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Abstract. Yasuda proposed a variable input-length PRF in CRYPTO 2011, called
PMAC_Plus, based on an n-bit block cipher. PMAC_Plus is a rate-1 construction and
inherits the well-known PMAC parallel network with a low additional cost. However,
unlike PMAC, PMAC_Plus is secure roughly up to 22n/3 queries. Zhang et al. proposed
3kf9 in ASIACRYPT 2012, Naito proposed LightMAC_Plus in ASIACRYPT 2017,
and Iwata et al. proposed GCM-SIV2 in FSE 2017 – all of them secure up to around
22n/3 queries. Their structural designs and corresponding security proofs were unified
by Datta et al. in their framework Double-block Hash-then-Sum (DbHtS). Leurent et
al. in CRYPTO 2018 and then Lee et al. in EUROCRYPT 2020 established a tight
security bound of 23n/4 on DbHtS. That PMAC_Plus provides security for roughly
up to 23n/4 queries is a consequence of this result. In this paper, we propose a public
permutation-based variable input-length PRF called pPMAC_Plus. We show that
pPMAC_Plus is secure against all adversaries that make at most 22n/3 queries. We
also show that the bound is essentially tight. It is of note here that instantiation of
each block cipher of pPMAC_Plus with the two-round iterated Even-Mansour cipher
can yield a beyond the birthday bound secure PRF based on public permutations.
Altogether, the solution incurs (2` + 4) permutation calls, whereas our proposal
requires only (` + 2) permutation calls, ` being the maximum number of message
blocks.
Keywords: PMAC_Plus · Public Permutation · Sum-Capture Lemma · H-Coefficient
Technique

1 Introduction
Background. A Pseudo-Random Function (PRF) is a fundamental primitive in symmetric
key cryptography. It is useful in providing solutions like authentication of messages,
encryption of any arbitrary-length messages, etc. Most of the PRFs are built on top of a
block cipher in some mode of operation. Some of the commonly used block cipher-based
PRFs are CBC-MAC [BKR00], PMAC [BR02], OMAC [IK03], LightMAC [LPTY16], etc.
However, all of these block cipher-based PRF constructions provide security up to 2n/2
adversarial queries, where n is the block size of the block cipher. In cryptography, this
bound is typically known as the birthday bound.

Birthday bound secure constructions are often acceptable in practice when they are
instantiated with block ciphers having a large block size (e.g., AES-128). To justify
the above statement, consider PMAC construction whose PRF advantage is roughly
5`q2/2n [NM08], where ` is the upper limit on message size in terms of the number
of blocks. When it is instantiated with AES-128, it gives a security of roughly up to
248 adversarial queries, provided the longest message size is 216 blocks and the success
probability of breaking the scheme is restricted to 2−10. However, with a growing trend
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of designing and standardizing lightweight block ciphers (NIST light-weight competition)
like PRESENT [BKL+07], GIFT [BPP+17], LED [GPPR12], etc. that are particularly
suitable for a resource-constrained environment, birthday bound-secure constructions are
not suitable for use in practice. For example, PMAC instantiated with the PRESENT
block cipher (a 64-bit block cipher) gives security up to 216 adversarial queries when the
longest message size is 216 blocks and the success probability of breaking the scheme is
2−10. Thus, it is not safe to use birthday bound-secure PRFs when they are instantiated
with lightweight block ciphers. Although using AES-128 in a birthday bound-secure mode
provides 64-bit security (which is adequate for the present-day), it may not be so in the
future due to technological advancement. In such a situation, the feasible option would be
to use a mode that gives higher security than the usual birthday one instead of replacing
the cipher with a larger block size.

Table 1: Comparison table for permutation-based PRFs and MACs. n denotes the state
size of the permutation, which we also call block size. The first column denotes the number
of input blocks versus the number of output blocks. i/p (resp. o/p) size denotes the bit
size of the input (resp. output) to the construction. Constructions with a dagger symbol
use keyed hash functions and the number of keys they require includes the hash key as well;
they also take nonce as one of their inputs. Security bounds mentioned in green denote
lower bounds for which a matching upper bound isn’t yet proven, while blue denotes tight
bounds and red denotes upper bounds.

Constructions #
of
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rm

ut
at
io
ns

#
of

ke
ys

(i/p, o/p) size Security
SoEM1 [CLM19] 1 2 (n, n) n/2
SoEM21 [CLM19] 2 1 (n, n) n/2
SoEM22 [CLM19] 2 2 (n, n) 2n/3
SoKAC1 [CLM19] 1 2 (n, n) 2n/3 [CNTY20]
SoKAC21 [CLM19] 2 1 (n, n) n/2 [Nan20a]
pEDM [DNT21a] 1 2 (n, n) 2n/3 [DNT21a]

PDMMAC [CNTY20] 1 1 (n, n) 2n/3
DS-SoEM [BDLN20] 1 2 (n− 1, n) 2n/3
CENCPP∗ [BDLN20] w + 1 2 (n,wn) 2n/3− log(w2)

DS-CENCPP∗ [BDLN20] 1 2 (n− log(w + 1), wn) 2n/3− log(w4)
(†) nEHtMp [DN20a] 1 2 (n− 1 + `n, n) 2n/3

(†) PDM∗MAC [CNTY20] 1 2 (n+ `n, n) 2n/3
(†) 1K-PDM∗MAC [CNTY20] 1 1 (n+ `n, n) 2n/3

Chaskey [MMVH+14] 1 1 (`n, t) n/2 + 2−t

pPMAC_Plus [Our Construction] 1 3 (`n, n) 2n/3

Beyond the Birthday Bound PRFs. Over the years, there have been many proposals
of beyond the birthday bound secure PRFs. In [Yas10], Yasuda proposed SUM-ECBC,
a beyond the birthday bound-secure PRF. SUM-ECBC is a rate-1/2 sequential mode of
construction with four block cipher keys that offers about 2n/3-bit security. Yasuda,
in [Yas11], proposed another beyond the birthday bound secure PRF, called PMAC_Plus
that also offers about 2n/3-bit security. However, unlike SUM-ECBC, it is a rate-1 and
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parallel mode of construction with three block cipher keys. In the following year, Zhang
et al. [ZWSW12] proposed another candidate for a beyond the birthday bound-secure
PRF, called 3kf9, which is a rate-1 sequential mode of construction with three block cipher
keys and offers 2n/3-bit security. Following these works, Naito proposed LightMAC_Plus
in [Nai17], the first beyond the birthday bound secure PRF which is proven to have an
` independent beyond the birthday bound and hence effectively offers a better security
than that of all the earlier three proposals. Datta et al. [DDN+17] proposed a single-keyed
variant of the PMAC_Plus that offers a better security bound than that of PMAC_Plus.
In [DDNP18], Datta et al. unified the design of all four beyond the birthday bound secure
PRFs (i.e., SUM-ECBC, PMAC_Plus, 3kf9, LightMAC_Plus) and gave a common security
proof for all of them. They also proposed a two-keyed version of SUM-ECBC, PMAC_Plus,
3kf9, LightMAC_Plus and have shown that all of them achieve roughly 2n/3-bit security.
Interestingly, all these constructions share a similar structural design and offer the same
level of security. All this motivated the unification of these designs and the provision of a
common security proof for all of them in [DDNP18].

Double block-Hash-then-Sum. DbHtS [DDNP18] is a generic methodology for design-
ing block cipher-based beyond the birthday bound secure PRFs. It is a composition of two
constituent elements: (i) a double block hash function that outputs a 2n-bit hash value of
the input message and (ii) a sum function used in the finalization phase that generates the
final tag by XORing the encryption (via two independent block ciphers) of two n-bit hash
values. The authors have shown that if the cover-free advantage (refers to the probability
that for a triplet of messages Mi, Mj , Mk, the first halves (i.e. the leftmost n bits) of the
hash values of Mi and Mj collide and the second halves (i.e. the rightmost n bits) of the
hash values of Mi and Mk collide) and the block-wise universal advantage (refers to the
probability of collision of either of the halves of the hash values of any pair of distinct
messages) of the underlying double-block hash function is sufficiently low, then DbHtS
is secure up to 22n/3 adversarial queries. The authors have also shown the applicability
of their result by instantiating the two-keyed variants of SUM-ECBC, PMAC_Plus, 3kf9,
LightMAC_Plus and have proven 2n/3-bit security for all of them. Using the generic result,
authors have also improved the security bound for SUM-ECBC and PMAC_Plus.
In [LNS18], Leurent et al. have shown attacks on all these constructions with 23n/4-
query complexity. Recently, Kim et al. [KLL20] have proven 3n/4-bit security of DbHtS
and hence established the tightness of the bound for SUM-ECBC, PMAC_Plus, 3kf9 and
LightMAC_Plus.

Permutation-based cryptography. A block cipher is generally designed to be efficient
in evaluating the input in both forward and backward directions. However, a closer
inspection reveals that all the block cipher-based PRFs discussed so far do not require the
inverse mapping of the block ciphers. Thus, a block cipher is an over-engineered primitive
for block cipher-based PRF constructions that do not require the inverse function of their
underlying primitives.

Concurrently with block ciphers, cryptographic permutations have evolved as useful
primitives. The primary feature of a cryptographic permutation is that it does not
use any key and hence does not require any separate processing for it. The use of
cryptographic permutations gained popularity during the SHA-3 competition [RBB03] as
several submitted candidates in the competition were based on this type of primitive. The
selection of the permutation-based Keccak sponge function as the SHA-3 standard has
further boosted the level of confidence of the community in using this primitive. Today,
permutation-based sponge-based constructions have become a successful and full-fledged
alternative to block cipher-based modes. In fact, in the first round of the ongoing NIST
lightweight competition [NIS18], 24 out of the 57 submitted constructions are based on
cryptographic permutations, and out of these 24, 16 permutation-based proposals have
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qualified for round 2. These statistics depict the wide adoption of permutation-based
designs [CDNY18, BKL+17, BCDM19, CN19, DHP+19, DEMS19] in the community. A
long line of research has also been carried out in the study of designing block ciphers
and tweakable block ciphers out of public random permutations. Iterated Even Mansour
(IEM) [CS14] and Tweakable Even-Mansour (TEM) [CLS15] ciphers are notable approaches
in this direction.

PRFs Built from Public Permutations. Variable input-length PRFs built using
public permutations mostly follow sponge-type constructions. Inherent drawbacks of such
designs are that (i) they do not use the full size of the permutation for guaranteeing
security and (ii) they attain only birthday bound security in the size of their capacity c,
(except Bettle [CDNY18], whose security bound is roughly the size of its capacity). It is
obvious that the sponge-type designs offering c/2-bit security are good in practice when
they are instantiated with large permutations such as Keccak [BDPA13]. However, just
like large block ciphers, large permutations are not suitable for a resource-constrained
environment. In such a scenario, lightweight permutations such as SPONGENT [BKL+13]
and PHOTON [GPP11] (whose state sizes go as low as 88 and 100 bits respectively)
are preferred over large ones. The use of these lightweight permutations in birthday
bound secure sponge constructions offers a practically inadequate security. Thus, to utilize
lightweight permutations in practice, the natural choice would be to design a beyond
the birthday bound secure mode. In this regard, Chen et al. [CLM19] have proposed
two instances of public permutation-based pseudo-random functions, namely SoEM22
and SoKAC1. Both of them map an n-bit input to an n-bit output and offer beyond
the birthday bound security with respect to the state size of the permutation. However,
Nandi [Nan20b] has shown a birthday bound attack on SoKAC1 and hence invalidated its
beyond the birthday bound security claim. Bhattacharjee et al. [BDLN20] have shown a
public permutation-based fixed input-length to variable output-length PRF called XORPP∗
and its domain-separated variant called DS-XORPP∗. Both of these constructions are built
with a CENC [IMV16]-style design and both of them have 2n/3-bit security [BDLN20].
Chakraborti et al. [CNTY20] have proposed a beyond the birthday bound secure public
permutation-based fixed input-length PRF, called PDMMAC, a variable input-length PRF
PDM∗MAC and its single-keyed variant. Recently, Dutta et al. [DNT21b] have proposed
another candidate for public permutation-based PRFs, called pEDM, and have shown
a tight 2n/3-bit security. This line of research has been further extended in [DN20b]
by Dutta and Nandi, where they have proposed a beyond the birthday bound secure
nonce-based MAC build on top of public permutations.

Our Contribution. Given the state of the art in permutation-based cryptography, it
is natural to wonder whether we can design a variable input-length PRF based on some
lower-level primitive like public permutations instead of block ciphers that offer beyond the
birthday bound security. In this paper, we provide an answer in the positive. To this end,
we propose a permutation-based PMAC_Plus construction, which we call pPMAC_Plus.
The permutation-based variant of PMAC_Plus is exactly similar to PMAC_Plus with the
following exception: in the block cipher-based PMAC_Plus construction, the output t is
defined as follows:

t = Ek1(Σ)⊕ Ek2(Θ),

where (Σ,Θ) is the 2n-bit output value of the underlying double-block hash function
PMAC_Plus-Hash. For pPMAC_Plus, we mask Σ and Θ with k2 and follow by a domain
separation through chopLSB(·)‖0, chopLSB(·)‖1, respectively. Next, we replace both Ek1(·)
and Ek2(·) by an n-bit public random permutation π(·) (where k1 and k2 are two indepen-
dently sampled block cipher keys). While PMAC_Plus-Hash is built from a block cipher
Ek (independent from Ek1 and Ek2), Ek is also replaced by π in pPMAC_Plus-Hash, the
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αth block of the input message masked with the string (2αk0 ⊕ 22αk1), where k0, k1 and
k2 are three independently sampled n-bit strings.

One can directly replace each block cipher of PMAC_Plus with the two-round iterated
Even-Mansour cipher [CLL+14b] or Mennnink’s SoEM22 construction [CLM19] and obtain
a beyond the birthday bound secure PRF based on public permutations. While both the
solutions incur (2`+ 4) permutation calls, our proposal requires only (`+ 2) permutation
calls, where ` is the maximum number of message blocks. Furthermore, unlike PMAC_Plus
which has a tight 3n/4-bit security, we have shown that pPMAC_Plus achieves a tight
security bound of the order of 22n/3.

2 Preliminaries
General Notations. For a positive integer q, [q] denotes the set {1, . . . q} and for two
natural numbers q1, q2 such that q2 > q1, [q1, q2] denotes the set {q1, . . . , q2}. We write
[n) to denote the set [n] ∪ {0}. For a fixed positive integer n, we write {0, 1}n to denote
the set of all binary strings of length n and {0, 1}∗ = ∪i≥0{0, 1}i to denote the set of all
binary strings with arbitrary finite length. We refer to the elements of {0, 1}n as blocks.
For any element x ∈ {0, 1}∗, |x| denotes the number of bits in x and for x, y ∈ {0, 1}∗, x‖y
denotes the concatenation of y to x. A function chopLSB : {0, 1}n → {0, 1}n−1 removes
the least significant bit of a string x ∈ {0, 1}n. We denote the bitwise XOR operation
of x, y ∈ {0, 1}n by x ⊕ y. We parse x ∈ {0, 1}∗ as x = x1‖x2‖ . . . ‖xl where for each
i = 1, . . . , l − 1, xi is a block and 1 ≤ |xl| ≤ n. For a tuple x̃ := (x1, . . . , xq) of length q,
an element xi of x̃ is called fresh if for all j 6= i, xi 6= xj . Otherwise, we say xi is not fresh
or repeated in x̃. Sometimes we denote tuple x̃ as (xi)i∈[q]. x̃ is said to be distinct if each
of its elements is fresh. Otherwise, we say it is not a fresh tuple. We call x̃ a block-tuple, if
each of its element is a member of {0, 1}n. Concatenation of two tuples x̃ and ỹ is denoted
by (x̃, ỹ). For a set X , X (q) := {(x1, . . . , xq) : xi ∈ X ,∀i 6= j ∈ [q], xi 6= xj} denotes the
set of all distinct tuples over X of length q. ({0, 1}n)(q) denotes the set of all block-wise
distinct tuples of length q. For a finite subset S of N, max S denotes the maximum valued
elements of S.

Given a finite set S and a random variable X, we write X ←$S to denote that
X is sampled uniformly at random from S. We say that X1, X2, . . . , Xq are without
replacement (wor) sampled from S, which we denote as X1, X2, . . . , Xq

wor←−− S, if for
each i ∈ [q], Xi←$S \ {X1, . . . , Xi−1}. Note that when i = 1, then X1←$S. We say
that X1, X2, . . . , Xq are with replacement (wr) sampled from S, which we denote as
X1, X2, . . . Xq ←$S, if for each i ∈ [q], Xi←$S. We also use this notion to denote that
these random variables are sampled uniformly and independently from S. φ denotes the
empty set. We write S ← φ to denote that S is defined to be an empty set. We use the
same notation Φ ← φ to denote that the function Φ is undefined at every point of its
domain. Moreover, the same notation Y ← X is used to denote assignment of the variable
X to Y .

The set of all functions from X to Y is denoted as Func(X ,Y). Similarly, the set of
all permutations over X is represented by Perm(X ). A function Φ is said to be a block
function if it maps elements from an arbitrary domain to {0, 1}n. Set of all block functions
with domain X is denoted as Func(X ). 1 A permutation over {0, 1}n is called a block
permutation and the set of all block permutations is denoted as Perm. If Φ maps to
({0, 1}n)2, then we call it a double-block function. We write a double block function as
Φ = (Φ1,Φ2), where Φ1 and Φ2 are block functions. For integers 1 ≤ b ≤ a, we write (a)b
to denote a(a− 1) . . . (a− b+ 1), where (a)0 = 1 by convention.

1When X = {0, 1}n then we write Func to denote Func({0, 1}n).
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2.1 Distinguishing Advantage
An adversary A is modeled as a randomized algorithm with access to some external
oracle O. Such an adversary is called an oracle adversary. An oracle O is an algorithm
itself which could be a cryptographic scheme being analyzed. The interaction between
A and O, denoted by AO, generates a transcript τ = {(x1, y1), (x2, y2), . . . , (xq, yq)},
where x1, x2, . . . , xq are q queries of A to oracle O and y1, y2, . . . , yq be the corresponding
responses, where yi = O(xi). We assume that A is adaptive which means that xi is
dependent on the previous i− 1 responses.

Distinguishing Game. Let F and G be two random systems and an adversary A is given
oracle access to either of F or G. After interaction with an oracle O ∈ {F,G}, A outputs 1,
which is denoted as AO ⇒ 1. Such an adversary is called a distinguisher and the game is
called a distinguishing game. The task of the distinguisher in a distinguishing game is to
tell which of the two systems it has interacted with. The advantage of distinguisher A in
distinguishing the random system F from G is defined as

AdvF
G(A) := | Pr[AF ⇒ 1]− Pr[AG ⇒ 1] |,

where the above probability is defined over the probability spaces of A and O. The
maximum advantage in distinguishing F from G is defined as the

max
A∈A

AdvF
G(A),

where A is the class of all possible distinguishers. One can easily generalize this setting
when the distinguisher interacts with multiple oracles, which are separated by commas.
For example, AdvF1,...,Fm

G1,...,Gm(A) denotes the advantage of A in distinguishing (F1, . . . ,Fm)
from (G1, . . . ,Gm).

2.2 PRF Security in the Random Permutation Model
A keyed function with the key space K, the domain X and the range Y is a function
F : K × X → Y. We denote F(k, x) by Fk(x). A random function RF from X to Y is
a uniform random variable over the set Func(X ,Y), i.e., RF←$ Func(X ,Y). We define
the pseudorandom security of F under the random permutation model. We assume that
F makes internal public-random-permutation calls to π (F can make calls to multiple
random permutations when all of them are independent and uniform over the set Perm).
For simplicity, we write Fπk to denote F with a uniformly random permutation π←$ Perm
and a uniformly random key k←$K. The distinguisher A is given access to either (Fπk , π)
for k←$K or (RF, π) where pi is an n-bit uniform random permutation. We define the
prf-advantage of A against a keyed function F in the random permutation model as

AdvPRF
F (A) := Adv(Fπk ,π)

(RF,π)(A).

We say F is a (q, p, ε, t)-PRF if AdvPRF
F (A) ≤ ε for all adversaries A that makes q queries

to F, p offline queries to π and runs for at most time t.

2.3 Lazy Sampling of Random Permutations
Consider a distinguisher A interacting with an n-bit random permutation π←$ {0, 1}n.
We simulate this interaction by a simulator S that maintains a partial function Ψ. Ψ is
initially defined to be an empty function (a function with empty domain), i.e., Ψ ← φ.
We consider two dynamically growing sets Dom(Ψ) and Ran(Ψ) associated to Ψ, such
that the points at which Ψ has already been defined gets included in Dom(Ψ) and their
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respective defined values get included in Ran(Ψ). Initially, Dom(Ψ),Ran(Ψ)← φ. On the
ith query xi, the simulator checks whether xi ∈ Dom(Ψ). If so, the corresponding response
is yi ← Psi(xi). Else, the response is sampled uniformly from {0, 1}n \ Ran(Ψ) and xi, yi
are added to Dom(Ψ) and Ran(Ψ) respectively, i.e.,

Dom(Ψ)← Dom(Ψ) ∪ {xi}, Ran(Ψ)← Ran(Ψ) ∪ {yi}.

Note that at any point of time Dom(Ψ),Ran(Ψ) ⊆ {0, 1}n.

2.4 H-Coefficients Technique
The H-Coefficients Technique [Pat08, CLL+14b] was introduced by Patarin [Pat08] and
recently regained attention since Chen and Steinberger used it to analyze the iterated
Even-Mansour cipher [CS14]. This technique gives a systematic way to upper bound the
statistical distance between the answers of the distributions of two interactive random
systems and is typically used to prove the information theoretic pseudo-randomness of
constructions. In this setting, we consider a computationally unbounded and hence
deterministic distinguisher A that interacts with the oracles in either of the two worlds:
(a) oracles in the real world, which happens to be the construction of our interest, or (b)
the oracles in the ideal world, which is usually considered a uniform random function or
permutation. The collection of all queries and responses that A makes and receives to and
from the oracles in either of the two worlds, is called the attack transcript of A, denoted
as τ . In both worlds, the oracle sometimes releases more internal information to A after
it completes all its queries and responses, but before outputs its decision. In this case,
the attack transcript of A includes the additional information, and clearly, the maximum
distinguishing advantage of A in this setting can not be less than the previous one. Observe
that the transcript τ is a random variable and the randomness of its distribution only comes
from that of the oracles present in either of the two worlds with which A has interacted.

Let Dre and Did be two random variables that takes the transcript τ induced in the
real world and the ideal world respectively. The probability of realizing a transcript τ in
the ideal world, i.e., Pr[Did = τ ]) is called the ideal interpolation probability. Similarly, one
can define the real interpolation probability. A transcript τ is said to be attainable with
respect to A if its ideal interpolation probability is non-zero (i.e., Pr[Did = τ ] > 0). We
denote the set of all attainable transcripts by V. Following these notations, we state the
main theorem of H-Coefficients Technique [Pat08, CLL+14b] as follows:

Theorem 1 (H-Coefficients Technique). Let A be a fixed deterministic distinguisher
that has access to oracles either in the real world, i.e., Ore or the oracles in the ideal
world, i.e., Oid. Let V = GoodTtBadT (disjoint union) be some partition of the set of all
attainable transcripts of A. Suppose there exists εratio ≥ 0 such that for any τ ∈ GoodT,

Pr[Dre = τ ]
Pr[Did = τ ] ≥ 1− εratio,

and there exists εbad ≥ 0 such that Pr[Did ∈ BadT] ≤ εbad. Then,

AdvOid
Ore

(A) := |Pr[AOre = 1]− Pr[AOid = 1]| ≤ εratio + εbad. (1)

Note that when Oid is a uniform random function and Ore is some keyed construction
defined over the same domain, then Eqn. (1) says that Advprf

Ore
(A) ≤ εratio + εbad.

3 Some Useful Mathematical Results
This section presents three important results with later use in the security analysis of our
proposed construction. The first result is concerned with the sum of two independent ran-
dom permutations under conditional distribution. The second one bounds the probability
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of multicollision of the sum of two uniform random variables, while the last one gives an
upper bound on the number of solutions to a system of equations with unknown variables
that are supposed to take distinct values.

3.1 Sum of Two Independent Random Permutations Under a Condi-
tional Distribution

Let E be a block cipher over n-bits. Based on E, we define the sum function as follows:

sumk1,k2(x) := Ek1(x)⊕ Ek2(x), x ∈ {0, 1}n.

The security of the sum of two identical random permutations (i.e., when k1 = k2) under
conditional distribution has been studied in [DDN+17]. This paper requires the same
result with the change that instead of two identical random permutations, it considers the
permutations to be independent (i.e., k1 and k2 are independently sampled). Proof of the
lemma is straightforward and similar to that of Theorem 2 of [DDN+17]. Hence we omit
the proof.

Lemma 1. Let Y1 ⊆ {0, 1}n and Y2 ⊆ {0, 1}n be two sets of size s1 and s2 respectively.
Let t̃ := (t1, . . . , tr) be a block tuple of length r. We define the following set:

H := {(h1
i , h

2
i )i : h1

i ⊕ h2
i = ti ∀i ∈ [r], (hbi )i ∈ ({0, 1}n \ Yb)(r) ∀b ∈ [2]}.

Then we have the following lower bound on the cardinality of H:

|H| ≥ (2n − s1)r(2n − s2)r
2nr

(
1− rs1s2 + r2(s1 + s2) + r3

(2n − s1 − r)(2n − s2 − r)

)
.

Moreover, if s1 + r ≤ 2n−1 and s2 + r ≤ 2n−1, then we have

|H| ≥ (2n − s1)r(2n − s2)r
2nr

(
1− 4rs1s2 + 4r2(s1 + s2) + 4r3

22n

)
.

3.2 A Sum-Capture Lemma
In this section, we state a variant of the sum-capture lemma [Bab] used in [CLL+14a].
Informally, the result states that when choosing a random subset A of {0, 1}n (or more
generally any abelian group) of size q, the value

µ(A) := max
B,C⊆{0,1}n

|{(a, b, c) ∈ A× B × C : a = b⊕ c}|,

is at most q|B||C|/2n, except with negligible probability. Chen et al. [CLL+14a] proved the
result for a different setting, in which A arises from the interaction of an adversary with a
random permutation P, namely A = x⊕ y : (x, y) ∈ Q, where Q is the transcript of the
interaction between the adversary and the permutation. Cogliati and Seurin [CS16] used
this result in a slightly different setting. We state below the result as stated in [CS16], the
proof of which can be found in [CS16].

Lemma 2. Let T ∗ be a multiset of q ≥ 1 uniformly random and independently chosen
elements of {0, 1}n. Then assuming 9n ≤ q ≤ 2n−1, we have

Pr
T∗

[
∃U ,V ⊆ {0, 1}n : µ(T ∗,U ,V) ≥ q|U||V|

2n + 3
√
nq|U||V|

]
≤ 2

2n , (2)

where the probability is taken over the uniform distribution of the multiset T ∗.
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3.3 Some Results on Linear Algebra
Let A be a matrix of dimension s × t defined over {0, 1}n. Aij denotes the element in
its ith row and jth column. For a column vector C̃ of dimension s × 1, A‖C̃ denotes
the augmented matrix of dimension s × (t + 1). For any row vector R̃ := (r1, . . . , rt) of
dimension 1× t, transpose of row vector R̃, denoted as R̃T, denotes the column vector

R̃T :=


r1
r2
...
rt


of dimension t× 1. One can represent any system of s linear equations with t unknowns
Ỹ := (Y1, . . . , Yt) defined over {0, 1}n, denoted as L, as a matrix A of dimension s × t,
where the ith equation Li := ai1 · Y1 ⊕ . . .⊕ ait · Yt = ci, where ci ∈ {0, 1}n, corresponds
to the ith row vector of A as ãi := (ai1, . . . , ait). We say L is consistent if it has at least
one solution, otherwise we call it inconsistent. For L to be consistent, one must have
rank(A) = rank(A‖C̃), where the rank of a matrix A is defined as the maximum number
of linearly independent columns of A and C̃ = (c1, . . . , cs)T. L has a unique solution if
rank(A) = t and it has many solutions if rank(A) < t.

Let A · Ỹ T = C̃ represent a system of s linear equations with t unknowns Ỹ defined over
{0, 1}n, where rank(A) = r and the elements of A are from {0, 1}n. Let Ỹ wor←−− Y ⊆ {0, 1}n
and C̃ is any arbitrary column vector of dimension s× 1 with its elements from {0, 1}n.
Thus, the probability of realizing a particular solution is at most 1

(|Y|−t+r)r as stated
formally in the following lemma, proof of which can be found in [DDN+17].

Lemma 3. Let Ỹ := (Y1, . . . , Yt) be without replacement samples from a set Y ⊆ {0, 1}n
and A be a matrix of dimension s× t defined over {0, 1}n. Then, for any given column
vector C̃ of dimension s× 1 over {0, 1}n, we have

Pr[(A)s×t · Ỹ T = C̃] ≤ 1
(|Y| − t+ r)r

,

where r = rank(A).

4 pPMAC_Plus: A Public Permutation-Based BBB Se-
cure MAC

In this section, we propose pPMAC_Plus, a public permutation-based beyond the birth-
day bound secure MAC. It takes an n-bit independent public permutation π and three
independent n-bit keys k0, k1 and k2. For processing a message M ∈ {0, 1}∗, the
padding function pad : {0, 1}∗ → ({0, 1}n)+ is applied on M that parses M into l
blocks (M [1],M [2], . . . ,M [l]) by concatenating 10∗ to the right so that for each i ∈ [l− 1],
|M [i]| = n and 1 ≤ |M [l]| ≤ n.

For each α ∈ [l], the message block M [α] of M is masked with 2αk0 ⊕ 22αk1 before
passing it through the permutation π. Output blocks of the permutation are then XORed
together, followed by masking with another key k2 to generate an n-bit value Σ. Each
output block of the hash permuation instances is simply XORed in one case and multiplied
by 2 before XORing in another, and both are masked with the key k2 to generate output
values Σ and Θ, respectively. Finally, chopLSB (Σ⊕ k2) ‖0 and chopLSB (Θ⊕ k2) ‖1 are
passed through two copies of the same permutation π (as used in the hash function) and
the XOR of their outputs produces the MAC T . An algorithmic description of pPMAC_Plus
is given in Fig. 4.1, and a pictorial illustration in Fig. 4.2.
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pPMAC_Plusπk0,k1,k2
(M)

1 : (Σ,Θ)← pPMAC_Plus-Hash(M).
2 : return T ← π(Σ)⊕ π(Θ).

pPMAC_Plus-Hashπk0,k1,k2
(M)

1 : (M [1],M [2], . . . ,M [`])← pad(M).
2 : (Σ,Θ)← (0n, 0n).
3 : for (i = 1; i ≤ `; i+ +)
4 : X ← 2ik0 ⊕ 22ik1 ⊕M [i].
5 : Yi ← π0(X).
6 : Σ← Σ⊕ Yi,Θ← Θ⊕ 2l−i+1 · Yi.
7 : return
(chopLSB (Σ⊕ k2) ‖0, chopLSB (Θ⊕ k2) ‖1) .

Figure 4.1: pPMAC_Plus is depicted on the left, while a permutation-based DbH function
of pPMAC_Plus is shown on the right.

Figure 4.2: A message with ` blocks (after padding) is input into
pPMAC_Plus− Hashπk0,k1,k2

, which produces outputs Σ and Θ. These outputs are
masked with a random key k2 before going through a domain-separating function, and
the final pPMAC_Plus output is produced by passing these two values through two
permutations and adding the resultants.

Remark 1. Note that the structural design of pPMAC_Plus is similar to that of PMAC_Plus.
The only difference of the former with the latter is that PMAC_Plus uses a block cipher E
with three independent block cipher keys, whereas pPMAC_Plus replaces E by an n-bit
random permutation π alongwith some masking elements and domain separation. It is easy
to see that directly replacing E in PMAC_Plus by the-two round iterated Even-Mansour
cipher or SoEM22 construction [CLL+14b] immediately leads the security of the resulting
construction to beyond the birthday bound. However, both solutions pay a price for
invoking the underlying permutation twice to process a single message block. Therefore,
processing an `-block message requires 2`+ 4 permutation calls in the former approach
and only `+ 2 permutation calls in ours.
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4.1 Security of pPMAC_Plus
In this section, we state that pPMAC_Plus is secure against any information theoretic
adversary that makes roughly 22n/3 online and offline queries.

Theorem 2 (Security of pPMAC_Plus). Let M be a non-empty finite set and π a
uniformly sampled n-bit public permutation. Let A be any distinguisher that makes at most
q construction queries and at most p primitive queries, and runs for at most time t. Then

Advprf
pPMAC_Plus(A) ≤ 2

√
3nqp1p2 + 4

2n + q3(5`3 + 3`2 + 8`+ 4)
22n + 6qp2l2 + 2q2pl + 2q2l

22n

+ 4q3 + 45q2p+ 20qp2 + 5q2

22n .

The PRF security of pPMAC_Plus is roughly at most 22n/3 when q ≈ p.

5 A Key-Recovery Attack on pPMAC_Plus
In this section, we show a matching key-recovery attack on pPMAC_Plus with a total of
22n/3+1 of each of construction and primitive queries. We refer the readers to the full
attack in Fig. 5.1.
Backward attack. The attack proceeds by first making 22n/3 construction queries of
two-block messagesMi[1]‖Mi[2] for i ∈ [22n/3], and collects the responses Ti. Next, it makes
two sets of 22n/3 offline forward queries – one with least significant bit (LSB) 0 and the other
with LSB 1 – to the primitive permutation π, and collects their corresponding responses in
lists L0 and L1, respectively. All these 2p = 22n/3+1 forward queries and their responses
are also collected into a list of pairs L = {(x̃1, ỹ1), (x̃2, ỹ2), . . . , (x̃a, ỹa), . . . , (x̃2p, ỹ2p)}. A
check of pairs (ṽb, z̃c) ∈ (L0×L1) such that ṽb⊕ z̃c = Ti provides triples (i, b, c) collected in
a set S1. Computing pairs (Σ̂, Θ̂) for all pairs of second-coordinates (ỹa1 , ỹa2) ∈ L

∣∣
2 × L

∣∣
2

helps filter the elements of S1 by checking whether

Σ̂⊕ ũb = Θ̂⊕ w̃c,

where ũb and w̃c are the preimages of ṽb and z̃c respectively. If this check passes, then the
attack computes a candidate key k̂2, stores the corresponding triple in S2 and then for all
elements of S2, computes a pair of candidate keys (k̂0, k̂1).
Removing false positives. In order to remove the false positive keys from the set of
candidates, the attack makes another 22n/3 construction queries with messages of two
blocks M ′i [1]‖M ′i [2], where M ′i [1] = (Mi[1] ⊕ 1) and M ′i [2] = Mi[2], and collects their
corresponding responses T ′i for i ∈ [22n/3]. Next, it evaluates pPMAC_Plus on messages
M ′i [1]‖M ′i [2], i ∈ [22n/3], with the candidate key-triple

(
k̂0, k̂1, k̂2

)
. If the computed values

match with the received responses T ′i , then this triple of keys (k̂0, k̂1, k̂2) stays in the
candidate key-list, otherwise, it is removed. We show that the true key belongs to the
set of potential candidate keys with a high probability and that the size of the set of the
candidate keys is not very large. We have thus described a deterministic adversary A that
recovers the key of pPMAC_Plus by making a total of 22n/3+1 construction queries and
22n/3+1 primitive queries as shown in Fig. 5.1.

5.1 Analysis of the Attack
First observe that for internal values xi[1] = Mi[1]⊕ 2 · k0 ⊕ 22 · k1 and xi[2] = Mi[2]⊕
22 · k0 ⊕ 24 · k1 (Mi = Mi[1]‖Mi[2]), i ∈ [22n/3],

E
[∣∣∣{(i, a1, a2) ∈ [22n/3]× [22n/3+1]× [22n/3+1]}

∣∣∣ : (xi[1] = x̃a1) ∧ (xi[2] = x̃a2)
]

= O(1).
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Construction and Primitive Queries

1 : choose distinct (Mi[1]‖Mi[2]) ∈ {0, 1}2n ∀i ∈ [22n/3]

2 : Ti ← pPMAC_Plus (Mi[1]‖Mi[2]) ∀i ∈ [22n/3].

3 : choose distinct ũb ∈ {0, 1}n ∀b ∈ [22n/3]

4 : ṽb ← π1 (ũb)∀b ∈ [22n/3].

5 : choose distinct w̃c ∈ {0, 1}n ∀c ∈ [22n/3]

6 : z̃c ← π2 (w̃c) ∀c ∈ [22n/3].

7 : {x̃1, x̃2, . . . , x̃22n/3+1} ← {ũb}2
2n/3
b=1 ∪ {w̃c}2

2n/3
c=1 .

8 : ỹa ← π0 (x̃a) , a ∈ [22n/3+1].

Backward Attack

1 : S1 ← φ.

2 : ∀(i, b, c) ∈ [22n/3]× [22n/3]× [22n/3], if ṽb ⊕ z̃c = Ti then S1 ← S1 ∪ {(i, b, c)}
3 : S2 ← φ.

4 : ∀(a1, a2, (i, b, c)) ∈ [22n/3+1]× [22n/3+1]× S1,

5 : compute Σ̂(a1,a2,(i,b,c)) ← ỹa1 ⊕ ỹa2

6 : compute Θ̂(a1,a2,(i,b,c)) ← 22 · ỹa1 ⊕ 2 · ỹa2 .

7 : if Σ̂(a1,a2,(i,b,c))
2 ⊕ ũb = Θ̂(a1,a2,(i,b,c))

2 ⊕ w̃c then

8 : k̂
(a1,a2,(i,b,c))
2 ← Σ̂(a1,a2,(i,b,c))

2 ⊕ ũb
9 : S2 ← S2 ∪ {(a1, a2, (i, b, c))}.
10 : ∀(a1, a2, (i, b, c)) ∈ S2

11 : compute k̂(a1,a2,(i,b,c))
0 ← (23 ⊕ 24)−1 (2 ·Mi[1]⊕Mi[2]⊕ 2 · x̃a1 ⊕ x̃a2) ,

12 : compute k̂(a1,a2,(i,b,c))
1 ← (22 ⊕ 23)−1 (22 ·Mi[1]⊕Mi[2]⊕ 22 · x̃a1 ⊕ x̃a2

)
.

Removing False Positives

1 : T ′i ← pPMAC_Plus ((Mi[1]⊕ 1)‖Mi[2]) ∀i ∈ [22n/3].
2 : K ← φ

3 : ∀(a1, a2, (i, b, c)) ∈ S2,

4 : if T ′i = pPMAC_Plus
(
k̂

(a1,a2,(i,b,c))
0 ,k̂

(a1,a2,(i,b,c))
1 ,k̂

(a1,a2,(i,b,c))
2

)
((Mi[1]⊕ 1)‖Mi[2]) ∀i ∈ [22n/3],

5 : then K ← K ∪ {k̂(a1,a2,(i,b,c))
0 , k̂

(a1,a2,(i,b,c))
1 , k̂

(a1,a2,(i,b,c))
2 }.

6 : return K.

Figure 5.1: An attack on pPMAC_Plus, where a computationally unbounded adversary
makes O

(
22n/3) queries to the construction and primitives.

Next, for internal values ui = yi[1]⊕ yi[2]⊕ k2 and wi = 22 · yi[1]⊕ 2 · yi[2]⊕ k2, i ∈ [22n/3],

E
[∣∣∣{(b, c) ∈ [22n/3]× [22n/3]}

∣∣∣ : (ui = ũb) ∧ (wi = w̃c)
]

= O(1).

Thus, bounding the number of queries to the construction and each of the primitives by
O
(
22n/3) ensures the presence of at least one tuple (a1, a2, b, c) of primitive query indices
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that matches with true internal values corresponding to a construction index i with high
probability.
The backward attack checks for the validity of the equations induced by the construction.
First consider the set S1. It is computed over sets of sizes q, p and p with a restriction of
two conditions on n-bit strings. Therefore, E [|S1|] = qp2

2n . Similarly, E [|S2|] = qp4

22n . Note
here that only the indices b, c that appear in tuples (i, b, c) ∈ S1 are considered for the
check in step 7 of the backward attack, and the corresponding construction query-index i is
used next for computing guess values (k̂0, k̂1) of the key-pair. Observe that the probability
depends on the sampling of values ỹa, and not on the keys, as the hash computation of
the message is not even considered so far.

By the same formula, the expected size of K is |S2| × q × 1
22n = q2p4

24n . Since q and p both
have the same order O

(
22n/3), E [|K|] is O(1) when q = O

(
22n/3). Finally, since the true

key is in K with very high probability due to the choice of lengths of the query-lists, the
true key (k0, k1, k2) must belong to K with very high probability. This demonstrates that
the above is indeed an O

(
22n/3) attack on pPMAC_Plus.

6 Proof of Theorem 2
In this section, we prove Theorem 2. We often denote pPMAC_Plus[π, k0, k1, k2] simply by
pPMAC_Plus∗ when the primitives and the underlying keys are understood. We consider
any information theoretic deterministic distinguisher A that has access to a triplet of
oracles in the real and the ideal worlds: In the real world, it has access to the oracles
Ore := (pPMAC_Plus∗, π+, π−), where π is a uniformly chosen random n-bit permutation
and k0, k1, k2 are three independently and uniformly chosen random n-bit keys. In the
ideal world, it has access to the oracles Oid := ($, π+, π−), where π is again a uniformly
chosen n-bit random permutation. Queries to the first oracle in either of the two worlds
are called construction queries and queries to the remaining oracles are called primitive
queries. Note that as the primitive π is a permutation, an adversary can make queries in
the forward direction, which we call forward primitive queries, as well as in the inverse
direction, which we call backward primitive queries. Throughout the proof, we assume that
neither does an adversary A make duplicate or redundant queries nor does it make queries
whose responses can be constructed from the previous query-responses. We call such an
adversary a non-trivial adversary. We also assume that A makes q construction queries
and p (forward and backward) primitive queries in either of the two worlds.

Once an adversary has finished making all its queries, the keys k0, k1, k2 in the real world,
and corresponding dummy values in the ideal world are released to the adversary. Further-
more, the intermediate values ((xi[1], xi[2], . . . , xi [li]) , (yi[1], yi[2], . . . , yi [li]) , ui, vi, wi, zi)
for each construction query i ∈ [q] are also released. These values represent the following:

xi[α] = Mi ⊕ 2αk0 ⊕ 21αk1 ∀α ∈ [li] , yi[α] = π(xi[α]) ∀α ∈ [li]
ui = chopLSB (Σi ⊕ k2) ‖0 , vi = π(ui)
wi = chopLSB (Θi ⊕ k2) ‖1 , zi = π(wi). (3)

6.1 An Outline of the Proof
We begin the proof by providing well-defined algorithms for the interaction of an adversary
with the real and ideal worlds. While the adversarial interaction with the real world only
involves an online phase (since its responses are true to the construction), the ideal world
also requires an offline phase for computation of certain output values so as to mimic the
real world more closely. These algorithms are detailed in Fig.s 6.1–6.5.
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Stage I of the offline phase of the ideal world (Fig. 6.3) lists certain events (which we
call bad events), for which, the algorithm aborts; the probability of occurrence of these
events is computed next. This is the bad event analysis, and can be found in Sect. 6.5.

The remaining cases are analyzed in the good transcript analysis (Sect. 6.6) by proving
that the ideal interpolation probability is very close to the real interpolation probability.
The computation for the real case is quite straightforward, and the bound is given by
Eqn. (54).

For the ideal world, all queries made by the adversary to the online and offline oracles
are indexed according to the respective algorithms. These indices are first split into those
corresponding to free (non-repeating hash output blocks) and single-colliding (collision in
exactly one block of the hash output) indices. An equivalence relation is defined according
to the collisions of the hash function outputs of the second category of indices so as
to classify the output definitions for both inputs. These steps are detailed in Stages II
(Fig. 6.4) and III (Fig. 6.5) of the offline phase of the ideal world. This partitions all
queried indices into the following sets:

1. F is the set of indices corresponding to free queries,

2. I contains the indices corresponding to queries with one hash output block colliding
with a primitive query input,

3. Pc is the set of indices corresponding to queries with one of their hash output blocks
colliding with one of the hash-primitive inputs, and

4. Qc is the set of indices corresponding to queries with one of their hash output blocks
colliding with the corresponding block of the hash output of another query.

6.2 Real World and Ideal World
In the real world, when an adversary A makes a construction query with message M to
pPMAC_Plus∗, it receives the tag T ← pPMAC_Plus∗(M). In the ideal world, when A
makes a construction query with message M to $, it samples an n-bit tag T ←$ {0, 1}n
and returns it to A. In both the worlds, A is allowed to make forward as well as backward
primitive queries to π. When A makes the ath forward query x̃a to π for a ∈ [2p], it
samples ỹa←$ {0, 1}n \ {ỹ1, . . . , ỹa−1} and returns it to the adversary. Similarly, for the
ath backward query ỹa to π, it returns x̃a←$ {0, 1}n \ {x̃1, . . . , x̃a−1} and returns it to the
adversary.
The behavior of the oracles in the real and ideal worlds is detailed in Fig.s 6.1 and 6.2.
This is showing the correct figure numbers – 6.1 and 6.2 – but it takes the reader to figures
4.1 and 4.2 on clicking on the pdf; why is this happening? When all the queries and
responses are finished, the real world returns the key (k0, k1, k2) to A, whereas the ideal
world behaves as depicted in Fig.s 6.3, 6.4 and 6.5.

6.3 Offline Phase of the Ideal World
After the query-response phase, the ideal world samples three n-bit dummy keys (k0, k1, k2),
uniformly and independently of all the previously sampled random variables. Then it
starts computing the hash value of pPMAC_Plus-Hash∗ for all the q queried messages.
During this hash computation, if any of the events mentioned in stage 1 of the game
(shown in Fig. 6.3) occur, it is aborted. The first event Coll addresses collisions between
two inputs to the hash-permutations of a particular construction query and inputs to any
forward primitive query. 3-Coll takes care of collisions of a hash-permutation input from
one construction query with one input block each of hash-permutations involved in two
other contruction queries. (Bad1-Bad3) occur when there is a collision in both invocations
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Real-Online

1 : π0 ← π|û‖0 ∀û ∈ {0, 1}n−1, π1 ← π|ŵ‖1 ∀ŵ ∈ {0, 1}n−1.

2 : Dom(π0)← φ,Dom(π1)← φ,Ran(π0)← φ,Ran(π1)← φ.

3 : ∀i ∈ [q], on query Mi, output Ti ← pPMAC_Plus∗(Mi).
4 : ∀b ∈ [p] such that ũb = ûb‖0, on query (ũb,+) to π0,

5 : output ṽb ←$ {0, 1}n \ Ran(π0) ∪ Ran(π1).
6 : π0(ũb)← ṽb.

7 : Dom(π0)← Dom(π0) ∪ {ũb}.
8 : Ran(π0)← Ran(π0) ∪ {ṽb}.
9 : ∀c ∈ [p] such that w̃c = ŵc‖1, on query (w̃c,+) to π1,

10 : output z̃c ←$ {0, 1}n \ Ran(π0) ∪ Ran(π1).
11 : π0(w̃c)← z̃c.

12 : Dom(π1)← Dom(π1) ∪ {w̃c}.
13 : Ran(π1)← Ran(π1) ∪ {z̃c}.
14 : ∀a ∈ [p], on query (ỹa,−) to π such that

ỹa 6∈ Ran(π0) ∪ Ran(π1), output x̃a ←$ {0, 1}n \
(

Dom(π0) ∪ Dom(π1)
)
.

15 : if LSB(x̃a) = 0, then Dom(π0)← Dom(π0) ∪ {x̃a},Ran(π0)← Ran(π0) ∪ {ỹa}.
16 : else Dom(π1)← Dom(π1) ∪ {x̃a},Ran(π1)← Ran(π1) ∪ {ỹa}.
17 : Dom(π)← Dom(π0) t Dom(π1),Ran(π)← Ran(π0) t Ran(π1).

Figure 6.1: Description of the online phase of the real world. π0 is the restriction of the
permutation π to the domain {û‖0 : û ∈ {0, 1}n−1}, and similarly, π1 is the restriction of
the permutation π to the domain {ŵ‖1 : ŵ ∈ {0, 1}n−1}.

of π involved in the sum function. Note that Bad2 and Bad3 guarantee that a collision of
the value Σi of the ith construction query with a primitive query x̃a ensures freshness of
Θi, and by symmetry, the same for Σi due to a primitive-value collision of Θi.
This makes certain that the output Ti ⊕ ỹa of Θi through π remains fresh. However, if
Ti ⊕ ỹa collides with any ỹa′ due to the sampling of Ti, then permutation compatibility
is violated. A similar violation arises when chopLSB (Θi ⊕ k2) ‖0 collides with a primitive
query x̃a, but the output of Σi is not fresh. This event is captured in Bad4. The events
Bad1 and Bad3 guarantee that a collision in exactly one half of the hash blocks of two
construction queries implies freshness of the other half. This also means that their tags do
not collide with each other. However, if they do happen to collide with each other through
sampling of the tags, permutation compatibility is again violated, as captured in Bad5. If
the game is not aborted in stage I, it proceeds to stage II.
In this stage, there may exist a set of indices for which exactly one hash block collides with
a primitive query. For example, if chopLSB (Σi ⊕ k2) ‖0 collides with ũb for some i ∈ [q]
and for some b ∈ [p], then we remove i from I and add Σi to Σ̃ and Θi to Θ̃, as well
as chopLSB (Θi ⊕ k2) ‖1 to the domain of π and Ti ⊕ ṽb to the range of π. Similarly, if
chopLSB (Θi ⊕ k2) ‖0 collides with w̃c for some i ∈ [q] and for some c ∈ [p], we remove i
from I and add Σi and Θi to Σ̃ and Θ̃ respectively, as well as chopLSB (Σi ⊕ k2) ‖0 to the
domain of π and Ti ⊕ z̃c to the range of π. Note that if chopLSB (Σi ⊕ k2) ‖0 collides with
ũb, then Θi is fresh as Bad2 and Bad3 do not occur. Moreover, Ti⊕ ỹa is also fresh as Bad4
does not occur. Hence, the inclusion of Θi in the set Dom(π1) and Ti ⊕ ỹa in Ran(π1) is
sound. One can similarly argue that the inclusion of Σi in Dom(π0) and Ti⊕ y2

j in Ran(π0)
is also sound.
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Ideal-Online

1 : Dom(π0)← φ,Dom(π1)← φ,Ran(π0)← φ,Ran(π1)← φ.

2 : ∀i ∈ [q], on query Mi, output Ti ←$ {0, 1}n. / ∗ Construction query. ∗ /
3 : ∀b ∈ [p] such that ũb = ûb‖0, on query (ũb,+) to π, / ∗ Forward primitive query. ∗ /
4 : output ṽb ←$ {0, 1}n \ Ran(π0) ∪ Ran(π1).
5 : Dom(π0)← Dom(π0) ∪ {ũb}.
6 : Ran(π0)← Ran(π0) ∪ {ṽb}.
7 : ∀c ∈ [p] such that w̃c = ŵc‖1, on query (w̃c,+) to π, / ∗ Backward primitive query. ∗ /
8 : output z̃c ←$ {0, 1}n \ Ran(π0) ∪ Ran(π1).
9 : Dom(π1)← Dom(π1) ∪ {w̃c}.
10 : Ran(π1)← Ran(π1) ∪ {z̃c}.
11 : ∀a ∈ [p], on query (ỹa,−) to π such that

ỹa 6∈ Ran(π0) ∪ Ran(π1), output x̃a ←$ {0, 1}n \
(

Dom(π0) ∪ Dom(π1)
)
.

12 : if LSB(x̃a) = 0, then Dom(π0)← Dom(π0) ∪ {x̃a},Ran(π0)← Ran(π0) ∪ {ỹa}.
13 : else Dom(π1)← Dom(π1) ∪ {x̃a},Ran(π1)← Ran(π1) ∪ {ỹa}.
14 : Dom(π)← Dom(π0) t Dom(π1),Ran(π)← Ran(π0) t Ran(π1).

Figure 6.2: Description of the online phase of the ideal world. π0 is the restriction of the
permutation π to the domain {û‖0 : û ∈ {0, 1}n−1}, and similarly, π1 is the restriction of
the permutation π to the domain {ŵ‖1 : ŵ ∈ {0, 1}n−1}.

For the remaining q − |I| indices, there may exist a set of free indices F for which both
blocks of the hash value are fresh in the set of 2(q − |I|) hash block values. The oracle
samples outputs for these fresh hash values without replacement such that for any i ∈ F ,
the sampled outputs vi and zi sum up to Ti.
The cases remaining in stage III are those for which exactly one block of the hash value
collides with that of another construction query. For all i ∈ [q] \ (F t I), if the output of
the colliding hash value, say Σi, is not yet sampled, then the oracle samples its output
without replacement, say vi and sets the output of the remaining block, i.e., the output of
Θi as the sum of vi and Ti (see line 2 of stage III). Else, the oracle sets the output of Σi to
the already defined element and adjusts the output of the other block accordingly (see line
3 of stage III). Note that in the latter case, the oracle does not sample the output. If the
output of Θi (i.e., Ti ⊕ vi) happens to collide with any previously sampled output or any
element of Ran(π1) in the above argument, then RCΣ is set to 1 (see line 4 of stage III)
and aborts the game. Similarly, the oracle sets RCΘ to 1 if the adjustment of the output of
Σi causes a collision with any previously sampled output or any element of Ran(π0). Note
that these events cannot hold for the real oracle as at least one of Θi or Σi is always fresh
in the tuple of 2(q − |I|) hash block values. Finally, it returns all these sampled values
along with the sampled hash key to the distinguisher A.

6.4 Attack transcript
Let τc := {(M1, T1), (M2, T2), . . . , (Mq, Tq)} be the list of construction queries and responses
made by A. We call τc the construction query transcript. Let τp := {(x̃1, ỹ1), . . . , (x̃2p, ỹ2p)}
be the list of primitive queries and responses made to π by A. The pair (τc, τp) constitutes
the query transcript of the attack. For convenience, we slightly modify the experiment by
revealing the keys (k0, k1, k2) and internal or random values to the distinguisher A (only
after it completes making all its queries but before it outputs its decision) in addition to
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Ideal-Offline: Stage I

1 : (k0, k1, k2)←$ ({0, 1}n)3.

2 : if ∃i ∈ [q], α 6= β in [li] and a1 6= a2 for which x̃a1 , x̃a2 ∈ Dom(π) :
3 :

(
Mi[α]⊕ 2αk0 ⊕ 22αk1 = x̃a1

)
∧
(
Mi[β]⊕ 2βk0 ⊕ 22βk1 = x̃a2

)
, then Coll← 1, ⊥ .

4 : if ∃i1, i2, i3 ∈ [q], and distinct α1 ∈ [li1 ], α2 ∈ [li2 ], α3 ∈ [li3 ] :
5 :

(
Mi1 [α1]⊕ 2α1k0 ⊕ 22α1k1 = Mi2 [α2]⊕ 2α2k0 ⊕ 22α2k1

)
6 : ∧

(
Mi1 [α1]⊕ 2α1k0 ⊕ 22α1k1 = Mi3 [α3]⊕ 2α3k0 ⊕ 22α3k1

)
, then 3-Coll← 1, ⊥ .

7 : ∀i ∈ [q], (Σi,Θi)← pPMAC_Plus-Hashπk0,k1,k2(Mi). / ∗ See subroutine 4.1 ∗ /

8 : Σ̃← {Σ1, . . . ,Σq} , Θ̃← {Θ1, . . . ,Θq} .
9 : if ∃i1, i2, i3 ∈ [q] with i2 6= i1, i3 6= i1 :
10 : (chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0)
11 : ∧ (chopLSB (Θi1 ⊕ k2) ‖1 = chopLSB (Θi3 ⊕ k2) ‖1) , then Bad1 ← 1, ⊥ .

12 : if ∃i ∈ [q] :
13 :

(
chopLSB (Σi ⊕ k2) ‖0 ∈ Dom(π0)

)
∧
(

chopLSB (Θi ⊕ k2) ‖1 ∈ Dom(π1)
)
,

then Bad2 ← 1, ⊥ .

14 : if ∃i1 6= i2 ∈ [q] :
15 :

[
(chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0) ∧

(
chopLSB (Θi1 ⊕ k2) ‖1 ∈ Dom(π1)

)]
16 : ∨

[
(chopLSB (Θi1 ⊕ k2) ‖1 = chopLSB (Θi2 ⊕ k2) ‖1) ∧

(
chopLSB (Σi1 ⊕ k2) ‖0 ∈ Dom(π0)

)]
,

17 : then Bad3 ← 1, ⊥ .

18 : if ∃i ∈ [q], b, c ∈ [p] :
19 : [(chopLSB (Σi ⊕ k2) ‖0 = ũb) ∧ (Ti ⊕ ṽb = z̃c)]
20 : ∨ [(chopLSB (Θi ⊕ k2) ‖1 = w̃c) ∧ (Ti ⊕ z̃c = ṽb)] , then Bad4 ← 1, ⊥ .

21 : if ∃ distinct i1, i2 ∈ [q] :
22 : [(chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0) ∧ (Ti1 = Ti2)]
23 : ∨ [(chopLSB (Θi1 ⊕ k2) ‖1 = chopLSB (Θi2 ⊕ k2) ‖1) ∧ (Ti1 = Ti2)] , then Bad5 ← 1, ⊥ .

24 : if ∃i1, i2, i3 ∈ [q], b, c ∈ [p] and αin [li2 ] , βin [li3 ] :
25 : ([chopLSB (Σi1 ⊕ k2) ‖0 = xi2 [α]] ∧ [chopLSB (Θi1 ⊕ k2) ‖1 = xi3 [β]])∨
26 : ([chopLSB (Σi1 ⊕ k2) ‖0 = xi2 [α]] ∧ [chopLSB (Θi1 ⊕ k2) ‖1 = w̃c])∨
27 : ([chopLSB (Σi1 ⊕ k2) ‖0 = xi2 [α]] ∧ [chopLSB (Θi1 ⊕ k2) ‖1 = chopLSB (Θi3 ⊕ k2) ‖1])∨
28 : ([chopLSB (Σi1 ⊕ k2) ‖0 = ũb] ∧ [chopLSB (Θi1 ⊕ k2) ‖1 = xi3 [β]])∨
29 : ([chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi1 ⊕ k2) ‖0] ∧ [chopLSB (Θi1 ⊕ k2) ‖1 = xi3 [β]]) ,

then Bad6 ← 1, ⊥ .
30 : go to stage II .

Figure 6.3: Stage I of the offline phase of the ideal oracle. The internal values xi[α] are as
defined in Eqn. (3).

responses to the queries it makes. If A interacts with the real world, then the actual key of
the construction is revealed along with the permutation outputs of the hash output blocks
Σ and Θ, whereas for the ideal world, a triplet of dummy n-bit keys (k0, k1, k2) is revealed.
The construction query transcript of the attack is thus

τ̂c = ((M1, T1, v1, z1), (M2, T2, v2, z2), . . . , (Mq, Tq, vq, zq), k0, k1, k2) .
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Ideal-Offline: Stage II

1 : ∀i ∈ [q] if (∃b ∈ [p] : chopLSB (Σi ⊕ k2) ‖0 = ũb)∨
(∃i2 ∈ [q] and α ∈ [li2 ] : chopLSB (Σi ⊕ k2) ‖0 = xi2 [α]) , then

2 : Σ̃← Σ̃ \ Σi and I ← I ∪ {i}.
3 : Dom(π1)← Dom(π1) ∪ {chopLSB (Θi ⊕ k2) ‖1}.
4 : Ran(π1)← Ran(π1) ∪ {Ti ⊕ ṽb}.
5 : ∀i ∈ [q]if (∃c ∈ [p] : chopLSB (Θi ⊕ k2) ‖1 = w̃c)∨

(∃i2 ∈ [q] and α ∈ [li2 ] : chopLSB (Θi ⊕ k2) ‖1 = xi2 [α]) , then

6 : Θ̃← Θ̃ \Θi and I ← I ∪ {i}.
7 : Dom(π0)← Dom(π0) ∪ {chopLSB (Σi ⊕ k2) ‖0}.
8 : Ran(π0)← Ran(π0) ∪ {Ti ⊕ z̃c}.
9 : F ← {i ∈ [q] \ I : (Σi 6= Σi′) ∧ (Θi 6= Θi′′) for any i′, i′′ 6= i in [q] \ I}.
10 : f ← |F|.
11 : vi ←$ {0, 1}n \ Ran(π0) ∀i ∈ F .
12 : S ← {(vi, zi) ∈ {0, 1}n \ Ran(π0)× {0, 1}n \ Ran(π1) : vi ⊕ zi = Ti ∀i ∈ F}.
13 : for (vi, zi)←$S :
14 : set Π0 (chopLSB (Σi ⊕ k2) ‖0)← vi,Π1 (chopLSB (Θi ⊕ k2) ‖1)← zi.

15 : Dom
(

Π0)← Dom
(

Π0) ∪ {chopLSB (Σi ⊕ k2) ‖0, } , Ran
(

Π0)← Ran
(

Π0) ∪ {vi}.
16 : Dom

(
Π1)← Ran

(
Π1) ∪ {chopLSB (Θi ⊕ k2) ‖1} , Ran

(
Π0)← Ran

(
Π0) ∪ {vi}.

17 : go to stage III.

Figure 6.4: Stage II of the offline phase of the ideal oracle.

Therefore, the query transcript of the attack is τ = (τ̂c, τp), where τp can further be
partitioned into τ0

p := {(ũb, ṽb) : ũb = ûb‖0 where ûb ∈ {0, 1}n−1, ∀b ∈ [p]} and τ1
p :=

{(w̃c, z̃c) : w̃c = ŵc‖1 where ŵc ∈ {0, 1}n−1, ∀c ∈ [p]}. Note that if A interacts with the
real world, then

∀i ∈ [q], vi := π0 (chopLSB (Σi ⊕ k2) ‖0) := π (chopLSB (Σi ⊕ k2) ‖0) ,
zi := π1 (chopLSB (Θi ⊕ k2) ‖1) := π (chopLSB (Θi ⊕ k2) ‖1) ,

where (Σi,Θi) := pPMAC_Plus-Hashπk0,k1,k2
(Mi). Moreover, a transcript τ in the real

world must satisfy the following conditions:

• vi ⊕ zi = Ti,∀i ∈ [q].

• ∀a ∈ [2p], π(x̃a) = ỹa such that ∀b ∈ [p], π(ũb) = ṽb and ∀c ∈ [p], π(w̃c) = z̃c, where
ũb = ûb‖0 and w̃c = ŵc‖1 for ûb, ŵc ∈ {0, 1}n−1.

• Σ̃ is permutation compatible with ṽ and Θ̃ is permutation compatible with z̃ (note
that (Σ̃, Θ̃) is uniquely determined by the message tuple (M1, . . . ,Mq), the tuple of
keys k0, k1, k2 and the public random permutation π).

6.5 Definition and Probability of Bad Transcripts
Suppose X denotes the set of all attainable transcripts and Dre and Did the random
variables that take transcript τ induced in the real world and ideal world respectively. An
attainable transcript τ ∈ X is said to be bad if either of the following bad flags

Coll, 3-Coll,Bad1,Bad2,Bad3,Bad4,Bad5,Bad6,RCΣ,RCΘ
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Ideal-Offline: Stage III

1 : ∀i ∈ [q], Dom(π)← Dom(π0) ∪ Dom(π1) ∪
{
Mi[α]⊕ 2αk0 ⊕ 22αk1 : α ∈ [li]

}
,

2 : Ran(π)← Ran(π0) ∪ Ran(π1) ∪
{
π
(
Mi[α]⊕ 2αk0 ⊕ 22αk1

)
: α ∈ [li]

}
.

3 : ∀i ∈ [q] \ (F t I) such that ∃Σi′ ∈ Σ̃ with Σi = Σi′ ,
4 : if chopLSB (Σi ⊕ k2) ‖0 6∈ Dom(π) ∪ Dom(Π0),
5 : then Π0 (chopLSB (Σi ⊕ k2) ‖0)← vi ←$ {0, 1}n \ Ran(Π0) ∪ Ran(π0) and zi ← Ti ⊕ vi.
6 : else vi ← Π0 (chopLSB (Σi ⊕ k2‖ 0) and zi ← Ti ⊕ vi.
7 : Dom

(
Π0)← Dom

(
Π0) ∪ {chopLSB (Σi ⊕ k2) ‖0, } , Ran

(
Π0)← Ran

(
Π0) ∪ {vi}.

8 : Dom
(

Π1)← Dom
(

Π1) ∪ {chopLSB (Θi ⊕ k2) ‖1} , Ran
(

Π1)← Ran
(

Π1) ∪ {vi}.
9 : if zi ∈ Ran(Π1) ∪ Ran(π1), then RCΣ ← 1 , Π1 (chopLSB (Θi ⊕ k2) ‖1)← zi,⊥ .

10 : ∀i ∈ [q] \ (F t I) such that ∃Θi′′ ∈ Θ̃ with Θi = Θi′′ ,

11 : if chopLSB (Θi ⊕ k2) ‖1 6∈ Dom(π) ∪ Dom(Π1),
12 : then Π1 (chopLSB (Θi ⊕ k2) ‖1)← zi ←$ {0, 1}n \ Ran(Π1) ∪ Ran(π1) and zi ← Ti ⊕ zi.
13 : else zi ← Π1 (chopLSB (Θi ⊕ k2‖ 1) and vi ← Ti ⊕ zi.
14 : Dom

(
Π0)← Dom

(
Π0) ∪ {chopLSB (Σi ⊕ k2) ‖0, } , Ran

(
Π0)← Ran

(
Π0) ∪ {vi}.

15 : Dom
(

Π1)← Ran
(

Π1) ∪ {chopLSB (Θi ⊕ k2) ‖1} , Ran
(

Π0)← Ran
(

Π0) ∪ {vi}.
16 : if vi ∈ Ran(Π0) ∪ Ran(π0), then RCΘ ← 1 , Π0 (chopLSB (Σi ⊕ k2) ‖0)← vi,⊥ .

17 : Dom(π)← Dom(π0) t Dom(π1), Ran(π)← Ran(π0) t Ran(π1).
18 : Dom(Π)← Dom(Π0) t Dom(Π1), Ran(Π)← Ran(Π0) t Ran(Π1).

Figure 6.5: Stage III of the offline phase of the ideal oracle. Boxed statements denote bad
events. Whenever a bad event is set to 1, the game gets immediately aborted (denoted ⊥)
and returns the remaining values of the transcript arbitrarily.

is set to 1 as defined in Fig. 6.3. We define the event Bad as

Coll∨3-Coll∨

∨6
i=1 (Badi ∧ Coll ∧ 3-Coll)︸ ︷︷ ︸

Bad∗
i

∨(RCΣ ∧ Coll ∧ 3-Coll)︸ ︷︷ ︸
RC∗Σ

∨ (RCΘ ∧ Coll ∧ 3-Coll)︸ ︷︷ ︸
RC∗Θ

.

Thus, BadT := {((Mi, Ti, vi, zi), (x̃a, ỹa)) ∈ (τ̂c, τp) : ((Mi, Ti, vi, zi), (x̃a, ỹa)) satisfies at
least one condition boxed in Fig. 6.3} ⊆ X and GoodT := X \ BadT denote the set of bad
and good transcripts, respectively. Having identified the bad transcripts, we bound the
probability of realizing them in the ideal world in the following lemma.

Lemma 4. Let BadT be the set of all attainable bad transcripts and Did be the random
variable that takes a transcript τ induced in the ideal world. Then

Pr[Did ∈ BadT] ≤ εbad = 2
√

3nqp2 + 4
2n + q3(10`3 + 5`2 + 4`+ 8)

22n

+ q2p(2`+ 9)
22n + qp2(11`2 + 4`+ 8)

22n + q2(2`+ 5)
22n .

Proof. Bounding the probability of the bad transcripts in the ideal world is equivalent to
bounding the probability of the event Bad in the ideal world. Due to the union bound,

Pr[Bad] ≤ Pr[Coll] + Pr[3-Coll] +
6∑
i=1

Pr[Bad∗i ] + Pr[RC∗Σ] + Pr[RC∗Θ]. (4)
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In the following, we separately bound each of the above terms. By a slight abuse of
notation, we use the flag names to identify the corresponding event. Before we bound the
terms, we set up a few notations.
Notational set-up. Let U = {x̃a ∈ {0, 1}n : (x̃a, ỹa) ∈ τp} and V = {ỹa ∈ {0, 1}n :
(x̃a, ỹa) ∈ τp} be the domain and range of the transcript of π. Let (M1, . . . ,Mq) be a tuple
of q distinct messages such that the ith message Mi has `i blocks with ` = max{l1, . . . , lq},
being the maximum number of message blocks amongst all the q messages. For two distinct
fixed indices i1, i2 ∈ [q], we define the set

NEQi1,i2 = {α ∈ min[li1 , li2 ] : Mi1 [α] 6= Mi2 [α]}∪{α : min[li1 , li2 ] + 1 ≤ α ≤ max[li1 , li2 ]}.

In words, NEQi1,i2 refers to the set of all positions at which inputs to the hash permutation
π from message blocks of Mi1 and Mi2 differ. We denote the inputs (resp. outputs) of
these permutation instances as xi (resp. yi). In particular, we write xi[α] to denote
the permutation input corresponding to the αth block of the ith message, i.e. xi[α] =
Mi[α]⊕ 2αk0 ⊕ 22αk1 and yi[α] = π(xi[α]).
Bounding Coll. For a fixed choice of i ∈ [q], α 6= β in [li] and a1, a2 ∈ [p], the system of
equations

2αk0 ⊕ 22αk1 = M i[α]⊕ x̃a1 ,

2βk0 ⊕ 22βk1 = M i[β]⊕ x̃a2

has rank 2. Since k0 and k1 are two independent n-bit keys, varying over all possible
choices of indices gives

Pr[Coll] ≤ qp2`2

22n+1 . (5)

Bounding 3-Coll. For a fixed choice of i1, i2, i3 ∈ [q], and distinct α1 ∈ [li1 ], α2 ∈ [li2 ], α3 ∈
[li3 ], the system of equations

(2α1 ⊕ 2α2)k0 ⊕ (22α1 ⊕ 22α2)k1 = Mi1 [α1]⊕Mi2 [α2],
(2α1 ⊕ 2α3)k0 ⊕ (22α1 ⊕ 22α3)k1 = Mi1 [α1]⊕Mi3 [α3]

has rank 2. Since k0 and k1 are two independent n-bit keys, varying over all possible
choices of indices gives

Pr[3-Coll] ≤
q3(3`

3
)

22n ≤ 5q3`3

22n . (6)

Bounding Event Bad∗1. We fix three messages Mi1 ,Mi2 and Mi3 where i1 6= i2, i1 6= i3, such
that Mi1 has li1 blocks, Mi2 has li2 blocks and Mi3 has li3 blocks. Consider the event

CollX(1) : {∃ j1, j2 ∈ {i1, i2, i3} and α ∈ [lj1 ], β ∈ [lj2 ], such that xj1 [α] = xj2 [β]} .

Therefore,

Pr[Bad∗1] ≤
∑
i1,i2,i3

(
Pr[Θi1 = Θi3 ∧ Coll ∧ 3-Coll ∧ CollX(1)]︸ ︷︷ ︸

(1)

+ Pr[Σi1 = Σi2 ∧Θi1 = Θi3 ∧ Coll ∧ 3-Coll ∧ CollX(1)]︸ ︷︷ ︸
(2)

)
. (7)

Bounding (1): It is easy to see that for a fixed triplet of messages, the probability of
CollX(1) is at most

(3`
2
)
/2n. Under this condition, Θi1 = Θi3 provides a non-trivial equation

for some random variable yi′ [α′]. Assuming li1 ≤ li3 , let α ∈ [li1 ] (if it exists) be the
largest index such that Mi1 [α] 6= Mi3 [α]. Then either yi1 [α] or yi3 [α] is fresh and the
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equation Θi1 = Θi3 is non-trivial for this random variable. On the other hand, if no such
index α exists(i.e. Mi1 [α] = Mi3 [α] for all α ∈ [li1 ] and li1 < li3), we can obtain a freshly
sampled random variable yi3 [β], for which Θi1 = Θi3 becomes non-trivial. Therefore, the
probability that this equation is satisfied is at most 1/(2n−2`) ≤ 2/2n, assuming ` ≤ 2n−2,
giving (1) an upper bound of

(3`
2
)
/2n · 2/2n ≤ 9`2/22n:

Pr[Θi = Θk ∧ Coll ∧ 3-Coll ∧ CollX(1)] ≤ 9`2

22n . (8)

Bounding (2): We split this case into the following two subcases:

i2 = i3: Without loss of generality, assume li1 ≤ li2 . Note that if li1 = li2 , then li2
must be at least 2 for Σi1 = Σi2 to yield a non-trivial equation. In this case, we
can easily find two freshly sampled random variables yi1 [α] and yi2 [β] for which
(Σi1 = Σi2) ∧ (Θi1 = Θi2) yields a system of equations of rank 2. Hence by the rank
argument (i.e. Lemma 3),

Pr[(Σi1 = Σi2) ∧ (Θi1 = Θi2) ∧ Coll ∧ 3-Coll ∧ CollX(1)] ≤ 1
(2n − 2`)2

. (9)

In the particular case when li1 + 1 = li2 and NEQi1i2 = {li2}, if xi2 [li2 ] = x̃a for
some a ∈ [p], then Σi1 = Σi2 and Θi1 = Θi2 would boil down to

ỹa = 0n,(
2li1 ⊕ 2li1+1) yi1 [1]⊕ . . .

(
2⊕ 22) yi1 [li1 ]⊕ 2ỹa = 0n. (10)

As the second equation in (10) is non-trivial, and xi2 [li2 ] = x̃a holds with probability
at most 1/2n (the number of choices for x̃a is 1),

Pr[(Σi1 = Σi2) ∧ (Θi1 = Θi2) ∧ Coll ∧ 3-Coll ∧ CollX(1)] ≤ 1
2n(2n − 2`) . (11)

In case li2 ≥ li1 + 2, we either determine β1, β2 ∈ {li1 + 1, . . . , li2} or β1 ∈ [li1 ], β2 ∈
{li1 + 1, . . . , li2} such that yi2 [β1] and yi2 [β2] are freshly sampled. In both instances,
(Σi1 = Σi2) ∧ (Θi1 = Θi2) would result in a system of equations having rank 2, and
hence by the rank argument (i.e. Lemma 3),

Pr[(Σi1 = Σi2) ∧ (Θi1 = Θi2) ∧ Coll ∧ 3-Coll ∧ CollX(1)] ≤ 1
(2n − 2`)2

. (12)

Combining Eqn.s (9), (11) and (12), and assuming `+ 1 ≤ 2n−2, we have

Pr[(Σi1 = Σi2) ∧ (Θi1 = Θi2) ∧ Coll ∧ 3-Coll ∧ CollX(1)] ≤ 10
22n . (13)

i2 6= i3: We approach this in five parts, the first four addressing cases when either Mi1 is
a prefix of one of Mi2 and Mi3 , or one of Mi2 and Mi3 is a prefix of Mi1 , and the
fifth when neither of the first four occur.

Mi1 is a prefix of Mi2 : Let li2 = li1 + 1 and xi2 [li2 ] = x̃a for some a ∈ [p].
Then Θi1 = Θi3 becomes a non-trivial equation, contributing a term 1/(2n − 3`)
to the bound. An additional 1/2n is contributed by the event xi2 [li2 ] = x̃a (as the
number of choices for x̃a is 1). Assuming ` ≤ 2n−1/3, the bound is thus 2/22n.
On the other hand, if xi2 [li2 ] is fresh, then a freshly sampled random variable
yi1 [?] can be found such that Θi1 = Θi3 becomes a non-trivial equation. Therefore,
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Σi1 = Σi2 ,Θi1 = Θi3 becomes a system of equations of rank 2 (in yi2 [li2 ] and yi1 [?]),
and hence by the rank argument (i.e. Lemma 3), we bound the probability of the
event by 1/(2n − 3`)2 ≤ 4/22n, assuming 3`+ 1 ≤ 2n−1.
If li2 ≥ li1 + 2, then it is easy to find an index β ∈ {li1 + 1, . . . , li2} such that yi2 [β] is
freshly sampled. Moreover, we can find another index α ∈ [li1 ] (or α ∈ [li3 ]) such that
yi1 [α] (or yi3 [α]) is freshly sampled. In both cases, Σi1 = Σi2 ,Θi1 = Θi3 becomes a
system of equations of rank 2. Therefore, by the rank argument (i.e. Lemma 3) and
assuming 3`+ 1 ≤ 2n−1, the probability of the event becomes at most 4/22n. Thus,

Pr[Σi1 = Σi2 ∧Θi1 = Θi2 ∧ Coll ∧ 3-Coll ∧ CollX(1)] ≤ 10
22n . (14)

The other subcases can be argued similarly and their probabilities bounded above
by 10/22n.
We now assume that neither is Mi1 a prefix of Mi2 or Mi3 , and nor the reverse. In
this case, we can find an index α such that Mi1 [α] 6= Mi2 [α] and yi1 [α] is freshly
sampled. Moreover, we can find another index β such that Mi1 [β] 6= Mi3 [β] and
yi3 [β] is freshly sampled. Σi1 = Σi2 ,Θi1 = Θi3 is a system of equations of rank
2 in these two variables, and hence by the rank argument (i.e. Lemma 3) and by
assuming 3`+ 1 ≤ 2n−1,

Pr[Σi1 = Σi2 ∧Θi1 = Θi2 ∧ Coll ∧ 3-Coll ∧ CollX(1)] ≤ 4
22n . (15)

Therefore, combining Eqn.s (14) and (15), the assumption 3`+ 1 ≤ 2n−1 gives

Pr[Σi1 = Σi2 ∧Θi1 = Θi2 ∧ Coll ∧ 3-Coll ∧ CollX(1)] ≤ 14
22n . (16)

Finally, varying over all choices of i1, i2, i3 ∈ [q] and comibining Eqn.s (7), (8), (13)
and (16) with the assumption that 3`+ 1 ≤ 2n−1, we have

Pr[Bad∗1] ≤ 3q3`2

22n+1 + 4q3

22n . (17)

Bounding Event Bad∗2. For fixed indices i ∈ [q] and b, c ∈ [p], the event

(chopLSB (Σi ⊕ k2) ‖0 = ũb) ∧ (chopLSB (Θi ⊕ k2) ‖1 = w̃c)

can be reduced to the following system of equations:

yi[1]⊕ yi[2]⊕ . . .⊕ yi[li]⊕ k2 = ũb,

2liyi[1]⊕ 2li−1yi[2]⊕ . . .⊕ 2yi[li]⊕ k2 = w̃c. (18)

We split Bad∗2 into the following two cases:

Case (1): Suppose li = 1 and Mi[1]⊕ 2k0⊕ 22k1 collides with a primitive query input x̃a′
for some a′ ∈ [2p]. In this case, (18) boils down to {ỹa′ ⊕ k2 = ũb, 2ỹa′ ⊕ k2 = w̃c}. The
probability of occurrence of Bad∗2 can now be bounded using the eventsMi[1]⊕2k0⊕22k1 =
x̃a′ and k2 = ỹa′ ⊕ ũb; the probability of the first event is bounded by 2−n through the
randomness of k0, and the probability of the latter is bounded by 2−n through the
randomness of k2. Note that the number of choices for a′ is 2p, that for b, c (each) is p,
and that for i is q. For each of these choices of x̃a′ and ũb, the number of choices for w̃c is
1. Hence,

Pr[Bad∗2] ≤ 2qp2

22n . (19)
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On the other hand, if Mi[1]⊕ 2k0 ⊕ 22k1 does not collide with any primitive query, then
yi[1] is fresh. Thus, (18) boils down to {yi[1]⊕ k2 = ũb, 2yi[1]⊕ k2 = w̃c}. Note that the
rank of this system of equations is 2. Varying over all possible choices of b, c ∈ [p] and
i ∈ [q] gives

Pr[Bad∗2] ≤ qp2

2n(2n − `) . (20)

Case (2): In this case, we assume li > 1. Let CollX(2) be the event that refers to the
collision of any two input blocks, i.e.

CollX(2) : {∃α1, α2 ∈ [li], such that α1 6= α2, xi[α1] = xi[α2]} .

Therefore, we write

Pr[Bad∗2] ≤
q∑
i=1

Pr[Eqn.s (18) hold ∧ CollX(2)]︸ ︷︷ ︸
(1)

+ Pr[Eqn.s (18) hold ∧ CollX(2)]︸ ︷︷ ︸
(2)

 .

The joint event in (1) holds with probability at most
(
`
2
)
/22n (in which the event CollX(2)

contrinutes the term
(
`
2
)
/2n and the randomness of k2 contributes the term 1/2n). The

event in (2) ensures the freshness of at least one of the variables yi[1], . . . , yi[li]. Without
loss of generality, let us assume yi[1] is fresh. Given the values of all the other random
variables yi[?] in (18), the reduced system of equations {yi[1]⊕ k2 = c, 2yi[1]⊕ k2 = c′}
with rank 2 results in an upper bound of 1/2n(2n− `). Varying (1) and (2) over all choices
of b, c ∈ [p] and i ∈ [q] gives

Pr[Bad∗2] ≤ qp2`2

22n+1 + qp2

2n(2n − `) . (21)

From Eqn.s (19), (20) and (21), and with the assumption that ` ≤ 2n−1, we obtain

Pr[Bad∗2] ≤ 5qp2`2

22n + 2qp2

22n . (22)

Bounding Event Bad∗3. This event can be split into the following two sub-events:

(1) :
{
∃ i1 6= i2 in [q] such that (chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0)
∧
(
chopLSB (Θi1 ⊕ k2) ‖1 ∈ Dom(π1)

)
∧ Coll ∨ 3-Coll

}
,

(2) :
{
∃ i1 6= i2 in [q] such that (chopLSB (Θi1 ⊕ k2) ‖1 = chopLSB (Θi2 ⊕ k2) ‖1)
∧
(
chopLSB (Σi1 ⊕ k2) ‖0 ∈ Dom(π0)

)
∧ Coll ∨ 3-Coll

}
.

Bounding (1): For fixed i1 6= i2 in [q] and a fixed c ∈ [p], the event is
(chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0) ∧ (chopLSB (Θi1 ⊕ k2) ‖1 = w̃c) ∧ Coll ∧
3-Coll. Without loss of generality, assume li1 ≥ li2 . Since the probability of (1) is zero
for li1 ≤ 1, assume li1 ≥ 2. As before, we determine an index β ∈ [li1 − 1]: If li1 > li2 ,
then β = li1 ; if li1 = li2 and NEQi1i2 = {li1}, then the probabilty becomes zero – so we set
β = max {α ∈ NEQi1i2} (6= li1) when li1 = li2 . Let

CollX(3)
β : {(∃β1 ∈ [li1 ] : β1 6= β, xi1 [β] = xi1 [β1]) ∨ (∃β2 ∈ [li2 ] : xi1 [β] = xi2 [β2])}

be the event that denotes the collision of xi1 [β] with atleast one of the remaining input
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blocks. Also let Eβ denote the event {∃ a ∈ [p] : xi1 [β] = x̃a}. Therefore, we write

Pr
[

(chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0) ∧ (chopLSB (Θi1 ⊕ k2) ‖1 = w̃c)

∧ Coll ∧ 3-Coll
]
≤ Pr

[
(chopLSB (Θi1 ⊕ k2) ‖1 = w̃c) ∧ Coll ∧ 3-Coll ∧ CollX(3)

β

]
+ Pr

[
(chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0)∧

(chopLSB (Θi1 ⊕ k2) ‖1 = w̃c) ∧ Coll ∧ 3-Coll ∧ CollX(3)
β

]
≤ Pr

[
(chopLSB (Θi1 ⊕ k2) ‖1 = w̃c) ∧ Coll ∧ 3-Coll ∧ CollX(3)

β

]
+ Pr

[
(chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0)∧

(chopLSB (Θi1 ⊕ k2) ‖1 = w̃c) ∧ Coll ∧ 3-Coll ∧ CollX(3)
β ∧ Eβ

]
+ Pr

[
(chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0)∧

(chopLSB (Θi1 ⊕ k2) ‖1 = w̃c) ∧ Coll ∧ 3-Coll ∧ CollX(3)
β ∧ Eβ

]
. (23)

We break this down into three manageable chunks:

E.1 := Pr
[

(chopLSB (Θi1 ⊕ k2) ‖1 = w̃c) ∧ Coll ∧ 3-Coll ∧ CollX(3)
β

]
,

E.2 := Pr
[

(chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0)

∧ (chopLSB (Θi1 ⊕ k2) ‖1 = w̃c) ∧ Coll ∧ 3-Coll ∧ CollX(3)
β ∧ Eβ

]
and

E.3 := Pr
[

(chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0)

∧ (chopLSB (Θi1 ⊕ k2) ‖1 = w̃c) ∧ Coll ∧ 3-Coll ∧ CollX(3)
β ∧ Eβ

]
.

1. In the sub-event (E.1), since the equation chopLSB (Θi1 ⊕ k2) ‖1 = w̃c is non-trivial,
it can be bound by probability 2/2n using the randomness of k2, and CollX(3)

β holds
with probability at most 2`/2n. Thus, (E.1) can be bound by

4`/22n. (24)

2. We first consider the case when li1 = li2 + 1 and NEQi1i2 = {li1} in (E.2). Since
xi1 [li1 ] = x̃a, it boils the event (chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0) ∧
(chopLSB (Θi1 ⊕ k2) ‖1 = w̃c) down to the following system of equations:

ỹa = 0n,
2li1 yi1 [1]⊕ 2li1−1yi1 [2]⊕ . . .⊕ 2yi1 [li1 ]⊕ k2 = w̃c. (25)

As the equation chopLSB (Θi1 ⊕ k2) ‖1 = w̃c is non-trivial, its probability can be at
most 2/2n. Moreover, the probability that xi1 [li1 ] = x̃a is bounded above by 1/2n
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(since the number of choices for a is 1). Thus, this case of (E.2) can be bound by
2/22n.

We next consider the case when li1 > li2 in (E.2). As Eβ holds, yi1 [li1 ] is not fresh.
However, as Coll, 3-Coll and CollX(3)

β also do not hold, at least one of the variables
yi1 [?] must be fresh, i.e. ∃α ∈ NEQi1i2 \ {li1} such that yi1 [α] is fresh. Without loss
of generality, let us assume that yi1 [1] is fresh. Give all other random variables yi1 [?]
and yi2 [?] in

yi1 [1]⊕ yi1 [2]⊕ . . . yi1 [li1 ]⊕ yi2 [1]⊕ yi2 [2]⊕ . . .⊕ yi2 [li2 ] = 0n,
2li1 yi1 [1]⊕ 2li1−1yi1 [2]⊕ . . . 2yi1 [li1 ]⊕ k2 = w̃c, (26)

we obtain yi1 [1] = d and 2li1 yi1 [1]⊕ k2 = d′, for constants d and d′. Hence,

Pr[Eqn. 26 holds ] ≤ 1
2n(2n − 2`) ≤

8
22n , assuming ` ≤ 2n−2.

Combining the above bounds the probability of (E.2) by

10
22n . (27)

3. In the event (E.3), it is easy to see that yi1 [li1 ] is fresh. Hence, given all other
random variables yi1 [?] and yi2 [?] in Eqn. (26), the system is reduced to yi1 [li1 ] =
d, 2yi1 [li1 ]⊕ k2 = d′ for some constants d and d′. Hence, the probability of (E.3) has
an upper bound of

4
2n(2n − 2`) ≤

8
22n , (28)

where the last inequality follows as ` ≤ 2n−1.

Varying over all possible choices of i1 6= i2 in [q] and c ∈ [p] and combining Eqn.s (23),
(24), (27) and (28) gives

Pr[(1)] ≤ (4.5 + l)q2p

22n . (29)

Bounding (2): This is symmetric to (1). Hence, it can be similarly bounded:

Pr[(2)] ≤ (4.5 + l)q2p

22n . (30)

Therefore, from Eqn.s (29) and (30),

Pr[Bad∗3] = Pr[(1)] + Pr[(2)] ≤ (9 + 2l)q2p

22n . (31)

Bounding Bad∗4. This event can be split into the following two sub-events:

(1) :
{
∃ i ∈ [q], b, c ∈ [p] such that (chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0)
∧ (Ti ⊕ ṽb = z̃c) ∧ Coll ∨ 3-Coll

}
,

(2) :
{
∃ i ∈ [q], b, c ∈ [p] such that (chopLSB (Θi1 ⊕ k2) ‖1 = chopLSB (Θi2 ⊕ k2) ‖1)
∧ (Ti ⊕ z̃c = ṽb) ∧ Coll ∨ 3-Coll

}
.

Bounding (1): We fix a message Mi consisting of li blocks. We also fix the indices b and
c. Now, we analyze the probability of the event in two cases: (I) The ith construction
query occurs after the bth and cth primitive queries. (II) At least one of the primitive
queries appears after the ith construction query.
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Case I: As Ti is distributed uniformly at random and since the distribution of k2 is
independent of all the other random variables, we bound the probability of the event
by 1/22n. Varying over all possible choices of i ∈ [q] and b, c ∈ [p], we have

Pr[Bad∗4] ≤ qp2

22n in case (I). (32)

Case II: Suppose the bth primitive query is the latest.

(a) If the primitive query is in the forward direction, then ṽb is randomly distributed.
Hence by the randomness of k2 and ṽb, we bound the probability of the event to at
most 2/2n. Varying over all possible choices of i ∈ [q] and b, c ∈ [p], we have

Pr[Bad∗4] ≤ 2qp2

22n in case (IIa). (33)

(b) If the bth primitive query is in the inverse direction, then ũb is random. We
bound the event Bad∗4 given the complement of the event

E :
{
|{(Ti, ṽb, z̃c) ∈ [q]× [p]× [p] : Ti = ṽb ⊕ z̃c}| ≥

qp2

2n +
√

3nqp2
}
.

As Pr[Bad∗4] ≤ Pr[Bad∗4 | E]+Pr[E] and as Pr[E] ≤ 2/2n according to the sum-capture
Lemma 2, for a fixed choice of i, b and c such that Ti = ṽb ⊕ z̃c, the probability of
the event chopLSB (Σi ⊕ k2) ‖0 = ũb is at most 1/2n by the randomness of k2. As the
number of choices for i, b and c is at most qp2/2n +

√
3nqp2,

Pr[Bad∗4] ≤ qp2

22n +
√

3nqp2

2n + 2
2n in case (IIb). (34)

The analysis is exactly the same when the cth primitive query is the latest. Therefore,

Pr[Bad∗4] ≤ qp2

22n +
√

3nqp2

2n + 2
2n . (35)

Bounding (2): The analysis for bounding this sub-event is exactly identical to that of Bad∗4.
Thus

Pr[Bad∗4] ≤ 2qp2

22n + 2
√

3nqp2

2n + 4
2n . (36)

Bounding Bad∗5. We again begin by partitioning the event into two sub-events:

(1) :
{
∃ i1 6= i2 in [q] such that (chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0)
∧ (Ti1 = Ti2) ∧ Coll ∨ 3-Coll

}
(2) :

{
∃ i1 6= i2 in [q] such that (chopLSB (Θi1 ⊕ k2) ‖0 = chopLSB (Θi2 ⊕ k2) ‖1)
∧ (Ti1 = Ti2) ∧ Coll ∨ 3-Coll

}
.

Bounding (1): For the two fixed distinct messages Mi1 and Mi2 , the event
chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0 is reduced to the following equations:

yi1 [1]⊕ yi1 [2]⊕ . . .⊕ yi1 [li1 ]⊕ yi2 [1]⊕ yi2 [2]⊕ . . .⊕ yi2 [li2 ] = 0n. (37)

Without loss of generality, assume li1 ≥ li2 . The probability of the event is zero for li1 ≤ 1.
Thus, we assume li1 ≥ 2. As before, we determine an index β ∈ [li1 − 1] as follows: if
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li1 > li2 , then β = li1 . If li1 = li2 and NEQi1i2 = {li1}, then the probabilty of the event is
again zero. So we set β = max NEQi1i2 when li1 = li2 . Note the following event:

CollX(4)
β :

{
(∃β1 ∈ [li1 ] such that β1 6= β, xi1 [β] = xi1 [β1])

∨ (∃β2 ∈ [li2 ] such that xi1 [β] = xi2 [β2])
}
.

Therefore, Pr
[
chopLSB ((Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0) ∧ Coll ∧ 3-Coll

]
≤

Pr
[
CollX(5)

β

]
︸ ︷︷ ︸

E.4

+ Pr
[
chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0 ∧ Coll ∧ 3-Coll ∧ CollX(5)

β

]
︸ ︷︷ ︸

E.5
(38)

Due to the randomness of k0 and k1, the first term (i.e. E.4) in Eqn. (38) is bound by
(`− 1 + `)/2n ≤ 2`/2n. We split the analysis of E.5 into the following two cases:

Case I: When li1 = li2 + 1 and NEQi1i2 = {li1}, if xi1 [li1 ] = x̃a for some a ∈ [p], then
ỹa = 0n. Therefore, the event occurs with a probability of at most 1/2n due to the
randomness of k0 and k1 (note that the number of choices for x̃a is 1). On the other
hand, if xi1 [li1 ] is fresh, then yi1 [li1 ] is freshly sampled and hence for this random
variable, the rank 1 equation chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0 ensures
a probability bound of 1/(2n − 2`), by the rank argument (i.e. Lemma 3).

Case-II: When li1 ≥ li2 + 2, at least one β ∈ {li2 + 1, . . . , li1} can be certainly found such
that xi1 [β] is fresh and hence yi1 [β] is freshly sampled. For this random variable
yi1 [β], the rank 1 equation chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0 ensures a
probability bound of 1/(2n − 2`), by the rank argument (i.e. Lemma 3).

Combining the above two cases and by assuming ` ≤ 2n−2gives

Pr
[
chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0 ∧ Coll ∧ 3-Coll ∧ CollX(5)

β

]
≤ 5

2n . (39)

Therefore from Eqn.s (38) and (39), and by the assumption ` ≤ 2n−2, we have

Pr
[
chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0 ∧ Coll ∧ 3-Coll

]
≤ 2`+ 5

2n . (40)

Finally, from Eqn. (41), the fact that the event Ti1 = Ti2 is independent of the event
(chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0) ∧ Coll ∧ 3-Coll, and that for a fixed choice
of i1 and i2, the probability that Ti1 = Ti2 holds is 2−n, we have

Pr [(1)]
=

∑
i1,i2

(
Pr [Ti1 = Ti2 ] ·

Pr
[
(chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0) ∧ Coll ∧ 3-Coll

] )
≤

1
2q

2(2`+ 5)
22n ≤ q2`+ 2.5q2

22n . (41)

Bounding (2): This event is symmetric to the first, and thus has the same bound:

Pr [(2)] ≤ q2`+ 2.5q2

22n . (42)
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Therefore, from Eqn.s (41) and (42), we have

Pr[Bad∗5] = Pr[(1)] + Pr[(2)] ≤ 2q2`+ 5q2

22n . (43)

Bounding Bad∗6. Consider the sub-event (chopLSB (Σi1 ⊕ k2) ‖0 = xi1 [α]) ∧ (chopLSB (Θi1 ⊕ k2) ‖1 = xi3 [β])
∧ Coll ∨ 3-Coll. This event can be expanded in terms of XOR operations on the hash
permutation outputs as follows (where α ∈ [li2 ] and β ∈ [li3 ] are aribitrary indices):

Pr [Bad∗6] = Pr
[ (

chopLSB (Σi1 ⊕ k2) ‖0 = Mi2 [α]⊕ 2αk0 ⊕ 22αk1
)

∧
(
chopLSB (Θi1 ⊕ k2) ‖1 = Mi3 [β]⊕ 2βk0 ⊕ 22βk1

)
∧ Coll ∨ 3-Coll

]
≤ Pr

[
π (Mi1 [1])⊕ . . .⊕ π (Mi1 [li]) = Mi2 [α]⊕ 2αk0 ⊕ 22αk1

]
×

Pr
[
2liπ (Mi1 [1])⊕ . . .⊕ 2π (Mi1 [li]) = Mi3 [β]⊕ 2βk0 ⊕ 22βk1

]
.

For fixed indices i1, i2, i3, the above probability is clearly (2−n)2, by the randomness of
keys k0 and k1. Similarly, the probability of occurrence of the remaining four sub-events is
also (2−n)2. Counting the choices for each index thus gives

Pr[Bad∗6] ≤ q3l2 + 2qp2 + 2q3

22n . (44)

Bounding RC∗Σ. Recall the offline phase of the ideal oracle (Fig.s 6.3-6.5). Denote the
number of elements removed from the construction transcript of an adversary in step 3
of stage II by s1, and the number of elements removed in step 2 of stage III by s2. Thus
q̂0 := q − (s1 + s2 + f) denotes the number of elements left in Σ̃ at the end of the offline
phase, f as in step 10 of stage III. Also let p̂0 :=

∣∣Dom
(
π0)∣∣, where the set Dom

(
π0) is as

it stands at the end of the offline phase. Thus p̂0 = p+ (s1 + s2) (since p is the number of
primitive queries with LSB 0). q̂1 and p̂1 can be similarly defined. The bad event occurs if
for some i′ 6= i in [q̂0], one of the following occurs:

(1) :
{

(chopLSB (Σi ⊕ k2) ‖0 = chopLSB (Σi′ ⊕ k2) ‖0) ∧ (zi = z̃c) for some c ∈ [p̂0]
}

(2) :
{

(chopLSB (Σi ⊕ k2) ‖0 = chopLSB (Σi′ ⊕ k2) ‖0) ∧ (zi = zj) for some j ∈ [q̂0]
}
,

where vi←$ {0, 1}n \ Ran(π0).
Bounding (1): The sub-event zi = z̃c, i.e. vi = Ti ⊕ z̃c is a result of the lazy sampling
of vi, independent of the sub-event chopLSB (Σi ⊕ k2) ‖0 = chopLSB (Σi′ ⊕ k2) ‖0. For a
particular choice of i,i′ and c,

Pr
[
(chopLSB (Σi ⊕ k2) ‖0 = chopLSB (Σi′ ⊕ k2) ‖0) ∧ Coll ∧ 3-Coll

]
× Pr [zi = z̃c]

≤ 2`+ 5
2n × Pr [zi = z̃c] (as already computed in Eqn. (41))

≤ 2`+ 5
2n · 1

2n − q̂0
,

where ` denotes the maximum number of message blocks amongst all q queries. Summing
over all choices of i, i′ and c bounds the probability to

q̂0(q̂0 − 1)p̂1 · (2`+ 5)
22n . (45)

Bounding (2): We split this bad event into the following cases:
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Case I: Suppose i′ 6= j. As in (1), the sub-event zi = zj is a result of the lazy sampling of
zi, independent of the sub-event chopLSB (Σi ⊕ k2) ‖0 = chopLSB (Σi′ ⊕ k2) ‖0. Thus,
the probability of this case for a particular choice of i,i′ and c is

Pi,i′,c = Pr[chopLSB (Σi ⊕ k2) ‖0 = chopLSB (Σi′ ⊕ k2) ‖0 ∧ Coll ∧ 3-Coll]× Pr[zi = zj ]

≤ 2`+ 5
2n × 1

2n − q̂0
(as already computed in Eqn. (41))

≤ 4`+ 10
22n (since q̂0 ≤ 2n−1).

Summing over all possible choices of i,i′ and c, we obtain an upper bound

q̂0(q̂0 − 1)(q̂0 − 2) · 4`+ 10
22n . (46)

Case II: Now suppose i′ = i. vi←$ {0, 1}n \ Ran(π0) is thus sampled first and zi′ is then
set to vi. This case eventually boils down to the joint event

(
chopLSB (Σi ⊕ k2) ‖0

= chopLSB (Σi′ ⊕ k2) ‖0
)
∧ (zi = zj). If Ti = Ti′ , then zi = zj is implied by the first

sub-event. Therefore,

Pr[Ti = Ti′ ∧ (chopLSB (Σi ⊕ k2) ‖0 = chopLSB (Σi′ ⊕ k2) ‖0) ∧ Coll ∧ 3-Coll]
= Pr

[
(chopLSB (Σi ⊕ k2) ‖0 = chopLSB (Σi′ ⊕ k2) ‖0) ∧ Coll ∧ 3-Coll | Ti = Ti′

]
·Pr [Ti = Ti′ ]

≤ 2`+ 5
2n × Pr [Ti = Ti′ ] (as already computed in Eqn. (41))

≤ 2`+ 5
22n , (47)

as all the q̂0 messages are fixed given T1, . . . , Tq̂0 . On the other hand, if Ti 6= Ti′

then zi 6= vi′ ⊕ Ti′ and hence the probability becomes zero.
Summing over all (i, i′, j) with i < i′, the probability for this case is bounded by

q̂0(q̂0 − 1)
2 · 2`+ 5

22n . (48)

Combining cases I and II, we have

Pr[(2)] ≤ q̂0(q̂0 − 1)(2q̂0 − 3) · 2`+ 5
22n . (49)

Therefore, Pr[RC∗Σ] ≤ Pr[(1)] + Pr[(2)] ≤ q̂0(q̂0 − 1) · (2`+ 5)
22n

(
2q̂0 − 3 + p̂1

)
≤ 2q(q − 1)(2`+ 5)

22n (q + p) , (50)

since q̂0 ≤ q and p̂1 ≤ 2p.

Bounding RC∗Θ. The event RC∗Θ can be bound identically as RC∗Σ. Hence,

Pr[RC∗Θ] ≤ 2q(q − 1)(2`+ 5)
22n (q + p) . (51)

The final bound follows from Eqn.s (4)–(51).
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6.6 Analysis of Good Transcripts
In this section, we show that realizing a good transcript τ = (τ̂c, τp) is almost as likely
in the real world as in the ideal world. For each i ∈ F , both chopLSB (Σi ⊕ k2) ‖0 and
chopLSB (Θi ⊕ k2) ‖1 are fresh for elements (Σi,Θi) in Σ̃× Θ̃, as shown in line 9 of stage
II of Fig. 6.4. Due to the changes made in lines 2 and 6 of the same stage, repeating
elements of Σ̃ (resp. Θ̃) are moved to τp, and each such index i is added to I. Since these
alterations do not create any inconsistencies, the cardinality of τp increases. Assuming
that s1 + s2 elements are added to τp in step 3 and t1 + t2 elements in step 7, the size of
the modified transcript τ ′p is p′ := 2p+ s1 + s2 + t1 + t2 = p′0 + p′1 (where p′0 := p+ s1 + s2

and p′1 := p+ t1 + t2). Therefore, the number of elements in the modified collections Σ̃
and Θ̃, which we denote by Σ̃∗ and Θ̃∗ (resp.), is q′ := q − s1 − s2 − t1 − t2 at the end of
stage II.
Moreover, as the transcript τ is good, for every i 6∈ FtI, exactly one of chopLSB (Σi ⊕ k2) ‖0
and chopLSB (Θi ⊕ k2) ‖1 is fresh in (Σ̃∗, Θ̃∗). Thus, there are exactly (q′ + f) fresh blocks
(2f fresh blocks corresponding to all indices belonging to F and (2q′ − 2f)/2 additional
fresh blocks), and q′ − f repeated blocks.
Let Pc be the set of all indices corresponding to queries with one of their hash output blocks
colliding with one of the hash primitive inputs. We define a relation ∼ on Qc := [q]\F tIt
Pc as i1 ∼ i2 if

(
chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0

)
∨
(
chopLSB (Θi1 ⊕ k2) ‖1

= chopLSB (Θi2 ⊕ k2) ‖1
)
, where Σi1 is an element of Σ̃∗ and Θi1 is an element of Θ̃∗. Note

that as τ is good, for any i1 ∼ i2, exactly one of the following two occurs:

(i) chopLSB (Σi1 ⊕ k2) ‖0 = chopLSB (Σi2 ⊕ k2) ‖0,
(ii) chopLSB (Θi1 ⊕ k2) ‖1 = chopLSB (Θi2 ⊕ k2) ‖1.

Furthermore, if i1 and i2 are related through (i), then any other index j ∈ Qc cannot be
related to i1 or i2 through (ii), and vice versa. Clearly, ∼ is an equivalence relation. Thus,
it partitions Qc, which in turn induces a partition on Σ̃∗ and Θ̃∗. Let r0 be the number
of equivalence classes of Σ̃∗ and r1 the number of equivalence classes of Θ̃∗. Let d0

i be
the number of elements in the ith equivalence class of Σ̃∗ and d1

i the number of elements
in the ith equivalence class of Θ̃∗. For each equivalence class of Σ̃∗ or Θ̃∗, we sample an
output for the least-indexed element, thus determining the (common) output for all other
elements in that class (see lines 4 and 11 of stage III in Fig. 6.5). Due to the definition of
S in line 12 of stage II, and due to lines 4, 5, 11 and 12 of stage III ∀ i ∈ [q′], vi ⊕ zi = Ti
holds. Also, RCΣ or RCΘ are not set to 1 (as τ is good), ensuring no range collision for
two different inputs. This proves the following result:

For a good transcript τ , the q′ tuples of input and output blocks of π0 and π1 are permutation
compatible, i.e. Σ̃∗ is permutation compatible with Ran(Π0)∪Ran(π0) and Θ̃∗ is permutation
compatible with Ran(Π1) ∪ Ran(π1).

This is useful for computing the ratio of the real to ideal interpolation probabilities of
a good transcript τ through the following lemma:

Lemma 5. Let τ = (τ̂q, τp) be a good transcript. Then

Pr [Dre = τ ]
Pr [Did = τ ] ≥ 1− 16qp2 + 16q2p+ 4q3

22n .

Proof. Ideal Interpolation Probability. Observe that the keys (k0, k1, k2), the re-
sponse tuple T̃ , and the (lazily sampled) π0, π1, Π0 and Π1 are jointly independent as each Ti
is distributed independent of all the previously sampled values of T , all outputs of π0 and π1,
the keys k0, k1 and k2 as well as Π0 and Π1 (in the offline phase of the game). Let B denote
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the event
{(

Π0(chopLSB (Σi ⊕ k2) ‖0) = vi
)
∧
(
Π1(chopLSB (Θi ⊕ k2) ‖1) = zi

)
∀i ∈ F

}
.

Therefore,

Pr[Did = τ ] = 1
23n ·

1
2nq ·

1
(2n)p′0

· 1
(2n)p′1

· Pr
[ (

Π0(chopLSB (Σi ⊕ k2) ‖0) = vi
)
∧(

Π1(chopLSB (Θi ⊕ k2) ‖1) = zi
)
∀i ∈ [q]

]
= 1

23n ·
1

2nq ·
1

(2n)p′0
· 1

(2n)p′1
· Pr[B] · Pr

[ (
Π0(chopLSB (Σi ⊕ k2) ‖0) = vi

)
∧(

Π1(chopLSB (Θi ⊕ k2) ‖1) = zi
)
∀i ∈ Qc | B]

= 1
23n ·

1
2nq ·

1
(2n)p′0

· 1
(2n)p′1

· 1
|S|
· 1

(2n − f − p′0)r0
· 1

(2n − f − p′1)r1
. (52)

Recall here that Π0 and Π1 are defined in two steps:

1. Elements of S are sampled randomly for all free indices i ∈ F (line 13 of stage II in
Fig. 6.4) and thus Pr[B] = |S|−1.

2. The remaining input-output values of Π0 and Π1 are defined through lazy sampling
(lines 4, 5, 11 and 12 of stage III in Fig. 6.5).

In the second step of the sampling process, the oracle samples permutation outputs for
r0 and r1 distinct values in such a manner that neither do they collide with the values
sampled in the first step, nor with the values in the modified list τ ′p. Hence, we have

Pr
[(

Π0(chopLSB (Σi ⊕ k2) ‖0) = vi
)
∧
(
Π1(chopLSB (Θi ⊕ k2) ‖1) = zi

)
∀i ∈ Qc |B

]
= 1

(2n − f − p′0)r0
· 1

(2n − f − p′1)r1
.

Real Interpolation Probability. From the claim (6.6) stated previously in this
section, it is obvious that Σ̃∗ is permutation compatible with Ran(Π0) ∪ Ran(π0) and Θ̃∗
is permutation compatible with Ran(Π1) ∪ Ran(π1). Therefore,

r0∑
i=1

d0
i +

r1∑
i=1

d1
i = |Qc| = (q′ − f), (53)

since the number of non-fresh blocks is (q′ − f). We define two sets:

U0 := {i ∈ Qc : chopLSB (Σi ⊕ k2) ‖0 is fresh in Σ̃∗},
U1 := {i ∈ Qc : chopLSB (Θi ⊕ k2) ‖1 is fresh in Θ̃∗}.

Clearly, u0 := |U0| = r0 + f +
r1∑
i=1

d1
i , u1 := |U1| = r1 + f +

r0∑
i=1

d0
i .

One can easily verify that the number of distinct inputs to πb (b ∈ {0, 1}) is ub := ub + p′b.
Hence,

Pr[Dre = τ ] = 1
23n ·

1
(2n)u0

· 1
(2n)u1

. (54)

Computing the ratio. From Eqn.s (54) and (52),

Pr[Dre = τ ]
Pr[Did = τ ]

(2)= 2nq · ((2n)p)2 · (2n − f − p′0)r0 · (2n − f − p′1)r1 · |S|
(2n)u0 · (2n)u1

(3)
≥ 2n(q−f) · A1 · A2 ·

(
1− 4fp′0p′1 + 4f2(p′0 + p′1) + 4f3

22n

)
, (55)
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where A1 :=
(

(2n − p′0)f · (2n − f − p′0)r0
(2n − p)u1+s1

)
, A2 :=

(
(2n − p′1)f · (2n − f − p′1)r1

(2n − p)u2+t1

)
.

Note that (3) follows from p′0 = p + s1 and p′1 = p + t1 and the following result from
Lemma 1:

|S| ≥ (2n − p′0)f · (2n − p′1)f
2nf ·

(
1− 4fp′0p′1 + 4f2(p′0 + p′1) + 4f3

22n

)
︸ ︷︷ ︸

∆

,

where we assume that f + p′0 ≤ 2n−1 and f + p′1 ≤ 2n−1.
Furthermore,

A1 =

 (2n − p′0)f+r0
(2n − p)s1 · (2n − p′0)f+r0 · (2n − p′0 − f − r0) r1∑

i=1

d1
i


and

A2 =

 (2n − p′1)f+r1
(2n − p)t1 · (2n − p′1)f+r1 · (2n − p′1 − f − r1) r0∑

i=1

d0
i


Therefore, from Eqn. (55),

P = 2n(q−f) ·∆
(2n − p)s1 · (2n − p′0 − f − r0) r1∑

i=1

d1
i

· (2n − p)t1 · (2n − p′1 − f − r1) r0∑
i=1

d0
i

.

Due to Eqn. (53), the total number of terms in the denominator of P is
r0∑
i=1

d0
i +

r1∑
i=1

d1
i + s1 + t1 = q′ − f + s1 + t1 = q − f,

as q′ = q − s1 − t1. Not only does this number match exactly with the number of terms in
its numerator (except the constant ∆), but also each term of the numerator (except ∆) is
greater than each term of the denominator. Thus the term-by-term ratio is at least 1 and
hence P ≥ ∆. Finally, the inequalities f ≤ q, p′0 ≤ 2p and p′1 ≤ 2p prove the result.

7 Conclusion and Future Work
In this paper, we have shown a tight security bound of the public permutation-based
pPMAC_Plus construction. Unlike PMAC_Plus, which is tightly secure for 23n/4 queries,
the public permutation-based pPMAC_Plus is tightly secure for 22n/3 queries. Similar
to pPMAC_Plus, analysing the security of the public permutation-based LightMAC_Plus
construction is an interesting open problem.
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