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Abstract

Currently deployed public-key cryptosystems will be vulnerable to attacks by full-
scale quantum computers. Consequently, “quantum resistant” cryptosystems are
in high demand, and lattice-based cryptosystems, based on a hard problem known
as Learning With Errors (LWE), have emerged as strong contenders for standard-
ization. In this work, we train transformers to perform modular arithmetic and
combine half-trained models with statistical cryptanalysis techniques to propose
SALSA: a machine learning attack on LWE-based cryptographic schemes. SALSA
can fully recover secrets for small-to-mid size LWE instances with sparse binary
secrets, and may scale to attack real-world LWE-based cryptosystems.

1 Introduction
The looming threat of quantum computers has upended the field of cryptography. Public-key
cryptographic systems have at their heart a difficult-to-solve math problem that guarantees their
security. The security of most current systems (e.g. [61, 30, 53]) relies on problems such as integer
factorization, or the discrete logarithm problem in an abelian group. Unfortunately, these problems
are vulnerable to polynomial time quantum attacks on large-scale quantum computers due to Shor’s
Algorithm [64]. Therefore, the race is on to find new post-quantum cryptosystems (PQC) built upon
alternative hard math problems.

Several schemes selected for standardization in the 5-year NIST PQC competition are lattice-based
cryptosystems, based on the hardness of the Shortest Vector Problem (SVP) [2], which involves
finding short vectors in high dimensional lattices. Many cryptosystems have been proposed based
on hard problems which reduce to some version of the SVP, and known attacks are largely based on
lattice-basis reduction algorithms which aim to find short vectors via algebraic techniques. The LLL
algorithm [46] was the original template for lattice reduction, and although it runs in polynomial
time (in the dimension of the lattice), it returns an exponentially bad approximation to the shortest
vector. It is an active area of research [23, 51, 5] to fully understand the behavior and running time of
a wide range of lattice-basis reduction algorithms, but the best known classical attacks on the PQC
candidates run in time exponential in the dimension of the lattice.

In this paper, we focus on one of the most widely used lattice-based hardness assumptions: Learning
With Errors (LWE) [59]. Given a dimension n, an integer modulus q, and a secret vector s ∈ Zn

q , the
Learning With Errors problem is to find the secret given noisy inner products b := a · s + e mod q,
with a ∈ Zn

q a random vector, and e a small “error” sampled from a narrow centered Gaussian
distribution (thus the reference to noise). LWE-based encryption schemes encrypt a message by
blinding it with noisy inner products.

The hardness assumption underlying Learning With Errors is that the addition of noise to the inner
products makes the secret hard to discover. In Machine Learning (ML), we often make the opposite
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assumption: given enough noisy data, we can still learn patterns from it. In this paper we investigate
the possibility of training ML models to recover secrets from LWE samples.

To that end, we propose SALSA, a technique for performing Secret-recovery Attacks on LWE via
Sequence to sequence models with Attention. SALSA trains a language model to predict b from a,
and we develop two algorithms to recover the secret vector s using this trained model.

Our paper has three main contributions. We demonstrate that transformers can perform modular
arithmetic on integers and vectors. We show that transformers trained on LWE samples can be used
to distinguish LWE instances from random data. This can be further turned into two algorithms
that recover binary secrets. We show how these techniques yield a practical attack on LWE
based cryptosystems and demonstrate its efficacy in the cryptanalysis of small and mid-size LWE
instances with sparse binary secrets.

2 Lattice Cryptography and LWE
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Figure 1: The dots form a lattice Λ, generated by vectors b1, b2. v is the shortest vector in Λ.

2.1 Lattices and Hard Lattice Problems

An integer lattice of dimension n over Z is the set of all integer linear combinations of n linearly
independent vectors in Zn. In other words, given n such vectors vi ∈ Zn, i ∈ Nn, we define the
lattice Λ(v1, ..vn) := {

∑n
i=1 aivi | ai ∈ Z}. Given a lattice Λ, the Shortest Vector Problem (SVP)

asks for a nonzero vector v ∈ Λ with minimal norm. Figure 1 depicts a solution to this problem in
the trivial case of a 2-dimensional lattice, where b1 and b2 generate a lattice Λ and v is the shortest
vector in Λ.

The best known algorithms to find exact solutions to SVP take exponential time and space with respect
to n, the dimension of the lattice [52]. There exist lattice reduction algorithms to find approximate
shortest vectors, such as LLL [46] (polynomial time, but exponentially bad approximation), or BKZ
[23]. The shortest vector problem and its approximate variants are the hard mathematical problems
that serve as the core of lattice-based cryptography.

2.2 LWE

The Learning With Errors (LWE) problem, introduced in [59], is parameterized by a dimension n, the
number of samples m, a modulus q and an error distribution χ (e.g., the discrete Gaussian distribution)
over Zq = {0, 1, . . . , q − 1}. Regev showed that LWE is at least as hard as quantumly solving
certain hard lattice problems. Later [56, 49, 14], showed LWE to be classically as hard as standard
worst-case lattice problems, therefore establishing it as a solid foundation for cryptographic schemes.

LWE and RLWE. The LWE distribution As,χ consists of pairs (A,b) ∈ Zm×n
q × Zn

q , where A

is a uniformly random matrix in Zm×n
q , b = As + e mod q , where s ∈ Zn

q is the secret vector
sampled uniformly at random and e ∈ Zm

q is the error vector sampled from the error distribution χ.
We call the pair (A,b) an LWE sample, yielding n LWE instances: one row of A together with the
corresponding entry in b is one LWE instance. There is also a ring version of LWE, known as the
Ring Learning with Errors (RLWE) problem (described further in Appendix A.1).

Search-LWE and Decision-LWE. We now state the LWE hard problems. The search-LWE problem
is to find the secret vector s given (A,b) from As,χ. The decision-LWE problem is to distinguish
As,χ from the uniform distribution {(A,b) ∈ Zm×n

q × Zn
q : A and b are chosen uniformly at

random)}. [59] provided a reduction from search-LWE to decision-LWE . We give a detailed proof
of this reduction in Appendix A.2 for the case when the secret vector s is binary (i.e. its entries are 0
and 1). In Section 4.3, our Distinguisher Secret Recovery method is built on this reduction proof.
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(Sparse) Binary secrets. In LWE based schemes, the secret key vector s can be sampled from
various distributions. For efficiency reasons, binary distributions (sampling in {0, 1}n) and ternary
distributions (sampling in {−1, 0, 1}n) are commonly used, especially in homomorphic encryption
[4]. In fact, many implementations use a sparse secret with Hamming weight h (the number of 1’s
in the binary secret). For instance, HEAAN uses n = 215, q = 2628, ternary secret and Hamming
weight 64 [25]. For more on the use of sparse binary secrets in LWE, see [6, 27].

3 Modular Arithmetic with Transformers

Two key factors make breaking LWE difficult: the presence of error and the use of modular arithmetic.
Machine learning (ML) models tend to be robust to noise in their training data. In the absence of a
modulus, recovering s from observations of a and b = a · s+ e merely requires linear regression, an
easy task for ML. Once a modulus is introduced, attacking LWE requires performing linear regression
on an n-dimensional torus, a much harder problem.

Modular arithmetic therefore appears to be a significant challenge for an ML-based attack on LWE.
Previous research has concluded that modular arithmetic is difficult for ML models [55], and that
transformers struggle with basic arithmetic [54]. However, [17] showed that transformers can compute
matrix-vector products, the basic operation in LWE, with high accuracy. As a first step towards
attacking LWE, we investigate whether these results can be extended to the modular case.

We begin with the one-dimensional case, training models to predict b = a · s mod q from a, for
some fixed unknown value of s, when a, s ∈ Zq . This is a form of modular inversion since the model
must implicitly learn the secret s in order to predict the correct output b. We then investigate the
n-dimensional case, with a ∈ Zn

q and s either in Zn
q or in {0, 1}n (binary secret). In the binary case,

this becomes a (modular) subset sum problem.

3.1 Methods

Data Generation. We generate training data by fixing the modulus q (a prime with 15 ≤ ⌈log2(q)⌉ ≤
30, see the Appendix B), the dimension n, and the secret s ∈ Zn

q (or {0, 1}n in the binary case). We
then sample a uniformly in Zn

q and compute b = a · s mod q, to create data pair (a, b).

Encoding. Integers are encoded in base B (usually, B=81), as a sequence of digits in {0, . . . B − 1}.
For instance, (a, b) = (16, 3) is represented as the sequences [1,0,0,0,0] and [1,1] in base 2, or
[2,2] and [3] in base 7. In the multi-dimensional case, a special token separates the coordinates of a.

Model Training. The model is trained to predict b from a, for an unknown but fixed value of
s. We use sequence-to-sequence transformers [69] with one layer in the encoder and decoder, 512
dimensions and 8 attention heads. We minimize a cross-entropy loss, and use the Adam optimizer [43]
with a learning rate of 5× 10−5. At epoch end (300000 examples), model accuracy is evaluated over
a test set of 10000 examples. We train until test accuracy is 95% or loss plateaus for 60 epochs.

⌈log2(q)⌉
Base

2 3 5 7 24 27 30 81 128

15 23 21 23 22 20 23 22 20 20
16 24 22 22 22 22 22 22 22 21
17 - 23 25 22 23 24 22 22 22
18 - 23 25 23 23 24 25 22 22
19 - 23 - 25 25 24 - 25 24
20 - - - - 24 25 24 24 25
21 - 24 - 25 - - - - 25
22 - - - - - 25 - - 25
23 - - - - - - - - -

Table 1: Size of the training sets required for learning modular inversion. Base-2 logarithm of the number
of examples needed to reach 95% accuracy, for different values of ⌈log2(q)⌉ and bases. ’-’ means 95% accuracy
not attained after 90 million examples.
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Figure 2: Learning modular multiplication for various moduli. Test loss and accuracy for q with ⌈log2(q)⌉
from 15 to 21. 300,000 training examples/epoch. One layer transformers with 512 dimensions, 8 attention heads,
integers encoded in base 81.

3.2 Results
One-Dimensional. For a fixed secret s, modular multiplication is a function from Zq into itself, that
can be learned by memorizing q values. Our models learn modular multiplication with high accuracy
for values of q such that ⌈log2(q)⌉ ≤ 22. Figure 2 presents learning curves for different values of
log2(q). The loss and accuracy curves have a characteristic step shape, observed in many of our
experiments, which suggests that “easier cases” (small values of ⌊as/q⌋) are learned first.

The speed of learning and the training set size needed to reach high accuracy depend on the problem
difficulty, i.e. the value of q. Table 1 presents the ⌈log2⌉ of the number of examples needed to reach
95% accuracy for different values of ⌈log2(q)⌉ and base B. Since transformers learn from scratch,
without prior knowledge of numbers and moduli, this procedure is not data-efficient. The number of
examples needed to learn modular multiplication is between 10q and 50q. Yet, these experiments
prove that transformers can solve the modular inversion problem in prime fields.

Table 1 illustrates an interesting point: learning difficulty depends on the base used to represent
integers. For instance, base 2 and 5 allow the model to learn up to ⌈log2(q)⌉ = 17 and 18, whereas
base 3 and 7 can reach ⌈log2(q)⌉ = 21. Larger bases, especially powers of small primes, enable
faster learning. The relation between representation base and learning difficulty is difficult to explain
from a number theoretic standpoint. Additional experiments are in Appendix B.

Multidimensional random integer secrets. In the n-dimensional case, the model must learn the
modular dot product between vectors a and s in Zn

q . The proves to be a much harder problem.
For n = 2, with the same settings, small values of q (251, 367 and 967) can be learned with over
90% accuracy, and q = 1471 with 30% accuracy. In larger dimension, all models fail to learn with
parameters tried so far. Increasing model depth to 2 or 4 layers, or dimension to 1024 or 2048 and
attention heads to 12 and 16, improves data efficiency (less training samples are needed), but does
not scale to larger values of q or n > 2.

Multidimensional binary secrets. Binary secrets make n-dimensional problems easier to learn. For
n = 4, our models solve problems with ⌈log2(q)⌉ ≤ 29 with more than 99.5% accuracy. For n = 6
and 8, we solve cases ⌈log2(q)⌉ ≤ 22 with more than 85% accuracy. But we did not achieve high
accuracy for larger values of n. So in the next section, we introduce techniques for recovering secrets
from a partially trained transformer. We then show that these additional techniques allow recovery of
sparse binary secrets for LWE instances with 30 ≤ n ≤ 128 (so far).

4 Introducing SALSA: LWE Cryptanalysis with Transformers
Having established that transformers can perform integer modular arithmetic, we leverage this result to
propose SALSA, a method for Secret-recovery Attacks on LWE via Seq2Seq models with Attention.

4.1 SALSA Ingredients
SALSA has three modules: a transformer model M, a secret recovery algorithm, and a secret veri-
fication procedure. We assume that SALSA has access to a number of LWE instances in dimension n

4



that use the same secret, i.e. pairs (a, b) such that b = a·s+e mod q, with e an error from a centered
distribution with small standard deviation. SALSA runs in three steps. First, it uses LWE data to train
M to predict b given a. Next SALSA runs a secret recovery algorithm. It feeds M special values
of a, and uses the output b̃ = M(a) to predict the secret. Finally, SALSA evaluates the guesses s̃
by verifying that residuals r = b− a · s̃ mod q computed from LWE samples have small standard
deviation. If so, s is recovered and SALSA stops. If not, SALSA returns to step 1, and iterates.

4.2 Model Training
SALSA uses LWE instances to train a model that predicts b from a by minimizing the cross-entropy
between the model prediction b′ and b. The model architecture is a universal transformer [29], in
which a shared transformer layer is iterated several times (the output from one iteration is the input to
the next). Our base model has two encoder layers, with 1024 dimensions and 32 attention heads, the
second layer iterated 2 times, and two decoder layers with 512 dimensions and 8 heads, the second
layer iterated 8 times. To limit computation in the shared layer, we use the copy-gate mechanism
from [26]. Models are trained using the Adam optimizer with lr = 10−5 and 8000 warmup steps.

For inference, we use a beam search with depth 1 (greedy decoding) [44, 67]. At the end of each
epoch, we compute model accuracy over a test set of LWE samples. Because of the error added when
computing b = a · s + e, exact prediction of b is not possible. Therefore, we calculate accuracy
within tolerance τ (accτ ): the proportion of predictions b̃ = M(a) that fall within τq of b, i.e. such
that ∥b− b̃∥ ≤ τq. In practice we set τ = 0.1.

4.3 Secret Recovery
We propose two algorithms for recovering s: direct recovery from special values of a, and distin-
guisher recovery using the binary search to decision reduction (Appendix A.2). For theoretical
justification of these, see Appendix C.

Direct Secret Recovery.
Algorithm 1 Direct Secret Recovery

1: Input: M,K, n
2: Output: secret s
3: p = 0n

4: for i = 1, . . . , n do
5: a = 0n; ai = K
6: pi = M(a)
7: Return: s = binarize(p)

The first technique, based on the LWE search
problem, is analogous to a chosen plaintext at-
tack. For each index i = 1, . . . n, a guess of the
i-th coordinate of s is made by feeding model
M the special value ai = Kei (all coordinates
of ei are 0 except the i-th), with K a large in-
teger. If si = 0, and the model M correctly
approximates bi = ai · s + e from ai, then we
expect b̃i := M(ai) to be a small integer; like-
wise if si = 1 we expect a large integer. This
technique is formalized in Algorithm 1. The
binarize function in line 7 is explained in Ap-
pendix C. In SALSA, we run direct recovery
with 10 different K values to yield 10 s guesses.

Distinguisher Secret Recovery.

Algorithm 2 Distinguisher Secret Recovery

1: Input: M, n, q, accτ , τ
2: Output: secret s
3: s = 0n

4: advantage, bound = accτ − 2 · τ, τ · q
5: t = min{50, 2

advantage2 }
6: ALWE,BLWE = LWESamples(t, n, q)
7: for i = 1, . . . n do
8: Aunif ∼ U{0, q − 1}n×t

9: Bunif ∼ U{0, q − 1}t
10: c ∼ U{0, q − 1}t
11: A′

LWE = ALWE

12: A′
LWE[:, i] = (ALWE[:, i] + c) mod q

13: B̃LWE = M(A′
LWE)

14: B̃unif = M(Aunif )

15: dl = |B̃LWE −BLWE|
16: du = |B̃unif −Bunif |
17: cLWE = #{j | dlj < bound, j ∈ Nt}
18: cunif = #{j | duj < bound, j ∈ Nt}
19: if (cLWE−cunif ) ≤ advantage ·t/2 then
20: si = 1
21: Return: s

The second algorithm for secret recovery is
based on the decision-LWE problem. It uses the
output of M to determine if LWE data (a, b)
can be distinguished from randomly generated
pairs (ar, br). The algorithm for distinguisher-
based secret recovery is shown in Algorithm 2.
At a high level, the algorithm works as follows.
Suppose we have t LWE instances (a, b) and t
random instances (ar, br). For each secret coor-
dinate si, we transform the a into a′i = ai + c,
with c ∈ Zq random integers. We then use
model M to compute M(a′) and M(ar). If
the model has learned s and the ith bit of s is 0,
then M(a′) should be significantly closer to b
than M(ar) is to br. Iterating on i allows us to
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recover the secret bit by bit. SALSA runs the distinguisher recovery algorithm when model accτ=0.1

is above 30%. This is the theoretical limit for this approach to work.

4.4 Secret Verification.

At the end of the recovery step, we have 10 or 11 guesses s̃ (depending on whether the distinguisher
recovery algorithm was run). To verify them, we compute the residuals r = a · s̃− b mod q for a
set of LWE samples (a, b). If s is correctly guessed, we have s̃ = s, so r = a · s − b = e mod q
will be distributed as the error e, with small standard deviation σ. If s̃ ̸= s, r will be (approximately)
uniformly distributed over Zq (because a · s̃ and b are uniformly distributed over Zq), and will have
standard deviation close to q/

√
12. Therefore, we can verify if s̃ is correct by calculating the standard

deviation of the residuals: if it is close to σ, the standard deviation of error, the secret was recovered.
In the case that σ = 3 and q = 251, the standard deviation of r is around 3 if s̃ = s, and 72.5 if not.

5 SALSA Evaluation

In this section, we present our experiments with SALSA. We generate datasets for LWE problems of
different sizes, defined by the dimension and the sparsity of the binary secret. We use gated universal
transformers, with two layers in the encoder and decoder. Default dimensions and attention heads in
the encoder and decoder are 1024/512 and 16/4, but we vary them as we scale the problems. Models
are trained on two NVIDIA Volta 32GB GPUs on an internal FAIR cluster.

5.1 Data generation

We randomly generate LWE data for SALSA training/evaluation given the following parameters:
dimension n, secret density d, modulus q, encoding base B, binary secret s, and error distribution χ.
For all experiments in this section, we use q = 251 and B = 81 (see §3.1), fix the error distribution
χ to be a discrete Gaussian with µ = 0, σ = 3 [4], and randomly generate a binary secret s.

We vary the problem size n (the LWE dimension) and the density d (the proportion of ones in the
secret) to test our attack success and to observe how it scales. For problem size, we experiment with
n = 30 to n = 128. For density, we experiment with 0.002 ≤ d ≤ 0.15. For a given n, we select d
so that the Hamming weight of the binary secret (h = dn), is larger than 2. Appendix 5.5 contains an
ablation study of data parameters. We generate data using the RLWE variant of LWE, described in
Appendix A. For RLWE problems, each a is one line of a circulant matrix generated from an initial
vector ∈ Zn

q . RLWE problems exhibit more structure than traditional LWE due to the use of the
circulant matrix, which may help our models learn.

Note on RLWE parameter choices. The choices of n, q, ring R, and error distribution determine
the hardness of a given RLWE problem. In particular, prior work [32, 33, 22, 21] showed that many
choices of polynomials defining the number ring R are provably weak when n is not a power of 2.
Thus, we first evaluate SALSA’s success against RLWE for cyclotomic rings with dimension n = 2ℓ,
ℓ ∈ {5, 6, 7} (see Table 2). However, to help understand how SALSA scales with n, we also provide
performance evaluations for n values that are not powers of 2, even though these RLWE settings may
be subject to algebraic attacks more efficient than SALSA.

5.2 Results

Table 2 presents problem sizes n and densities d for which secrets can be fully recovered, together
with the time and the logarithm of the number of training samples needed. SALSA can recover binary
secrets with Hamming weight 3 for dimensions up to 128 (26). Secrets with Hamming weight 4 can
be recovered for n < 70.

For a fixed Hamming weight, the time needed to recover the secret increases with n, partly because
the length of the input sequence fed into the model is proportional to n. On the other hand, the
number of samples needed remains stable as n grows. This observation is significant, because all the
data used for training the model must be collected (e.g. via eavesdropping), making sample size an
important metric. For a given n, scaling to higher densities requires more time and data, and could
not be achieved with the architecture we use for n > 50. As n grows, larger models are needed: our
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Dim.
n

Density
d

log2
samples

Runtime
(hours)

30 0.1 20.93 1.2
0.13 23.84 12.9

32 0.09 20.93 1.2

50 0.06 22.25 4.7
0.08 25.67 49.9

64 0.05 22.39 8
70 0.04 22.74 11.9
90 0.03 23.93 43.4

110 0.03 24.07 68.8
128 0.02 22.25 46.0

Table 2: Full secret recovery. Highest density values at which the secret was recovered for each n, q = 251.
The model has 1024/512 dimension, 16/4 attention heads. (For n = 128, 1536/512 dimension, 32/4 attention
heads).
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Figure 3: Full secret recovery: Curves for loss and accτ = 0.1, for varying n with Hamming weight 3. For
n < 100, model has 1024/512 embedding, 16/4 attention heads. For n ≥ 100, model has 1536/512 embedding,
32/4 attention heads.

standard architecture, with 1024/512 dimensions and 16/4 attention heads (encoder/decoder) was
sufficient for n ≤ 90. For n > 90, we needed 1536/512 dimensions and 32/4 attention heads.

Figure 3 illustrates model behavior during training. After an initial burn-in period, the loss curve
(top graph) plateaus until the model begins learning the secret. Once loss starts decreasing, model
accuracy with 0.1q tolerance (bottom graph) increases sharply. Full secret recovery (vertical lines
in the bottom graph) happens shortly after, often within one or two epochs. Direct secret recovery
accounts for 55% of recoveries, while the distinguisher only accounts for 18% of recoveries (see
Appendix C.3). 27% of the time, both methods succeed simultaneously.

One key conclusion from these experiments is that the secret recovery algorithms enable secret
recovery long before the transformer has been trained to high accuracy (even before training loss
settles at a low level). Frequently, the model only needs to begin to learn for the attack to succeed.

5.3 Experiments with model architecture

SALSA’s base model architecture is a Universal Transformer (UT) with a copy-gate mechanism.
Table 3 demonstrates the importance of these choices. For problem dimension n = 50, replacing the
UT by a regular transformer with 8 encoder/decoder layers, or removing the copy-gate mechanism
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Regular vs. UTs
(1024/512, 16/4, 8/8)

Ungated vs. Gated
(1024/512, 16/4, 8/8)

UT Loops
(1024/512, 16/4, X/X)

Regular UT Ungated Gated 2/8 4/4 8/2

26.3 22.5 26.5 22.6 23.5 26.1 23.2

Encoder Dimension.
(X/512, 16/4, 2/8)

Decoder Dimension
(1024/X, 16/4, 2/8)

512 2048 3040 256 768 1024 1536

23.3 20.1 19.7 22.5 21.8 23.9 24.3

Table 3: Architecture Experiments We test the effect of model layers, loops, gating, and encoder
dimension and report the log2 samples required for secret recovery (n = 50, Hamming weight 3).

increases the data requirement by a factor of 14. Reducing the number of iterations in the shared
layers from 8 to 4 has a similar effect. Reducing the number of iterations in either the encoder or
decoder (i.e. from 8/8 to 8/2 or 2/8) may further speed up training. Asymmetric transformers (e.g.
large encoder and small decoder) have proved efficient for other math problems, e.g. [41], [17], and
asymmetry helps SALSA as well. Table 3 demonstrates that increasing the encoder dimension from
1024 to 3040, while keeping the decoder dimension at 512, results in a 7-fold reduction in sample
size. Additional architecture experiments are presented in Appendix D.

5.4 Effect of small batch size

log
2
 samples needed for secret recovery as 

log
2
 batch size increases
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Figure 4: Batch size and sample efficiency. Smaller batch sizes allow faster secret recovery.

We experiment with numerous training parameters to optimize SALSA’s performance (e.g. optimizer,
learning rate, floating point precision). While most of these settings do not substantively change
SALSA’s overall performance, we find that batch size has a significant impact on SALSA’s sample
efficiency. In experiments with n = 50 and Hamming weight 3, small batch sizes, e.g. < 50, allow
recovery of secrets with much fewer samples, as shown in Figure 4. The same model architecture is
used as for n = 50 in Table 2.

5.5 Effect of varying modulus and base

Complex relationships between n, q, B, and d affect SALSA’s ability to fully recover secrets. Here,
we explore these relationships, with success measured by the proportion of secret bits recovered.
Table 4 shows SALSA’s performance as n and q vary with fixed hamming weight 3. SALSA performs
better for smaller and larger values of q, but struggles on mid-size ones across all N values (when
hamming weight is held constant). These experiments on small dimension and varying q can be
directly compared to concrete outcomes of lattice reduction attacks on LWE for these sizes [20, Table
1]. Table 5 shows the interactions between q and d with fixed n = 50. Here, we find that varying q
does not increase the density of secrets recovered by SALSA. Finally, Table 6 shows the log2 samples
needed for secret recovery with different input/output bases with n = 50 and hamming weight 3. The
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secret is recovered for all input/output base pairs except for Bin = 17, Bout = 3, and using a higher
input base reduces the log2 samples needed for recovery.

n
log2(q)

6 7 8 9 10 11 12 13 14 15

30 0.90 1.0 1.0 1.0 1.0 1.0 0.9 0.97 1.0 1.0
50 0.94 1.0 1.0 1.0 1.0 1.0 0.94 0.98 1.0 1.0
70 0.96 1.0 1.0 1.0 1.0 1.0 0.96 1.0 1.0 1.0
90 0.97 0.97 1.0 1.0 0.97 1.0 0.97 0.97 0.97 0.99

Table 4: n vs q. Results reported are proportion of total secret bits recovered for various n/q combinations.
Green cells mean the secret was fully guessed, yellow cells all the 1 bits were correctly guessed during training,
and red cells mean SALSA failed. Fixed parameters: h = 3, basein = baseout = 81. 1/1 encoder layers,
1024/512 embedding dimension, 16/4 attention heads, 2/8 loops.

d log2(q)
6 7 8 9 10 11 12 13 14 15

0.06 0.94 1.0 1.0 1.0 1.0 1.0 0.94 0.98 1.0 1.0
0.08 0.92 0.92 1.0 0.92 0.94 0.92 0.94 0.94 0.94 0.94
0.10 0.90 0.94 0.96 0.90 0.90 0.92 0.90 0.92 0.94 0.92

Table 5: q vs d. Results reported are proportion of total secret bits recovered for various q/d combinations.
Green cells mean the secret was fully guessed, yellow cells all the 1 bits were correctly guessed during training,
and red cells mean SALSA failed. Parameters: N = 50, basein = baseout = 81. 1/1 layers, 3040/1024
embedding dimension, 16/4 attention heads, 2/8 loops.

Bin
Bout

3 7 17 37 81

7 25.8 24.0 25.4 24.5 24.9
17 - 25.9 27.2 25.6 25.4
37 22.8 22.1 22.6 22.2 22.9
81 22.2 22.1 22.4 21.9 22.1

Table 6: Bin v. Bout. Effect of input and output integer base representation on log2 samples needed for
secret recovery. In each row, the bold numbers represent the lowest log2 samples needed for this value of Bin.
Parameters: n = 50, h = 3, 2/2 layers, 1024/512 embedding dimension, 16/4 attention heads, and 2/8 loops.

5.6 Increasing dimension and density

To attack real-world LWE problems, SALSA will have to successfully handle larger dimension n
and density d. Our experiments with architecture suggest that increasing model size, and especially
encoder dimension, is the key factor to scaling n. Empirical observations indicate that scaling d is
a much harder problem. We hypothesize that this is due to the subset sum modular addition at the
core of LWE with binary secrets. For a secret with Hamming weight h, the base operation a · s+ e
mod q is a sum of h integers, followed by a modulus. For small values of h, the modulus operation
is not always necessary, as the sum might not exceed q. As density increases, so does the number of
times the sum “wraps around” the modulus, perhaps making larger Hamming weights more difficult
to learn. To test this hypothesis, we limited the range of the coordinates in a, so that ai < r, with
r = αq and 0.3 < α < 0.7. For n = 50, we recovered secrets with density up to 0.3, compared to
0.08 with the full range of coordinates (see Table 7). Density larger than 0.3 is no longer considered
a sparse secret.

5.7 Increasing error size
Theoretically for lattice problems to be hard, σ should scale with

√
n, although this is often ignored

in practice, e.g. [4]. Consequently, we run most SALSA experiments with σ = 3, a common choice
in existing RLWE-based systems. Here, we investigate how SALSA performs as σ increases. First,
to match the theory, we run experiments where σ = ⌊

√
n⌋, h = 3 and found that SALSA recovers

secrets even as σ scales with
√
n (see Table 8, same model architecture as Table 2). Second, we

evaluate SALSA’s performance for fixed n and h values as σ increases. We fix n = 50 and h = 3
and evaluate for σ values up to σ = 24. Secret recovery succeeds for all tests, although the number
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d
Max a value as fraction of q

0.35 0.4 0.45 0.5 0.55 0.6 0.65

0.16 1.0 1.0 1.0 1.0 1.0 1.0 0.88
0.18 1.0 1.0 1.0 1.0 0.82 0.86 0.84
0.20 1.0 1.0 1.0 1.0 1.0 0.82 0.82
0.22 0.98 1.0 1.0 0.98 0.80 0.78 0.86
0.24 1.0 1.0 1.0 0.98 0.78 0.78 0.80
0.26 1.0 1.0 0.88 0.92 0.76 0.76 0.76
0.28 0.98 1.0 0.80 0.74 0.74 0.76 0.74
0.30 0.98 1.0 0.93 0.76 0.72 0.74 0.74

Table 7: Secret recovery when max a value is bounded. Results shown are fraction of the secret
recovered by SALSA for n = 50 with varying d when a values are ≤ p ·Q. Green means that s was
fully recovered. Yellow means all 1 bits were recovered, but not all 0 bits. Red means SALSA failed.
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Figure 5: log2 samples vs. σ. As σ increases, log2
samples required for n = 50, h = 3 increases lin-
early.

n / σ 30/5 50/7 70/8 90/9

log Samples 18.0 18.5 19.3 19.6

Table 8: log2 samples needed for secret recovery
when σ = ⌊

√
n⌋. Results averaged over 6 SALSA

runs at each n/σ level.

of samples required for recovery increases linearly (see Figure 5 in Appendix). For both sets of
experiments, we reuse samples up to 10 times.

6 SALSA in the Wild

6.1 Problem Size

Currently, SALSA can recover secrets from LWE samples with n up to 128 and density d = 0.02. It
can recover higher density secrets for smaller n (d = 0.08 when n = 50). Sparse binary secrets are
used in real-world RLWE-based homomorphic encryption implementations, and attacking these is a
future goal for SALSA. To succeed, SALSA will need to scale to attack larger n. Other parameters
for full-strength homomorphic encryption such as secret density, are within SALSA’s current reach,
(the secret vector in HEAAN has d < 0.002) and error size ( [4] recommends σ = 3.2).

Other LWE-based schemes use dimensions that seem achievable given our current results. For
example, in the LWE-based public key encryption scheme Crystal-Kyber [9], the secret dimension is
k × 256 for k = {2, 3, 4}, an approachable range for SALSA. The LWE-based signature scheme
Crystal-Dilithium has similar sizes for n [31]. However, these schemes don’t use sparse binary
secrets, and adapting SALSA to non-binary secrets is a non-trivial avenue for future work.

6.2 Sample Efficiency

A key requirement of real-world LWE attacks is sample efficiency. In practice, an attacker will only
have access to a small set of LWE instances (a, b) for a given secret s. For instance, in Crystal-Kyber,
there are only (k + 1)n LWE instances available with k = 2, 3 or 4 and n = 256. The experiments
in [20, 11] use fewer than 500 LWE instances. The TU Darmstadt challenge provides n2 LWE
instances to attackers.

The log2 samples column of Table 2 lists the number of LWE instances needed for model training.
This number is much larger than what is likely available in practice, so it is important to reduce
sample requirements. Classical algebraic attacks on LWE require LWE instances to be linearly
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Figure 6: Reusing LWE samples yields a significant decrease in the number of samples needed for secret
recovery. Shown here is the ratio of samples required for secret recovery with reuse to the samples required for
secret recovery without reuse, both expected (top curve) and observed (bottom curve, better than expected).

K Times Samples Reused
5 10 15 20 25

1 20.42 21.915 20.215 17.610 17.880
2 19.11 20.605 18.695 18.650 16.490
3 20.72 19.825 17.395 18.325 16.200
4 19.11 19.065 17.180 15.405 16.355

Table 9: Effect of Sample Reuse on Sample Efficiency. Sample reuse via linear combinations greatly
improves sample efficiency. The secret is recovered in all experiments, indicating that error introduced by sample
combination does not degrade performance. Parameters: n = 50, Hamming 3, 2/2 encoder layers, 1024/512
embedding, 16/4 attention heads, 2/8 loops.

independent, but SALSA does not have this limitation. Thus, we can reduce SALSA’s sample use in
several ways. First, we can reuse samples during training. Figure 6 confirms that this allows secret
recovery with fewer samples. Second, we can use integer linear combinations of given LWE samples
to make new samples which have the same secret but a larger error σ, explained below. Using this
method, we can generate up to 242 new samples from 100 original samples.

Generating New Samples. It is possible to generate new LWE samples from existing ones via linear
combinations. Assume we have access to m LWE samples, and suppose a SALSA model can still
learn from samples from a family of Gaussian distributions with standard deviations less than Nσ,
where σ is the standard deviation of the original LWE error distribution. Experimental results show
that SALSA’s models are robust to σ up to 24 (see §5.7). With these assumptions, the number of
new samples we could make is equal to the number of vectors v = (v1, . . . , vm)T ∈ Zm such that∑m

i=1 |vi| ≤ N2. For simplicity, assume that v′is are nonnegative. Then, there are
∑N2

n=1
(m+n−1)!
(m−1)!(n)!

new LWE samples one can generate.

Results on Generated Samples. Next, we show how SALSA performs when we combine different
numbers of existing samples to create new ones for model training. We use the above method but
do not allow the same sample to appear more than once in a given combination. We fix K, which
is the number of samples used in each linear combination of reused samples. Then, we generate K
coefficients for the combined samples, where each ki is randomly chosen from {−1, 0, 1}. Finally,
we randomly select K samples from a pre-generated set of samples, and produce a new sample from
their linear combination with the ki coefficients. These new samples follow error distribution with
the standard deviation less than or equal to

√
Kσ.

We experiment with different values of K, as well as different numbers of times we reuse a sample
in linear combinations before discarding it. The log2 samples required for secret recovery for each
(K, times reused) setting are reported in Table 9. The first key result is that the secret is recovered
in all experiments, confirming that the additional error introduced via sample combination does not
disrupt model learning. Second, as expected, sample requirements decrease as we increase K and
times reused.
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6.3 Comparison to Baselines

Most existing attacks on LWE such as uSVP and dual attack use an algebraic approach that involves
building a lattice from LWE instances such that this lattice contains an exceptionally short vector
which encodes the secret vector information. Attacking LWE then involves finding the short vector
via lattice reduction algorithms like BKZ [23]. For LWE with sparse binary secrets, the main focus
of this paper, various techniques can be adapted to make algebraic attacks more efficient. [20, 11]
and [25] provide helpful overviews of algebraic attacks on sparse binary secrets. More information
about attacks on LWE is in Section 6.4.

Compared to existing attacks, SALSA’s most notable feature is its novelty. We do not claim to have
better runtime, neither do we claim the ability to attack real-world LWE problems (yet). Rather,
we introduce a new attack and demonstrate with non-toy successes that transformers can be used
to attack LWE. Given our goal, no serious SALSA speedup attempts have been made so far, but a
few simple improvements could reduce runtime. First, the slowest step in SALSA is model training,
which can be greatly accelerated by distributing it across many GPUs. Second, our transformers are
trained from scratch, so pre-training them on such basic tasks as modular arithmetic could save time
and data. Finally, the amount of training needed before the secret is recovered depends in large part
on the secret guessing algorithms. New algorithms might allow SALSA to recover secrets faster.

Since SALSA does not involve finding the shortest vector in a lattice, it has an advantage over the
algebraic attacks – with all LWE parameters fixed and in the range of SALSA, SALSA can attack the
LWE problem for a smaller modulus q compared to the algebraic attacks. This is because the target
vector is relatively large in the lattice when q is smaller and is harder to find. For instance, in [20],
their Table 2 shows that when the block size is 45, for n = 90, their attack does not work for q less
than 10 bits, but we can handle q as small as 8 bits (Table 4).

6.4 Overview of Attacks on LWE

Typically, attacks on the LWE problem use an algebraic approach and involve lattice reduction
algorithms such as BKZ [23]. The LWE problem can be turned into a BDD problem (Bounded
Distance Decoding) by considering the lattice generated by LWE instances, and BDD can be solved
by Babai’s Nearest Plane algorithm [47] or pruned enumeration [48], this is known as the primal BDD
attack. The primal uSVP attack constructs a lattice via Kannan’s embedding technique [40] whose
unique shortest vector encodes the secret information. The Dual attack [51] finds a short vector in
the dual lattice which can be used to distinguish the LWE samples from random samples. Moreover,
there are also attacks that do not use lattice reduction. For instance, the BKW style attack [5] uses
combinatorial methods; however, this assumes access to an unbounded number of LWE samples.

Binary and ternary secret distributions are widely used in homomorphic encryption schemes. In
fact, many implementations even use a sparse secret with Hamming weight h. In [14] and [50], both
papers give reductions of binary-LWE to hard lattice problems, implying the hardness of binary-
LWE. Specifically, the (n, q)-binary-LWE problem is related to a (n/t, q)-LWE problem where
t = O(log(q)). For example, if n = 256 is a hard case for uniform secret, we can be confident that
binary-LWE is hard for n = 256 log(256) = 2048. But [11] refines this analysis and gives an attack
against binary-LWE. Their experimental results suggest that increasing the secret dimension by a
log(log(n)) factor might be already enough to achieve the same security level for the corresponding
LWE problem with uniform secrets.

Let us now turn to the attacks on (sparse) binary/ternary secrets. The uSVP attack is adapted to
binary/ternary secrets in [11], where a balanced version of Kannan’s embedding is considered. This
new embedding increases the volume of the lattice and hence the chance that lattice reduction
algorithms will return the shortest vector. The Dual attack for small secret is considered in [6] where
the BKW-style techniques are combined. The BKW algorithm itself also has a binary/ternary-LWE
variant [7]. Moreover, several additional attacks are known which can exploit the sparsity of an LWE
secret, such as [16, 25] . All of these techniques use a combinatorial search in some dimension d, and
then follow by solving a lattice problem in dimension n− d. For sparse secrets, this is usually more
efficient than solving the original lattice problem in dimension n.
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7 Related Work

Use of ML for cryptanalysis. The fields of cryptanalysis and machine learning are closely re-
lated [60]. Both seek to approximate an unknown function F using data, although the context
and techniques for doing so vary significantly between the fields. Because of the similarity
between the domains, numerous proposals have tried to leverage ML for cryptanalysis. ML-
based attacks have been proposed against a number of cryptographic schemes, including block
ciphers [3, 65, 42, 10, 34, 12, 24], hash functions [35], and substitution ciphers [1, 66, 8]. Although
our work is the first to use recurrent neural networks for lattice cryptanalysis, prior work has used
them for other cryptographic tasks. For example, [36] showed that LSTMs can learn the decryption
function for polyalphabetic ciphers like Enigma. Follow-up works used variants of LSTMs, including
transformers, to successfully attack other substitution ciphers [1, 66, 8].

Use of transformers for mathematics. The use of language models to solve problems of mathematics
has received much attention in recent years. A first line of research explores math problems set up in
natural language. [62] investigated their relative difficulty, using LSTM [38] and transformers, while
[37] showed large transformers could achieve high accuracy on elementary/high school problems. A
second line explores various applications of transformers on formalized symbolic problems. [45]
showed that symbolic math problems could be solved to state-of-the-art accuracy with transformers.
[70] discussed their limits when generalizing out of their training distribution. Transformers have
been applied to dynamical systems [18], transport graphs [19], theorem proving [57], SAT solving
[63], and symbolic regression [13, 28]. A third line of research focuses on arithmetic/numerical
computations and has had slower progress. [55] and [54] discussed the difficulty of performing
arithmetic operations with language models. Bespoke network architectures have been proposed
for arithmetic operations [39, 68], and transformers were used for addition and similar operations
[58]. [17] showed that transformers can learn numerical computations, such as linear algebra, and
introduced the shallow models with shared layers used in this paper.

8 Conclusion

In this paper, we demonstrate that transformers can be trained to perform modular arithmetic. Building
on this capability, we design SALSA, a method for attacking the LWE problem with binary secrets, a
hardness assumption at the foundation of many lattice-based cryptosystems. We show that SALSA
can break LWE problems of medium dimension (up to n = 128), comparable to those in the
Darmstadt challenge [15], with sparse binary secrets. This is the first paper to use transformers to
solve hard problems in lattice-based cryptography. Future work will attempt to scale up SALSA to
attack higher dimensional lattices with more general secret distributions.

The key to scaling up to larger lattice dimensions seems to be to increase the model size, especially
the dimensions, the number of attention heads, and possibly the depth. Large architectures should
scale to higher dimensional lattices such as n = 256 which is used in practice. Density, on the other
hand, is constrained by the performance of transformers on modular arithmetic. Better representations
of finite fields could improve transformer performance on these tasks. Finally, our secret guessing
algorithms enable SALSA to recover secrets from low-accuracy transformers, therefore reducing the
data and time needed for the attack. Extending these algorithms to take advantage of partial learning
should result in better performance.
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Appendix

A Further Details of LWE

A.1 Ring Learning with Errors (§2)

We now define RLWE samples and explain how to get LWE instances from them. Let n be a power
of 2, and let Rq = Zq[x]/(x

n + 1) be the set of polynomials whose degrees are at most n− 1 and
coefficients are from Zq. The set Rq forms a ring with additions and multiplications defined as the
usual polynomial additions and multiplications in Zp[x] modulo xn +1. One RLWE sample refers to
the pair

(a(x), b(x) := a(x) · s(x) + e(x)),

where s(x) ∈ Rq is the secret and e(x) ∈ Rq is the error with coefficients subject to the error
distribution.

Let a, s and e ∈ Zn
q be the coefficient vectors of a(x), s(x) and e(x). Then the coefficient vector b of

b(x) can be obtained via the formula

b = Acirc
a(x) · s + e,

here Acirc
a(x) represents the n × n generalized circulant matrix of a(x). Precisely, let a(x) = a0 +

a1x+ . . .+ an−2x
n−2 + an−1x

n−1, then a = (a0, a1, . . . , an−2, an−1) and

Acirc
a(x) =


a0 −an−1 −an−2 . . . −a1
a1 a0 −an−1 . . . −a2
a2 a1 a0 . . . −a3
...

...
...

. . .
...

an−1 an−2 an−3 . . . a0

 .

Therefore, one RLWE sample gives rise to n LWE instances by taking the rows of Acirc
a(x) and the

corresponding entries in b.

A.2 Search to Decision Reduction for Binary Secrets (§2)

We give a proof of the search binary-LWE to decisional binary-LWE reduction. This is a simple
adaption of the reduction in [59] to the binary secrets case. We call an algorithm a (T, γ)-distinguisher
for two probability distributions D0,D1 if it runs in time T and has a distinguishing advantage γ.
We use LWEn,m,q,χ to denote the LWE problem which has secret dimension n, m LWE instances,
modulus q and the secret distribution χ.

Theorem A.1. If there is a (T, γ)-distinguisher for decisional binary-LWEn,m,q,χ, then there is a
T ′ = Õ(Tn/γ2)-time algorithm that solves search binary-LWEn,m′,q,χ with probability 1− o(1),
where m′ = Õ(m/γ2).

Proof. Let s = (s1, . . . , sn) with si ∈ {0, 1}. We demonstrate the strategy of recovering s1, and the
rest of the secret coordinates can be recovered in the same way. Let m′ = Õ(1/γ2)m, given an LWE
sample (A, b) where A ∈ Zm′×n

q ,b ∈ Zm′

q , we compute a pair (A′, b′) as follows:

A′ = A +′ c, b′ = b.

Here c ∈ Zm′

q is sampled uniformly and the symbol “ +′ ” means that we are adding c to the first
column of A. One verifies by the definition of LWE that if s1 = 0, then the pair (A′, b′) would
be LWE samples with the same error distribution. Otherwise, the pair (A′, b′) would be uniformly
random in Zm′×n

q × Zm′

q . We then feed the pair (A′, b′) to the (T, γ)-distinguisher for LWEn,m,q,χ,
and we need to running the distinguisher m′/m = Õ(1/γ2) times given the number of instances.
Since the advantage of this distinguisher is γ with m LWE instances, and we are feeding it m′ LWE
instances, it follows from the Chernoff bound that if the majority of the outputs are “LWE”, then
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the pair (A′,b′) is an LWE sample and therefore s1 = 0. If not, s1 = 1. Guessing one coordinate
requires running the distinguisher Õ(1/γ2) times, therefore, this search to reduction algorithm takes
time T ′ = Õ(Tn/γ2). Note that we can use the same m′ LWE instances for each coordinate,
therefore it requires m′ = Õ(m/γ2) samples to recover all the secret coordinates.

B Additional Modular Arithmetic Results (§3)

⌈log2(q)⌉ q ⌈log2(q)⌉ q

5 19, 29 18 147647, 222553
6 37, 59 19 397921, 305423
7 67, 113 20 842779, 682289
8 251, 173 21 1489513, 1152667
9 367, 443 22 3578353, 2772311
10 967, 683 23 6139999, 5140357
11 1471, 1949 24 13609319, 14376667
12 3217, 2221 25 31992319, 28766623
13 6421, 4297 26 41223389, 38589427
14 11197, 12197 27 94056013, 115406527
15 20663, 24659 28 179067461, 155321527
16 42899, 54647 29 274887787, 504470789
17 130769, 115301 30 642234707, 845813581

Table 10: q values used in our experiments

Here, we provide additional information on our single and multidimensional modular arithmetic
experiments from §3.1. Before presenting experimental results, we first highlight two useful tables.
Table 10 shows the q values used in our integer and multi-dimension modular arithmetic problems.
Table 11 is an expanded version of Table 1 in the main paper body. It shows how the log2 samples
required for success changes with the base representation for the input/output, but includes additional
values of base B (secret is fixed at 728).

⌈log2(q)⌉
Base

2 3 4 5 7 17 24 27 30 31 63 81 128

15 23 21 21 23 22 20 20 23 22 21 21 20 20
16 24 22 23 22 22 23 22 22 22 23 22 22 21
17 - 23 24 25 22 26 23 24 22 24 23 22 22
18 - 23 23 25 23 - 23 24 25 - 23 22 22
19 - 23 - - 25 23 25 24 - - 25 25 24
20 - - - - - 24 25 24 26 - - 24 25
21 - 24 - - 25 - - - - - - - 25
22 - - - - - - - 25 - 26 - - 25
23 - - - - - - - - - - 25 - -
24 - - - - - - - - - - - - -

Table 11: Base-2 logarithm of the number of examples needed to reach 95% accuracy, for different values of
⌈log2(q)⌉ and bases.

Base vs. Secret. We empirically observe that the base B used for integer representation in our
experiments may provide side-channel information about the secret s in the 1D case. For example, in
Table 12, when the secret value is 729, bases 3, 9, 27, 729 and 3332 all enable solutions with much
higher q (8 times higher than the next highest result). Nearly all these are powers of 33 as is the secret
729 = 36. In the table, one can see that these same bases provide similar (though not as significant)

3And 3332 can easily be written out as a sum of powers of 3, e.g. 3332 = 38−37−36−35−34+32+3−1.
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“boosts” in q for secrets on either side of 729 (e.g. 728, 730), as well as for 720 = 36 − 32. Based
on these results, we speculate that when training on (a, b) pairs with an unknown secret s, testing
on different bases and observing model performance may allow some insight into s’s prime factors.
More theoretical and empirical work is needed to verify this connection.

Base Secret value
720 721 722 723 724 725 726 727 728 729 730

2 - 18 16 - - - 16 16 - 16 -
3 19 16 18 16 18 18 19 18 21 24 20
4 18 18 18 18 18 - - - 18 18
5 18 17 16 16 16 18 18 17 16 19 16
7 - 18 - 18 - 20 - - 19 18 -
9 23 18 18 18 18 18 18 21 18 24 23
11 20 20 - 19 21 21 21 20 - - 19
17 18 18 - 19 19 18 18 20 20 -
27 23 - 23 18 18 18 21 22 21 24 22
28 - 20 18 - 20 18 - 19 23 18 -
49 18 22 18 19 21 18 - 18 19 18 18
63 20 21 18 20 19 19 18 19 18 - -
128 20 - 18 22 20 - 19 18 19 19 19
729 18 20 19 18 19 21 19 19 18 25 18
3332 22 22 22 23 22 22 21 22 23 23 22

Table 12: Relationship between base and secret. Numbers in table represent the highest log2(q) value achieved
for a particular base/secret combo. Values of log2(q) >= 23, indicating high performance, are bold.

Ablation over transformer hyper-parameters. We provide additional experiments on model
architecture, specifically examining the effect of model layers, optimizer, embedding dimension and
batch size on integer modular inversion performance. Tables 13-16 show ablation studies for the
1D modular arithmetic task, where entries are of the form (best log2(q)/log2(samples)), e.g. the
highest modulus achieved and the number of training samples needed to achieve this. The best results,
meaning the highest q with the lowest log2(samples), are in bold. For all experiments, we use the
base architecture of 2 encoder/decoder layers, 512 encoder/decoder embedding dimension, and 8/8
attention heads (as in Section 3.1) and note what architecture element changes in the table heading.

We find that shallow transformers (e.g 2 layers, see Table 13) work best, allowing to solve problems
with a much higher q especially when the base B is large. The AdamCosine optimizer (Table 14)
usually works best, but requires smaller batch sizes for success with large bases. For small bases,
a smaller embedding dimension of 128 performs better (Table 15), but increasing base size and
dimension simultaneously yield good performance. Results on batch size (Table 16) do not show a
strong trend.

C Additional information on SALSA Secret Recovery (§4.3)

C.1 Direct Secret Recovery

Recovering Secrets from Predictions. In the direct secret recovery phase, the model predicts, for
each value of K, n sequences representing integers in base B (one for each special a input). They
are decoded as n integers, and concatenated as a vector s̃. The function binarize, on line 7 of
Algorithm 1, then predicts the binary secret from s̃. binarize outputs six predictions, using three
methods: mean, softmax-mean, and mode comparison.

• The mean comparison method takes the mean of the coordinates of s̃ and computes two potential
secrets: f01(s̃) where all coordinates above the mean as set to 0 and all below the mean to 1, and
f10(s̃) where all coordinates above the mean are set to 1 and all below the mean to 0.

• In the softmax-mean comparison method, we apply a softmax function to s̃ before using the mean
comparison method, to obtain two secret predictions.

• The mode comparison method uses the mode (the most common value) of s̃ instead of the mean.
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Base # Transformer Layers
2 4 6

27 19/24 18/27 20/25
63 18/25 16/25 15/22

3332 23/26 23/– 18/22

Table 13: 1D case: Ablation over
number of transformer layers.

Base Optimizer
Adam (0, 5e−5) Adam (3000, 5e−5) AdamCosine (3000, 1e−5)

27 18/26 19/24 22/27
3332 23/26 23/27 22/26
3332* 23/26 23/26 23/25

Table 14: 1D case: Ablation over optimizers. Parenthetical denotes (#
warmup steps, learning rate); * = batch size 128.

Base Embedding Dimension
512 256 128 64

3 21/25 21/24 22/26 19/-
27 23/26 23/26 23/25 19/26
63 23/27 18/24 19/27 18/26

3332 23/25 23/26 23/26 23/27

Table 15: 1D case: Ablation over embedding.

Base Batch size
64 96 128 192 256

3 21/26 21/25 21/26 22/26 23/26
27 21/25 24/27 22/27 23/26 24/28
63 - 20/27 23/25 - 23/26
3332 23/26 23/26 23/25 23/25 23/26

Table 16: 1D case: Ablation over training batch size.

Altogether, these binarization methods produce six secret guesses. In our SALSA evaluation, all of
these are compared against the true secret s, and the number of matching bits is reported. If s̃ fully
matches s, model training is stopped. When s is not available for comparison, the methods in §4.4
can be used to verify s̃’s correctness.

K values. At the end of each epoch, we use 10K values for direct secret guessing, 5 of which are
fixed and 5 of which are randomly generated. The fixed K values are K = [239145, 42899, q −
1, 3q + 7, 42900], while the random K values are chosen from the range (q, 10q).

C.2 Distinguisher-Based Secret Recovery

Here, we provide more details on the parameters and subroutines used in Algorithm 2.

• τ : This parameter sets the bound on q that will be used for the distinguisher computation. In our
experiments, we set τ = 0.1.

• accτ : This denotes the distinguisher advantage. Let accτ denote the proportion of model predic-
tions which fall within the chosen tolerance (e.g. accuracy within tolerance as described in §4.2),
then advantage = accτ − 2 ∗ τ .

• LWESamples(t, n, q) is a subroutine that returns LWE samples (A,b) ∈ Zn×t
q × Zt

q , note that
now columns of A corresponds to LWE instances.

C.3 Secret Recovery in Practice

Which secret recovery 

method finds secret first?

Distinguisher Direct Both

C
o
u
n
t

0

20

40
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Figure 7: Frequency counts of which secret recovery method succeeds first for 90 successful SALSA runs.

Empirically, we observe that our direct secret guessing recovers the secret more quickly than the
distinguisher-based method. Figure 7 plots the number of times each technique succeeded over 120
SALSA runs with varying n and d. The direct secret guessing method succeeds in 80% of cases.
Occasionally (20%), the distinguisher finds the secret first. Both methods simultaneously succeed in
30% of the cases.
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D SALSA Architecture experiments

Several key architecture choices determine SALSA’s ability to recover secrets with higher n and
d, namely the encoder and decoder dimension as well as the number of attention heads. Other
architecture choices determine the time to solution but not the complexity of problems SALSA could
solve. For example, universal transformers (UT) are more sample efficient than regular transformers.
Using gated loops in the UT with more loops on the decoder than the encoder reduced both model
training time and the number of samples needed. Here, we present ablation results for all these
architectural choices.

Encoder
Loops/Layers

Decoder
Loops/Layers
2 4 8

2 1.2 4.7 0.8
4 0.7 0.4 0.6
8 0.1 0.1 0.1

Table 17: Transformers vs UTs.
Ratio of training samples required
for success for UTs with X/X
encoder/decoder loops vs regu-
lar transformers with X/X en-
coder/decoder layers.

Encoder
Loops

Decoder Loops
2 4 8

2 1.0 1.3 0.3
4 0.3 0.3 0.3
8 0.1 0.1 0.1

Table 18: Gated vs Ungated UTs.
Ratio of training samples required
for success for gated UTs with X/X
encoder/decoder loops vs ungated
UTs with same loop numbers.

Encoder
Loops

Decoder Loops
2 4 8

2 23.5 25.4 23.4
4 23.3 24.2 24.4
8 23.1 22.3 22.5

Table 19: Loops. Average log2
of training samples required for
N = 50, h = 3, q = 251,
basein/baseout = 81 as loops
vary.

Universal Transformers vs. Regular Transformers. First, we compare universal transformers
(UT) with “regular” transformers. We run dueling experiments on medium size problems (N = 50,
d = 0.06, q = 251, Bin/Bout = 81), comparing gated UT and 2 to 8 loops to regular transformers
with is many layers as the UT has loops. For each pair of experiment, we measure the ratio of the
number of training samples needed to recover the secret. As Table 17 shows, universal transformers
prove more sample efficient as model size increases. We use them exclusively.

Gated vs Ungated UTs. To understand the effect of gating on sample efficiency, we run two
experiments with medium-size problems (N = 50, d = 0.06, q = 251, Bin/Bout = 81), with gated
and ungated universal transformers with 2 to 8 loops in the encoder and decoder. Table 18 proves that
gated UTs are much more sample-efficient.

Number of Loops. Table 19 reports the logarithm of the average number of samples needed to
recover the secret for N = 50 and h = 3, for various numbers of loops in the encoder and decoder
(dimensions=1025/512, heads=16/4). 8/4 and 8/8 loops prove more efficient, but because training
time increases steeply with the number of loops in the encoder (which processes longer sequences),
we kept 2 encoder and 8 decoder loops in our experiments.

Encoder/Decoder Dimension. Table 3 in §5.2 show that larger encoders and smaller decoders
improve sample efficiency. Here, we explore how encoder and decoder dimension impact the size
of the secrets (in terms of dimension n and hamming weight) that SALSA can recover. Our results,
shown in Tables 20 and 21, follow the same pattern as before: large encoders and small decoder allow
for the recovery of secrets of higher dimension n. Furthermore, for n = 30, larger encoders and/or
smaller decoders allow for the recovery of secrets with hamming weight 4.

n
Encoder Dimension

(hamming=3)
Encoder Dimension

(hamming=4)
512 1024 2048 3040 512 1024 2048 3040

30 1.0 1.0 1.0 1.0 0.87 1.0 1.0 1.0
50 1.0 1.0 1.0 1.0 0.94 0.94 0.94 0.94
70 0.97 1.0 1.0 1.0 0.96 0.97 0.94 0.96
90 0.97 0.98 1.0 1.0 0.96 0.96 0.97 0.97

Table 20: Ablation over Encoder Dimension. Proportion of secret bits recovered for varying n and encoder
dimension. For all experiments, we fix decoder dimension to be 512, 2/2 layers, 2/8 loops. Green means secret
was guessed, yellow means all 1s, but not all 0s, were guessed, and red means SALSA failed.
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n
Decoder Dimension

(hamming=3)
Decoder Dimension

(hamming=4)
256 768 1024 1536 256 768 1024 1536

30 1.0 1.0 1.0 1.0 1.0 1.0 0.90 0.87
50 1.0 1.0 1.0 0.94 0.94 0.92 0.92 0.92
70 1.0 1.0 1.0 0.96 0.96 0.94 0.94 0.94
90 1.0 0.97 0.97 0.97 0.97 0.96 0.97 -

Table 21: Ablation over Decoder Dimension. Proportion of secret bits recovered for varying n and encoder
dimension. For all experiments, we fix encoder dimension to be 1024, 2/2 layers, 2/8 loops. Green means secret
was guessed, yellow means all 1s, but not all 0s, were guessed, and red means SALSA failed.

Attention Heads. In these experiments, we train universal transformers with 2 encoder/decoder layers,
1024/512 embedding dimension, 2/8 encoder/decoder loops, with different number of attentions
heads, on problems of different dimensions n, and measure SALSA secret recovery rate. Increasing
the number of attention heads in the encoder, and reducing it to 4 in the decoder allows SALSA to
recover secrets for n = 90 (Table 22), although it slightly increases the number of samples needed
for recovery (Table 23). Increasing the number of decoder heads increases the number of samples
needed but does not provide the same scale-up for n = 90.

n Encoder/Decoder Heads
8/8 16/4 16/8 16/16 32/4 32/8 32/16 32/32

30 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
70 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
90 0.97 1.0 0.97 0.99 1.0 0.98 0.98 0.97

Table 22: Attention Heads: Effect on secret recovery. Table of success for varying n with hamming 3 for
encoder/decoder head combinations. Green means secret was guessed, yellow means all 1s, but not all 0s, were
guessed.

Attention Heads
(1024/512, X/X, 2/8)

8/8 16/4,8,16 32/4,8,16,32

22.4 22.8, 22.9, 23.2 23.0, 23.1, 23.7, 24.7

Table 23: Attention Heads: Effect on log2 samples. We test the effect of attention heads and report the log2
samples required to recover the secret in each setting. Experiments are run with n = 50, hamming 3.
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