ,pkR,W

∗
0) and (pkS ,pkR,W

∗
1) have been queried toOH , but (pkR,W

∗
0)

and (pkR,W
∗
1) have not been queried to OC . B retrieves from LH the tuples

⟨(pkS ,pkR,W ∗
0), h

∗
0, a

∗
0, c

∗
0⟩ and ⟨(pkS ,pkR,W ∗

1), h
∗
1, a

∗
1, c

∗
1⟩. If c∗0 = c∗1 = 1, then

it aborts and outputs a random bit β′ as a guess of β. If c∗0 = c∗1 = 0, then let
γ be a bit selected at random. Otherwise, let γ be the bit such that c∗γ = 0.
Notice that γ is uniformly distributed in {0, 1}. B then computes the trapdoor

T ∗ =
[(

Z · e(gx, gy)a
∗
γ · e(g, gy)u

)v

, gy, (gy)v
]
=

[
Q∗

1, Q
∗
2, Q

∗
3

]
.

Notice that, if Z = e(g, g)xyz then

Q∗
1 =

(
Z · e(gx, gy)a

∗
γ · e(g, gy)u

)v

=
(
e(gxz, gy) · e(gxa

∗
γ , gy) · e(gu, gy)

)v

=e(gu · gx(z+a∗
γ), gy)v = e(t ·H(pkS ||pkR||W ∗

γ)
s, hy).

Therefore T ∗ is a correct trapdoor. In this case, the random value chosen for
the trapdoor corresponds to y. Otherwise the first entrance in Q∗

1 is a random
element of G2. The tuple T ∗ is returned to the adversary.

Phase 2 A continues issuing queries to the oracles, with the restriction that
it can not issue (pkR,W

∗
0) and (pkR,W

∗
1) to OC . Moreover, we can also assume

that for the new queries to OH we can always set the value ci to be equal to 1.

Guess Finally, A outputs a bit γ′. If γ′ = γ then B outputs β′ = 0, otherwise
β′ = 1.

We analyse now the success probability of B. Denote by abt the event that
B aborts during the game, this is divided into three events.

• abt0: if gi = gu in the simulation of OH2
. Since u was selected ran-

domly over Zp, therefore determining gu is either a random guess or,
given that H2(g

ab) = u, corresponds to solving the Computational Diffie-
Hellman problem (CDH). Therefore, under some limitations on the num-
ber of queries qH2

, we have that Pr[abt0] is negligible.

• abt1: if ci = 0 in the simulation of OC . Each ci is selected randomly
and independently, therefore the probability that abt1 does not happen is
Pr[abt1] = (1− δ)qC .

12

• abt2: if c
∗
0 = c∗1 = 1 in the generation of the challenge trapdoor. Therefore,

Pr[abt2] = 1− (1− δ)2.

So, the probability that B does not abort in the game is bounded by Pr[abt] =
Pr[abt0] · Pr[abt1] · Pr[abt2] = Pr[abt0] · (1 − δ)qC (1 − (1 − δ)2). With δ =

1 −
√

qC
qC+2 , the probability takes the maximal value Pr[abt] = Pr[abt0] ·(

qC
qC+2

)qC/2

· 2
qC+2 , approximately equal to Pr[abt0]· 2

qC ·e and thus non-negligible.

We have seen that, if β = 0 (i.e. Z = e(g, g)xyz) and B does not abort, then
the view of A is identically distributed as in a real attack. In this case, if A
succeeds in breaking the trapdoor privacy of our scheme, then B succeeds in
solving the DBDH problem instance. Note also that, if β = 1 then A acts on
random inputs, so B effectively outputs a random guess, and thus the probability
of guessing correctly is 1

2 . Therefore, the probability of guessing the bit β (and
thus solving the DBDH problem) is:

Pr[β′ = β] =Pr[β′ = β |β = 0]Pr[β = 0] + Pr[β′ = β |β = 1]Pr[β = 1]

=
1

2
(Pr[β′ = β |β = 0] + Pr[β′ = β |β = 1])

=
1

2

(
Pr[β′ = β |β = 0] +

1

2

)
=
1

2

(
Pr[β′ = β |β = 0 ∧ abt]Pr[abt] + Pr[β′ = β |β = 0 ∧ abt]Pr[abt] + 1

2

)
=
1

2

(
1

2
(1− Pr[abt]) + (ϵT +

1

2
)Pr[abt] +

1

2

)
=
1

2
ϵTPr[abt] +

1

2
.

If ϵT is non-negligible, so it is |Pr[β′ = β]− 1/2|.

5.2 Ciphertext indistinguishability

Recall that, if we asssume that the mDLIN problem over G is intractable, then
also the CDH problem over G is intractable.

Theorem 2. Under the mDLIN assumption, our PAEKS scheme has ciphertext
indistinguishability under CKC and CKT attacks in random oracle model.

Proof. To prove the theorem, we show that winning the related game with a non-
negligible advantage implies solving the mDLIN problem with a non-negligible
advantage. Assume that there is a PPT adversaryA which breaks the ciphertext
indistinguishability of our scheme with a non-negligible advantage ϵC . We want
to show that we can build an algorithm B that is able to solve the mDLIN
problem with a non-negligible advantage.

Consider an instance of the mDLIN problem (G,GT , e, p, g, g
x, gy, gjx, gk/y, Z)

where x, y, j, k are randomly chosen from Zp, and Z is either a random element

13

of G or Z = gj+k. Let β be a bit such that β = 0 if Z = gj+k and β = 1
otherwise. The goal of B is to guess the bit β and it does so by simulating the
CI-security game for A as follows.

Initialization B controls the random oracles that define the hash functions
H and H2 and sets Param = (G,GT , e, p, g,H,H2). Then it selects a random
value a ∈ Zp and it sets pkR = ga, pkS = gx/a, so skR = a and skS = x/a.
Therefore, the common secret h corresponds to gx. Moreover, B selects another
random value u ∈ Zp and sets t = gu. The last common secret is set as s = y.
Therefore we have H2(g

x) = u and H2(g
u) = y. Since we are in a single-user

settings, we simplify the notation by writing H(W) instead of H(pkS ||pkR||W).
Then, B calls A on input (Param,pkS ,pkR).

Phase 1 B answers the adversary’s queries with the same oracles and with
the same assumptions considered in the TI case, but in a single-user setting.
We describe the differences with the oracles of the previous game.

- The hash oracle OH2
aborts if it is called on gu.

- The action of the hash oracle OH is as follows. Given a keyword Wi, it
selects a random ai ∈ Zp and a biased ci ∈ {0, 1} such that Pr[ci = 0] = δ.

It sets hi = gk/y · gai if ci = 0, and hi = gai otherwise. The tuple
⟨Wi, hi, ai, ci⟩ is added to the list LH (initially empty). It returnsH(Wi) =
hi as the hash value of Wi to A.

- For the trapdoor oracle OT , given in input a keyword Wi, B retrieves the
tuple ⟨Wi, hi, ai, ci⟩ from LH . If ci = 0, it aborts and output a random
bit β′ as guess of β. In the other case (where H(Wi) = gai) it selects a
random ρi and outputs

Ti =
[
e(gu(gy)ai , (gx)ρi), gρi , (gx)ρi

]
.

- Similarly, for the ciphertext oracle OC , given in input a keyword Wi,
B retrieves the tuple ⟨Wi, hi, ai, ci⟩ from LH . If ci = 0, it aborts and
outputs a random bit β′ as guess of β. Otherwise, B selects a random ri
and outputs

Ci =
[
gu(gy)aigri , (gx)ri

]
.

Notice that both the ciphertext and trapdoor oracles’ answers are legit.

Challenge When the adversary submits two keywordsW ∗
0 andW ∗

1 , queried to
OH but not toOT orOC , B retrieves the tuples ⟨W ∗

0 , h
∗
0, a

∗
0, c

∗
0⟩ and ⟨W ∗

1 , h
∗
1, a

∗
1, c

∗
1⟩

from LH . If c∗0 = c∗1 = 1, then it aborts and outputs a random bit β′ as a guess
of β. If c∗0 = 0 or c∗1 = 0, it sets γ be the bit such that c∗γ = 0, so h∗

γ = gk/y ·ga
∗
γ .

14

If c∗0 = c∗1 = 0, then γ is selected at random. Notice that, as in the previous
game, γ = 0 is uniformly distributed. B computes the ciphertext

C∗ =
[
C∗

1 , C
∗
2

]
=

[
Z · gu(gy)a

∗
γ , gxj

]
.

If Z = gj+k then C∗
1 = Z · gu(gy)a

∗
γ = gj+kgu(gy)a

∗
γ = tgy(a

∗
γ+k/y)gj =

tH(W ∗
γ)

sgj , and C∗
2 = hj . In this case, the random element corresponds to

j and C∗ is a proper ciphertext. If Z is a random element of G1, so it is C∗
1 .

The tuple C∗ is returned to the adversary.

Phase 2 A continues to issuing queries to the oracles, with the restriction
that it cannot issue W ∗

0 ,W
∗
1 to OT nor OC . Moreover, we can also assume that

for the new queries to OH we can always set the value ci = 1.

Guess Finally, A outputs a bit γ′. If γ′ = γ then B outputs β′ = 0, otherwise
β′ = 1.

Denoted by abt the event that B aborts during the game, the probability of
this event is similar to the one in the previous game.

• abt0: if gi = gu in the simulation of OH2
. Since u was selected randomly

over Zp, therefore determining gu is either a random guess or, given that
H2(g

x) = u, corresponds to solving the Computational Diffie-Hellman
problem (CDH), since the adversary knows pkS = gx/a and pkR = ga.
Therefore, under some limitations on the number of queries qH2

, Pr[abt0]
is negligible.

• abt1: if ci = 0 in the simulation of OC or OT . Each ci is selected randomly
and independently, therefore the probability that abt1 does not happen is
Pr[abt1] = (1− δ)qC+qT .

• abt2: if c
∗
0 = c∗1 = 1 in the generation of the challenge trapdoor. Therefore,

Pr[abt2] = 1− (1− δ)2.

So, the probability that B does not abort in the game is bounded by

Pr[abt] = Pr[abt0] · Pr[abt1] · Pr[abt2].

With δ = 1−
√

qT+qC
qT+qC+2 , we obtain

Pr[abt] = Pr[abt0] ·
(

qQ + qC
qQ + qC + 2

)(qQ+qC)/2

· 2

qQ + qC + 2
,

which is approximately equal to Pr[abt0] · 2
(qQ+qC)e and thus non-negligible. We

have seen that, if β = 0 (i.e. Z = gj+k) and B does not abort, then the view

15

of A is identically distributed as in a real attack. In this case, if A succeeds in
breaking the ciphertext privacy of our scheme, then B succeeds in solving the
mDLIN problem instance. As before, if β = 1 then A acts on random inputs,
so B effectively outputs a random guess, and thus the probability of guessing
correctly is 1

2 . Therefore, the probability of guessing the bit β (and thus solving
the mDLIN problem) is:

Pr[β′ = β] =Pr[β′ = β |β = 0]Pr[β = 0] + Pr[β′ = β | b = 1]Pr[β = 1]

=
1

2
(Pr[β′ = β |β = 0] + Pr[β′ = β |β = 1])

=
1

2

(
Pr[β′ = β |β = 0] +

1

2

)
=
1

2

(
Pr[β′ = β |β = 0 ∧ abt]Pr[abt] + Pr[β′ = β |β = 0 ∧ abt]Pr[abt] + 1

2

)
=
1

2

(
1

2
(1− Pr[abt]) + (ϵT +

1

2
)Pr[abt] +

1

2

)
=
1

2
ϵTPr[abt] +

1

2
.

If ϵC is non-negligible, so it is |Pr[β′ = β]− 1/2|.

6 Conclusions

In this work we presented a new PAEKS scheme, which not only randomized the
ciphertext but also the trapdoor. We proved that our scheme is fully TI-secure
and CI-secure (or fully CI-secure and TI-secure if we swap the encryption and
trapdoor algorithms). A further work is to study whether this scheme is also
fully CI-secure, thanks to the randomzation introduced in both ciphertexts and
trapdoors.

References

[1] Bethencourt, J., Sahai, A., and Waters, B.: Ciphertext-policy attribute-
based encryption. In 2007 IEEE symposium on security and privacy (SP’07)
(pp. 321-334). IEEE (2007).

[2] Boneh, D., Crescenzo, G. D., Ostrovsky, R., and Persiano, G.: Public key
encryption with keyword search. In International conference on the theory
and applications of cryptographic techniques (pp. 506-522). Springer, Berlin,
Heidelberg (2004).

[3] Boneh, D., and Franklin, M.: Identity-based encryption from the Weil pair-
ing. In Annual international cryptology conference (pp. 213-229). Springer,
Berlin, Heidelberg (2001).

16

[4] Boneh, D., Lynn, B., and Shacham, H.: Short signatures from the Weil pair-
ing. In International conference on the theory and application of cryptology
and information security (pp. 514-532). Springer, Berlin, Heidelberg (2001).

[5] Byun, J.W., Rhee, H.S., Park, H., Lee, D.H.: Off-line keyword guessing
attacks on recent keyword search schemes over encrypted data, in: SDM
2006, LNCS 4165, 2006, pp. 75–83 (2006).

[6] Demertzis, I., Chamani, J.G., Papadopoulos, D., Papamanthou, C.: Dy-
namic searchable encryption with small client storage. In: 27th Annual Net-
work and Distributed System Security Symposium. NDSS 2020, San Diego,
California, USA, 23–26 February 2020. The Internet Society (2020).

[7] He, D., Ma, M., Zeadally, S., Kumar, N., Liang, K.: Certificateless public
key authenticated encryption with keyword search for industrial internet of
things. IEEE Trans. Ind. Inform. 14(8), 3618–3627 (2018).

[8] Huang, Q., Li, H.: An efficient public-key searchable encryption scheme
secure against inside keyword guessing attacks. Inf. Sci. 403, 1–14 (2017).

[9] Jeong, I.R., Kwon, J.O., Hong, D., Lee, D.H.: Constructing PEKS schemes
secure against keyword guessing attacks is possible? Comput. Commun.
32(2), 394–396 (2009).

[10] Joux, A.: A one round protocol for tripartite Diffie–Hellman. In Interna-
tional algorithmic number theory symposium (pp. 385-393). Springer, Berlin,
Heidelberg (2000).

[11] Lu, Y., Wang, G., Li, J.: Keyword guessing attacks on a public key encryp-
tion with keyword search scheme without random oracle and its improvement.
Inf. Sci. 479, 270–276 (2019).

[12] Mascia, C., Sala, M. and Villa, I.: A survey on functional encryption.
Advances in Mathematics of Communications (2021).

[13] Noroozi, M., Eslami, Z.: Public key authenticated encryption with keyword
search: revisited. IET Inf. Secur. 13(4), 336–342 (2019).

[14] Noroozi, M., Karoubi, I., Eslami, Z.: Designing a secure designated server
identity-based encryption with keyword search scheme: still unsolved. Ann.
des Telecommunications 73(11–12), 769–776 (2018).

[15] Qin, B., Chen, Y., Huang, Q., Liu, X., Zheng, D.: Public-key authenticated
encryption with keyword search revisited: security model and constructions.
Inf. Sci. 516, 515–528 (2020).

[16] Qin, B., Cui, H., Zheng, X., and Zheng, D.: Improved security model for
public-key authenticated encryption with keyword search. In International
Conference on Provable Security (pp. 19-38). Springer, Cham (2021).

17

[17] Soleimanian, A., Khazaei, S.: Publicly verifiable searchable symmetric en-
cryption based on efficient cryptographic components. Des. Codes Cryptog-
raphy 87(1), 123– 147 (2019)

[18] Song, D.X., Wagner, D.A., Perrig, A.: Practical techniques for searches
on encrypted data. In: 2000 IEEE Symposium on Security and Privacy, pp.
44–55. IEEE Computer Society (2000).

[19] Yau, W.-C., Heng, S.-H., Goi, B.-M.: Off-Line keyword guessing attacks
on recent public key encryption with keyword search schemes. In: Rong, C.,
Jaatun, M.G., Sandnes, F.E., Yang, L.T., Ma, J. (eds.) ATC 2008. LNCS,
vol. 5060, pp. 100–105. Springer, Heidelberg (2008).

[20] Yau,W.,Phan,R.C.,Heng,S.,Goi,B.: Keyword guessing attacks on secure
searchable public key encryption schemes with a designated tester. Int. J.
Comput. Math. 90(12), 2581–2587 (2013).

18

