
On the Communication Efficiency of Statistically-Secure
Asynchronous MPC with Optimal Resilience*

Ashish Choudhury† Arpita Patra‡

Abstract
Secure multi-party computation (MPC) is a fundamental problem in secure distributed computing.

An MPC protocol allows a set of n mutually distrusting parties with private inputs to securely compute
any publicly-known function of their inputs, by keeping their respective inputs as private as possible.
While several works in the past have addressed the problem of designing communication-efficient MPC
protocols in the synchronous communication setting, not much attention has been paid to the design of
efficient MPC protocols in the asynchronous communication setting. In this work, we focus on the design
of efficient asynchronous MPC (AMPC) protocol with statistical security, tolerating a computationally
unbounded adversary, capable of corrupting up to t parties out of the n parties. The seminal work of
Ben-Or, Kelmer and Rabin (PODC 1994) and later Abraham, Dolev and Stern (PODC 2020) showed
that the optimal resilience for statistically-secure AMPC is t < n/3. Unfortunately, the communication
complexity of the protocol presented by Ben-Or et al is significantly high, where the communication
complexity per multiplication is Ω(n13κ2 log n) bits (where κ is the statistical-security parameter). To
the best of our knowledge, no work has addressed the problem of improving the communication com-
plexity of the protocol of Ben-Or at al. In this work, our main contributions are the following.
• We present a new statistically-secure AMPC protocol with the optimal resilience t < n/3 and where

the communication complexity is O(n4κ) bits per multiplication. Apart from improving upon the
communication complexity of the protocol of Ben-Or et al, our protocol is relatively simpler and
based on very few sub-protocols, unlike the protocol of Ben-Or et al which involves several layers
of sub-protocols. A central component of our AMPC protocol is a new and simple protocol for
verifiable asynchronous complete secret-sharing (ACSS), which is of independent interest.

• As a side result, we give the security proof for our AMPC protocol in the standard universal compos-
ability (UC) framework of Canetti (FOCS 2001, JACM 2020), which is now the defacto standard
for proving the security of cryptographic protocols. This is unlike the protocol of Ben-Or et al,
which was missing the formal security proofs.

1 Introduction

A central concept in secure distributed computing introduced by Yao [51] is that of secure multi-party
computation (MPC), which states that any distributed computation among mutually-distrusting participants
which can be performed in the presence of a centralised trusted entity, can also be performed “securely” in
the absence of any such trusted entity, by running a protocol among the participants themselves. Informally,
an MPC protocol allows a set of n mutually-distrusting parties to perform a joint computation on their
inputs, while keeping their inputs as private as possible. Due to its powerful abstraction, ever since its
inception [35, 12, 21, 49], the MPC problem has been widely studied in various communication models and
adversarial settings and several interesting results have been obtained regarding the theoretical possibility
and feasibility of secure MPC (see for instance, [38, 33, 42, 40] and their references).

*This paper combines the results of [43] and [22]; this is the full and elaborate version with full security proofs.
†International Institute of Information Technology, Bangalore India. Email: ashish.choudhury@iiitb.ac.in.
‡Indian Institute of Science, Bangalore, India. Email: arpita@iisc.ac.in.

1

Synchronous vs Asynchronous Networks: Most of the works for MPC consider the synchronous com-
munication setting, where the parties are synchronized by a global clock and where there exists a publicly-
known upper bound on the message delays over the channels among the parties. That is, each party knows
beforehand how long it has to wait for an expected message during the execution of a protocol, and if the
message does not arrive within that time-bound, then it can be concluded that the sending party is corrupt.
Unfortunately, it is impossible to ensure such strict time-outs in real-world networks like the Internet, where
the communication channels may have arbitrary delays. Such networks are more appropriately captured
by the asynchronous communication setting [11, 16], where there does not exist any global clock and the
messages of the parties can be arbitrarily (though finitely) delayed. The only guarantee in this model is
that any message sent by a party is eventually delivered and is not “stuck” in the network forever. Apart
from a better modelling of real-world networks, asynchronous protocols have the advantage of running at
the actual speed of the underlying network. More specifically, for a synchronous protocol, the participants
have to pessimistically set the global delay ∆ to a large value to ensure that the messages sent by every party
at the beginning of each round reaches their destination within the ∆ time frame. But if the actual network
delay δ is such that δ << ∆, then the protocol fails to take advantage of the faster network and its running
time will be proportional to ∆.

Even though the asynchronous communication model is practically more relevant, the biggest challenge
in designing a completely asynchronous protocol is that during the protocol execution, a slow sender cannot
be distinguished from a corrupt sender. That is, if a party does not receive an expected message, then unlike
the synchronous setting, the receiving party cannot decide whether the sender is corrupt (and has not sent
the message) or slow (it has sent the message, but it is delayed). Consequently, if t is the upper bound on
the maximum number of corruptions in the system, then in a completely asynchronous protocol, a party
can afford to receive messages from at most n − t parties and has to proceed to the next step, to avoid
endless waiting. However, in this process, the communication from up to t potentially honest parties may
have to be ignored. Due to this phenomena, any synchronous protocol fails completely when executed
in a completely asynchronous environment, as the security of the synchronous protocols depend upon the
fact that the messages of all the honest parties are considered. In fact, there are sufficient evidences that
asynchrony coupled with the possibility of arbitrary faults in a network, has devastating consequences on the
computational capabilities of the network. For instance, the classic FLP impossibility result [32] completely
rules out the possibility of deterministic protocols in the asynchronous communication setting, even for the
basic task of distributed consensus, where unlike MPC, the privacy of the inputs of the participants need not
be preserved.

Unconditionally-secure MPC: One of the earliest distinctions made in the domain of MPC is based on the
computing power of corrupt participants. If the computing power of the corrupt parties is bounded (namely
polynomial time), then the notion of security achieved is termed as cryptographic (also known as compu-
tational security) [51, 35]. On the other hand, unconditionally-secure MPC protocols [12, 21, 49] provide
security even when the corrupt parties are computationally unbounded, provided the parties are connected
by pair-wise private and authentic channels. The advantage of the latter class of protocols is two-fold. First,
they provide ever-lasting security, as the underlying security is not based on any computational-hardness
assumptions. Second, the primitives used in such protocols are computationally very simple and faster by
several order of magnitude, compared to the cryptographic primitives used in cryptographically-secure MPC
protocols. Unconditionally-secure protocols can be further divided into the class of perfectly-secure proto-
cols where all the expected security properties are achieved in an error-free fashion and statistically-secure
protocols where all the properties are achieved except with some negligible error probability of 2−Ω(κ), for
a given statistical-security parameter κ.

The standard approach used in any generic unconditionally-secure MPC protocol is that of “shared

2

circuit-evaluation” based on secret-sharing, first pioneered in [35, 12] and then subsequently followed in
all generic unconditionally-secure MPC protocols. In this approach, it is assumed that the function f to be
securely computed by the parties is expressed as a publicly known arithmetic circuit cir over some algebraic
structure, which is typically a finite field F. The circuit cir consists of addition (linear) gates and multiplica-
tion (non-linear) gates. The parties then “securely” evaluate each gate in cir in a shared/distributed fashion.
More specifically, let t be the upper bound on the maximum number of corrupt parties, which are under the
control of a centralized entity called adversary. Then each party secret-shares its inputs (for the function f)
among all the parties using a linear secret-sharing scheme (LSS) [29] say Shamir’s [50], with threshold t,
where each party obtains a share of the underlying shared value. Such shared values are called completely
t-shared (see Definition 2.3). Informally such a scheme ensures that the shared value remains information-
theoretically secure even if up to t shares are compromised, while the shared value can be reconstructed
uniquely if t+ 1 correct shares are available. The parties then maintain the following invariant for each gate
in the circuit: given completely t-shared inputs of the gate, the gate output is computed and made available
among the parties in a completely t-shared fashion at the end of the gate evaluation. Moreover, the shared
gate evaluation does not reveal any additional information about the gate inputs and output. Once all the
gates are evaluated as per the above invariant, the circuit output, which will be available in a completely
t-shared fashion among the parties is publicly reconstructed, using the reconstruction algorithm of the un-
derlying LSS. Intuitively, the privacy of the entire computation follows since each intermediate value during
the shared circuit-evaluation remains secret-shared with threshold t.

Evaluating an addition gate as per the above invariant is easy and requires no interaction among the par-
ties. Specifically, addition gates can be evaluated locally by the parties, due to the linearity property of the
underlying LSS, which guarantees that given completely t-shared values a and b, and publicly known con-
stants, say c1 and c2, then to compute a complete t-sharing of c1a+ c2b, each party Pi just needs to locally
compute c1ai + c2bi, where ai and bi are respectively the shares of a and b held by Pi, as part of complete
t-sharing of a and b. However, evaluating the multiplication gates as per the above invariant requires inter-
action among the parties. The focus therefore is rightfully placed on measuring the total number of field
elements communicated by the honest parties (called the communication complexity) during the evaluation
of the multiplication gates in an MPC protocol. More specifically, the focus is on what is called the amor-
tized communication complexity per multiplication gate, where the amortized communication complexity
is derived under the assumption that the circuit is large enough so that the terms that are independent of the
circuit size can be ignored.

1.1 Our Motivation and Results

In this work, we study the MPC problem in the most powerful adversarial model. Namely we consider a
computationally unbounded Byzantine (malicious adversary), who can corrupt any t parties out of the n
parties during the execution of a protocol and can force them to deviate from the protocol instructions in
any arbitrary fashion. Moreover, we consider the more stronger asynchronous communication setting. The
theoretical possibility and feasibility of unconditionally-secure asynchronous MPC (AMPC) protocols have
been studied in the past. As discussed below, compared to synchronous counterparts, unconditionally-secure
AMPC protocols perform badly in several aspects.
• Resilience: It is the number of faults t which can be tolerated by a given protocol. As shown in Table

1, the optimal resilience bounds (namely the maximum number of tolerable faults) are better for the
synchronous MPC protocols, compared to AMPC protocols.

• Communication Complexity Per Multiplication: An enormous amount of research has been done in the
literature to design optimally-resilient unconditionally-secure MPC protocols with lower (amortized)
communication complexity per multiplication (see for instance [38, 8, 30, 14, 9, 10, 24] and their ref-
erences). Specially, the focus has been to achieve a communication complexity ofO(n) field elements

3

Type of Security Communication Setting Optimal Resilience Reference
Perfect Synchronous t < n/3 [12]

Asynchronous t < n/4 [11]
Statistical Synchronous t < n/2 [49]

Asynchronous t < n/3 [13, 2]

Table 1: Optimal resilience bounds for unconditionally-secure MPC protocols.

per multiplication gate. Such protocols are considered “scalable” in the sense that for securely evalu-
ating each multiplication gate, the communication done per-party is a constant and independent of the
number of parties. As shown in Table 2, while scalable protocols with optimal resilience have been
obtained in the synchronous communication setting, comparatively the communication complexity of
the most efficient optimally-resilient AMPC protocol is high.

Security Communication Setting Resilience Communication Complexity (in bits) Reference
Perfect Synchronous t < n/3 O(n log n) [36]

Asynchronous t < n/4 O(n2 log n) [45]
Statistical Synchronous t < n/2 O(nκ) [37]

Asynchronous t < n/3 Ω(n13κ2 log n) [13]
Asynchronous t < n/3 O(n4κ) This work

Table 2: Communication complexity per multiplication gate of the most efficient unconditionally-secure
MPC protocols with optimal resilience. The perfectly-secure protocols operate over a field of size at least n
where each field element is of size O(log n) bits. Statistically-secure protocols operate over a field of size
at least 2κ where each field element is of size O(κ) bits and where κ is the statistical-security parameter.

As evident from Table 2, there is an enormous gap between the communication complexity of optimally-
resilient statistically-secure synchronous and asynchronous MPC protocols. Quite a few works have ad-
dressed the problem of designing communication-efficient, optimally-resilient, statistically-secure MPC
protocols in the synchronous setting [48, 28, 8, 14, 37]. Unfortunately, to the best of our knowledge, no
attention has been paid to the design of communication efficient statistically-secure AMPC protocol with
the optimal resilience of t < n/3, ever since the inception of the problem in [13]. Given the practical
relevance of the asynchronous communication setting, the main motivation of our work is to improve this
unfortunate state-of-affair by attempting to design a simple yet communication-efficient, optimally-resilient,
statistically-secure AMPC protocol. Specifically, our main contributions in this paper are the following.

– In this work, we present a new statistically-secure AMPC protocol with the optimal resilience of
t < n/3, which significantly improves upon the communication complexity of the protocol of [13].
Namely, the (amortized) communication complexity per multiplication gate of our protocol isO(n4κ)
bits, thus obtaining many-fold improvement over the protocol of [13]. Apart from better communica-
tion complexity, our protocol is conceptually very simple compared to the protocol of [13]. A detailed
technical comparison of our protocol with the protocol of [13] appears in the sequel.

– The security of the underlying protocols of [13] is based on the “property-based” definition. Loosely
speaking, in this definition the security of a cryptographic protocol is defined by enumerating a list of
required security goals that the protocol should achieve.1 However, as shown in [17, 18], the property-

1The typical security goals are that of (a) Privacy: which guarantees that the adversary does not learn anything “additional”
about the inputs of the honest parties, beyond what can be inferred from the inputs and outputs of the corrupt parties; (b) Cor-

4

based security definition is not rigorous and there are several associated shortcomings. For instance,
the definition does not guarantee that all the required security goals are indeed enumerated. More
importantly, the definition does not say anything about what security guarantees are achieved, when
multiple instances of a protocol (which is proved to be secure as per the property-based definition) are
composed and executed in parallel. Motivated by these shortcomings, [17, 18] proposed the Universal
Composability (UC)-security framework for defining and proving the security of MPC protocols (see
Sec 2 for more details). Loosely speaking, in this definition, a real-world MPC protocol is considered
to be secure if it “emulates” an ideal-world MPC protocol, where the parties privately provide their
respective inputs to a centralized trusted third-party (TTP), who upon receiving the function inputs
compute the function output and sends it back to the respective parties.
In the synchronous communication setting, the current defacto standard is to prove the security of an
MPC protocol as per the more rigorous UC-security definition. However, to the best of our knowledge,
the security of al most all unconditionally-secure AMPC protocols [9, 23, 45, 24, 46] has been proved
using the less rigorous property-based definition, due to the additional technicalities introduced due to
the UC proofs.2 As a side result, in this work, we prove the security of our AMPC protocol according
to the UC-security definition. The conceptual simplicity of our AMPC protocol, coupled with the
involvement of fewer sub-protocols simplifies the overall process of giving a UC-security proof for
our protocol. On contrary, the overall AMPC protocol of [13] is quite involved as it deploys several
layers of sub-protocols. Even though it is not clear whether a UC-security proof for the protocol of
[13] can be given, we believe that any such attempted proof will be highly involved.

On the Efficiency Gap Between Optimally-Resilient Perfectly-Secure and Statistically-Secure AMPC:
From Table 2, one could see the efficiency gap that still exists between the communication complexity
of optimally-resilient AMPC protocols with perfect and statistical security; while for perfect AMPC it is
O(n2 log n) bits per multiplication, for statistical AMPC it is settled to O(n4κ) due to this work. The main
reason for this efficiency gap is the heavy communication complexity of the underlying (asynchronous)
secret-sharing scheme deployed in the statistical AMPC protocol. In a more detail, for the case of perfect
security, the optimal resilience bound is t < n/4, implying the presence of “more” number of honest
parties, compared to the statistically-secure protocols with optimal resilience where t < n/3. Consequently,
designing asynchronous secret-sharing scheme becomes relatively easier with t < n/4, compared to t <
n/3, as discussed in details in the next section. The secret-sharing scheme deployed in [13] is highly
inefficient, with an expensive communication complexity of Ω(n12κ2 log n) bits. In a preliminary version of
this paper [43], we significantly improved the secret-sharing scheme of [13] by presenting a completely new
and relatively simpler secret-sharing scheme with t < n/3 and with communication complexity of O(n4κ)
bits. Then in a follow-up work [22], it was noticed that a slight modification of the secret-sharing scheme of
[43] further leads to an improvement, resulting in a communication complexity ofO(n3κ) bits. Any further
improvement in the secret-sharing scheme will automatically result in further improvements in the resultant
AMPC protocol, thus narrowing the efficiency gap between the two classes of AMPC protocols.

rectness: which guarantees that the honest parties always learn the correct function output, irrespective of the behaviour of the
corrupt parties; (c) Termination: which guarantees that the honest parties eventually complete the protocol and (d) Independence
of Inputs: which guarantees that adversary should not be able to base the inputs of the corrupt parties for the protocol, based on
the inputs provided by the honest parties in the protocol.

2The works of [26, 27] presented cryptographically-secure AMPC protocols with UC-security proofs. However, those proofs
are not applicable for our protocol, since we aim for unconditional security. The work of [13] which was published as an extended
abstract does refer to [16] for the real-world/ideal-world based security definition. However, the exact security proofs for the AMPC
protocol of [13] and its underlying sub-protocols as per the UC style have not been worked out.

5

1.2 Technical Challenges, Detailed Technical Overview and Comparison with [13]

As discussed earlier, the main tool used in any unconditionally-secure MPC protocol is that of complete
t-sharing. A complete t-sharing of a value can be generated by Shamir’s secret-sharing protocol [50],
which allows a designated party called dealer (denoted by D) to generate a complete t-sharing of its private
input s.3 However, the protocol is designed to deal with only passive corruptions (where all the parties
including D follow the protocol instructions) and the synchronous communication setting. As observed in
[13], there are inherent challenges in extending the protocol to the asynchronous communication setting
against a malicious adversary (where even D can be potentially corrupt and may not distribute “consistent”
shares) with t < n/3. To understand these challenges, let us consider the setting where n = 3t + 1, which
is the smallest value of n, satisfying the condition t < n/3.

In any secret-sharing protocol tolerating a malicious adversary, the parties need to interact and verify
whether a potentially corrupt D has distributed correct shares, without revealing anything additional about
the shares in case D is honest. However, in the asynchronous communication setting, we can get the “positive
confirmation” about the distribution of correct shares from at most n−t parties, sayW , as up to t potentially
corrupt share-holders may not respond during the verification process, even if D is honest. Hence, the
resultant sharing will be incomplete in the sense that up to t honest parties outsideW may not possess their
respective shares. Later, if the parties want to reconstruct such incompletely t-shared value, then they can
afford to wait for at most |W| − t = n − 2t = t + 1 share-holders in W to produce their shares. This is
because up to t share-holders inW may be corrupt who may not respond during the reconstruction phase.
However, among these t+ 1 share-holders, up to t could be potentially corrupt who may provide incorrect
shares and hence the reconstructed value will be completely incorrect.

Another major problem with “incomplete” secret-sharing is that it is not suitable for performing shared
circuit-evaluation, as the setW of n− t share-holders may not be the same for all the shared values during
the computation. For instance, let a and b be two values, owned by parties Pi and Pj respectively and
suppose the goal is to securely compute a+ b. Then Pi and Pj will independently act as dealers and secret-
shares theirs inputs a and b respectively. If the underlying secret-sharing protocol is incomplete, then the set
Wa of n − t share-holders of a and the set Wb of n − t share-holders of b need not be the same. This is
because the setsWa andWb are determined asynchronously during independent instances of the underlying
secret-sharing protocol. In the worst case, the set Wa ∩ Wb will have only t + 1 party, who can compute
their respective shares of a+b. And at the time of reconstruction of the shared a+b, the parties could afford
to wait for only (t + 1) − t = 1 party from the setWa ∩Wb to provide its share of a + b, which is clearly
not sufficient to reconstruct a+ b.

To deal with the above problems associated with incomplete secret-sharing, [13] introduced an asyn-
chronous primitive called asynchronous complete secret-sharing (ACSS).4 An ACSS protocol (see Section
5 for the formal definition) allows D to verifiably generate a complete t-sharing of its private input s. The
verifiability here ensures that even if D is corrupt, the completion of the protocol guarantees the existence
of some value s, such that s is completely t-shared by D. From the description, it might look like an im-
possible task to give an instantiation of ACSS, as in a completely asynchronous setting, there is no way to
prevent the adversary from delaying the participation of t honest parties and thus forcing the system to end
the secret-sharing protocol without their participation. However, [13] presented a beautiful instantiation of
the primitive.

Given the provision for generating complete t-sharing through ACSS, [13] could perform the shared
3In the protocol, to share a value s, the dealer D picks a polynomial of degree at most t, which is an otherwise a random

polynomial except that its constant term is s. The share for every party then consists of a distinct point lying on the polynomial.
4In [13] they called this primitive as ultimate secret-sharing (USS). We prefer to call it complete secret-sharing, to signify that

the resultant sharing is complete in the sense that all the (honest) share-holders will possess their respective shares at the end of the
sharing.

6

circuit-evaluation by extending the techniques of the synchronous world [21, 48] to the asynchronous setting.
We also follow the approach of deploying ACSS for shared circuit-evaluation as in [13]. However, the
differences are in the exact instantiation of the ACSS and the way we deploy it for the shared circuit-
evaluation. The details follow.

1.2.1 The ACSS of [13]

The instantiation of ACSS of [13] is quite complex and communication-intensive which is attributed to its
dependency on several involved sub-protocols. Namely, they deploy a series of sub-protocols which are tied
together to obtain their ACSS protocol. In a more detail, they followed the path AICP→ ARS→ AWSS→
Two & Sum AWSS→ AISS→ ACSS to arrive at their ACSS protocol. Here X → Y denotes that protocol
X is used as a sub-protocol in protocol Y . The AISS (asynchronous incomplete secret-sharing) protocol is
taken from [19], which generates an incomplete sharing of the underlying value.5 The AISS protocol is used
as follows to get an ACSS protocol.

To generate a complete sharing of a secret s, the dealer D computes the shares s1, . . . , sn as per the
Shamir’s protocol. Then instead of directly handing over the respective shares to the corresponding share-
holders, D further shares each share si by invoking an independent instance of AISS, which ensures that
D has committed all its shares. Notice that each share is shared in an incomplete fashion as it is shared
using AISS. Next D interacts with the parties and “proves” that the n committed shares are indeed “valid”
Shamir-shares (namely all the n shares are distinct evaluations of a degree-t polynomial), without disclosing
anything about the actual shares. This is done by deploying the cut-and-choose zero-knowledge protocol of
[21]. Upon successful completion of the zero-knowledge protocol, the committed share si is reconstructed
towards the designated share-holder Pi. The designated reconstruction will be successful, even if D is
potentially corrupt, thus guaranteeing that each honest party eventually obtains its designated share, leading
to a complete sharing of D’s input. Hence the complexity of the ACSS protocol of [13] is equivalent to that
of n instances of the AISS protocol of [19] plus the instances of zero-knowledge protocols. In [44], it is
shown that one instance of the AISS protocol of [19] needs a communication of Ω(n11κ2 log n) bits. So
excluding the cost of zero-knowledge protocols, the ACSS protocol of [13] requires a communication of
Ω(n12κ2 log n) bits.

1.2.2 Our ACSS Protocol

Compared to [13], our instantiation of ACSS is relatively simpler and based on fewer primitives, thus leading
to a significant gain in the communication complexity. Namely, we use a shorter path AICP → AISS →
ACSS to arrive at our ACSS protocol. While our instantiation of AICP is somewhat similar to that of
[19, 13], our instantiation of AISS and the way we use AISS to get ACSS is completely different from [13].
The details follow.

The asynchronous information-checking protocol (AICP) is used for generating information-checking
(IC) signatures, which are information-theoretic analogue of digital signatures. We adapt the ICP of [8]
designed for the synchronous setting, to the asynchronous communication setting. Using our AICP, we
next design a very simple protocol for AISS, which generates what we call as two-level secret-sharing with
IC signatures for a given secret. Loosely speaking, the protocol allows a designed dealer D to verifiably
generate a Shamir secret-sharing of a secret s held by D with the guarantee that there exists a publicly known
set of at least n − t partiesW , who hold their respective shares of s. We call the parties inW as primary
share-holders and the shares held by these parties as primary-shares of s. Apart fromW , the protocol also
ensures that each primary-share sj is further Shamir-shared among a publicly known setWj of at least n− t

5In [19], the AISS protocol is called AVSS. But we prefer to call it AISS to signify that the sharing generated by the protocol is
incomplete.

7

parties, with each party Pi in Wj possessing a secondary-share sji of the primary-share sj . Furthermore,
it is also ensured that the primary-share holder Pj of the share sj holds each of the secondary-shares sji,
IC-signed by the party Pi. The verifiability feature in the protocol ensures that even if D is corrupt, the
completion of the protocol guarantees that there exists some value, say s̄, which is secret-shared in the
above fashion. We stress that the set of secondary-share holders might be different for each primary-share.
Moreover, if D is corrupt, then the setW may not include all the parties. However, it will be guaranteed that
if D is honest and if the parties keep running the protocol, then eventually all honest parties are included in
theW set.

The AISS protocol of [19] generates a somewhat similar data structure as ours, but by involving addi-
tional primitives ARS, AWSS and Two & Sum AWSS and also by deploying interactive zero-knowledge
protocols to verify that the parties are honestly following the protocol instructions. We completely avoid
involving these primitives and also avoid the usage of any kind of zero-knowledge protocols. This is done
by “tying” together the primary and secondary-shares in a bivariate polynomial of degree-t in two variables
(see Fig 6). This idea of generating a two-level secret-sharing via bivariate polynomials has been used in
many secret-sharing protocols in the synchronous communication setting (see for instance [20] and its ref-
erences). The technique has been also used in some of the asynchronous secret-sharing protocols, but with
the resilience t < n/4 (see for instance [45, 24]). The primary idea used here is that the value s which needs
to be secret-shared is embedded in the constant term of a random bivariate polynomial F (x, y) of degree t
in x and y. The goal is then to ensure that a setW of at least n− t parties Pj publicly confirm the receipt of

univariate polynomials fj(x) of degree-t, where fj(x)
def
= F (x, αj). And for every Pj ∈ W , a setWj of at

least n− t parties Pi publicly confirm the receipt of values fj(αi). Moreover, Pj should hold the IC-signed
fj(αi) values. Here αi is a publicly-known distinct evaluation point, associated with each party Pi. If the
above goals are achieved, then the values {fj(0)}Pj∈W will constitute the primary-shares of s, as F (0, y)
constitutes the degree-t Shamir-sharing polynomial for sharing s = F (0, 0). And for every Pj ∈ W , the
values {fj(αi)}Pi∈Wj will constitute the secondary-shares.

The standard mechanism which is used in the existing secret-sharing protocols to achieve the above

goals is to let D hand over the univariate polynomials fi(x)
def
= F (x, αi) and gi(y)

def
= F (αi, y) to each

party Pi. The polynomials fi(x) and gi(y) are also called as the row and column polynomials respectively,
due to the nice two-dimensional “matrix-representation” of the values of these polynomials (see Fig 6). The
parties then check whether D has distributed “consistent” row and column-polynomials to the parties, lying
on a single bivariate polynomial of degree t, by performing what is called as the “pair-wise consistency
checking”. Namely each pair of parties Pi, Pj exchange the supposedly common values on their row and
column-polynomials (if D, Pi and Pj are all honest, then fi(αj) = gj(αi) = F (αj , αi) and fj(αi) =
gi(αj) = F (αi, αj) should hold) and publicly confirm the pair-wise consistency of their row and column-
polynomials. The parties then check if there exists a set of at least 2t+1 row-polynomial holders, sayR and
a set of at least 2t+ 1 column-polynomial holders, sayM (whereR could be different fromM), such that
the pair-wise consistency between every Pj ∈ R and every Pi ∈ M has been confirmed. The existence of
such anR andM set (which are bound to exist for an honest D) guarantees that D has distributed consistent
row and column-polynomials lying on a single bivariate polynomial of degree t to the honest parties in R
andM respectively. This follows from the property of bivariate polynomials of degree t (see Lemma 2.5)
and the fact that there are at least |R| − t ≥ t + 1 honest parties in the set R and at least |M| − t ≥ t + 1
honest parties in the set M. Confirming the existence of the sets R andM is very crucial, because only
upon the confirmation of R andM, the parties can proceed further and find out the setW and the setsWj

by performing some additional computation.
In the synchronous communication setting, confirming the existence of the sets R andM is relatively

easier. This is because the public confirmations (both positive and negative) involving all the pairs of parties
will be available and after resolving all the “negative confirmations” with the aid of D, one can easily

8

verify the existence of the desired R andM sets as above. However, in the asynchronous communication
setting, confirmations involving every pair of parties may not be available. Moreover, for two different
parties Pj and Pk, the set of column-polynomial holders who confirm the pair-wise consistency with Pj’s
row-polynomial might be different from the set of column-polynomial holders who confirm the pair-wise
consistency with Pk’s row-polynomial. One could find a candidate R and M set by (asynchronously)
constructing a “consistency graph” with n parties being the nodes and edges denoting the confirmation
of pair-wise consistency among the corresponding parties, followed by checking the presence of a clique
of size at least n − t in the graph. However, this will require the parties to perform exponential amount
of computation. The beautiful work of [11] shows how to instead look for an alternate structure in the
consistency graph called (n, t)-star, which is a pair of subsets of nodes (C,D), with C ⊆ D, |C| ≥ n− 2t
and |D| ≥ n − t and where there is an edge between every node in C and every node in D. In [11], it is
shown how to check the presence of an (n, t)-star in polynomial amount of time.

The presence of a (n, t)-star (C,D) guarantees the existence ofR andM, but only when t < n/4. This
is because, in this case, the cardinality of the sets C and D will be at least 2t + 1 and 3t + 1 respectively
and hence one can consider the sets C and D asR andM respectively. On the other hand, for t ≤ n/3, the
maximum size of the set C could be only 2t, which is not sufficient to consider it as a candidate R set. In
fact, when n = 3t+ 1, in the worst case, the set C could be only of size t+ 1 and may have only one honest
party. Hence we follow a different approach to check the existence ofR andM sets.

In our AISS protocol, D first distributes only the column-polynomials to the respective parties and retains
the row-polynomials. Then for all the n row-polynomials fj(x) held by D, it tries to get the corresponding
common fj(αi) values IC-signed by the party Pi. Thus Pi gets the n values from D to be IC-signed, which
are supposed to be lying on Pi’s column-polynomial. Party Pi issues the signature only after checking the
pair-wise consistency between the received values and its column-polynomial, and publicly announces the
issuance of the signatures. The goal of D is then to get the common values on all the n row-polynomials
signed as above by a set of at least 2t+ 1 column-polynomial holders. The set of these column-polynomial
holders then constitute theM set. Once the values on the row-polynomials are signed, D then starts distribut-
ing the individual signed row-polynomials to respective parties. The presence of the signatures prevents a
potentially corrupt D to distribute arbitrary polynomials as row-polynomials. Once a party receives a cor-
rectly signed row-polynomial, it publicly announces the same. The parties next look for a set of at least
2t + 1 parties, who announce the receipt of their corresponding signed row-polynomials. The set of these
row-polynomial holders then constitute the set R. Once the sets R andM are confirmed, the parties then
proceed to compute the setW and the setsWj , whose technical details are available in Section 4.

We associate a reconstruction protocol along with our AISS protocol, which allows any publicly-known
designated party to reconstruct a value, shared by our AISS protocol. More specifically, a value s which is
two-level secret-shared as above can be easily reconstructed by a designated party PR as follows. Party PR
waits for at least t+ 1 primary-share holders fromW to correctly reveal their respective primary-shares. To
reveal its primary-share sj , the share-holder Pj actually reveals all the signed secondary-shares correspond-
ing to the parties inWj . The presence of at least t+1 honest secondary-share holders inWj guarantee that if
Pj has revealed correctly IC-signed secondary-shares then they are correct (with overwhelming probability)
and by interpolating these shares, the primary-share sj can be correctly reconstructed. There are at least
t + 1 honest primary-share holders inW , who eventually complete the above revelation process and once
completed, these primary-shares can be used to interpolate back the shared s.

From AISS to ACSS: Principal-wise, the road from our AISS to ACSS follows a similar path as fol-
lowed in [13]. Namely, to share a value s, the dealer D generates the shares s1, . . . , sn as per the Shamir
secret-sharing protocol. Then it further shares these shares by executing n independent instances of our
AISS protocol. The parties next verify whether the shared values are valid Shamir-shares and once verified,

9

the individual shares are then reconstructed towards the designated share-holders by using the designated
reconstruction protocol associated with our AISS protocol. However, unlike [13], we do not deploy ex-
pensive zero-knowledge protocols to verify whether the values shared during the AISS instances are valid
shares. Rather, we again use the properties of bivariate polynomials by embedding the shares s1, . . . , sn in
a bivariate polynomial of degree t and we carefully “tie” together the variousW sets generated during the
different instances of our AISS protocol.

In a more detail, similar to our AISS protocol, D embeds the secret s in the constant term of a ran-
dom bivariate polynomial of degree t and then computes the row and column-polynomials. The column-
polynomials are distributed to respective parties, while the row-polynomials are treated as Shamir-sharing
polynomials to share the constant term of these polynomials (which are actually the Shamir-shares of D’s
secret) via instances of our AISS protocol. Now as part of the AISS instances, the parties “implicitly” per-
form pair-wise consistency check. Namely every party Pi upon receiving the shares of the row-polynomials
as part of the various AISS instances check if they lie on the column-polynomial of Pi and upon verification
publicly announces the same. The goal of D is then to collect a set of at least 2t + 1 column-polynomial
holders, who have publicly confirmed the pair-wise verification and who also constitute a common W set
for all the n instances of the AISS protocol invoked by D. We call these common set of parties as V . Such a
set V is always guaranteed to exist if D is honest, as the set of honest parties always constitute a candidate V
set. And our AISS protocol guarantees that all honest parties are eventually included in the corresponding
W set.

Once D finds and publicly announces a V set, it confirms that the row-polynomials used by D during
the AISS instances and the column-polynomials held by the (honest) parties in V are consistent and lie on
a single bivariate polynomial known to D. So the next goal is to get each row-polynomial reconstructed
towards the designated share-holder, which will generate the complete secret-sharing of D secret. However,
unlike our AISS protocol, we do not ask D to hand over the respective row-polynomials. Instead, they are
reconstructed towards the designated share-holder by using the designated reconstruction protocol, associ-
ated with our AISS. This will ensure that the row-polynomials (and hence their constant terms) always get
reconstructed by the designated party, even if D is corrupt. For the technical details, see Section 5.

1.2.3 Our AMPC Protocol vs AMPC Protocol of [13]

The AMPC protocol of [13] as well as ours follow the same BGW paradigm [12] of shared circuit-evaluation.
However, the difference is in the way multiplication gates are evaluated. In both the AMPC protocols, each
party first generates a complete-sharing of its input by executing an instance of ACSS. To avoid an indefinite
wait, the parties run an instance of the agreement on a common subset (ACS) primitive [11, 13] to agree
on a common subset C of n − t parties, whose inputs are eventually completely-shared. The inputs of the
remaining t parties are substituted as 0. The linear gates are evaluated non-interactively due to the linearity
property of Shamir sharing. In [13], to evaluate a multiplication gate with shared gate inputs a and b, each
party Pi secret-shares its share ai and bi of the secret a and b respectively and also secret-shares the product

ci
def
= aibi, all using instances of ACSS. Notice that the values c1, . . . , cn lie on a degree-2t polynomial and

hence constitute a complete-sharing of c def
= ab, but with degree-2t. Hence the goal is to securely “convert”

these shares into another set of n random shares, which constitute a complete t-sharing of c. This process
is termed as the “degree-reduction” process [12]. To do the degree-reduction, each party Pi interactively
proves in a zero-knowledge fashion that it has followed the protocol honestly (namely it has shared the
correct ai, bi and ci). To avoid an indefinite wait, the parties then run an instance of ACS to agree on a
common subset of n − t share-holders Pi who correctly followed the protocol instructions and then apply
the degree-reduction process of [12] on the ci values shared by these n− t parties.

As evident from the above description, for evaluating a single multiplication gate, a lot of computations

10

and protocols are involved. Specifically, there are Θ(n) instances of ACSS and zero-knowledge protocols
involved, apart from an instance of ACS, which in it self requires n invocations of an asynchronous Byzantine
agreement (ABA) protocol [47]. Hence the number of ABA instances involved is proportional to the number
of multiplication gates in the circuit. We follow a simpler and more efficient approach for evaluating the
multiplication gates in the circuit using the Beaver’s circuit-randomization method [7]. Namely, our protocol
is divided into a function-independent pre-processing phase, followed by a function-dependent phase. In
the pre-processing phase, the parties generate complete sharing of several random multiplication-triples in
parallel, which are later used for efficient evaluation of each multiplication gate, at the cost of just publicly
reconstructing two completely shared values per multiplication gate (see Section 2.5 for more details). To
generate the shared multiplication-triples, we follow the efficient framework of [24]. The framework allows
to efficiently generate several shared random multiplication-triples, using any given ACSS protocol as a
black-box, such that the number of ABA instances involved is independent of the circuit size.

1.3 Other Related Works

A couple of approaches have been followed in the literature with the aim of designing efficient MPC pro-
tocols with statistical security in the asynchronous communication setting. The first approach is to design
protocols with non-optimal resilience. Specifically, AMPC protocols with statistical security and resilience
t < n/4 are proposed in [45, 24]. While the protocol of [45] requires a communication of O(n2κ) bits
per multiplication, the protocol of [24] brings down the communication complexity to O(nκ) bits per mul-
tiplication. The second approach is to design protocols in a hybrid communication setting, which is a mix
of synchronous and asynchronous communication setting. Namely, in such a setting it is assumed that the
network is completely synchronous during the first r rounds, after which the network is completely asyn-
chronous. In [25], a statistically-secure MPC protocol in the hybrid communication setting is presented
with t < n/3, where the first four rounds are assumed to be synchronous and where the communication
complexity is O(n2κ) bits per multiplication. Since our goal is to get an MPC protocol in a completely
asynchronous setting and that too with the optimal resilience of t < n/3, our results are incomparable with
the works of [45, 24].

2 Preliminaries, Definitions and Existing Tools

We follow the standard secure-channel model, where there is a set of n mutually-distrusting parties P =
{P1, . . . , Pn}, connected by pair-wise private and authentic channels. The distrust in the system is modelled
by a centralized computationally unbounded adversary, who can corrupt any t out of the n parties. Moreover,
t < n/3 which is a necessary condition for the existence of any statistically-secure AMPC protocol. The
adversary is malicious (Byzantine) and can force the parties under its control to deviate from prescribed
protocol instructions in any arbitrary manner.

2.1 The Security Model

We define the security of our protocols based on the standard real-world/ideal-world paradigm [17, 34],
where the security of a protocol (for some computation) is argued by “comparing” the capabilities of the
adversary in two separate worlds. In the real-world, the parties execute the protocol and exchange messages
among themselves, computed as per the given protocol. In the ideal-world, the parties do not interact with
each other, but rather with a trusted third-party (an ideal functionality), which assists the parties to get the
result of the computation based on the inputs provided by the parties. Informally, a protocol is considered to
be secure if whatever an adversary can do in the real protocol (where no trusted third-party is there), can be
also done in the ideal-world. We now recall the high level description of the framework from [26] and refer

11

to [17, 39, 27] for the complete formal details.

The Real World: An execution of a protocol Π in the real-world (also called as real model), consists of n
interactive Turing machines (ITMs) representing the parties P1, . . . , Pn respectively. Additionally, there is
an ITM for representing the adversary Adv. The adversary Adv is static and decides the set of the corrupt
parties C before the beginning of the protocol execution, where |C| ≤ t. The parties not under the control of
Adv are called honest. The adversary controls the operations of the corrupted parties, as well as the delivery
of the messages between the parties. The details follow.

Each ITM is initialized with the random coins and its possible inputs. Additionally, Adv may have
some auxiliary input z. The protocol operates asynchronously by a sequence of activations, where at each
point a single ITM is active. Once activated, a party can perform some local computation, write on its
output tape or send messages to other parties. On the other hand, if the adversary is activated, it can send
messages on behalf of the corrupted parties. To model the worst case scenario, the adversary is given the
provision to schedule the delivery of the messages exchanged between the parties. Once Adv delivers a
message to some party, this party gets activated. The adversary cannot omit, change or inject messages.
However, the adversary can reorder the messages sent by the honest parties. That is, it can decide which
message will be delivered and when. Moreover, even though the adversary can delay the delivery of the
messages arbitrarily, it cannot delay them indefinitely. That is, every message sent by a party is eventually
delivered. These requirements on adversarial scheduling are formalized using the eventual-delivery secure
message-transmission ideal functionality in [39, 27]. The protocol execution is complete, once all honest
parties obtain their respective outputs. We let REALΠ,Adv(z),C(~x) denote the random variable, consisting of
the output of the honest parties and the view of the adversary Adv, controlling the parties in C during the
execution of a protocol Π, upon inputs ~x = (x(1), . . . , x(n)) for the parties (where party Pi has input xi) and
auxiliary input z for Adv.

The Ideal World: A computation in the ideal-world (also called as ideal model) consists of n dummy
parties P1, . . . , Pn, an ideal-world adversary S (also called as simulator) and an ideal functionality F . We
consider static corruptions, and so the set of corrupted parties C is fixed at the beginning of the computation
and is known to S . Moreover, following the notion of [4], we consider corruption-aware functionalities,
where the identity of C is known to F . The ideal functionality models the desired behaviour of the compu-
tation. Namely, F receives the inputs from the respective dummy parties, performs the desired computation
on the received inputs and sends the outputs to the respective parties. The ideal-world adversary does not
see and cannot delay the communication between the parties and F , however it can communicate with F
on the behalf of the parties in C.

Since F models the desired behaviour of a real-world protocol which is asynchronous, ideal function-
alities must consider some inherent limitations. For example, in a real-world protocol, the adversary can
decide when each honest party learns the output, since adversary has full control over message scheduling.
To model the notion of time in the ideal-world, [39] uses the concept of number of activations. Namely,
once F has computed the output for some party, it does not ask “permission” from S to deliver it to the
respective party. Instead, the corresponding party must “request” F for the output, which can be done only
when the concerned party is active. Moreover, the adversary can “instruct” F to delay the output for each
party by ignoring the corresponding requests, but only for a polynomial number of activations. If the party is
activated sufficiently many times, the party will eventually receive the output from F and hence ideal com-
putation eventually terminates. That is, each honest party eventually obtains its desired output. As in [26],
we use the term F sends a request-based delayed output to Pi, to describe the above interaction between
the F ,S and Pi.

Similar to the real-world, we let IDEALF ,S(z),C(~x) denote the random variable, consisting of the out-
put of the honest parties and the view of the adversary S, controlling the parties in C, upon inputs ~x =

12

(x(1), . . . , x(n)) for the parties (where party Pi has input xi) and auxiliary input z for S .

Definition 2.1 (Perfect and Statistical-Security [39, 3]). Let F be a functionality and let Π be an n-
party protocol involving P . We say that Π perfectly-securely realizes F if and only if for every real-world
adversary Adv, there exists an ideal-world adversary S, whose running time is polynomial in the running
time of Adv, such that for every C ⊂ P where |C| ≤ t, every ~x ∈ ({0, 1}?)n where |x1| = . . . = |xn| and
every z ∈ {0, 1}?, it holds that the random variables{

REALΠ,Adv(z),C(~x)
}

and
{

IDEALF ,S(z),C(~x)
}

are identically distributed. That is, the random variables should be perfectly indistinguishable.
For statistical-security, the parties and adversaries are parameterized with a statistical-security parameter

κ, and the above random variables (which are viewed as ensembles, parameterized by κ) are required to be
statistically-indistinguishable. That is, their statistical-distance should be a negligible function in κ.

We use the notations ≡ and
s≡ to denote perfect and statistical-indistinguishability respectively.

The Universal-Composability (UC) Framework: While the real-world/ideal-world based security paradigm
is used to define the security of a protocol in the “stand-alone” setting (namely when only instance of the
protocol is running), the more powerful UC framework [17, 18] is used to define the security of a protocol
when multiple instances of the protocol might be running in parallel, possibly along with other protocols. In-
formally, the security in the UC-framework is still argued by comparing the real-world and the ideal-world.
However, now in both worlds, the computation takes place in the presence of an additional interactive pro-
cess (modeled as an ITM), called the environment and denoted by Z . Roughly speaking, Z models the
“external environment” in which protocol execution takes place. The interaction between Z and the various
entities takes place as follows in the two worlds.

In the real-world, the environment gives inputs to the honest parties, receives their outputs and can
communicate with the adversary at any point during the execution. During the protocol execution, the
environment gets activated first. Once activated, the environment can either activate one of the parties by
providing some input or activate Adv by sending it a message. Once a party completes its operations upon
getting activated, the control is returned to the environment. Once Adv gets activated, it can communicate
with the environment (apart from sending the messages to the honest parties). The environment also fully
controls the corrupt parties, that send to Z all the messages they receive, and follow the orders of Z . The
protocol execution is completed, once Z stops activating other parties and outputs a single bit.

In the ideal-model, the environment Z gives inputs to the (dummy) honest parties, receives their outputs
and can communicate with S at any point during the execution. The dummy parties act as channels between
Z and F . That is, they send the inputs received from Z to F and transfer the output they receive from F to
Z . The activation sequence in this world is similar to the one in the real-world. The protocol execution is
completed, once Z stops activating other parties and outputs a single bit.

A protocol is said to be UC-secure with perfect-security, if for every real-world adversary Adv there
exists a simulator S , such that for any environment Z , the environment cannot distinguish the real-world
from the ideal-world. On the other hand, the protocol is said to UC-secure with statistical-security, if the
environment cannot distinguish the real-world from the ideal-world, except with a probability which is a
negligible function in the security parameter κ.

The Hybrid Model: In a G-hybrid model, a protocol execution proceeds as in the real-world. However,
the parties have access to an ideal functionality G for some specific task. The parties during the protocol
execution, communicate with G as in the ideal-world. The UC framework guarantees that an ideal function-
ality in a hybrid model can be replaced with a protocol that UC-securely realizes G. This is specifically due
to the following composition theorem from [17, 18].

13

Theorem 2.2 ([17, 18]). Let Π be a protocol that UC-securely realizes a functionality F in the G-hybrid
model and let ρ be a protocol that UC-securely realizes G. Moreover, let Πρ denote the protocol that is
obtained from Π by replacing every ideal call to G with the protocol ρ. Then protocol Πρ UC-securely
realizes F in the model where the parties do not have access to the ideal functionality G.

2.2 Computation Model

In our protocols, all computations are done over a Galois field F = GF(2κ), with |F| > n, such that each
field element is represented by κ bits. Looking ahead, this will ensure that error-probability of our AMPC
protocol is 2−Ω(κ).6 We also assume that n = poly(κ), where poly(κ) denotes a polynomial function of
κ. The parties want to compute a function f over F, represented by a publicly known arithmetic circuit cir
over F. For simplicity and without loss of generality, we assume that each party Pi ∈ P has a single input

x(i) ∈ F for the function f and there is a single function output y def
= f(x(1), . . . , x(n)), which is supposed

to be learnt by all the parties. Apart from the input and output gates, cir consists of linear (addition) gates
and multiplication (non-linear) gates. We assume that cir consists of cM number of multiplication gates,
where cM is bounded by poly(κ).

We assume that α1, . . . , αn are distinct, non-zero elements from F, where αi is associated with Pi as
the “evaluation point”. By communication complexity of a protocol, we mean the total number of bits
communicated by the honest parties in the protocol.

2.3 Definitions

A degree-d univariate polynomial over F is of the form f(x) = a0 + . . . + adx
d, where each ai ∈ F. A

degree-(`,m) bivariate polynomial over F is of the form F (x, y) =

i=`,j=m∑
i,j=0

rijx
iyj , where each rij ∈ F.

Let fi(x)
def
= F (x, αi), gi(y)

def
= F (αi, y). We call fi(x) and gi(y) as ith row and column-polynomial

respectively of F (x, y). This is because the distinct evaluations of the polynomials fi(x) and gi(y) at
x = α1, . . . , αn and at y = α1, . . . , αn respectively, constitute an n×n matrix of distinct points on F (x, y)
(see Fig 6).

We say a degree-t polynomial f̃i(x), where i ∈ {1, . . . , n}, lie on a degree-(t, t) polynomial F (x, y),
if F (x, αi) = f̃i(x) holds. Similarly, we say a degree-t polynomial g̃i(y), where i ∈ {1, . . . , n}, lie on a
degree-(t, t) polynomial F (x, y), if F (αi, y) = g̃i(y) holds.

We next give the definition of complete t-sharing, which is central to our AMPC protocol.

Definition 2.3 (t-sharing and Complete t-sharing). A value s ∈ F is said to be t-shared among a set of
partiesW ⊆ P where |W| ≥ 2t + 1, if there exists a degree-t polynomial, say f(x), with f(0) = s, such

that each (honest) party Pi ∈ W holds its share si
def
= f(αi). The vector of shares of s corresponding to the

(honest) parties inW is denoted as [s]Wt .7 A set of values S = (s(1), . . . , s(L)) ∈ FL is said to be t-shared
among a set of partiesW , if each s(i) ∈ S is t-shared amongW .

A value s ∈ F is said to be completely t-shared, denoted as [s]t, if s is t-shared among the entire set of
parties P; that isW = P holds. Similarly, a set of values S = (s(1), . . . , s(L)) ∈ FL is said to be completely
t-shared, if each s(i) ∈ S is completely t-shared.

6The assumption of Galois field is just for the sake of simplicity. We confirm that our protocols can be easily modified to work
over any finite field (without affecting the communication complexity) of size at least n (which is needed for instantiating Shamir
secret-sharing scheme), while the error-probability can be upper bounded by 2−Ω(κ) by working over an extension field of size at
least 2κ, when performing random checks needed as part of the protocols.

7In the rest of the paper, we interchangeably use the term shares of s and shares of the polynomial f(·) to denote the values
f(αi).

14

Computing Linear Functions of Completely t-shared Values: Complete t-sharings are linear. That is,
given [a]t, [b]t, then [a + b]t = [a]t + [b]t and [c · a]t = c · [a]t hold, for any public c ∈ F. In general,
given ` complete t-sharings [x(1)]t, . . . , [x

(`)]t and a publicly known linear function g : F` → Fm, where
g(x(1), . . . , x(`)) = (y(1), . . . , y(m)), then g([x(1)]t, . . . , [x

(`)]t) = ([y(1)]t, . . . , [y
(m)]t) holds. We say that

the parties locally compute ([y(1)]t, . . . , [y
(m)]t) = g([x(1)]t, . . . , [x

(`)]t), to mean that every party Pi ∈ P
(locally) computes (y

(1)
i , . . . , y

(m)
i) = g(x

(1)
i , . . . , x

(`)
i), where y(l)

i and x(l)
i denotes the ith share of y(l) and

x(l) respectively.
We will be using the standard Lagrange’s polynomial-evaluation function Lagrange to compute a “new”

point on a polynomial, in terms of “old” points lying on the polynomial. In a more detail, the function
Lagrange takes as input a set K, consisting of |K| pairs of values over F, say (u(i), v(1)), . . . , (u(|K|), v(|K|)),
where u(1) 6= . . . 6= u(|K|) holds. Let f(·) be the unique degree-(|K| − 1) polynomial, such that f(u(i)) =
v(i) holds. Moreover let u(new) ∈ F, which is different from every u(1), . . . , u(|K|). The output of the func-

tion Lagrange will be v(new), where v(new) def
= f(u(new)). It is well known that v(new) is a linear function

of v(1), . . . , v(|K|). Namely, there exists linear combiners c1, . . . , c|K|, called Lagrange’s coefficients [4]
(which are publicly-known functions of u(1), . . . , u(|K|), u(new)), such that v(new) = c1 · v(1) + . . .+ c|K| ·
v(|K|) holds. We denote this computation as:

v(new) = Lagrange(|K|, {(u(i), v(1)), . . . , (u(|K|), v(|K|))}, u(new)).

It follows from the linearity of complete t-sharing that if the parties hold complete t-sharings of v(1), . . . , v(|K|)

and if u(1), . . . , u(|K|), u(new) are publicly known, then they can locally compute a complete t-sharing of
v(new).

Properties of Polynomials Over F: We next state certain standard properties of degree-t univariate and
degree-(t, t) bivariate polynomials over F. In our protocols, to generate a random t-sharing of a given value
s held by a designated dealer, we use Shamir secret-sharing scheme. Here to hide s, the dealer chooses a
polynomial f(x) randomly from the set Ps,t, which denotes the set of all degree-t univariate polynomials
over F whose constant term is s, where |Ps,t| = |F|t. The dealer then give the share f(αi) to each party
Pi. Since the polynomial is randomly chosen by the dealer and adversary may learn at most t shares on
the polynomial, it follows that the distribution of the shares as seen by the adversary is independent of the
underlying secret, if the dealer is honest.8 Formally:

Lemma 2.4 ([4]). For any set of distinct non-zero elements α1, . . . , αn ∈ F, any pair of values s, s′ ∈ F,
any subset C ⊂ {P1, . . . , Pn} where |C| = ` ≤ t, and every ~y ∈ F`, it holds that:

Pr
f(x)∈RPs,t

[
~y = ({f(αi)}Pi∈C)

]
= Pr

g(x)∈RPs′,t

[
~y = ({g(αi)}Pi∈C)

]
=

1

|F|`
,

where f(x) and g(x) are chosen uniformly and independently from the set of polynomials Ps,t and Ps′,t,
respectively.

The following lemma states that if there are “sufficiently many” degree-t univariate polynomials which
are “pair-wise consistent”, then there exists a unique degree-(t, t) bivariate polynomial, passing through
these univariate polynomials. Formally:

Lemma 2.5 (Pair-wise Consistency Lemma [16, 4]). Let fi1(x), . . . , fi`(x), gj1(y), . . . , gjm(y) be degree-
t polynomials where `,m ≥ t + 1 and i1, . . . , i`, j1, . . . , jm ∈ {1, . . . , n}. Moreover, let for every i ∈
{i1, . . . , i`} and every j ∈ {j1, . . . , jm}, the condition fi(αj) = gj(αi) holds. Then there exists a unique

8We often use the term Shamir-sharing polynomial to denote the degree-t polynomial used by the dealer.

15

degree-(t, t) bivariate polynomial, say F (x, y), such that the row polynomials fi1(x), . . . , fi`(x) and the
column polynomials gj1(y), . . . , gjm(y) lie on F (x, y).

In our AISS and ACSS protocol, a dealer on having a secret s does the following to share it: the dealer
picks a random degree-t Shamir-sharing polynomial q(·) where q(0) = s. The sharing polynomial q(·) is
further embedded into a random degree-(t, t) bivariate polynomial F (x, y), where F (0, y) = q(·) holds.
The dealer distributes the row-polynomial fi(x) = F (x, αi) and column-polynomial gi(y) = F (αi, y) to
every party Pi. Similar to the case of Shamir secret-sharing, it holds that Adv learning at most t row and
column-polynomials, does not learn any information about the underlying shared value s. In fact, it can be
shown that for every two degree-t polynomials q1(·) and q2(·) such that q1(αi) = q2(αi) = fi(0) holds for
every Pi ∈ C, the distribution of the polynomials {fi(x), gi(y)}Pi∈C received by the corrupted parties when
F (x, y) is chosen based on q1(·), is identical to the distribution when F (x, y) is chosen based on q2(·).
Formally:

Lemma 2.6 ([4]). Let α1, . . . , αn be n distinct non-zero elements from F, let C ⊂ P where |C| ≤ t, and
let q1(·) and q2(·) be two different degree-t polynomials over F such that q1(αi) = q2(αi) holds for every
Pi ∈ C. Then, {

{F (x, αi), F (αi, y)}Pi∈C
}
≡

{
{F ′(x, αi), F ′(αi, y)}Pi∈C

}
holds, where F (x, y) and F ′(x, y) are two different degree-(t, t) bivariate polynomials, chosen at random
under the constraints that F (0, y) = q1(·) and F ′(0, y) = q2(·) holds.

2.4 Some Ideal Functionalities

In this section, we present the ideal functionalities used in our protocols.

2.4.1 Asynchronous Reliable Broadcast (ACast)

Informally, an asynchronous reliable broadcast (ACast) protocol allows a designated sender PS ∈ P with
input m ∈ {0, 1}? to identically send m to all the parties, even in the presence of Adv. If PS is honest, then
all honest parties eventually complete the protocol with output m. On the other hand, if PS is corrupt and
some honest party outputs m?, then eventually every other honest party outputs the same m?. Notice that if
PS is corrupt, then it is not necessary that the honest parties complete the protocol, as PS may not invoke
the protocol at the first place.

The ideal functionality FACast capturing the requirements for asynchronous reliable broadcast is pre-
sented in Fig 1. The functionality upon receiving m from PS , performs a request-based delayed delivery of
m to all the parties. Notice that in case PS is corrupt, it may not send m to the functionality for delivery, in
which case parties obtain no output.

FACast proceeds as follows, running with parties P = {P1, . . . , Pn} and an adversary S. Let C denote the set of
corrupt parties, where |C| ≤ t.
• Upon receiving (sender,ACast, sid,m) from PS ∈ P , send (PS ,ACast, sid,m) to S and send a request-

based delayed output (PS ,ACast, sid,m) to each Pi ∈ P \ C (no need to send m to the parties in C, as S
gets m on their behalf).

Functionality FACast

Figure 1: The ideal functionality for asynchronous reliable broadcast for session id sid.

Bracha [15] presented an elegant protocol for asynchronous reliable broadcast. The protocol incurs a com-
munication of O(n2 · `) bits, if sender’s message m consists of ` bits. To the best of our knowledge, no

16

one has ever presented a UC-security proof for Bracha’s ACast protocol. For the sake of completeness, in
Appendix A we show that Bracha’s Acast protocol UC-securely realizes the ideal functionality FACast with
perfect security, for any t < n/3.

2.4.2 Asynchronous Byzantine Agreement (ABA)

Byzantine agreement (BA) [47, 41, 5] is a fundamental primitive in secure distributed computing. In a
synchronous BA protocol, each party has an input bit and an output bit and the protocol guarantees the
following three properties.

– Agreement: The output bit of all honest parties is the same.
– Validity: If all honest parties have the same input bit, then this will be the common output bit.
– Termination: All honest parties eventually complete the protocol.

In an asynchronous Byzantine agreement (ABA) protocol, the above requirements are slightly weakened,
since up to t (potentially honest) parties may not be able to provide their inputs to the protocol and the
decision is taken based on the inputs of a set CS of n − t parties. Moreover, since adversary can control
the schedule of message delivery, it has full control in deciding the set CS . Furthermore, the termination
guarantees are weakened to take into consideration the FLP impossibility result [32] according to which any
(deterministic) ABA protocol must have non-terminating runs, where the honest parties keep on running the
protocol forever without obtaining any output. A common approach to circumvent this impossibility result
is to go for randomized ABA protocols and the best we can hope from such protocols is that the honest
parties eventually complete the protocol, asymptotically with probability 1. This property is often called as
almost-surely terminating property [1, 6].

The formal specification of an ideal ABA functionality is presented in Fig 2, which is taken from [27].
Intuitively, it can be considered as a special case of ideal AMPC functionality (see Fig 21 in Section 7),
which looks at the set of inputs provided by the set of parties in CS , where CS is decided by the ideal-
world adversary. Now if the input bits provided by all the honest parties in CS are the same, then it is set
as the output bit. Else the output bit is set to be the input bit provided by some corrupt party in CS (for
example, the first corrupt party in CS according to lexicographic ordering). In the functionality, the inputs
bits provided by various parties are considered as the vote-input of the respective parties. We stress that the
idea-world adversary cannot delay sending CS to the functionality infinitely. This is because in the real-
world almost-surely terminating ABA protocols, which securely realize the functionality FABA (see [1, 6]
for such protocols), the set CS is eventually decided, irrespective of the message scheduling of the adversary.

FABA proceeds as follows, running with parties P = {P1, . . . , Pn} and an adversary S. Let C denote the set of
corrupt parties, where |C| ≤ t and letH = P \ C. For each party Pi, initialize an input value x(i) = ⊥.
• Upon receiving a message (vote, sid, b) from some Pi ∈ P where b ∈ {0, 1}, set x(i) = b if CS has not

been recorded yet or if Pi ∈ CS . Moreover, send (vote, sid, Pi, b) to S, if Pi 6∈ C.
• Upon receiving a message (coreset, sid, CS) from S, verify that CS is a subset of P of size n − t, else

ignore the message. If CS has not been recorded yet, then record CS .
• If the set CS has been recorded and the value x(i) has been set to a value different from⊥ for every Pi ∈ CS ,

then compute the output y as follows and generate a request-based delayed output (decide, sid, (CS, y))
for every Pi ∈ P .

– If x(i) = b holds for all Pi ∈ (H ∩ CS), then set y = b.
– Else set y = x(i), where Pi is the party with the smallest index in CS ∩ C.

Functionality FABA

Figure 2: The ideal functionality for asynchronous Byzantine agreement for session id sid.

17

2.4.3 Functionality for Generating Random t-sharing.

Functionality FRand (see Fig 3) generates a random t-sharing and distributes the entire vector of shares to all
the parties. For this, the functionality picks a random degree-t polynomial and distributes the polynomial to
the parties. The functionality generates the output only upon being invoked by at least t+1 parties. Looking
ahead, this guarantees that the output is generated only if at least one honest party asks the functionality
to do so. The functionality allows the ideal-world adversary to specify the shares that it wants for the
corrupt parties. The resultant t-sharing is generated, by “fixing” the shares of the corrupt parties in the
t-sharing. Looking ahead, this provision is made to incorporate the fact that while realizing FRand by a
protocol, the adversary will have full control over the shares of the corrupt parties for the generated t-
sharing. However, we stress that conditioned on the shares of the corrupt parties, the resultant t-sharing is
uniformly distributed. This further implies that adversary has no “control” over the constant term of the
resultant degree-t polynomial.

FRand proceeds as follows, running with parties P = {P1, . . . , Pn} and an adversary S. Let C denote the set of
corrupt parties, where |C| ≤ t.
• Upon receiving (Rand, sid, Pi) from Pi, send (Rand, sid, Pi) to S.
• Upon receiving (shares, sid, {ri}Pi∈C) from S, record these shares.
• If (Rand, sid, Pi) has been received from t+1 parties Pi and if the shares of parties in C have been recorded,

then do the following.
– Select a random degree-t polynomial, say R(·), such that R(αi) = ri holds, for each Pi ∈ C.
– Send a request-based delayed output (Rand, sid, R(·)) to each Pi ∈ P .

Functionality FRand

Figure 3: The ideal functionality for generating a random t-sharing for the session id sid.

2.5 Existing Asynchronous Primitives

In our protocols, we use the following standard existing asynchronous primitives.

Private and Public Reconstruction of Completely t-shared Values: Let s be a value, which is com-
pletely t-shared. The well-know online error-correction (OEC) protocol [16] allows a designated party PR
to reconstruct s. In the protocol, every party sends its respective share of s to PR, who (asynchronously)
applies the Reed-Solomon (RS) error-correction procedure on the received shares. If t < n/3, then PR will
be able to eventually error-correct the received corrupt shares (if any) and reconstruct the entire degree-t
polynomial through which s is t-shared. The protocol incurs a communication of O(nκ) bits.

If the value s needs to be publicly reconstructed, then the above protocol can be executed n times, once
on the behalf of each party. We call the resultant protocol as OEC, whose communication complexity is
O(n2κ) bits.

Beaver’s Circuit-Randomization: We use the well-known Beaver’s circuit-randomization method [7] to
evaluate multiplication gates in our AMPC protocol in a shared fashion. The method allows evaluation
of a multiplication gate with secret-shared inputs, at the expense of publicly reconstructing two secret-
shared values, using an auxiliary secret-shared multiplication triple. In a more detail, let the parties hold a

complete t-sharing of x and y and the goal is to compute a complete t-sharing of z def
= x · y. Moreover, let

([u]t, [v]t, [w]t) be a completely t-shared multiplication triple available with the parties, such that w = u · v
holds. We note that z = (x−u+u) ·(y−v+v) holds and hence z = (x−u) ·(y−v)+v ·(x−u)+u ·(y−
v) + u · v. Based on this idea, to compute [z]t, the parties first locally compute [d]t = [x− u]t = [x]t − [u]t

18

and [e]t = [y − v]t = [y]t − [v]t, followed by publicly reconstructing d and e by invoking two instances of
OEC. The parties then locally compute [z]t = d · e+ d · [v]t + e · [u]t + [w]t.

It is easy to see that if u and v are random and private, then during the above process, the view of the
adversary remains independent of x and y. Namely, even after learning d and e, the privacy of the inputs
x and y (and hence the output z) is preserved. We also note that if the auxiliary triple (u, v, w) is not a
multiplication-triple (namely if w = u · v + ∆ holds for some non-zero ∆), then in the above process,
z = x · y + ∆ holds. The communication complexity of the protocol is O(n2κ) bits.

3 The Asynchronous Information-Checking Protocol (AICP)

In this section, we present our AICP, which will be used in our AISS protocol. The notion of AICP extends
the notion of ICP defined in the synchronous setting [49], to the asynchronous communication setting. An
AICP involves three entities: a signer S ∈ P , an intermediary I ∈ P and a receiver R ∈ P , along with the
set of parties P acting as verifiers. Party S has a private input S. An AICP can be considered as information-
theoretically secure analogue of digital signatures, where S gives a “signature” on S to I, who eventually
reveals it to R, claiming that it got the signature from S. If S and I are honest, then the signature is accepted
by an honest R (correctness). Moreover, the signed values remain private (privacy) till they are revealed to
R. If S and R are honest, then a corrupt I cannot forge S’s signature (unforgeability). And finally, if S is
corrupt and gave signed values to an honest I, then I can later reveal it to an honest R (non-repudiation).9

We stress that unlike digital signatures which are “transferable” (and hence offer public verifiability),
the signatures generates by AICP are not transferrable. Namely, once the signatures are revealed to the
designated R and verified, party R cannot further reveal the same signature (and get it verified) to any other
party. However, this is not an issue as in our context, the use case of AICP requires revealing the signed
values only once to a designated party. The protocol proceeds in the following three phases, each of which
is implemented by a dedicated sub-protocol.
• Distribution Phase: Executed by a protocol Gen, where S sends S to I along with some auxiliary

information and to each verifier, S gives some verification information.
• Authentication Phase: Executed by P through a protocol Ver, to verify whether S distributed “consis-

tent” information to I and the verifiers. Upon successful verification I sets a Boolean variable VS,I to
1 and the information held by I is considered as the information-checking signature on S, denoted as
ICSig(S→ I,S). The notation S→ I signifies that the signature is given by S to I.

• Revelation Phase: Executed by I,R and the verifiers by running a protocol RevPriv, where I reveals
ICSig(S→ I,S) to R, who either outputs S after verification or rejects it.

Definition 3.1 (AICP). A triplet of protocols (Gen,Ver,RevPriv) where S has a private input S ∈ FL for
Gen is called a (1− εAICP)-secure AICP, for a given error parameter εAICP, if all the following requirements
hold for every possible adversary.
• Correctness: If S, I and R are honest, then I sets VS,I to 1 during Ver. Moreover, R outputs S at the

end of RevPriv.
• Privacy: If S, I and R are honest, then the view of adversary throughout is independent of S .
• Unforgeability: If S and R are honest, I reveals ICSig(S → I, S̄) and if R outputs S̄ during RevPriv,

then except with probability at most εAICP, the condition S̄ = S holds.
9We stress that the original notion of ICP as formulated in [49, 48] involves a single receiver, who also plays the role of verifier

as well. In [44] this notion was extended to the case where all the parties play the role of receivers, as well as verifiers and where
the signature is publicly revealed. We modify this notion where the signature is not publicly revealed, but rather to a designated
receiver, while all the parties play the role of verifiers. The modification is done as it suits best for our AISS, where AICP is used
as a building block. We also note that a similar modification has been proposed recently in the synchronous communication setting
[3], where the primitive is referred as interactive signatures.

19

• Non-repudiation: If S is corrupt and if I,R are honest and if I sets VS,I to 1 holding ICSig(S→ I, S̄)
during Ver, then except with probability εAICP, R outputs S̄ during RevPriv.

3.1 Our Instantiation of AICP

Our instantiation of AICP is an adaptation of the synchronous ICP of [8] to the asynchronous setting. Let
S = (s(1), . . . , s(L)) ∈ FL be the input of S. The high level idea of the protocol is as follows: during
the distribution phase, S gives S along with some authentication tag to I and a corresponding information-
theoretic verification tag to each individual verifier. The tags with respect to a verifier Pi are computed
by picking a random y ∈ F and fitting a degree-L polynomial f(x) passing through L + 1 distinct points
(0, y), (1, s(1)), . . . , (L, s(L)). The authentication tag is set to y, while the verification tag is set to (u, v),
where u is randomly chosen from F\{0, . . . , L} and v = f(u). Later, during the revelation phase, I provides
S and the authentication tags to R and the verifiers provide the verification tags to R and if the revealed S and
authentication tags are found to be consistent with “sufficiently many” verification tags, then S is accepted,
else it is rejected.

The above distribution of information maintains the privacy of S for an honest S and I, from a corrupt
verifier Pi. This is because the verifier Pi learns only a single point on f(x), which is a degree-L polynomial.
The above distribution of information also ensures that if S is honest and a corrupt I reveals an incorrect
S to R, then with a high probability, it will fail the consistency-test with respect to the verification tag of
an honest verifier, as the corresponding verification tag will not be known to I. This further guarantees the
unforgeability property.

Unfortunately, the above distribution of information alone is not sufficient to ensure the non-repudiation
property. This is because if S is corrupt, then it can distribute inconsistent data to I and the verifiers, which
will later lead to the rejection of revealed S. To get around this problem, I and the verifiers interact in a “zero-
knowledge” fashion during the authentication phase, to verify the consistency of S , authentication tags and
verification tags, while maintaining the privacy of their respective information. The verification happens
using the cut-and-choose technique, where instead of providing a single verification and authentication
tag with respect to each verifier, S provides 2κ number of authentication tags to I and corresponding 2κ
verification tags are given to each verifier Pi. Then during the authentication phase, Pi randomly reveals κ
number of verification tags to I. We say that the cut-and-choose is “successful” with respect to Pi, if the
revealed verification tags are found to be consistent with S and the corresponding authentication tags. If the
cut-and-choose is successful, then with a high probability, it is ensured that at least one of the remaining
undisclosed κ verification tags held by Pi is consistent with S and the corresponding authentication tag held
by I.

In the protocol, the cut-and-choose step is executed independently between I and each individual verifier
Pi. Party I sets VS,I to 1 as soon as it finds that the cut-and-choose test is successful with respect to a set of
verifiersR, where |R| = n− t. Notice that due to asynchronous communication, I cannot wait for all the n
instances of cut-and-choose to be successful, as the corrupt verifiers may not participate in their respective
instances. Later, during the revelation phase, R accepts the S revealed by I, if there are at least |R| − t
verifiers from the setR, such that each of these verifiers produce at least one consistent verification tag from
their list of undisclosed verification tags. Again, due to the asynchronous communication, R cannot wait for
all the verifiers inR to disclose their undisclosed verification tags, as corrupt verifiers inRmay not respond.
However, there will be at least one honest verifier in the set of verifiers, with respect to whose verification
tag, S is found to be consistent, thus guaranteeing that the revealed S is correct (with a high probability).
The protocol is formally presented in Fig 5. The information exchanged among the various parties in the
protocol is pictorially presented in Fig 4. In the formal steps of the AICP, sid denotes the session id.

20

Figure 4: The information exchanged among various parties in the AICP. The first figure denotes the infor-
mation distributed by S to verifier Pi during Gen and the corresponding information distributed to I. The
second figure denotes the cut-and-choose interaction between verifier Pi and I during Ver, based on which I
either includes or excludes Pi fromR. The last figure denotes the information sent by I and verifier Pi to R
during RevPriv

Generation Phase: Protocol Gen(S, I,S): S = (s(1), . . . , s(L))

– Distribution by S: With input S, the following code is executed only by S.
• Corresponding to each verifierPi ∈ P , pick 2κ random elements y(i)

1 , . . . , y
(i)
2κ and 2κ random evaluation-

points u(i)
1 , . . . , u

(i)
2κ from F − \{0, . . . , L}. Compute v(i)

1 , . . . , v
(i)
2κ , such that for each j = 1, . . . , 2κ,

the L+ 2 points (0, y
(i)
j), (1, s(1)), . . . , (L, s(L)), (u

(i)
j , v

(i)
j) lie on a degree-L polynomial.

• Corresponding to each verifier Pi ∈ P , set y(i)
1 , . . . , y

(i)
2κ as the authentication tags and set z(i)

1 =

(u
(i)
1 , v

(i)
1), . . . , z

(i)
2κ = (u

(i)
2κ , v

(i)
2κ) as the verification tags.

• Send (sid,data,S) and (sid,authtag, {y(i)
1 , . . . , y

(i)
2κ}Pi∈P) to I.

• For i = 1, . . . , n, send (sid, vertag, {z(i)
1 , . . . , z

(i)
2κ}) to Pi.

Authentication Phase: Protocol Ver(S, I,S)

– Each Pi ∈ P (including S, I) on receiving (sid, vertag, {z(i)
1 , . . . , z

(i)
2κ}) from S does the following:

• Randomly partition the index set {1, . . . , 2κ} into two equal halves Ii and Īi of size κ.
• Send (sid, cut&choose, Ii, Īi, {z(i)

j }j∈Ii) to I.
– Party I does the following:

• Wait to receive (sid,data,S) and (sid,authtag, {y(i)
1 , . . . , y

(i)
2κ}Pi∈P) from S. Upon receiving, initialize

a setR to ∅.
• Upon receiving (sid, cut&choose, Ii, Īi, {z(i)

j }j∈Ii) from Pi, verify if for every j ∈ Ii, the L+ 2 points

(0, y
(i)
j), (1, s(1)), . . . , (L, s(L)), z

(i)
j lie on a degree-L polynomial. Include Pi to the set R, if the

verification is successful.

Protocol AICP

21

– Wait till |R| = n− t. Then set Vsid,S,I = 1 and ICSig(sid,S→ I,S) = (S, {Īi}Pi∈R, {y(i)
j }Pi∈R,j∈Īi).

Reveal Phase: Protocol RevPriv(S, I,R,S)

– Revealing of the Signature by I: I sends (sid,RevealSig,R, ICSig(sid,S→ I,S)) to R, provided Vsid,S,I = 1.
– Revealing of the Verification Tags by Verifiers: Each verifierPi ∈ P (including S and I) sends (sid,RevealTag,

Īi, {z(i)
j }j∈Īi) to R.

– Verifying the Signature and Verification Tags: Upon receiving (sid,RevealSig,R, ICSig(sid,S → I,S))
from I, receiver R obtains S = (s(1), . . . , s(L)), the set R, the index sets {Īi}Pi∈R and the authentication
tags {y(i)

j }Pi∈R,j∈Īi from ICSig. The signature is then verified by R as follows:

– Upon receiving (sid,RevealTag, Īi, {z(i)
j }j∈Īi) from verifier Pi, mark Pi as consistent, if all the following

hold.
• Pi ∈ R.
• The index set Īi received from Pi is the same as the index set corresponding to Pi as received from

I as part of ICSig.
• There exists some j ∈ Īi, such that the L + 2 points (0, y

(i)
j), (1, s(1)), . . . , (L, s(L)), z

(i)
j lie on a

degree-L polynomial.
– If t+ 1 verifiers are marked as consistent, then output S.

Figure 5: Asynchronous Information-Checking Protocol for session id sid.

We now proceed to prove the properties of our AICP. In the proofs, for simplicity we skip the session id
sid. We start with the correctness property.

Lemma 3.2 (Correctness). If S, I and R are honest, then I eventually sets VS,I to 1 during Ver. Moreover,
R eventually outputs S during RevPriv.

Proof. Let S, I and R be honest. Then S distributes correct authentication tags to I and verification tags to
individual verifiers during Gen. Consequently, the cut-and-choose interaction between I and each honest
verifier will be successful and hence each honest verifier is included by I to the setR. So I eventually finds a
setR containing n− t verifiers and sets VS,I to 1 during Ver. SinceR contains at least t+ 1 honest verifiers
whose authentication tags are eventually delivered to R, it follows that R eventually finds t + 1 consistent
verifiers from the setR and outputs S during RevPriv.

We next prove the privacy property.

Lemma 3.3 (Privacy). If S, I and R are honest, then the view of adversary during Gen,Ver and RevPriv is
independent of S.

Proof. For simplicity and without loss of generality, let us assume that P1, P2 . . . Pt are under the control
of Adv. During the protocol Gen, the adversary learns the verification tags corresponding to these t parties.
However, these verification tags are independent of S, as the corresponding authentication tags are not
known to the adversary, as they are held by the honest S and I. More specifically, for any corrupt verifier Pi,
each verification tag z(i)

j = (u
(i)
j , v

(i)
j) is a distinct point on a degree-L polynomial passing through the L+1

points (0, y
(i)
j), (0, s(1)), . . . , (0, s(L)), where y(i)

j is randomly chosen from F and not known to Pi. Hence,

from the view-point of a corrupt Pi, the verification tag z(i)
j is consistent with every S ∈ FL. Namely, for

any candidate S = (s(1), . . . , s(L)) ∈ FL, from the view-point of Pi, there exists a unique y(i)
j , such that

the L + 1 points (0, y
(i)
j), (0, s(1)), . . . , (0, s(L)) along with the verification tag z(i)

j lie on some degree-L

polynomial. Since y(i)
j is randomly chosen from F by D and not known to Pi, the verification tags learnt by

22

the adversary are independent of the actual S held by D and I. Now during the protocols Ver and RevPriv,
no information is communicated by I to the corrupt verifiers (since R is assumed to be honest) and hence
overall the view of the adversary remains independent of S.

We next prove the unforgeability property.

Lemma 3.4 (Unforgeability). If S and R are honest, I reveals ICSig(S → I, S̄) and if R outputs S̄ during
RevPriv, then except with probability at most nκ

2κ−(L+1) , the condition S̄ = S holds.

Proof. Let S and R be honest. As per the protocol RevPriv, party I invokes RevPriv only if VS,I is set to 1
during the protocol Ver. Now there are two possible cases. If I is honest, then the lemma statement is true
with probability 1. This is because in this case, I holds ICSig(S→ I,S) during Ver. Moreover, there will be
at least t+ 1 honest verifiers inR, who sends verification tags consistent with ICSig(S→ I,S) to R.

We next consider the case when I is corrupt and reveals ICSig(S → I, S̄) to R, such that S̄ 6= S . We
claim that in this case, the probability that an honest verifier Pi ∈ R is marked as consistent by R, is at most

κ
|F|−(L+1) . Assuming that the claim is true, it follows via the union bound that the probability that any honest
verifier from the R set is marked as consistent by R is upper bounded by nκ

|F|−(L+1) , as there can be at most
(n − t) ≤ n honest parties in R. Since |F| = 2κ, it implies that except with probability at most nκ

2κ−(L+1) ,
there can be at most t consistent verifiers from R, corresponding to ICSig(S → I, S̄). This is because there
can be at most t potentially corrupt verifiers in R, who may send to R verification tags, consistent with
ICSig(S→ I, S̄). This implies that the honest R rejects the revealed ICSig(S→ I, S̄) and does not output S̄.

We now prove our claim. So consider an arbitrary honest Pi ∈ R. During RevPriv, Pi sends the index set
Īi and the verification tags {z(i)

j }j∈Īi to R. Since D and R are assumed to be honest, a corrupt I will not know
these verification tags. Since I reveals ICSig(S→ I, S̄) to R, such that S̄ 6= S, the verifier Pi will be marked
as consistent by R, only if for one of the κ verification tags {z(i)

j }j∈Īi , the points (1, s(1)), . . . , (L, s(L)), z
(i)
j

lie on a degree-L polynomial, where S̄ = (s(1), . . . , s(L)). Since each of the verification tags {z(i)
j }j∈Īi is

randomly chosen by D, the probability of this event is the same as Pi correctly guessing at least one of the
verification tags from the set {z(i)

j }j∈Īi , which it can do with probability at most κ
|F|−(L+1) . This is because

each z(i)
j = (u

(i)
j , v

(i)
j), where u(i)

j is randomly chosen from F− {0, . . . , L}.

We next prove the non-repudiation property.

Lemma 3.5 (Non-repudiation). If S is corrupt, I,R are honest and if I sets VS,I to 1 holding ICSig(S→ I,S)
during Ver, then except with probability at most nκ2κ , R outputs S during RevPriv.

Proof. Let S be corrupt and I,R be honest. Since I has set VS,I to 1 and holds ICSig(S → I,S), it implies
that I found a set R of size n− t during Ver, such that the cut-and-choose verification test is successful for
each verifier Pi ∈ R. That is, for each Pi ∈ R, party I receives the index sets Ii, Īi and the verification tags
z

(i)
j for each j ∈ Ii from Pi, such that for every j ∈ Ii, the L+2 points (0, y

(i)
j), (1, s(1)), . . . , (L, s(L)), z

(i)
j

lie on a degree-L polynomial. Here S = (s(1), . . . , s(L)) is received by I from S during Gen. There are at
least t+ 1 honest parties Pi in the set R. We claim that for any such honest verifier Pi ∈ R, at least one of
the κ undisclosed verification tags is consistent with S and the corresponding authentication tag held by I,
except with probability at most κ

2κ . That is, there exists at least one j ∈ Īi, such that except with probability

at most κ
2κ , the L + 2 points (0, y

(i)
j), (1, s(1)), . . . , (L, s(L)), z

(i)
j lie on a degree-L univariate polynomial.

This further implies that during the protocol RevPriv, the verifier Pi will be marked as consistent by I. Now
assuming that the claim is true, it follows that all the honest verifiers inR will be marked as consistent by I
except with probability at most nκ2κ and hence R outputs S during RevPriv.

23

To prove the claim, consider an arbitrary honest Pi ∈ R. If S is honest, then the claim is true with
probability 1, as an honest S distributes correct and consistent verification and authentication tags. So we
consider the case, when S is corrupt. In this case, in order that none of remaining κ verification tags
corresponding to the indices in Īi are consistent with S and the corresponding authentication tags, S has
to guess the index sets Ii and Īi in advance during the protocol Gen and distribute consistent verification
and authentication tags for all the indices in Ii and inconsistent verification and authentication tags for all
the indices in Īi. This will ensure that Pi is included in the set R during Ver, but not marked as consistent
during RevPriv. Now the probability that S can guess Ii and Īi during Gen is 1

(2κ
κ)

which is at most κ
2κ .

We next prove the communication complexity.

Lemma 3.6. The communication complexity of Gen,Ver and RevPriv isO(Lκ+nκ2),O(nκ2) andO(Lκ+
nκ2) bits respectively.

Proof. During the protocol Gen, S sends S and 2nκ authentication tags to I and total 2nκ verification tags to
all the verifiers. During the protocol Ver, each verifier sends κ verification tags to I. Finally during RevPriv,
I sends S and total |R|κ authentication tags to R where |R| = O(n), while each verifier sends κ verification
tags to I.

Assuming that L is some polynomial function of κ (looking ahead, this will be finally the case in our
AMPC protocol), Theorem 3.7 now follows from Lemma 3.2-3.6 and the fact that n = poly(κ).

Theorem 3.7. Protocols (Gen,Ver,RevPriv) constitute a (1−εAICP)-secure AICP against a static malicious
adversary corrupting up to t < n/3 parties, where εAICP = 2−Ω(κ). The communication complexity of
Gen,Ver and RevPriv is O(Lκ+ nκ2), O(nκ2) and O(Lκ+ nκ2) bits respectively.

Notice that in our AICP, any party can be designated to play the role of S, I and R. For convenience, in
the rest of the paper, we use the following notations while using our AICP.

Notation 3.8 (Notation for Using AICP). While using our AICP, we say that:
• “Pi gives ICSig(sid, Pi → Pj ,S) to Pj” to mean that Pi acts as a signer S and invokes an instance of

the protocol Gen(S, I,S) with session id sid, where Pj plays the role of intermediary I.
• “Pj receives ICSig(sid, Pi → Pj ,S) fromPi” to mean thatPj as an intermediary I holds ICSig(sid, Pi →
Pj ,S) and has set Vsid,Pi,Pj to 1 during protocol Ver with session id sid, where Pi is the signer S.

• “Pj reveals ICSig(sid, Pi → Pj ,S) to Pk” to mean Pj as an intermediary I invokes an instance of
RevPriv with session id sid, with Pi and Pk playing the role of S and R respectively.

• “Pk accepts ICSig(sid, Pi → Pj ,S)” to mean that Pk as a receiver R outputs S, during the instance of
RevPriv with session id sid, invoked by Pj as I, with Pi playing the role of S.

Finally, we note that we separately do not put any termination condition for any party in our AICP.
Since AICP will be used as a sub-protocol in our AMPC protocol, the termination condition of our AMPC
protocol will automatically trigger the termination of all the instances of underlying AICP.

4 Asynchronous Incomplete Secret-Sharing (AISS)

We now present our AISS protocol Sh, which will be used as a building block in our ACSS protocol.
Protocol Sh generates a two-level secret-sharing with IC-signatures. This sharing is an enhanced version of
t-sharing, where each share of the secret is further t-shared. Moreover, for the purpose of authentication,
each second-level share is IC-signed.

24

Definition 4.1 (Two-level t-Sharing with IC-signatures). A set of values S = (s(1), . . . , s(L)) is said to
be two-level t-shared with IC-signatures if there exists a setW ⊆ P with |W| ≥ n − t and a setWj ⊆ P
for each Pj ∈ W with |Wj | ≥ n− t, such that the following conditions hold.
• Each s(k) ∈ S is t-shared amongW , with each party Pj ∈ W holding its primary-share s(k)

j .

• For each primary-share holder Pj ∈ W , its primary-share s(k)
j is t-shared among Wj , with each

Pi ∈ Wj holding a secondary-share s(k)
j,i of the primary-share s(k)

j .

• Each primary-share holder Pj ∈ W holds ICSig(Pi → Pj , (s
(1)
j,i , . . . , s

(L)
j,i)), corresponding to each

honest secondary-share holder Pi ∈ Wj .

We stress that the Wj sets might be different for each Pj ∈ W . Note that the primary-shares of the
(honest) parties in W do not constitute a complete t-sharing of the underlying secrets, as the set W may
not include all honest parties. However, even though the generated t-sharing may not be complete, it is
well-defined sinceW will have at least t + 1 honest parties. Similarly, the t-sharings of the primary-shares
do not constitute a complete t-sharing, as the correspondingWj sets may not include all honest parties.

In the protocol Sh, there exists a designated dealer D ∈ P with an input S ∈ FL and the goal is to
verifiably generate a two-level t-sharing with IC signatures of S. The verifiability here ensures that if the
(honest) parties obtain an output in the protocol, then there exists some S̄ ∈ FL, where S̄ = S for an honest
D, such that S̄ is two-level t-shared with IC-signatures. The protocol also ensures that if D is honest, then
the view of the adversary is independent of S. For simplicity, we first present the protocol Sh assuming that
D has a single value for sharing, that is L = 1. We then discuss the modifications needed to share L values
simultaneously, which are straight-forward.

To share a value s ∈ F, the dealer D hides s in the constant term of a random degree-(t, t) bivariate
polynomial F (x, y). The goal is then to let D distribute the row and column-polynomials of F (x, y) to
respective parties and then publicly verify if D has distributed consistent row and column-polynomials to
sufficiently many parties, which lie on a single degree-(t, t) bivariate polynomial, say F̄ (x, y), which is
considered as D’s committed bivariate polynomial (if D is honest then F̄ (x, y) = F (x, y) holds). Once the
existence of an F̄ (x, y) is confirmed, the next goal is to let each Pj who holds its row-polynomial F̄ (x, αj)
lying on F̄ (x, y), get signature on F̄ (αi, αj) values from at least n− t parties Pi. Finally, once n− t parties
Pj get their row-polynomials signed, it implies the generation of two-level t-sharing of s = F̄ (0, 0) with
IC signatures. Namely, s will be t-shared through degree-t column-polynomial F̄ (0, y). The set of signed
row-polynomial holders Pj will constitute the setW , where Pj holds the primary-share F̄ (0, αj), which is
the constant term of its row-polynomial F̄ (x, αj). And the set of parties Pi who signed the values F̄ (αi, αj)
for Pj constitute theWj set with Pi holding the secondary-share F̄ (αi, αj), thus ensuring that the primary-
share F̄ (0, αj) is t-shared amongWj through degree-t row-polynomial F̄ (x, αj). For a pictorial depiction
of how the values on D’s bivariate polynomial constitute a two-level t-sharing of its constant term, see Fig
6.

The above stated goals are achieved (asynchronously) in four stages in the protocol Sh. In the protocol
steps of Sh (Fig 8), the purpose of the steps of each stage appears as a comment. We next explain the purpose
of each stage.

Stage I: Distribution of Column-Polynomials and Collecting Signatures. To begin with, D distributes
the column-polynomials to respective parties (the row-polynomials are retained by D) and tries to get the
values on respective column-polynomials signed by a set M of n − t column holders. That is, each Pi
is given its column-polynomial gi(y) = F (αi, y) and is asked to sign the values gi(α1), . . . , gi(αn) for

D. Let fji
def
= gi(αj) for j = 1, . . . , n. Party Pi signs the values f1i, . . . , fni for D after verifying that

all of them lie on a single degree-t polynomial and publicly announces the issuance of signatures to D by
broadcasting a SC message (standing for “signed column”). Notice that by signing fji, party Pi implicitly

25

[s = F (0, 0)]Wt P1 . . . Pi . . . P2t+1

⇓ ⇓ ⇓ ⇓
P1 ⇒ F (0, α1) F (α1, α1) . . . F (αi, α1) . . . F (α2t+1, α1) ⇐ [F (0, α1)]W1

t
...

...
...

...
...

...
...

...
Pj ⇒ F (0, αj) F (α1, αj) . . . F (αi, αj) . . . F (α2t+1, αj) ⇐ [F (0, αj)]

Wj

t
...

...
...

...
...

...
...

...
P2t+1 ⇒ F (0, α2t+1) F (α1, α2t+1) . . . F (αi, α2t+1) . . . F (α2t+1, α2t+1) ⇐ [F (0, α2t+1)]

W2t+1

t

Figure 6: Two-level t-sharing with IC-signatures of s = F (0, 0). Here we assume that n = 3t + 1,
W = {P1, . . . , P2t+1} andWj = {P1, . . . , P2t+1} for each Pj ∈ W . Party Pj will possess all the values
along the jth row, which constitute the row-polynomial fj(x) = F (x, αj). Column-wise, Pi possesses the
values in the column labelled with Pi, which lie on the column-polynomial gi(y) = F (αi, y). Party Pj will
possess Pi’s information-checking signature on the common value fj(αi) = F (αi, αj) = gi(αj) between
Pj’s row-polynomial and Pi’s column-polynomial, which is underlined. The value s will be t-shared among
W through the column-polynomial g0(y) = F (0, y), where the primary-shares of the parties in W are
shown in red color. The primary-share fj(0) = F (0, αj) of party Pj will be t-shared among the parties in
Wj through fj(x), with the secondary-shares of fj(0) being shown in blue color.

signs the value F (αi, αj), which is the same as the value of the jth row-polynomial (held by D) at x = αi.
Due to asynchronous communication, the parties cannot afford to wait for all the n parties to sign the values
on their respective column-polynomials and hence they proceed to the next stage, as soon as n − t parties
M issue the signatures to D. To ensure that all parties agree on a common setM, the dealer D is assigned
the task of findingM and announcing the same, which gets verified in the next stage.

Once a setM of n− t parties broadcast SC message, it confirms that the n row-polynomials held by D
and the individual column-polynomials of the parties inM, together lie on a single degree-(t, t) bivariate
polynomial (due to the pair-wise consistency Lemma 2.5). This also confirms that D is committed to a
single (yet unknown) degree-(t, t) bivariate polynomial. The next stage is to let D distribute the individual
row-polynomials of this committed bivariate polynomial to respective parties. For a pictorial depiction of
this stage of Sh, see Fig 7.

Stage II: Distribution of Signed Row-Polynomials. To prevent a potentially corrupt D from distributing
arbitrary polynomials to the parties as row-polynomials, D actually sends the signed row-polynomials to
the individual parties, where the values on the row-polynomials are signed by the parties inM. Namely, to
distribute the row-polynomial fj(x) to Pj , D reveals the fj(αi) values to Pj , signed by the parties Pi ∈M.
The presence of the signatures ensure that the degree-t polynomial fj(x) revealed by D to Pj is indeed
the jth row-polynomial, lying on D’s committed bivariate polynomial. This is because there are at least
t + 1 honest parties inM, whose signed fji values (which are the same as gi(αj)) uniquely define the jth

row-polynomial of D’s committed bivariate polynomial.
Upon the receipt of correctly signed row-polynomial, Pj publicly announces it by broadcasting a RR

message (standing for “row received”). The next stage is to let such parties Pj (who broadcasted RR mes-
sage) obtain “fresh” signatures on n − t values of fj(x) by at least n − t parties Wj . We stress that the
signatures of the parties inM on the values of fj(x), which are revealed by D to Pj cannot be “re-used”
and hence M cannot be considered as Wj . This is because IC-signatures are not “transferable” and the
signatures on the values of fj(x) were issued to D and not to Pj . We also stress that the parties inM cannot
be enforced to re-issue “fresh” signatures on the common values of Pj’s row-polynomial, as corrupt parties
inM may now not participate honestly during this process. Hence, Pj has to ask for the fresh signatures

26

on the common values of fj(x) from every potential party, which constitutes the third stage. For a pictorial
depiction of this stage of Sh, see Fig 7.

Stage III: Recommitment of Row-Polynomials. The process of Pj getting values on fj(x) freshly signed
can be viewed as Pj “recommitting” its received row-polynomial to a set of n− t column-polynomial hold-
ersWj . However, extra care has to be taken to prevent a potentially corrupt Pj from getting fresh signatures
on arbitrary values, which do not lie in fj(x), asWj may be different fromM. This is done as follows. Any
party Pi on receiving a “signature request” on fji from Pj signs it, only if it lies on Pi’s column-polynomial
which Pi received from D; that is fji = gi(αj) holds. Then after receiving the signature from Pi, party
Pj publicly announces the same. Now the condition for including Pi to Wj is that apart from Pj , there
should exist at least 2t other parties Pk who has broadcasted RR messages and who also got their respective
row-polynomials signed by Pi, as part of their respective recommitment process. This ensures that there
are total 2t+ 1 parties who broadcasted RR messages and whose respective row-polynomials are signed by
Pi. Now among these 2t + 1 parties, at least t + 1 parties Pk are honest, whose row-polynomials fk(x)
lie on D’s committed bivariate polynomial. Since these t + 1 parties got signature on fk(αi) values from
Pi, this further implies that fk(αi) = gi(αk) holds for these t + 1 honest parties Pk, further implying that
Pi’s column-polynomial gi(y) also lies on D’s committed bivariate polynomial. Now since Pi ensures that
fji = gi(αj) holds for Pj as well, it implies that the value which Pj got signed by Pi is gi(αj), which is the
same as fj(αi). For a pictorial depiction of this stage of Sh, see Figure (c) in Fig 7.

To ensure that all parties agree on a commonW set andWj subsets for each Pj ∈ W , the dealer D is
assigned the task of building the above sets and later publicly announce the same (during stage IV). Namely,
for each Pj who has broadcasted a RR message, D keeps on populating the setWj with new parties Pi, if the
above conditions are satisfied. OnceWj achieves a size of n− t (implying Pj has recommitted the correct
fj(x) polynomial), party Pj is included inW . For a pictorial depiction of Pi’s inclusion inWj , see Fig 7.

Stage IV: Public Announcement ofW set andWj Subsets. The last stage of Sh is the announcement of
the W set and its public verification. We stress that this stage of the protocol Sh will be triggered in our
ACSS protocol, where Sh will be used as a sub-protocol. Looking ahead, in our ACSS protocol, D will
invoke several instances of Sh and a potentialW set is built independently for each of these instances. Once
all these individualW sets achieve the cardinality of at least n − t and satisfy certain additional properties
in the ACSS protocol, D will broadcast these individualW sets and parties will have to verify eachW set
individually. The verification of a publicly announcedW set as part of an Sh instance is done by this last
stage of the Sh protocol. To verify theW set, the parties check if its cardinality is at least n− t, each party
Pj inW has broadcasted RR message and recommitted its row-polynomial correctly to the parties inWj .

We note that we separately do not put any termination condition for any party in protocol Sh. Since
Sh will be used as a sub-protocol in our ACSS protocol, which is further used in our AMPC protocol, the
termination condition of our AMPC protocol will automatically trigger the termination of all the underlying
instances of Sh.

%Stage I: Distribution of Column-Polynomials and Collecting Signatures.

– Distribution of Column-Polynomials by D: The following code is executed only by D.
• On having the input s, select a random degree-(t, t) bivariate polynomial F (x, y) over F, such that

F (0, 0) = s.

• Send (sid, columnpoly, gi(y)) to each Pi ∈ P , where gi(y)
def
= F (αi, y).

– Signing the Values on Column-Polynomials for D: Each Pi ∈ P (including D) executes the following code.
• Wait to receive (sid, columnpoly, gi(y)) from D, where gi(y) is a degree-t polynomial.

• Upon receiving, compute the values fj1, . . . , fjn where fji
def
= gi(αj) for j = 1, . . . , n.

Protocol Sh(D, s)

27

𝐹(𝛼!, 𝛼!) 𝐹(𝛼", 𝛼!) 𝐹(𝛼#, 𝛼!)⋯⋯

𝐹(𝛼!, 𝛼$) 𝐹(𝛼", 𝛼$) 𝐹(𝛼#, 𝛼$)⋯⋯

𝐹(𝛼!, 𝛼%) 𝐹(𝛼", 𝛼%) 𝐹(𝛼#, 𝛼%)⋯⋯
⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮
𝐹(𝛼!, 𝛼#) 𝐹(𝛼", 𝛼#) 𝐹(𝛼#, 𝛼#)⋯⋯

𝑔"(𝑦)
⇓

𝑓%(𝑥) ⇒

𝑃"! 𝑃"" 𝑃"|ℳ|

𝐹(𝛼"! , 𝛼%) 𝐹(𝛼"" , 𝛼%) 𝐹(𝛼"|ℳ| , 𝛼%) 𝑃%

ℳ
𝑃"

𝐹(𝛼!, 𝛼%) 𝐹(𝛼", 𝛼%) 𝐹(𝛼#, 𝛼%) 𝑃%⋯ ⋯

𝑔"(𝑦)

𝑃"

𝒮"

𝑔"(𝑦)

𝐹(𝛼", 𝛼&!)

𝐹(𝛼", 𝛼&")

𝐹(𝛼", 𝛼&|𝒮&|)

⋮

⋮

𝑃&!

𝑃&"

𝑃&|𝒮&|

Figure 7: Pictorial representation of the various stages of the protocol Sh in the clock-wise direction. The
first figure denotes the matrix of n×n values on the bivariate polynomial F (x, y) computed by D. While the
row-polynomials are held by D, the column-polynomials are issued to respective parties for getting their sig-
natures. The second figure shows the delivery of signed row-polynomials by D to respective parties, where
the values on row-polynomials are signed by the column-polynomial holders in the set M, thus ensuring
the pair-wise consistency of the column-polynomials of the honest parties inM and the row-polynomials
of the respective parties who broadcast RR messages. The third figure shows the recommitment of row-
polynomials by respective parties. Party Pi allows Pj to recommit its row-polynomial if the recommitted
polynomial is pair-wise consistent with Pi’s column-polynomial. The fourth figure shows the criteria for
including party Pi to the set Wj . Namely there should exist a set of 2t + 1 parties Si, including Pj , who
recommitted their respective row-polynomials to Pi.

• Give ICSig(sid, Pi → D, fji) to D for j = 1, . . . , n and send (sender,ACast, sid,SCi) to FACast.
– Identifying Signed Column-Polynomials: The following code is executed only by D:

• Initialize a setM to ∅.
• Include Pi to the setM, if all the following hold.

– (Pi,ACast, sid,SCi) is received from FACast where Pi is the sender.
– ICSig(sid, Pi → D, fji) is received from Pi, for j = 1, . . . , n, such that fji = F (αi, αj) holds.

• Wait till |M| = n− t. Once |M| = n− t, then send (sender,ACast, sid,M) to FACast.

% Stage II: Distribution of Signed Row-Polynomials by D and Verification by the Parties.

– Revealing Row-Polynomials to Respective Parties: If D has sent (sender,ACast, sid,M) to FACast, then for
j = 1, . . . , n, dealer D reveals {ICSig(sid, Pi → D, fji)}Pi∈M to Pj .

– Verifying the Consistency of Row-Polynomials Received from D: Each Pj ∈ P (including D) sends
(sender,ACast, sid,RRj) to FACast, if the following hold.
• Pj receives (D,ACast, sid,M) from FACast where D is the sender, such that |M| = n− t.
• Pj receives (Pi,ACast, sid,SCi) from FACast where Pi is the sender, for each Pi ∈M.
• Pj accepted {ICSig(sid, Pi → D, fji)}Pi∈M and the points {(αi, fji)}Pi∈M lie on a degree-t polyno-

mial fj(x).

28

%Stage III: Recommitment of Row-Polynomials.

– Getting Signatures on Row-Polynomial: Each Pj ∈ P (including D) executes the following.
• If Pj has sent (sender,ACast, sid,RRj) to FACast, then for i = 1, . . . , n, do the following.

– Compute fji
def
= fj(αi). Send (sid, signrequest, fji) to Pi.

– If ICSig(sid, Pi → Pj , fji) is received from from Pi, send (sender,ACast, sid, (SRj , Pi)) to FACast.
• If (sid, signrequest, fij) is received from Pi, then give ICSig(sid, Pj → Pi, fij) to Pi, provided all the

following hold.
– (Pi,ACast, sid,RRi) has been received from FACast where Pi is the sender.
– (sid, columnpoly, gj(y)) has been received from D, where gj(y) is a degree-t polynomial.
– The condition fij = gj(αi) holds.

– Preparing theWj Sets andW Set: the following code is executed only by D.
• Initialize the sets S1, . . . ,Sn,W1, . . . ,Wn andW to ∅.
• Include Pk to the set Si, if all the following hold.

– (Pk,ACast, sid, (SRk, Pi)) is received from FACast where Pk is the sender.
– (Pk,ACast, sid,RRk) is received from FACast, where Pk is the sender.

• Include Pi inWj , if the following conditions hold.
– The message (Pj ,ACast, sid,RRj) is received from FACast, where Pj is the sender.
– |Si| ≥ 2t+ 1 holds.
– Pj ∈ Si holds.

• Include Pj ∈ W , if |Wj | ≥ n − t holds. Keep on including new parties Pi inWj even after including
Pj toW , if the above conditions for Pi’s inclusion toWj are satisfied.

% Stage IV: Public Announcement ofW and Verification. This code will be triggered by our ACSS protocol.

– Publicly Announcing theW Set: D sends (sender,ACast, sid,W, {Wj}Pj∈W) to FACast .
– Verification of theW Set by the Parties: Upon receiving (D,ACast, sid,W, {Wj}Pj∈W) from FACast where

D is the sender, each party Pm ∈ P checks ifW and {Wj}Pj∈W are valid by verifying if all the following
conditions hold.
• |W| ≥ n−t and (Pj ,ACast, sid,RRj) is received from FACast for every Pj ∈ W , where Pj is the sender.
• For each Pj ∈ W , |Wj | ≥ n− t. Moreover, for each Pi ∈ Wj , all the following conditions hold.

– (Pj ,ACast, sid, (SRj , Pi)) is received from FACast, where Pj is the sender.
– There exist 2t parties Pk ∈ P \ {Pj}, such that (Pk,ACast, sid,RRk) is received from FACast and

also (Pk,ACast, sid, (SRk, Pi)) is received from FACast, where Pk is the sender.

Figure 8: Protocol for generating two-level secret-sharing with IC-signatures of a single secret for session id sid.

We next proceed to prove the properties of the protocol Sh. Before that, we would like to stress that
we do not model the computation done in the protocol Sh by a corresponding ideal functionality and we
do not provide a UC-security proof for the protocol. This is because as mentioned earlier, in our ACSS
protocol, the dealer will invoke n instances of the protocol Sh, where the output of all the n instances of Sh
are determined based on certain conditions, which should hold jointly for all the n instances of Sh. More
specifically, the parties should keep executing all the n instances of Sh, till dealer finds a common W set
of size n − t for all the n instances and publicly gets it verified, which will mark the completion of all the
n instances of Sh. Modelling these requirements in an ideal functionality will bring in additional technical
challenges. Looking ahead, while giving a UC-security proof for our ACSS protocol, we will show how to
simulate the steps executed as part of the n instances of ACSS. In this section, we only prove the relevant
properties of Sh, which will be later utilized by us while giving the security proof for our ACSS protocol.
Also during the proofs (and lemma statements) we skip the session id sid.

We first show that if D is honest, then it eventually finds a validW set.

Lemma 4.2. In protocol Sh, if D is honest, then except with probability n2 · εAICP, all honest parties are
included in theW set. This further implies that D eventually finds a validW set.

29

Proof. Since D is honest, each honest Pi eventually receives the degree-t column-polynomial gi(y) from
D. So eventually, Pi gives the signatures on the values of gi(y) to D and broadcasts SCi. As there are at
least n − t honest parties who broadcast SCi, it implies that D eventually finds a setM of size n − t and
broadcasts the same.

Next consider an arbitrary honest party Pj . Since D is honest, it follows that corresponding to any
Pi ∈M, the signature ICSig(Pi → D, fji) revealed by D to Pj will be accepted by Pj : while this is always
true for an honest Pi (follows the correctness property of AICP), for a corrupt Pi ∈ M it holds except
with probability εAICP (follows from the non-repudiation property of AICP). Moreover, the revealed values
{(αi, fji)}Pi∈M interpolate to a degree-t row-polynomial. As there can be at most t ≤ n corrupt parties Pi
inM, it follows that except with probability n · εAICP, the conditions for Pj to broadcast RRj are satisfied
and hence Pj eventually broadcasts RRj . As there are at most n honest parties, it follows that except with
probability n2 · εAICP, all honest parties eventually broadcast RR.

Finally, consider an arbitrary pair of honest parties Pi, Pj . Since D is honest, the condition fj(αi) =
gi(αj) holds. Now Pi eventually receives fji = fj(αi) from Pj for signing and finds that fji = gi(αj)
holds and hence gives the signature ICSig(Pi → Pj , fji) to Pj . Consequently, Pj eventually broadcasts
(SRj , Pi). As there are at least n − t honest parties Pk, who eventually broadcast (SRk, Pi), it follows that
Pi is eventually included in the set Wj . As there are at least n − t honest parties, the set Wj eventually
attains the size n− t and hence Pj is eventually included inW .

We next show that if the honest parties receive any validW set, then they receive the sameW set.

Lemma 4.3. In protocol Sh, if some honest party receives a valid W set from D, then every other honest
party eventually receives the same validW set from D.

Proof. Since theW set is broadcasted, it follows from the properties of broadcast that all honest parties will
receive the sameW set, if at all D broadcasts anyW set. Now it is easy to see that if a broadcastedW set is
found to be valid by some honest party Pm, then it will be considered as valid by every other honest party.
This is because in Sh the validity conditions forW which hold for Pm will eventually hold for every other
honest party. Namely, Pm findsW to be valid, based on various broadcasted RR and SR messages, received
by Pm. From the property of broadcast, the same messages are eventually received by every other honest
party and hence they also considerW to be valid.

We next show that if at least n− t parties broadcast RR messages, then it implies that D has distributed
“consistent” row and column-polynomials lying on a unique degree-(t, t) bivariate polynomial to “suffi-
ciently” many honest parties.

Lemma 4.4. Let R be the set of parties Pj , who broadcast RRj messages during Sh. If |R| ≥ n − t, then
except with probability n2 · εAICP, there exists a degree-(t, t) bivariate polynomial, say F (x, y), such that
all the following hold.
• If D is honest then F (x, y) = F (x, y).
• Each honest Pj ∈ R holds a degree-t row-polynomial fj(x) that lies on F (x, y). That is, fj(x) =
F (x, αj) holds.

• Each honest Pi ∈M holds a degree-t column-polynomial gi(y) that lies on F (x, y). That is, gi(y) =
F (αi, y) holds.

Proof. Let l and m be the number of honest parties in the setR andM respectively. Since |R| ≥ n− t and
|M| = n− t, it follows that l,m ≥ t+1. For simplicity and without loss of generality, let {P1, . . . , Pl} and
{P1, . . . , Pm} be the honest parties in R andM respectively. We claim that except with probability εAICP,
the condition fj(αi) = gi(αj) holds for each j ∈ {1, . . . , l} and i ∈ {1, . . . ,m}, where fj(x) and gi(y) are
the degree-t row and column-polynomials held by Pj and Pi respectively. The lemma then follows from the

30

properties of degree-(t, t) bivariate polynomials (Lemma 2.5) and the fact that there can be at most n2 pairs
of honest parties (Pi, Pj). We next proceed to prove our claim.

The claim is trivially true with probability 1, if D is honest, as in this case, the row and column-
polynomials of each pair of honest parties Pi, Pj will be pair-wise consistent. So we consider the case
when D is corrupt. Let Pj and Pi be arbitrary parties in the set {P1, . . . , Pl} and {P1, . . . , Pm} respectively.
Since Pj broadcasts RRj , it implies that Pj accepted the signature ICSig(Pi → D, fji), revealed by D to Pj .
Moreover, the values (α1, fj1), . . . , (αm, fjm) interpolated to a degree-t polynomial fj(x). Furthermore,
Pj also receives SCi from the broadcast of Pi. From the unforgeability property of AICP, it follows that
except with probability εAICP, the signature ICSig(Pi → D, fji) is indeed given by Pi to D. However, the
value fji on which Pi issued the signature lies on the column-polynomial gi(y) of Pi. Namely, the value fji
is the same as gi(αj), which further implies that fj(αi) = gi(αj) holds, thus proving our claim.

Finally, it is easy to see that F (x, y) = F (x, y) holds for an honest D, as in this case, the row and
column-polynomials of each party lie on F (x, y).

The next lemma shows that if D makes public a validW set, then it implies that D’s input is eventually
two-level t-shared with IC-signatures.

Lemma 4.5. In the protocol Sh, if D broadcasts a valid W , then except with probability n2 · εAICP, there
exists some s ∈ F, where s = s for an honest D, such that s is eventually two-level t-shared with IC-
signatures.

Proof. Since theW set is valid, it implies that the honest parties receiveW andWj for each Pj ∈ W from
the broadcast of D, where |W| ≥ n− t = 2t+ 1 and |Wj | ≥ n− t = 2t+ 1. Moreover, the parties receive
RRj from the broadcast of each Pj ∈ W . Since |W| ≥ 2t+ 1, it follows from Lemma 4.4, that except with
probability n2·εAICP, there exists a degree-(t, t) bivariate polynomial, say F (x, y), where F (x, y) = F (x, y)
for an honest D, such that the row-polynomial fj(x) held by each honest Pj ∈ W satisfies fj(x) = F (x, αj)
and the column-polynomial gi(y) held by each honest Pi ∈ M satisfies gi(y) = F (αi, y). We define

s
def
= F (0, 0) and show that s is two-level t-shared with IC-signatures.

We first show the primary and secondary-shares corresponding to s. Consider the degree-t polynomial

g0(y)
def
= F (0, y). Since s = g0(0), the value s is t-shared among W through g0(y), with each Pj ∈ W

holding its primary-share sj
def
= g0(αj) = fj(0). Moreover, each primary-share sj is further t-shared

among Wj through the degree-t row-polynomial fj(x), with each Pi ∈ Wj holding its secondary-share
fj(αi) in the form of gi(αj). If D is honest, then s = s as F (x, y) = F (x, y) for an honest D. We next show
that each Pj ∈ W holds the IC-signatures of the honest parties from theWj set on the secondary-shares of
sj .

Consider an arbitrary Pj ∈ W . We claim that corresponding to each honest Pi ∈ Wj , party Pj holds
the signature ICSig(Pi → Pj , fji), where fji = F (αi, αj). The claim is trivially true for an honest Pj . This
is because fji = fj(αi) = F (αi, αj) and Pi is included in Wj because Pj broadcasts (SRj , Pi) message,
further implying that Pj indeed received the signature ICSig(Pi → Pj , fji) from Pi. We next show that the
claim is true, even for a corrupt Pj ∈ W . For this, we show that for each honest Pi ∈ Wj , the column-
polynomial gi(y) held by Pi satisfies the condition that gi(y) = F (αi, y). The claim then follows from the
fact that Pi gives the signature ICSig(Pi → Pj , fji) to Pj , only after verifying that the condition fji = gi(αj)
holds.

So consider a corrupt Pj ∈ W and an honest Pi ∈ Wj . We note that Pi is included toWj , only if there is
a set Si of at least 2t+1 parties, such that Pj ∈ Si and each party Pk in Si has broadcasted RRk and (SRk, Pi)
messages. Let H be the set of honest parties in Si. For each Pk ∈ H, the row-polynomial fk(x) held by
Pk satisfies the condition fk(x) = F (x, αk) (follows from the proof of Lemma 4.4). Furthermore, for each
Pk ∈ H, the condition fk(αi) = gi(αk) holds, where gi(y) is the degree-t column-polynomial held by the

31

honest Pi. This is because Pk broadcasts (SRk, Pi), only after receiving the signature ICSig(Pi → Pk, fki)
from Pi, where fki = fk(αi). And Pi gives the signature to Pk only after verifying that fki = gi(αk) holds
for Pi. Now since |H| ≥ t+ 1 and gi(αk) = fk(αi) = F (αi, αk) holds for each Pk ∈ H, it follows that the
column-polynomial gi(y) held by Pi satisfies the condition gi(y) = F (αi, y). This is because both gi(y)
and F (αi, y) are degree-t polynomials and two different degree-t polynomials can have at most t common
values.

We next show that in the protocol, if D is honest, then its input remains perfectly-secure.

Lemma 4.6. If D is honest then in protocol Sh, the view of adversary is independent of s.

Proof. Let C denote the set of corrupt parties, where |C| ≤ t. We claim that throughout the protocol Sh,
the only information learnt by the adversary corresponding to the bivariate polynomial F (x, y) selected by
D are the degree-t row-polynomials {fi(x)}Pi∈C and the degree-t column-polynomials {gi(y)}Pi∈C . Since
F (x, y) has degree-(t, t) and is selected uniformly at random by D where F (0, 0) is the secret s (which is
known only to D), the lemma easily follows from the properties of degree-(t, t) bivariate polynomials (see
Lemma 2.6). We next proceed to prove the claim.

During the protocol Sh, the adversary gets the polynomials {gi(y)}Pi∈C and {fi(x)}Pi∈C from D during
the stage I and stage II respectively. Next consider an arbitrary party Pi ∈ C. Now corresponding to each
honest party Pj , party Pi receives fji = fj(αi) for signature from Pj during stage III. However the value
fji is already known to Pi, since fji = gi(αj) holds and hence this does not add any new information to the
view of the adversary.

Next consider an arbitrary pair of honest parties Pi, Pj . These parties exchange fji and fij with each
other over the pair-wise secure channel and hence nothing about these values is learnt by the adversary.
Party Pi gives the signature ICSig(Pi → Pj , fji) to Pj and from the privacy property of AICP, the view of
the adversary remains independent of the signed value. Similarly, party Pj gives the signature ICSig(Pj →
Pi, fij) to Pi and from the privacy property of AICP, the view of the adversary remains independent of the
signed value.

Lemma 4.7. The communication complexity of Sh is O(n3κ2 + n4) bits.

Proof. In the protocol D distributes n row and column-polynomials, which requires a communication of
O(n2κ) bits. There are Θ(n2) instances of AICP, each dealing with L = 1 value, which from Theorem 3.7
costs a total communication ofO(n3κ2) bits. In addition, D broadcasts aW set and at most nWj sets, each
of which can be represented by a n-bit vector. Using the Bracha’s reliable broadcast protocol for realizing
the instances ofFACast, broadcastingW set andWj sets will cost a communication ofO(n4) bits. Similarly,
there are O(n2) various messages involving pair of parties (Pi, Pj) which are broadcasted in the protocol,
which will cost a communication of O(n4) bits.

4.1 Designated Reconstruction of Two-level t-shared Values

In our ACSS protocol, apart from generating two-level (incomplete) t-sharing of values with IC-signatures,
we would also need a protocol for getting such shared values reconstructed only by some designated party.
Protocol RecPriv is designed for the same purpose. In a more detail, let s be a value which has been two-level
t-shared with IC-signatures by protocol Sh, with parties knowing a validW set and respectiveWj sets for
each Pj ∈ W . Then protocol RecPriv (see Fig 9) allows the reconstruction of s by a designated party PR.10

In the protocol, each party Pj ∈ W reveals its primary-share to PR. Once t+ 1 “valid” primary-shares are

10Looking ahead, in our ACSS protocol, during the instances of RecPriv, the identity of the corresponding PR will be publicly
known.

32

revealed to PR, it uses them to reconstruct s, by interpolating a degree-t polynomial through these shares.
For the validation of primary-shares, each party Pj ∈ W actually reveals the secondary-shares, signed by
the parties inWj . The presence of at least t + 1 honest parties inWj ensures that a potentially corrupt Pj
fails to reveal incorrect primary-share.

The inputs to the parties are publicly known sets W and Wj for each Pj ∈ W , where |W| ≥ n − t and each
|Wj | ≥ n− t. Additionally, each Pj ∈ W holds the signatures {ICSig(sid, Pi → Pj , fji)}Pi∈Wj

, where the values
{fji}Pi∈Wj

are the secondary-shares of Pj’s primary-share of s.

– Revealing the Signed Secondary-Shares: Each Pj ∈ W executes the following code.
• Corresponding to each Pi ∈ Wj , reveal ICSig(sid, Pi → Pj , fji) to PR.

– Verifying the Signatures and Reconstruction: The following code is executed only by PR.
• Include party Pj ∈ W to a set K (initialized to ∅), if all the following hold:

– PR accepted ICSig(sid, Pi → Pj , fji), corresponding to each Pi ∈ Wj .
– The values {(αi, fji)}Pi∈Wj lie on a degree-t polynomial, say fj(x).

• Wait till |K| = t+1. Then interpolate a degree-t polynomial, say g0(y), using the values {αj , fj(0)}Pj∈K.
Output s, where s = g0(0).

Protocol RecPriv(D, s, PR)

Figure 9: Reconstruction of a two-level t-shared value by a designated party for session id sid.

The properties of RecPriv are stated in Lemma 4.8.

Lemma 4.8. Let s be a value, which is two-level t-shared with IC-signatures through protocol Sh. Then in
protocol RecPriv, the following hold for every possible adversary.
• Output Computation: If PR is honest, then except with probability at most n2 · εAICP, it obtains an

output.
• Correctness: Except with probability at most n2 · εAICP, an honest PR outputs s.
• Privacy: If PR is honest, then the view of the adversary is independent of s.
• Communication Complexity: The protocol needs a communication of O(n3κ2) bits.

Proof. For output computation, we claim that an honest Pj ∈ W is eventually included in the set K,
except with probability at most n · εAICP. Assuming that the claim is true, it follows that except with
probability at most n2 · εAICP, all honest parties in W are eventually included in K. Since W has at least
t + 1 honest parties, it follows that an honest PR eventually obtains at least t + 1 primary-shares of s,
using which it can reconstruct s. For proving the claim, we observe that an honest Pj is included in K,
if all the signatures {ICSig(Pi → Pj , fji)}Pi∈Wj revealed by Pj are accepted by PR. While for every
honest Pi ∈ Wj , the signature ICSig(Pi → Pj , fji) is accepted by PR with probability 1 (follows from the
correctness property of AICP), the signature ICSig(Pi → Pj , fji) corresponding to any corrupt Pi ∈ Wj

is accepted, except with probability εAICP (follows from the non-repudiation property of AICP). As there
can be at most t < n corrupt parties inWj , it follows that except with probability at most n · εAICP, all the
signatures {ICSig(Pi → Pj , fji)}Pi∈Wj revealed by Pj are accepted by PR.

For correctness, we observe that each honest Pj ∈ K reveals its secondary-shares correctly. We claim
that for any corrupt Pj ∈ K, the revealed secondary-shares are correct, except with probability at most
n · εAICP. Assuming that the claim is true, it follows that except with probability at most n2 · εAICP, the
secondary-shares revealed by all the parties inK are correct, thus ensuring that an honest PR reconstruct the
correct s. For proving the claim, we note that there are at least t + 1 honest parties Pi in the setWj . Since
the signatures ICSig(Pi → Pj , fji) corresponding to these honest parties Pi are accepted, it follows from the
unforgeability property of AICP, that except with probability at most εAICP, party Pj revealed the correct
secondary-share fji to PR, corresponding to an honest Pi ∈ Wj . The claim now follows from the fact that
there can be at most n honest parties inWj .

33

The privacy follows from the privacy of AICP and the fact that all the instances of signature-revelation
are towards PR. Communication complexity follows from the communication complexity of AICP and the
fact that there are Θ(n2) instances of AICP involved.

4.2 Sharing and Reconstructing Degree-t Polynomial Using Sh and RecPriv

Even though D’s input in the protocol Sh is a value which it wants to share, we observe that D’s computation
in the protocol Sh can be recast as if D wants to share the degree-t Shamir-sharing polynomial F̄ (0, y), where
F̄ (0, 0) is the value which D wants to Shamir-share. If D broadcasts a valid W set during stage IV, then
it implies that each Pj ∈ W has received the share F̄ (0, αj) from D, where Pj has received the degree-t
signed row-polynomial F̄ (x, αj) from the dealer. Here F̄ (x, y) is the degree-(t, t) bivariate polynomial
committed by D, which is the same as F (x, y) for an honest D (see the pictorial representation in Fig 6 and
the proof of Lemma 4.5). If D is honest, then adversary learns at most t shares of the polynomial F (0, y),
corresponding to the corrupt parties inW (see the proof of Lemma 4.6). In the protocol, apart from Pj ∈ W ,
every other party Pj who broadcasts the message RRj also receives its share F̄ (0, αj), lying on F̄ (0, y), as
the row-polynomial received by every such Pj also lies on F̄ (x, y). Based on these observations, we propose
the following alternate notation for using the protocol Sh, where the input for D is a degree-t polynomial,
instead of a value. This notation will later simplify the presentation of our ACSS protocol.

Notation 4.9 (Sharing Polynomial Using Protocol Sh). In the rest of the paper, we use the following
notations and interpretations, while using the protocol Sh.
• We say that D invokes Sh(D, r(·)), where r(·) is some degree-t polynomial possessed by D, to denote

that D invokes the protocol Sh by picking a degree-(t, t) bivariate polynomial F (x, y) during stage I,
which is otherwise a random polynomial, except that F (0, y) = r(·) holds.

• If D broadcasts a validW set and correspondingWj sets during stage IV of the instance Sh(D, r(·)),
then it implies that there exists some degree-t polynomial, say r̄(·), where r̄(·) = r(·) for an honest D,
such that each Pj ∈ W holds a primary-share r̄(αj). Moreover, each primary-share r̄(αj) is further
t-shared among the parties inWj .

• We say that a party Pj receives a share rj during Sh(D, r(·)) from D to denote that Pj receives a
degree-t signed row-polynomial from D during stage II, with rj as its constant term and has broad-
casted RRj message.

The computations done by the parties in RecPriv can be similarly recast as if parties enable a designated
PR to reconstruct a degree-t polynomial r(·), which has been shared by D during an instance Sh(D, r(·))
of Sh (see Notation 4.9). This is because in RecPriv, party PR recovers the entire column-polynomial
g0(y), which is the same as F (0, y). And as discussed in Notation 4.9, to share r(·), the dealer D executes
Sh by setting F (0, y) to r(·). Based on this discussion, we propose the following alternate notation for
reconstructing a shared polynomial by PR using RecPriv, which will later simplify the presentation of our
ACSS protocol.

Notation 4.10 (Reconstructing a Shared Polynomial Using RecPriv). Let r(·) be a degree-t polynomial
which has been shared by D by executing an instance Sh(D, r(·)) of Sh. Then RecPriv(D, r(·), PR) denotes
that the parties execute the steps of the protocol RecPriv to enable PR reconstruct r(0), which implicitly
allows PR to reconstruct the entire polynomial r(·).

4.3 Protocols Sh and RecPriv for L Polynomials

To share L number of degree-t polynomials r(1)(·), . . . , r(L)(·), D can execute L independent instances of
Sh (as per Notation 4.9), where the `th instance is used for sharing r(`)(·). This will require a broadcast

34

of L instances of W sets and the corresponding Wj sets for each W . Each instance of broadcast needs
an execution of the Bracha’s Acast protocol, which has a communication overhead of O(n2) bits. Instead,
by making slight modifications, we ensure that the broadcast complexity is independent of the number of
shared polynomials L.

In the modified protocol, each Pi while issuing signatures to any party, issues a single signature on all
the required values, on the behalf of all the L instances. For instance, as part of the recommitment of row-
polynomials during stage III, party Pj will have L row-polynomials (one from each Sh instance) and there
will be L common values on these polynomials between Pi and Pj , so Pi needs to sign L values for Pj .
Party Pi issues signature on the common values on all these L polynomials simultaneously and for this only
one instance of AICP is executed, instead of L instances. Similarly, during the first stage, each party Pi will
receive L degree-t column-polynomials for signing and it has to sign total L ·n values on these polynomials.
Now instead of executing L · n independent instances of AICP, party Pi will execute only n instances
of AICP, where in the jth instance, Pi issues signature on the jth value of all the L column-polynomials
(namely the value of all the column-polynomials at y = αj).

Thus all instances of AICP now deal with L values. To make the broadcast complexity independent
of L, each Pj broadcasts a single RRj ,SCj and (SRj , Pi) message, if the conditions for broadcasting these
messages are satisfied with respect to all the L instances of Sh. For instance, Pj broadcasts a single RRj
message after receiving all the L signed row-polynomials from D on the behalf of all the L instances of
Sh. Finally, as part of recommitment of Pj’s row-polynomials, a singleWj set is constructed on the behalf
of all the L instances of Sh. And similarly D constructs a singleW set with respect to all the L instances
of Sh. We call the resultant modified protocol as MSh(D, (r(1)(·), . . . , r(L)(·))). As most of the steps of
MSh are similar to L instances of Sh being executed in parallel (with the above modifications), to avoid
repetition, we do not give the complete formal details of MSh. The communication complexity for MSh
will be O(L · n2κ+ n3κ2 + n4) bits.

To enable PR reconstruct the polynomials r(1)(·), . . . , r(L)(·) shared using MSh, the parties execute L
instances of RecPriv. But each instance of signature revelation now deals withL values. The communication
complexity of the protocol will be O(L · n2κ+ n3κ2) bits.

5 Asynchronous Complete Secret Sharing (ACSS)

In this section, we present a protocol which allows a designated dealer D ∈ P to verifiably generate com-
plete t-sharing of a set of values S = (s(1), . . . , s(L)) ∈ FL held by D. The verifiability here ensures that if
the (honest) parties output shares, then they correspond to complete t-sharing of some S̄ ∈ FL held by the
dealer, where S̄ = S holds for an honest dealer.

The ideal functionality FACSS modelling the requirements of our ACSS protocol is present in Fig 10.
The functionality upon receiving a set of L polynomials (which we call as the sharing-polynomials) from the
dealer, distributes distinct points on the polynomials to the respective parties, provided the input polynomials
are degree-t univariate polynomials. This implicitly allows the constant term of the input polynomials to be
completely t-shared. If any of the received polynomials is not of degree-t, then the functionality sends the
output ⊥ to each party, indicating that the sharing-polynomials of the dealer are “invalid”. This ensures that
the underlying sharing-polynomials are verified by the functionality. Notice that the functionality generates
an output for the parties, only upon receiving the sharing-polynomials from the dealer. If the dealer does
not provide any polynomial (which is possible only if the dealer is corrupt), then the functionality does not
generate any output for the parties.

Looking ahead, the way this functionality will be used in our AMPC protocol is as follows: if Pi has a
set of L values S = (s(1), . . . , s(L)), which it wants to completely t-share among the parties, then Pi acts as
a dealer and picks L random degree-t univariate polynomials, whose constant terms are s(1), . . . , s(L) and

35

calls the functionality FACSS with these polynomials. This will ensure that the values s(1), . . . , s(L) remain
information-theoretically secure for an honest Dealer.

FACSS proceeds as follows, running with parties P = {P1, . . . , Pn} and an adversary S.
• Upon receiving (Dealer,ACSS, L, sid, {q(1)(·), . . . , q(L)(·)}) from D ∈ P , generate a request-based de-

layed output for the parties as follows:
– If all the polynomials q(1)(·), . . . , q(L)(·) are degree-t univariate polynomials, then send a request-based

delayed output (D,Dealer, L, sid, {q(1)(αi), . . . , q
(L)(αi)}) to each Pi ∈ P .

– If any of the polynomials q(1)(·), . . . , q(L)(·) is not a degree-t polynomial, then send a request-based
delayed output (D,Dealer, sid,⊥) to each Pi ∈ P .

Functionality FACSS

Figure 10: The ideal functionality for asynchronous complete secret-sharing.

5.1 ACSS Protocol for Realizing FACSS with L = 1

We now present our ACSS protocol ΠACSS for securely realizing the functionality FACSS. We first explain
the protocol assuming D has a single polynomial (and hence a single value) for sharing, namely whenL = 1.
The modifications for sharing L polynomials are straight forward.

Before explaining the idea of ΠACSS, we first pause for a moment and try to understand that why protocol
Sh fails to generate a complete t-sharing of D’s input. The reason is that in Sh, if D is corrupt, then the
set W may not include all the honest parties, as D may not reveal the respective signed row-polynomials
to all the honest parties during stage II. Consequently, up to t honest parties may lie outsideW and hence
will not have (primary) shares corresponding to D’s committed secret. Moreover, even if D is honest, the
parties cannot confirm whether all the honest parties have been included in W . This is because to avoid
an indefinite wait, the parties cannot wait beyond tillW achieves a size of n − t, leaving up to t potential
honest parties outsideW . In protocol ΠACSS we get rid of this problem and ensure that if some honest party
obtains its share of D’s committed secret, then eventually every other honest party obtains its share of the
same secret, even if D is corrupt.

The idea of ΠACSS is similar to that of Sh, where D embeds its sharing-polynomial q(·) in a random
degree-(t, t) bivariate polynomial H(x, y) at x = 0, that is H(0, y) = q(·) holds. The row-polynomials of
H(x, y) are retained by D, while the column-polynomials are given to respective parties. Next it is publicly
verified whether there exists a set V of n − t column holders, whose column-polynomials are pair-wise
consistent with all the n row-polynomials held by D. This will confirm that the row-polynomials of D and
the column-polynomials of the honest parties in V lie on a single degree-(t, t) bivariate polynomial, say
H̄(x, y), which will be considered as D’s committed bivariate polynomial, and H̄(0, y) is considered as D’s
committed sharing-polynomial. Moreover, if D is honest, then H̄(x, y) will be same as H(x, y).

Once D’s commitment is publicly confirmed, we ensure that every party Pi gets the ith row-polynomial
H̄(x, αi) held by D, which leads to the complete t-sharing of H̄(0, 0) through H̄(0, y), as H̄(0, αi) will be
considered as Pi’s share. We stress that the delivery of ith row-polynomial to Pi will be successful, even if
D is potentially corrupt and does not participate in the delivery process. It is this delivery process, which
distinguishes protocol ΠACSS from Sh. In protocol Sh, after the confirmation of D’s committed bivariate
polynomial, the delivery of individual row-polynomials compulsorily requires D’s honest participation. And
a potentially corrupt D may purposely decide not to distribute the row-polynomials to up to t honest parties,
thus barring them from their shares of D’s committed polynomial. We next discuss the construction of the
set V and the delivery process of row-polynomials.

After D distributes the column-polynomials to respective parties, the parties proceed to verify if D
delivered consistent column-polynomials, lying on a single degree-(t, t) bivariate polynomial. For this, D

36

is asked to share its row-polynomials by invoking instances of Sh (this is where we use our interpretation
of sharing degree-t univariate polynomial using Sh as discussed in Notation 4.9). Namely, D invokes n
instances of Sh, where jth instance is used to share the jth row-polynomial. The goal is then to let D
publicly identify a set V of n− t column holders, whose column-polynomials are pair-wise consistent with
all the n row-polynomials shared by D.

The set V is constructed as follows. Every party Pi participates in all the Sh instances invoked by D
and checks if the shares received by Pi from D in these instances (see Notation 4.9 for the meaning of Pi
receiving a share from D during an Sh instance) lie on the column-polynomial received by Pi (which should
be the case if D is honest). If the check is successful, then party Pi publicly notifies this by broadcasting an
OK message. The set V is then assigned to be a set of n− t parties who broadcast OK messages and who also
constitute aW set for all the n instances of Sh invoked by D. Notice that if D is honest, then such a common
V set is eventually obtained, as there are at least n−t honest parties, who constitute a potential V set. This is
because if D keeps on running the Sh instances and keeps expanding theW sets of individual Sh instances,
then eventually every honest party is included in theW sets of all the Sh instances (see Lemma 4.2). Once D
identifies a commonW set for all the n instances of Sh, it sets this commonW as V and publicly announces
the same. The parties then verify the publicly announced V set and check if it constitutes a validW set for
all the n instances of Sh invoked by D (this is where the the last stage of protocol Sh, shown in red color in
Fig 8, is invoked for checking the validity of a publicly announcedW set).

Once the set V is publicly announced and verified, to obtain a complete t-sharing of D’s secret, we need
to ensure that each party obtains the respective row-polynomial held by D. However, unlike the protocol
Sh, this needs to be ensured even if a potentially corrupt D does not “help” in the process of delivering
the row-polynomials to respective parties. Hence, the parties invoke instances of RecPriv, where the ith

instance is used to let only party Pi reconstruct the ith row-polynomial (this is where we use our interpre-
tation of using RecPriv to enable designated reconstruction of a shared degree-t polynomial, as discussed
in Notation 4.10). We stress that once the common set V is publicly identified, each Pi obtains the desired
row-polynomial, even if D is corrupt, as the corresponding RecPriv instance is eventually completed for Pi
even for a corrupt D. Once the parties obtain their respective row-polynomials, the constant term of these
polynomials constitute a complete t-sharing of D’s committed value. For the formal details of ΠACSS, see
Fig 12 and for a pictorial depiction of the protocol, see Fig 11. In the protocol, we assume that the parties
have access to the broadcast functionality FACast.

– Distribution of Column-Polynomials and Sharing of Row-Polynomials by the dealer: If Pi = D, then
execute the following steps.
• On having the input q(·) where q(·) is a degree-t univariate polynomial, select a random degree-(t, t)

bivariate polynomial H(x, y) over F, such that H(0, y) = q(·) holds.a

• For i = 1, . . . , n, send (sid, column, ci(y)) to Pi, where ci(y)
def
= H(αi, y).

• For j = 1, . . . , n, execute an instance Sh(sid,D, rj(x)), where rj(x)
def
= H(x, αj). Let this instance of

Sh be denoted as Sh(j)
sid .b

– Pair-wise Consistency Check: Execute the following steps to receive data from D and verify it.
• If (sid, column, ci(y)) is received from D, then participate in the instances Sh

(1)
sid , . . . ,Sh

(n)
sid , provided

ci(y) is a degree-t polynomial.
• Send (sender,ACast, sid,OKi) to FACast if all the following hold.

– The shares r1i, . . . , rni are received from D during the instances Sh(1)
sid , . . . ,Sh

(n)
sid respectively.c

– The condition rji = ci(αj) holds for each j = 1, . . . , n.
– Construction of V and Public Announcement: If Pi = D, then execute the following steps.

• LetW(`) denote the instance ofW set constructed during the instance Sh(`)
sid and for each Pk ∈ W(`), let

Protocol ΠACSS)

37

!"($) ⟹
!'($) ⟹

⋮ ⋮

!)($) ⟹

⋮ ⋮

!*($) ⟹

+,-(.)⟹ +,/(.)⟹ +,|1|(.)⟹
2,- 2,/ 2,|1|

1

⋮ ⋮ ⋮

⋮ ⋮ ⋮

Figure 11: Pictorial depiction of the protocol ΠACSS. The row-polynomials r1(x), . . . , rn(x) are shared by
D by invoking n instances Sh1, . . . ,Shn of Sh, while the column-polynomials are distributed to respective
parties. The parties in V = {Pi1 , . . . , Pi|V|} constitute a common W set for all the n instances of Sh.
Each party in V publicly confirms that the shares received by it during Sh1, . . . ,Shn lie on its column-
polynomial, thus confirming the pair-wise consistency (highlighted by the shaded column polynomial) of
its column polynomial and the row-polynomials shared by D. Once the set V is identified, the respective
row-polynomials are reconstructed towards the designated parties by invoking instances of RecPriv

W(`)
k denote the corresponding instance ofWk set during Sh

(`)
sid . Moreover, letW def

= W(1)∩. . .∩W(n).
• For ` = 1, . . . , n, keep updating the setW(`) and the corresponding setsW(`)

k during the instance Sh
(`)
sid ,

till a set V ⊆ W satisfying all the following conditions is obtained.
– |V| ≥ n− t holds.
– For every Pj ∈ V , the message (Pj ,ACast, sid,OKj) is received fromFACast where Pj is the sender.

• Send (sender,ACast, sid,V, {W(1)
j , . . . ,W(n)

j }Pj∈V) to FACast, once a set V satisfying the above condi-
tions is obtained.

– Verification of V: Execute the following steps.
• If (D,ACast, sid,V, {W(1)

j , . . . ,W(n)
j }Pj∈V) is received from FACast where D is the sender, then check

whether the set V and the sets {W(1)
j , . . . ,W(n)

j }Pj∈V are valid, by verifying the following.
– For every Pj ∈ V , the message (Pj ,ACast, sid,OKj) is received fromFACast where Pj is the sender.
– For ` = 1, . . . , n, the set V along with the sets {W(`)

j }Pj∈V are valid during the instance Sh
(`)
sid .d

• If the set V and the sets {W(1)
j , . . . ,W(n)

j }Pj∈V are found to be invalid, then output (D,Dealer, sid,⊥).

Else invoke an instance RecPriv
(i)
sid

def
= RecPriv(D, ri(x)) to reconstruct the polynomial ri(x). More-

over, participate in the instances RecPriv(1)
sid , . . . ,RecPriv

(n)
sid .e

– Share Computation: Execute the following steps.
• Wait to complete the instance RecPriv

(i)
sid and obtain a degree-t row-polynomial ri(x).

• Upon reconstructing ri(x), output (D,Dealer, 1, sid, si), where si
def
= ri(0).

aIf q(·) is a polynomial in a variable different from y, then the variable can be renamed as y to ensure this condition holds.
bSee Notation 4.9 for the interpretation of sharing degree-t univariate polynomial using Sh.
cSee Notation 4.9 for the interpretation of a party receiving a share from D during an instance of Sh.

38

dFor this, the party executes the code shown in red color for stage IV in protocol Sh.
eSee Notation 4.10 for the interpretation of using RecPriv to enable reconstruction of a shared degree-t polynomial.

Figure 12: Protocol for securely realizing the functionality FACSS for a single polynomial with session id sid in the
FACast-hybrid model. The above code is executed by every Pi ∈ P , including the dealer D.

We note that we separately do not put any termination condition for any party in protocol ΠACSS. Since
ΠACSS will be used as a sub-protocol in our AMPC protocol, the termination condition of our AMPC proto-
col will automatically trigger the termination of all the underlying instances of ΠACSS.

We next prove the security of the protocol ΠACSS.

Theorem 5.1. Protocol ΠACSS UC-securely realizes the functionality FACSS for L = 1 with statistical
security in the FACast-hybrid model, in the presence of a static malicious adversary, corrupting at most
t < n

3 parties. The protocol needs a communication of O(n4κ2 + n5) bits.

Proof. In the protocol, there are n instances of Sh involved, which from Lemma 4.7, incurs a communication
ofO(n4κ2 +n5) bits. In the protocol, D needs to broadcast a V set of sizeO(n) and for each party Pj ∈ V ,
it also needs to broadcast n number ofWj sets, each of size O(n). So overall D needs to broadcast O(n3)
bits, as each set can be represented by O(n) bits. By realizing FACast with Bracha’s reliable broadcast
protocol, this requires a communication of O(n5) bits.

We next prove the security of the protocol. Let Adv be an arbitrary real-world adversary, attacking
protocol ΠACSS and let Z be an arbitrary environment. We show the existence of a simulator SACSS, such
that for any set of corrupted parties C with |C| ≤ t and for all inputs, the output of all parties and the
adversary in an execution of the real protocol ΠACSS with Adv is statistically-indistinguishable from the
outputs in an execution with SACSS involving FACSS in the ideal model. This further implies that from the
view-point of Z , the executions in the real-world and the ideal-world are statistically indistinguishable. The
steps of the simulator (see Fig 13) will be different, depending upon whether the dealer is honest or corrupt.

The high level idea of the simulator is as follows. If the dealer is honest, then the simulator interacts
with the functionality FACSS and receives the shares of the corrupt parties, corresponding to the dealer’s
sharing-polynomial. The simulator then picks a random degree-t sharing polynomial on the behalf of the
dealer, consistent with the shares of the corrupt parties received from FACSS and with this polynomial being
dealer’s input, the simulator plays the role of the honest parties (including the dealer) as per the protocol
ΠACSS and interacts with Adv. Moreover, the role of FACast is played by the simulator itself.

For the case when dealer is corrupt, the simulator first plays the role of the honest parties and participates
in the execution of ΠACSS with Adv. If during the execution simulator finds Adv broadcasting a valid V
set and the corresponding Wj sets, then based on the shares of the honest parties in V set, the simulator
“extracts” the sharing-polynomial of the dealer, which it sends to FACSS in the ideal-world.

SACSS constructs virtual real-world honest parties and invokes the real-world adversary Adv. The simulator simu-
lates the view of Adv, namely its communication with Z , the messages sent by the honest parties and the interaction
with FACast. In order to simulate Z , the simulator SACSS forwards every message it receives from Z to Adv and
vice-versa. The simulator then simulates the various phases of the protocol as follows, depending upon whether the
dealer is honest or corrupt.

Simulation when D is Honest
Interaction with FACSS: the simulator interacts with the functionality FACSS and receives a request based delayed
output (D,Dealer, 1, sid, {si}Pi∈C) on the behalf of the parties in C. The simulator then plays the role of the honest
parties as per the protocol ΠACSS and simulates the interaction between Adv and the honest parties during the various
steps of ΠACSS as follows.

Distribution of Column-Polynomials and Sharing of Row-Polynomials by the dealer: The simulator picks a

Simulator SACSS

39

random degree-t univariate polynomial q̃(·) on the behalf of D, subject to the condition that q̃(αi) = si holds,
for every Pi ∈ C. The simulator then selects a random degree-(t, t) bivariate polynomial H̃(x, y) over F, such that
H̃(0, y) = q̃(·) holds. On the behalf of the dealer, the simulator sends (sid, column, c̃i(y)) to Adv, for every Pi ∈ C,

where c̃i(y)
def
= H̃(αi, y). For j = 1, . . . , n, the simulator invokes an instance S̃h

(j)

sid
def
= Sh(sid,D, r̃j(x)), where

r̃j(x)
def
= H̃(x, αj) and plays the roles of the dealer in these instances and interacts with Adv as per the steps of the

protocol Sh, on the behalf of the dealer.

Pair-wise Consistency Check: The simulator plays the role of the honest parties as per the steps of the protocol

Sh in the instances S̃h
(1)

sid , . . . , S̃h
(n)

sid and interact with Adv in these instances, on the behalf of the honest parties.
Whenever Adv requests output from FACast corresponding to any sender Pi 6∈ C, the simulator sends the output
(Pi,ACast, sid,OKi) to Adv on the behalf of FACast.

Construction of V and Public Announcement: The simulator keeps constructing the setW(`) and the setsW(`)
k for

each Pk ∈ W(`) during the instances S̃h
(`)

sid , by playing the role of the dealer in these instances as per the steps of the
protocol Sh. Once a valid V set and sets {W(1)

j , . . . ,W(n)
j }Pj∈V are ready, then whenever Adv requests output from

FACast corresponding to the sender D, the simulator sends the output (D,ACast, sid,V, {W(1)
j , . . . ,W(n)

j }Pj∈V) to
Adv, on the behalf of FACast.

Verification of V: The simulator plays the role of the honest parties, as per the steps of Sh during the instances

S̃h
(1)

sid , . . . , S̃h
(n)

sid . Moreover, for i = 1, . . . , n, the simulator starts participating in the instances R̃ecPriv
(i)

sid
def
=

RecPriv(D, r̃i(x)), by playing the role of the honest parties in these instances, as per the steps of the protocol
RecPriv.

Share Computation: For each Pi ∈ C, the simulator plays the role of the honest parties as per the steps of the

protocol RecPriv during the instance R̃ecPriv
(i)

sid .

Simulation when D is Corrupt
In this case, the simulator SAMTSS interacts with Adv during the various steps of ΠACSS as follows.

Distribution of Column-Polynomials and Sharing of Row-Polynomials by the dealer: The simulator plays the
role of the honest parties as per the protocol ΠACSS and interacts with Adv on the behalf of the honest parties. If
Adv sends (sid, column, ci(y)) on the behalf of D for any Pi 6∈ C, then the simulator records it, provided ci(y) is a
degree-t polynomial.

Pair-wise Consistency Check: If for any Pi 6∈ C the simulator has recorded a degree-t column-polynomial on
the behalf of Pi, then the simulator plays the role of Pi as per the steps of the protocol Sh in the instances
Sh

(1)
sid , . . . ,Sh

(n)
sid and interact with Adv in these instances, on the behalf of Pi. Whenever Adv requests output

from FACast corresponding to any sender Pi 6∈ C, the simulator sends the output (Pi,ACast, sid,OKi) to Adv on the
behalf of FACast, provided rji = ci(αj) holds for each j = 1, . . . , n. Here rji denotes the share which simulator
received from Adv on the behalf of the dealer, corresponding to Pi during the instance Sh

(j)
sid .

Construction of V and Public Announcement: The simulator plays the role of the honest parties as per the steps
of Sh during the instances Sh(1)

sid , . . . ,Sh
(n)
sid .

Verification of V: If Adv sends (sender,ACast, sid,V, {W(1)
j , . . . ,W(n)

j }Pj∈V) to FACast, then the simulator plays

the roles of the honest parties as per the steps of Sh during the instances Sh(1)
sid , . . . ,Sh

(n)
sid and verifies if these sets

are valid. Accordingly, the simulator interacts with FACSS as follows.
• If the verification fails, then the simulator sends (Dealer,ACSS, 1, sid, q(·)) to FACSS, where q(·) is a poly-

nomial of degree more than t.
• Else the simulator sends (Dealer,ACSS, 1, sid, q(·)) toFACSS, where q(·) is the dealer’s sharing-polynomial,

computed as follows.
– For j = 1, . . . , n, compute the polynomial rj(·) by interpolating the points {(αi, rji)}Pi∈H∩V . Here

H def
= P \ C.

40

– Compute the polynomial q(·) by interpolating the points {(αj , rj(0))}j∈{1,...,n}
Share Computation: If the simulator has sent a sharing-polynomial on the behalf of the dealer to FACSS, then for
every Pi ∈ C, the simulator plays the role of the honest parties as per the steps of the protocol RecPriv during the
instance RecPriv

(i)
sid , which is the instance of RecPriv, corresponding to Pi.

Figure 13: Simulator for the protocol ΠACSS where Adv corrupts the parties in set C, where |C| ≤ t

We now prove a series of claims, which will help us to finally prove the theorem. In these claims, we
skip the session id sid. We first consider the case when the dealer is honest and show that the view of Adv
is identically distributed, both in the real execution of ΠACSS involving real honest parties, as well as in the
simulated execution of ΠACSS, where the role of the honest parties is played by the simulator.

Claim 5.2. If the dealer is honest, then the view of Adv in the simulated execution of ΠACSS with SACSS is
identically distributed as the view of Adv in the real execution of ΠACSS involving honest parties.

Proof. The view of Adv during the real execution of ΠACSS consists of the following:
– The degree-t row-polynomials {H(x, αi)}Pi∈C and degree-t column-polynomials {H(αi, y)}Pi∈C .
– The view generated during the instances Sh(1), . . . ,Sh(n).
– The view generated during the instances RecPriv(1), . . . ,RecPriv(n).
– The broadcasted sets V and {W(1)

j , . . . ,W(n)
j }Pj∈V .

By Lemma 2.6, the distribution of {H(x, αi), H(αi, y)}Pi∈C is independent of the underlying polynomial
H(0, αy), which is the input q(·) of the dealer. Since in both the real as well as simulated execution,
the bivariate polynomial is selected uniformly at random, it follows that the distribution of the row and
column-polynomials of the parties in C are identically distributed in both the executions and so we fix these
polynomials. Now conditioned on the polynomials {H(x, αi), H(αi, y)}Pi∈C , the multiple instances of
Sh in the simulated execution are executed exactly as in the real execution, on random inputs for honest
dealer. Moreover, from Lemma 4.6, conditioned on {H(x, αi), H(αi, y)}Pi∈C , the view of Adv during the
instances {Sh(i)}Pi 6∈C remains independent of the underlying row-polynomials {H(x, αi)}Pi 6∈C . Hence the
view of Adv will have the same distribution in both the executions during the instances Sh(1), . . . ,Sh(n)

and so we fix the view of Adv during these instances as well. This automatically fixes the sets V and
{W(1)

j , . . . ,W(n)
j }Pj∈V . This is because the set W(`) and the sets {W(`)}Pj∈P generated during the in-

stance Sh(`) is part of the view of Adv for the instance Sh(`). Finally, from Lemma 4.8, conditioned on
{H(x, αi), H(αi, y)}Pi∈C , the view generated during the instances RecPriv(1), . . . ,RecPriv(n) are identi-
cally distributed in both the executions.

We next claim that if the dealer is honest, then conditioned on the view of the adversary (which is
identical in both the executions as per Claim 5.2), the outputs of the honest parties are identically distributed
in the real-world as well as the ideal-world, except with a negligible probability.

Claim 5.3. If D is honest, then conditioned on the view of Adv, the output of the honest parties during
the execution of ΠACSS involving Adv has the same distribution as the output of the honest parties in the
ideal-world involving SACSS and FACSS, except with probability n3 · εAICP.

Proof. Let D be honest and let View be an arbitrary view of Adv. Moreover, let {ri(x), ci(y)}Pi∈C be
the degree-t row and column-polynomials as per View. Notice that the degree-(t, t) bivariate polynomial
H(x, y) selected by D is uniformly distributed, conditioned on the polynomials {ri(x), ci(y)}Pi∈C and

q(·) def
= H(0, y) (in fact, if |C| = t, then H(x, y) gets fixed based on {ci(y)}Pi∈C and q(·)). Let us

fix any such polynomial H(x, y) and hence the corresponding q(·) polynomial. In the ideal-world, each
honest Pi obtain the request-based delayed output q(αi) from FACSS. We show that except with probability
n3 · εAICP, each honest party Pi eventually outputs q(αi) in the real-world as well. For this, we define an

41

event E which is the event that during the real execution of ΠACSS, for ` = 1, . . . , n, all honest parties
are eventually included in the set W(`) during the instance Sh(`); moreover for every Pi 6∈ C, party Pi
eventually reconstructs the degree-t row-polynomial ri(x), during the instance RecPriv(i). From Lemma
4.2 and Lemma 4.8 (along with the Notation 4.9 and Notation 4.10), eventE occurs, except with probability
n3 · εAICP. We now show that conditioned on the event E, each honest party Pi eventually outputs q(αi).

Let the event E occur. Since D is honest, for every party Pi, the condition ci(αj) = rj(αi) holds, for
j = 1, . . . , n. As there are at least n − t honest parties Pi, this implies that eventually D finds a common
set V of size n − t, such that V constitutes a valid W set for all the instances Sh(1), . . . ,Sh(n) and each
party Pi in V has broadcast OKi message. Upon the broadcast of V , each honest party eventually validates it
and invokes the instances RecPriv1, . . . ,RecPrivn. Consequently, each honest Pi eventually reconstructs the
row-polynomial ri(x) and outputs its share si, which is the same as q(αi). This is because ri(x) = H(x, αi)
holds and hence si which is the same as ri(0) will be H(0, αi). Now H(0, αi) is same as q(αi) because the
bivariate polynomial H(x, y), satisfies the condition that H(0, y) = q(·) holds.

We next prove certain claims with respect to a corrupt dealer. The first obvious claim is that the view
of Adv in this case is also identically distributed in both the real execution as well as simulated execution of
ΠACSS. This is simply because in this case, the honest parties have no inputs (in the protocol, only dealer has
the input and we are analysing the case when dealer is under the control of Adv) and the simulator SACSS
plays the role of the honest parties exactly as per the steps of ΠACSS in the ideal-world execution.

Claim 5.4. If the dealer is corrupt, then the the view of Adv in the simulated execution of ΠACSS with SACSS
is identically distributed as the view of Adv in the real execution of ΠACSS involving honest parties.

Proof. The proof follows from the fact that if D is corrupt, then SACSS participates in a full execution of
the protocol ΠACSS by playing the role of the honest parties. Hence, there is a one-to-one correspondence
between simulated executions and real executions.

We next claim that if the dealer is corrupt, then conditioned on the view of the adversary (which is
identical in both the executions as per Claim 5.4), the outputs of the honest parties are identically distributed
in the real-world as well as the ideal-world, except with a negligible probability.

Claim 5.5. If D is corrupt, then conditioned on the view of Adv, the output of the honest parties during
the execution of ΠACSS involving Adv has the same distribution as the output of the honest parties in the
ideal-world involving SACSS and FACSS, except with probability n3 · εAICP.

Proof. Let D be corrupt and let View be an arbitrary view of Adv. We note that it can be find out from
View whether a valid V set (and correspondingW(`)

j subsets) have been generated during the corresponding
execution of ΠACSS. We now consider the following different cases.

– No V set is generated as per View: It is easy to see that in this case, the outputs of the honest parties
are identically distributed in both the worlds. This is because in the real-world, the honest parties
do not participate in any of the RecPriv instances and hence honest parties do not obtain any output.
Correspondingly, the simulator SACSS does not provide any input to FACSS in the ideal-world on the
behalf of the dealer and hence FACSS does not produce any output for the honest parties as well.

– Sets V, {W(1)
j , . . . ,W(n)

j }Pj∈V are generated as per View but are invalid: It is easy to see that in
this case also, the outputs of the honest parties are identically distributed in both the worlds. This is
because in this case, the honest parties do not participate in any of the RecPriv instances and instead
output ⊥ as their shares after finding that the sets V, {W(1)

j , . . . ,W(n)
j }Pj∈V are invalid. Since SACSS

will know these sets as well and finds them to be invalid, in the ideal-world, the simulator SACSS
provides a polynomial of degree more than t as the input on the behalf of D to FACSS, ensuring that
the honest parties also output ⊥ in the ideal-world.

42

– Sets V, {W(1)
j , . . . ,W(n)

j }Pj∈V are generated as per View and are valid: Let H be the set of hon-

est parties in V , that is, H def
= V \ C. For ` = 1, . . . , n, let r`(x) be the polynomial, shared by

D among the parties in H in the instance Sh(`), during the execution of ΠACSS. That is, r`(x) is
the polynomial determined by the shares received by the parties in H during Sh(`). Notice that the
polynomials r1(x), . . . , rn(x) are completely determined by View. This is because these polynomials
are completely determined by the view of Adv during the instances of Sh executed inside ΠACSS,
as these polynomials are shared by the dealer which is under the control of Adv and SACSS plays
the role of honest parties during all the Sh instances. We say that View is good, if the polynomials
r1(x), . . . , rn(x) are degree-t polynomials. From Lemma 4.5 (along with Notation 4.9), it follows
that except with probability n3 · εAICP, the view View is indeed good. We now show that conditioned
on the event that View is good, the output of the honest parties are identical in both the worlds.
Let View be good. It then follows that the polynomials r1(x), . . . , rn(x) lie on a single single degree-
(t, t) bivariate polynomial H(x, y). This is because since V is valid, it implies that each Pi ∈ H
has broadcasted an OKi message, which further implies that rji = ci(αj) holds for all j = 1, . . . , n.
Here ci(y) is the degree-t column-polynomial received by Pi from D and rji denotes the share rj(αi)
received by Pi from D during the instance Sh(j). Since |H| ≥ t + 1, it implies that the degree-t
row-polynomials r1(x), . . . , rn(x) are pair-wise consistent with t + 1 degree-t column-polynomials,
implying that the polynomials r1(x), . . . , rn(x) lie on a single degree-(t, t) bivariate polynomial, say
H(x, y) (follows from Lemma 2.5). From the steps of SACSS, it follows that in the ideal-world, the

output of the honest parties will the shares q(αi), where q(·) def
= H(0, y) holds. In the real-world,

the output of each honest Pi will be the constant term of the polynomial reconstructed by Pi during
the instance RecPriv(i). From Lemma 4.8 (along with Notation 4.9 and Notation 4.10), it follows that
except with probability n2 ·εAICP, party Pi reconstructs ri(x) during the instance RecPriv(i) and hence
outputs ri(0), which is the same as q(αi).

Since εAICP = 2−Ω(κ) and n = poly(κ), from Claims 5.2-5.5, we conclude that{
HYBRIDFACast

ΠACSS,Adv(z),C(q(·))
}
z∈{0,1}?

s≡
{

IDEALFACSS,SACSS(z),C(q(·))
}
z∈{0,1}?

holds, thus proving the theorem.

5.2 ACSS Protocol for Realizing FACSS with L > 1

To generate a complete t-sharing of S = (s(1), . . . , s(L)), the parties execute the steps of the protocol
ΠACSS independently L times with the following modifications: corresponding to each party Pj , the dealer
D will now have L number of degree-t row-polynomials to share. Instead of executing L instances of Sh to
share these polynomials, D shares all of them simultaneously by executing a single instance MShj of MSh.
Similarly, each party Pi broadcasts a single OKi message, if the conditions for broadcasting the OKi message
is satisfied for Pi in all the L instances. Since most of steps of the protocol are similar to executing L parallel
instances of ΠACSS (with above modifications), we do not give the formal details to avoid repetition. The
resultant protocol is still called as ΠACSS. The proof of the following theorem follows from the fact that
there are n instances of MSh and RecPriv involved, each dealing with L polynomials. The security proof
will be similar as in Theorem 5.1 and to avoid repetition, we do not give the formal details.

Theorem 5.6. Protocol ΠACSS UC-securely realizes the functionality FACSS for any L ≥ 1 with statistical
security in the FACast-hybrid model, in the presence of a static malicious adversary, corrupting at most
t < n

3 parties. The protocol needs a communication of O(L · n3κ+ n4κ2 + n5) bits

43

6 Protocol for the Pre-Processing Phase

In this section, we present our protocol for the pre-processing phase, which will be later used in our AMPC
protocol. The protocol allows the parties to generate complete t-sharing of cM random multiplication-triples,
which are used for securely evaluating the multiplication gates in our AMPC protocol.11 The protocol
realizes the ideal functionality FAPrep (see Fig 14). The functionality gets activated on being invoked by
at least t + 1 parties (thus guaranteeing that at least one honest party invokes it) and generates complete
t-sharing of cM random multiplication-triples. The functionality allows the ideal-world adversary to specify
all the “data” that the corrupted parties would like to hold as part of the various sharings generated by the
functionality. Namely it specifies the shares for each of the generated t-sharing on the behalf of corrupt
parties. The functionality then “completes” the sharings randomly, while keeping them “consistent” with
the shares specified by the adversary. Namely, for each shared value, the sharing polynomial is selected
randomly, such that when evaluated at the evaluation-points corresponding to the corrupt parties, it produces
the shares as specified by the adversary.12 Once the t-sharings are computed, the functionality performs a
request-based delayed delivery of the respective shares of the honest parties (the shares of the corrupt parties
need not be delivered, as they are already available with the adversary).

FAPrep proceeds as follows, running with parties P = {P1, . . . , Pn} and an adversary S. Let C denote the set of
corrupt parties, where |C| ≤ t. If at least t + 1 parties Pi have sent (prep, sid, Pi) messages, then prepare the
output as follows.
• Generate a complete t-sharing of cM number of random multiplication triples. To generate one such sharing,

randomly select u, v and compute w = u · v and execute the steps for “Single [·]t-sharing Generation” (see
below) for u, v and w.

• Let {(u(`), v(`), w(`))}`∈{1,...,cM} be the random multiplication triples, whose complete t-sharing are gen-
erated. Moreover, let [u(`)]t = (u

(`)
1 , . . . , u

(`)
n), [v(`)]t = (v

(`)
1 , . . . , v

(`)
n) and [w(`)]t = (w

(`)
1 , . . . , w

(`)
n)

respectively. Send a request-based delayed output (triple-shares, sid, {(u(`)
i , v

(`)
i , w

(`)
i)}`∈{1,...,cM}) to

each Pi ∈ P \ C (no need to send the shares to the parties in C, as S already has these shares).
Single [·]t-sharing Generation: The functionality does the following to generate a complete t-sharing of a given
value s.
• Upon receiving (shares, sid, {si}Pi∈C) from S, select a degree-t univariate polynomial S(x), which is

otherwise a random polynomial except that S(0) = s and S(αi) = si holds for each Pi ∈ C.

• Compute si
def
= S(αi), for each Pi ∈ P \ C.

Functionality FAPrep

Figure 14: The ideal functionality for asynchronous pre-processing phase.

Before going into the realization ofFAPrep, we first discuss a sub-protocol which will be used in our protocol.

6.1 Asynchronous Verifiable Multiplication-Triple Sharing (AMTSS)

We present a protocol ΠAMTSS, which allows a designated dealer to verifiably generate complete t-sharing
of ` multiplication-triples available with the dealer. While the shared triples are always multiplication-
triples for an honest dealer, the protocol allows the parties to publicly verify whether the shared triples are
multiplication-triples even for a corrupt dealer. The privacy of the triples are maintained during the public
verification, if the dealer is honest.

11Recall that cM is the number of multiplication gates in the circuit cir, representing the function f to be securely computed.
12Looking ahead, in our realization ofFAPrep, the real-world adversary will have full control over the shares of the corrupt parties,

corresponding to the resultant random multiplication-triples generated in the protocol. To capture it, we make the provision for the
adversary to specify the shares of the corrupt parties in FAPrep.

44

The ideal functionality realized by the protocol ΠAMTSS is presented in Fig 15. The functionality is
similar to FACSS and generates a complete t-sharing of the inputs provided by a designated dealer. The
difference is that the shared values constitute multiplication-triples. In a more detail, the functionality waits
to receive a bunch of triplets of polynomials from the dealer. Upon receiving, the functionality verifies
whether each triplet of polynomial consists of degree-t polynomials and whether their constant terms con-
stitute a multiplication-triple. If the verification is successful, the functionality delivers a request-based
delayed output consisting of distinct points on all the polynomials to the respective parties. On the other
hand, if the verification fails then the functionality sends an output⊥ to each party, indicating that the inputs
of the dealer are “invalid”. Notice that similar to FACSS, the functionality FAMTSS generates an output for
the parties, only upon receiving valid inputs from the dealer.

Looking ahead, in our pre-processing phase protocol, the functionality FAMTSS will be used as follows:
if a party wants to completely t-share some multiplication-triples, then it acts as a dealer and randomly picks
degree-t polynomials whose constant terms constitute the multiplication-triples and then invokes FAMTSS

with these polynomials. Notice that the inputs of the dealer, namely the constant terms of the polynomial-
triplets are well defined. Moreover, the triples will remain random from the point of view of the adversary,
if the dealer is honest.

FAMTSS proceeds as follows, running with the parties P = {P1, . . . , Pn} and an adversary S.
• Upon receiving (Dealer,AMTSS, sid, {(A(l)(·), B(l)(·), C(l)(·))}l∈{1,...,`}) from the dealer D ∈ P , verify

the following:
– For l = 1, . . . , `, the polynomials A(l)(·), B(l)(·) and C(l)(·) are degree-t polynomials.
– For l = 1, . . . , `, the condition C(l)(0)

?
= A(l)(0) ·B(l)(0) holds.

• If the verification is successful, send a request-based delayed output (D,Dealer,AMTSS, sid, {(A(l)(αi),
B(l)(αi), C

(l)(αi))}l∈{1,...,`}) to each Pi ∈ P . Else, send a request-based delayed output (D,Dealer,
AMTSS, sid,⊥) to each Pi ∈ P .

Functionality FAMTSS

Figure 15: The ideal functionality for asynchronous verifiable multiplication-triple sharing.

We next present a statistically-secure protocol from [24], which securely realizes the functionality
FAMTSS. We stress that the security of this protocol was not proved as per the UC model. Hence, we first
recast it in the UC framework and then prove that the protocol securely realizes the functionality FAMTSS in
the FACSS-hybrid model.

6.1.1 Statistically-Secure Protocol for Realizing FAMTSS

Protocol ΠAMTSS for realizing the functionality FAMTSS is presented in Fig 16. The protocol is based on the
following idea: the dealer on having the triplets of input polynomials (A(l)(·), B(l)(·), C(l)(·)) sends them
to FACSS for complete t-sharing. To enable public verification of whether the constant terms (a(l), b(l), c(l))
of these polynomials constitute multiplication-triples, the dealer additionally picks ` random triplets of aux-
iliary polynomials (X(l)(·), Y (l)(·), Z(l)(·)), whose constant terms (x(l), y(l), z(l)) are multiplication-triples
and sends the auxiliary polynomials to FACSS for complete t-sharing.

Once the multiplication-triples of the dealer are shared, the parties then call the functionality FRand to
generate a random value, say r, and then uses the standard “sacrificing trick” (see, for example [31]), to ver-
ify whether the triples (a(l), b(l), c(l)) are multiplication-triples, by “sacrificing” the triples (x(l), y(l), z(l)).

Namely, the parties publicly verify if r · [c(l)−a(l) · b(l)] ?
= [z(l)−x(l) · y(l)] holds. The idea here is that if D

is honest, then the verification will be always successful for any r, as the triples shared by an honest D are
indeed multiplication-triples. On the other hand, if D is corrupt and the shared triples are not multiplication-
triples, the verification fails with a high probability. This is because in this case, the verification will be

45

successful, only for some specific values of r and a corrupt D will have no information apriori about the ran-
dom r generated by FRand, when D provides its triples for sharing to FACSS. If D is honest, then throughout
the protocol, adversary’s view remains independent of the multiplication-triples (a(l), b(l), c(l)) and hence
the parties output the complete t-sharing of these triples, based on the polynomials (A(l)(·), B(l)(·), C(l)(·)).

Sharing Multiplication-Triples: If Pi is the dealer, then on input {(A(l)(·), B(l)(·), C(l)(·))}l∈{1,...,`}, do the
following.

1. Randomly pick degree-t polynomials {(X(l)(·), Y (l)(·), Z(l)(·))}l=1,...,`, such that Z(l)(0) = X(l)(0)·Y (l)(0)
holds.

2. Send (Dealer,ACSS, 6`, sid, {(A(l)(·), B(l)(·), C(l)(·)), (X(l)(·), Y (l)(·), Z(l)(·))}l=1,...,`) to FACSS.

Verifying the Shared Multiplication-Triples:

1. Request output from FACSS.
2. If a request-based delayed output (D,Dealer, sid,⊥) is received fromFACSS, then output (D,Dealer,AMTSS,

sid,⊥). Else, if a request-based delayed output (D,Dealer, sid, 6`, {(a(l)
i , b

(l)
i , c

(l)
i), (x

(l)
i , y

(l)
i , z

(l)
i)}l=1,...,`)

is received from FACSS, send (Rand, sid, Pi) to FRand.

3. Request output fromFRand. Upon receiving a request-based delayed output (Rand, sid, R(·)), compute ρ(l)
i

def
=

r · a(l)
i − x

(l)
i and σ(l)

i
def
= b

(l)
i − y

(l)
i for l = 1, . . . , `, where r def

= R(0).
4. Send (sid, {ρ(l)

i , σ
(l)
i }l=1,...,`) to every Pj ∈ P . Keep receiving (sid, {ρ(l)

j , σ
(l)
j }l=1,...,`) from parties Pj ∈ P

and executing the steps of OEC, till ρ(l) and σ(l) is reconstructed, for l = 1, . . . , `.

5. Upon reconstructing ρ(l) and σ(l), compute τ (l)
i

def
= r · c(l)i − z

(l)
i − σ(l) · x(l)

i − ρ(l) · y(l)
i − σ(l) · ρ(l), for

l = 1, . . . , `.
6. Send (sid, {τ (l)

i }l=1,...,`) to every Pj ∈ P . Keep receiving (sid, {τ (l)
j }l=1,...,`) from parties Pj ∈ P and

executing the steps of OEC, till τ (l) is reconstructed, for l = 1, . . . , `.
7. If τ (l) = 0 holds for l = 1, . . . , `, output (D,Dealer,AMTSS, sid, {(a(l)

i , b
(l)
i , c

(l)
i)}l∈{1,...,`}). Else output

(D,Dealer,AMTSS, sid,⊥).

Protocol ΠAMTSS

Figure 16: Statistically-Secure Protocol for realizing FAMTSS in the (FACSS,FRand)-hybrid model. The above code
is executed by every Pi ∈ P . In the protocol, D ∈ P is the designated dealer.

We next prove the security of the protocol ΠAMTSS in the (FACSS,FRand)-hybrid model.

Theorem 6.1. Protocol ΠAMTSS UC-securely realizes the functionality FAMTSS with statistical security in
the (FACSS,FRand)-hybrid model, in the presence of a static malicious adversary, corrupting at most t < n

3
parties. The protocol needs a communication of O(` · n2κ) bits over the point-to-point channels.

Proof. The communication complexity simply follows from the fact that in the protocol, the parties publicly
reconstruct 3` completely t-shared values and reconstructing one such value needs a communication of
O(n2) field elements.

For security, let Adv be an arbitrary real-world adversary, attacking protocol ΠAMTSS and let Z be an
arbitrary environment. We show the existence of a simulator SAMTSS, such that for any set of corrupted
parties C with |C| ≤ t and for all inputs, the output of all parties and the adversary in an execution of the real
protocol ΠAMTSS with Adv is identically distributed as the outputs in an execution with SAMTSS involving
FAMTSS in the ideal model, except with a negligible probability. This further implies that from the view-
point of Z , the executions in the real-world and the ideal-world are statistically indistinguishable. The steps
of the simulator (formally given in Fig 17) will be different, depending upon whether the dealer D is honest
or corrupt.

The high level idea of the simulator is as follows. If the dealer is honest, then the simulator interacts
with the functionality FAMTSS and receives the shares of the corrupt parties, corresponding to the dealer’s

46

polynomials. In this case, the constant terms of dealer’s polynomials (which are degree-t polynomials) will
constitute multiplication-triples. The simulator then picks arbitrary degree-t polynomials whose constant
terms are multiplication-triples, consistent with the shares of the corrupt parties, received from FAMTSS.
Additionally, the simulator picks random degree-t auxiliary polynomials, whose constant terms are also
multiplication-triples. After picking the polynomials, the simulator then plays the role of the dealer with
these polynomials and interacts with Adv on the behalf of the honest parties. The simulator also plays the
role of FRand and generates the random value, used for verifying the dealer’s polynomials.

For the case when dealer is corrupt, the simulator first plays the role of FACSS and “extracts” the poly-
nomials used by the dealer. If the dealer provides no polynomials for FACSS, then the simulator provides
no inputs to FAMTSS as well. Else the simulator learns the polynomials provided by the dealer to FACSS.
If the polynomials are of degree-t with constant terms being multiplication-triples, then the simulator for-
wards the input polynomials of the dealer to FAMTSS. Otherwise, the simulator forwards “invalid” poly-
nomials as input polynomials of the dealer to FAMTSS, causing the honest parties to output ⊥ in the ideal
world.

SAMTSS constructs virtual real-world honest parties and invokes the real-world adversary Adv. The simulator simu-
lates the view of Adv, namely its communication with Z , the messages sent by the honest parties and the interaction
with various functionalities. In order to simulate Z , the simulator SAMTSS forwards every message it receives from
Z to Adv and vice-versa. The simulator then simulates the various phases of the protocol as follows, depending
upon whether the dealer D is honest or corrupt.

Steps of the simulator when D is Honest
• Interaction with FAMTSS: The simulator interacts with the functionality FAMTSS and receives the request

based delayed output (D,Dealer,AMTSS, sid, {(a(l)
i , b

(l)
i , c

(l)
i)}l∈{1,...,`},Pi∈C) on the behalf of the parties

in C. The simulator then plays the role of the honest parties as per the protocol ΠAMTSS and simulates the
interaction between Adv and the honest parties during the various steps of ΠAMTSS as follows.

• Sharing Multiplication-Triples: SAMTSS randomly picks polynomials {(Ã(l)(·), B̃(l)(·), C̃(l)(·))}l∈{1,...,`}

and {(X̃(l)(·), Ỹ (l)(·), Z̃(l)(·))}l∈{1,...,`}, each of degree-t, satisfying the following requirements.
– Ã(l)(0) = ã(l), B̃(l)(0) = b̃(l), C̃(l)(0) = c̃(l), X̃(l)(0) = x̃(l), Ỹ (l)(0) = ỹ(l) and Z̃(l)(0) = z̃(l) holds,

for l = 1, . . . , `, where (ã(l), b̃(l), c̃(l)) and (x̃(l), ỹ(l), z̃(l)) are random multiplication-triples.
– Ã(l)(αi) = a

(l)
i , B̃(l)(αi) = b

(l)
i , C̃(l)(αi) = c

(l)
i , X̃(l)(αi) = x

(l)
i , Ỹ (l)(αi) = y

(l)
i and Z̃(l)(αi) = z

(l)
i

holds, for each Pi ∈ C.
The simulator plays the role of the honest parties as per ΠAMTSS, assuming the polynomials {(Ã(l), B̃(l)(·),
C̃(l)(·)), (X̃(l), Ỹ (l)(·), Z̃(l)(·))}l∈{1,...,`} as the input-polynomials on the behalf of D. In response to the call
toFACSS, the simulator sends (D,Dealer, 6`, sid, {(a(l)

i , b
(l)
i , c

(l)
i), (x

(l)
i , y

(l)
i , z

(l)
i)}l∈{1,...,`},Pi∈C) to Adv, as

the output for the parties in C from FACSS.
• Verifying the Shared Multiplication-Triples:

– The simulator plays the role of FRand, as per FRand. Namely, upon receiving (Rand, sid, {ri}Pi∈C) from
Adv on the behalf of the parties in C, the simulator randomly picks a degree-t polynomial R̃(·), such
that R̃(αi) = ri holds for each Pi ∈ C. The simulator then sends the output (Rand, sid, R̃(·)) on the
behalf of FRand to Adv.

– Let r̃ def
= R̃(0). On the behalf of every Pi 6∈ C, the simulator computes ρ̃(l)

i
def
= r̃ · Ã(l)(αi)− X̃(l)(αi)

and σ̃(l)
i

def
= B̃(l)(αi) − Ỹ (l)(αi) for l = 1, . . . , `. It then sends (sid, {ρ̃(l)

i , σ̃
(l)
i }l∈{1,...,`}) to Adv, on

the behalf of every Pi 6∈ C.

– The simulator computes ρ̃(l) def
= r̃ · Ã(l)(0)−X̃(l)(0) and σ̃(l)

i
def
= B̃(l)(0)− Ỹ (l)(0) for l = 1, . . . , `. On

the behalf of each Pi 6∈ C, the simulator computes τ̃ (l)
i

def
= r̃ · C̃(l)(αi)− Z̃(l)(αi)− σ̃(l) · X̃(l)(αi)−

ρ̃(l) · Ỹ (l)(αi)− σ̃(l) · ρ̃(l), for l = 1, . . . , `. It then sends (sid, {τ̃ (l)
i }l∈{1,...,`}) to Adv, on the behalf of

Simulator SAMTSS

47

every Pi 6∈ C.

Steps of the simulator when D is Corrupt
In this case, the simulator SAMTSS interacts with Adv as follows.
• Sharing Multiplication-Triples: The simulator plays the role of FACSS. Namely, upon receiving (Dealer,

ACSS, 6`, sid, {(A(l)(·), B(l)(·), C(l)(·)), (X(l)(·), Y (l)(·), Z(l)(·))}l∈{1,...,`}) as the message forFACSS from
Adv on the behalf of the dealer D, the simulator does the following.

– If any of the polynomials {(A(l)(·), B(l)(·), C(l)(·)), (X(l)(·), Y (l)(·), Z(l)(·))}{l∈1,...,`} is not a degree-
t polynomial, then it directly goes to the step “Interaction with FAMTSS”.

– Else, the simulator learns the complete t-sharing of the triples {(A(l)(0), B(l)(0), C(l)(0)), (X(l)(0),
Y (l)(0), Z(l)(0))}{l∈1,...,`}.

• Verifying the Shared Multiplication-Triples: If the simulator has learnt the dealer’s polynomials for sharing
dealer’s triples, then the simulator interacts with Adv on the behalf of the honest parties as per the steps of
the protocol ΠAMTSS, using the shares of the honest parties, corresponding to the triples as follows.
• The simulator plays the role of FRand and simulates the interaction between Adv and FRand. Namely,

upon receiving (Rand, sid, {ri}Pi∈C) from Adv on the behalf of the parties in C, the simulator ran-
domly picks a degree-t polynomial R̃(·), such that R̃(αi) = ri holds for each Pi ∈ C. The simulator
then sends the output (Rand, sid, R̃(·)) on the behalf of FRand to Adv.

• The simulator computes the shares of ρ(l), σ(l) and τ (l) with respect to r̃ def
= R̃(0), corresponding to the

honest parties and sends them to Adv on the behalf of the honest parties.
• Interaction withFAMTSS: If simulator has learnt the dealer’s polynomials {(A(l)(·), B(l)(·), C(l)(·)), (X(l)(·),
Y (l)(·), Z(l)(·))}{l∈1,...,`}, then it interacts with FAMTSS on the behalf of the dealer D as follows.

– If for l = 1, . . . , `, the polynomials A(l)(·), B(l)(·), C(l)(·), X(l)(·), Y (l)(·) and Z(l)(·) are degree-t
polynomials and if (C(l)(0) = A(l)(0)·B(l)(0)) as well as (Z(l)(0) = X(l)(0)·Y (l)(0)) holds, then the
simulator sends (Dealer,AMTSS, sid, {(A(l)(·), B(l)(·), C(l)(·))}l∈{1,...,`}) to FAMTSS on the behalf
of the dealer D.

– Else, the simulator assigns some arbitrary polynomials of degree more than t to A(l)(·), B(l)(·), C(l)(·)
and sends (Dealer,AMTSS, sid, {(A(l)(·), B(l)(·), C(l)(·))}l∈{1,...,`}) to FAMTSS on the behalf of the
dealer D.

Figure 17: Simulator for the protocol ΠAMTSS where Adv corrupts the parties in set C, where |C| ≤ t

We now prove a series of claims, which will help us to finally prove the theorem. In these claims, we
skip the session id sid. We first consider the case when the dealer is honest and show that the view of Adv
is identically distributed, both in the real execution of ΠACSS involving real honest parties, as well as in the
simulated execution of ΠACSS, where the role of the honest parties is played by the simulator. Intuitively,
this is because in the protocol, the polynomials used by the dealer are degree-t polynomials and adversary
learns at most t shares of the polynomials.

Claim 6.2. If the dealer is honest, then the view of Adv in the simulated execution with SAMTSS is identically
distributed as the view of Adv in the real execution of ΠAMTSS.

Proof. Let the dealer be honest. From the steps of SAMTSS, the difference between the real execution and
simulated execution is the following: in the real execution, the shares {(a(l)

i , b
(l)
i , c

(l)
i)}l∈{1,...,`},Pi∈C and

{(x(l)
i , y

(l)
i , z

(l)
i)}l∈{1,...,`},Pi∈C correspond to degree-t polynomials {(A(l)(·), B(l)(·), C(l)(·))}l∈{1,...,`} and

{(X(l)(·), Y (l)(·), Z(l)(·))}l∈{1,...,`} respectively. On the other hand, in the simulated execution, the shares
correspond to degree-t polynomials {(Ã(l)(·), B̃(l)(·), C̃(l)(·))}l∈{1,...,`} and {(X̃(l)(·), Ỹ (l)(·), Z̃(l)(·))}l∈{1,...,`}
respectively. Apart from being degree-t polynomials, the constant terms of the triplet of polynomials
(A(l)(·), B(l)(·), C(l)(·)), (X(l)(·), Y (l)(·), Z(l)(·)), (Ã(l)(·), B̃(l)(·), C̃(l)(·)) and (X̃(l)(·), Ỹ (l)(·), Z̃(l)(·))
constitute multiplication-triples. Since |C| ≤ t, it follows from the properties of degree-t univariate poly-
nomials (see Lemma 2.4) that the shares {(a(l)

i , b
(l)
i , c

(l)
i)}l∈{1,...,`},Pi∈C and {(x(l)

i , y
(l)
i , z

(l)
i)}l∈{1,...,`},Pi∈C

48

of the multiplication-triples seen by Adv in the real execution and in the simulated execution are identically
distributed. Let us fix these shares.

Now conditioned on the shares {(a(l)
i , b

(l)
i , c

(l)
i)}l∈{1,...,`},Pi∈C and {(x(l)

i , y
(l)
i , z

(l)
i)}l∈{1,...,`},Pi∈C , it is

easy to see that the view of Adv is identically distributed in both the executions for the rest of the steps of the
protocol ΠAMTSS. This is because the simulator plays the role of the honest parties as per the protocol and
also the role of FRand. Namely, in both the executions, Adv learns a complete t-sharing of a random value
as the output from FRand. In the real execution, Adv sees the shares of ρ(l) and σ(l) values from the honest
parties, while in the simulated execution, it sees the shares of corresponding ρ̃(l) and σ̃(l) values. Finally,
in the real execution, Adv sees shares of τ (l) values from the honest parties where τ (l) = 0, while in the
simulated execution it sees shares of corresponding τ̃ (l) values where τ̃ (l) = 0.

We next claim that if the dealer is honest, then conditioned on the view of the adversary, the outputs of
the honest parties are identically distributed in the real-world as well as the ideal-world. Intuitively this is
because the input polynomials of the dealer in both the worlds are “valid” (namely degree-t with constant
terms being multiplication-triples). And in the protocol, the auxiliary polynomials selected by the dealer
also have the same properties. So the verification of the dealer’s polynomials will always be successful.

Claim 6.3. If D is honest, then conditioned on the view of Adv, the output of the honest parties during
the execution of ΠAMTSS involving Adv has the same distribution as the output of the honest parties in the
ideal-world involving SAMTSS and FAMTSS.

Proof. Consider an arbitrary view View of Adv, and according to View, let {(a(l)
i , b

(l)
i , c

(l)
i)}l∈{1,...,`},Pi∈C

and {(x(l)
i , y

(l)
i , z

(l)
i)}l∈{1,...,`},Pi∈C be the shares received by Adv from FACSS. The degree-t triple-sharing

polynomials (A(l)(·), B(l)(·), C(l)(·)) of the honest dealer are identically distributed (both in the real-world
as well as ideal-world) conditioned on the shares {(a(l)

i , b
(l)
i , c

(l)
i)}l∈{1,...,`},Pi∈C and the multiplication-triple

(A(l)(0), B(l)(0), C(l)(0)). Let us fix any such triplet of polynomials (A(l)(·), B(l)(·), C(l)(·)). It is easy
to see that in the ideal-world, each honest Pi outputs (A(l)(αi), B

(l)(αi), C
(l)(αi)). We next show that the

same holds even in the real-world as well. For this, it is enough to show that every honest party obtains τ (l),
where τ (l) = 0 holds. This will ensure that the honest parties will output the shares corresponding to the
polynomials A(l)(·), B(l)(·) and C(l)(·) as provided by FACSS.

The fact that τ (l) = 0 holds for all l ∈ {1, . . . , `} simply follows from the fact that for every l, the triples
(A(l)(0), B(l)(0), C(l)(0)), as well as the auxiliary triples (X(l)(0), Y (l)(0), Z(l)(0)) are multiplication-

triples. Hence irrespective of the value of r def
= R(0) obtained from FRand, the value r · [C(l)(0)−A(l)(0) ·

B(l)(0)] − [Z(l)(0) − X(l)(0) · Y (l)(0)], which is the same as τ (l), will be 0. In the protocol, the value
τ (l) will be completely t-shared and since it is reconstructed by executing OEC, it follows that Adv cannot
enforce any honest party to obtain an incorrect τ (l) by providing incorrect shares.

We next prove certain claims with respect to a corrupt dealer. The first obvious claim is that the view
of Adv in this case also is identically distributed in both the real execution as well as simulated execution of
ΠAMTSS. This is simply because in this case, the honest parties have no inputs (in the protocol, only dealer
has the input and we are analysing the case when dealer is under the control of Adv) and the simulator
SAMTSS plays the role of the honest parties exactly as per the steps of ΠAMTSS in the ideal-world execution.

Claim 6.4. If the dealer is corrupt, then the the view of Adv in the simulated execution of ΠAMTSS with
SAMTSS is identically distributed as the view of Adv in the real execution of ΠAMTSS involving honest
parties.

Proof. The proof follows from the fact that if D is corrupt, then SAMTSS participates in a full execution of
the protocol ΠAMTSS by playing the role of the honest parties. Moreover, SAMTSS plays the role of FRand.

49

Hence, there is a one-to-one correspondence between simulated executions and real executions of ΠAMTSS,
with respect to the view of Adv.

We next claim that if the dealer is corrupt, then conditioned on the view of the adversary, the outputs
of the honest parties are identically distributed in the real world as well as the ideal world, except with a
negligible probability.

Claim 6.5. If D is corrupt, then conditioned on the view of Adv, the output of the honest parties during
the execution of ΠAMTSS involving Adv has the same distribution as the output of the honest parties in the
ideal-world involving SAMTSS and FAMTSS, except with a negligible probability.

Proof. Let View be an arbitrary view of Adv generated during an execution of ΠAMTSS. Since D is under the
control of Adv, View completely determines whether Adv provided any polynomials to FACSS for sharing.
Based on this, we consider the following possible cases.

– D does not provide any polynomial for sharing to FACSS: In this case, the honest parties do not output
anything in the real-world. It is easy to see that even in the ideal-world, the honest parties do not
output anything, as SAMTSS does not provide any input to FAMTSS on the behalf of D. Hence, the
outputs of the honest parties are identically distributed.

– At least one of the polynomials provided by D for sharing to FAMTSS has degree more than t: In this
case, the honest parties obtain an output ⊥ in the real-world. It is easy to see that even in the ideal-
world, the honest parties output ⊥, as SAMTSS provides polynomials of degree more than t as inputs
to FAMTSS on the behalf of D. Hence, the outputs of the honest parties are identically distributed.

– D provides triplets of degree-t polynomials for sharing toFACSS, whose constant terms are multiplication-
triples: This case is identical to the case when D is honest and in this case, the outputs of the honest
parties are identically distributed in both the worlds. Namely, the honest parties output shares corre-
sponding to the multiplication-triple sharing polynomials of D.

– D provides triplets of degree-t polynomials for sharing to FACSS and there exists some l ∈ {1, . . . , `},
where either (A(l)(0), B(l)(0), C(l)(0)) or (X(l)(0), Y (l)(0), Z(l)(0)) is not a multiplication-triple:
Let for some l ∈ {1, . . . , `}, either (A(l)(0), B(l)(0), C(l)(0)) or (X(l)(0), Y (l)(0), Z(l)(0)) is not a
multiplication-triple. Then there are two further sub-cases.

– If both the triples (A(l)(0), B(l)(0), C(l)(0)) and (X(l)(0), Y (l)(0), Z(l)(0)) are not multiplication-
triples, then in the ideal-world, the honest parties output ⊥. This is because SAMTSS provides
polynomials of degree more than t as inputs to FAMTSS on the behalf of D. We now show that
with a high probability, the honest parties output ⊥ even in the real-world. Let r be the random
value, used in the protocol for verifying the triples of the dealer. Notice that r will not be known
to the dealer when it selects its polynomials for FACSS. This is because the value of r is decided
by FRand, which is invoked only after honest parties receive valid shares as outputs from FACSS.
Now consider the value r ·[C(l)(0)−A(l)(0)·B(l)(0)]−[Z(l)(0)−X(l)(0)·Y (l)(0)], which is the
same as τ (l). Moreover, since τ (l) is completely t-shared and reconstructed using OEC, it follows
that irrespective of the behaviour of the corrupt parties, the honest parties eventually reconstruct
the correct τ (l). Since C(l)(0) 6= A(l)(0) · B(l)(0) as well as Z(l)(0) 6= X(l)(0) · Y (l)(0), it fol-
lows that τ (l) will be 0, provided if r = [Z(l)(0)−X(l)(0)·Y (l)(0)]·[C(l)(0)−A(l)(0)·B(l)(0)]−1

holds, which can happen only with probability 1
|F| = 2−Ω(κ). Since there are ` possible values

for l, it follows from the union bound that except with probability at most `
|F| ≡ 2−Ω(κ), the

honest parties would reconstruct τ (l) 6= 0 and output ⊥ in the real-world.
– If exactly one of the triples (A(l)(0), B(l)(0), C(l)(0)) or (X(l)(0), Y (l)(0), Z(l)(0)) is not a mul-

tiplication triple, then the output of the honest parties will be identically distributed in both the

50

worlds, except with probability 1
|F| = 2−Ω(κ). Namely, in the ideal-world, the honest parties out-

put⊥, as SAMTSS provides polynomials of degree more than t as inputs to FAMTSS on the behalf
of D. If the triple (A(l)(0), B(l)(0), C(l)(0)) is a multiplication-triple, then clearly τ (l) will be
non-zero. Moreover, since τ (l) is completely t-shared and reconstructed using OEC, it follows
that irrespective of the behaviour of the corrupt parties, the honest parties eventually reconstruct
the correct τ (l) and hence the honest parties output ⊥ even in the real-world. On the other
hand, if (A(l)(0), B(l)(0), C(l)(0)) is not a multiplication-triple but (X(l)(0), Y (l)(0), Z(l)(0))
is a multiplication-triple, then τ (l) will be zero, provided r = 0 holds, which can happen with
probability 1

|F| . And in this case, the honest parties will not output ⊥ in the real-world. Since
there are ` possible values for l, it follows from the union bound that except with probability at
most `

|F| ≡ 2−Ω(κ), the honest parties would reconstruct τ (l) 6= 0 and output⊥ in the real-world.

Finally from Claims 6.2-6.5, we conclude that
{

HYBRIDFACSS,FRand

ΠAMTSS,Adv(z)({(A
(l)(·), B(l)(·), C(l)(·))}l∈{1,...,`})

}
z∈{0,1}?

s≡
{

IDEALFAMTSS,SAMTSS(z)({(A(l)(·), B(l)(·), C(l)(·))}l∈{1,...,`})
}
z∈{0,1}?

holds, thus proving the theorem.

In the protocol ΠAPrep, the dealer shares 6` degree-t polynomials via FACSS. Since the functionality
FACSS can be securely realized by the protocol ΠACSS with statistical security, by substituting L = 6` in
Theorem 5.6, we get the following corollary of Theorem 6.1.

Corollary 6.6. Protocol ΠAMTSS UC-securely realizes the functionality FAMTSS with statistical security in
the FRand-hybrid model, in the presence of a static malicious adversary, corrupting at most t < n

3 parties.
The protocol needs a communication of O(` · n3κ+ n4κ2 + n5) bits and one instance of FRand is involved.

6.2 Securely Realizing FAPrep in (FAMTSS,FABA)-Hybrid Model

We next present a protocol ΠAPrep (Fig 18), for securely realizing FAPrep in the (FAMTSS,FABA)-hybrid
model. The high level idea of the protocol is as follows. Each party generates complete t-sharing of cM
number of random multiplication-triples by invoking the functionality FAMTSS.

To avoid an indefinite wait, the parties cannot afford to wait to receive output from all the n instances of
FAMTSS, as the corrupt dealers in P may not invoke the corresponding instance of FAMTSS. Hence the par-
ties next try to agree on a common subset CS of n− t triple-providers, whose corresponding multiplication-
triples are eventually completely t-shared. This is done by using the agreement on a common-subset (ACS)
protocol of [13]. Informally, it requires the parties to call the functionality FABA n times, where the jth call
is used to decide whether party Pj ∈ CS. For this, the parties participate with an input 1 during the jth call
to FABA if and only if Pj generates a complete t-sharing of its multiplication-triples. Upon receiving 1 as
an output from n− t instances of FABA, the parties participate with input 0 for the remaining calls to FABA

for which no input has been provided yet. The idea here is that since there are at least n − t honest parties
whose multiplication-triples are eventually completely t-shared, it implies that all honest parties eventually
participate with vote 1 in at least n− t calls to FABA. Consequently, all honest parties eventually receive an
output 1 from n − t instances of FABA. Once n − t calls to FABA respond back with output 1, all honest
parties pass an input 0 to all the remaining calls to FABA which are not yet initiated, ensuring that there is
a participation of at least n − t parties in all the n calls to FABA. This guarantees that all honest parties
eventually receive an output in response to all the n calls to FABA. And at least n − t of these (common)
outputs will be 1, which corresponds to the indices of the parties in CS . In the protocol, we use the notation

sidj
def
= sid||j to denote the jth call to FABA and FAMTSS during the session id sid.

51

For simplicity, let n− t = 2k+ 1. Since t < n/3, it follows that k ≥ t. Also, without loss of generality,
let P1, . . . , P2k+1 be the parties in CS . Each party Pj in CS has shared cM multiplication-triples. This is
because Pj is included in CS only if the jth instance of FABA responds with an output 1, which can happen
only if at least one honest party provides an input 1 to the the jth instance of FABA, implying that the honest
party has received valid shares of Pj’s multiplication-triples from FAMTSS with sidj ; this ensures that every
other honest party also eventually receives its respective shares of Pj’s multiplication-triples from FAMTSS.
Moreover, the multiplication-triples shared by the honest parties in CS are uniformly random and there are
at least t + 1 such honest parties in the set CS . However, the exact identity of the honest parties in CS is
not known. Hence the parties apply a “triple-extraction” protocol from [24] on the multiplication-triples of
the parties in CS to output complete t-sharing of cM multiplication-triples, which are uniformly random.
For this, the parties divide the triples of the parties in CS into cM batches, where the lth batch consists of
the lth shared multiplication-triple of the parties in CS . And then the triple-extraction is executed in parallel
for all the cM batches, where a uniformly random shared multiplication-triple is extracted from each batch.
We explain the triple-extraction procedure for a single batch and the same idea is executed with all the cM
batches.

Consider a batch of completely t-shared multiplication-triples {[(a(1)]t, [b
(1)]t, [c

(1)]t), . . . , ([a
(2k+1)]t,

[b(2k+1)]t, [c
(2k+1)]t)}, where the triple (a(j), b(j), c(j)) is shared by party Pj ∈ CS by invoking FAMTSS. It

follows that if Pj is honest, then the triple (a(j), b(j), c(j)) is uniformly random. Moreover, the adversary’s
output from FAMTSS with sidj is completely independent of (a(j), b(j), c(j)), since the underlying sharing
polynomials are random and of degree-t and adversary receives at most t shares for each polynomial. The
parties first “transform” the triples {([a(j)]t, [b

(j)]t, [c
(j)]t)}j∈{1,...,2k+1}, into another set of multiplication-

triples {([u(j)]t, [v
(j)]t, [w

(j)]t)}j∈{1,...,2k+1}, such that all the following hold:
• There exist polynomials, say U(·), V (·) and W (·) of degree-k, k and 2k respectively, passing through

the points {(j, u(j))}j∈{1,...,2k+1}, {(j, v(j))}j∈{1,...,2k+1} and {(j, w(j))}j∈{1,...,2k+1} respectively,
such that W (·) = U(·) · V (·) holds.

• If Pj ∈ CS is corrupt, then adversary completely learns the multiplication-triple (u(j), v(j), w(j)).
• If Pj ∈ CS is honest, then adversary’s view is independent of the multiplication-triple (u(j), v(j), w(j)).

From the properties of the transformation, it follows that adversary learns at most t distinct values on the
triplet of polynomials (U(·), V (·),W (·)), thus leaving (k + 1) − t “degree of freedom” in these polyno-
mials, from the view point of the adversary. Since k ≥ t, we get (k + 1) − t ≥ 1 and hence the triplet
(U(β), V (β),W (β)) will be uniformly random from the view point of the adversary, where β is a dis-
tinct value, different from 1, . . . , 2k + 1. More specifically, there exists a one-to-one mapping between the
(k+1)−t values on the polynomials (U(·), V (·),W (·)) unknown to the adversary and (U(β), V (β),W (β)).
Moreover, the triplet (U(β), V (β),W (β)) will be a multiplication-triple, since W (·) = U(·) · V (·) holds.
Since U(β), V (β) and W (β) can be expressed as a publicly-known linear function (namely the Lagrange’s
function) of the points {(j, u(j))}j∈{1,...,2k+1}, {(j, v(j))}j∈{1,...,2k+1} and {(j, w(j))}j∈{1,...,2k+1} respec-
tively, it follows that once the transformation is done, the parties can locally compute the complete t-
sharing of the output multiplication-triple (U(β), V (β),W (β)), from the complete t-sharing of transformed
multiplication-triples. We next explain the transformation of the shared multiplication-triples {([a(j)]t,
[b(j)]t, [c

(j)]t)}j∈{1,...,2k+1} into {([u(j)]t, [v
(j)]t, [w

(j)]t)}j∈{1,...,2k+1}.
The idea behind the transformation is the following: the parties first define the polynomials U(·) and

V (·) and then compute their product (all in a shared fashion). To define U(·), the parties set U(·) to be the
distinct degree-k polynomial, passing through the k+1 distinct points {(j, a(j))}j∈{1,...,k+1}. Consequently,
the parties set [u(j)]t to be the same as [a(j)]t for j = 1, . . . , k + 1 (which can be done locally). Similarly,
to define V (·), the parties set V (·) to be the distinct degree-k polynomial, passing through the k+ 1 distinct
points {(j, b(j))}j∈{1,...,k+1}. Consequently, the parties set [v(j)]t to be the same as [b(j)]t for j = 1, . . . , k+1

(which can be done locally). Since we needW (·) = U(·) ·V (·) to hold, the parties set [w(j)]t to be the same

52

as [c(j)]t for j = 1, . . . , k + 1 (which can be done locally). However, the polynomial W (·) is not yet well
defined, because it is of degree-2k and so to uniquely define W (·), we need 2k+1 distinct points. We stress
that the parties cannot define W (·) to be the polynomial passing through the points {(j, c(j))}j∈{1,...,2k+1},
as this will not ensure that W (·) = U(·) · V (·) holds. This is because the values {a(j)}j∈{k+2,...,2k+1} and
{b(j)}j∈{k+2,...,2k+1} need not lie on the polynomials U(·) and V (·), which are already defined.

To define the remaining k distinct points on the W (·) polynomial, the parties first “extend” the al-
ready defined polynomials U(·) and V (·) at k new points. Namely, the points {U(j)}j∈{k+2,...,2k+1} and
{V (j)}j∈{k+2,...,2k+1} can be expressed as a publicly-known linear function (namely the Lagrange’s func-
tion) of the points {U(j)}j∈{1,...,k+1} and {V (j)}j∈{1,...,k+1} respectively. Consequently, the parties (lo-
cally) compute complete t-sharings of the new points on the U(·) and V (·) polynomials, by applying the
corresponding Lagrange’s function on the complete t-sharings of {U(j)}j∈{1,...,k+1} and {V (j)}j∈{1,...,k+1}
respectively. The parties next compute complete t-sharings of the product of these new points, by deploy-
ing the Beaver’s method. Namely, to compute complete t-sharing of U(j) · V (j) by Beaver’s method,
the parties use the completely t-shared multiplication-triple (a(j), b(j), c(j)) as the auxiliary triple, for j =
k + 2, . . . , 2k + 1. We stress that the un-transformed triples {(a(j), b(j), c(j))}j∈{k+2,...,2k+1} are not yet
used till this step and there are k such “un-used” multiplication-triples, which can be deployed to compute
the product of k new points on the U(·) and V (·) polynomials (in a shared fashion).

We note that in the protocol ΠAPrep, the corrupt parties will have complete “control” on their shares of the
resultant extracted multiplication-triples, although the resultant multiplication-triples will be random from
the view point of the adversary. This is because the polynomials (U(·), V (·),W (·)) defined during the triple-
transformation are deterministically determined by the multiplication-triples, shared by the parties in CS .
While the honest parties in CS share uniformly random multiplication-triples using random polynomials,
the adversary can decide which honest parties finally make it to CS by scheduling the messages of the
parties during the instances of FABA and FAMTSS. Moreover, adversary can decide its sharing polynomials
for FAMTSS, based on the shares of the polynomials of the honest parties, that it learns from FAMTSS. It is
precisely to model this artefact, the ideal-world adversary is given the provision to dictate the shares that it
wants for the corrupt parties, corresponding to the random multiplication-triples, picked by the functionality
FAPrep (see the formal description of FAPrep in Fig 14).

We stress that we separately do not put any termination condition for any party in protocol ΠAPrep. Since
ΠAPrep will be used as a sub-protocol in our AMPC protocol, the termination condition of our AMPC proto-
col will automatically trigger the termination of all the underlying instances of ΠAPrep.

Sharing Random Multiplication-Triples:

1. Randomly pick multiplication-triples {(a(i,l), b(i,l), c(i,l))}l∈{1,...,cM}, where c(i,l) = a(i,l) · b(i,l) holds.
2. For l = 1, . . . , cM , pick random degree-t univariate polynomials A(i,l)(·), B(i,l) and C(i,l)(·) respectively,

such that A(i,l)(0) = a(i,l), B(i,l)(0) = b(i,l) and C(i,l)(0) = c(i,l) holds.
3. Send (Dealer,AMTSS, sidi, {(A(i,l)(·), B(i,l)(·), C(i,l)(·))}l∈{1,...,cM}) to FAMTSS as a dealer.

Agreeing on a Common Subset of Multiplication-Triple Providers: Initialize a set of local multiplication-triple
providers LPi to ∅ and a set of global multiplication-triple providers GPi to ∅.

1. Request output from FAMTSS for each sidj , where j = 1, . . . , n. If
(Pj ,Dealer,AMTSS, sidj , {(a(j,l)

i , b
(j,l)
i , c

(j,l)
i)}l∈{1,...,cM}) is received as an output from FAMTSS for sidj

where Pj is the dealer, then include Pj to LPi.
2. If Pj is included in LPi, then send (vote, sidj , 1) to FABA.
3. Request outputs from FABA until receiving (decide, sidj , vj) for every j ∈ {1, . . . , n}.
4. Include Pj to GPi if (decide, sidj , vj) is received from FABA, such that vj = 1.

Protocol ΠAPrep

53

5. If |GPi| = n− t, then stop executing step 1 under “Agreeing on a Common Subset of Multiplication-Triple
Providers” and send (vote, sidj , 0) to FABA, for every j ∈ {1, . . . , n} such that Pj 6∈ GPi.

6. Once (decide, sidj , vj) is received from FABA for every j ∈ {1, . . . , n}, set CS = {Pj : vj = 1}.
7. Wait until receiving(Pj ,Dealer,AMTSS, sidj , {(a(j,l)

i , b
(j,l)
i , c

(j,l)
i)}l∈{1,...,cM}) from FAMTSS for every

Pj ∈ CS .

Transforming the Shared Multiplication-Triples of the Dealers in CS: Wait until the set CS of n− t
multiplication-triple providers is decided and the shares corresponding to the multiplication-triples of each dealer
in CS is received. For simplicity, let n− t = 2k + 1. Moreover, without loss of generality, let
CS = {P1, . . . , P2k+1}. For l = 1, . . . , cM , do the following:

1. For j = 1, . . . , k + 1, set u(j,l)
i := a

(j,l)
i , v(j,l)

i := b
(j,l)
i and w(j,l)

i := c
(j,l)
i .

2. For j = k + 2, . . . , 2k + 1, compute u(j,l)
i = Lagrange(k + 1, {(1, u(1,l)

i), . . . , (k + 1, u
(k+1,l)
i)}, j) and

v
(j,l)
i = Lagrange(k + 1, {(1, v(1,l)

i), . . . , (k + 1, v
(k+1,l)
i)}, j).

3. For j = k + 2, . . . , 2k + 1, compute d(j,l)
i

def
= u

(j,l)
i − a(j,l)

i and e(j,l)
i

def
= v

(j,l)
i − b(j,l)i .

4. For j = k + 2, . . . , 2k + 1, send (sidj , {d(j,l)
i , e

(j,l)
i }) to every party in P .

5. For j = k + 2, . . . , 2k + 1, keep receiving (sidj , {d(j,l)
m , e

(j,l)
m }) from various parties Pm and keep executing

the steps of OEC, till d(j,l) and e(j,l) are reconstructed.
6. For j = k + 2, . . . , 2k + 1, compute w(j,l)

i = d(j,l) · e(j,l) + d(j,l) · b(j,l)i + e(j,l) · a(j,l)
i + c

(j,l)
i .

Output Computation:

1. For l = 1, . . . , cM , compute u(l)
i = Lagrange(k + 1, {(1, u(1,l)

i), . . . , (k + 1, u
(k+1,l)
i)}, β),

v
(l)
i = Lagrange(k+ 1, {(1, v(1,l)

i), . . . , (k+ 1, v
(k+1,l)
i)}, β) and w(l)

i = Lagrange(2k+ 1, {(1, w(1,l)
i), . . . ,

(2k + 1, w
(2k+1,l)
i)}, β), where β ∈ F is a non-zero value, different from 1, . . . , 2k + 1.

2. Output (triple-shares, sid, {(u(`)
i , v

(`)
i , w

(`)
i)}`∈{1,...,cM}).

Figure 18: Protocol for realizing FAPrep in the (FAMTSS,FABA)-hybrid model. The above code is executed by every
Pi ∈ P .

We next prove the security of the protocol ΠAPrep in the (FAMTSS,FABA)-hybrid model. We actually
prove a stronger statement, namely that protocol ΠAPrep is perfectly-secure, given the parties have access to
ideal functionalities FAMTSS and FABA.

Theorem 6.7. Protocol ΠAPrep UC-securely realizes the functionality FAPrep with perfect security in the
(FAMTSS,FABA)-hybrid model, in the presence of a static malicious adversary, corrupting at most t < n

3
parties. The protocol needs a communication of O(cM · n3κ) bits.

Proof. The communication complexity simply follows from the fact that in the protocol, O(cM · n) com-
pletely t-shared values are publicly reconstructed, while transforming the multiplication-triples, shared by
the dealers in CS , where reconstructing one such value needs a communication of O(n2) field elements.

For security, let Adv be an arbitrary real-world adversary, attacking the protocol ΠAPrep and let Z be
an arbitrary environment. We show the existence of a simulator SAPrep, such that for any set of corrupted
parties C with |C| ≤ t and for all inputs, the output of all parties and the adversary in an execution of the
protocol ΠAPrep with Adv is perfectly-indistinguishable from the outputs in an execution with SAPrep in the
ideal model involving FAPrep. This further implies that Z cannot distinguish between the two executions.
The simulator simulates the various phases of the protocol as per the steps given in Fig 19.

The high level idea of the simulator is as follows. The simulator itself performs the role of the ideal func-
tionality FAMTSS and FABA whenever required. Whenever Adv sends polynomials for sharing to FAMTSS

on the behalf of a corrupt party, the simulator records these polynomials if they are valid (namely triplets
of degree-t polynomials, whose constant terms are multiplication-triples). On the other hand, for the honest

54

parties, the simulator randomly picks triplets of degree-t polynomials, whose constant terms are random
multiplication-triples and distributes the shares of these polynomials as per FAMTSS. To select the common
triple-providers, the simulator itself performs the role of FABA and simulates the honest parties as per the
steps of the protocol and FABA. This allows the simulator learn the common subset of triple-providers CS .
Notice that the sharing polynomials of all the parties in CS will be available with the simulator: while the
polynomials of the honest parties in CS are selected by the simulator itself, for every corrupt party Pj which
makes it to CS , at least one honest party Pi should participate with input 1 in the corresponding call to
FABA, implying that the honest party Pi must have received valid shares from FAMTSS, corresponding to
the degree-t polynomials which Pj sent to FAMTSS. Since in the simulation, the role of FAMTSS is played
by the simulator itself, it implies that the polynomials provided by Pj will be known to the simulator.

Once the simulator learns CS and the sharing polynomials of the parties in CS , it simulates the rest of
the interaction between the honest parties and Adv as per the protocol steps, by itself playing the role of the
honest parties. Moreover, the simulator also learns the shares of the corrupt parties, corresponding to the
output multiplication-triples in the simulated execution. The simulator then communicates these shares on
the behalf of the corrupt parties during its interaction with FAPrep. This ensures that the shares of the corrupt
parties remain same in both the worlds.

SAPrep constructs virtual real-world honest parties and invokes the real-world adversary Adv. The simulator simu-
lates the view of Adv, namely its communication with Z , the messages sent by the honest parties and the interaction
with various functionalities. In order to simulate Z , the simulator forwards every message it receives from Z to Adv
and vice-versa. The simulator then simulates the various phases of the protocol as follows.

Sharing Random Multiplication-Triples:
– The simulator simulates the operations of the honest parties during this phase, by picking random input

multiplication-triples (ã(j,l), b̃(j,l), c̃(j,l)) for l = 1, . . . , cM , for every Pj 6∈ C. Namely, when Adv re-
quests output from FAMTSS (on the behalf of any party Pi ∈ C) with sidj for any Pj 6∈ C, the simulator
responds with an output (Pj ,Dealer,AMTSS, sidj , {(Ã(j,l)(αi), B̃

(j,l)(αi), C̃
(j,l)(αi))}l∈{1,...,cM}) on the

behalf of FAPrep. Here Ã(j,l)(·), . . . , C̃(j,l)(·) are random degree-t polynomials, where Ã((j, l))(0) = ã(j,l),
B̃((j, l))(0) = b̃(j,l) and C̃((j, l))(0) = c̃(j,l) holds.

– Whenever Adv sends (Dealer,AMTSS, sidi, {(A(i,l)(·), B(i,l)(·), C(i,l)(·))}l∈{1,...,cM}) toFAMTSS as a dealer,
on the behalf of any Pi ∈ C, the simulator records these input polynomials on the behalf of Pi, provided the
polynomials (A(i,l)(·), B(i,l)(·), C(i,l)(·)) are triplets of degree-t polynomials, with their constant terms be-
ing a multiplication-triple.

Agreeing on a Common Subset of Multiplication-Triple Providers: The simulator simulates the interface to
FABA for Adv as per the steps of the protocol, by itself performing the role of FABA. When the first honest party
completes this phase during the simulated execution, SAPrep learns the set CS .

Transforming the Shared Multiplication-Triples of the Dealers in CS: Based on the complete t-sharing of the
multiplication-triples of the parties in CS , the simulator simulates the interaction with Adv for this phase, on the
behalf of the honest parties, by itself performing the role of the honest partiesa.

Interaction with FAPrep: Let {(ũ(l)
i , ṽ

(l)
i , w̃

(l)
i)}l∈{1,...,cM ,Pi∈C} be the output shares of the parties in C, during

the simulated execution of ΠAPrep. The simulator sends (shares, sid, {(ũ(l)
i , ṽ

(l)
i , w̃

(l)
i)}l∈{1,...,cM ,Pi∈C}) to FAPrep,

on the behalf of parties in C.
aThe messages which honest parties send to Adv during this phase are deterministically determined by the complete t-

Simulator SAPrep

55

sharing of the multiplication-triples of the parties in CS. And in the simulated execution of ΠAPrep, the simulator will know these
complete t-sharings.

Figure 19: Simulator for the protocol ΠAPrep where Adv corrupts the parties in set C, where |C| ≤ t

We now prove a series of claims, which will help us to finally prove the theorem. During the proofs of these
claims, we skip the session id sid. We first claim that in any execution of ΠAPrep, a set CS is eventually
generated.

Claim 6.8. In any execution of ΠAPrep, a set CS is eventually generated, such that for every Pj ∈ CS , there
exist cM multiplication-triples known to Pj , which are eventually completely t-shared.

Proof. We first show that there exist at least n − t instances of FABA in which all the honest parties obtain
an output 1. For this, we consider the following two cases.

– If some honest party Pi has participated with vote input 0 in any instance of FABA during step 5 of
the agreement on multiplication-triple providers phase, then it implies that |GP i| = n − t holds for
Pi, which further implies that at least n− t instances of FABA responded with output 1, which is what
we wanted to show.

– No honest party has participated with vote input 0 in any instance of FABA. In the protocol, each
honest party Pj sends its multiplication-triples to be completely t-shared to FAMTSS and every honest
party eventually receives shares of these triples as output from the corresponding instances ofFAMTSS.
Hence, corresponding to every honest Pj , all honest parties eventually participate with vote input 1
in the jth instance of FABA. As there are at least n − t honest parties Pj , it follows that all honest
parties eventually participate with vote inputs 1 in at least n − t instances of FABA. Consequently,
these n− t instances of FABA respond with an output 1.

We next show that all honest parties eventually receive an output from all the instances of FABA. Since the
honest parties obtain an output 1 in at least n − t instances of FABA, it thus follows that all honest parties
eventually participate with some vote inputs in the remaining FABA instances and hence will eventually
obtain some output from these FABA instances as well. Since the set CS corresponds to the FABA instances
in which the honest parties obtain 1 as the output, it thus follows that eventually the honest parties obtain
some CS where |CS| ≥ n− t. Moreover, the set CS will be common, as it is based on the outcome of FABA

instances.
Now consider an arbitrary Pj ∈ CS. This implies that the parties obtain 1 as the output during the jth

instance of FABA. This further implies that at least one honest party Pi participated in this FABA instance
with vote input 1. This is possible only if Pi received valid shares as output from the jth instance of
FAMTSS, further implying that Pj has provided valid degree-t multiplication-triple sharing polynomials as
inputs to FAMTSS. It now follows easily that eventually, all honest parties will have their respective shares,
corresponding to the multiplication-triples of Pj .

We next show that the view generated by SAPrep for Adv is identically distributed as Adv’s view during
the real execution of ΠAPrep.

Claim 6.9. The view of Adv in the simulated execution with SAPrep is identically distributed as the view of
Adv in the real execution of ΠAPrep.

Proof. We first note that in the real-world (during the real execution of ΠAPrep), the view of Adv consists of
the following:

(1) Polynomials {(A(i,l)(·), B(i,l)(·), C(i,l)(·))}l∈{1,...,cM} (if any) for FAMTSS, corresponding to Pi ∈ C.

(2) Shares {(a(j,l)
i , b

(j,l)
i , c

(j,l)
i)}l∈{1,...,cM}, corresponding to Pj 6∈ C and Pi ∈ C.

(3) Inputs of the various parties during the FABA instances and the outputs from the FABA instances.

56

(4) For j = k + 2, . . . , 2k + 1, complete t-sharing of13 {d(j,l), e(j,l)}l∈{1,...,cM}.
The polynomials in (1) are the inputs of Adv and hence they are identically distributed in both the worlds.
So let us fix these polynomials. In the real-world every Pj 6∈ C picks its triple-sharing polynomials for
FAMTSS uniformly at random, where as in the ideal-world, for every Pj 6∈ C, the simulator picks the sharing
polynomials on the behalf of Pj uniformly at random. Since |C| ≤ t, it follows from Lemma 2.4, that the
distribution of the shares in (2) is identical in both the worlds. Specifically, conditioned on the shares in
(2), the underlying multiplication-triples shared by the parties Pj 6∈ C are uniformly distributed. Since the
partial view of Adv containing (1) and (2) are identically distributed, let us fix them.

Now conditioned on (1)− (2), it is easy to see that partial view of Adv consisting of (3) are identically
distributed in both the worlds. This is because the outputs of the FABA instances are determined determin-
istically based on the inputs provided by the various parties in these FABA instances. And the inputs of
the parties in various FABA instances depend upon the order in which various parties receive outputs from
various FAMTSS instances, which is completely determined by Adv since message scheduling is under the
control of Adv. Thus the partial view of Adv containing (1)−(3) are identically distributed in both the worlds
and so let us fix them. This also fixes the set CS , which according to Claim 6.8 is guaranteed to be generated.
For simplicity and without loss of generality, let CS = {P1, . . . , P2k+1}, where |CS| = n − t = 2k + 1
holds.

Finally to see that the partial view consisting of (4) are identically distributed in both the worlds (con-
ditioned on (1) − (3)), we note that j = k + 2, . . . , 2k + 1, the t-sharing of {d(j,l), e(j,l)}l∈{1,...,cM} are
completely determined by the t-sharing of {(a(j,l), b(j,l), c(j,l))}j∈{1,...,2k+1},l∈{1,...,cM}. And conditioned on
(1) − (3), the distribution of t-sharing of {(a(j,l), b(j,l), c(j,l))}j∈{1,...,2k+1},l∈{1,...,cM} are identical in both
the worlds. Specifically, for every Pj ∈ CS ∩ C, the complete t-sharing of {(a(j,l), b(j,l), c(j,l))}l∈{1,...,cM}
are exactly the same in both the worlds, as these sharings are the same as (1). On the other hand, for ev-
ery Pj 6∈ C such that Pj ∈ CS, the complete t-sharings of {(a(j,l), b(j,l), c(j,l))}l∈{1,...,cM} are randomly
distributed, conditioned on the shares in (2).

Finally, we show that conditioned on the view of Adv, the outputs of the honest parties are identically
distributed in both the worlds.

Claim 6.10. Conditioned on the view of Adv, the output of the honest parties are identically distributed in
the real execution of ΠAPrep involving Adv, as well as in the ideal execution involving SAPrep and FAPrep.

Proof. Let View be an arbitrary view of Adv. And let {([a(j,l)]t, [b
(j,l)]t, [c

(j,l)]t)}j∈{1,...,2k+1},l∈{1,...,cM} be
the complete t-sharing of the multiplication-triples as per View, shared by the parties in CS , where CS =
{P1, . . . , P2k+1}. From the proof of Claim 6.9, it follows that corresponding to every honest Pj ∈ CS , the
multiplication-triples {(a(j,l), b(j,l), c(j,l))}l∈{1,...,cM} are uniformly distributed, conditioned on the shares of
these multiplication-triples, as determined by View. Let us fix these multiplication-triples. Now consider
an arbitrary l ∈ {1, . . . , cM}. We show that in the real-world, the output of the honest parties consists of
complete t-sharing of the multiplication-triple (U (l)(β), V (l)(β),W (l)(β)), where the following holds.

– U (l)(·), V (l)(·) and W (l)(·) are polynomials of degree-k, k and 2k respectively, such that W (l)(·) =
U (l)(·) · V (l)(·) holds. Moreover, β is a non-zero value from F, distinct from 1, . . . , 2k + 1.

– The points {(j, a(j,l))}j∈{1,...,k+1} and {(j, b(j,l))}j∈{1,...,k+1} lie on U (l)(·) and V (l)(·) respectively.
– Conditioned on View, the multiplication-triple (U (l)(β), V (l)(β),W (l)(β)) is uniformly distributed.

Consider the transformed shared triples {(u(j,l), v(j,l), w(j,l))}j∈{1,...,2k+1}. From the protocol steps, it is
easy to verify that the transformed triples are also completely t-shared. We next argue that the transformed
triples are also multiplication-triples. This is obviously the case for the first k + 1 transformed triples,

13This is under the assumption that n− t = 2k + 1 and CS = {P1, . . . , P2k+1} holds.

57

as they are exactly the same as the first k + 1 multiplication-triples {(a(j,l), b(j,l), c(j,l))}j∈{1,...,k+1}. Let
U (l)(·) and V (l)(·) be the unique degree-k polynomials, passing through the points {(j, u(j,l))}j∈{1,...,k+1}
and {(j, v(j,l))}j∈{1,...,k+1} respectively. From the protocol steps, it follows that u(j,l) = U (l)(j) and v(j,l) =

V (l)(j) holds respectively, for j ∈ {k + 2, . . . , 2k + 1}. Moreover, w(j,l) = u(j,l) · v(j,l) holds, for j ∈
{k + 2, . . . , 2k + 1}. This is because for every j ∈ {k + 2, . . . , 2k + 1}, a complete t-sharing of w(j,l) is
computed by taking the product of completely t-shared u(j,l) and v(j,l) using Beaver’s method, by deploying
the auxiliary completely t-shared multiplication-triple (a(j,l), b(j,l), c(j,l)). LetW (l)(·) be the unique degree-
2k polynomial, passing through the points {(j, w(j,l))}j∈{1,...,2k+1}. It follows thatW (l)(·) = U (l)(·)·V (l)(·)
holds, thus guaranteeing that the transformed triples are indeed multiplication-triples. Now since u(l) =
U (l)(β), v(l) = V (l)(β) and w(l) = W (l)(β) holds, it follows that the lth output triple (u(l), v(l), w(l))
is indeed a multiplication-triple. Moreover, it is easy to see that parties will hold a complete t-sharing of
(u(l), v(l), w(l)).

We next show that conditioned on View, the multiplication-triple (u(l), v(l), w(l)) is uniformly dis-
tributed. For this, we argue that View consists of only |C| distinct values on the polynomials U (l)(·) and
V (l)(·) (and hence onW (l)(·)). For this, we show that the transformed multiplication-triple (u(j,l), v(j,l), w(j,l))
(which is the same (U (l)(j), V (l)(j),W (l)(j))) will be included in View, if and only if Pj ∈ C ∩ CS . So
consider an arbitrary party Pj ∈ CS . We consider two cases, depending upon whether Pj is honest or
corrupt.

– Case I: Pj 6∈ C. In this case, conditioned on View, the multiplication-triple (a(j,l), b(j,l), c(j,l)) is uni-
formly distributed. If Pj ∈ {P1, . . . , Pk+1}, then it also implies that View will be independent of
(u(j,l), v(j,l), w(j,l)), as in this case, the complete t-sharing of (u(j,l), v(j,l), w(j,l)) is exactly the same
as the complete t-sharing of (a(j,l), b(j,l), c(j,l)), generated by Pj .
On the other hand, if Pj ∈ {Pk+2, . . . , P2k+1}, then the shared triple (a(j,l), b(j,l), c(j,l)) is used as an
auxiliary triple while computing a complete t-sharing ofw(j,l) = u(j,l) ·v(j,l), from complete t-sharing
of u(j,l) and v(j,l) by using Beaver’s method. Also, the complete t-sharing of u(j,l) and v(j,l) in this
case is computed non-interactively as a linear function of complete t-sharings of {u(j,l)}j∈{1,...,k+1}
and {v(j,l)}j∈{1,...,k+1} respectively. Now since the auxiliary triple (a(j,l), b(j,l), c(j,l)) is indepen-
dent of u(j,l) and v(j,l) and since adversary’s view point is independent of the auxiliary triple, it
follows that during the computation of complete t-sharing of w(j,l), no additional information about

u(j,l), v(j,l) (and hence w(j,l)) is added to View. Specifically, adversary learns d(j,l) def
= u(j,l) − a(j,l)

and e(j,l) def
= v(j,l)− b(j,l). But it follows that for every candidate value of u(j,l) and v(j,l), there exists

a corresponding candidate value of a(j,l) and b(j,l) respectively, which is consistent with the d(j,l) and
e(j,l) learnt by the adversary. Thus View will be independent of (u(j,l), v(j,l), w(j,l)) in this case as
well.

– Case II: Pj ∈ C. In this case, the complete t-sharing of the multiplication-triple (a(j,l), b(j,l), c(j,l))
will be present in View. If Pj ∈ {P1, . . . , Pk+1}, then this further implies that (u(j,l), v(j,l), w(j,l)) is
included in View as well. This is because in this case, the complete t-sharing of (u(j,l), v(j,l), w(j,l)) is
exactly the same as the complete t-sharing of (a(j,l), b(j,l), c(j,l)), generated by Pj . On the other hand,
if Pj ∈ {Pk+2, . . . , P2k+1}, then during the computation of complete t-sharing ofw(j,l), the adversary
learns the complete t-sharing of d(j,l) and e(j,l), through which Adv learns the corresponding u(j,l) and
v(j,l) respectively. This is because in this case, the complete t-sharing of the auxiliary multiplication-
triple (a(j,l), b(j,l), c(j,l)) used in the Beaver’s method will be known to the adversary.

Now given that Adv learns only |C| distinct transformed multiplication-triples (which are distinct values on
the triplets of polynomials (U (l)(·), V (l)(·),W (l)(·))), it follows that View will be independent of the output
multiplication-triple (u(l), v(l), w(l)). This is because, there exists a one-to-one mapping between the k+1−
|C|multiplication-triples (a(j,l), b(j,l), c(j,l)) shared by the first k+1−|C| honest partiesPj ∈ {P1, . . . , Pk+1}

58

and (u(l), v(l), w(l)). Namely, from the view point of Adv, for every candidate value (a(j,l), b(j,l), c(j,l)) of
the multiplication-triples shared by the first k + 1 − |C| honest parties Pj ∈ {P1, . . . , Pk+1}, there exists a
unique triplet of polynomials (U (l)(·), V (l)(·),W (l)(·)) where W (l)(·) = U (l)(·) · V (l)(·) holds with degree
of U (l)(·), V (l)(·) being k, which is consistent with View. Since the multiplication-triples shared by the
honest parties Pj are uniformly distributed and independent of View, it follows that (u(l), v(l), w(l)) is also
uniformly distributed.

To complete the proof, we now show that conditioned on the shares {(u(l)
i , v

(l)
i , w

(l)
i)}Pi∈C (which are de-

termined by View), the honest parties output complete t-sharing of some random multiplication-triple in the
ideal-world, where the t-sharings are consistent with the shares {(u(l)

i , v
(l)
i , w

(l)
i)}Pi∈C . However, this simply

follows from the fact that in the ideal-world, the simulator SAPrep sends the shares {(u(l)
i , v

(l)
i , w

(l)
i)}Pi∈C to

FAPrep on the behalf of the parties in C. AndFAPrep generates a random complete t-sharing of some random
multiplication-triple, consistent with the shares provided by SAPrep.

Finally from Claim 6.8-6.10, we conclude that:{
HYBRIDFAMTSS,FABA

ΠAPrep,Adv(z)(·)
}
z∈{0,1}?

≡
{

IDEALFAPrep,SAPrep(z)(·)
}
z∈{0,1}?

holds, thus proving the theorem.

In the protocol ΠAPrep, there are n instances of FAMTSS, each for sharing cM number of multiplication-
triples. Moreover, there are n instances of FABA to decide the set of triple-providers. Since the functionality
FAMTSS can be securely realized by protocol ΠAMTSS with statistical security, by substituting ` = cM in
Corollary 6.6, we get the following corollary of Theorem 6.7.

Corollary 6.11. Protocol ΠAPrep UC-securely realizes the functionality FAPrep with statistical security in
the (FRand,FABA)-hybrid model, in the presence of a static malicious adversary, corrupting at most t < n

3
parties. The protocol needs a communication of O(cM · n4κ+ n5κ2 + n6) bits and involves n instances of
FRand and n instances of FABA.

7 The AMPC Protocol

Finally, we present our AMPC protocol in the (FAPrep,FACSS,FACast,FABA)-hybrid model. We first recall
the corresponding ideal functionality FAMPC (see Fig 21) from [26].

FAMPC proceeds as follows, running with parties P = {P1, . . . , Pn} and an adversary S and parametrized by an
n-party function f : Fn → F. For each party Pi, initialize an input value x(i) = ⊥.
• Upon receiving a message (input, sid, v) from some Pi ∈ P , if CS has not been recorded yet or if Pi ∈ CS ,

set x(i) = v.
• Upon receiving a message (coreset, sid, CS) from S, verify that CS is a subset of P of size n − t, else

ignore the message. If CS has not been recorded yet, then record CS and for every Pi 6∈ CS , set x(i) = 0.
• If the CS has been recorded and the value x(i) has been set to a value different from ⊥ for every Pi ∈ CS,

then compute y def
= f(x(1), . . . , x(n)) and generate a request-based delayed output (output, sid, (CS, y))

for every Pi ∈ P .

Functionality FAMPC

Figure 20: The ideal functionality for asynchronous secure multi-party computation.

The functionality waits for a core set CS of n − t input providers from the adversary and function-
inputs of the respective parties in CS . Upon receiving, the functionality substitutes 0 as the function-input

59

for remaining parties and computes the output of the function f and generates a request-based delayed
output for the parties. We note that the ideal-world adversary cannot delay sending CS to the functionality
indefinitely. This is because in the real-world AMPC protocol, the set CS is eventually decided, irrespective
of the message scheduling by the adversary. Also note that in the functionality, it is possible that for some
Pi 6∈ CS, the input is reset to 0, even though Pi provided its input to the functionality. Looking ahead, this
models the scenario that in the real-world protocol, even if Pi is able to provide its input, Pi’s inclusion to
CS will finally depend upon message scheduling, which is under adversarial control.

Our AMPC protocol ΠAMPC for securely realizing FAMPC is presented in Fig 21. The high level idea
of the protocol is as follows. The parties start with a pre-processing phase where they generate complete t-
sharing of cM number of random multiplication-triples by calling the functionality FAPrep. Next the parties
proceed to the input phase, for generating a complete t-sharing of their respective function-inputs. For this,
each party acts as a dealer and picks a random degree-t polynomial whose constant term is the function-
input of the party and sends the polynomial to FACSS for distributing shares on the polynomial. To avoid
an indefinite wait, the parties next try to agree on a common subset CS of n − t input-providers, whose
corresponding function-inputs are eventually completely t-shared. This is done by using the agreement on
a common-subset (ACS) protocol of [13]. The idea used here is exactly the same as used to decide the set
of n − t multiplication-triple providers in the protocol ΠAPrep by invoking n instances of FABA, where the

jth instance is used to decide whether Pj should be included in CS . We use the notation sidj
def
= sid||j to

denote the jth call to FABA and FACSS during the session id sid.
Upon the completion of input phase, the parties will know a common subset CS of n− t input providers

whose function-inputs will be completely t-shared. For the parties not in CS , the parties take a default
complete t-sharing of 0 and proceed to the circuit-evaluation phase, where each gate is jointly evaluated in a
t-shared fashion. Namely, the parties maintain the BGW-invariant for each gate of the circuit (as discussed
in the introduction). The evaluation of the linear gates is non-interactive, while for the multiplication gates
the parties deploy the Beaver’s method, using the completely t-shared multiplication-triples generated in
the pre-processing phase. In order to publicly reconstruct the masked gate-inputs during the evaluation
of multiplication gates, the parties exchange their respective shares, corresponding to the t-sharing of the
masked gate-inputs. In the protocol, to denote the shares associated with the `th multiplication gate, we

use the notation sid`
def
= sid||`. Finally once the function-output is completely t-shared, the parties publicly

reconstruct the same.
Unlike the synchronous communication setting, in protocol ΠAMPC, all honest parties may not be re-

constructing the function-output at the same “time” and different parties may be at different phases of the
protocol, as the protocol is executed asynchronously. Consequently, a party Pi upon reconstructing the
function-output cannot afford to terminate immediately, as its presence and participation might be needed
for the completion of various phases of the protocol by other honest parties. Consequently, we include a ter-
mination phase in the protocol, whose code is executed concurrently by every party throughout the protocol.
Namely in this phase, as soon as a party reconstructs the function-output, it broadcasts it by calling FACast.
Then as soon as a party receives the same function-output broadcasted by at least t + 1 different parties, it
considers it to be function-output and terminates the protocol. Since at least one of the t + 1 parties who
broadcast a common function-output is honest, it is guaranteed that the honest parties terminate with the
correct output.

Pre-Processing Phase
Upon receiving the input (prep, sid, Pi) from the environment, proceed as follows:

1. Send (prep, sid, Pi) to the functionality FAPrep.

Protocol ΠAMPC

60

2. Request output from FAPrep until receiving (triple-shares, sid, {(u(`)
i , v

(`)
i , w

(`)
i)}`=1,...,cM) from FAPrep.

Input Phase

Once the output from FAPrep is received then upon receiving the input (input, sid, x(i)) from the environment,
proceed as follows:
• Secret-sharing of the Inputs and Collecting Shares of Other Inputs:

1. Select a random degree-t polynomial qi(·), such that qi(0) = x(i). Send (Dealer,ACSS, 1, sidi, qi(·)) to
FACSS.

2. Request output fromFACSS with sidj , for every j ∈ {1, . . . , n}, until receiving (Pj ,Dealer, 1, sidj , qj(αi)),
where Pj acts as the dealer.

• Selecting Common Input-Providers: Initialize a set of local input-providers LPi to ∅ and a set of global
input-providers GPi to ∅.

1. If (Pj ,Dealer, 1, sidj , qj(αi)) is received from FACSS, then include Pj to LPi.
2. If Pj ∈ LPi, then send (vote, sidj , 1) to FABA.
3. Request outputs from FABA until receiving (decide, sidj , vj) for every j ∈ {1, . . . , n}.
4. Include Pj to GPi if (decide, sidj , vj) is received from FABA, such that vj = 1.
5. If |GPi| = n − t, then stop executing step 1 under “Selecting Common Input-Providers” and send

(vote, sidj , 0) to FABA, for every j ∈ {1, . . . , n} such that Pj 6∈ GPi.
6. Once (decide, sidj , vj) is received from FABA for every j ∈ {1, . . . , n}, set CS = {Pj : vj = 1}.
7. Wait until receiving (Pj ,Dealer, sidj , qj(αi)) from FACSS for every Pj ∈ CS . For every Pj 6∈ CS , set 0

as the share of the circuit-input of Pj .

Circuit-Evaluation Phase

Wait until the Input Phase is completed, resulting in a set CS of n− t input providers and the shares for each input
of the input-providers in CS and the shares of the random multiplication triples are received. Then evaluate each
gate g in the circuit according to the topological ordering as follows, depending upon the type of g.

• Linear Gate: If g is a linear gate with inputs x, y and output z, then set zi
def
= xi + yi as the share corre-

sponding to z. Here xi and yi are the shares corresponding to gate-inputs x and y respectively for Pi.
• Multiplication Gate: If g is the `th multiplication gate with inputs x, y and output z, where ` ∈ {1, . . . , cM},

then do the following:

1. Set d(`)
i

def
= xi − u(`)

i and e(`)
i

def
= yi − v(`)

i , where xi and yi are the shares corresponding to x and y
respectively and (u

(`)
i , v

(`)
i , w

(`)
i) are the shares of the `th multiplication-triple.

2. Send (mult, sid`, (d
(`)
i , e

(`)
i)) to each Pj ∈ P .

3. Keep receiving (mult, sid`, (d
(`)
j , e

(`)
j)) from various parties Pj ∈ P and execute the steps of OEC, till d(`)

and e(`) are reconstructed.
4. Upon reconstructing d(`) and e(`), set zi

def
= d(`) · e(`) + d(`) · v(`)

i + e(`) · u(`)
i + w

(`)
i as the share of z.

• Output Gate: If g is the output gate with output y, then do the following:

1. Send (output, sid, yi) to each Pj ∈ P , where yi is the share corresponding to y.
2. Keep receiving (output, sid, yj) from various parties Pj ∈ P and execute the steps of OEC, till y is

reconstructed.

Termination Phase

Concurrently execute the following steps during the protocol:

1. If the circuit output y is computed, then send (sender,ACast, sidi, y) to FACast.
2. Request output from FACast with sidj , for every j ∈ {1, . . . , n}, until receiving (Pj ,ACast, sidj , ?), where Pj

acts as the sender.

61

3. If (Pj ,ACast, sidj , y) is received fromFACast corresponding to at least t+1 sendersPj , then output (output, sid,
(CS, y)) and terminate.

Figure 21: The AMPC protocol in the (FAPrep,FACSS,FACast,FABA)-hybrid model. The above steps are executed by
every Pi ∈ P

Intuitively, protocol ΠAMPC is secure, as the function-inputs of the corrupt parties in CS will be in-
dependent of the inputs of the honest parties. This is because the inputs of the honest parties are shared
through random degree-t univariate polynomials, which are communicated privately to FACSS. And corre-
sponding to the polynomial of every honest party, the corrupt parties learn at most t shares, revealing no
information about the function-inputs of the honest parties. Moreover, the privacy of the gate-inputs during
the evaluation of multiplication gates is preserved, as the corresponding multiplication-triples are random
and not known to the adversary. We next rigorously formalize this intuition by giving a formal security
proof. Namely, we prove that the protocol ΠAMPC is perfectly-secure, if the parties have access to ideal
functionalities FAPrep,FACSS,FACast and FABA.

Theorem 7.1. Protocol ΠAMPC UC-securely realizes the functionality FAMPC with perfect security in the
(FAPrep,FACSS,FACast,FABA)-hybrid model, in the presence of a static malicious adversary, corrupting at
most t < n

3 parties. The protocol needs a communication of O(cM · n2κ) bits.

Proof. The communication complexity simply follows from the fact that in the protocol, the parties interact
with each other only during the evaluation of the multiplication gates and during the reconstruction of shared
circuit-output. During the evaluation of a multiplication gate, each honest party has to send 2 shares to every
other honest party. To reconstruct the circuit output, each honest party has to send its share to every other
party.

For security, let Adv be an arbitrary real-world adversary, attacking protocol ΠAMPC and let Z be an
arbitrary environment. We show the existence of a simulator SAMPC, such that for any set of corrupted
parties C with |C| ≤ t and for all inputs, the output of all parties and the adversary in an execution of the real
protocol with Adv is identical to the output in an execution with SAMPC involvingFAMPC in the ideal model.
This further implies that Z cannot distinguish between the two executions. The steps of the simulator are
given in Fig 22.

The high level idea of the simulator is as follows. During the simulated execution, the simulator itself
performs the role of the ideal functionalityFAPrep,FACSS,FABA andFACast whenever required. Performing
the role of FAPrep allows the simulator to learn the complete t-sharings of all the associated multiplication-
triples. During the input phase, whenever Adv sends any polynomial to FACSS on the behalf of a corrupt
party, the simulator checks if it is a degree-t polynomial and accordingly records this polynomial on the
behalf of the corrupt party. Notice that this allows the simulator to implicitly learn the function-input of
the corresponding corrupt party. On the other hand, for the honest parties, the simulator picks arbitrary
values as their function-inputs and simulates the steps of the honest parties as per the protocol. To select
the common input-providers during the simulated execution, the simulator itself performs the role of FABA

and simulates the honest parties as per the steps of the protocol and FABA. This allows the simulator learn
the common subset of input-providers CS , which the simulator passes to the functionality FAMPC. Notice
that the function-inputs for each corrupt party in CS will be available with the simulator. This is because
for every corrupt party Pj which makes it to CS , at least one honest party Pi should participate with input
1 in the corresponding call to FABA, implying that the honest party Pi must have received its share from
FACSS, corresponding to the degree-t polynomial which Pj sent to FACSS. Since in the simulation, the role
of FACSS is played by the simulator, it implies that the polynomial (and hence its constant term) provided
by Pj will be known to the simulator. Hence along with CS , the simulator can send the corresponding
function-inputs of the corrupt parties in CS to FAMPC. Upon receiving the function-output, the simulator
simulates the steps of the honest parties for the gate evaluations as per the protocol. Finally, for the output

62

gate, the simulator arbitrarily computes a complete t-sharing of the function-output y received from FAMPC,
which are consistent with the shares which corrupt parties hold for the output-gate sharing. Then on the
behalf of the honest parties, the simulator sends the shares corresponding to the above complete t-sharing
of y. This ensures that in the simulated execution, Adv learns function-output y. For the termination phase,
the simulator sends y as the response from FACast on the behalf of honest senders.

SAMPC constructs virtual real-world honest parties and invokes the real-world adversary Adv. The simulator simu-
lates the view of Adv, namely its communication with Z , the messages sent by the honest parties and the interaction
with various functionalities. In order to simulate Z , the simulator SAMPC forwards every message it receives from
Z to Adv and vice-versa. The simulator then simulates the various phases of the protocol as follows.

Pre-Processing Phase

Simulating the call to FAPrep: The simulator honestly simulates the steps of FAPrep, by itself playing the role of
FAPrep. Namely, it receives from Adv, the shares corresponding to the parties in C for each of the multiplication-
triples and then generates complete t-sharing of cM random multiplication-triples {(ũ(`), ṽ(`), w̃(`))}`∈{1,...,cM},
consistent with the shares corresponding to the parties in C, as provided by Adv. At the end of simulation of
this phase, the simulator will know the entire vector of shares, corresponding to the complete t-sharing of all
multiplication-triples.

Input Phase

• The simulator simulates the operations of the honest parties during the input phase, by randomly picking x̃(j)

as the input, for every Pj 6∈ C. Namely, when Adv requests output from FACSS (on the behalf of any party Pi
in C) with sidj for any Pj 6∈ C, the simulator responds with an output (Pj ,Dealer, sidj , q̃j(αi)) on the behalf
of FACSS, where q̃j(·) is a random degree-t polynomial, such that q̃j(0) = x̃(j).

• Whenever Adv sends (Pi,Dealer, sidi, qi(·)) to FACSS on the behalf of any Pi ∈ C, the simulator performs
the role of FACSS. Moreover, if qi(·) is found to be a degree-t polynomial, then the simulator records the

input x(i) def
= qi(0) on the behalf of Pi.

• When the simulation reaches the “Selecting Common Input-Providers” stage, the simulator simulates the
interface to FABA to Adv, by itself performing the role of FABA. When the first honest party completes the
simulated input phase, SAMPC learns the set CS .

Interaction with FAMPC: Once SAMPC learns CS , it sends to FAMPC inputs values x(i) that it has recorded on the
behalf of each Pi ∈ C ∩ CS and the set of input-providers CS . Upon receiving back the output y from FAMPC, the
simulator starts the simulation of circuit-evaluation phase.

Circuit-Evaluation Phase

The simulator simulates the evaluation of each gate g in the circuit in topological order as follows:
• Linear Gate: Since this step involves local computation, the simulator does not have to simulate any messages

on the behalf of the honest parties. The simulator locally adds the complete t-sharings corresponding to the
gate-input and obtain the complete t-sharing corresponding to the gate-output.

• Multiplication Gate: If g is the `th multiplication gate in the circuit, then the simulator takes the complete
t-sharing of the `th multiplication triple (ũ(`), ṽ(`), w̃(`)) and computes the messages of the honest parties
as per the steps of the protocol (by considering the complete t-sharing of the above multiplication-triple and
complete t-sharing of the gate-inputs) and sends them to Adv on the behalf of the honest parties. Once the
simulation of the gate-evaluation is done, the simulator will know the complete t-sharing corresponding to
the gate-output.

• Output Gate: Let [ỹ]t = (ỹ1, . . . , ỹn) be the complete t-sharing, corresponding to the output gate, available
with SAMPC during the simulated circuit-evaluation. The simulator computes a degree-t univariate polyno-
mial, say f̃(·), such that f̃(0) = y and f̃(αi) = ỹi holds for eacha Pi ∈ C. The simulator then computes the

shares yi
def
= f̃(αi) for each Pi 6∈ C and sends these yi values on the behalf of Pi to Adv.

Termination Phase

Simulator SAMPC

63

The simulator simulates the termination phase as follows:
• If Adv request an output from FACast (on the behalf of any party in C) for any sid2

j , where Pj 6∈ C, then Pj
responds with an output (Pj ,ACast, sid

2
j , y).

aIf |C| = t, then the polynomial is fixed, else the simulator picks (t+ 1)−|C| additional random points and interpolates f̃(·),

Figure 22: Simulator for the protocol ΠAMPC where Adv corrupts the parties in set C, where |C| ≤ t

We next prove a sequence of claims, which helps us to show that the joint distribution of the parties are
identical in both the real-world, as well as ideal-world. During the proofs of these claims, we skip the session
id sid. We first claim that in any execution of ΠAMPC, a set CS is eventually generated. This automatically
implies that the honest parties eventually possess complete t-sharing of cM multiplication-triples generated
by FAPrep, as well as complete t-sharing of the inputs of the parties in CS

Claim 7.2. In any execution of ΠAMPC, a set CS is eventually generated, such that for every Pj ∈ CS , there
exists some x(j) known to Pj , which is eventually completely t-shared.

Proof. The proof of this claim is similar to the proof of Claim 6.8 (except that instances of FAMTSS are
replaced by FACSS) and so we skip the formal details.

We next show that the view generated by SAMPC for Adv is identically distributed as Adv’s view during
the real execution of ΠAMPC.

Claim 7.3. The view of Adv in the simulated execution with SAMPC is identically distributed as the view of
Adv in the real execution of ΠAMPC.

Proof. It is easy to see that the view of Adv during the pre-processing phase is identically distributed in
both the executions. This is because in both the executions, Adv receives no messages from the honest
parties and the steps of FAPrep are executed by the simulator itself in the simulated execution. Namely, in
both the executions, Adv’s view consists of the shares of cM random multiplication-triples, corresponding
to the parties in C. So let us fix these shares. Now conditioned on these shares, for the input phase, Adv
learns the shares {qj(αi)}Pj 6∈C,Pi∈C during the real execution, corresponding to the parties Pj 6∈ C, while
in the simulated execution it learns the shares {q̃j(αi)}Pj 6∈C,Pi∈C . The polynomial qj(·) as well as q̃j(·)
are both random degree-t univariate polynomials, where qj(0) = x(j) (the real function-input of Pj) and
q̃j(0) = x̃(j) (the simulated function-input of Pj). Since |C| ≤ t, it follows from the properties of degree-t
polynomials (see Lemma 2.4), that the distributions of the shares {qj(αi)}Pj 6∈C,Pi∈C and {q̃j(αi)}Pj 6∈C,Pi∈C
are identical and so let us fix these shares. Since the role of FABA is played by the simulator itself, it follows
easily that the view of Adv during the selection of the set CS is identically distributed in both the real as
well as the simulated execution.

During the evaluation of linear gates, no communication is involved. During the evaluation of multi-
plication gates, in the simulated execution, the simulator will know the complete t-sharing associated with
gate-inputs and also the complete t-sharing of the associated multiplication-triple. Hence the simulator cor-
rectly sends the shares corresponding to the d(`) and e(`) values as per the protocol on the behalf of the
honest parties. This ensures that the Adv’s view during the evaluation of multiplications gates is identically
distributed, both in the real execution, as well as in the simulated execution.

For the output gate, the shares received by Adv in the real execution from the honest correspond to a
complete t-sharing of the function-output y. From the steps of SAMPC, it is easy to see that the same holds
even in the simulated execution, as SAMPC sends to Adv shares corresponding to a complete t-sharing of y,
which are consistent with the shares held by Adv. Hence the Adv’s view is identically distributed in both
the executions during the evaluation of output gate. Finally, it is easy to see that Adv’s view is identically

64

distributed in both the executions during the termination phase. This is because SAMPC plays the role of
FACast and also the role of honest parties, with their inputs for FACast being the function-output y.

We next claim that conditioned on the view of Adv, the output of the honest parties are identically
distributed in both the worlds.

Claim 7.4. Conditioned on the view of Adv, the output of the honest parties are identically distributed in
the real execution of ΠAMPC involving Adv, as well as in the ideal execution involving SAMPC and FAMPC.

Proof. Let View be an arbitrary view of Adv. And let CS be the set of input-providers as determined by View
(from Claim 7.2, such a set CS is bound to exist). Moreover, according to View, for every Pi ∈ CS, there
exists some input x(i), such that the parties hold a complete t-sharing of x(i). Furthermore, from Claim 7.3,
if Pi ∈ C then the corresponding complete t-sharing is included in View while for Pi 6∈ C, the corresponding
x(i) is uniformly distributed, conditioned on the shares of x(i) available with Adv as determined by View.
Let us fix the x(i) values corresponding to the parties in CS and denote by ~x the vector of values x(i), where
x(i) = 0 if Pi 6∈ CS .

It is easy to see that in the ideal-world, the output of the honest parties is y, where y def
= f(~x). This is

because SAMPC provides the identity of CS along with the inputs x(i) corresponding to Pi ∈ (CS ∩ C) to
FAMPC. We now show that the honest parties output y even in the real-world. For this, we argue that all
the values during the circuit-evaluation phase of the protocol are correctly t-shared. Since the evaluation
of linear gates need only local computation, it follows that the output of the linear gates will be completely
t-shared. During the evaluation of a multiplication gate, the honest parties will hold a complete t-sharing
of the corresponding d(`) and e(`) values, as during the pre-processing phase, all the multiplication-triples
are generated in a completely t-shared fashion, since they are computed and distributed by FAPrep. During
the reconstruction of d(`) and e(`), the honest parties send correct shares which are eventually delivered
and hence any incorrect share sent by the corrupt parties can be error-corrected using OEC. This will
automatically imply that the honest parties eventually hold a complete t-sharing of y and reconstruct it
correctly. This is because even if the corrupt parties send incorrect shares during the reconstruction of y,
they can be error-corrected using the steps of OEC. Moreover, in the termination phase, at most t corrupt
parties can send incorrect function-output for broadcasting to FACast, thus guaranteeing that all honest
parties output the correct function-output.

Finally from Claim 7.2 and Claim 7.4, we conclude that:{
HYBRIDFAPrep,FACSS,FABA,FACast

ΠAMPC,Adv(z) (~x)
}
z∈{0,1}?,~x∈Fn

≡
{

IDEALFAMPC,SAMPC(z)(~x)
}
z∈{0,1}?,~x∈Fn

holds, thus proving the theorem.

From Corollary 6.11, protocol ΠAPrep securely realizesFAPrep with statistical security in the (FRand,FABA)-
hybrid model, with a communication complexity ofO(cM ·n4κ+n5κ2 +n6) bits and involves n instances
of FRand and n instances of FABA. In protocol ΠAMPC, during the Input Phase, the functionality FABA is
invoked n times and each party shares a single field element (namely its function-input) by calling FACSS.
By realizing FACSS with protocol ΠACSS with statistical security, the input phase will cost a communication
of O(n5κ2 + n6) bits and will involve n instances of FABA. During the termination phase, the instances
of FACast can be realized using Bracha’s reliable broadcast protocol and this will cost a communication of
O(n3κ) bits.

While there are several well-known methods to securely realize the functionality FRand, a simple and
standard method will be the following: each party Pi ∈ P picks a random value r(i) and generates a
complete t-sharing of r(i) by picking a random degree-t polynomial R(i)(·) with R(i)(0) = r(i) and sending

65

the polynomial R(i)(·) to FACSS. The parties then use the same idea as used in the input phase of ΠAMPC to
agree on a common subset CS of n− t parties Pi, whose corresponding r(i) values are completely t-shared.

This will require n instances of FABA. Finally the parties set r def
=

∑
Pi∈CS

r(i) and locally generates the

complete t-sharing [r]t
def
=

∑
Pi∈CS

[r(i)]t, followed by publicly reconstructing the t-sharing [r]t. It is straight

forward to see that the resultant t-sharing [r]t is a completely random t-sharing with adversary having
control over the shares of the corrupt parties in the sharing (a formal security proof that the protocol realizes
FRand in the (FACSS,FABA)-hybrid model can be easily given. The simulation strategy will be similar as
used to design the simulator for the protocol ΠAPrep). By securely realizing FACSS with protocol ΠACSS,
we get that FRand can be securely realized in the FABA-hybrid model with a communication complexity of
O(n4κ2 + n5) bits, where n instances of FABA are involved.

All the instances of FABA throughout the protocol ΠAMPC can be securely realized by using the almost-
surely terminating ABA protocols of [1, 6], whose communication complexity is polynomial in n and κ and
independent of cM .14 So overall, we get the following theorem.

Theorem 7.5. Protocol ΠAMPC UC-securely realizes the functionality FAMPC with statistical security in the
FABA-hybrid model, in the presence of a static malicious adversary, corrupting at most t < n

3 parties. The
protocol has communication complexity O(cM · n4κ + n5κ2 + n6) bits. In addition, 3n instances of ABA
protocol are involved.

8 Conclusion and Future Directions

In this paper, we presented a new protocol for statistically-secure asynchronous MPC (AMPC) with the
optimal resilience of t < n/3, which significantly improve upon the communication complexity of the only
known statistically-secure asynchronous AMPC protocol of [13] with t < n/3. To design our protocol, we
presented a new and conceptually simpler instantiation of asynchronous complete secret-sharing (ACSS).
Unlike the previous MPC protocols in the asynchronous communication setting, we formally proved the
security of our AMPC protocol in the more rigorous UC framework.

Even though we have significantly improved over the communication complexity of the protocol of [13],
our protocol still requires a higher communication, compared to the synchronous MPC protocols and AMPC
protocols with perfect security. A natural question is to further investigate the communication complexity of
optimally-resilient AMPC protocols with statistical security. Another interesting direction is to derive lower
bounds on the communication complexity of statistically-secure AMPC protocols.

References

[1] I. Abraham, D. Dolev, and J. Y. Halpern. An Almost-surely Terminating Polynomial Protocol for
Asynchronous Byzantine Agreement with Optimal Resilience. In PODC, pages 405–414. ACM, 2008.

[2] I. Abraham, D. Dolev, and G. Stern. Revisiting Asynchronous Fault Tolerant Computation with Opti-
mal Resilience. In PODC, pages 139–148. ACM, 2020.

[3] B. Applebaum, E. Kachlon, and A. Patra. The Resiliency of MPC with Low Interaction: The Benefit
of Making Errors (Extended Abstract). In TCC, volume 12551 of Lecture Notes in Computer Science,
pages 562–594. Springer, 2020.

14Even though the security of the ABA protocols of [1, 6] are based on the property-based definition of ABA, a simulation-based
proof can be presented using standard techniques.

66

[4] G. Asharov and Y. Lindell. A Full Proof of the BGW Protocol for Perfectly Secure Multiparty Com-
putation. J. Cryptology, 30(1):58–151, 2017.

[5] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations, and Advanced
Topics, volume 19. John Wiley & Sons, 2004.

[6] L. Bangalore, A. Choudhury, and A. Patra. The Power of Shunning: Efficient Asynchronous Byzantine
Agreement Revisited. J. ACM, 67(3):1–59, 2020.

[7] D. Beaver. Efficient Multiparty Protocols Using Circuit Randomization. In CRYPTO, volume 576 of
Lecture Notes in Computer Science, pages 420–432. Springer, 1991.

[8] Z. Beerliová-Trubı́niová and M. Hirt. Efficient Multi-party Computation with Dispute Control. In
TCC, volume 3876 of Lecture Notes in Computer Science, pages 305–328. Springer, 2006.

[9] Z. Beerliová-Trubı́niová and M. Hirt. Simple and Efficient Perfectly-Secure Asynchronous MPC. In
ASIACRYPT, volume 4833 of Lecture Notes in Computer Science, pages 376–392. Springer, 2007.

[10] Z. Beerliová-Trubı́niová and M. Hirt. Perfectly-Secure MPC with Linear Communication Complexity.
In TCC, volume 4948 of Lecture Notes in Computer Science, pages 213–230. Springer, 2008.

[11] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous Secure Computation. In STOC, pages 52–61.
ACM, 1993.

[12] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Non-Cryptographic Fault-
Tolerant Distributed Computation (Extended Abstract). In STOC, pages 1–10. ACM, 1988.

[13] M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous Secure Computations with Optimal Resilience
(Extended Abstract). In PODC, pages 183–192. ACM, 1994.

[14] E. Ben-Sasson, S. Fehr, and R. Ostrovsky. Near-Linear Unconditionally-Secure Multiparty Compu-
tation with a Dishonest Minority. In CRYPTO, volume 7417 of Lecture Notes in Computer Science,
pages 663–680. Springer, 2012.

[15] G. Bracha. An Asynchronous [(n-1)/3]-Resilient Consensus Protocol. In PODC, pages 154–162.
ACM, 1984.

[16] R. Canetti. Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann Insti-
tute, Israel, 1995.

[17] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In
FOCS, pages 136–145. IEEE Computer Society, 2001.

[18] R. Canetti. Universally Composable Security. J. ACM, 67(5):28:1–28:94, 2020.

[19] R. Canetti and T. Rabin. Fast Asynchronous Byzantine agreement with Optimal Resilience. In STOC,
pages 42–51. ACM, 1993.

[20] A. Chandramouli, A. Choudhury, and A. Patra. A Survey on Perfectly-Secure Verifiable Secret-
Sharing. IACR Cryptol. ePrint Arch., page 445, 2021.

[21] D. Chaum, C. Crépeau, and I. Damgård. Multiparty Unconditionally Secure Protocols (Extended
Abstract). In STOC, pages 11–19. ACM, 1988.

67

[22] A. Choudhury. Improving the Efficiency of Optimally-Resilient Statistically-Secure Asynchronous
Multi-party Computation. In INDOCRYPT, volume 12578 of Lecture Notes in Computer Science,
pages 810–831. Springer, 2020.

[23] A. Choudhury, M. Hirt, and A. Patra. Asynchronous Multiparty Computation with Linear Commu-
nication Complexity. In DISC, volume 8205 of Lecture Notes in Computer Science, pages 388–402.
Springer, 2013.

[24] A. Choudhury and A. Patra. An Efficient Framework for Unconditionally Secure Multiparty Compu-
tation. IEEE Trans. Information Theory, 63(1):428–468, 2017.

[25] A. Choudhury, A. Patra, and D. Ravi. Round and Communication Efficient Unconditionally-Secure
MPC with t < n/3 in Partially Synchronous Network. In ICITS, volume 10681 of Lecture Notes in
Computer Science, pages 83–109. Springer, 2017.

[26] R. Cohen. Asynchronous Secure Multiparty Computation in Constant Time. In PKC, volume 9615 of
Lecture Notes in Computer Science, pages 183–207. Springer, 2016.

[27] S. Coretti, J. A. Garay, M. Hirt, and V. Zikas. Constant-Round Asynchronous Multi-Party Computation
Based on One-Way Functions. In ASIACRYPT, volume 10032 of Lecture Notes in Computer Science,
pages 998–1021, 2016.

[28] R. Cramer, I. Damgård, S. Dziembowski, M. Hirt, and T. Rabin. Efficient Multiparty Computations
Secure Against an Adaptive Adversary. In EUROCRYPT, volume 1592 of Lecture Notes in Computer
Science, pages 311–326. Springer, 1999.

[29] R. Cramer, I. Damgård, and U. M. Maurer. General Secure Multi-party Computation from any Linear
Secret-Sharing Scheme. In EUROCRYPT, volume 1807 of Lecture Notes in Computer Science, pages
316–334. Springer Verlag, 2000.

[30] I. Damgård and J. B. Nielsen. Scalable and Unconditionally Secure Multiparty Computation. In
CRYPTO, volume 4622 of Lecture Notes in Computer Science, pages 572–590. Springer Verlag, 2007.

[31] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty Computation from Somewhat Homo-
morphic Encryption. In CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 643–662.
Springer, 2012.

[32] M. J. Fischer, N. A. Lynch, and M. Paterson. Impossibility of Distributed Consensus with One Faulty
Process. J. ACM, 32(2):374–382, 1985.

[33] M. Fitzi. Generalized communication and security models in Byzantine agreement. PhD thesis, ETH
Zurich, Zürich, Switzerland, 2003.

[34] O. Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge University
Press, 2004.

[35] O. Goldreich, S. Micali, and A. Wigderson. How to Play any Mental Game or A Completeness Theo-
rem for Protocols with Honest Majority. In STOC, pages 218–229. ACM, 1987.

[36] V. Goyal, Y. Liu, and Y. Song. Communication-Efficient Unconditional MPC with Guaranteed Output
Delivery. In CRYPTO, volume 11693 of Lecture Notes in Computer Science, pages 85–114. Springer,
2019.

68

[37] V. Goyal, Y. Song, and C. Zhu. Guaranteed Output Delivery Comes Free in Honest Majority MPC. In
CRYPTO, volume 12171 of Lecture Notes in Computer Science, pages 618–646. Springer, 2020.

[38] M. Hirt. Multi-Party Computation: Efficient Protocols, General Adversaries, and Voting. PhD thesis,
ETH Zurich, September 2001. Reprint as vol. 3 of ETH Series in Information Security and Cryptog-
raphy, ISBN 3-89649-747-2, Hartung-Gorre Verlag, Konstanz, 2001.

[39] J. Katz, U. Maurer, B. Tackmann, and V. Zikas. Universally Composable Synchronous Computation.
In TCCs, volume 7785 of Lecture Notes in Computer Science, pages 477–498. Springer, 2013.

[40] Y. Lindell. Secure Multiparty Computation (MPC). Cryptology ePrint Archive, Report 2020/300,
2020.

[41] Nancy A Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

[42] A. Patra. Studies on Verifiable Secret Sharing, Byzantine Agreement and Multiparty Computation.
IACR Cryptol. ePrint Arch., 2010:280, 2010.

[43] A. Patra, A. Choudhary, and C. Pandu Rangan. Efficient Statistical Asynchronous Verifiable Secret
Sharing with Optimal Resilience. In ICITS, volume 5973 of Lecture Notes in Computer Science, pages
74–92. Springer, 2009.

[44] A. Patra, A. Choudhury, and C. Pandu Rangan. Asynchronous Byzantine Agreement with Optimal
Resilience. Distributed Comput., 27(2):111–146, 2014.

[45] A. Patra, A. Choudhury, and C. Pandu Rangan. Efficient Asynchronous Verifiable Secret Sharing and
Multiparty Computation. J. Cryptology, 28(1):49–109, 2015.

[46] A. Patra and D. Ravi. On the Power of Hybrid Networks in Multi-Party Computation. IEEE Trans.
Information Theory, 64(6):4207–4227, 2018.

[47] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching Agreement in the Presence of Faults.
Journal of the ACM (JACM), 27(2):228–234, 1980.

[48] T. Rabin. Robust Sharing of Secrets When the Dealer is Honest or Cheating. J. ACM, 41(6):1089–
1109, 1994.

[49] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multiparty Protocols with Honest Majority
(Extended Abstract). In STOC, pages 73–85. ACM, 1989.

[50] A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, 1979.

[51] A. C. Yao. Protocols for Secure Computations (Extended Abstract). In FOCS, pages 160–164. IEEE
Computer Society, 1982.

A Bracha’s ACast Protocol

We first recall the formal steps of Bracha’s ACast protocol from [16]. The protocol is presented in Fig
23.

69

1. If Pi = PS , then on input m, send (msg, PS , sender,ACast, sid,m) to all the parties.
2. Upon receiving (msg, PS , sender,ACast, sid,m) from PS , send (echo, PS , sender,ACast, sid,m) to all the

parties.
3. Upon receiving n − t messages (echo, PS , sender,ACast, sid,m?) that agree on the value of m?, send

(ready, PS , sender,ACast, sid,m?) to all the parties.
4. Upon receiving t + 1 messages (ready, PS , sender,ACast, sid,m?) that agree on the value of m?, send

(ready, PS , sender,ACast, sid,m?) to all the parties.
5. Upon receiving n − t messages (ready, PS , sender,ACast, sid,m?) that agree on the value of m?, output

(PS ,ACast, sid,m
?).

Protocol ΠACast

Figure 23: Bracha’s asynchronous reliable broadcast protocol for session id sid. The above code is executed by every
Pi ∈ P including PS .

Theorem A.1. Protocol ΠACast UC-securely realizes the ideal functionality FACast with perfect security
in the presence of any static malicious adversary, corrupting at most t < n/3. The protocol incurs a
communication complexity of O(n2 · |m|) bits, where |m| denotes the number of bits in the message m.

Proof. The communication complexity trivially follows from the protocol steps, since each party needs to
sendm to every other party. For security, let Adv be an arbitrary real-world adversary, attacking the protocol
in Fig 23 and let Z be an arbitrary environment. We show the existence of a simulator SACast, such that for
any set of corrupted parties C with |C| ≤ t, the output of all parties and the adversary in an execution of
ΠACast with Adv is identical to the output in an execution with SACast involving FACast in the ideal model.
This further implies that Z cannot distinguish between the two executions. The simulator constructs virtual
real-world honest parties and invokes the real-world adversary Adv. The simulator simulates the environ-
ment and the honest parties towards Adv as follows, In order to simulate Z , the simulator SACast forwards
every message it receives from Z to Adv and vice-versa. To simulate the honest parties, we consider the
following two cases, depending upon whether the sender PS is under the control of Adv or not.

Case I: PS is honest. In this case, the simulator SACast first interacts with the ideal functionality FACast and
receives the output m from the functionality. The simulator then plays the role of PS with input m, as well
as the role of the honest parties and interact with Adv as per the steps of ΠACast.

It is easy to see that that view of Adv is identical, both in the real-world as well as in the ideal-world.
This is because only PS has the input in the protocol and in the ideal-world, SACast plays the role of PS
as per ΠACast after learning the input of PS from FACast. Now conditioned on the view of Adv, we show
that the outputs of the honest parties are identical in the real-world and ideal-world. So consider an ar-
bitrary View of Adv. Conditioned on View, all honest parties eventually obtain a request-based delayed
output m in the ideal-world, where m is the input of PS as per View. We show that even in the real-
world, all honest parties eventually output m. This is because all honest parties complete steps 2 − 5
in the protocol, even if the corrupt parties do not send their messages, as there are at least n − t honest
parties, whose messages are eventually selected for delivery. Moreover, Adv may send at most t echo
messages for m′, where m′ 6= m, on the behalf of corrupt parties. Similarly, Adv may send at most
t ready messages for m′, where m′ 6= m, on the behalf of corrupt parties. Consequently, no honest
party ever generates a ready message for m′, neither in step 3, nor in step 4. Thus the output of the
honest parties are identically distributed in both the worlds. Consequently, in this case, we conclude that{

REALΠACast,Adv(z),Z(m)
}
m,z∈{0,1}?

≡
{

IDEALFACast,SACast(z),Z(m)
}
m,z∈{0,1}?

holds, thus completing

the proof for the case when PS is honest.

Case II: PS is corrupt. In this case, the simulator SACast first plays the role of the honest parties and

70

interacts with Adv, as per the protocol ΠACast. If in the simulated execution, SACast finds that some honest
party, say Ph, outputs m?, then SACast interacts with the functionality FACast by sending m? as the input to
FACast, on the behalf of PS . Else SACast does not provide any input to FACast on the behalf of PS .

It is easy to see that the view of Adv is identically distributed, both in the real-world as well as ideal-
world. This is because only PS has the input in the protocol which is under the control of Adv and SACast
plays the role of the honest parties, exactly as per the protocol ΠACast. We next show that conditioned on
the view of Adv, the output of the honest parties are identically distributed in both the worlds.

Let View be an arbitrary view of Adv, corresponding to some execution of ΠACast. Now there are two
possible case. If according to View, no honest party obtains an output during the execution of ΠACast, then
the honest parties do not obtain any output in the ideal-world as well. This is because in this case, the
simulator SACast does not provide any input on the behalf of PS to FACast. On the other hand, consider the
case when according to View, some honest party Ph outputs m?. In this case, in the ideal-world, all honest
parties eventually obtain an output m? since SACast provides m? as the input to FACast on the behalf of PS .
We next show that even in the real-world, all honest parties eventually obtain the output m?, thus showing
that the output of the honest parties are identically distributed.

Since Ph obtains the output m?, it implies that it receives n − t ready messages for m? during step 5
of the protocol. LetH be the set of honest parties whose ready messages are received by Ph during step 5.
It is easy to see that |H| ≥ t+ 1. The ready messages of the parties inH are eventually delivered to every
honest party and hence each honest party (including Ph) eventually executes step 4 and sends a ready
message for m?. As there are at least n− t honest parties, it follows that eventually n− t ready messages
for m? are delivered to every honest party (irrespective of whether Adv sends all the required messages),
consequently guaranteeing that all honest parties eventually obtain some output. To complete the proof of
the claim, we show that this output is the same as m?.

On contrary, let Ph′ be another honest party, different from Ph, who outputs m?? 6= m?. This implies
that Ph′ received ready messages for m?? from at least t + 1 honest parties during step 5 of the protocol.
Now from the protocol steps, it follow that an honest party generates a ready message for some potential
m, only if it receives n − t echo messages for the m during step 3 or t + 1 ready messages for the m
(one of which has to come from an honest party) during step 4. So all in all, in order that n − t ready
messages are eventually generated for some potential m during step 5, it must be the case that some honest
party has to receive n− t echo messages for m during step 2 and generate a ready message for m. Since
Ph receives n − t ready messages for m?, some honest party must have received n − t echo messages
for m?, at most t of which could come from the corrupt parties. Similarly, since Ph′ receives n− t ready
messages for m??, some honest party must have received n − t echo messages for m??. However, since
n − t > 2t, it follows that in order that n − t echo messages are produced for both m? as well as m??, it
must be the case that some honest party must have generated an echo message, both for m?, as well as m??

during step 2, which is impossible. This is because an honest party executes step 2 at most once and hence
generates an echo message at most once.

Consequently,
{

REALΠACast,Adv(z)(m)
}
m,z∈{0,1}?

≡
{

IDEALFACast,SACast(z)(m)
}
m,z∈{0,1}?

holds even

in this case, thus completing the proof.

71

	Introduction
	Our Motivation and Results
	Technical Challenges, Detailed Technical Overview and Comparison with BKR94
	The ACSS of BKR94
	Our ACSS Protocol
	Our AMPC Protocol vs AMPC Protocol of BKR94

	Other Related Works

	Preliminaries, Definitions and Existing Tools
	The Security Model
	Computation Model
	Definitions
	Some Ideal Functionalities
	Asynchronous Reliable Broadcast (ACast)
	Asynchronous Byzantine Agreement (ABA)
	Functionality for Generating Random t-sharing.

	Existing Asynchronous Primitives

	The Asynchronous Information-Checking Protocol (AICP)
	Our Instantiation of AICP

	Asynchronous Incomplete Secret-Sharing (AISS)
	Designated Reconstruction of Two-level t-shared Values
	Sharing and Reconstructing Degree-t Polynomial Using Sh and RecPriv
	Protocols Sh and RecPriv for L Polynomials

	Asynchronous Complete Secret Sharing (ACSS)
	ACSS Protocol for Realizing FACSS with L = 1
	ACSS Protocol for Realizing FACSS with L > 1

	Protocol for the Pre-Processing Phase
	Asynchronous Verifiable Multiplication-Triple Sharing (AMTSS)
	Statistically-Secure Protocol for Realizing FAMTSS

	Securely Realizing FAPrep in (FAMTSS, FABA)-Hybrid Model

	The AMPC Protocol
	Conclusion and Future Directions
	Bracha's ACast Protocol

