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Abstract—The paper is dedicated to computer evaluation of
parameters of members of family A(n, Fq) , n ≥ 2 of small
world algebraic graphs of large girth with well defined projective
limit. We present the applications of these computations to
some optimisation problems for algebraic graphs over various
field and Cryptography. We show the impact of high girth
property of known family of graphs A(n, Fq) on properties of
fast stream ciphers based on these graphs. Finally we modify
these symmrtric encryption algorithms to make them resistant
to linearization attacks.
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I. INTRODUCTION

LET k be a natural number ≥ 2. The problem of approx-
imation of a k-regular tree by the family of k-regular

graphs of increasing order and increasing girth (i. e. minimal
length of cycle in the graph) is very important. Solutions
of this problem can be used in various applications such as
computer implementations of branching process, constructions
of Low Dencity Parity Check codes, various applications to
Opimisation Graph Theory and Cryptography (see [29]) and
further references). Current paper is dedicated to new results
about the girth of known graphs A(n, F ), where F is a field,
obtained theoretically and via computer simulations and their
impact on applications to cryptography and Optimisation on
Graphs.

II. ON THE APPROXIMATION OF REGULAR AND
HOMOGENEOUS TREES.

In the Theory of Probability a branching process is a special
stochastic process corresponding to random walk on t -regular
forest Ft, i. e. simple regular graph of finite or infinite degree
t, t > 2 without cycles. The genealogy of a single vertex is an
infinite t-regular tree.

Deterministic branching processes with finite parameters t
and some set of connected components C are very important
objects in Theoretical Computer Science. In this area the
following problem of approximation of forest Ft by the family

Gi, i = 1, 2, . . . of finite t-regular graph of increasing order vi
and increasing girth gi = g(Gi), which is the minimal length
of a cycle in Gi, appears naturally.

P. Erdos defined a family of graphs of large girth as t-regular
sequence Gi for which gi ≥ c logt−1(vi) [1],[2]. He proved
the existence of such families (see [3], [4]). Nowadays several
explicit constructions of families of large girth are known
(see, for example, [5]-[7]). One can add requirement on Gi
of diameter di to be a family of small world graphs for which
the inequality di ≤ c′ logt−1(vi) for some positive constant
c′ holds [4]. Only one family of finite small world graphs of
large girth was known.

This is family X(p, q) of Ramanujan Cayley graphs of
group PSL2(Fp) introduced by G. Margulis [8]-[10] and
investigated by Phillips, Lubotzky and P, Sarnak [11], the
degree q of these graphs is a special prime number.

It is natural to demand some hereditary properties for
consequtive members of forest approximations. One of them
is the requirement that the family Gi, i = 1, 2, . . . of graphs
of increasing girth allows to consider well defined projective
limit Ft, when i → ∞. We refer to the forest approximation
Gi as projective approximation if the projective limit of Gi is
well defined.

In the case of t-regular graph of large girth we talk about
families of projective graphs of large girth. Noteworthy that
graphs X(p, q) for various primes p is not a projective approx-
imation of q-regular tree. The first projective approximation of
q-regular forest were proposed [12]. It is formed by bipartite
graphs D(n, q) of degree q and partition sets of cardinality
q. For each q graphs D(n, q), n = 2, 3, . . . form a family
of large girth. The connected components of these edge-
transitive graphs form a family CD(n, q) which is a projective
approximation of q-regular tree (see [13], [14]). This is of
course an other family of large girth. The conjecture that they
are also small world graphs was formulated by F. Lazebnik in
1995. It is still open.

Another natural demand for projective forest approximation
Gi, i = 1, 2, . . . is the usage of homogeneous algebraic



graphs, i. e graphs which vertices and edges are algebraic
varieties over a commutative ring K in Zarisski topology
given by corresponding systems of polynomial equations with
coefficients from K. Additionally we asume that all neigh-
bourhoods of vertices of Gi, i = 1, 2, . . . are isomorphic to
the same manifold N(K) (see [15]). In this case the forest
coincides with projective limit given by infinite system of
polynomial equations. So, we have algebraic description of
branching process.

One can define families of homogeneous algebraic graphs
of large girth and families of small world graphs as sequences
of algebraic graphs Gi over K with vertex sets of dimensions
ni such that g(Gi) ≥ cni and diam(Gi) ≤ c′ni for some
constants c and c′.

The simple change of Fq for the general commutative ring
K leads to generalization D(n, q), n ≥ 2 to the family of
homogeneous algebraic graphs D(n,K) (see [16]) where it
was stated that in the case of integrity ring K the girth of
D(n,K) is ≥ n + 5. The proof of this statement was given
in [17]. As it was proven in [17] the girth of D(n, F ) defined
over the field of characteristic zero equals n+ 5.

Noteworthy that studies of homogeneous algebraic graphs of
prescribed graphs or diameter is a classical area of Geometry.
Projective plane can be defined as homogeneous algebraic
graph of girth 6 and diameter 3. J. Tits defined generalized
m-gons as graphs of diameter m and girth 2m. Geometries
of Chevalley groups A2(F ), B2(F ),G2(F ) are homogeneous
algebraic graphs over the field F which are generalized m-
gons for m = 3, 4, 6.

So classical results of geometry motivate search for repre-
sentatives of variety Ω(g, d) of homogeneous algebraic graphs
of selected girth g, g ≥ 4 and diameter d, d ≥ 2. In the case
of finite field similar studies of cages, i.e. k-regular graphs ,
with fixed k > 2, prescribed girth g and minimal number of
vertices are well known (see [20], [21],[22]).

III. ON SOME PARAMETERS OF GRAPHS A(n,K)

Homogeneous algebraic graph A(n,K) were introduced in
[17] as as homomorphic images of D(n,K).

This graph is a bipartite graph with the point set P = Kn

and line set L = Kn (two copies of a Cartesian power of K
are used). It is convenient to use brackets and parenthesis to
distinguish tuples from P and L. So (p) = (p1, p2, . . . , pn) ∈
P and [l] = [l1, l2, . . . , ln] ∈ L. The incidence relation I =
A(n,K) (or corresponding bipartite graph I) can be given by
condition pIl if and only if the equations of the following kind
hold.
p2 − l2 = l1p1, p3 − l3 = p1l2, p4 − l4 = l1p3,

p5 − l3 = p1l4, . . . , pn − ln = p1ln−1 for odd n and
pn− ln = l1pn−1 for even n (see [19]). Graphs A(n,K) form
projective forest approximation. They were intensively used
for the constructions of LDPC codes for satellite communica-
tions and cryptographic algorithms (see [20], [21], [22]). In the
case of K = Fq of odd characteristic graphs A(n, Fq), n ≥ 2
form a family of small world graphs [19]. Various applications
of small world graphs are widely known. Recently discovered

bound g(A(n,K)) ≥ [(n + 2)/2] when K is integrity ring
[23], [24] shows that A(n,K) and is a family of algebraic
graphs of large girth.

To summarise, we see that for odd q the family A(n, Fq)
is a family of projective small world graphs of large girth.
The known bounds for girth and diameter of these graphs are
far from to be sharp, So we computed the girth A(n, F3) for
4 ≤ n ≤ 14 and diameter of A(n, F3) for 4 ≤ n ≤ 10. Results
can be seen in Table I.

IV. ON THE IMPACT OF COMPUTATIONS ON EVALUATION
OF GIRTH AND DIAMETER INDICATORS OF Ω(g, d)

In [15] the following analog of Tutte inequality on minimal
order of finite k-regular graph.

Proposition 4.1: Let Γ be homogeneous algebraic graph
over a field F of girth g such that the dimension of neigh-
borhood N for each vertex is n, n ≥ 1. Then [(g − 1)/2] ≤
dim(V )/n.

We introduce girth indicator gind(Γ) of Γ as n[(g −
1/2]/dimV . So, we have gind(Γ) ≤ 1. We introduce
gind(g, d) as maximal girth indicator of representative from
Ω(g, d) . The following statement is analog of Moore inequal-
ity for k-regular graphs of diameter d.

Proposition 4.2: Let Γ be homogeneous algebraic graph
over a field F of diameter d such that the dimension of
neighborhood N for each vertex is n, n ≥ 1. Then (d− 1) ≤
dim(V )/n.

We introduce diameter indicator dind(Γ) of Γ as n(d −
1)/dimV . So, we have dind(Γ) ≥ 1. We introduce
dind(g, d) as minimal diameter indicator of representative
from Ω(g, d). The existence of geometries of simple alge-
braic groups A2(F ), B2(F ) and G2(F ) over the field F
(generalized m-gons for m = 3, 4, 6) gives us gind(6, 3) =
gind(8, 4) = gind(12, 6) = 1 and dind(6, 3) = dind(8, 4) =
dind(12, 6) = 1

The computations of girth and diameter of A(n, F3) allow
to formulate the following statement.

Theorem 4.1:
1) The totality Ω(8, 8) is nonempty. Let (x, y) be the pair

(gind(8, 8), dind(8, 8)) then x ≥ 3/4, y ≤ 7/4.
2) The totality Ω(12, 12) has at least two elements. Let

(x, y) be the pair (gind(12, 12), dind(12, 12)). Then
x = 1, y ≤ 11/6. The graph A(5, 3) is the graph with
optimal gind(12, 12).

3) The totality Ω(12, 16) contains at least two elements. Let
(x, y) be the pair (gind(12, 16), dind(12, 16)). Then x ≥
5/7, y ≤ 15/8.

4) The totality Ω(16, 20) is not empty. Let (x, y) be the
pair (gind Ω(16, 20), dind Ω(16, 20)). Then x ≥ 7/9,
y ≤ 19/9.

5) The totality Ω(18, 20) is not empty. Let (x, y) be the
the pair (gind (16, 20), dind (16, 20)). Then x ≥ 4/5,
y ≤ 19/10.

Computations of minimal cycles through given vertex of
A(n, F3) allow us to formulate the following statement.



TABLE I
GIRTH AND DIAM FOR A(n, F3)

n 4 5 6 7 8 9 10 11 12 13 14 15
Girth 8 12 12 12 12 16 18 20 22 24 26 28
Diam 8 12 12 16 16 20 20

Theorem 4.2: Let F be a field of characteristic 3. Then
graphs A(4, F ), and A(n, F ) for 6 ≤ n ≤ 14 are not vertex
transitive.
Finally, we formulate

Conjecture 4.1: Let (xn, yn) stands for the pair
(gind A(n, F3), dind A(n, F3)) Then sequences xn
and yn tends to 1 and 2 when n→∞.
Some application of the results of this section were partially
presented at plenary talkof V. Ustimenko "On infinite con-
nected real networks without cycles, their dynamical systems
and pseudorandom and random real sequences,Ť Isaack New-
ton Institute, INI Workshop: "Fractional kinetics, hydrody-
namic limits and fractals", FD2W02, March 2022.

V. ALGEBRAISATION OF THE BRANCHING PROCESS AND
NONLINEAR OPERATORS

Let K be a general commutative ring. We present algebraic
transformation groups of Kn.

Recall that A(n,K) is already defined bipartite graph with
the point set P = Kn and line set L = Kn. We will use
brackets and parenthesis to distinguish tuples from P and L.
So, (p) = (p1, p2, . . . , pn) ∈ P and [l] = [l1, l2, . . . , ln] ∈
L.The incidence relation I = A(n,K) (or corresponding
bipartite graph I) is given by condition pIl if and only if
the given above equations hold. We can consider an infinite
bipartite graph A(K) with points (p1, p2, . . . , pn, . . . ) and
lines [l1, l2, . . . , ln, . . .]. If K, |K| > 2 is a field then A(K) is
a tree and A(n,K), n = 2, 3, . . . is its algebraic small world
approximation of large girth.

We refer to the first coordinates p1 = p((p)) and l1 = p([l])
as colours of vertices of A(K) (or A(n,K)). It is easy to
check that each vertex v of the graph has a unique neighbour
Na(v) of selected colour. So the walk of length 2k from vertex
(0, 0, . . .) will be given by the sequence with colours of its
elements b1, a1, b2, a2, . . . , bk, ak.

It will be the path if 0 6= a1, ai 6= ai+1 and bi 6= bi+1

for i = 1, 2, . . . , k − 1. So we can identify walks from 0
point of even length point with sequence of kind w. Let w′ =
(b′1, a

′
1, b
′
2, a
′
2, . . . , b

′
s, a
′
s). We define the composition u of w

and w′ as the sequence u = (b1, a1, b2, a2, . . . , bk, ak, b
′
1 +

ak, ak + a′1, b
′
2 + ak, . . . , b

′
s + ak, a

′
s + ak). If w and w′ are

paths and b′1 +ak 6= bk then u is also a path. Let BP (K) be a
semigroup of all walks with this operation. One can identify
empty string with the unity of BP (K). We use term branching
semigroup for BP (K).

We can change points and lines of the tree and introduce
BL(K) consisting walks with the starting vertex [0, 0, . . .].
Noteworthy that sets of points and lines of the tree A(K) are
affine varieties of infinite dimensions over K. Let us take

graph A(n,K) together with A(n,K[x1, x2, . . . , xn]). For
each element w from BP (K) we consider a walk ∆(w) in
A(n,K[x1, x2, . . . , xn]) with starting point (x1, x2, . . . , xn)
where xi are generic elements of K[x1, x2, . . . , xn] and
special colours of vertices x1+b1, x1+a1, . . . , x1+bk, x1+ak.
Let p′ = dest(∆(w)) be a destination, i. e. a final point
of this walk. The destination has coordinates (x1 +
ak, f1(x1, x2), f2(x1, x2, x3), . . . , fn−1(x1, x2, . . . , xn))
where fi are elements of K[x1, x2, . . . , xn]. We
consider the transformation nη′(w) of P = Kn defined
bythe rule x1 → x1 + ak, x2 → f1(x1, x2), x3 →
f2(x1, x2, x3), . . . , xn → fn−1(x1x2, . . . , xn). This
transformation is bijective map of Kn to itself. It
is an element of affine Cremona group CG(Kn) of
elements from Aut(K[x1, x2, . . . , xn]) acting naturally
on Kn. The inverse for this map is nη′(w)−1

which coincides with nη′(w′) for w′ = Rev(w) =
(bt − at, at−1 − at, bt−1 − at, . . . , b1 − at,−at). We refer to
Rev(w) as reverse string for w from BP (K).

Proposition 5.1: (see [26] and further references). The map
nη′ from BP (K) to CG(Kn) is a homomorphism of the
semigroup into group. We refer to nη′ as compression map
and denote nη′(BP (K)) as GA(n,K). Degree of element g
of Cremona group CG(Kn) of kind xi → gi(x1, x2, . . . , xn)
is the maximal degree of polynomials gi.

Theorem 5.1: (see [26] and further references). The maximal
degree of multivariate element g from GA(n,K) equals 3.

It means that subgroup G of kind TGA(n,K)T−1 where T
is an element of AGLn(K) can be used efficiently as a plat-
form for the implementation of protocols of Noncommutative
Cryptography. Some implementations of such protocol reader
can find in [31].

Let K = Fq . We refer to a walk b1, a1, b2, a2, . . . , bk, ak
from BP (K) as irreducible one if ai 6= ai+1, bi 6= bi+1 for i =
1, 2, . . . , t− 1. As it follows from written above lower bound
for the girth of A(n,Q) the order of nη(w) tends to infinity in
the case of irreducible word w with a1 6= 0, bn +an 6= b14. If
k is less than the girth of A(n, q) then transformations nη(w)
has no fixed points on Kn In the case when common length t
of irreducible words w and w′ is less than the girth the values
of nη(w)(x) and nη(w′)(x) are different vectors for each x
from Kn. As we see computer simulation strongly support
the statement that graphs A(n, q) form a family of small world
graph for each parameter q. It means that group GA(n, q) acts
acts transitively on Kn and for each pair x, y ∈ Kn×Kn there
exists element g ∈ GA(n, q) such that g(x) = y.and the value
of g on a given vector can be computed in time O(n2).



VI. ON SOME APPLICATIONS TO CRYPTOGRAPHY

The following stream cipher was implemented by M.
Klisowski (see [27]) and further references). Correspondents
Alice and Bob work with the space of plaintexts Kn, i.e. they
exchange words written in the alphabet K. the "potentially
infinite" parameter n can be established via the open channel.

Correspondents shares irreducible word w from BP (K)
of even length m, m < n. We assume n = mα, α ≥ 1.
Additionally they keep safely two strings of nonzero characters
ic = (ic1,

ic2, . . . ,
icm), i = 1, 2 and parameter β, 0 < β < 1.

Alice and Bob create linear transformations Ti on Kn of
kind x1 → ic1x1 + ic2x2 + · · · + icmx

m + icm+1 + . . . ,
xj → xj , j + 1, 2, . . . , n with periodical usage of vectors ic
They compute parameter t = [mβα − 1] and word u = wt

of length mt from BP (K). We assume here that α ≥ 1/β
Alice writes the plaintext p = (p1, p2, . . . , pn) and forms
ciphertext (T2)nη(u)(T1)(p) = c via consequtive Application
of T1, η(u) and T2. Bob gets c from Alice and restores p via
consequtive applications of (T2)−1, ta(Rev(u)) and T1−1. It
is easy to see that subquadratic complexity of encryption is
O(n1+β). Correspondents can vary parameter β and encrypt
large files.. Let us assume that correspondents use vectors 1c
and 2c constantly and able to change the word w via some key
exchange protocol. Then any change of w leads to the change
of the ciphertexr. High girth of graph A(n, q) insures this
property. Adversary can conduct costly linearization attacks
with interception of n3 messages and corresponding cipher-
texts .The total cost of approximation of cubic multivariate
encryption map is O(n10) (see [28] and further references).

VII. MODIFIED ALGORITHM WITH THE RESISTANCE TO
LINEARIZATION ATTACKS

We implement the following modification of the presented
above A(n, Fq) based stream cipher. We assume that corre-
spondents share the same information. They have "potentially
infinite" parameter n, even positive integer m, parameter,
β, 0 < β < 1, irreducible element w ∈ BP (Fq) of
length m and vectors 1c and 2c from (Fq)

m with nonzero
components. Additionally they keep safely the tuple z of kind
(xc1, xd1, xc2, xd2, . . . , xck, xdk) of length k = m/2 with ci
and di from Fq[x] for each i, where c1 6= 0, d1 6= 0, ci 6= ci+1,
di 6= di+1. for i = 1, 2, . . . , k − 1, dk 6= d1, ck 6= c1 and dkx
is a bijective map on Fq such that the list of solution g(b) for
dk(x)x = b is given.. We assume that number of monomial
terms of ci or di is bounded by some constant r Alice and
Bob concatenate t copies of z and get tuple zt of length
mt. They form v = z + u = (v1(x), v2(x), . . . , vmt(x))).
Encryption Alice with plaintext p = (p1, p2, . . . , pn). She
computes T1(p) = 1p = (p′1, p

′
2, . . . , p

′
n).

ENCRYPTION. Alice computes v∗ =
(v1(p′1), v2((p′1), . . . vmt(p

′
1)). She computes nη(v∗)(1p) = 2p

and forms ciphertext c = T2(2p).
DECRYPTION. Bob uses the following procedure.
1)He computes T2−1(c) = 2p. Bob solves dk(x)x+ umt =

2p1 and finds x = p′1 as g(2p1−umt). After that he computes
v∗ and nη(rev(v∗)(2p) = 1p. Finally Bob find p as T1−1(1p).

PROPERTIES. The map E of kind
(x1, x2, . . . , xn) → nη(v(x1) depends on vector
xzt = (y1(x), y2(x), . . . , ymt(x)). As it follows from
[17] degree of E is at least deg(y1) + deg(y2) +
max(deg(y3),deg(y1))+ max(deg(y4),deg(y2)) + · · · +
max(deg(ymt−1),deg(ymt−3) + max(deg ymt,deg(ymt − 2).
So our restrictions on ci and di insure that the degree of
multivariate encryption map T1ET2 is at least tm. So it
is bounded from below via linear function of kind cn for
some positive constant c. It can be shown that the degree of
inverse of encryption map is also bounded from below by
c′, n where c′ > 0. Thus linearization attacks by adversary
are impossible.

Remark 7.1: Noteworthy that presented modification does
not change the estimation O(n1+β) of execution time of
algorithms.

Remark 7.2: Assume that vectors 1c, 2c and z remain
unchanged. Correspondents can use some secure protocol to
change password w. Note that the length of parameter tm
is less than n/4 and the girth of A(n, q). It means that any
change of single change of character of w lead to the change
of corresponding ciphertext.

Remark 7.3: Other modification of the algorithm described
in section 5 is presented in [29]. This algorithm is also based
on graphs A(n,q) but encryption function is nonbijective on
Kn. Its restriction on (K∗)n is a bijective map and this fact
allows to decrypt.

Some symbiotic combinations of presented above stream
ciphers with A(n, q) based secure protocols and some other
protocols of Noncommutative Cryptography (see [30]-[34])
will be presented in the plenary talk of one of the authors at the
satellite conference "Mathematical Aspects of post Quantum
Cryptography" of International Congress of Mathematicians
ICM -2022 (on line event, see [25]).

VIII. IMPLEMENTATION OF NONLINEAR PART OF
MODIFIED ALGORITHM.

In this section we present implementation of "nonlinear part
E of a encryption." and its inverse in the case K = Fp where
p is prime number > 2. So +, ∗ and ∗∗ are operations of
addition, multiplication and exponentiation of this field. They
can be given by laded operations tables. So we assume that
linear transformations T1 and T2 are already computed. It is
done by function matrixT1 and matrixT2. Recall that actual en-
cryption is given by T1ET2. We assume that (p1, p2, . . . , pn)
forms the input of E. It is calculated by function codeToE.
Computation depends on the tuple of positive numbers exp =
(t1, t2, . . . , tmt) and vector λ = (λ1, λ2, . . . , λmt) from Fp

mt.
We have tmt = 1 and ti 6= ti−1, λi 6= λi−1, i = 1, . . . ,mt.
We denote this tuples in pseudocode by lists exp and lamb.
Plain text x = (x1, . . . , xn) we denote in pseudocode by list
text.

So firstly we present how to obtain E. It is done by
function codeToE it uses functions neibLine and neibPoint
which calculates neighboring line for given point which has
color in i iteration c = xti1 + λi or point for given line.



Algorithm 1 Coding to E

def n e i b L i n e ( p o i n t , lamb , x1 , exp ) :
# p o i n t − l i s t , lamb , x1 , exp − i n t
# r e t u r n s L ine l which l | p o i n t
# w i t h c o l o r x1 ∗∗ exp+lamb

l i n e = [ ]
l i n e . append ( x1∗∗ exp+lamb )
f o r i >0 in range ( l e n ( p o i n t ) ) :

i f i \%2==1:
y= p o i n t [ i ]− l i n e [ 0 ]∗ p o i n t [ i −1]

e l s e :
y= p o i n t [ i ]− l i n e [ i −1]∗ p o i n t [ 0 ]
l i n e . append ( y )

re turn l i n e

def n e i b P o i n t ( l i n e , lamb , x1 , exp ) :
# l i n e − l i s t , lamb , x1 , exp − i n t
# r e t u r n s P o i n t p which p | l i n e
# w i t h c o l o r x1 ∗∗ exp+lamb

p o i n t = [ ]
p o i n t . append ( ( x1∗∗ exp+lamb ) )
f o r i >0 in range ( l e n ( l i n e ) ) :

i f i \%2==1:
x= l i n e [ i ]+ l i n e [ 0 ]∗ p o i n t [ i −1]

e l s e :
x= l i n e [ i ]+ l i n e [ i −1]∗ p o i n t [ 0 ]
p o i n t . append ( x )

re turn p o i n t

def codeToE ( t e x t , lamb , exp ) :
# t e x t , lamb , exp − l i s t s
# Coding t e x t u s i n g lamb and exp
# i t r e t u r n s E

temp= t e x t
p1=temp [ 0 ]
f o r i in range ( l e n ( lamb ) ) :

i f ( i \% 2==0) :
temp= n e i b L i n e ( temp , lamb [ i ] , p1 , exp [ i ] )

e l s e :
temp= n e i b P o i n t ( temp , lamb [ i ] , p1 , exp [ i ] )

E=temp
re turn E

The computation of composition of T1, E and T2 is also
given. The last part is to calculate D = T1ET2. It is done by
function Code.

The decoding process is reversed. Firstly we use function
Decode which calculates T−11 DT−12 to obtain E. Then we use
function decodeFromE to obtain plain text x.

We present the execution time of T1ET2 in the case p=127,
mt=50, 100, 1000 and size of plaintext 10 Kb, 20Kb and 40Kb
in Table II on the next page.

Algorithm 2 Coding T1ET2

def mat r ixT1 ( ) : # c r e a t e s m a t r i x T1
def mat r ixT2 ( ) : # c r e a t e s m a t r i x T2

def Code ( t e x t , lamb , exp ) :
# t e x t , lamb , exp− l i s t s

E=codeToE ( t e x t , lamb , exp )
T1= mat r ixT1 ( )
T2= mat r ixT2 ( )
re turn T1∗E∗T2

Algorithm 3 Decoding

def decodeFromE ( c i p h e r , lamb , exp ) :
# c i p h e r , lamb , exp − l i s t s
# Decodes c i p h e r E r e t u n s o r i g i n a l t e x t

temp= c i p h e r
x1=temp [0]− lamb [ l e n ( lamb )−1]
f o r i in range ( l e n ( lamb ) ) :

i f i >0 :
i f ( i \%2==1):
temp= n e i b L i n e ( temp , lamb [ l e n ( lamb)−1− i ]
, p1 , exp [ l e n ( lamb)−1− i ] )

e l s e :
temp= n e i b P o i n t ( temp , lamb [ l e n ( lamb)−1− i ]
, p1 , exp [ l e n ( lamb)−1− i ] )

temp= n e i b P o i n t ( temp , 0 , x1 , 1 )
re turn temp

def i n v e r t T 1 ( ) : # c r e a t e s i n v e r t o f m a t r i x T1
def i n v e r t T 2 ( ) : # c r e a t e s i n v e r t o f m a t r i x T2

def Decode ( c i p h e r , lamb , exp ) :
# c i p h e r , lamb , exp − l i s t s

IT1= i n v e r t T 1 ( )
IT2= I n v e r t T 2 ( )
E=IT1∗ c i p h e r ∗ IT2
re turn decodeFromE ( E , lamb , exp )
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