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Abstract. Recent works have started side-channel analysis on SIKE
and show the vulnerability of isogeny-based systems to zero-value at-
tacks. In this work, we expand on such attacks by analyzing the be-
havior of the zero curve E0 and six curve E6 in CSIDH and SIKE. We
demonstrate an attack on static-key CSIDH and SIKE implementations
that recovers bits of the secret key by observing via zero-value-based
resp. exploiting correlation-collision-based side-channel analysis whether
secret isogeny walks pass over the zero or six curve. We apply this attack
to fully recover secret keys of SIKE and two state-of-the-art CSIDH-
based implementations: CTIDH and SQALE. We show the feasibility of
exploiting side-channel information for the proposed attacks based on
simulations with various realistic noise levels. Additionally, we discuss
countermeasures to prevent zero-value and correlation-collision attacks
against CSIDH and SIKE in our attacker model.

Keywords: post-quantum cryptography · isogeny-based cryptography
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attacks · countermeasures

1 Introduction

Isogeny-based cryptography is a promising candidate for replacing pre-quantum
schemes with practical quantum-resistant alternatives. In general, isogeny-based
schemes feature very small key sizes, while suffering from running times that are
at least an order of magnitude slower than e.g. lattice- or code-based schemes.
Therefore, they present a viable option for applications that prioritize band-
width over performance. SIKE [29], a key encapsulation mechanism (KEM)
based on the key exchange SIDH [30], is the lone isogeny-based participant of
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CultureStatement04.pdf. This work has been supported by the German Federal
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the NIST post-quantum cryptography standardization process, and proceeded to
the fourth round. In 2018, only after the NIST standardization process started,
the key exchange scheme CSIDH was published [14]. Due to its commutative
structure, a unique feature among the known post-quantum schemes, CSIDH
allows for a non-interactive key exchange, which gained much attention among
the research community. Together with its efficient key validation, which enables
a static-static key setting, this makes CSIDH a promising candidate for a drop-in
replacement of classical Diffie–Hellman-style schemes.

In this work, we focus on a side-channel attack against CSIDH and SIKE.
We follow the main idea of [23], which reconstructs SIKE private keys through
zero-value attacks. This attack approach tries to force zero values for some inter-
mediate values of computations related to secret key bits. By recognizing these
zero values via side-channel analysis (SCA), this allows an attacker to recover
bits of the secret key. While coordinate randomization is an effective method
to mitigate general Differential Power Analysis (DPA) and Correlation Power
Analysis (CPA), it has no effect on zero values, such that forcing their occur-
rence bypasses this countermeasure, which is incorporated in SIKE [29]. Similar
to [23], the recent Hertzbleed attack exploits zero values in SIKE [45].

While [23] focuses on forcing values connected to elliptic curve points becom-
ing zero, we discuss the occurrence of zero values as curve parameters. This was
first proposed in [31], yet [23] concludes that this idea is unlikely to be applicable
in a realistic scenario, since curve representations in SIKE are such that they
cannot produce a zero. In spite of this fact, we show that some curves in SIKE
and CSIDH, as e.g. the zero curve, have a special correlation in these represen-
tations, which admits noticing their occurrence via side-channel analysis.

The secret isogeny computation in SIKE essentially consists of two phases:
scalar multiplication and isogeny computation. In general, the first phase is be-
lieved to be more vulnerable to physical attacks, since private key bits are di-
rectly used there (see [19]). We propose the first passive implementation attack
using side-channel analysis that exclusively targets the second phase of the SIKE
isogeny computation. Notably, countermeasures like coordinate/coefficient ran-
domization [19] or the CLN test [20, 23] do not prevent this attack.

Our contributions. In this work, we present zero-value and correlation attacks
against state-of-the-art implementations of CSIDH and SIKE. For CSIDH, we
use the fact that the zero curve E0, i.e., the Montgomery curve with coefficient
a = 0, represents a valid curve. Thus, whenever a secret isogeny walk passes over
this curve, this can be detected via side-channel analysis. We present a passive
adaptive attack that recovers one bit of the secret key per round by forcing the
target to walk over the zero curve.

Some implementations, like SQALE and SIKE, represent the zero curve with-
out using zero values. Nevertheless, in such a case there is often (with probability
1/2 in SQALE and probability 1 in SIKE) a strong correlation between certain
variables, which also occurs for the supersingular six curve E6 with coefficient
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a = 6. Via CPA, we exploit this correlation to detect these curves, and mount a
similar adaptive attack.

Using these two approaches, we present a generic attack framework, and ap-
ply this attack to the state-of-the-art CSIDH implementations SQALE [16] and
CTIDH [4] (Section 3), and to SIKE (Section 4). We explore the practical feasi-
bility of the proposed attacks (Section 5), simulations (Section 6), and different
types of countermeasures (Section 7). Our code is available in the public domain:

https://github.com/PaZeZeVaAt/simulation

Related work. The analysis of physical attacks on isogeny-based schemes has
only recently gained more attention, including both side-channel [23, 26, 31, 45,
46] and fault attacks [1, 9, 10, 25, 32, 42, 43]. Introduced for classical elliptic
curve cryptography (ECC) in [3, 27, 28], zero-value attacks were adapted to SIKE
in [23], which applies t-tests to determine zero values within power traces [41].

An approach to identify certain structures within traces, similar to the ones
occurring in non-zero representations of the zero curve and six curve in our case,
are correlation-enhanced power analysis collision attacks [36], such as [5] for
ECC. This attack combines the concept of horizontal side-channel analysis [38]
with correlation-enhanced power analysis collision attacks to extract leakage
from a single trace.

We note that from a constructive perspective, this attack follows the idea
of steering isogeny paths over special curves, as proposed for the zero curve
in [31]. Furthermore, the attack on SIKE uses the framework of [1] to produce
suitable public keys. However, our attack is a passive attack that is much easier
to perform in practice compared to the elaborate fault injection required for [1].

2 Preliminaries

We briefly introduce mathematical background related to isogeny-based cryp-
tography, and the schemes CSIDH [14] and SIKE [29]. For more mathematical
details, we refer to [22].

Mathematical background. Let Fq with q = pk denote the finite field of order
q, with a prime p > 3. Supersingular elliptic curves over Fq are characterized by
the condition#E(Fq) ≡ 1 mod p. Throughout this work, we will only encounter
group orders that are multiples of 4, and hence elliptic curves E over Fq with
j(E) ∈ Fq can be represented in Montgomery form:

Ea : y
2 = x3 + ax2 + x, a ∈ Fq. (1)

Given two such elliptic curves Ea and Ea′ , an isogeny is a morphism ϕ :
Ea → Ea′ such that ∞Ea

7→ ∞Ea′ for the neutral elements of Ea and Ea′ . In
the context of isogeny-based cryptography, we are only interested in separable
isogenies, which are characterized by their kernel (up to isomorphism): A finite
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subgroup G ⊂ Ea(Fq) defines a separable isogeny ϕ : Ea → Ea/G and vice
versa. In such a case, the degree of ϕ is equal to the size of its kernel, |G|. For
any isogeny ϕ : Ea → Ea′ , there is a unique isogeny ϕ̂ : Ea′ → Ea such that
ϕ̂ ◦ ϕ = [deg(ϕ)] is the scalar point multiplication on Ea by deg(ϕ). We call ϕ̂
the dual isogeny. Two elliptic curves Ea and Ea′ over Fq are isogenous, i.e., there
exists an isogeny between them, if and only if #Ea(Fq) = #Ea′(Fq).

2.1 CSIDH

In the context of CSIDH, we choose p of the form p+ 1 = h ·
∏n
i=1 `i and work

with supersingular elliptic curves over Fp. Each `i is a small odd prime, and
h is a suitable cofactor to ensure p is prime, with the additional requirement
that 4 | h. Usually, we pick p such that p ≡ 3 mod 8 and work with the set E of
supersingular elliptic curves with minimal endomorphism ringO ∼= Z[

√
−p]. This

ensures that the group order p+1 is a multiple of 4, and any such supersingular
elliptic curve can be represented uniquely in Montgomery form [14], as given
by Equation (1) with a ∈ Fp.

The main operation in CSIDH is the group action of the ideal class group
of O acting on the set E . We are interested in specific ideals li of O, whose
action li ∗ E on some curve E ∈ E is given by an isogeny of degree `i that
is defined by the kernel G = E[`i] ∩ E[π − 1], where π denotes the Frobenius
endomorphism, i.e., Fp-rational points that have `i-torsion. For Ea ∈ E we get
that #Ea = p + 1, and Ea(Fp) ∼= Zh ×

∏n
i=1 Z`i . This implies there are `i of

such points P ∈ E[`i] ∩ E[π − 1], and `i − 1 of these (all but the point ∞Ea
)

will generate G. The codomain Ea′ of such an isogeny is again supersingular
and so |Ea′(Fp)| = p + 1, which implies li can also be applied to Ea′ . This
implies a group action of the ideals li on the supersingular curves Ea over Fp,
which we denote by [li] ∗ Ea. In particular, this group action is commutative:
[lilj ] ∗Ea ∼= [li] ∗ [lj ] ∗Ea ∼= [lj ] ∗ [li] ∗Ea ∼= [lj li] ∗Ea. For each li there exists an
inverse l−1i , whose action on E ∈ E is given by an `i-isogeny that is defined by
the kernel G = E[`i] ∩ E[π + 1].

For reasons of brevity, in the following we will sometimes abuse notation and
identify the ideals l±1i with the `i-isogenies that their action implies.

The CSIDH scheme. The CSIDH scheme is based on the group action as
described above: We apply each of the n different l±1i a number of times to
a given curve Ea, and we denote this number by ei. Hence, the secret key is
some vector of n integers (e1, . . . , en) defining an element a =

∏n
i=1 l

ei
i which we

can apply to supersingular curves Ea over Fp. There is some variation between
different proposals on where ei is chosen from: The original proposal of CSIDH-
512 picks ei ∈ {−m, . . . ,m} with m = 5, but one can also define individual
bounds mi ∈ Z per ei. The key space is of size

∏
(2mi + 1). For the original

CSIDH-512 proposal with mi = 5 and n = 74, this gives roughly size 2256.
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The public key is the supersingular curve Ea corresponding to applying the
secret key a to the publicly known starting curve E0 : y2 = x3 + x:

Ea = a ∗ E0 = le11 ∗ · · · ∗ lenn ∗ E0. (2)

To derive a shared secret between Alice and Bob with secret keys a and b
and given public keys Ea = a ∗ E0 and Eb = b ∗ E0, Alice simply computes
Eab = a ∗ Eb and Bob computes Eba = b ∗ Ea. From the commutativity of the
group action, we get Eab ∼= Eba.

Security of CSIDH. The classical security relies mostly on the size of the
keyspace

∏
(2mi +1), but the quantum security of CSIDH is heavily dependent

on the size of the group generated by these elements li. It is heuristically assumed
that the li generate a group of size approximately √p. While the original CSIDH
proposal considered a 512-bit prime p sufficient for NIST security level 1 [14],
its exact quantum security is debated [7, 40, 8, 16]. For instance, [16] claims
that 4096-bit primes are required for level 1 security. Note that the key space
is not required to cover the full group of size roughly √p, but can be chosen
as a large enough subset, except for particularly bad choices like subgroups.
At larger prime sizes, the number n of small primes `i grows, and therefore it
becomes natural to pick secret key vectors from {−1, 0, 1}n resp. {−1, 1}n for
primes sizes of at least 1792 resp. 2048 bits. This allows for a large enough key
space for classical security, while increasing p for sufficient quantum security.

We note that the exact quantum security of CSIDH remains unclear, and
thus work on efficient and secure implementations for both smaller and larger
parameters continues to appear, e.g. in [4, 16].

Constant-time implementations. CSIDH is inherently difficult to implement
in constant time, as this requires that the timing of the execution is independent
of the respective secret key (e1, . . . , en). However, picking a secret key vector
(e1, . . . , en) translates to the computation of |ei| isogenies of degree `i, which
directly affects the timing of the group action evaluation. One way to mitigate
this timing leakage is by using dummy isogenies: We can keep the total number
of isogenies per degree constant by computing mi isogenies of degree `i, but
discarding the results of mi − |ei| of these, effectively making them dummy
computations [34, 33]. Several optimizations and different techniques have been
proposed in the literature [39, 15, 18].

The latest and currently most efficient variant of constant-time implementa-
tions of CSIDH is CTIDH [4]. In contrast to sampling private key vectors such
that ei ∈ {−mi, . . . ,mi}, CTIDH uses a different key space that exploits the
approach of batching the primes `i. We define batches B1, . . . , BN of consec-
utive primes of lengths n1, . . . , nN , i.e., B1 = (`1,1, . . . , `1,n1

) = (`1, . . . , `n1
),

B2 = (`2,1, . . . , `2,n2
) = (`n1+1, . . . , `n1+n2

), et cetera. We write ei,j for the
(secret) coefficient associated to `i,j . Instead of defining bounds mi for each in-
dividual `i so that |ei| ≤ mi, CTIDH uses bounds Mi for the batch Bi, i.e., we
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compute at most Mi isogenies of those degrees that are contained in Bi. That
is, the key sampling requires |ei,1|+ · · ·+ |ei,ni

| ≤ Mi. CTIDH then adapts the
CSIDH algorithm such that the distribution of the Mi isogenies among degrees
of batch Bi does not leak through the timing channel. Among other techniques,
this involves Matryoshka isogenies, first introduced in [7], that perform the exact
same sequence of instructions independent of its isogeny degree `i,j ∈ Bi.

The main advantage of CTIDH is the ambiguity of the isogeny computations:
From a time-channel perspective, a Matryoshka isogeny for Bi could be an `i,j-
isogeny for any `i,j ∈ Bi. Thus, in comparison to the previous CSIDH algorithms,
CTIDH covers the same key space size in fewer isogenies. For instance, the pre-
viously fastest implementation of CSIDH-512 required 431 isogenies in total [2]
(including dummies), whereas CTIDH [4] requires only 208 isogenies (including
dummies) for the same key space size. This leads to an almost twofold speedup.

Representation of Montgomery coefficient. To decrease computational
cost by avoiding costly inversions, the curve Ea is almost always represented
using projective coordinates for a ∈ Fp. The following two are used most in
current CSIDH-based implementations:

– the Montgomery form (A : C), such that a = A/C, with C non-zero,
– and the alternative Montgomery form (A + 2C : 4C), such that a = A/C,

with C non-zero.

The alternative Montgomery form is most common, as it is used in projective
scalar point multiplication formulas. Hence, in most state-of-the-art implemen-
tations of CSIDH-based systems, the Montgomery coefficient a is mapped to
alternative Montgomery form and remains in this form until the end, where
it is mapped back to affine form for the public key resp. shared secret (e.g.,
in SQALE [16]). CTIDH [4] switches between both representations after each
isogeny, and maps back to affine a = A/C at the end. For most values of (A : C)
and (A + 2C : 4C), a = A/C represents either an ordinary or a supersingu-
lar curve. The exceptions are C = 0, which represents no algebraic object, and
A = ±2C, which represents the singular curves E±2. Specifically the supersin-
gular zero curve E0 is represented as (0 : C) in Montgomery form and (2C : 4C)
in alternative Montgomery form, where C ∈ Fp can be any non-zero value.

Isogeny computation in projective form. When using projective represen-
tations to compute isogenies with domain Ea where a is represented as (A : C),
most implementations use projectivized versions of Vélu’s formulas, described in
[44, 35, 6]. To compute the action of l±1i on Ea, one finds a point P of order `i
on Ea and computes the x-coordinates of the points {P, [2]P, . . . , [ `−12 ]P}. Let
(Xk : Zk) denote the x-coordinate of [k]P in projective form. Then, the projec-
tive Montgomery coefficient (A′ : C ′) of Ea′ = li ∗ Ea using Montgomery form
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(A : C) is computed by

Bz =

`−1
2∏

k=1

Zk, A′ = (A+ 2C)` ·B8
z , (3)

Bx =

`−1
2∏

k=1

Xk, C ′ = (A− 2C)` ·B8
x, (4)

and when using alternative Montgomery form (α : β) = (A+ 2C : 4C) by

Bz =

`−1
2∏

k=1

Zk, α′ = α` ·B8
z , (5)

Bx =

`−1
2∏

k=1

Xk, β′ = α′ − (α− β)` ·B8
x, (6)

where (α′ : β′) represents Ea′ in alternative Montgomery form. Note that the
values (A + 2C) in (3), (A − 2C) in (4), α in (5) and (α − β) in (6) are never
zero: In all cases, this implies A/C = ±2, i.e., the singular curves E±2.

Remark 1. So far, we know of no deterministic implementations based on the
class group action. This is because in order to perform the isogenies, all current
implementations sample a random point P on the curve and compute the scalar
multiple of P required to perform isogenies. The projective coordinates (Xk : Zk)
are then non-deterministic, and hence the output of Equations (3) to (6) is non-
deterministic. This implies that the representation of a as (A : C) or (A+ 2C :
4C) is non-deterministic after the first isogeny. A deterministic approach, e.g. as
sketched in [7] using Elligator, ensures a deterministic representation of a, but
has so far not been put into practice.

2.2 SIKE

In SIKE, we pick a prime of the form p = 2eA · 3eB − 1 such that 2eA ≈ 3eB ,
and work with supersingular elliptic curves over Fp2 in Montgomery form. We
choose to work with curves such that Ea(Fp2) = (p+1)2, and we have Ea(Fp2) ∼=
Z2
2eA × Z2

3eB for these curves. Thus, the full 2eA - and 3eB -torsion subgroups
lie in Ea(Fp2). Any point RA of order 2eA then uniquely (up to isomorphism)
determines a 2eA-isogeny and codomain curve Ea′ = Ea/〈RA〉 with kernel 〈RA〉.
For choosing an appropriate point, the SIKE setup defines basis points PA and
QA of the 2eA -torsion of the public starting curve. Picking an integer skA ∈
[0, 2eA − 1] and computing RA = PA + [skA]QA then results in choosing such a
kernel generator RA of order 2eA .

In practice, such a 2eA-isogeny is computed as a sequence of 2-isogenies of
length eA. This can be interpreted as a sequence of steps through a graph: For
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a prime ` with ` 6= p, the `-isogeny graph consists of vertices that represent
(j-invariants of) elliptic curves, and edges representing `-isogenies. Due to the
existence of dual isogenies, edges are undirected. For supersingular curves, this
graph is an (` + 1)-regular expander graph and contains approximately p/12
vertices. Hence, a sequence of 2-isogenies of length eA corresponds to a walk of
length eA through the 2-isogeny graph. An analogous discussion applies to the
case of 3eB -isogenies. Note that for reasons of efficiency, we often combine two
2-isogeny steps into one 4-isogeny.

The secret keys skA, skB can be decomposed as

skA =

e2−1∑
i=0

ski · 2i ski ∈ {0, 1}, skB =

e3−1∑
i=0

ski · 3i ski ∈ {0, 1, 2}.

We refer to these ski as the bits resp. the trits of the secret key skA resp. skB .
For a given sk, we use sk<k to represent the key up to the k-th bit/trit skk−1.

The SIKE scheme. The main idea behind SIDH and SIKE is to use secret
isogenies to set up a key exchange scheme resp. key encapsulation mechanism.
SIDH fixes E6 as starting curve, and torsion basis points PA, QA and PB , QB .
It uses the following subroutines:

– KeyGenA samples a secret key skA ∈ [0, 2eA − 1], computes RA = PA +
[skA]QA, and the secret isogeny φA : E6 → E6/〈RA〉. It outputs the key
pair (skA, pkA), where pkA = (φA(PB), φA(QB), φA(QB − PB)). We write
KeyGenA(sk) if KeyGenA does not sample a secret key, but gets sk as input.

– KeyGenB proceeds analogously with swapped indices A and B. The public
key is pkB = (φB(PA), φB(QA), φB(QA − PA)).

– DeriveA takes as input (skA, pkB) = (SA, TA, TA − SA). It computes the
starting curve EB from the points in pkB , the secret point R′A = SA +
[skA]TA, and the isogeny φ′A : EB → EB/〈R′A〉.

– DeriveB proceeds analogously with input (skB , pkA), and computes the co-
domain curve EA/〈R′B〉.

When running this key exchange, both parties arrive at a curve (isomorphic to)
E6/〈RA, RB〉, and (a hash of) its j-variant can serve as a shared secret.

SIKE uses the SIDH subroutines KeyGen and Derive to construct three al-
gorithms KeyGen, Encaps, and Decaps. Furthermore, we define h and h′ to be
cryptographic hash functions.

– KeyGen generates a (static) key pair (sk, pk)← KeyGenB .
– Encaps encapsulates a random value m in the following way:
• Get an ephemeral key pair (ek, c)← KeyGenA(ek) with ek = h(pk,m).
• Compute the shared secret s← DeriveA(ek, pk).
• Compute the ciphertext ct = (c, h′(s)⊕m).

– Decaps receives a ciphertext (c0, c1), and proceeds as follows:
• Compute the shared secret s′ ← DeriveB(sk, c0).
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• Recover m′ ← c1 ⊕ h′(s′).
• Recompute ek′ = h(pk,m′).
• Compute (ek′, c′)← KeyGenA(ek

′) and check if c′ = c0.

Passing this check guarantees that the ciphertext has been generated hon-
estly, and m′ = m can be used to set up a session key.

Representation of Montgomery coefficients. As in CSIDH, the curve Ea is
almost always represented using projective coordinates, with the caveat that a ∈
Fp2 . The following two representations are used throughout SIKE computations,
although in different subroutines.

– The alternative Montgomery form (A + 2C : 4C), such that a = A/C with
C non-zero. This representation is used for Alice’s computations as it is the
most efficient for computing 2-isogenies. It is often written as (A+

24 : C24)
with A+

24 = A+ 2C and C24 = 4C so that a = 2(2A+
24 − C24)/C24.

– The form (A + 2C : A − 2C), such that a = A/C, with C non-zero. This
representation is used for Bob’s computations as it is the most efficient for
computing 3-isogenies. It is often written as (A+

24 : A−24) with A
+
24 = A+ 2C

and A−24 = A− 2C so that a = 2(A+
24 +A−24)/(A

+
24 −A

−
24).

Note that the values A,C,A+
24, A

−
24 and C24 are in Fp2 . When necessary, we

write them as α+ βi with α, β ∈ Fp and i2 = −1. Equal to CSIDH, both forms
represent either an ordinary or a supersingular curve, with the exceptions C = 0,
which represents no algebraic object, and A = ±2C, which represents the sin-
gular curves E±2. For the rest of the paper, we are interested in representations
of the supersingular six curve E6. Fortunately, E6 is represented in both forms
as (8C : 4C), with C = α + βi ∈ Fp2 any non-zero element. For the goal of the
paper, this means that the analysis is similar for both forms.

Isogeny computation in projective form. SIKE uses the above projective
representations to compute the codomain Eã of a 3- or 4-isogeny φ : Ea → Eã.

4-isogeny. Given a point P of order 4 on Ea with x-coordinate x(P ) = (X : Z),
the codomain Eã = Ea/〈P 〉 with ã represented by (Ã+

24 : C̃24) is computed by

Ã+
24 = 4 ·X4, C̃24 = 4 · Z4. (7)

3-isogeny. Given a point P of order 3 on Ea with x-coordinate x(P ) = (X : Z),
the codomain Eã = Ea/〈P 〉 with ã represented by (Ã+

24 : Ã−24) is computed by

Ã+
24 = (3X + Z)3 · (X − Z), Ã−24 = (3X − Z)3 · (X + Z). (8)
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3 Recovering CSIDH keys with E0 side-channel leakage

In this section, we explore how side-channel information can leak information
on secret isogeny walks. As shown in [23], it is possible to detect zero values in
isogeny computations using side-channel information. In Section 3.1, we specif-
ically explore how both representations of the zero curve E0, i.e. (0 : C) and
(2C : 4C), leak secret information, even though the value C ∈ Fp is assumed
to be a uniformly random non-zero value. As E0 is always a valid supersingular
Fp-curve in CSIDH, we can always construct a walk that potentially passes over
E0. This allows us to describe a generic approach to leak a given bit of infor-
mation of the secret isogeny walk, hence, a general attack on the class group
action as introduced in CSIDH. We apply this attack in more detail to the two
current state-of-the-art cryptosystems based on this class group action: SQALE
in Section 3.2 and CTIDH in Section 3.3. We discuss their practical feasibility
in Section 5 and simulate these attacks in Section 6. We note that the proposed
attack applies to all variants of CSIDH that we know of, e.g. from [14, 15].

Throughout this work, we assume a static-key setting, i.e., that a long-term
secret key a is used, and that the attacker can repeatedly trigger key exchange
executions on the target device using public key curves of their choice. Formally,
this means that we adaptively feed curves EPK and get side-channel information
on the computations a ∗ EPK. We exploit this information to reveal a bit by bit.

3.1 Discovering a bit of information on a secret isogeny walk

Detecting E0 in Montgomery form. As described in Remark 1, the rep-
resentation of the Montgomery coefficient as (A : C) or (A + 2C : 4C) is non-
deterministic after the first isogeny, so they effectively contain random Fp-values,
representing the affine Montgomery coefficient a. This makes it hard to get any
information on Ea using side channels. However, in Montgomery form the curve
E0 is special: It is simply represented by (0 : C) for some C ∈ Fp. We define
such a representation containing a zero a zero-value representation.

Definition 1. Let Ea be an elliptic curve over Fp. A zero-value representation is
a representation of the Montgomery coefficient a in projective coordinates (α : β)
such that either α = 0 or β = 0.

Clearly, a representation of E0 in Montgomery form must be a zero-value
representation. As is known for ECC and SIKE, an attacker can observe zero-
value representations in several different ways using side-channel analysis [23].
We will expand on this in Section 5 to show that E0 leaks secret information in
implementations that use Montgomery form.

Detecting E0 in alternative Montgomery form. Using the alternative
Montgomery form, no non-singular curve has a zero-value representation, as
(A + 2C : 4C) can only be zero for A = −2C corresponding to a = −2, which
represents the singular curve E−2. Thus, the alternative Montgomery form avoids
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the side-channel attack described above. Nevertheless, the representation of E0

is still unusual: Whenever 2C is smaller than p/2, doubling 2C does not require
a modular reduction, and hence the bit representation of 4C is precisely a bit
shift of 2C by one bit to the left. Such strongly correlated values can be observed
in several ways using side-channel analysis, as we detail later in Section 5.

Definition 2. Let Ea be an elliptic curve over Fp. A strongly-correlated rep-
resentation is a representation of the Montgomery coefficient a in projective
coordinates (α : β) such that the bit representations of α and β are bit shifts.4

For E0, for any non-zero value C with 2C ≤ p/2, the representation in alter-
native Montgomery form by (2C : 4C) is a strongly-correlated representation.
As C is effectively random during the computation of the class group action, in
roughly 50% of the cases where we pass over E0, the representation is strongly
correlated. For random values of a, the values of (A + 2C : 4C) are indistin-
guishable from random (γ : δ), and so an attacker can differentiate E0 from such
curves. From this, an attacker only needs a few traces to determine accurately
whether a walk passes over E0 or not, as discussed in Section 5.

Remark 2. Other curves have strongly-correlated representations too, e.g., the
curve E6 requires A = 6C which gives (8C : 4C) with C ∈ Fp random and non-
zero, and so E6 can be detected in precisely the same way as E0. For simplicity,
we focus on the zero curve in the CSIDH attack. We note that analyzing this
attack to any curve with strongly-correlated representations is of independent
interest for CSIDH and other isogeny-based schemes (such as SIKE).

Remark 3. In the case where 2C is larger than p/2, the modular reduction by
p decreases the correlation between 2C and 4C significantly, which is why we
disregard these cases. However, a modular reduction does not affect all bits, and
so this correlation remains for unaffected bits. Especially for primes with large
cofactor 2k in p + 1, or primes close to a power of 2, the correlation between
unaffected bits should be exploitable. For the primes used in the CSIDH instances
in this work, this effect is negligible. However, the primes used in SIDH and SIKE
do have this form and we exploit this in Section 4.

The idea is now to detect E0 in a certain step k of the computation a ∗EPK.
In order to ensure that this happens the computation needs to be performed in a
known order of isogeny steps E → l(k) ∗E. In general, by the way how isogenies
are computed, such a step can fail with a certain probability. The following
definition takes this into account.

Definition 3. Let a be a secret isogeny walk. An ordered evaluation of a ∗E is
an evaluation in a fixed order

l(n) ∗ . . . ∗ l(1) ∗ E
4 This definition may be expanded to cover other types of correlation, whenever such
correlation can be distinguished from random values using side-channel information.
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of n steps, assuming that no step fails. We write ak ∗ E for the first k steps of
of such an evaluation,

l(k) ∗ . . . ∗ l(1) ∗ E.
We define pa resp. pak

as the probability that a resp. ak is evaluated without
failed steps.

Generic approach to discover isogeny walks using E0. Given the abil-
ity to detect E0 in a walk for both the Montgomery form and the alternative
Montgomery form, we sketch the following approach to discover bits of a secret
isogeny walk a that has an ordered evaluation. Assuming we know the first k−1
steps l(k−1) ∗ . . . ∗ l(1) in the secret isogeny walk a, denoted by ak−1, we want to
see if the k-th step l(k) equals li or l−1i for some i. We compute Ea = l−1i ∗E0 and
Ea′ = l−1i ∗Ea, and as a public key we use EPK = a−1k−1 ∗Ea. Then, when applying
the secret walk a to EPK, the k-th step either goes over E0 or over Ea′ . From
side-channel information, we observe if the k-th step applies lei = l1i or lei = l−1i ,
and set l(k) = lei , as shown in Figure 1. Then we repeat with ak = lei · ak−1.

EPK Ea

Ea′

E0

e =
−1

e = 1

7

3

SCA

SCA

Fig. 1: Generic approach to discover secret bits using side-channel information.

If E0 is not detected in the above setting, i.e. e = −1, we can confirm this
by an additional measurement: We compute Ẽa = l ∗ E0 and Ẽa′ = l ∗ Ẽa, and
use ẼPK = a−1k−1 ∗ Ẽa as public key. If e = −1, the isogeny walk now passes over
E0, which can be recognized via side-channel analysis. More formally, we get:

Lemma 1. Let a be any isogeny walk of the form a =
∏

leii . Assume the evalu-
ation of a is an ordered evaluation. Then, there exists a supersingular curve EPK

over Fp such that a ∗ EPK passes over E0 in the k-th step.

After successfully detecting all steps l(k), the private key elements ei can
simply be recovered by counting how often li resp. l−1i appeared in the evaluation.

This generic approach has a nice advantage: If one detects the k-th step to
walk over E0, this confirms all previous steps were guessed correctly. In other
words, guessing wrongly in a certain step will be noticed in the next step: Denote
a wrong guess by awrong

k = l−e ·ak−1. The attacker computes Ea from E0 so that
l′ ∗ Ea = E0 and gives the target EPK such that awrong

k ∗ EPK = Ea. Due to the
wrong guess, neither e = 1 nor e = −1 lead to E0, as the actual secret walk a
leads to Ea′ = ak ∗ EPK, and the case e = 1 leads to E¬0 = l′ ∗ Ea′ = l−2e ∗ E0,
as shown in Figure 2.
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EPK

Ea

E0

Ea′

E¬0

wron
g gu

ess

actual step
e =
−1

e = 1

7

7

SCA

SCA

Fig. 2: Due to a wrong guess of the isogeny path ak, an attacker miscomputes
EPK and the actual walk does not pass over E0.

Remark 4. Note that EPK given by Lemma 1 is a valid CSIDH public key, so
public key validation (see [14]) does not prevent this attack.

Probability of a walk passing over E0. Due to the probabilistic nature of
the computation of the class group action, not every evaluation a ∗ EPK passes
over E0 in the k-th step: One of the steps l(j) for 1 ≤ j ≤ k − 1 can fail with
probability 1/`(j), and if so, the k-th step passes over a different curve. With EPK

as given by Lemma 1, the probability that an ordered evaluation a ∗ EPK passes
over E0 is then described by pak

, which we compute in Lemma 2.

Lemma 2. Let a be an isogeny walk computed as an ordered evaluation l(n) ∗
. . . ∗ l(1) ∗ EPK. Then pak

, the probability that the first k isogenies succeed, is

pak
:=

k∏
j=1

`(j) − 1

`(j)

where `(j) is the degree of the isogeny l(j) in the j-th step.

As pak
describes the chance that we pass over E0 in the k-th step, 1/pak

gives us the estimated number of measurements of a ∗ EPK we need in order to
pass over E0 in step k. We apply this more concretely in Sections 3.2 and 3.3.

Remark 5. Instead of learning bit by bit starting from the beginning of the secret
isogeny walk, we can also start at the end of the walk. To do so, we use the twist
E−t of the target’s public key Et, for which a ∗ E−t = E0. As for the generic
attack, we feed EPK = l−1 ∗E−t and ẼPK = l ∗E−t. The computation then passes
over E0 in the last step instead of the first. This approach requires the same
probability pak

to recover the k-th bit, but assumes knowledge of all bits after k
instead of before. Hence, we can discover starting and ending bits of a in parallel.
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3.2 Recovering secret keys in SQALE

SQALE [16] is the most recent and most efficient constant-time implementation
of CSIDH for large parameters, featuring prime sizes between 1024 and 9216 bit.
In this section, we explain how the attack from Section 3.1 can be applied to
SQALE, leading to a full key recovery. For concreteness, we focus on SQALE-
2048, which uses parameters n = 231 and secret exponents ei ∈ {−1, 1} for
1 ≤ i ≤ 221. The `i with i > 221 are not used in the group action.

Algorithmic description of SQALE. Given a starting curve EA, the SQALE
implementation computes the group action in the following way:

– Sample random points P+ ∈ EA[π−1] and P− ∈ EA[π+1], and set E ← EA.
– Iterate through i ∈ {1, . . . , n} in ascending order, and attempt to compute
φ : E → leii ∗ E using P+ resp P−. Push both points through each φ.

– In case of point rejections, sample fresh points and attempt to compute the
corresponding isogenies, until all leii have been applied.

In order to speed up computations, SQALE additionally pushes intermediate
points through isogenies, which saves computational effort in following steps [18].
However, the exact design of the computational strategy inside CSIDH is not
relevant for the proposed attack. Using the above description, we sketch the
adaptive attack on SQALE-2048 to recover the secret key bit by bit. In case of
no point rejections, the order of steps in which a ∗ EPK is computed in SQALE
is deterministic, and thus we can immediately apply Lemmas 1 and 2:

Corollary 1. If no point rejections occur, the computation a ∗ EPK in SQALE
is an ordered evaluation with

l(n) ∗ . . . ∗ l(1) ∗ EPK = le221221 ∗ . . . ∗ l
e1
1 ∗ EPK.

Hence, pak
=

∏k
i=1

`i−1
`i
.

SQALE uses coefficients in alternative Montgomery form (A + 2C : 4C), so
that passing over the curve E0 can be detected as described in Section 3.1.

Recovering the k-th bit. Recovering the k-th bit of a SQALE secret key
works exactly as described in Figure 1, as in a successful run SQALE performs
each step l±1i in ascending order. Thus, the k-th step, in a run where the first k
steps succeed, computes E → l±1k ∗ E. For the attack, we assume knowledge of
the first k−1 bits of the secret to produce public keys EPK resp. ẼPK that lead the
target through E0 via an application of l−1k resp. lk, as given by Lemma 1. For
one of these cases, with probability pak

(Lemma 2), the target passes over E0 on
the k-th step, and we learn the k-th secret bit ek from side-channel information.

As k increases, pak
decreases: In order for the target to pass over E0 in one

of the two cases, all previous isogenies have to succeed, for which Corollary 1
gives the probability pak

. Thus, the fact that SQALE first computes small-degree
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isogenies is slightly inconvenient for the attack, due to their low success prob-
abilities. Nevertheless, attacking the last round of SQALE-2048 has a success
probability of roughly pa221 =

∏221
j=1(`j − 1)/`j ≈ 19.3%, so that in about 1 in 5

runs, every isogeny succeeds and we pass over E0 for the 221-th bit, compared
to 2 in 3 runs to pass over E0 for the first bit (pa1

= 2
3 ). This means that we

need about three times as many measurements to discover the last bit, than the
first bit. Nonetheless the required total number of measurements for all bits is
very managable; we get with Lemma 2:

Corollary 2. Assuming a pass over E0 leaks the k-th bit when the representa-
tion is strongly correlated, the estimated number of measurements to recover a
SQALE-2048 key is

4 ·
221∑
k=1

1

pak

= 4 ·
221∑
k=1

k∏
i=1

`i
`i − 1

≈ 4 · 1020.

Here, the factor 4 represents the fact that we need to feed both EPK and ẼPK,
and that only half the time (2C : 4C) is strongly-correlated. In practice, for
more certainty, we increase the number of attempts per bit by some constant α,
giving a total of α · 4 · 1020 expected attempts. We detail this in Section 6.

3.3 Recovering secret keys in CTIDH

CTIDH [4] is the most efficient constant-time implementation of CSIDH to date,
although the work restricts to the CSIDH-512 and CSIDH-1024 parameter sets.
We note that techniques from CTIDH can be used to significantly speed up
CSIDH for larger parameters too, yet this appears to require some modifications
that have not been explored in the literature yet. In this section, we explain
how zero-value curve attacks can be mounted on CTIDH, leading to a partial
or full key recovery, depending on the number of measurements that is deemed
possible. For concreteness, we focus on the CTIDH parameter set with a 220-bit
key space, dubbed CTIDH-511 in [4], which uses 15 batches of up to 8 primes.
The bounds satisfy Mi ≤ 12.

Algorithmic description of CTIDH. Given a starting curve EA, CTIDH
computes the group action by multiple rounds of the following approach:

– Set E ← EA, sample random points P+ ∈ E[π − 1] and P− ∈ E[π + 1].
– Per batch Bi, (attempt to) compute φ : E → l

sign(ei,j)
i,j ∗E using P+ resp P−

(or dummy when all lei,ji,j are performed). Push both points through each φ.
– Repeat this process until all lei,ji,j and dummy isogenies have been applied.

Furthermore, the following design choices in CTIDH are especially relevant:

– Per batch Bi, CTIDH computes real isogenies first, and (potential) dummy
isogenies after, to ensure Mi isogenies are computed, independent of (ei,j).
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– Per batch Bi, CTIDH computes the actual `i,j-isogenies in ascending order.
– Per batch Bi, CTIDH scales the point rejection probability to the largest

value, 1/`i,1. This slightly changes the computation of pak
.

– The order in which batches are processed is deterministic.

Example 1. Let B1 = {3, 5} with M1 = 6, and let e1,1 = 2 and e1,2 = −3.
For B1, we first try to compute E → l1 ∗ E, until this succeeds twice. Then,
we try to compute E → l−12 ∗ E, until this succeeds three times. After the real
isogenies, we try to compute the remaining B1-dummy isogeny. All B1-isogenies,
including dummies, have success probability 2/3. If all six of the B1-isogenies
are performed but other Bi are unfinished, we skip B1 in later rounds.

As for SQALE, the above description gives us that the order in which each l
is applied in CTIDH is deterministic, assuming that none of the steps fail, and
so we get with Lemmas 1 and 2 again:

Corollary 3. If no point rejections occur, the computation a ∗ E in CTIDH
is an ordered evaluation l(n) ∗ . . . ∗ l(1) ∗ E, with n =

∑
Mi, including dummy

isogenies.

Hence we can perform the adaptive attack on CTIDH-511 to recover the
secret key bit by bit. The CTIDH implementation of [4] uses coefficients in
alternative Montgomery form (A+ 2C : 4C), but passes over Montgomery form
(A : C) after each isogeny. Hence, E0 always has a zero-value representation and
we detect E0 as described in Section 3.1. We argue in Section 5 that zero-value
representations are easier to detect than strongly-correlated representations.

Recovering the k-th bit. CTIDH introduces several difficulties for the attack,
compared to SQALE. In particular, let Bi = {`i,1, . . . , `i,ni

} be the batch to be
processed at step k. Then, since usually ni > 1, we do not get a binary decision
at each step as depicted in Figure 1, but a choice between 2 ·ni real isogeny steps
l±1i,j , or possibly a dummy isogeny. In practice, with high probability, we do not
need to cover all 2 · ni + 1 options, as the following example shows.

Example 2. As CTIDH progresses through the batch ascendingly from `i,1 to
`i,ni , the first step of a batch can often be recovered as in Figure 1, using public
keys that are one `i,1-isogeny away from E0 respectively. If both do not pass
over E0, we deduce that ei,1 = 0, and we repeat this approach using an `i,2-
isogeny. In case of a successful attempt for `i,j , we learn that the respective key
element satisfies ei,j ≤ −1 resp. ei,j ≥ 1, depending on which of the binary steps
was successful.5 If we do not succeed in detecting E0 after trying all `±1i,j in Bi,
we learn that the target computes a Bi-dummy isogeny, and so all ei,j = 0 for
`i,j ∈ Bi. We can easily confirm dummy isogenies: If the k-th step is a dummy
isogeny, then using EPK such that a ∗ EPK passes over E0 in step k − 1, we do
not move to a different curve in step k and so we observe E0 using side-channel
information after steps k − 1 and k.
5 Note that the ei,j are not limited to {−1, 1} in CTIDH, in contrast to ei in SQALE.
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This approach to recover the k-th bit in CTIDH-511 only differs slightly from
Section 3.2: Given the knowledge of the secret path up to step k− 1, we recover
the k-th step by iterating through the target batch Bi = {`i,1, . . . , `i,ni}, until
we detect E0 for a given degree `i,j , or otherwise assume a dummy isogeny. This
iteration becomes easier in later rounds of each batch:

– If a previous round found that some ei,j is positive, we only have to check
for positive `i,j-isogeny steps later on (analogously for negative).

– If a previous round computed an `i,j-isogeny, we immediately know that the
current round cannot compute an `i,h-isogeny with h < j.

– If a previous round detected a dummy isogeny for batch Bi, we can skip
isogenies for Bi in all later rounds, since only dummy isogenies follow.

Thus, knowledge of the previous isogeny path significantly shrinks the search
space for later steps. As in SQALE, the probability pak

decreases the further we
get: Batches containing small degrees `i appear multiple times, and steps with
small `i have the most impact on pak

. For the last step l(n), the probability that
all steps l(k) in CTIDH-511 succeed without a single point rejection, is roughly
0.3%. This might seem low at first, but the number of measurements required to
make up for this probability does not explode; we are able to recover the full key
with a reasonable amount of measurements as shown in Section 6. Furthermore,
this probability represents the absolute lower bound, which is essentially the
worst-case scenario: It is the probability that for the worst possible key, with no
dummy isogenies, all steps must succeed in one run. In reality, almost all keys
contain dummy isogenies, and we can relax the requirement that none of the steps
fail, as failing dummy isogenies do not impact the curves passed afterwards.

Example 3. Let B1 = {3, 5} with M1 = 6 as in CTIDH-511. Say we want to
detect some step in the eighth round of some Bi for i > 1; it is not relevant in
which of the seven former rounds the six B1-isogenies are computed, and thus we
can effectively allow for one point rejection in these rounds. This effect becomes
more beneficial when dummy isogenies are involved. For example, if three of these
six B1-isogenies are dummies, we only need the three actual B1-isogenies to be
computed within the first seven rounds. Furthermore, after detecting the first
dummy B1-isogeny, we do not need to attack further B1-isogenies as explained
above, and therefore save significant attack effort.

Remark 6. The generic attack requires that all first k steps succeed. This is
not optimal: Assuming that some steps fail increases the probability of success
of passing over E0. For example, to attack isogenies in the sixth round and
knowing that e1,1 = 5, it is better to assume that one or two out of these five
fail and will be performed after the `i,j-isogeny we want to detect, than it is to
assume that all five of these succeed in the first five rounds. This improves the
success probability of passing over E0 per measurement, but makes the analysis
of the required number of measurements harder to carry out. Furthermore, this
optimal approach highly depends on the respective private key. We therefore do
not pursue this approach in our simulations. A concrete practical attack against
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a single private key that uses this improved strategy should require a smaller
number of measurements.

Remark 7. For CTIDH with large parameters, one would expect more large `i
and fewer isogenies of low degrees, relative to CTIDH-511. This improves the
performance of the attack, as the probability of a full-torsion path increases,
and so we expect more measurements to pass over E0. However, the details of
such an attack are highly dependent on the implementation of a large-parameter
CTIDH scheme. As we know of no such implementation, we do not analyze such
a hypothetical implementation in detail.

Remark 8. At a certain point, it might be useful to stop the attack, and compute
the remaining key elements via a simple meet-in-the-middle search. Especially
for later bits, if some dummy isogenies have been detected and most of the key
elements ei,j are already known, performing a brute-force attack may be faster
than this side-channel attack.

4 Recovering SIKE keys with side-channel leakage of E6

We now apply the same strategy from Section 3 to SIKE. In this whole section,
we focus on recovering Bob’s static key skB by showing side-channel leakage in
DeriveB , used in Decaps. In general, the idea would apply as well to recover
Alice’s key skA in static SIDH or SIKE with swapped roles, as we do not use any
specific structure of 3-isogenies. One can easily verify that the attack generalizes
to SIDH based on `A or `B-isogenies for any `A, `B . We repeat many of the
general ideas from Section 3, with some small differences as SIKE operates in
isogeny graphs over Fp2 instead of Fp. Fortunately, these differences make the
attack easier.

Detecting E6. As remarked in Section 2, for both representations used in SIDH
and SIKE, the curve E6 is represented as (8C : 4C), with C = α + βi ∈ Fp2
non-zero. Similar to the CSIDH situation, whenever 4α or 4β is smaller than p/2,
doubling 4C does not require a modular reduction for these values, and hence
the bit representation of 8α resp. 8β of 8C is precisely a bit shift of 4α resp. 4β
of 4C by one bit to the left. Such strongly-correlated values can be observed in
several ways using side-channel analysis, as we detail later in Section 5. Different
from the CSIDH situation are the following key observations:

– The prime used in SIKE is of the form p = 2eA · 3eB − 1. As observed in
Remark 3, this large cofactor 2eA in p+ 1 implies a modular reduction does
not affect the lowest eA − 1 bits, except for the shift. Hence, even when 4α
or 4β is larger than p/2, we see strong correlation between their lowest bits.

– C is now an Fp2 value, so we get strong correlation between 8α and 4α and
between 8β and 4β. This implies at least 2 · (eA− 1) strongly-correlated bits
in the worst case (25 %), up to 2 · (log2(p) − 1) strongly-correlated bits in
the best case (25%).
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For random curves Ea, the representations of a are indistinguishable from
random (α + βi : γ + δi), and so an attacker can differentiate E6 from such
curves. From this, an attacker only needs a few traces to determine accurately
whether a walk passes over E6 or not, as discussed in Section 5.

General approach to recover the k-th trit. Assuming we know the first
k − 1 trits ski of a secret key sk, i.e. sk<k−1 =

∑k−2
i=0 ski · 3i, we want to find

skk−1 ∈ {0, 1, 2}. We construct three candidate secret keys, sk(0), sk(1), sk(2) as

sk(0) = sk<k−1+0·3k−1, sk(1) = sk<k−1+1·3k−1, sk(2) = sk<k−1+2·3k−1.

We must have sk<k = sk(i) for some i ∈ {0, 1, 2}. Thus, we use these three
keys to construct (see Lemma 3) three public keys pk(0), pk(1), pk(2) such that
DeriveB(sk

(i), pk(i)) computes E6. When we feed these three keys to Bob, the
computation DeriveB(sk, pk

(i)) will then pass over E6 in the k-th step if and
only if skk−1 = i. By observing E6 from side-channel information, we find skk−1.

In this attack scenario, another key observation makes the attack on SIDH
and SIKE easier than the attack on CSIDH: The computation DeriveB(sk, pk

(i))
always passes over the same curves, as there are no “steps that can fail” as in
CSIDH. We know with certainty that Bob will pass over E6 in step k in precisely
one of these three computations. Hence, the number of traces required reduces
drastically, as we do not need to worry about probabilities, such as pak

, that we
have for CSIDH.

Constructing pk(i) from sk(i) using backtracking. Whereas in CSIDH it is
trivial to compute a curve EPK such that a ∗EPK passes over E0 in the k-th step
(see Lemma 1), in SIDH and SIKE it is not immediatly clear how to construct
pk(i) for sk(i). We follow [1, § 3.3], using backtracking to construct such a pk.6
The main idea is that any sk<k corresponds to some kernel point RB of order
3k for some k, so to an isogeny φ(k) : E6 → E(k). Here, the trits ski determine
the steps

E6 = E(0) sk0−−→ E(1) sk1−−→ . . .
skk−1−−−−→ E(k).

The dual isogeny φ̂(k) : E(k) → E6 then corresponds to the kernel generator
φ(k)([3eB−k]QB) (see [37]). This leads to [1, Lemma 2].

Lemma 3 ([1]). Let sk be a secret key, and let Rk = [3eB−k](PB + [sk<k]QB)
so that φ : E6 → E(k) is the corresponding isogeny for the first k steps. Let
T ∈ E(k)[3eB ] such that [3eB−k]T 6= ±[3eB−k]φ(QB). Then

pk′ = (φ(QB) + [sk<k]T, −T, φ(QB) + [sk<k − 1]T )

is such that DeriveB(sk, pk′) passes over E6 in the k-th step.

6 It is important that such a pk = (P,Q,Q − P ) passes the CLN test [20]: P and Q
are both of order 3eB and [3eB−1]P 6= [±3eB−1]Q, so that they generate E[3eB ].

19



It is necessary that such a pk′ is not rejected by a SIKE implementation.

Corollary 4 ([1]). The points P ′ and Q′ for a pk′ = (P ′, Q′, Q′ − P ′) as
constructed in Lemma 3 form a basis for the 3eB -torsion of E(k). This implies
they are of order 3eB and pass the CLN test.

Given Lemma 3 and sk<k−1, we can therefore easily compute the pk(i) corre-
sponding to sk(i) for i ∈ {0, 1, 2}. One of the three attempts DeriveB(sk, pk(i))
will then pass over E6 in the k-th step, while the other two will not. Only the
representation of E6 by (8C : 4C) is then strongly-correlated, and by detecting
this representation using side-channel information, we recover skk−1.

Remark 9. A straightforward attack computes pk(0), pk(1) and pk(2), and feeds
all three to Bob, and so requires 3 traces to recover a single trit skk−1. Clearly,
when we already detect E6 in the trace of DeriveB(sk, pk(0)), we do not need the
traces of pk(1) and pk(2), similarly for DeriveB(sk, pk(1)). This approach would
require on average 1

3 · 1+
1
3 · 2+

1
3 · 3 = 2 traces per trit. We can do even better:

If we do not detect E6 in both DeriveB(sk, pk
(0)) and DeriveB(sk, pk

(1)), we
do not need a sample for DeriveB(sk, pk(2)), as skk−1 must equal 2. This gives
5
3 samples per trit, giving a total of 5

3 · eB traces.

5 Feasibility of obtaining the side-channel information

In this section, we discuss the practical feasibility of obtaining the required side-
channel information.

Zero-value representations. For zero-value representations as in CTIDH,
where E0 is represented by (0 : C) in Montgomery form, we exploit side-channel
analysis methods to distinguish between the zero curve and others. In particular,
as shown in [23], one can apply Welch’s t-test [41] to extract the required informa-
tion from the power consumption of the attacked device. Further, as mentioned
in [23], one can use correlation-collision SCA methods to identify zero values us-
ing multiple measurements. Therefore, the attack scheme as demonstrated in [23]
to SIKE can analogously be applied whenever zero-value representations occur.

Strongly-correlated representations. The attacks presented in Sections 3.2
and 4 for implementations using strongly-correlated representations, such as
SQALE and SIKE, are more challenging in practice, since no zero values oc-
cur. A naïve approach to mount the proposed attack for such instances would
be to apply side-channel attacks like CPA or DPA, and estimate or guess the
values of intermediate codomain curves. Revealing those intermediate values
would require a fitting power model and a sufficiently high signal-to-noise ratio
(SNR7). By exploiting the pattern similarity in the strongly-correlated represen-
tation (2C : 4C) for SQALE or (8C : 4C) for SIKE, as mentioned in Section 3.1
7 SNR is the ratio between the variance of the signal and the variance of noise. Too
small SNR values make information and noise indistinguishable.
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and Section 4, we reduce the SNR required to successfully perform the attack.
To achieve this, we apply the concept of correlation-collision attacks, so that
there is no need to reveal the actual value of C via a sophisticated power model.

We exploit side-channel correlation-collision attacks [36] to find similar val-
ues by searching for strongly-correlated patterns versus non-correlated patterns.
Instead of measuring multiple computations to identify similar or identical pat-
terns, as in [36], we apply the concept of a horizontal side-channel attack as
in [38]. That is, we extract the required side-channel information from a sin-
gle segmented power trace. Such a segmented power trace contains the power
values of the processed limbs (each limb is 64 bits), required to represent Fp-
values, which form a fingerprint characteristic of such a value. These finger-
prints then serve as input to calculate the correlation between 2C and 4C for
SQALE, or 4α, 4β, 8α and 8β for SIKE, from which we judge their similarity. For
strongly-correlated representations of E0 and E6, this gives a higher correlation
between the fingerprints than for representations of random curves Ea as either
(A+ 2C : 4C) or (A+ 2C : A− 2C), with A,C 6= 0.

For both CSIDH attacks, we assume no point rejections prior to the respective
isogeny computation, so that the specific isogeny steps are known in advance.
For SIKE, there are no such probabilities involved in the isogeny computation,
and so here too the specific isogeny steps are known in advance. This implies
that an attacker will know where the values of interest are computed and used
within the power trace, and can distinguish the relevant information from the
rest of the trace. Thus, in all cases, the points of interest (position of the limbs)
within the power trace are known in advance, and segmenting each power trace
into vectors of the corresponding processed limbs for mounting the correlation-
collision attack is easy.

6 Simulating the attacks on SQALE, CTIDH and SIKE

To demonstrate the proposed attacks, we implemented Python (version 3.8.10)
simulations for our CTIDH-5118 and SQALE-20489 attacks, and a C simulation
of the attack on SIKE.10 The C code for key generation and collecting the
simulated power consumption were compiled with gcc (version 9.4.0). Security-
critical spots of the attacked C code remained unchanged in both cases.

For the SQALE and CTIDH attacks, the implemented simulation works as
follows: First, we generate the corresponding public keys EPK and ẼPK for the
current k-th step, as described in Section 3.1. Then we collect the bit values of
the resulting codomain curve after the computation of the k-th step E ← l(k) ∗E
in the group action a ∗ EPK resp. a ∗ ẼPK to simulate the power consumption.

We calculate the Hamming weight of these values and add a zero-mean Gaus-
sian standard distribution to simulate noise in the measurement. We picked dif-
ferent values of the standard deviation to mimic realistic power measurements
8 http://ctidh.isogeny.org/high-ctidh-20210523.tar.gz
9 https://github.com/JJChiDguez/sqale-csidh-velusqrt, commit a95812f

10 https://github.com/Microsoft/PQCrypto-SIDH, commit ecf93e9
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with different SNR values. By varying the SNR in such a way, we can determine
up to which SNR the attacks are successful, and compare this to known SNR
values achieved in physical attacks. For SQALE and CTIDH, we are only inter-
ested in power traces passing over E0, and so we need the first k steps to succeed.
We therefore take enough samples to ensure high probability that passing over
E0 happens multiple times for either EPK or ẼPK. Finally, based on the set of
collected bit vectors for all these samples, we decide on which of the two cases
contains paths over E0, and therefore reveal the k-th bit of the secret key.

For the SIKE attack, we generate pk(0), pk(1) and pk(2) for the current k-
th step, as described in Section 4, and collect the bit values of the resulting
codomain curve in the computation of the k-th step of DeriveB in Decaps. For
simplicity, there is no noise in the simulation, as the results are exactly the
same as for the SQALE situation after extracting the bit values. Deciding which
sample has strongly-correlated values is easy, as is clear from Figure 3.

As described in previous sections, due to the different representations, the
decision step differs between CTIDH and SQALE. For SIKE, the probability to
pass over E6 is 100%, and so a single sample per pk(i) is enough to decide what
the k-th trit skk−1 is.

In order to reduce the running time of our simulations for SQALE and
CTIDH, we terminate each group action run after returning the required bit
values of the k-th step. Furthermore, we implemented a threaded version so that
we collect several runs in parallel, which speeds up the simulation. All experi-
ments were measured on AMD EPYC 7643 CPU cores.

Attacking CTIDH-511. As shown in [23, § 4] a practical differentiation be-
tween zero and non-zero values, even with low SNR, is feasible with a single
trace containing the zero value. Hence, in CTIDH, where E0 is represented by
(0 : C), a single occurrence of E0 leaks enough information for the decision
in each step. Thus, the number of required attempts can be calculated as fol-
lows: Given pak

from Lemma 2, the success probability of having at least one
sequence that passes over E0 in the k-th step in tk attempts is Pexp(X ≥ 1) =
1− (1− pak

)tk . We can calculate tk to achieve an expected success rate Pexp by
tk = log(1−pak

)(1 − Pexp). For CTIDH-511, to achieve Pexp ≥ 99% for all k, we
get an estimate of

∑
tk ≈ 130, 000 attempts for full key recovery. In simulations,

the required number of attempts for full key recovery was ≈ 85, 000 on average
over 100 experiments, due to effects mentioned in Section 3.3. The average exe-
cution time was about 35 minutes (single core) or 5 minutes (120 threads). As
described in Remark 8, finding the last few key bits by brute force drastically
reduces the required measurements, as pak

is low.

Attacking SQALE-2048. In this case, we simulate a correlation-collision at-
tack as described in Section 5: We calculate the correlation between the 64-bit
limbs that represent the Fp-values, and apply the standard Hamming-weight
model with noise drawn from a normal distribution. Even with an SNR as low
as 1.40, strongly-correlated representations leak enough information to guess
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(a) Correlation results without noise. (b) Correlation results with SNR of 1.40.

Fig. 3: Experimental results to discover bit k = 1: the correct hypothesis (a∗EPK)
in blue and the wrong hypothesis (a ∗ ẼPK) in orange, for SQALE-2048.

Fig. 4: Relation between SNR and success rate. Rate of 0.5 equals random guess.

the k-th bit, as can be seen in Figure 3 for k = 1. Both without noise and
with SNR 1.40, we are able to determine the right bit in 74% of measurements
(where 75% is the theoretical optimum, as 2C ≤ p

2 only half the time). An SNR
value of 1.40 is considered low : The SNR value of a common embedded device,
using a measurement script11 provided by the ChipWhisperer framework for a
ChipWhisperer-Lite board with an ARM Cortex-M4 target, obtains an SNR
of 8.90. Figure 4 shows the success rate for different values. We evaluated the
following methods for decision-making:

– Decide based on the number of cases with a higher resulting correlation, as
exemplified in Figure 3.

– Decide based on the sum of the resulting correlations for each case, to reduce
the number of attempts required for a given success rate.

Empirical results show that the sum-based approach reduces the required
number of attempts for key recovery by a factor 3 on average (from ≈ 24, 819 to
≈ 8, 273), which leads to an average execution time of 35 minutes (120 threads).

11 https://github.com/newaetech/chipwhisperer-jupyter/blob/master/archive/
PA_Intro_3-Measuring_SNR_of_Target.ipynb, commit 44112f6
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Attacking SIKE. For SIKE, the analysis after collecting the bit values is
similar to that of the SQALE case, and hence the results from Figure 3 apply to
these simulated sampels too. Furthermore, for SIKE we have the advantage that
i) we know that one of the three samples per trit must be an E6-sample, ii) we
know that even with modular reduction, there is strong correlation between the
lowest limbs and iii) we can use both Fp-values α and β for C = α+ βi ∈ Fp2 .

As explained in Section 4, we need on average 5/3 samples per trit to find ski,
for all eB trits. For SIKEp434, this gives an average of 228 samples to recover
skB . The average running time over 100 evaluations in each case was ≈ 4 seconds
for SIKEp434, ≈ 8 seconds for SIKEp503, ≈ 17 seconds for SIKEp610, and ≈ 42
seconds for SIKEp751 respectively.

Scheme SQALE-2048 CTIDH-511 SIKEp434 SIKEp503 SIKEp610 SIKEp751

Samples 8,273 85,000 228 265 320 398
Table 1: Required number of samples to reconstruct secret key in simulations.

7 Countermeasures and conclusion

We have shown that both CSIDH and SIKE are vulnerable to leakage of specific
curves. For CSIDH, we have shown that both Montgomery form and alterna-
tive Montgomery form leak secret information when passing over E0, and for
SIKE we have shown that in both forms, the representation of E6 by (8C : 4C)
leaks secret information. As described in Section 5, zero-value representations
are easiest to detect, and accordingly one should prefer the alternative Mont-
gomery form over the Montgomery form throughout the whole computation for
CSIDH variants. However, more effective countermeasures are required to avoid
strongly-correlated representations in CSIDH and SIKE.

7.1 Public key validation

As mentioned in Section 3, public keys in the proposed attacks on CSIDH vari-
ants consist of valid supersingular elliptic curves. Hence, the attack cannot be
prevented by public key validation.

For the SIKE attack, the situation is different: Instead of containing valid
points (φA(PB), φA(QB), φA(QB−PB)) (see Section 2), we construct public keys
differently, as described in Lemma 3. However, such public key points are not
detected by partial validation methods contained in the current SIKE software,
such as the CLN test (see Corollary 4). In general, the full validation of SIDH
or SIKE public keys is believed to be as hard as breaking the schemes them-
selves [24]. It remains an open question if there is an efficient partial validation
method to detect the specific public key points generated by our attack.
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7.2 Avoiding E0 or E6

A straightforward way of mitigating the attacks is to avoid paths that lead over
E0 or E6, or any other vulnerable curve. As argued in [1, 23], avoiding them
altogether seems difficult. We discuss techniques to achieve this.

Danger zone. Similar to the rejection proposal from [1], it may appear intu-
itive to define a certain danger zone around vulnerable curves, e.g. for CSIDH,
containing all curves l±1i ∗ E0 for 1 ≤ i ≤ n, and abort the execution of the
protocol whenever an isogeny path enters this zone. In the SIKE attack, this
zone could include the four curves that are 3-isogenous to E6. However, the at-
tacker can simply construct public keys that would or would not pass through
this zone, and observe that the protocol aborts or proceeds. This leaks the same
information as in the attack targeting only E0 or E6.12

Masking on isogeny level. One can fully bypass this danger zone by mask-
ing by a (small) isogeny before applying secret isogeny walks (see [31, 1]). For
CSIDH, for a masking isogeny z and a secret a we have that by commutativity,
a∗E = z−1∗(a∗(z∗E)), so this route avoids the danger zone when z is sufficiently
large. Drawing z from a masking key space of k bits would require the attacker
to guess the random ephemeral mask correctly in order to get a successful walk
over E0, which happens with probability 2−k. Thus, a k-bit mask increases the
number of samples needed by 2k. Similarly, as detailed in [1], the secret isogeny
in the SIKE attack can be masked by a 2k-isogeny, where keeping track of the
dual requires some extra cost. Although masking comes at a significant cost if the
masking isogeny needs to be large, this appears to be the only known effective
countermeasure that fully avoids the proposed attacks.

Randomization of order (CSIDH). For CSIDH variants, intuitively, ran-
domizing the order of isogenies, and as proposed in [32] the order of real and
dummy isogenies, might seem beneficial to achieve this. However, we can then
simply always attack the first step of the isogeny path, with a success probability
of 1/n. With enough repetitions, we can therefore statistically guess the secret
key, where the exact success probabilities highly depend on the respective CSIDH
variant. This countermeasure also significantly impacts performance, making it
undesirable.

Working on the surface (CSIDH). 13 An interesting approach to avoid
vulnerable curves, specific to CSIDH, is to move to the surface of the isogeny
graph. That is, we use curves EA with Fp-rational endomorphism ring Z[ 1+π2 ]
instead of Z[π], and use a prime p = 7 mod 8. This idea was proposed in [12]
and dubbed CSURF. We can still work with elliptic curves in Montgomery form,
12 Pun aficionados may wish to dub this scenario the highway to the danger zone.
13 We thank the anonymous reviewers of SAC 2022 for this suggestion.
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although Montgomery coefficients a are not unique in this setting. However, when
following the setup described in [11], we are not aware of any vulnerable curves
on the surface, but it seems difficult to prove that vulnerable curves do not exist
there. More analysis is necessary to rule out such curves. Nevertheless, working
on the surface offers other benefits, and we see no reason to work on the floor
with known vulnerabilities, instead of on the surface.

Precomposition in SIKE. A potential countermeasure specific to SIKE is
precomposing with a random isomorphism, as proposed in [31]. In our attack
scenario, the isogeny walk then passes a curve isomorphic to E6 instead of E6,
which may eliminate the leakage. However, as discussed in [21], each isomor-
phism class contains exactly six Montgomery curves, and the isomorphism class
of E6 also contains E−6, which shares the same vulnerability as E6. Thus, in 1/3
of cases, leakage still occurs, only moderately increasing the number of required
measurements. On the other hand, finding an isomorphism that guarantees the
isogeny walk not to pass E6 or E−6 only from public key information seems infea-
sible. Furthermore, the computation of isomorphisms usually contains expensive
square root computations.

7.3 Avoiding correlations

Another approach to mitigate the attacks is to ensure that vulnerable curves such
as E0 and E6 do not leak information when passing over them. This requires
adapting the representations of such curves.

Avoiding correlations in alternative Montgomery form. As noted for
CSIDH variants, the representation (2C : 4C) leaks secret information whenever
2C < p

2 . In order to avoid this, we can try to represent the alternative Mont-
gomery form (A+2C : 4C) differently and use a flipped alternative Montgomery
form (A + 2C : −4C) instead, which we write as alternative Montgomery form
for brevity. In the case of E0, this means that the coefficients 2C and −4C are
not simple shifts of each other for 2C < p

2 , which prevents the correlation attack.
In order to still achieve constant-time behavior, we should flip 4C for all curves,
since otherwise E0 would easily be detectable via side channels. The correctness
of computations can be guaranteed by corresponding sign flips in computations
that would normally include 4C. Analogously, we can define a flipped represen-
tation of curves in SIKE. Although the alternative Montgomery form is effective
in preventing leakage of E0, it creates other vulnerable curves. We discuss this in
more detail in Appendix A. It remains an open question to find a representation
without both zero-value representations and strongly-correlated representations.

Masking a single value. Assuming we are working with the representations
(A+

24 : A−24) or (A
+
24 : C24) for either CSIDH or SIKE, masking is non-trivial, as

it needs to respect the ratio A/C during the computation. However, it is possible
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to multiply by some random α during the computation of A+
24, and to multiply

by 1/α in the next computations that use A+
24. This requires a careful analysis

and implementation, in order to guarantee that no leak of A+
24 or some different

correlation occurs at a given point in the computation.
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A Flipping 4C as a countermeasure.

In this appendix, we discuss the effectiveness of alternative Montgomery form
as a countermeasure. As Figure 5 shows, the countermeasure prevents detection
of (2C : 4C), and therefore prevents leakage on E0. Similar techniques can also
be applied for other strongly-correlated representations, such as those for E6.

(a) Correlation results with
countermeasures (without noise).

(b) SNR/Success rate with
countermeasures.

Fig. 5: Correlation values including the countermeasures leak no information.

Nevertheless, alternative Montgomery form creates new problems. In al-
ternative Montgomery form, the curve E−6, a valid supersingular curve for
most CSIDH-primes, is represented using (−4C : 4C), which is not strongly-
correlated. However, by switching to alternative Montgomery form, we get the
strongly-correlated representation (−4C : −4C). The attack as described in the
paper is then applicable by replacing E0 by E−6.

It seems difficult to discover if a curve Ea will leak information before com-
puting the next step: doing so would require knowledge on a, and so requires a
representation of a in some form. Hence, we cannot decide to use either alterna-
tive Montgomery form or alternative Montgomery form before we compute the
actual curve.

B CSIDH implementations using radical isogenies

In [13] an alternative method to compute the action of a is proposed, using radical
isogenies. The evaluation of a∗E is still an ordered evaluation l(n) ∗ . . . ∗ l(1) ∗E,
due to a change in the evaluation algorithm we get chains li ∗ . . . ∗ li of specific
degrees `i ∈ {4, 5, 7, 9, 11, 13} in the evaluation. These chains are computed on
a different curve form, namely the Tate normal form for that specific degree `i,
instead of as steps between Montgomery curves.

30



. . . E lki ∗ E . . .

E(b0, c0) E(b1, c1) . . . E(bk, ck)

l(j) l(j+k)

To Tate normal form To Montgomery

Rad. Rad. Rad.

The Tate normal form for a degree `i in general requires two coefficients
b, c ∈ Fp instead of the single Montgomery coefficient a ∈ Fp, and the radical
isogeny computes b′, c′ associated to li ∗ Ea.

In an efficient implementation, both b and c would be represented in pro-
jective coordinates. We know of only one such implementation, given in [17].
We sketch two attack approaches to extend the proposed attacks to such an
implementation:

1. Find a Tate normal curve of degree `i such that either b or c has a strongly-
correlated representation. The generic adaptive attack then works exactly
the same.

2. Find the length of the chain by feeding a curve EPK such that we map back
to E0 when we map back to Montgomery form at the end of the chain. This
requires feeding several different EPKj representing several different lengths
of chains.

Note that the attack becomes easier when using radical isogenies: these chains
are computationally very distinct from ordinary isogeny evaluations, and so we
only need to discover the length of the chain. Furthermore, radical isogenies are
performed for low degrees (up to 13), which implies that we do not perform these
degrees in the rest of the steps l(j). This increases pak

substantially.
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