
Zero-Knowledge in EasyCrypt

Denis Firsov
Guardtime

Tallinn University of Technology
Tallinn, Estonia

denis.firsov@guardtime.com

Dominique Unruh
Tartu University
Tartu, Estonia
unruh@ut.ee

Abstract—We formalize security properties of zero-knowledge protocols and their proofs in EasyCrypt. Specifically, we focus
on sigma-protocols (three-round protocols). Most importantly, we also cover properties whose security proofs require the
use of rewinding; prior work has focused on properties that do not need this more advanced technique. On our way we
give generic definitions of the main properties associated with sigma protocols, both in the computational and information-
theoretical setting. We give generic derivations of soundness, (malicious-verifier) zero-knowledge, and proof of knowledge
from simpler assumptions with proofs which rely on rewinding. Also, we address sequential composition of sigma protocols.
Finally, we illustrate the applicability of our results on three zero-knowledge protocols: Fiat-Shamir (for quadratic residues),
Schnorr (for discrete logarithms), and Blum (for Hamiltonian cycles, NP-complete).

Index Terms—cryptography, formal methods, EasyCrypt, zero-knowledge, sigma protocols, rewinding

Contents

1 Introduction 2
1.1 Related Work . 2

2 Preliminaries 3
2.1 Basics . 3
2.2 Rewinding . 4
2.3 Running Example: The Fiat-Shamir Protocol . 5

3 Generic Definitions 5
3.1 Basics . 5
3.2 Completeness . 6
3.3 Soundness . 6
3.4 Special Soundness . 7
3.5 Proof of Knowledge . 8
3.6 Zero-Knowledge . 8

4 Generic Derivations 9
4.1 Zero-Knowledge from One-Shot Simulation . 9
4.2 Extractability from Special Soundness . 10
4.3 Soundness from Extractability . 11

5 Sequential Composition 12
5.1 Iterated Completeness . 12
5.2 Iterated Soundness . 13
5.3 Iterated Zero-Knowledge . 13

6 Case Studies 14
6.1 Schnorr Protocol . 14
6.2 Blum Protocol . 14

7 Formalization Caveats 16

8 Conclusions 17

References 17

1. Introduction

Zero-knowledge (ZK) protocols are cryptographic pro-
tocols that allow a prover to convince a verifier that
they possess certain knowledge, without revealing that
knowledge. More formally, let R be a relation. Then a ZK
protocol for the relation R allows the prover to convince the
verifier that the prover knows a witness w for some given
statement s, so that (s, w) ∈ R, without revealing anything
else about w itself. For example, the prover may prove
that a hash s is a hash of some well-formed data w. (In
which case R consists of all pairs (s, w) with s = hash(w)
and w well-formed.) ZK protocols constitute an important
building block in cryptography as they can help to enforce
the honest behaviour from potentially malicious parties.
For example, the proof can provide a guarantee that the
party is authorised to perform certain actions or access
certain sensitive information.

The security of ZK protocols is expressed via properties
of completeness, soundness, zero-knowledge, and proof
of knowledge. Completeness ensures the correct operation
of the protocol if both prover and verifier follow the
protocol honestly. Soundness ensures that for “wrong”
statements (i.e., with no witness) a prover can convince the
verifier with only a small probability. Proof of knowledge
guarantees that any prover that successfully convinces the
verifier actually knows a witness (and not only abstractly
that it exists). Zero-knowledge establishes that any cheating
verifier cannot learn anything about the witness when
running the protocol. These properties are typically shown
by mathematical pen-and-paper proofs.

Pen-and-paper proofs are, however, inherently error-
prone. Humans will make mistakes both when writing and
when checking the proofs. To ensure high confidence in
cryptographic systems, we use frameworks for computer-
aided verification of cryptographic proofs. One widely used
such framework is the EasyCrypt tool [1]. In EasyCrypt, a
cryptographic proof is represented by a sequence of “games”
(simple probabilistic programs), and the relationships
between programs are analyzed in a probabilistic relational
Hoare logic (pRHL). EasyCrypt has been successfully
used to verify a variety of cryptographic schemes, such
as electronic voting [2], digital signatures [3], differential
privacy [4], security of IPsec [5], etc.

Properties related to ZK protocols are challenging to
prove formally. For example, the proofs of the important
zero-knowledge property requires a technique known as
rewinding of adversaries. To the best of our knowledge,
until recently rewinding was unavailable in EasyCrypt and
other popular cryptography-oriented theorem provers. As a
result, properties relying on rewinding were never properly
addressed in formal setting. As we show in the related
work section (Sec. 1.1), the existing formalization efforts of
sigma-protocols mostly addressed properties which do not
depend on rewinding which include completeness, special
soundness, and honest-verifier zero-knowledge.

Recently the rewinding of programs was formally
implemented in EasyCrypt [6].

This motivated us to generically formalize derivations
of (malicious-verifier) zero-knowledge, proof of knowledge,
and soundness in EasyCrypt. We address a specific but
very common subclass of ZK protocols, namely sigma-
protocols. These are three-message protocols of a certain

specific structure (see Sec. 3.2). Our technical contributions
include the following results:
• We give generic definitions of the main properties

associated with sigma protocols. These include com-
pleteness, soundness, zero-knowledge, special sound-
ness, and proof of knowledge (a.k.a. extractability).
We address computational and information-theoretical
versions of these properties (see Sec. 3).

• We present generic derivations of soundness from
extractability, extractability from special soundness,
and zero-knowledge from “one-shot” simulators
(see Sec. 4).

• We prove the sequential compositionality for com-
pleteness, soundness, and zero-knowledge of sigma
protocols (see Sec. 5).

• We instantiate our results for three ZK protocols:
Fiat-Shamir1 (for quadratic residues) [7], Schnorr (for
discrete logarithms) [8], and Blum (for Hamiltonian
cycles, NP-complete) [9] (see Sec. 6).

Our EasyCrypt formalization is available on GitHub [10].
There we provide instructions for running the code
(file README.md) as well as instructions about the struc-
ture of the development and how use them for own
developments (file MANUAL.md).

1.1. Related Work

In [11], Barthe et al. give one of the first machine-
checked formalziation of sigma-protocols in CertiCrypt.
Their main focus is on a subclass of sigma protocols
that is aimed at proving knowledge of pre-images un-
der group homomorphisms. This limits the applicability
of their results to problems that exhibit this particular
algebraic structure (e.g., this excludes Blum’s protocol).
In their work, the authors give a generic definition of
one run of the sigma protocol (i.e., exchange of three
messages) and formalize some of its properties, namely,
completeness, special soundness, and honest-verifier zero-
knowledge. They formalize the “perfect” variant of these
properties (as compared to statistical and computational)
and the AND/OR compositionality of sigma protocols.
The applicability of their results is illustrated on examples
which include Schnorr, Okamoto, Guillou-Quisquater, and
Feige-Fiat-Shamir protocols. The authors do not address
(malicious-verifier) zero-knowledge, proof of knowledge,
soundness, and sequential composition of sigma-protocols.

Another related field is the development of verified
cryptographic compilers. In the context of ZK protocols,
important examples of these are the CACE compiler [12]
and ZKCrypt [13].

The CACE compiler [12] is a certifying compiler
that generates efficient implementations of zero-knowledge
protocols. The CACE compiler takes abstract specifications
of a zero-knowledge protocol and generates C or Java
implementations. The main compilation steps are certifying
in the sense that they generate an Isabelle proof of special
soundness. However, the zero-knowledge, completeness,
and soundness properties are not addressed.

Almeida et al. present ZKCrypt [13] which is an opti-
mizing cryptographic compiler for sigma protocols. Simi-
larly to the work by Barthe et al. [11], the authors consider

1. This should not be confused with Fiat-Shamir transformation.

2

only the class of sigma protocols for proving knowledge
of pre-images under group homomorphisms. ZKCrypt
implements two compilers: “verified” and “verifying”. The
verified compiler takes an abstract description of a sigma
protocol and generates a reference implementation. The
verifying compiler outputs an optimized implementation
(in C or Java) which is provably equivalent to the reference
implementation. Most importantly, the proofs returned
by the compilers establish that the reference and opti-
mized implementations satisfy the perfect completeness,
special soundness, and honest-verifier zero-knowledge. The
soundness, (malicious-verifier) zero-knowledge, proof of
knowledge, and sequential composition are not addressed.

In [14], Butler et al. used the CryptHOL framework
to formalize and derive commitment schemes from sigma
protocols. The applicability of their work is illustrated by
instantiating the Schnorr, Chaum-Pedersen, and Okamoto
sigma protocols. The authors derive completeness, special-
soundness, and honest-verifier zero-knowledge. The high-
light of their work is a generic construction of commitment
schemes from sigma protocols. In their work, the authors do
not address (malicious-verifier) zero-knowledge, soundness,
proof of knowledge, and sequential compositionality.

In [15], Alemeida et al. give a machine-checked imple-
mentation of a framework that allows users to construct
efficient zero-knowledge protocols from secure multiparty
computation protocols. For their generic constructions, the
authors formalize the security definitions and proofs related
to completeness, soundness, and zero-knowledge of sigma
protocols. The authors do not address special soundness,
proof of knowledge, and sequential compositionality of
zero-knowledge. Their framework is implemented in Easy-
Crypt and some definitions are similar to ours, but there
are also important differences.

In their formalization, the authors define the honest
prover as a pure function (i.e., not as EasyCrypt pro-
cedure/module) which takes randomness neccessary for
its computations as one of its arguments. This approach
can drastically simplify the proofs, but makes the insta-
tiation harder especially in cases when prover needs to
use other cryptographic primitives such as commitments
(in which case also these primitives must be modelled
as pure functions with explicit randomness). The most
significant overlap with our results is the derivation of
malicious-verifier zero-knowledge from one-shot simulator
which is similiar to our result in Sec. 4.1. However, the
important difference is that for this result the authors
change their representation of malicious verifiers and
honest provers. Both, the honest prover and a malicious
verifier, are now modelled semantically; in other words,
these parties are not represented as stateful programs (i.e.,
not as EasyCrypt procedure/module), but as parameterized
mathematical distributions instead. This approach greatly
simplifies proofs (e.g., rewinding in this model is a trivial
re-sampling), but makes it harder (if not impossible) to
combine it with other definitions which rely on the standard
representation of protocol parties as programs. Indeed, in
other parts of their formalization, the authors work with
standard representation which strictly speaking makes their
own results incompatible with each other.

Also, they establish a security level for zero-knowledge
which equals to 2εN+pN , where ε is a security bound for
one-time simulator, p is the probability of a “bad”-event,

and N is the number of tries performed by the simulator.
Thus their bound becomes linearly worse in the number
of tries. In contrast, we obtain the bound ε + pN which
approaches ε exponentially quickly in the number of tries.

In [16], Sidorenco et al. also perform a formal analysis
of MPC-in-the-head zero-knowledge protocols in Easy-
Crypt. The authors provide a machine-checked security
proof of a zero-knowledge protocol which follows the
MPC-in-the-head paradigm. Their mechanization specifi-
cally studies the ZKBoo protocol [17]. They prove com-
pleteness, soundness, and honest-verifier zero-knowledge.
Similarly to the work by Almeida et al. the work by
Sidorenco et al. introduces basic zero-knowledge defini-
tions of completenss and special soundness which are
similar to ours. They do not address soundness, (malicious-
verifier) zero-knowledge, proof of knowledge, and sequen-
tial composition of sigma protocols.

All these results focus on definitions and proofs that
can be formalised without rewinding of adversaries (except
[15] where adversaries are modelled as distributions). We
believe the rewinding-related properties to be the current
frontier in the mechanization of ZK proofs. In this work
we set out to overcome this hurdle.

2. Preliminaries

2.1. Basics

In the following we comment on the main constructs of
EasyCrypt which include types, operators, lemmas, axioms,
theories, module types, and modules. More information
on EasyCrypt can be found in the EasyCrypt tutorial [18].

Types and Operators. EasyCrypt has built-in and user
defined types. The examples of built-in types are bool,
int, real, and unit. Also, every type t is associated
with a type t distr of its discrete (sub)probability
distributions. A discrete (sub)probability distribution over
a type is defined by its probability mass function, i.e. by a
non-negative function from t to real. Also, EasyCrypt
allows users to define recursive datatypes and functions
based on a polymorphic typed lambda calculus. On the top-
level, pure functions can be defined using the op keyword.
For example, we can define the negation on booleans as
follows:

op not (b: bool): bool =
if b then false else true.

In addition, the standard library of EasyCrypt includes the
implementation and properties of lists, arrays, finite sets,
maps, probability distributions, etc.

Ambient Logic. EasyCrypt has built-in logics which
are specialized for reasoning about programs (such as
Hoare logic). Furthermore it implements an ambient logic
which is a higher-order classical logic for proving mathe-
matical facts and connecting judgements from the other
logics. For example, we can use ambient logic to prove
that double negation is identity. In lemmas and axioms
we will use symbols ∀ and ∃ instead of official keywords
forall and exists, respectively.

lemma notnot: ∀ (b: bool), not (not b) = b.
proof. progress. smt. qed.

3

In EasyCrypt, proofs consist of series of tactic applications
which either discharge the proof obligation or transform it
into new subgoal(s).

Theories. In EasyCrypt, theories can be used to group
together related definitions. Theories can have parameters
in the form of declared but undefined operators, types, and
axioms. For example:

theory MonoidTheory.
% parameters
type M.

op f: M → M → M.
op e: M.

axiom assoc: ∀ a b c, f (f a b) c = f a (f b c).
axiom elaws: ∀ a, f a e = a ∧ f e a = a.

% more useful results and definitions. . .
end MonoidTheory.

Later, the theory can be “cloned” and the operators and
types instantiated with concrete values for which the
axioms are provable. This enables modular design of
theories.

Modules. In EasyCrypt, cryptographic games are mod-
elled as modules, which consist of procedures written in a
simple imperative language. Modules may be parameter-
ized by abstract modules. Modules can be stateful, having
global variables. The global variables of a module contains
the variables declared in the module and any variables its
procedures can access (directly or indirectly).

For example, we can implement a module
BitSampler which has one procedure and one
global variable log. The procedure run samples a
uniform Boolean b, adds the result to the log, and returns
b as the result of the call:

module BitSampler = {
var log: bool list
proc run() = {
var b: bool;
b $← duniform [false; true];
log ← b :: log;
return b;

}
}.

Note that BitSampler does not initialize its log vari-
able. In this case, the contents of this variable will
depend on the initial memory. In EasyCrypt, the whole
memory (state) of a program is referred to by &m (or
&n etc.). If A is a module then we can refer to the
tuple of all global variables of the module A in &m as
(glob A){m}. The type of all global variables of A (i.e.,
the type of (glob A){m}) is denoted by glob A. For
example, glob BitSampler equals to bool list,
and (glob Bitsampler){m} is the same as log{m}
which is the value of log variable in memory &m.

For readability, we will use syntax GA for the type
glob A. Memories &m will be typed in bold without
the & (i.e., m for &m), and Gm

A will denote the EasyCrypt
value (glob A){m}.

Module Types. In EasyCrypt, module types specify
the types of the procedures in a module, but say nothing
about the global variables of the module.

For example, BitSampler can be typed as
Runnable:

module type Runnable = {
proc run(): bool

}.

Probability Expressions. EasyCrypt has built-
in Pr-constructs which are used to express the
probabilities of events in program executions.
The general form of Pr-expression is as follows:
Pr[program @ initial memory: event]. For
example, Pr[r ← BitSampler.run() @m: P r]
denotes the probability that the return value r of procedure
run of module BitSampler given the initial memory
m satisfies the predicate P.

In EasyCrypt, the program in Pr-notation can only
be a single procedure call. To simplify the presentation,
we relax this restriction and allow us to write multiple
statements. In the actual EasyCrypt code the same can be
expressed by defining module wrappers with a procedure
that contains those statements.

To give an example, we can prove that for any adversary
A, the success probability of guessing the output of a
BitSampler is exactly ½. In the following we reuse
the Runnable module type to universally quantify over
adversaries. In EasyCrypt, the notation M <: T indicates
that the module M satisfies the module type T.

lemma example: ∀ (A <: Runnable{-BitSampler}) m,
Pr[b1 ← BitSampler.run();

b2 ← A.run() @m: b1 = b2] = 1/2.

It is important to understand that the module type
Runnable also includes adversaries (i.e., modules)
that read from and/or write to BitSampler’s
log (e.g., BitSampler itself). To exclude such
“cheating” adversaries, EasyCrypt allows us to write
Runnable{-BitSampler} to denote the subset of
adversaries whose global variables are disjoint from those
of BitSampler.

2.2. Rewinding

Rewinding refers to the proof technique in which we
take a given (usually unknown) adversary (in EasyCrypt
modelled as an abstract module) A, and convert it into
an adversary B that in some form includes the following
steps:

1) Remember the initial state of A.
2) Run A.
3) Restore the original initial state of A.
4) Run A again.
5) Combine the results from the runs and/or repeat this

until it yields a desired outcome.
In [6], the authors explain that while the above steps seem
simple there are numerous challenges in trying to express
them in EasyCrypt.

The authors provide a solution to rewindability in
EasyCrypt in the form of a generic library. In a nutshell,
the authors argue that a module A is rewindable iff:

1) There exists an injective mapping f from GA to some
parameter type sbits. Intuitively, sbits is the type
of bitstrings.

2) The module A must have a terminating side-
effect free procedure getState, so that whenever

4

A.getState is called from the state g: GA, the
result of the call must be equal to (f g).

3) The module A must have a terminating procedure
setState, so that whenever it is invoked with
argument x: sbits, so that x = f g for some
g: GA then A must be set into a state g.

To express the above conditions formally, the authors define
a module type Rew for rewindable modules:
module type Rew = {
proc getState(): sbits
proc * setState(s: sbits): unit

}.

(Here, the symbol * indicates that the procedure
(re)initializes all global variables of a module.)

In our presentation, we use Rewindable A as a
shorthand which indicates that A satisfies the rewindability
condition explained above. The fully formal EasyCrypt
definition of rewindability can be found in [6].

2.3. Running Example: The Fiat-Shamir Protocol

For the clarity of presentation we instantiate our formal
definitions using the Fiat-Shamir zero-knowledge protocol
as a running example [7]. (Not to be confused with the well-
known Fiat-Shamir transformation from the same paper.)
The language of Fiat-Shamir protocol consists of quadratic
residues. An element s ∈ Z/nZ is a quadratic residue if
there exists w so that s = w2 and s is invertible.2 In Fiat-
Shamir protocol the prover tries to convince a verifier that
a statement is quadratic residue and it knows the witness.

Let us give an informal protocol description. The
protocol starts by the prover generating a random invertible
ring element r and sending its square a = r2 to the verifier.
The verifier receives the commitment a and replies with
a random bit b as a challenge. The prover replies with
z = wbr. Finally, the verifier accepts if z2 = sba and a is
invertible.

In the following sections we use this protocol as a
concrete running example for which we derive complete-
ness, special soundness, soundness, proof of knowledge,
zero-knowledge, and sequential compositionality.

In Sec. 6, we comment on our formalisation of other
protocols.

3. Generic Definitions

In this section we formalize main definitions which
are associated with sigma protocols. In cryptgoraphy, there
are three types of definitions, namely, perfect, statistical,
and computational. Let us describe these definitions in
broader sense. In perfect definitions the adversarial party
usually has unlimited computational capabilities and the
probability of successful attack must be zero. In statistical
definitions the adversarial party is still unlimited, but
the probability of successful attack could be non-zero
but small. In computational definitions the adversary is
computationally limited and we also allow a non-zero
probability of a successful attack. In this paper we mainly
present statistical definitions, but in our formalization we
also address computational and perfect variations.

2. In this section the multipication must be understood as a ring
multiplication.

In our formalization we define an EasyCrypt theory
which encompasses definitions of types, operators, modules,
and modules types from this section. Later the EasyCrypt
cloning mechanism can be used to instantiate these defini-
tions for a specific protocol. The lemmas in this section
must be understood as definitions of properties of sigma
protocols (i.e., proof obligations for concrete instances).

3.1. Basics

From an abstract point of view, every sigma protocol
is designed to work with a specific formal NP-language.
The language is induced by a relation between statements
and witnesses. More specifically, a language is a subset of
statements for which there exists a witness which satisfies
the relation.
type statement, witness.

type relation = statement → witness → bool.

op in_language (R:relation)(s:statement): bool
= ∃ (w: witness), R s w.

Informally, in sigma protocols the prover tries to convince
the verifier that it knows a witness which validates the
statement (i.e., satisfies the relation of a language).

It is important to note that in some cases the proofs
of properties of sigma protocols such as completeness,
soundness, and zero-knowledge could require relations
of different strength. Therefore, in our library when the
user instantiates their protocol we ask them to provide the
relation per property.
op completeness_relation: relation.
op soundness_relation: relation.
op zk_relation: relation.

In the following sections, we formally describe the
main properties associated with sigma protocols. We start
by only expressing these properties relative to a single run,
i.e. three messages. To achieve reasonable security guar-
antees most sigma protocols are executed multiple times.
Therefore, we show that the one run execution properties
can be lifted to multiple runs generically (see Sec. 5).

3.1.1. Fiat-Shamir Basics. In our formalization we ex-
press Fiat-Shamir in terms of an abstract ring Z/nZ
whose elements have type zmod. The standard library of
EasyCrypt features a theory ZModRing with an extensive
formalization of properties of zmod.

To increase readability we will use type synonyms
qr_stat, qr_wit, qr_com, and qr_resp for the
statement, witness, and the response, respectively. All these
types are synonyms of zmod.

The Fiat-Shamir language consists of statements which
are quadratic residues in zmod. On the formal side we
need to define relations for completeness, soundness, and
zero-knowledge. All three relations are the same and they
ensure that statement is a square of the witness and also
that the statement is invertible:
op completeness_relation (s: qr_stat)(w: qr_wit)

= s = w ··· w ∧ invertible s.

op zk_relation = completeness_relation.
op soundness_relation = completeness_relation.

5

3.2. Completeness

The sigma protocol consists of a honest prover and
a honest verifier. In our library, we give generic module
types for both parties:
module type HonestProver = {
proc commitment(s: statement,

w: witness): commitment
proc response(ch: challenge): response

}.

module type HonestVerifier = {
proc challenge(s: statement,

c: commitment): challenge
proc verify(r: response): bool

}.

In terms of sigma protocols, the commitment procedure
produces the first message, challenge produces the
second message, and response the third. Finally, given
the response the verify procedure decides whether the
verifier accepts.

We implement the following module Completeness
that encodes exactly this exchange of messages and returns
whether the verifier accepts:
module Completeness(P: HonestProver,

V: HonestVerifier) = {
proc run(s: statement, w: witness): bool = {
var c, ch, r, acc;
c <@ P.commitment(s,w);
ch <@ V.challenge(s,c);
r <@ P.response(ch);
acc <@ V.verify(r);
return acc;

}
}.

It is important to understand that the sigma protocol is
defined by the implementation of honest prover (which we
denote by HP) and the honest verifier (which we denote
by HV).

The honest verifier of a sigma protocol must choose
its challenge uniformly at random from some finite set.
Also, the verification procedure can usually be defined as a
predicate (pure function) on the statements and transcripts
(the transcript is a triple of commitment, challenge, and
response). Therefore, we give a “skeleton” implemen-
tation of a honest verifier which can be instantiated
by providing protocol specific challenge_set and
verify_transcript operators:
type transcript = commitment× challenge× response.

module HV: HonestVerifier = {
var s, c, ch;
proc challenge(s: statement, c: commitment) = {
(HV.s, HV.c) ← (s,c); % global state vars
ch $← duniform challenge_set;
return ch;

}
proc verify(r: response): bool = {
return verify_transcript s (c, ch, r);

}
}.

Intuitively, the sigma protocol induced by the honest
prover HP and honest verifier HV is complete iff for
any valid statement s the probability of success in
Completeness(HP,HV) game is close to one. The
completeness_error is a protocol specific error

term which determines the probability of failure of
Completeness.
lemma completeness:
∀ (s: statement)(w: witness) m,
completeness_relation s w ⇒
Pr[r ← Completeness(HP,HV).run(s,w) @m: r]
≥ 1 - completeness_error s.

(This “lemma” must be understood as a definition of
completeness as a property.)

3.2.1. Fiat-Shamir Completeness. In this section, we
formally define the Fiat-Shamir protocol by implementing
an honest prover and an honest verifier.

We start by implementing the honest prover. In the
commitment phase the prover samples an invertible group
element r uniformly at random and returns its square
as the commitment. The value r and the witness w are
stored in the prover’s internal variables HP.r and HP.w,
respectively:
module HP: HonestProver = {

var r, w: zmod
proc commitment(s: qr_stat,

w: qr_wit): qr_com = {
HP.w ← w;
r $← zmod_distr;
return r ··· r;

}
proc response(b: bool): qr_resp = {

return (if b then r ··· w else r);
}

}.

To instantiate the implementation of the honest verifier we
need to define the set of challenges and the verification
function. In the Fiat-Shamir protocol the verifier’s chal-
lenge is just a bit, hence, the challenge set consists of
values false and true:
op challenge_set = [false; true].

The verification function starts by checking that the state-
ment and the prover’s commitment are invertible and then
checks that in case when challenge bit is false the square
of the response value equals to the commitment (c) value,
otherwise the square of the response must equal to the
product of the commitment and the statement.
op verify_transcript (s:qr_stat)(t:transcript)
= let (c, ch, r) = (t.1, t.2, t.3) in

invertible s ∧ invertible c
∧ (if ch then c ··· s else c) = r ··· r.

At this stage the Fiat-Shamir protocol is fully defined by
the implemented honest prover HP and instantiated honest
verifier HV.

In our formalization we prove that the protocol has
“perfect” completeness, i.e., the completeness error is zero.
With the help of SMT solvers, EasyCrypt is able to derive
completeness almost entirely automatically.

3.3. Soundness

Soundness is an important property of sigma protocols
which says that if the statement is false (not in the language
of the sigma protocol) then cheating prover cannot convince
an honest verifier that it is true, except with some small
probability.

6

The module type MaliciousProver defines the
interface of cheating provers. Note that the main difference
from HonestProver is that the commitment proce-
dure of the cheating prover only receives the statement
(since in the context of the soundness property the witness
for the provided statement does not exist).
module type MaliciousProver = {
proc commitment(s: statement): commitment
proc response(ch: challenge): response

}.

Similarly to the module Completeness we imple-
ment a module Soundness which encodes one run of a
sigma protocol in the context of a cheating prover.
module Soundness(P: MaliciousProver,

V: HonestVerifier) = {
proc run(s: statement): bool = {
var c, ch, r, acc;
c <@ P.commitment(s);
ch <@ V.challenge(s,c);
r <@ P.response(ch);
acc <@ V.verify(r);
return acc;

}
}.

The sigma protocol is statistically sound iff for any
cheating prover P and a statement s which is not
in the language induced by soundness_relation
the probability that the honest verifier accepts in the
Soundness game is bounded from above by some small
soundness_error s. Here, soundness_error is
a protocol specific function that is allowed to depend on
the statement s.
lemma soundness:
∀ (s: statement) (P <: MaliciousProver) m,
!(in_language soundness_relation s) ⇒

Pr[r ← Soundness(P,HV).run(s) @m: r]
≤ soundness_error s.

(This “lemma” must be understood as a definition of
statistical soundness as a property.) The perfect sound-
ness would be similar to the statistical soundness with
soundness_error s being defined as zero. However,
we are not aware of any interesting sigma protocols which
achieve perfect soundness.

In the case of computational soundness, the soundness-
error depends on the computational power of the malicious
prover P. That is, the right-hand-side becomes a protocol-
specific term that depends on the success of P in a different
game (the “reduction”).

3.3.1. Fiat-Shamir Soundness. The Fiat-Shamir protocol
is statistically sound with soundness-error equal to ½.
In our formalization we derive this from extractability
by using the generially derived lemma (see Sec. 4.3
and Sec. 4.3.1).

3.4. Special Soundness

For some sigma protocols the easiest way to prove
soundness is to derive it from another property known as
“special soundness”.

The main idea of special soundness is that if for the
same statement we have two valid transcripts for the
same commitment but with different challenges, then it

should be possible to efficiently extract the witness from
these transcripts. Recall that the transcript is a triple of
commitment, challenge, and response.

The function valid_transcript_pair s t1 t2

checks whether transcripts satisfy the condition stated
above:

op valid_transcript_pair
(s: statement) (t1 t2: transcript): bool

= t1.1 = t2.1
∧ t1.2 6= t2.2
∧ verify_transcript s t1

∧ verify_transcript s t2.

op special_soundness_extract
(s: statement) (t1 t2: transcript): witness.

The function special_soundness_extract is pro-
tocol specific and must be instantiated by the user.

The most intuitive variant is the perfect
special soundness. It states that the function
special_soundness_extract must be able
to construct a valid witness from any valid transcript pair.

lemma perfect_special_soundness:
∀ (s: statement) (t1 t2: transcript),
valid_transcript_pair s t1 t2 ⇒
soundness_relation s

(special_soundness_extract s t1 t2).

For the computational case, we also additionally need to
define a module type for special soundness adversaries:

module type SpecialSoundnessAdversary = {
proc attack(s: statement):

transcript× transcript
}.

Intuitively, computational special soundness states
that for any computationally limited adversary it must
be hard to derive a pair of valid transcripts for which
the special_soundness_extract function fails to
provide a valid witness. In EasyCrypt, we express this as an
event whose probability is bounded from above by a small
number special_soundness_error A s, where A
is a special soundness adversary and s is a statement.

lemma computational_special_soundness: ∀ s m,
Pr[r ← A.attack(s) @m:

valid_transcript_pair s r.1 r.2
∧ !(soundness_relation s

(special_soundness_extract s r))]
≤ special_soundness_error A s.

Unfortunately, in EasyCrypt one cannot define
operators to depend on the modules (such as
special_soundness_error above). As a result
of this restriction the user must manually replace
soundness_error A s with the error term in the
above lemma.

We do not define statistical special soundness because
it would be equivalent to perfect special soundness.3

3. If we do not have perfect special soundness, then there exists a
valid transcript pair on which the deterministic extraction algorithm does
not extract successfully. Therefore there exists a (possibly unbounded)
algorithm that searches for such a transcript pair and outputs it. This
algorithm succeeds with probability 1, so the scheme does not have
statistical special soundness (for any soundness error < 1).

7

3.4.1. Fiat-Shamir Special Soundness. The Fiat-Shamir
protocol has perfect special soundness. Let us define the
extraction function:

op special_soundness_extract
(s:qr_stat) (t1 t2:transcript): qr_wit =
let (c1,ch1,r1) = t1 in
let (c2,ch2,r2) = t2 in

if ch1 then r1 ··· (inv r2) else (inv r1) ··· r2.

The main idea is as follows. Let t1 := (c1,ch1,r1)
and t2 := (c2,ch2,r2) be a pair of valid transcripts
with respect to the function valid_transcript_pair
(i.e., c1 = c2 , ch1 6= ch2 , and both t1 and t2

pass the honest verification). Also, w.l.o.g. assume that
ch1 = true and ch2 = false. In this case we
know that c1 ··· s = r1 ··· r1 and c1 = r2 ··· r2

because the transcripts pass the verification. Therefore,
s = (r1 ··· (inv r2)) ··· (r1 ··· (inv r2)),
i.e., the statement is a square and a witness is
r1 ··· (inv r2).

For the given definition of
special_soundness_extract, the perfect special
soudness is derived almost entirely automatically by using
the built-in support for SMT solvers.

3.5. Proof of Knowledge

Proof of knowledge, also known as extractable proof
systems, guarantee that there exists an extractor which can
compute a witness from a rewindable malicious prover.
The extractor is parameterized by the prover and has access
to its rewinding interface (see Sec. 2.2).

module type Extractor(P: RewMaliciousProver) = {
proc extract(s: statement): witness

}.

Here, RewMaliciousProver is a module type for
rewindable cheating provers which must implement both
MaliciousProver and the rewindability interface.

The success of the extractor depends on the probability
with which the prover manages to convince the honest
verifier in the Soundness(P,HV) game.

In the general case, statistical extractability assumes
that there exists an efficient Extractor so that:

lemma extractability:
∀ s m (P <: RewMaliciousProver),
Rewindable P ⇒

let sound_prob =
Pr[r ← Soundness(P,HV).run(s) @m: r] in

Pr[r ← Extractor(P).extract(s) @m:
soundness_relation s r]

≥ extraction_success sound_prob s.

We assume that prover is rewindable (i.e., the
Rewindable P premise, see Sec. 2.2 for details).

The function extraction_success specifies a
lower bound on the success probability of the Extractor.
Extractor and extraction_success are protocol-
specific and must be provided by a user.

In the case of computational extractability, the extrac-
tion success depends on the computational power of the
malicious prover P. That is, the right-hand-side becomes
a protocol-specific term that depends on the success of P
in some different game (the “reduction”).

3.5.1. Fiat-Shamir Proof of Knowledge. The Fiat-
Shamir protocol is a statistical proof of knowledge and in
our formalization we derive this from the special soundness
by using the generic lemma (see Sec. 4.2 and Sec. 4.2.1).

3.6. Zero-Knowledge

Zero-knowledge is a property of sigma protocols which
ensures security guarantees for honest provers. This is
achieved by expressing that malicious verifiers cannot get
any “new information” about the witness of a statement
from the communication with the honest prover that they
would not be able to compute by themselves without that
communication.

We model this by requiring that anything the malicious
verifier learns (w.l.o.g., what it outputs) can be simulated
by a “simulator” that knows everything the verifier knows,
except for the witness. The simulation is successful if no
“distinguisher” can tell the verifier’s and the simulator’s
outputs apart (even when the distinguisher knows the
witness).

Formally, the above is expressed by using two different
games and a distingusher. The first game, ZKReal, im-
plements the interaction between the honest prover and a
malicious verifier. The main difference between a malicious
verifier and an honest verifier is that after receiving the
response from the prover, a malicious verifier computes a
“summary”4 of the entire interaction instead of outputting a
success bit. Next, that summary is sent to the distinguisher
together with the witness. The distinguisher outputs a bit
which indicates whether the distinguisher thinks it was
given a summary produced by the first or the second game
(see below).

The second game, ZKIdeal, is parameterized by a
simulator, a malicious verifier, and a distinguisher. In this
game, the simulator is trying to produce a summary which
the distinguisher would not be able to tell apart from the
ZKReal case. It is important to note that the simulator
must produce its summary without seeing the witness
while the distinguisher gets the simulator’s summary and
the witness of the statement, same as in the ZKReal game.
The simulator can internally run and rewind the malicious
verifier. It does not interact with the prover. The simulator
is protocol-specific and must be specified as part of the
security proof.

In EasyCrypt, the aforementioned games are defined
as follows:
module ZKReal(P: HonestProver,

V: RewMaliciousVerifier,
D: Distinguisher) = {

proc run(s: statement, w: witness) = {
var c, ch, r, sum, guess;
c <@ P.commitment(s, w);
ch <@ V.challenge(s, c);
r <@ P.response(ch);
sum <@ V.summitup(r);
guess <@ D.guess(s, w, sum);
return guess;

}
}.

module ZKIdeal(S: Simulator,

4. Our development is parameterized with a datatype summary which
is supposed to hold the information about the protocol-run produced by
the verifier.

8

V: RewMaliciousVerifier,
D: Distinguisher) = {

proc run(s: statement, w: witness) = {
var sum, guess;
sum <@ S(V).simulate(s);
guess <@ D.guess(s, w, sum);
return guess;

}
}.

The sigma protocol has statistical zero-knowledge iff
there exists an efficient simulator Sim such that for any
statement s witnessed by w, any rewindable malicious
verifier V, and any distinguisher D, the absolute differ-
ence between success probabilities of ZKReal(HP,V,D)
and ZKIdeal(Sim,V,D) is bounded from above by
zk_function s. Here, zk_function is a protocol
specific and depends on the statement s.
lemma zeroknowledge:
∀ s w n m (V <: RewMaliciousVerifier)

(D <: Distinguisher),
zk_relation s w ⇒
|Pr[r ← ZKReal(HP,V,D).run(s,w)@m: r]

- Pr[r ← ZKIdeal(Sim,V,D).run(s,w)@m: r]|
≤ zk_function s.

In case of perfect zero-knowledge the success probabilities
of ZKReal and ZKIdeal must be equal,5 and in case of
computational zero-knowledge the right-hand-side of the
inequality can additionally depend on V.

In the case of computational zero-knowledge, the right-
hand-side of the inequality depends on the computational
power of the malicious verifier V and distinguisher D.

It is also possible to have another variant of statis-
tical zero-knowledge where the verifier is computation-
ally bounded, but the distinguisher is computationally
unbounded. This is encoded exactly like computational ZK,
except that the right hand side of the inequality depends
only on the malicious verifier V but not the distinguisher D.

3.6.1. Fiat-Shamir Zero-Knowledge. The Fiat-Shamir
protocol has statistical zero-knowledge and in our formal-
ization we derive this by using the “one-shot” simulators
and our generic lemmas (see Sec. 4.1 and Sec. 4.1.1).

4. Generic Derivations

In the previous section we introduced security proper-
ties associated with sigma protocols. For some protocols it
can be challenging to prove properties like soundness, zero-
knowledge, and extractability directly. Therefore, one often
derives these properties from simpler ones using generic
derivations. We formalize three of the most important such
derivations. More specifically, in Sec. 4.1 we derive zero-
knowledge from the existance of a “one-shot” simulator,
in Sec. 4.2 we derive extractability from special soundness,
and in Sec. 4.3 we derive soundness from extractability.

4.1. Zero-Knowledge from One-Shot Simulation

In Sec. 3.6, we introduced the zero-knowledge property
in which a distinguisher compares the protocol-summary

5. In the literature, we also find a different weaker definition of perfect
zero-knowledge (e.g., [20, Definition 4.3.1]). This definition in fact simply
states the existence of a one-shot simulator with zero distinguishing
probability. So this definition is also covered by our work using the
definitions from Sec. 3.6.

generated by the malicious verifier to the summary pro-
duced by a simulator.

In practice, to prove zero-knowledge, one usually starts
by defining a “one-shot simulator” which produces a
simulated summary but may abort with some relatively
high probability (e.g., ½). Conditioned on not aborting
(the “success”-event) that simulator’s output must be
indistinguishable from the real protocol interaction. Later,
the actual zero-knowledge simulator runs and rewinds the
one-shot simulator until the “success”-event happens. In
this section, we generically address this transformation. In
the end, a user must only implement a “one-shot simulator”,
prove its indistinguishability conditioned on a “success”-
event, and establish a lower bound of the “success”-event.
Then the zero-knowledge proprety of its iterated version
is implied automatically by our lemmas.

A one-shot simulator is a module parameterized by
a rewindable malicious verifier. It has a run procedure
which takes the statement and returns a pair of a boolean
and a protocol-summary. The boolean indicates whether
the “success”-event mentioned above happened:

module type Simulator1(V:RewMaliciousVerifier) = {
proc run(s: statement): bool× summary

}.

For the rest of this section, we fix a rewindable
malicious verifier V, a distinguisher D, and a one-shot
simulator Sim1. Our derivation works for any V, D, and
Sim1. Also, Sim1 will typically depend on the protocol
and will be specified explicitly by the user. Depending on
the variant of ZK we are analyzing (i.e., perfect, statistical
or computational), we then consider over unlimited or
computationally bounded V, Sim1, and D.

For the sake of readability, we introduce an abbreviation
sim1_dist_prob which denotes the probability that
both the “success”-event happens and the distinguisher
outputs true:

abbrev sim1_dist_prob(s, w, m): real =
Pr[(success, sum) ← Sim1(V).run(s);

guess ← D.guess(s, w, sum) @m: success ∧ guess].

The main property associated with Sim1 is that the
probability sim1_dist_prob(s,w,m) conditioned on
the “success”-event of Sim1 is at most ε away from
the probability that the distinguisher outputs true in the
ZKReal(HP,V,D) game. Here, ε is a protocol specific
real number. The conditional probability is expressed as a
ratio.

op ε : real.

axiom sim1_dist_prob_prop: ∀ s w m,
zk_relation s w ⇒

|Pr[r ← ZKReal(HP, V, D).run(s, w) @m: r]
- (sim1_cond_prob(s, w, m)

/ Pr[(success, _) ← Sim1(V).run(s) @m:
success])| ≤ ε.

This “axiom” must be understood as a property of Sim1
which must be proved by the user.

Now we generically implement a simulator SimN
which wraps the one-shot simulator and runs it until the
“success”-event occurs, but at most N times, where N is a

9

parameter.6

module SimN(Sim1: Simulator1)
(V: RewMaliciousVerifier): Simulator = {

proc run(s:statement,w:witness) = {
var c ← 0;
var success ← false;
var summary;
while (c < N ∧ !success){

(summary, success) <@ Sim1(V).run(s);
c ← c + 1;

}
return (summary,success);

}
}

Note that Sim1 in SimN.run may modify its state when
executed. This means that in the second iteration of the
loop Sim1 might run on an invalid initial state (and no
guarantees can be made). To avoid this we would need
to rewind Sim1. To support this, the user would need to
prove the technical condition Rewindable Sim1 (see
Sec. 2.2). While possible in principle, this approach would
lead to additional boilerplate. Instead we found it more
convenient to simply request user to ensure the following
property which guarantees that Sim1 itself rewinds its
state when it is not successful7:

axiom sim1_rew: ∀ m s,
Pr[(succ, _) ← Sim1(V).run(s) @m:
!succ ⇒ Gfin

Sim1(V)
= Gm

Sim1(V)
] = 1.

The third and final property associated with Sim1 is
existance of σ which is a lower bound on the “success”-
event:

op σ : real.

axiom succ_event_prob: ∀ m s,
Pr[(succ, _) ← Sim1(V).run(s) @m: succ] ≥ σ.

The main result of this section states that
SimN(Sim1) is a simulator whose success probability
in the ZKIdeal game is ε + 2(1 − σ)N -close to the
success probability of V in the ZKReal game, where σ is
the lower bound on the probability of the “success”-event
of Sim1, and N is a number of iterations performed by
SimN:

lemma statistical_zk: ∀ s w m,
zk_relation s w ⇒
|Pr[r ← ZKReal(HP, V, D).run(s, w) @m: r]

- Pr[r ← ZKIdeal(SimN(Sim1),
V, D).run(s, w) @m: r]|

≤ ε + 2 ··· (1 - σ)N.

4.1.1. Fiat-Shamir Zero-Knowledge. In this section, we
show how to derive zero-knowledge from a one-shot
simulator for the Fiat-Shamir protocol. The main idea
behind one-shot simulators is to “guess” the challenge
of the verifier and then prepare a “special” commitment
such that the simulator is able to correctly respond to the
guessed challenge (and only that challenge) even without
knowing the witness. The simulator aborts when it guessed

6. It would also be possible not to enforce an upper bound. Then
simulator would have finite expected runtime, but no a priori bound on
the worst-case runtime.

7. This does not remove the need for rewindability because to prove
sim1_rew, Sim1 will need to rewind V.

incorrectly (i.e., “success”-event is the correct guess of the
simulator).

In the Fiat-Shamir the challenge is a bit, so the one-shot
simulator tries to guess the challenge by uniformly sam-
pling a bit b. If it sampled false, the one-time simulator
outputs r ··· r as the commitment, where r is a uniformly
sampled invertible element. If the sampled bit b is true,
the one-time simulator additionally multiplies r ··· r with
the inverse of the statement (i.e., r ··· r ··· (inv s)). For
both challenges, the corresponding response r is valid
from the honest verifier’s point of view. Thus, r is sent
to the verifer. However, if the challenge given by verifier
was not the same as the bit guessed by the simulator then
the simulator rewinds the verifier back to its initial state.
module Sim1(V: RewMaliciousVerifier) = {

proc run(s: qr_prob): bool× adv_summary = {
var r, z, b’, b, result, vstate, r, rr, bb;
r $← zmod_dist;
b $← duniform [false; true];
c ← if b then r ··· r ··· (inv s) else r ··· r;
vstate <@ V.getState();
b’ <@ V.challenge(s, c);
result <@ V.summitup(r);
if (b 6= b’) {
V.setState(vstate);

}
return (b = b’, result);

}
}.

Now, to conclude the proof of the zero-knowledge property
for Fiat-Shamir protocol, we are only left with three
proof obligations. The first one is that in case when the
“success”-event does not happen (i.e., b 6= b’), the state of
Sim1(V) does not change. For Sim1 this is easily shown
by using the probabilistic Hoare logic and the assumption
that V is rewindable.

The second proof obligation (i.e.,
succ_event_prob property) is to find σ which
is a lower bound on the “success”-event (i.e., b = b’).
Observe that in Sim1 the values b and b’ are not
independent since the commitment c depends on b and
b’ is computed based on c. However, in the proof we
can lose this dependency by observing that the values
r ··· r and r ··· r ··· (inv s) are distributed equally. As
a result, we can show that “success”-event occurs with
probability exactly equal to ½.

For the third proof obligation we need to define ε and
prove the lemma sim1_dist_prob_prop described
in Sec. 4.1 which is enough to conclude statistical
zero-knowledge for Fiat-Shamir by application of our
statistical_zk result. It turns out that for Fiat-
Shamir protocol the ε is zero and we can derive the
following formula:
|Pr[r ← ZKReal(HP, V, D).run(s, w) @m: r]

- sim1_cond_prob(s, w, m)
/ Pr[(succ, _) ← Sim1(V).run(s) @m: succ]| = 0.

The main observation here is that conditioned on the
“success”-event the protocol summaries in one-time simu-
lator and in the ZKReal are distributed equally.

4.2. Extractability from Special Soundness

The goal of this section is for protocols with special
soundness to implement a generic knowledge-extraction

10

module which is parameterized by a rewindable mali-
cious prover P and then relate the lower bound of the
extractor’s success with the success probability of P in the
Soundness(P,HV) game.

Intuitively, the goal is to show that if a mali-
cious prover P is “too successful” in winning the
Soundness(P,HV) game, then it knows the witness.
More precisely, there is a generic extractor that will
be able to compute a witness from P with sufficiently
high probability (assuming that P is rewindable) after the
success probability in the Soundness(P,HV) reaches
a “cut-off” point, called the “knowledge error”.

In [6], the authors use EasyCrypt to derive the security
of a coin-toss protocol from the following generic lemma:
lemma rew_with_init: ∀ m M i,
Pr[r0 ← B.init(i); s ← A.getState();

r1 ← A.run(r0); A.setState(s);
r2 ← A.run(r0) @m: M (r0, r1) ∧ M (r0, r2)]

≥ Pr[r0 ← B.init(i); r ← A.run(r0) @m:
M (r0, r)]2.

The lemma states that the probability of success (according
to some predicate M) in two sequential runs of A.run is
lower-bounded by the square of the probability of success
in a single run. Note that this even holds in the presence of
an initialization B.init that is called once. The presence
of B.init is what makes the lemma technically non-
trivial.

This property is also important for sigma-protocols:
One can instantiate B.init, A.run, and the predi-
cate M so that the “initialize-then-single-run” case will
exactly correspond to the Soundness(P,HV) game.
More specifically, B.init must be instatiated as the
prover’s comitment phase and A.run as the remaining
message-exchanges between P and the honest verifer
(i.e., challenge, response, and verify). With that in mind
if we examine the success event of the left-hand-side
of the rew_with_init inequality, we will see that
its success event corresponds to two transcripts passing
the verification. In cases when transcripts have distinct
challenges these transcripts are “valid” from the perspec-
tive of the special soundness extractor (see Sec. 3.4)
and we can attempt to extract a witness using the
special_soundness_extract function. Recall that
honest verifier samples challenges uniformly at random
and therefore the probability of having distinct challenges
at the transcripts is always high (exponential in the bit-
length of the challenge). Based on the description above,
we implement a generic extractor parameterized by a
rewindable malicious prover:
module Extractor(P: RewMaliciousProver) = {
proc extract(s: statement): witness = {
var i, c1, c2, r1, r2, pstate;
i <@ P.commitment(s);
pstate <@ P.getState();
c1

$← duniform challenge_set;
r1 <@ P.response(c1);
P.setState(pstate);
c2

$← duniform challenge_set;
r2 <@ P.response(c2);

return special_soundness_extract s
(i, c1, r1) (i, c2, r2);

}
}.

What remains is to analyze the probability of successful
extraction by Extractor(P). In our EasyCrypt formal-
ization we show that the lower bound for the success
probability of Extractor(P) depends on the size of
the challenge set and the success probability of P in the
soundness game. We do derivations for both computa-
tional and perfect special soundness. For the simplicity of
presentation, we only present the latter result here:

lemma statistical_extractability: ∀ m s,
(∀(t1 t2: transcript),

valid_transcript_pair s t1 t2

⇒ soundness_relation s
(special_soundness_extract s t1 t2))

⇒ Pr[r ← Extractor(P).extract(s) @m:
soundness_relation s r]

≥ (Pr[r ← Soundness(P, HV).run(s) @m: r]2

- 1 / (size challenge_set)
··· Pr[r ← Soundness(P, HV).run(s) @m: r]).

4.2.1. Fiat-Shamir Proof of Knowledge. In Sec. 3.4.1
we explained that the Fiat-Shamir protocol has perfect
special soundness. Therefore, we get the lower bound on
extractability of the protocol automatically by applying
the statistical_extractability lemma. More
specifically, since the challenge for Fiat-Shamir is a
boolean then for any malicious prover P, the statement s
which is not in the language of soundness relation, and
the initial state m we have:

Pr[r ← Extractor(P).extract(s) @m:
soundness_relation s r]

≥ Pr[r ← Soundness(P, HV).run(s) @m: r]2

- 1/2 ··· Pr[r ← Soundness(P, HV).run(s) @m: r].

Note that this is larger than zero whenever the success
probability in the soundness game is larger than ½. So the
knowledge-error is ½.

4.3. Soundness from Extractability

In the previous section we explained how to generically
derive extractability from special soundness. The proba-
bility of a successful witness extraction by Extractor
module is lower-bounded by a function of the success
probability of the malicious prover in the Soundness
game. However, for statements which are not in the
language, the witness extraction probability is zero by
definition. These observations can be used to generically
derive an upper bound for the soundness of a sigma
protocol from its extractability.

To state our theorem we first need to specify the
relationship between success probabilities of extractor and
soundness games. We do so by fixing a function f such
that there exists an ε , so that for any f x ≤ 0, the
value x is less than or equal to ε . This function depends
on the bounds obtained when proving extractability and
must be specified by the user. For example, if we derive
extractability via perfect special soundness (see Sec. 4.2) f
would be λ x. x2 - x/(size challenge_set).
The main result of this section is the following lemma:

lemma statistical_soundness: ∀ m s f ε,
! in_language soundness_relation s ⇒
let sound_prob

= Pr[r ← Soundness(P,HV).run(s)@m: r] in
⇒ Pr[r ← Extractor(P).extract(s)@m:

11

soundness_relation s r]
≥ f sound_prob

⇒ (∀ (x : real), f x ≤ 0 ⇒ x ≤ ε)
⇒ sound_prob ≤ ε.

The upper bound on the soundness of sigma-
protocols with perfect special soundness is a sim-
ple corollary from statistical_soundness and
statistical_extractability:
lemma soundness_from_special_soundness: ∀ m s,
(∀(t1 t2: transcript),

valid_transcript_pair s t1 t2

⇒ soundness_relation s
(special_soundness_extract s t1 t2))

⇒ ! in_language soundness_relation s
⇒ Pr[r ← Soundness(P,HV).run(s)@m: r]

≤ 1/size challenge_set.

4.3.1. Fiat-Shamir Soundness. In Sec. 4.2.1
we automatically derived extractability from
special soundness. Similarly, we now can apply
soundness_from_special_soundness and get
an upper bound on the soundness-error of Fiat-Shamir.
More specifically, for any malicious prover P and statement
s (not in the language of soundness_relation) the
soundness-error is below ½:
Pr[r ← Soundness(P, HV).run(s) @m: r] ≤ 1/2.

5. Sequential Composition

In previous sections we introduced properties associ-
ated with one run of sigma-protocols. In practice one run
of the sigma protocol usually does not provide sufficient
security guarantees. For example, in our running exam-
ple (Fiat-Shamir protocol), the soundness-error could be
bounded from above by ½ which means that even in case
when statement is not in the language, a cheating prover
can succeed half of the time.

To solve this, a standard approach is sequential repeti-
tion of the protocol. If we have a sigma protocol (P, V)
with soundness-error δ, then the probability that the prover
succeeds n times in a row is δn. So, given a sigma protocol,
we get a better proof system (Pn, V n) by repeating it
n times.8 But then, we need to ask the question: Does
(Pn, V n) still have completeness? Still zero-knowledge?

The answer is fortunately yes (completeness and zero-
knowledge degrade linearly), and in this section we prove
this.

Since (Pn, V n) is not a sigma protocol (it exchanges
more than three messages), we cannot directly apply
the definitions of completeness, soundness, and zero-
knowledge from the previous section to it. (There is
no problem in principle, it is just that the games are
specifically formulated for protocols with three messages.)
One solution would be to generalize the definitions so
that they can apply to protocols that send an arbitrary
number of messages. At a first glance, this seems trivial,
but encoding such protocols is slightly awkward: All
messages would need to have the same type, and we have
to somehow encode when the protocol stops, and we might

8. We consider only sequential repetition. Parallel repetition is consid-
erably more complex and out of the scope of this work.

have to ask what happens when one participant stops before
the other does, etc. To avoid this, we choose a slightly
simpler approach: Instead of trying to define (Pn, V n)
generically and apply generic definitions to it, we directly
hardcode the sequential repetition into our definitions. For
example, iterated completeness would be a definition that
is parametrized by (P, V), and that runs (P, V) exactly n
times and then checks whether all runs were successful.
This leads to somewhat less general definitions but makes
the presentation more consise, and is sufficient for our
use-case of sequential repetition of sigma protocols.

In the following we address security bounds of sequen-
tial composition for completeness, soundness, and zero-
knowledge. We leave proof of knowledge for the future
work as it is more complicated to approach formally.

5.1. Iterated Completeness

We start by defining a module CompletenessAmp
which iterates the Completeness module n times,
where n is a parameter. The resulting bit indicates whether
or not all runs were successful.
module CompletenessAmp(P: HonestProver,

V: HonestVerifier) = {
proc run(s: statement, w: witness, n: int) = {

var accept, i;
i ← 0;
accept ← true;
while (i < n ∧ accept) {
accept <@ Completeness(P, V).run(s, w);
i ← i + 1;

}
return accept;

}
}.

The iterated completeness states that if success prob-
ability of one run of Completeness is bounded from
below by δ , then n runs are bounded from below by δ n :
lemma completeness_seq: ∀ m s w δ n,

completeness_relation s w
⇒ 1 ≤ n
⇒ (∀ n,

Pr[r ← Completeness(P,V).run(s,w)@n: r]
≥ δ)

⇒ Pr[r ← CompletenessAmp(P,V).run(s,w,n)@m: r]
≥ δ n.

This result indicates that the success probability of having
n successful runs degrades exponentially quickly. This
suggests that sigma protocols will have “reasonable” levels
of iterated completeness only if the one-run bound (i.e.
δ) is close to one. Note that this does not mean that
completeness-error grows exponentially quickly. Indeed,
if the compleness-error is ε (i.e., δ=1-ε), then the
completness-error for iterated case is 1-δ n ≤ n ··· ε , so
the error grows only linearly.

5.1.1. Fiat-Shamir Iterated Completeness. Previously
we explained that for Fiat-Shamir the completeness-
error is zero. Therefore, as an immediate conse-
quence of completeness_seq result we get that the
completeness-error of iterated Fiat-Shamir is zero as well.

5.2. Iterated Soundness

In this section we argue that if we iterate the
Soundness game then the probability of not “catch-

12

ing” a cheating prover on a non-succesful run decreases
exponentially.

Similar to the iterated completeness we first define the
SoundnessAmp game which iterates the Soundness
module n times.
module SoundnessAmp(P: MaliciousProver,

V: HonestVerifier) = {
proc run(s: statement, n: int) = {
var accept, i;
i ← 0;
accept ← true;
while (i < n ∧ accept) {

accept <@ Soundness(P,V).run(s);
i ← i + 1;

}
return accept;

}
}.

It is important to note that the state of cheating prover
could be different during every iteration because EasyCrypt
allows procedures to keep state between activations. Thus
the malicious prover is one program sending 2n messages,
not an n-fold repetition of the same program. In contrast,
the honest verifier does the same thing in each iteration
by definition (see definition of HV in Sec. 3.2).

The statement of iterated soundness states that if the
success probability of one run of the soundness game by
cheating prover P and honest verifier HV (the “soundness-
error”) is bounded from above by δ , then iterating it n
times improves this upper bound to δ n :
lemma soundness_seq: ∀ m s δ n,
! in_language soundness_relation s
⇒ 1 ≤ n
⇒ (∀ n, Pr[r ← Soundness(P,HV).run(s)@n: r] ≤ δ)
⇒ Pr[r ← SoundnessAmp(P,HV).run(s,n)@m: r] ≤ δ n.

5.2.1. Fiat-Shamir Iterated Soundness. Recall that we
proved that for one-run case the soundness-error of Fiat-
Shamir is upper-bounded by 1

2 . Hence, as an immediate
consequence of soundness_seq, the upper bound for
the soundness-error of iterated Fiat-Shamir is exponentially
better, namely, (12)

n.

5.3. Iterated Zero-Knowledge

Similarly to the case of completeness and soundness
the goal of iterated zero-knowledge is to show that if the
distinguishing probability for one round is small, it is also
small in the case of multiple runs. In other words, we need
to show that zero-knowledge composes sequentially.

We start by introducing a module ZKRealAmp which
iterates one run of the “real” protocol n times. Note that
instead of iterating the ZKReal module which has the
distinguisher at the end, we first iterate the protocol n times
and only then run the distinguisher who gets the summary
prepared by the verifier after all n iterations (w.l.o.g., the
return values of V.summitup in prior rounds are ignored).
The main idea is that the verifier tries to accumulate as
much information throughout the runs and then present
that summary to a distinguisher:
module ZKRealAmp(P: HonestProver,

V: MaliciousVerifier,
D: Distinguisher) = {

proc run(s: statement, w: witness) = {

var c, ch, r, summary, guess, i;
i ← 0;
while (i < n) {
c <@ P.commitment(s, w);
ch <@ V.challenge(s, c);
r <@ P.response(ch);
summary <@ V.summitup(r);
i ← i + 1;

}
guess <@ D.guess(s, w, summary);
return guess;

}
}.

In the ideal setting, both in the one run and in the
iterated case, the game simply consists of a simulator that
outputs the final output of the verifier; no interaction is
happening. Thus, we can reuse the module ZKIdeal for
the iterated case.

However, the concrete simulator Sim from the one run
case will not properly simulate the multi-run case. Thus,
we need to construct a new simulator SimAmp(Sim)
for the iterated case from Sim. The following module
SimAmp encodes this transformation:
module SimAmp(S: Simulator,

V: MaliciousVerifier) = {
proc simulate(s: statement) = {

var summary, i;
i ← 0;
while (i < n) {
summary <@ S(V).simulate(s);
i ← i + 1;

}
return summary;

}
}.

Note that the security definition of zero-knowledge does
not require us to use this specific SimAmp, as long as
we construct a simulator that simulates well. However,
it is the most natural way of constructing the simulator
of the multi-run case; it just repeats the simulator of the
single-run case.9

We are now ready to introduce our main ZK iteration
result. Let Sim, V and D be a simulator, malicious verifier,
and a distinguisher, respectively. Let Di(D) denote a dis-
tinguisher which executes S(V).simulate(s) exactly
i times and then calls D.guess and returns its result.
(Here i is a global variable that belongs to Di.10 For
brevity, we omit the formal definition of Di here.)

If there exists a δ which is an upper bound for
the distinguishing probability with respect to Sim, V,
D and honest prover HP, then the difference between
ZKIdeal experiment played by SimAmp(Sim) and the
real amplified game ZKRealAmp played by P, V, and D
is upper-bounded by nδ. The most important aspect of
this result is that the security degrades linearly with the
number of performed runs of the protocol.
lemma zk_seq: ∀ m δ,

9. This construction makes use of the fact that the verifier’s state is part
of the simulator’s state. The iterated simulator needs to “feed” the state
from the previous iteration to the internally simulated verifier. However,
in the present setting, this is automatic because the iterated simulator just
keeps the state between iterations of the loop. This is why we do not see
any explicit state passing between the iterations of the loop in SimAmp.

10. The variable i does not appear explicitly in the code below. This
is because the arbitrary initial value of i is implicitly present in the
memory n.

13

(∀ n, |Pr[r ← ZKIdeal(Sim,V,Di(D)).run(s,w)@n: r]
- Pr[r ← ZKReal(HP,V,Di(D)).run(s,w)@n: r]|

≤ δ)
⇒ |Pr[r ← ZKIdeal(SimAmp(Sim),V,D).run(s,w)@m: r]

- Pr[r ← ZKRealAmp(HP,V,D).run(s,w)@m: r]|
≤ δ ··· n.

The proof of this result is not as simple as the ampli-
fication of soundness and completeness. In fact, to get a
linear bound, we used a proof based on hybrid argument. It
is fortunate that the standard library of EasyCrypt contains
a generic formalization of this technique.

5.3.1. Running Example: Iterated Zero-Knowledge.
Recall that for single-run case we showed that the zero-
knowledge-error of Fiat-Shamir is upper-bounded by 2(1−
p)N , where N is the number of iterations performed by
the simulator. Hence, as an immediate consequence of
zk_seq lemma, the upper bound for the zero-knowledge-
error of iterated Fiat-Shamir is only linearly worse, namely,
2n(1− p)N , where n is the number of sequential runs of
Fiat-Shamir.

6. Case Studies

Throughout this paper we instantiated our definitions
and lemmas with the Fiat-Shamir protocol (Sec. 2.3).
We proved directly completeness (Sec. 3.2.1), special
soundness (Sec. 3.4), and one-shot simulator property
(Sec. 4.1.1). Due to the algebraic nature of the Fiat-Shamir
protocol the built-in support for SMT solvers greatly simpli-
fied these proofs. Most importantly, (iterated) completenss,
(iterated) soundness, (iterated) zero-knowledge, and proof
of knowledge were implied automatically by our generic
results.

In this section we additionally comment on the Schnorr
and Blum protocols.

6.1. Schnorr Protocol

The protocol is defined for a cyclic group Gq of order
q with generator g. The language of the Schnorr protocol
consists of all group elements. In the Schnorr protocol the
prover tries to convince a verifier that it knows a discrete
logarithm of the statement. In other words, if s ∈ Gq is a
statement then then a corresponding witness is an element
w so that s = gw. The group Gq and the generator g are
public parameters.

The prover interacts with the verifier as follows:
1) The prover chooses a y ∈ Zq uniformly at random

and sends z := gy as the commitment.
2) The verifier replies with a challenge c ∈ Zq chosen

uniformly at random.
3) The prover responds with t = y + cw.
4) The verifier accepts if gt = zsc.

Completeness. The Schnorr protocol has perfect com-
pleteness. For our EasyCrypt implementation the complete-
ness proof is derived almost entirely automatically by using
the built-in support for SMT solvers.

Soundness. It is important to note that in Schnorr
protocol all statements (i.e., elements of the group) are in
the language (i.e., have witnesses). Therefore the protocol
is trivially sound with soundness-error 0. Since soundness

is thus a meaningless property for this protocol, we do
not prove it. But note that it is meaningful to say that the
protocol proves that the prover knows a witness. We show
this below (proof of knowledge).

Zero-Knowledge. Another interesting aspect of the
Schnorr protocol is that we cannot show the malicious-
verifier zero-knowledge property because there is no
efficient simulator.11 Indeed, the challenge of the verifier
is an element of the group sampled uniformly at ran-
dom. This means that the size of the set of challenges
(challenge_set) equals to the order of the group (i.e.,
exponentially big). Hence, if we build a simulator based on
the idea of guessing the challenge of a malicious verifier
then the probability of a successful simulation will be
negligible.

The Schnorr protocol does, however, satisfy the honest-
verifier zero-knowledge (HVZK) property. This property
has been formalized in [11], [13], [14] and is not related
to rewinding, so we did not include a proof in our case
study.

Special Soundness. The Schnorr protocol has perfect
special soundness. Recall that in the case of perfect special
soundness, we are given two transcripts t1 = (c1, ch1, r1)
and t2 = (c1, ch2, r2) which have the same commitments
(c1 = c2) and different challenges (ch1 6= ch2). In addition
we know that both transcripts pass the verification which
tells us that r1 = y + c1w and r2 = y + c2w. Hence,
witness can be extracted by computing (r1−r2)(c1−c2)−1.
In our formalization we used this idea to implement the
extraction function and the special soundness is derived
almost entirely automatically by the built-in SMT solvers.

Proof of Knowledge. From special soundness
we conclude the proof of knowledge property au-
tomatically by using the previously derived lemma
statistical_extractability. We get the follow-
ing lower bound on the success probability of the extractor:
Pr[r ← Extractor(P).extract(s)@m: s = g^r]
≥ (Pr[r ← Soundness(P,HV).run(s)@m: r]2

- 1/(size challenge_set)
··· Pr[r ← Soundness(P,HV).run(s)@m: r])

It is important to note that since challenge_set = Zp
is big then 1/(size challenge_set) is small and
therefore the success probability of an extractor is close to
the square of the success probability of malicious prover
in the soundness game.

The Schnorr protocol illustrates that the size of the
challenge set affects zero-knowledge and proof of knowl-
edge differently. The small challenge set is good for zero-
knowledge property since the simulator has more odds of
guessing the verifier’s challenge; on the other hand, the
small challenge set makes extractor less efficient (and vice
versa for the big challenge set).

6.2. Blum Protocol

A graph G is said to be Hamiltonian if there exists
a cycle that passes through each vertex of G exactly
once. This cycle is called a Hamiltonian cycle. Finding a
Hamiltonian cycle in a graph is an NP-complete problem.
Blum described a zero-knowledge protocol whose language

11. At least no construction is known. We are not aware of a formal
impossibility result.

14

consists of Hamiltonian graphs. More specifically, the
statements are graphs and witnesses are Hamiltonian
cycles.

In the following we describe the Blum protocol. Let
the graph G have n vertices and be represented by the
adjacency matrix with n rows and n columns. We write
G(i, j) to refer to the entry at the i-th row and j-th
column. The entries of adjacency matrix are booleans
so that G(i, j) = 1 iff there is an edge from vertex i to
vertex j. We also assume (Commit, Verify) is a commitment
scheme. In the Blum protocol the prover P wishes to prove
to the verifier V that G is Hamiltonian as follows:

1) The prover samples a random permutation φ over n
vertices. Then it uses φ to construct φ(G) which is a
permuted version of the adjacency matrix of G. Next,
P commits to each edge in the permuted adjacency
matrix. Let Cφ(i, j) denote a commitment resulting
from running the Commit algorithm on the φ(G)(i, j),
so Cφ is a matrix of commitments. The opening keys
of these commitments are stored in a matrix Dφ.
Additionally, P commits to the permutation φ that
was used to permute the adjacency matrix; denote this
commitment by pφ and its respective opening key by
qφ. Finally, the prover proceeds by sending pφ and
Cφ to the verifier.

2) The verifer replies with a challenge bit b ∈ {0, 1}
sampled uniformly at random.

3) The prover receives the bit b. If b = 0 then prover
sends the permutation φ and opening keys Dφ and qφ
to the verifier. That is, it opens commitments to the
permuted graph and to the permutation. Otherwise,
if b = 1 then prover uses the permutation φ on w
which translates it to the Hamiltonian cycle in φ(G).
Finally, the prover sends φ(w) and the opening keys
from Dφ for only those entries whose edges appear
in φ(w).

4) If the challenge bit was zero (i.e., b = 0) then verifier
receives a permutation φ, opening keys Dφ and qφ.
It uses the commitment verification algorithm Verify
to check that qφ is a correct opening for φ and that
Dφ is a correct opening for φ(G).
However, if b = 1, then verifier receives a cycle
φ(w) and openings for its edges. It checks that the
received cycle is Hamiltonian and that the openings
corresponding to the edges of φ(G) are all 1. (That
is, that φ(G) is indeed a subgraph of the committed
graph.)

Commitment Scheme. The security properties of the
Blum protocol depend on the hiding and binding properties
of the underlying commitment scheme. More specifically,
special soundness, extractability, and soundness depend
on the binding property, and zero-knowledge depends on
the hiding property of the commitment scheme. In our
formalization we assumed that the commitment scheme
is statistically hiding and computationally binding.12 As
a result we proved that our variant of Blum protocol
has computational special soundness, extractability, and
soundness. At the same time zero-knowledge is statistical.

12. We choose this direction because in the context of this paper,
computational soundness is more interesting that computational ZK:
Analyzing computational soundness showcases the use of rewinding in
the computational setting (i.e., in a setting involving reductions).

Completeness. The completeness of the Blum protocol
relies on the correct operation of the commitment scheme.
In our formalization we assumed that the commitment
scheme always produces functional commitment-opening
pairs. In this case the Blum protocol has perfect complete-
ness.

Special Soundness. The special soundness of the Blum
protocol depends on the binding property of the used
commitment scheme. Let t1 = (c1, ch1, r1) and t2 =
(c2, ch2, r2) be two valid transcripts (i.e., c1 = c2 and
ch1 6= ch2). Then w.l.o.g., assume that ch1 = 0 and
ch2 = 1. In this case, c1 = (Cφ, qφ), where Cφ contains
commitments on edges for a permuted graph, and qφ is a
commitment on the permutation. Also, r1 = (φ,Dφ, qφ),
where φ is a permutation, Dφ contains valid opening keys
to commitments in Cφ and qφ is a valid opening to pφ.
At the same time, r2 = (w′, d) where w′ is a Hamiltonian
cycle in the permuted graph and d contains openings of
the w′-edges in Cφ. At this point, we known that the keys
in d successfully open commitments in Cφ and that w′ is
a cycle. We also know that keys in Dφ open commitments
in Cφ with respect to φ(G). Hence, either φ−1(w′) is a
Hamiltonian cycle in G or there exists a commitment in C
which corresponds to an edge in w′ which opens to two
different values by the respective keys from d and D.

Based on this idea we implemented a func-
tion special_soundness_extract which returns
φ−1(w′) as a Hamiltonian cycle for G. Also, we define a
BlumBinder module which finds two opening keys for
different values and the same commitment in case when
φ−1(w′) is not a Hamiltonian cycle for G.

To sum up, the probability of unsuccesfull witness
extraction from two valid transcripts is bounded from
above by the probability of a successfull attack on the
binding of a commitment scheme:

lemma blum_spec_soundness: ∀ m,
Pr[Extractor(P).extract(s)@m:

valid_transcript_pair s r.1 r.2 ∧
!soundness_relation s
(special_soundness_extract s r.1 r.2)]

≤ Pr[r ← BindingExperiment(
BlumBinder(Extractor(P))).main()@m: r].

In our formalization, the proof of knowledge and
soundness of Blum protocol are automatically derived by
our generic lemmas from blum_spec_soundness.

Zero-Knowledge. In our formalization we derived
zero-knowledge from a “one-shot” simulator. Similarly
to the Fiat-Shamir protocol, in the Blum protocol we
define a “one-shot” simulator which starts by trying to
guess the challenge of the verifier. Next, assuming that the
guess is correct, the simulator prepares a commitment to
which it is going to be able to provide a response which
will verify correctly. More specifically, if the “one-shot”
simulator guesses that the verifier sends a 0-challenge, then
the simulator produces a commitment which consists of
Cφ and pφ computed exactly as described in the protocol.
However, if the simulator guesses that the challenge is
1, then it sends C ′φ and pφ to the verifier where C ′φ is
a commitment matrix produced for the complete graph
with n vertices. If the guess was correct and the verifier
challenge is 1, the simulator can reply with opening keys
which correspond to edges in Hamiltonian cycle φ(hn),

15

where hn is a trivial Hamiltonian cycle in the complete
graph Hn.

The proof of the properties for the described “one-shot”
simulator are not trivial. In our formalization, we give a
sequence of cryptographic games which establish that if
malicious verifier acts differently in the simulation and the
real interaction with the honest prover then this verifier
can be reduced to an attacker which breaks the hiding
property of the commitment scheme.

7. Formalization Caveats

Initialization. One important design decision that arose in
the formalization was how the initial state of the various
adversarial algorithms (e.g., malicious verifier, malicious
prover) is instantiated. We identified several options:
(a) Adversarial algorithms get a special procedure called

init() whose task is to initialize their state.
(b) Adversarial algorithms get a special procedure called

init(), and additionally this procedure is con-
strained to initialize all variables of the adversary
before reading them. (No dependence on the initial
memory m. EasyCrypt’s module type system allows
us to enforce this by adding a * to the procedure
declaration.)

(c) Adversarial algorithms get no initialization procedure.
(d) Any of the three options above, and the adversary

additionally get an all-quantified auxiliary input as an
argument.

Different choices have different subtle consequences both
on the cryptographic interpretation as well as on the details
of the formal proofs.

Cryptographically, giving an additional all-quantified
argument (known as auxiliary input) gives us a definition
called non-uniform zero-knowledge. In contrast, without
auxiliary input, we get uniform zero-knowledge. It is known
that to get sequential composition of zero-knowledge
proofs, we need to use non-uniform zero-knowledge [21].
So which of the above design options lead to a non-uniform
definition? Obviously, option (d) has an auxiliary input.
However, options (a) and (c) also have one, this is just
implicit in the way how EasyCrypt works: Unless we
explicitly enforce procedures that do not look at their initial
state (as in (b)), all procedures can access the content of
their global variables in the initial memory m. And all our
theorems are of the form “∀ m, . . .”, which means that
the adversary effectively gets an auxiliary input implicitly.
Only option (b) (when not combined with (d)) models
uniform zero-knowledge. We believe that it is important to
stress this point explicitly because EasyCrypt’s handling
of global variables makes it easy to overlook this implicit
dependency.

In the formal setting it is easier to work with games
without explicit state initialization. For example, in our
development we defined the Soundness(P,HV) game
which encodes the three message exchange between the
malicious prover P and the honest verifier HV. Later, we
defined the module SoundnessAmp which sequentially
iterates the Soundness game n times. Then we proved
that n-time sequential composition of sigma-protocols
exponentially reduces the soundness-error to δn. The proof
is based on the premise that for any initial state the

soundness-error for the Soundness game is below δ .
However, if we add state initialization of to the malicious
prover in the Soundness game, then it is meaningless
to keep SoundnessAmp defined as an n-time iteration
of the Soundness game. Instead, we will need to add
an explicit initialization of the malicious prover before the
while-loop and the body of the while-loop must implement
the three message exchange. This means that the proof of
amplified soundness (similar to lemma soundness_seq)
will become more complicated due to the fact that we split
the prover into an iterated and a non-iterated part (e.g.,
we will need to use “averaging” technique and Jensen’s
inequality).

In our formalization we used the (c) approach as it
results in simpler proofs. However, we recognize that in
some situations the state initialization of adversaries is
necessary. To make our results relevant for these situations,
we provide generic lemmas for removing/adding init-
procedures in security claims (not limited to the zero-
knowledge setting).13

Disjointness of Module-Variables. In the cryptographic
setting, when we have a definition such as zero-knowledge,
and we say “there is a simulator S such that for all verifiers
V and all distinguishers D, . . . ”, we usually implicitly
mean that those three algorithms S, V,D have disjoint
state. That is, we expect that they do not access each
other’s variables unless we would explicitly specify that
they do so. When, e.g., the simulator runs a simulated
V internally, we then can think of that V as a copy of
the original V inside the simulator. The simulator still
has no access to the variables of the “original” V . In the
case of the simulator and the verifier, this distinction is
of lesser importance because in the games making up the
definition of zero-knowledge, S and V never run in the
same game, so they cannot influence each other anyway.
However, the distinguisher and the verifier, for example,
run at the same time. So it can make a difference whether
they can read/write each other’s variables or not. The
implicit assumption in the cryptographic setting is again
that they do not. And if the distinguisher D needs, e.g.,
to simulate internally a copy of the verifier V (e.g., in the
sequential composition proof), it is understood that this is
a completely separate instance of V whose variables are
part of the state of D.

Translating this to the EasyCrypt setting, the obvious
solution would be to restrict the global variables of the
various algorithms analogously. That is, we quantify over
S{-V,-D}, D{-S,-V}, V{-S,-D}, which EasyCrypt
understands to mean that their global variables are disjoint.
Doing so, however, we encountered a problem that has
no counterpart in the cryptographic pen-and-paper proofs:
In the sequential composition proof for zero-knowledge,
we needed to construct a distinguisher D that internally
simulates a copy of V . However, EasyCrypt has no support
for “copying” a module. Instead, if D wants to depend on
the behavior of V , D has to access the module V directly,

13. We proved a generic lemma which states that for any algorithm A
if there exists an ε which is an upper/lower bound for the probability
of the “initialize-then-single-run” program then there exists a memory
n (initial state) so that running A on n (without explicit initialization)
results in the success-probability also bounded from above/below by ε.
We also prove an analogous one for indistinguishability.

16

and this access can modify the state of V .14 In order to
be able to prove sequential composition, we thus needed
to relax the condition on the variables of D and V , and
allow the distinguisher and verifier to have common global
variables. (I.e., declaring D{-S}, V{-S}.)

Since this departs from what the cryptographer expects,
it is important to check whether this changes the mean-
ing of the zero-knowledge definition. Fortunately, in the
specific case of zero-knowledge, it does not, because the
distinguisher runs after the verifier has already terminated,
so their code does not “get into each other’s way”. Also,
the goal of the verifier is to output as much information as
possible about what it learned, so we can assume without
loss of generality that the verifier tells everything to the
distinguisher anyway. So the fact that the distinguisher can
read the verifier’s state does not give any information to
the distinguisher that it should not have.

So in the present situation, all is fine if we relax the
disjointness conditions. However, in other contexts (maybe
some proof where a distinguishing entity runs concurrently
with an adversary such as in the Universal Composability
framework [22]), it might not be possibly to allow different
modules to share state for technical reasons. We believe
that it would be a very useful feature if EasyCrypt would
allow us to “copy” modules to facilitate proofs where one
program simulates another.

8. Conclusions

In this paper we focused on the formalization of sigma-
protocols in EasyCrypt with a particular focus on rewinding.
First, we formalized definitions of the main properties
associated with sigma-protocols. Second, we used a for-
malization of the rewinding technique to generically derive
malicious-verifier zero-knowledge, soundness, and proof
of knowledge from simpler properties. Third, we addressed
the sequential composition of sigma-protocols and derived
security bounds for completeness, soundness, and zero-
knowledge. Also, we used the Fiat-Shamir protocol as
a running example and showed its instantiation in our
framework. We also commented on our formalization of the
Schnorr and Blum protocols. To the best of our knowledge,
the properties of sigma-protocols which rely on rewinding
of adversaries have not yet been addressed in theorem
provers.

References

[1] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin, “Computer-
aided security proofs for the working cryptographer,” in Annual
Cryptology Conference. Springer, 2011, pp. 71–90.

[2] V. Cortier, C. C. Drăgan, F. Dupressoir, B. Schmidt, P.-Y. Strub, and
B. Warinschi, “Machine-checked proofs of privacy for electronic
voting protocols,” in 2017 IEEE Symposium on Security and Privacy
(SP). IEEE, 2017, pp. 993–1008.

14. We can, if we want, undo this modification using the setState
and getState procedures (see Sec. 2.2). While this will make sure that
semantically D does not change the state of V , it does not change which
variables EasyCrypt thinks that D accesses because this is computed
syntactically.

[3] D. Firsov, H. Lakk, and A. Truu, “Verified multiple-time
signature scheme from one-time signatures and timestamping,”
in 2021 2021 IEEE 34th Computer Security Foundations
Symposium (CSF). Los Alamitos, CA, USA: IEEE Computer
Society, jun 2021, pp. 653–665. [Online]. Available: https:
//doi.ieeecomputersociety.org/10.1109/CSF51468.2021.00051

[4] G. Barthe, G. Danezis, B. Grégoire, C. Kunz, and S. Zanella-
Béguelin, “Verified computational differential privacy with appli-
cations to smart metering,” in 2013 IEEE 26th Computer Security
Foundations Symposium, 2013, pp. 287–301.

[5] J. Nussbaumer, “Security analysis for IPsec with EasyCrypt,”
Master’s thesis, University of Bonn, 2019.

[6] D. Firsov and D. Unruh, “Reflection, rewinding, and coin-toss in
easycrypt,” in Proceedings of the 11th ACM SIGPLAN International
Conference on Certified Programs and Proofs, 2022, pp. 166–179.

[7] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions
to identification and signature problems,” in Conference on the
theory and application of cryptographic techniques. Springer,
1986, pp. 186–194.

[8] C.-P. Schnorr, “Efficient signature generation by smart cards,”
Journal of cryptology, vol. 4, no. 3, pp. 161–174, 1991.

[9] M. Blum, “How to prove a theorem so no one else can claim it,”
in Proceedings of the International Congress of Mathematicians,
vol. 1. Citeseer, 1986, p. 2.

[10] “Accompanying EasyCrypt development,” https://github.com/
dfirsov/easycrypt-zk-code, accessed: 2022-06-7.

[11] G. Barthe, D. Hedin, S. Z. Béguelin, B. Grégoire, and S. Heraud,
“A machine-checked formalization of sigma-protocols,” in 2010
23rd IEEE Computer Security Foundations Symposium. IEEE,
2010, pp. 246–260.

[12] J. B. Almeida, E. Bangerter, M. Barbosa, S. Krenn, A.-R. Sadeghi,
and T. Schneider, “A certifying compiler for zero-knowledge proofs
of knowledge based on σ-protocols,” in European Symposium on
Research in Computer Security. Springer, 2010, pp. 151–167.

[13] J. Bacelar Almeida, M. Barbosa, E. Bangerter, G. Barthe, S. Krenn,
and S. Zanella Béguelin, “Full proof cryptography: verifiable
compilation of efficient zero-knowledge protocols,” in Proceedings
of the 2012 ACM conference on Computer and communications
security, 2012, pp. 488–500.

[14] D. Butler, A. Lochbihler, D. Aspinall, and A. Gascón, “Formalising∑
-protocols and commitment schemes using CryptHOL,” Journal

of Automated Reasoning, vol. 65, no. 4, pp. 521–567, 2021.

[15] J. B. Almeida, M. Barbosa, M. L. Correia, K. Eldefrawy, S. Graham-
Lengrand, H. Pacheco, and V. Pereira, “Machine-checked ZKP for
NP relations: Formally verified security proofs and implementations
of MPC-in-the-head,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, 2021, pp.
2587–2600.

[16] N. Sidorenco, S. Oechsner, and B. Spitters, “Formal security analysis
of MPC-in-the-head zero-knowledge protocols,” in 2021 IEEE 34th
Computer Security Foundations Symposium (CSF). IEEE, 2021,
pp. 1–14.

[17] I. Giacomelli, J. Madsen, and C. Orlandi, “ZKBoo: Faster Zero-
Knowledge for boolean circuits,” in 25th USENIX Security Sympo-
sium (USENIX Security 16), 2016, pp. 1069–1083.

[18] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and
P.-Y. Strub, “EasyCrypt: A tutorial,” in Foundations of Security
Analysis and Design VII. Springer, 2013, pp. 146–166.

[19] ——, “EasyCrypt: A tutorial,” in Foundations of security analysis
and design VII. Springer, 2013, pp. 146–166.

[20] O. Goldreich, Foundations of Cryptography, Volume 1. Cambridge
university press Cambridge, 2001.

[21] O. Goldreich and H. Krawczyk, “On the composition of zero-
knowledge proof systems,” SIAM Journal on Computing, vol. 25,
no. 1, pp. 169–192, 1996.

[22] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proceedings 42nd IEEE Symposium
on Foundations of Computer Science. IEEE, 2001, pp. 136–145.

17

https://doi.ieeecomputersociety.org/10.1109/CSF51468.2021.00051
https://doi.ieeecomputersociety.org/10.1109/CSF51468.2021.00051
https://github.com/dfirsov/easycrypt-zk-code
https://github.com/dfirsov/easycrypt-zk-code

	Introduction
	Related Work

	Preliminaries
	Basics
	Rewinding
	Running Example: The Fiat-Shamir Protocol

	Generic Definitions
	Basics
	Completeness
	Soundness
	Special Soundness
	Proof of Knowledge
	Zero-Knowledge

	Generic Derivations
	Zero-Knowledge from One-Shot Simulation
	Extractability from Special Soundness
	Soundness from Extractability

	Sequential Composition
	Iterated Completeness
	Iterated Soundness
	Iterated Zero-Knowledge

	Case Studies
	Schnorr Protocol
	Blum Protocol

	Formalization Caveats
	Conclusions
	References

