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Abstract. In this paper, we propose CryptMed, a system framework that enables medical service providers
to offer secure, lightweight, and accurate medical diagnostic service to their customers via an execution
of neural network inference in the ciphertext domain. CryptMed ensures the privacy of both parties with
cryptographic guarantees. Our technical contributions include: 1) presenting a secret sharing based infer-
ence protocol that can well cope with the commonly-used linear and non-linear NN layers; 2) devising
optimized secure comparison function that can efficiently support comparison-based activation functions
in NN architectures; 3) constructing a suite of secure smooth functions built on precise approximation ap-
proaches for accurate medical diagnoses. We evaluate CryptMed on 6 neural network architectures across a
wide range of non-linear activation functions over two benchmark and four real-world medical datasets. We
comprehensively compare our system with prior art in terms of end-to-end service workload and prediction
accuracy. Our empirical results demonstrate that CryptMed achieves up to respectively 413×, 19×, and
43× bandwidth savings for MNIST, CIFAR-10, and medical applications compared with prior art. For the
smooth activation based inference, the best choice of our proposed approximations preserve the precision
of original functions, with less than 1.2% accuracy loss and could enhance the precision due to the newly
introduced activation function family.

1 Introduction

Recent thriving deep learning techniques have been fueling a wide spectrum of medical endeavors, ranging
from radiotherapy [1], clinical trial and research [2], to medical imaging diagnostics [3]. Enterprises capitalize
on neural networks (NNs) to offer medical diagnostic services, facilitating hospitals and researchers to produce
faster and more accurate decisions over their medical data. With the growth in such offerings comes rapidly
growing awareness of daunting privacy concerns. The medical data is of sensitive nature and must be always
kept confidential [4–7]. Meanwhile, NN models used in these services are seen as lucrative intellectual properties
and encode knowledge of private training data [8].

Addressing these privacy concerns in the above deep learning powered service scenario generally fits within
paradigm of secure multi-party computation (MPC). A rich body of work [9–13] proposes hand-tuning MPC
protocols for secure inference, whereby the service provider and the customer interact to produce an inference
over encrypted/secret-shared NN model and individual data. We note that prior designs are still facing obstacles
regarding inference efficiency and accuracy in the ciphertext domain, and do not appear to be able to fulfill
practical requirements of real-world medical diagnostic scenarios.

Firstly, they all require customers to conduct heavy cryptographic computations like homomorphic encryp-
tion (HE) and garbled circuits (GC), imposing intensive computational and communication overheads during
inference. These overheads are further exacerbated when, e.g., the service is deployed to a hospital with resource-
constrained devices (like portable medical imaging scanners [14]).

Secondly, existing protocols are either not compatible with non-linear (activation) functions [9, 11] or only
focus on the simple ReLU function [12,13,15], causing limitations of applicability for medical diagnoses. There
are limited works investigating other essential (smooth) activation functions, like sigmoid. Among them, most of
existing designs use high-degree polynomials [16,17] or ad-hoc piecewise polynomials [10,18–20] to approximate
those activation functions. However, the former approach incurs heavy costs when evaluating repeated multipli-
cations. The latter one relies on intervention and expertise on models and training datasets for fine-tuning [10],
or encounters the severe ‘vanishing gradient problem’ making the NNs imprecise [18–20].
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To address the above challenges, we design, implement, and evaluate CryptMed, a lightweight and secure
NN inference system tailored for medical diagnostic services. CryptMed proceeds by having the hospital and
the medical service engage in a tailored secure inference protocol over their secret-shared inputs. Only the
hospital learns the diagnostic result; and the privacy of the medical data and model is ensured against each
other. In particular, we combine insights from cryptography, digital circuit design, and deep learning literature,
fostering an efficient, low-interaction, and accurate deep learning service suitable for realistic medical scenarios.
Our contributions are summarized as follows.

– We propose a new secure NN inference system framework CryptMed relying only on the lightweight secret
sharing techniques, which requires neither heavy cryptographic computation nor large-size ciphertext trans-
mission.

– We present a hybrid protocol design that consists of a preprocessing phase and an online phase where the
preprocessing phase conducts as much computation as possible to ease the online phase. Moreover, the
preprocessing only involves lightweight computation in the secret sharing domain.

– We devise an efficient and communication-optimized secure comparison function harnessing the insights from
cryptography and the field of digital circuit design. Our proposed secure comparison function can efficiently
support the widely adopted comparison-based non-linear functions, including ReLU, ReLU6, Leaky ReLU,
Binary activation, and MaxPool/MinPool. Compared to the commonly-used GC solutions, CryptMed’s secure
ReLU is 36× faster and requires 398× less communication, and the secure MaxPool is 20× faster and uses
192× less communication.

– We devise secure smooth activation functions (i.e., tanh, sigmoid, ELU) from newly proposed precise and
cryptography-friendly approximations in the field of digital circuit design and deep learning literature. Our
introduced approximations are non-linear and low-degree piecewise polynomial approximations with quan-
titative performance and demonstrate promising accuracy through comprehensive empirical. They are not
only approximations but also new activation function family that are natural replacements of the smooth
functions. With such approximations, CryptMed reformulates the challenging support for secure smooth ac-
tivation functions into the comparison-based construction that can be efficiently and accurately evaluated in
secure domain.

– We conduct formal security analysis. We implement a prototype of CryptMed. We extensively train varying
neural network models based on 6 architectures across a wide range of non-linear activation functions. We
conduct comprehensive experiments over two benchmarking datasets and four real-world medical datasets.
Our experiment results show that CryptMed requires the least network resources compared to prior works
with up to 413×, 19× and 43× bandwidth savings for MNIST, CIFAR-10, and the medical applications,
respectively.

The rest of this paper is organized as follows. Section 2 investigates the related work. Section 3 introduces
the necessary preliminaries. After an overview of our system in Section 4, we present our proposed construction
in Section 5. Section 6 presents our empirical evaluation on microbenchmarks and end-to-end secure inference
service. Finally, Section 7 concludes this paper.

2 Related Works

Secure Neural Network Inference. Secure neural network inference has drawn much attention in the
emerging field of privacy-preserving machine learning. Our design is closely related to a line of studies on
secure NN inference. These studies [9–13, 21–23] mostly propose an interactive protocol for secure inference
running between the service provider and the customer. Among others, there are designs [15, 18, 24] that
consider an outsourced scenario, where two non-colluding cloud servers collaboratively perform NN inference
over the encrypted/secret-shared model and data. Apart from different system models, they commonly rely on
heavy cryptographic techniques (like HE and GC) during the latency-sensitive online inference procedure. Very
recently, Delphi [12] proposes a hybrid and interactive inference protocol, which preprocesses some cryptographic
operations to accelerate the online inference execution. However, this work still demands intensive workloads on
the customer to conduct heavy cryptographic computations during preprocessing, and relies on expensive GC
based approach to evaluate the basic ReLU function. CryptMed adopts a similar hybrid setting yet only involves
the lightweight secret sharing techniques during the entire secure inference procedure, which has an prominent
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advantage of rather simplified implementation for easy real-world deployment, compared to the SOTA which
requires heavy optimization in GC and homomorphic encryption implementation.

We emphasize that most prior works only support the basic ReLU activation [12, 13, 15]. Other essential
activation functions commonly-used in deep learning based medical diagnoses are unexplored, such as ReLU6,
Leaky ReLU, and the exponential linear unit (ELU) [25]. Even worse, some works can not fully cope with
the non-linearity [9, 11]. Instead, they use the square function for approximation, resulting in an imprecise
prediction [26,27] that could cause impactful consequences in the medical diagnostic applications.

In the literature, only limited works explore the smooth sigmoid activation function via polynomial ap-
proximations. These works either resort to high-degree polynomials [16, 17] or ad-hoc piecewise polynomi-
als [10, 18–20]. The first approach suffers from substantial costs to evaluate a large amount of secure mul-
tiplications. The second approach heavily relies on intervention from developers to fine-tune the piecewise
polynomials (coefficients and segments) [10], or runs into the severe vanishing gradient problem making the
NNs imprecise [18–20]. All those solutions do not appear to be competent for practical deep learning based
medical diagnoses deployment. A detailed comparison between our work and prior works is summarised in
Table 1.

Table 1. Limitations of prior secure neural network inference systems and comparison with our systems.

No heavy crypto.
for linear layers?

No heavy crypto.
for nonlinear layers?

No large ciphertext
transmissions?

Applicable for
generic NNs?

Support smooth
activations?

CryptoNets [9] 7 7 7 71 7

SecureML [18] 3 7 3 3 37

MiniONN [10] 3 7 3 3 3

Gazelle [11] 7 7 7 71 7

Chameleon [15] 3 7 3 3 7

XONN [28] 7 7 3 372 7

Quotient [29] 7 7 3 372 7

Falcon [30] 7 7 7 3 7

Delphi [12] (SOTA) 37 7 3 3 7

CryptMed (our system) 3 3 3 3 3

1 These systems requires NN model architecture modification, such as polynomial approximation of ReLU activation.
This setting could downgrade the prediction accuracy.
2 These systems are designed for quantized NNs. Quotient [29] uses Ternarized NN, and XONN [28] is designed for
Binarized NN.

Secure Machine Learning MPC Frameworks. A number of generic MPC frameworks are designed and im-
plemented for complicated computation tasks like machine learning. Noteworthy examples include the two-party
framework with a trusted party to generate correlated randomness proposed in Chameleon [15], the framework
proposed by Reza Sadeghi et al. [31], TAPAS [32], FHE DiNN [33], the framework proposed by Dalskov et
al. [34], MP2ML [35]; the three-party frameworks proposed in ABY3 [19], SecureNN [36], CryptTFlow [37];
the four-party frameworks in Trident [38], FLASH [39]; and multi-party frameworks in TFEncrypted [40],
PySyft [41, 42], FALCON [43]. Note that a handful of latest privacy-preserving machine learning systems opt
for specialized and optimized designs rather than direct application of generic MPC frameworks [12, 28, 29, 44]
for performance consideration. Our design also follows such trend.
Privacy-Preserving Medical Diagnosis. This work also relates to the designs of privacy-preserving med-
ical diagnosis. There is a plethora of work proposed on privacy-preserving medical imaging based diagnostic
applications. Some works strive to enhance the reliability of image-centric diagnoses via privacy-preserving
image denoising [45–48]. These works resort to DNNs [45, 46] or reference image patches [47, 48] to devise im-
age denoising protocols that can privately reduce the noises and deliver high-quality medical image content.
Meanwhile, a line of work aims to explore privacy-preserving machine learning for various medical diagnostics,
like medical image classification [24, 49–52], tumor segmentation [53–56], and genomic data regression [57–59].
Some of them utilize cryptographic privacy-enhancing techniques (e.g., homomorphic encryption, secure mul-
tiparty computation) to protect the privacy of machine learning models and medical data [24, 49, 50, 57–59].
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Table 2. Table of notation.

Notation Description

X, x Input/feature tensor and element.
W, w Weight tensor and element.
µ, δ, γ, β Batch normalization parameters: the running mean, running variance, scale, and shift.
L Number of neural network layers
`, n Bit length ` and vector length n.
i Identifier of a party i, where i ∈ {0, 1}.
b, c Control bits
x` The most significant bit of element x
xk,xk The k-th element of vector x; The k-th vector.
〈x〉Ai Additive secret shares of value x in ring Z2` held by the party i
JxKi Boolean shares of value x in ring Z2 held by the party i
〈x〉Ai ± 〈y〉Ai Addition/subtraction over additive secret shares
〈x〉A · 〈y〉A Multiplication over additive secret shares
JxKi + JyKi Bitwise XOR over Boolean shares
JxK · JyK Bitwise AND over Boolean shares

Others resort to differential privacy techniques to train a private model that can be used to conduct private
inference over medical images [51–56]. We emphasize that these works focus on different problems and their
designs are highly different from ours. A few of them consider secure neural network inference based medical
diagnosis, yet requiring to use heavy cryptography [24, 50] or not focusing on supporting smooth activation
functions [49]. Many others explore different problems, like the relatively simpler regression models [57–59], or
federated learning [51–56]. Besides, those works relying on differential privacy techniques require to perturb the
data with noise, and thus would downgrade the utility of models [51–56].

Apart from the machine learning based approaches, works adopt data mining techniques to securely analyze
the medical data for diagnostics. Applications include similarity analysis of human genome sequences [60–62],
genome-wide association studies [63–66], biometric identification [67], pharmacology and medicine [68,69], and
medical time-series data analytics [6, 7,70]. A common paradigm is to customize secure computation protocols
to meet certain requirements for different medical diagnostic applications.
Differences from the Conference Version. Portions of this paper have been presented in [49]. We have
revised the preliminary work [49] with substantial new contributions and improvements, as summarized below.
Firstly, we have proposed a number of new efficient, lightweight, and accurate secure non-linear activation
functions in Section 5, including the secure comparison-based activation functions ReLU6, Leaky ReLU, Binary
activation, and the secure smooth activation functions tanh, sigmoid, and ELU with different approximation
approaches. Secondly, we have made a full-fledged implementation of the new realizations of our security design
and conducted comprehensive performance evaluation and comparisons. The overall experiment results have
demonstrated the prominent performance advantage of our new design. Finally, we have refined the previous
work significantly to reflect our new contributions and latest understanding on the topic, as well as improve
the clarity.

3 Preliminaries

In this section, we introduce the core primitives and background used in CryptMed. We summarize the key
notations used in this paper in Table 2.
Secret Sharing. We now present the key cryptographic primitive used in our design: additive secret sharing.
Additive secret sharing [71] protects an `-bit value x ∈ Z2` as two secret shares 〈x〉0 = r (mod 2`) and
〈x〉1 = x− r (mod 2`) such that 〈x〉A0 + 〈x〉A1 ≡ x (mod 2`), where Z2` is a ring and r is a random value from
Z2` (r ∈R Z2`). It perfectly hides x as each share is a random value and reveals no information of x. Given
two parties P0 and P1, each party holds corresponding shares of two secret values x and y. Additive secret
sharing supports efficient local addition and subtraction over shares 〈z〉i = 〈x〉i±〈y〉i and scalar multiplication
〈z〉i = η · 〈x〉i (η is a public value). They are calculated by each party Pi (i ∈ {0, 1}) locally without interaction.
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Table 3. Typical non-linear layers in DNNs.

Layer Description Function

Comparison-based
activation function

Binary activation function f(x) =

{
1 if x ≥ 0

0 if x < 0

ReLU activation function f(x) = max(0, x)
ReLU6 activation function f(x) = min(max(0, x), 6)
Leaky ReLU activation function f(x) = max(0.1x, x)

Smooth activation
functions

Sigmoid function f(x) = 1
1+e−x

Hyperbolic tangent (tanh) function f(x) = 2x−e−x

ex+e−x

Exponential linear units (ELU) activation function f(x) =

{
x if x ≥ 0

α · (ex − 1) if x < 0

Pooling layers
(window size n)

max pooling max(x1, ..., xn)
min pooling min(x1, ..., xn)

Multiplication over two shares 〈z〉 = 〈x〉 · 〈y〉 is realized by the secret-shared Beaver’s triple [72], i.e., Pi holds
(〈t1〉i, 〈t2〉i, 〈t3〉i) in a way that t3 = t1 · t2. Such a multiplication operation with Beaver’s triple is a standard
secure computation protocol, whereby Pi obtains the shares 〈z〉i of xy at the end. Note that Beaver’s triples are
data independent and can be efficiently generated via one-off computation by a third party [15,73]. In addition,
additive secret shares can readily support boolean operations over binary values. Given the bit length ` = 1
and the ring Z2, a secret binary value x is shared as JxK0 = r ∈ Z2 and JxK1 = r ⊕ JxK0. The bitwise XOR (⊕)
and AND (∧) over shares are calculated in the same way as the above addition and multiplication, respectively.
Deep Neural Networks. A typical Deep Neural Network (DNN) comprises two types of layers in sequence:
linear layers and non-linear layers. Linear layers include convolutional layers (CONV), fully-connected layers
(FC), batch normalization (BN) layers, and average pooling layers (AvgPool). The functionalities of these layers
in cleartext can be formulated as a bunch of additions, multiplications, and flattened operations over kernels
(partial model weights for a certain function) and features (user inputs and intermediate results). Specifically,
the underlying functionality of CONV and FC is the vector-wise dot product VDP(x,w) = Σn

i=1w(i) · x(i)
between a kernel vector w ∈ Rn and a feature vector x ∈ Rn within a sliding window n × n. Given a kernel
W ∈ Rcin×cout×n×n, CONV transforms an input feature X ∈ Rcin×hin×win into an output feature Y ∈
Rcout×hout×wout via

Y (t,m, n) = Σcin
k=1Σ

n
i=1Σ

n
j=1VDP(X(k,m+ i− 1, n+ j − 1),W (k, t, i, j)),

where t ∈ [cout],m ∈ [hout, n ∈ [wout]]. That is, any data point in Y is produced by applying a sliding kernel
tensor Wcin×n×n over the entire feature tensor X, and performing cross-channel VDP operations repeatedly.
Such a function indicates the FC layer when n = 1. Batch normalization is used to regularize the model. It is
applied after CONV/FC layers and performs z = γ(x − µ)/δ + β over the feature x on each neuron, where µ,
δ, γ, and β are BN parameters: the running mean, the running variance, the scale, and the shift. Note that the
BN parameters are part of the model weights and should be protected properly.

As summarized in Table 3, non-linear functions in DNNs can broadly be classified into comparison-based
activation functions, smooth activation functions, and pooling layers. Comparison-based activation functions
(ReLU, ReLU6, LeakyReLU, and Binary activation) have been demonstrated with superior performance in
deep learning applications for rapid learning and high prediction accuracy. They are essential building blocks
in neural networks to introduce non-linearity, particularly in image classifications. These functions alleviate the
well-known ‘vanishing gradient problem’ (neural networks could not converge) encountered when the sigmoid
and tanh functions are leveraged for training. The ReLU function is the most widely adopted activation function
in CNNs. The ReLU6 activation function is a variant of the ReLU that clips weights between 0 and 6. The
Leaky ReLU function adopts a linear function for negative features. The Binary activation function is usually
adopted in quantized NNs.

Smooth activation functions make non-trivial usage in deep learning. Similar to comparison-based acti-
vation functions, smooth activation functions introduce non-linearity to NNs. Additionally, these functions
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have properties of continuity, smoothness, and monotonicity to empower NNs with complex capabilities [74,75].
CryptMed focuses on three widely-adopted smooth activation functions, i.e., sigmoid, hyperbolic tangent (tanh),
and ELU. They are vital building blocks in a variety of machine learning and deep learning paradigms for medi-
cal diagnoses, like medical time series predictions [74], tumor segmentation, and medical imaging denoising [46].
The tanh function and the sigmoid function are preferable over logistic regression, LSTM, and RNN for sequen-
tial and time series data prediction. The ELU function [76] is a noise-robust and precise activation function
compared to the conventional ReLU activation and its variants (e.g., Leaky ReLU, Parametrized ReLU). Be-
sides, ELU effectively diminishes the ‘vanishing gradient problem’ by setting the identity for positive features.
Secure Computation over Fixed-Point Ring. Deep learning inference operates over real-valued numbers,
i.e., DNN weights and user inputs. In cleartext, they are represented in floating-point numbers. To allow
CryptMed to operate in the secret sharing domain, we leverage the fixed-point representation to project values
to the underlying ring Z2` . Such fixed-point representation is a common paradigm adapted in prior work [10,12,
18,20]. Specifically, given a floating-point number x, we first convert it to a signed fixed-point integer x̄ = bx·2sc
with a scaling factor s embedding the fractional part. Afterwards, we project such an integer to the ring Z2` via
x̄ mod 2`. To represent the sign, we leverage the two’s complement representation, where the most significant bit
(MSB) represents the sign. In this way, non-negative values are mapped to the lower-half ring [0, 2`−1−1], while
negative values are mapped to the upper-half ring [2`−1, 2` − 1]. Then, the MSB will be ‘0’ for a non-negative
value, and ‘1’ for a negative value. In fixed-point representation, repeated multiplications may lead to integer
overflow due to the excess of fractional bits (from s to 2s bits). A common treatment is to use a secure local
truncation [12,18,20], where the least s bits are chopped off ahead of subsequent multiplications.

4 System Overview

4.1 Architecture

RMIT Classification: Trusted

Medical ServiceHospital

Data
CryptMed

Prediction

Model

Fig. 1. System architecture.

Figure 1 illustrates the system architecture of CryptMed which enables secure deep learning based medical
diagnostic service. CryptMed operates between two parties: the hospital and the medical service provider. On
the one hand, we consider that the medical service as an enterprise which deploys an NN powered medical
diagnoses service offering though a proprietary NN model. On the other hand, we consider that the hospital as
a customer intends to take advantage of the deep learning service to facilitate an accurate medical conclusion,
while protecting its own confidential medical records (e.g., CT image, physiological data). Note that the role of
the hospital in the real world can be any healthcare institutes, such as clinics, biomedical research centers, or
life-science institutes. To launch a secure medical diagnostic service, the above two parties execute CryptMed’s
secure NN inference protocol over the secret-shared model and secret-shared medical record. At the end, only the
hospital can obtain the secret shares prediction result, which is then recovered to get the cleartext diagnosis.
CryptMed provides a cryptographic guarantee such that the hospital obtains the inference result only and
nothing else, while the medical service learns no information about the hospital’s medical records.

4.2 Threat Model

CryptMed designs two-party inference secure against semi-honest adversaries. In CryptMed, the hospital and the
medical service will honestly follow the prescribed protocol, yet trying to deduce auxiliary information about
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each other’s private input beyond what revealed from the protocol result. It is noted that such an assumption is
practical. Nowadays the behavior of hospital is widely enforced by ethics, law and privacy regulations [4,5]. In the
meantime, the medical service is usually offered by well-established vendors (e.g., Microsoft Project InnerEye [3],
Google DeepMind Health [1]), that do not have strong incentives to risk their business model and publicity for
malicious behaviors [70]. Due to the above facts and observations, such a threat model is commonly adopted in
prior secure NN inference work [10,12] as well. CryptMed strives to ensure the privacy of the hospital’s medical
records and the NN model (values of trained weights). Consistent with prior art [10,12,24], CryptMed does not
hide the data-independent model architecture, e.g., the model size and number of layers. Lastly, CryptMed deems
thwarting adversarial machine learning attacks orthogonal, which attempt to exploit the inference procedure as
a blackbox oracle to extract private information. Mitigation strategies can be differentially private learning [77].

Hospital Medical Service

Offline

{a0
i ,a

2
i }i∈[1,L] {Ai,a

1
i }i∈[1,L], {W1, ...,WL}

(Wi −Ai)←−−−−−−−−
Let ui = a0

i Let vi = a1
i

(Wi −Ai) · a0
i + a2

i = Wiui − vi

Online

Linear layer i = 1
(X1 − u1)
−−−−−−−−→

Let 〈X2〉0 = W1u1 − v1 〈X2〉1 = W1(X1 − u1) + v1

Linear layer i ≥ 2

(〈X̄i〉0 − ui)−−−−−−−−−−→
X̄i − ui = (〈X̄i〉0 − ui) + 〈X̄i〉1

Let 〈Xi+1〉0 = Wiui − vi 〈Xi+1〉1 = Wi(X̄i − ui) + vi

Non-linear layer i ≥ 1

Secure Non-linear Function
←−−−−−−−−−−−−−−−−−−−−−→

〈X̄i+1〉0 〈X̄i+1〉1

Fig. 2. CryptMed’s secure inference protocol.

5 Our Proposed Design

In this section, we introduce CryptMed’s secure NN inference protocol for medical diagnostic applications. At a
high level, our design consists of two types of secure layer evaluations: secure linear layers and secure non-linear
layers. CryptMed efficiently supports a suite of secure linear layers, including the secure convolutional layers,
secure fully-connect layers, secure batch normalization, and secure average pooling layers. For secure non-linear
layers, CryptMed efficiently realizes a series of comparison-based non-linear layers, i.e., ReLU, ReLU6, Leaky
ReLU, Binary activation, MaxPool, and MinPool. Besides, CryptMed enables rich non-linear functionalities by
supporting lightweight and accurate evaluations of secure smooth activation functions, including tanh, sigmoid,
and ELU. All these layers are vital building blocks in deep learning based medical diagnostic services.

In CryptMed, each secure layer securely evaluates a certain cleartext functionality in the secret sharing
domain, which proceeds by taking the secret-shared inputs (features and/or kernels) and producing the secret-
shared outputs passed to the succeeding secure layer. Our overarching goal is to devise a lightweight protocol
for secure neural network inference with optimized interactions, while empowering rich and accurate secure
functionalities for deep learning based medical services. Atop such goal, we have three prominent design insights.
Supporting lightweight secure linear layers. We first split CryptMed’s protocol into a preprocessing phase
and an online phase, so as to shift as much computation as possible to preprocessing phase. Inspired by [12],
we preprocess the model as secret shares and deliver corresponding shares to the hospital before medical record
becomes available. So, the online phase can directly work over secret shares without any heavy cryptographic

VII



techniques (like HE) or multi-round ciphertext transmissions. Yet we are aware that the protocol in [12] involves
heavy HE during preprocessing to produce and send the model shares as ciphertexts, which may not be amiable
for the resource-limited hospital, like COVID-19 pandemic screening centers with handheld medical imaging
scanners [14]). Instead, our protocol delicately leverages the insight from Chameleon [15] and enables the
preprocessing to be purely based on lightweight computation in the secret sharing domain. As a result, our
entire protocol works only with small shares, which immediately gains 20× improvement on preprocessing and
10× on overall communication costs over [12].
Supporting lightweight non-linear layers. For secure evaluation of non-linear layers, prior works either
resort to the heavy cryptographic techniques (i.e., garbled circuits) [10,12], or circumvent the non-linearities with
the square function approximations [9, 11]. Unfortunately, such methods may introduce high communication
overheads or induce instabilities of NN when handling complex tasks [26,27]. In CryptMed, we make observations
from the field of digital circuit design [78] and present a secure comparison function that can efficiently evaluate
comparison-based non-linear layers, including ReLU, ReLU6, Leaky ReLU, and Binary activation functions.
At the core, this function is fully based on lightweight secret sharing with optimized interactions between the
hospital and the medical service. With these designs, our experiment demonstrates a 413× bandwidth reduction
compared with prior works.
Supporting accurate activation functions over secret sharing domain. Most existing works [12, 13,
15] focus only on the simple ReLU function. Other essential activation functions remain under exploration,
including Leaky ReLU, ReLU6, and ELU. These activation are fundamental building blocks in modern NN
architectures for medical applications, such as medical image classification [25], image denoising [46], and
medical times series (physiological data) prediction [74, 79]. The most challenging task is to accurately and
efficiently evaluate the smooth activation functions (e.g., sigmoid, tanh, and ELU) in secure domain. Such
functions involve exponentiation and division operations that are knowingly expensive to be computed over
secret-shared data.

Prior art tackling such challenges mainly falls into two categories. Works in the first category resort to
function approximations based on polynomials. Some of them use the high-degree polynomials [10,16,17], which
require heavy computational and communication costs to evaluate repeated multiplications. Others leverage
the ad-hoc piecewise polynomial approximation [10,18–20]. These works either heavily rely on intervention and
expertise on DNN model and training dataset to fine-tune the coefficients [10] or encounter severe ‘vanishing
gradient problem’ making the NNs quite imprecise [18–20]. The work [80] in the other category uses GC to
evaluate the smooth functions in a blackbox manner, suffering from prohibitively performance overheads.

Instead of the strawman approximations, CryptMed proposes secure smooth activation functions that are
accurate while keeping the cryptographic costs in mind. The core idea is to make use of advancements from
the field of digital circuit design [46, 81–83] and the machine learning literature [74, 84] so as to propose more
precise and cryptography-friendly approximations. These approximations are non-linear and low-degree piece-
wise polynomials that have quantitative performance demonstrating promising accuracy over comprehensive
empirical evaluations. With such approximations, CryptMed reformulates the smooth activation functions into
comparison-based constructions, and thus circumvents the obstacles coming from exponentiation and division.
As a result, CryptMed empowers accurate and efficient secure realizations of smooth activation functions over
secret sharing domain.

5.1 Secure Linear Layers

The subsequent section presents CryptMed’s secure inference protocol, which is comprised of the preprocessing
phase and the online inference phase as shown in Fig. 2.
Preprocessing phase. During preprocessing, the hospital and the medical service pre-generate custom secret
shares of the NN model in an appropriate form which are to be used during online inference. This is a one-
off computation and conducted independent of the hospital’s medical record. Let L be number of layers. The
hospital takes as input the L sets of randomnesses (in tensor form) {a0

i ,a
2
i }, where i ∈ [1, L]. Similarly, the

medical service takes as input the tensors of model weights for each layer W1, ...,WL and randomnesses
tensors {Ai,a

1
i }. Such randomness tensors {a0

i ,a
1
i ,a

2
i ,Ai} are independent to any party’s input and can be

pre-distributed to the parties. They satisfy the relationship: a1
i = Ai · a0

i − a2
i . Note that the dimension of

each randomness tensor is in line with the dimension of each layer’s filter. Given these inputs, the two parties
perform the following steps.
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1. For each i ∈ [1, L], the medical service computes Wi−Ai over the weight tensors and sends to the hospital.
2. The hospital computes (Wi −Ai) · a0

i + a2
i = Wia

0
i −Aia

0
i + a2

i for each layer.
3. Let ui denote a0

i , and vi denote a1
i . The medical service thus holds vi, and the hospital holds Wiui − vi,

i.e., an additively secret-shared weight tensor Wiui.

Online inference phase. During online inference, the hospital takes as input the tensor of a medical record
X1, the randomnesses ui, and weight shares Wiui − vi. The medical service takes as input the weight tensors
W1, ...,WL and the randomnesses vi. They then perform the secure layer function in pipeline as follows.
The first linear layer i = 1:

1. The hospital computes and sends X1 − u1 to the medical service, and uses 〈X2〉0 to denote W1u1 − v1.
2. The medical service computes 〈X2〉1 = W1(X1 − u1) + v1 = W1X1 −W1u1 + v1.
3. At this point, the hospital and the medical service hold the additive secret shares (i.e., 〈X2〉0, 〈X2〉1) of

features4 outputted from the first linear layer W1X1 .

Remaining linear layers i ≥ 2:

1. Similar to the first layer, the hospital computes 〈X̄i〉0 − ui over its share 〈X̄i〉0 of activation produced from
the secure ReLU evaluation (which we will detail later), and sends it to the medical service. Such a treatment
can perfectly hide the hospital’s share, and protect the activation X̄i against the medical service. It then
sets 〈Xi+1〉0 = Wiui − vi.

2. The medical service computes Xi − ui = 〈X̄i〉0 − ui + 〈X̄i〉1. Then it gets 〈Xi+1〉1 = Wi(Xi − ui) + vi,
ensuring both parties hold additive secret shares (i.e., 〈Xi+1〉0, 〈Xi+1〉1) of layer result WiXi.

Non-linear layers: The shares form secure linear layer evaluation can be fed into the secure non-linear layer,

which outputs shares 〈X̄i+1〉0, 〈X̄i+1〉1 of activations to each party.
Output layer: The medical service sends 〈XL〉1 to the hospital, who can then integrate 〈XL〉0 for reconstruction
of the the final inference result XL.

5.2 Secure Non-linear Layers

CryptMed supports highly efficient evaluation of the secure non-linear layers in the secret sharing domain.
We observed that most of the non-linear activation functions and pooling layers can be decomposed into a
series of comparison operations along with some linear operations (i.e., addition and multiplication). Besides,
as mentioned above, the smooth activation functions will be delicately reformulated to the comparison-based
piecewise non-linear polynomials, and thus relying on the comparison as well. With such an observation in
mind, we reformulate each comparison to the MSB extraction defined as follows. Suppose we have two features
x1, x2. The MSB extraction is defined as

b← MSB(x1 − x2) =

{
0 if x1 ≥ x2
1 if x1 < x2

.

Then, finding the maximum max(x1, x2) (or the minimum min(x1, x2)) is reformulated as

max(x1, x2) = b · (x2 − x1) + x1; min(x1, x2) = b · (x1 − x2) + x2.

The sign of a feature x is calculated via sign(x) = 1− 2MSB(x) =

{
1 if x ≥ 0

−1 if x < 0
.

Note that similar philosophy has also been adopted in the preliminary version of our paper [49], yet prior
solution requires two multiplications for each comparison (i.e., max(x1, x2) = (1 − b) · x1 + b · x2), whereas
our newly proposed reformulation involves only one multiplication. Such an improvement is non-trivial, since a
typical neural network usually requires a million and even billion scale of the number of comparison operations.
With the above reformulation, the most challenging computation is how to securely extract the MSB in the
secret sharing domain. We resort to a communication-optimized construction of the secure MSB extraction
function. Details are presented in this subsequent section.

4 Biases can be added to the medical service’s shares locally.
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Fig. 3. A concrete example of 8-bit parallel prefix adder and the corresponding binary operator.

Communication-Optimized Secure MSB Extraction. The secure MSB(·) extraction function is used to
securely extract the MSB of an additive-shared data 〈x〉 and generate a boolean-shared MSB Jx`K, where `
is the bit length. The key idea is to efficiently extract the MSB in the secret sharing domain. CryptMed’s
proposed design is built upon an practical and communication-optimized construction [49], which realizes the
MSB extraction via carry look-ahead adder logic. By taking advantage of the parallel prefix adder [78] (PPA),
such a construction can securely produce the MSB in logarithm round complexity O(log `) in the secret sharing
domain.

The construction of the PPA-based MSB extraction is introduced as follows. The staring point is to view
the two shares of an `-bit value x as two inputs of the PPA. To do so, we decompose the secret shares 〈x〉0, 〈x〉1
as two bit strings e = {e`, ..., e1} and f = {f`, ..., f1}, respectively. Afterwards, an `-bit PPA is used to calculate
x = e + f (mod 2`) via a series of binary additions {ei} + {fi} and pop out the carry bits c`, . . . , c1. In this
way, the MSB can be produced as x` = c` ⊕ e` ⊕ f`. We provide a concrete example of 8-bit PPA in Fig. 3 and
introduce the details of an `-bit PPA realization as follows.

1. The first step is to calculate the initial signal tuple (p0i , g
0
i ): the carry generate signal g0i and the carry

propagate signal p0i in parallel via g0i = ei · fi and p0i = ei + fi.

2. The second step is to produce the rest signal tuples (p1i , g
1
i )...(plog `i , glog `i ) via a binary operator �. Given

(gin1
, pin1

), (gin2
, pin2

) are the inputted two adjacent signal tuples, and (gout, pout) is the outputted single
tuple. Each binary operator is defined as (gout, pout) = (gin1

, pin1
)�(gin2

, pin2
), where gout = gin2

+gin1
·pin2

and pout = pin2 · pin1 . Such a binary operation is recursively performed over the input tuples, and the
outputted signal tuples is propagated to the next layer’s nodes as inputs, until reaching the log ` layer.

3. The third step is to calculate the carry bits via ci+1 = (ei · fi) + ci · (ei + fi) = ci+1 = gi + ci · pi.
4. Finally, the most significant carry bit can be generated via c` = g`−1 + (p`−1 · g`−2) + ... + (p`−1...p2 · g1).

The MSB is calculated as x` = c` ⊕ e` ⊕ f`.

With the above PPA-based MSB construction in mind, we present details of the secure MSB extraction
function in what follows. On each neuron, it takes as input the arithmetic shared integer feature 〈x〉 ∈ Z2` , and
produces the boolean shared MSB Jx`K ∈ Z2 as output. The hospital (denoted as P0) and the medical service
(denoted as P1) jointly compute the function Jx`K← MSB(〈x〉) as follows:

1. Decompose 〈x〉 into bit strings:
(a) P0 sets e as 〈x〉0, and decomposes it to bit string e→ e`, ..., e1;

P1 sets f as 〈x〉1, and decomposes it to bit string f → f`, ..., f1.
(b) For each k ∈ [1, `], P0 sets JekK0 = ek and JfkK0 = 0; P1 sets JekK1 = 0 and JfkK1 = fk.

2. Compute signal tuples (g, p): Jg0kK = JekK · JfkK, Jp0kK = JekK + JfkK.
3. Compute PPA:

(a) Round R = 1:
P0 and P1 set (Jg11K, Jp11K) = (Jg01K, Jp01K) as a dummy node.
For each k ∈ [2, `/2], let in1 = 2k − 2, in2 = 2k − 1. P0 and P1 compute (Jg1kK, Jp

1
kK) = (Jg0in1

K, Jp0in1
K)�

(Jg0in2
K, Jp0in2

K).
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(b) Round R = 2, ..., log `:
For each k ∈ [1, `/2R], let in1 = 2k−1, in2 = 2k. P0 and P1 compute (JgRk K, JpRk K) = (JgR−1in1

K, JpR−1in1
K)�

(JgR−1in2
K, JpR−1in2

K).
4. Compute MSB: P0 and P1 set Jc`K = Jglog `1 K, Jx`K = Jp0`K + Jc`K.

Secure B2A function. Recall that in CryptMed, our proposed secure comparison function is formulated via
the above proposed secure MSB extraction. For example, finding the minimum between two features x1, x2 is
formulated as min(x1, x2)→ MSB(x) · (x1 − x2) + x2. The secure realization of such a formula requires secure
share conversion when securely multiplying MSB(x) with (x1−x2). Namely, the boolean-shared JMSB(x)K ∈ Z2

needs to be firstly converted into its corresponding additive shares 〈MSB(x)〉 ∈ Z2` . Afterwards, the additively-
shared MSB can multiply with the additive shares 〈(x1 − x2)〉 ∈ Z2` .

CryptMed resorts to the standard secure boolean-to-additive shares conversion construction (i.e., B2A) [24,
73]. The aim is to convert any boolean shares JxK ∈ Z2 to its additive shares 〈x〉 ∈ Z2` . Given two parties,
the hospital (denoted as P0) and the medical service (denoted as P1), the secure B2A function is computed as
follow:

1. P0 sets 〈e〉0 = JxK0, 〈f〉0 = 0, and P1 sets 〈e〉1 = 0, 〈f〉1 = JxK1;
2. P0 and P1 compute 〈x〉 = 〈e〉+ 〈f〉 − 2 · 〈e〉 · 〈f〉.

5.3 Secure Comparison Based Activation Functions

CryptMed targets on four popular comparison-based activation functions, i.e., ReLU and its variants ReLU6
and Leaky ReLU, and the conventional Binary activation function, as summarized in Table 3. CryptMed man-
ages to convert their cleartext functionalities into the MSB extraction based constructions. Through careful
customizing, we propose efficient and lightweight realizations of secure ReLU function, secure ReLU6 function,
secure LeakyReLU function, and secure Binary function that are purely based on secret sharing techniques.
In what follows, we present the details of their secure constructions.

Secure ReLU Activation Function In CryptMed, we reformulate the ReLU activation to a simpler MSB
extraction problem that can be efficiently evaluated in the secret sharing domain. Given the feature x on each
neuron outputted from the preceding linear layer, it is reformulated into an MSB extraction based construction
via

ReLU(x) = max(x, 0)
tranform−−−−−−→ ¬MSB(x) · x =

{
1 · x if x ≥ 0

0 · x if x < 0
,

Such a reformulated construction comprises of four atomic steps: the secure MSB(x) extraction, the secure
NOT (i.e., ¬ operation), the secure B2A to convert the boolean-shared MSB into additive shares, and the
secure multiplication. All these steps can be efficiently realized by CryptMed’s secure linear and non-linear
functions. Without loss of generality, we demonstrate the secure ReLU function over single feature element x
on each neuron. Given the shares of a single input feature 〈x〉, the hospital (denoted as P0) and the medical
service (denoted as P1) jointly compute the secure ReLU function as follows:

1. P0 and P1 run to get JbK← MSB(〈x〉).
2. Pi computes the NOT operation JcK = JbK + i.
3. P0 and P1 run to get the additively shared NOT MSB 〈c〉 ← B2A(JcK).
4. P0 and P1 produce the ReLU activation 〈z〉 = 〈c〉 · 〈x〉.

Secure ReLU6 Activation Function The ReLU6 activation function is a variant of the ReLU that clips the
weights between 0 and 6. Given the feature x on each neuron, the MSB extraction based ReLU6 is converted
via

ReLU6(x) = min(max(0, x), 6) =


x if 6 ≥ x > 0

0 if x ≤ 0

6 if x > 6.

→ transform(¬MSB(x− 6)︸ ︷︷ ︸
c1

·6) + (MSB(x− 6) · ¬MSB(x)︸ ︷︷ ︸
c2

·x).
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Similar to ReLU, such a construction can be efficiently realized in the secret sharing domain via CryptMed’s
secure linear and non-linear functions. Given the additive shares of each neuron’s feature 〈x〉, the hospital P0

and the medical service P1 jointly compute the secure ReLU6 function as follows:

1. P0 and P1 run to get the MSB Jb1K← MSB(〈x〉) and Jb2K← MSB(〈x〉 − 6).
2. P0 and P1 compute the control bits Jc1K = Jb2K + i and Jc2K = (Jb1K + i) · Jb2K.
3. P0 and P1 run to get the additively shared control bits 〈c1〉 ← B2A(Jc1K) and 〈c2〉 ← B2A(Jc2K).
4. P0 and P1 produce the ReLU6 activation 〈z〉 = 6 · 〈c1〉+ 〈c2〉 · 〈x〉.

Secure Leaky ReLU Function Given the feature x on each neuron, CryptMed reformulates the Leaky ReLU
into the MSB extraction based construction via

LeakyReLU(x) = max(0.01x, x) =

{
x if x > 0

0.01x if x ≤ 0

transform−−−−−−−→ (MSB(x) · (x− 100x) + 100x) · 1/100.

Similar to other comparison-based activation functions, the reformulated Leaky ReLU can be realized via
CryptMed’s secure functions. Specifically, given the additive shares of each neuron’s feature 〈x〉, the hospital P0

and the medical service P1 jointly compute the secure LeakyReLU function as follows:

1. P0 and P1 run to get the MSB JbK← MSB(〈x〉).
2. P0 and P1 run to get the additively shared MSB 〈b〉 ← B2A(JbK).
3. P0 and P1 produce the LeakyReLU activation 〈z〉 = b(〈b〉 · 〈x〉 · (−99) + 〈x〉 · 100)/100c.

Secure Binary Activation Function Given the feature x on each neuron, CryptMed converts the Binary
activation function into an MSB extraction based construction as follows

Binary(x) =

{
1 if x ≥ 0

0 if x < 0

transform−−−−−−−→ ¬MSB(x).

Such a construction can be efficiently realized via CryptMed’s secure linear and non-linear functions. Given the
additive shares of each neuron’s feature 〈x〉, the hospital P0 and the medical service P1 jointly compute the
secure Binary function as follows:

1. P0 and P1 run to get J¬bK← MSB(〈x〉) + i.
2. P0 and P1 run to get the additively shared NOT MSB as the Binary activation 〈z〉 ← B2A(J¬bK).

5.4 Secure Smooth Activation Functions

The smooth activation functions make non-trivial usages in deep learning. As shown in Table 3, CryptMed focuses
on three widely-adopted smooth activation functions, i.e., sigmoid, tanh, and ELU. They are vital building
blocks in a variety of machine learning and deep learning paradigms for medical diagnoses, like medical time
series predictions [74] and medical imaging denoising [46].

CryptMed’s secure smooth activation functions are tailored from two precise and cryptography-friendly
approximations: the polynomial piecewise approximations (PLAs) and the SQNL activation function family.
We provide a high-level overview of our insights below.
Piecewise Linear Approximations. Our first insight is to make use of the PLAs from the field of digital
circuit design [46,81–83]. They are non-linear and low-degree polynomials with quantitative performance. With
these approximations, we propose the secure tanhPLA function and secure sigmoidPLAN2 function. They are
efficient and accurate realizations of the tanh and the sigmoid functions in the secret sharing domain. We
note that prior work [18–20] also makes use of the PLA approximation. However, during our experiments, we
observed that their proposed approximation could induce the severe ‘vanishing gradient problem’, which makes
the NNs quite imprecise. More details are given later.
Replacements with SQNL-Family. Our second insight is to leverage the SQNL-family [74, 84] from deep
learning literature. Instead of a vanilla approximation, the SQNL-family is a suite of new activation functions
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Fig. 4. The tanh function and its approximation.

demonstrating promising accuracy over comprehensive empirical evaluations. It utilizes the universal approxi-
mation theorem [85, 86] and introduces a quadratic non-linearity. With such an observation, CryptMed devises
the secure tanhSQNL function, secure sigmoidLogSQNL function, and the secure ELUSQLU function for the
tanh, sigmoid, and ELU activation functions. In this subsequent sections, we provide the details of their con-
structions.

Secure Tanh Function As defined in Table 3, the tanh function involves exponentiation and division oper-
ations that are prohibitively expensive to be evaluated in secure domain. In CryptMed, we propose the secure
tanhPLA function and the secure tanhSQNL function that demonstrate promising precision as plotted in Fig. 4.
Secure tanhPLA Function. The tanhPLA function is a piecewise polynomial approximation resorting to the
non-linear and low-degree approximation [46,83]. Such a PLA has quantitative performance, where the average
error and the maximum error are Eave = 0.41% and Emax = 2.2%, respectively. Given the feature on each
neuron x, the cleartext functionality can be reformulated to an MSB extraction based construction via

tanhPLA(x) =


sign(x) · (−0.2716x2 + |x|+ 0.016) if |x| ≤ 0.016

sign(x) · (−0.0848x2 + 0.42654|x|+ 0.4519) if 0.016 ≤ |x| < 2.57

sign(x) if |x| ≥ 2.57

transform−−−−−−−→
b1︷ ︸︸ ︷

MSB(100x− 257) ·¬
b3︷ ︸︸ ︷

MSB(125x− 2)︸ ︷︷ ︸
c1

· sign(x)︸ ︷︷ ︸
c

·(−10x2 + 51x+ 54)/120 (1)

+ ¬
b2︷ ︸︸ ︷

MSB(100x+ 257) ·
b4︷ ︸︸ ︷

MSB(125x+ 2)︸ ︷︷ ︸
c2

·sign(x) · (−10x2 − 51x+ 54)/120 (2)

+ ¬MSB(125x+ 2) ·MSB(125x− 2)︸ ︷︷ ︸
c3

·sign(x) · (−27x2 + 125sign(x) · x+ 2)/125 (3)

+ ¬MSB(100x− 257)︸ ︷︷ ︸
c4

·sign(x) + MSB(100x+ 257) · sign(x). (4)

Such a reformulated construction can be viewed as five polynomials, and each of them is triggered by a control
bit. Each control bit indicates the certain threshold x located in and is derived from the MSBs of the comparison
results. For example, the first polynomial in Eq. 1 is defined as sign(x) · (−10x2 +51x+54)/120 and is triggered
by the control bit c1. That is to say, when 0.016 ≤ x < 2.57, then c1 = 1, and the other control bits are ‘0’s,
and thus the tanh activation of x is produced based on above polynomial. In addition, the control bit c1 stems
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from the MSBs of two comparison results: the MSB b1 = 1 indicates x < 2.57 and the MSB b3 = 0 indicates
x ≥ 0.016. Note that the control bit of the last polynomial in Eq. 4 is the MSB b2.

To this end, we present the secure realization of the secure tanhPLA function based on above reformulation.
Given the additive shares of each neuron’s feature 〈x〉, the hospital P0 and the medical service P1 jointly
compute the secure tanhPLA function as follows:

1. P0 and P1 run to get the MSB JbK ← MSB(〈x〉), Jb1K ← MSB(100〈x〉 − 257), Jb2K ← MSB(100〈x〉 + 257),
Jb3K← MSB(125〈x〉 − 2), Jb4K← MSB(125〈x〉+ 2).

2. P0 and P1 compute the control bits Jc1K = Jb1K · (Jb3K + i), Jc2K = Jb4K · (Jb2K + i), Jc3K = Jb3K · (Jb4K + i),
and Jc4K = Jb1K + i.

3. P0 and P1 run to get the additively shared bits 〈b〉 ← B2A(JbK), 〈c1〉 ← B2A(Jc1K), 〈c2〉 ← B2A(Jc2K),
〈c3〉 ← B2A(Jc3K), 〈c4〉 ← B2A(Jc4K), and 〈b2〉 ← B2A(Jb2K).

4. P0 and P1 compute the sign bit 〈c〉 = 1− 2 · 〈b〉.
5. P0 and P1 compute the Eq. 1 via 〈z1〉 = 〈c1〉 · 〈c〉 · b(−10〈x〉 · 〈x〉+ 51〈x〉+ 54)/120c.
6. P0 and P1 compute the Eq. 2 via 〈z2〉 = 〈c2〉 · 〈c〉 · b(−10〈x〉 · 〈x〉 − 51〈x〉+ 54)/120c.
7. P0 and P1 compute the Eq. 3 via 〈z3〉 = 〈c3〉 · 〈c〉 · b(−27〈x〉 · 〈x〉+ 125 · 〈c〉〈x〉+ 2)/125c.
8. P0 and P1 compute the Eq. 4 via 〈z4〉 = 〈c4〉 · 〈c〉+ 〈b2〉 · 〈c〉.
9. P0 and P1 produce the tanhPLA activation 〈z〉 = 〈z1〉+ 〈z2〉+ 〈z3〉+ 〈z4〉.

Secure tanhSQNL Function. The tanhSQNL function uses the SQNL-family [74] demonstrating promising ac-
curacy over comprehensive empirical evaluations. Given the feature on each neuron x, the cleartext functionality
can be reformulated to an MSB extraction based construction via

tanhSQNL(x) =


1 if x > 2

x− 0.25 · sign(x) · x2 if − 2 ≤ x < 2

−1 if x < −2

(5)

transform−−−−−−−→ MSB(x− 2) · ¬MSB(x+ 2)︸ ︷︷ ︸
c1

·b(4x− sign(x)︸ ︷︷ ︸
c

·x2)/4c+ ¬MSB(x− 2)︸ ︷︷ ︸
c2

−MSB(x+ 2)

Such a construction consists of three polynomials that are triggered by the control bits c1, c2, and the MSB(x+2)
indicating the thresholds −2 ≤ x < 2, x > 2, and x < −2, respectively. Each control bit is derived from the
MSBs of comparing x with the threshold boundaries.

With the above reformulation and the additive shares of each neuron’s feature 〈x〉, the hospital P0 and the
medical service P1 jointly compute the secure tanhSQNL function as follows:

1. P0 and P1 run to get the MSB JbK← MSB(〈x〉), Jb1K← MSB(〈x〉 − 2), and Jb2K← MSB(〈x〉+ 2).
2. P0 and P1 compute the control bits Jc1K = Jb1K · (Jb2K + i) and Jc2K = Jb1K + i.
3. P0 and P1 run to get the additively shared bits 〈b〉 ← B2A(JbK), 〈c1〉 ← B2A(Jc1K), 〈c2〉 ← B2A(Jc2K), and
〈b2〉 ← B2A(Jb2K).

4. P0 and P1 compute the sign bit 〈c〉 = 1− 2 · 〈b〉.
5. P0 and P1 produce the tanhSQNL activation 〈z〉 = 〈c1〉 · b(4〈x〉 − 〈c〉 · 〈x〉 · 〈x〉)/4c+ 〈c2〉 − 〈b2〉.

Secure Sigmoid Function The sigmoid function, as defined in Table 3, comprises the exponentiation and
division operations which are knowingly computational extensive by a secure two-party computation proto-
col [10,79,87].

Table 4. Vanishing gradient problem of the sigmoidCRI approximation.

sigmoid sigmoidCRI sigmoidPLAN2 sigmoidLogSQNL

Thyroid 81.47% 5.16 ∼ 9.88% 86.55% 85.85%
MNIST 96.44% 11.35% 91.41% 96.75%
CIFAR-10 47.87% 10.03% 47.87% 59.08%
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Fig. 5. The sigmoid function and its approximations.

Prior work [18–20] leverages the first-order PLA to approximate the sigmoid function denoted as sigmoidCRI(x) =
0 if x < −1/2

x+ 1/2 if − 1/2 ≤ x < 1/2

1 if 1/2 ≤ x
. Such an approximation seems plausible. However, in our experiments, we ob-

served that the sigmoidCRI(x) approximation could introduce severe ‘vanishing gradient problem’ making the
NNs hardly converge during training. As a consequence, the prediction accuracy of the trained NNs is quit
undesired, particularly when dealing with complex datasets. Table 4 showcases the vanishing gradient problem
of the sigmoidCRI(x) approximation in our experiments.

Instead, CryptMed takes advantage of the insights from the field of digital circuit design [81, 82] and
the machine learning literature [74, 84] to propose more precise approximations, i.e., the second-order PLA
(sigmoidPLAN2) and the SQNL-family replacement (sigmoidLogSQNL). Fig. 5 illustrates the approximations
of sigmoid used in CryptMed and the sigmoidCRI used in prior art. Note that, all these approximations can be
converted to the MSB extraction based functions and can be efficiently evaluated in the secret sharing domain.
In this subsequent section, we expatiate on the secure sigmoidPLAN2 function and secure sigmoidLogSQNL
function.
Secure sigmoidPLAN2 Function. The sigmoidPLAN2 function is a non-linear and second-order approxi-
mation [81, 82] of the sigmoid function, where the average error and the maximum error are quantified as
Eave = 0.41% and Emax = 2.2%, respectively. Given the feature on each neuron x, the cleartext functionality
can be converted to an MSB extraction based construction via

sigmoidPLAN2(x) =

{
¬MSB(x) if |x| ≥ 4

−sign(x) · 0.03125x2 + 0.25x+ 0.5 if 0 ≤ |x| < 4

transform−−−−−−−→ MSB(x− 4) · ¬MSB(x+ 4)︸ ︷︷ ︸
c1

·b(− sign(x)︸ ︷︷ ︸
c

·x2 + 8x+ 16)/32c+ ¬MSB(x− 4)︸ ︷︷ ︸
c2

. (6)

It comprises two polynomials that are triggered by the control bits c1 and c2 indicating the thresholds −4 <
x < 4, and x ≥ 4, respectively. Note that here we prune off the threshold x ≤ −4, since the polynomial keeps
zero (¬MSB(x) · c2 = 0) in such a threshold.

Given above reformulation and the additive shares of each neuron’s feature 〈x〉, the hospital P0 and the
medical service P1 jointly compute the secure sigmoidPLAN2 function as follows:

1. P0 and P1 run to get the MSB JbK← MSB(〈x〉), Jb1K← MSB(〈x〉 − 4), and Jb2K← MSB(〈x〉+ 4).
2. P0 and P1 compute the control bits Jc1K = Jb1K · (Jb2K + i) and Jc2K = Jb1K + i.
3. P0 and P1 run to get 〈b〉 ← B2A(JbK), 〈c1〉 ← B2A(Jc1K), and 〈c2〉 ← B2A(Jc2K).
4. P0 and P1 compute the sign bit 〈c〉 = 1− 2 · 〈b〉.
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5. P0 and P1 produce the sigmoidPLAN2 activation 〈z〉 = 〈c1〉 · b(8〈x〉 − 〈c〉 · 〈x〉 · 〈x〉+ 16)/32c+ 〈c2〉.

Secure sigmoidLogSQNL Function. The sigmoidLogSQNL function resorts to a new activation function LogSQNL
from the SQNL-family [74, 84], which is a precise replacement of the sigmoid function. Given the feature on
each neuron x, the cleartext functionality and corresponding MSB extraction based construction are defined as
follows

sigmoidLogSQNL(x) =


1 if x > 2

0.5x− 0.125 · sign(x) · x2 + 0.5 if − 2 ≤ x < 2

0 if x < −2

transform−−−−−−−→ MSB(x− 2) · ¬MSB(x+ 2)︸ ︷︷ ︸
c1

·b(4x− sign(x)︸ ︷︷ ︸
c

·x2 + 4)/8c+ ¬MSB(x− 2)︸ ︷︷ ︸
c2

(7)

The MSB extraction based construction consists of two polynomials. They are activated by the control bits c1
and c2 when x in the thresholds −2 ≤ x < 2, and x ≥ 2, respectively. Similar to the sigmoidPLAN2 function,
the polynomial in threshold x < −2 is trimmed due to its zero value. Given the additive shares of each neuron’s
feature 〈x〉, the hospital P0 and the medical service P1 jointly compute the secure sigmoidLogSQNL function as
follows:

1. P0 and P1 run to get the MSB JbK← MSB(〈x〉), Jb1K← MSB(〈x〉 − 2), and Jb2K← MSB(〈x〉+ 2).
2. P0 and P1 compute the control bits Jc1K = Jb1K · (Jb2K + i) and Jc2K = Jb1K + i.
3. P0 and P1 run to get 〈b〉 ← B2A(JbK), 〈c1〉 ← B2A(Jc1K), and 〈c2〉 ← B2A(Jc2K).
4. P0 and P1 compute the sign bit 〈c〉 = 1− 2 · 〈b〉.
5. P0 and P1 produce the sigmoidLogSQNL activation 〈z〉 = 〈c1〉 · b(4〈x〉 − 〈c〉 · 〈x〉 · 〈x〉+ 4)/8c+ 〈c2〉.

Secure Exponential Linear Units Function As Fig. 6 illustrates, CryptMed proposes the ELUSQLU func-
tion taking advantages of the SQLU function from the SQNL-family [74,84]. It is defined as follows

ELUSQLU (x) =


x if x ≥ 0

x+ 0.25x2 if − 2 ≤ x ≤ 0

−1 if x < −2

transform−−−−−−−→ MSB(x) · ¬MSB(x+ 2)︸ ︷︷ ︸
c1

·b(4x+ x2)/4c+ ¬MSB(x)︸ ︷︷ ︸
c2

·x−MSB(x+ 2) (8)

Given the additive shares of each neuron’s feature 〈x〉, the hospital P0 and the medical service P1 jointly
compute the secure ELUSQLU activation function as follows:

1. P0 and P1 run to get the MSB Jb1K← MSB(〈x〉), Jb2K← MSB(〈x〉+ 2).
2. P0 and P1 compute the control bits Jc1K = Jb1K · (Jb2K + i) and Jc2K = Jb1K + i.
3. P0 and P1 run to get the additively shared bits 〈b2〉 ← B2A(Jb2K), 〈c1〉 ← B2A(Jc1K), and 〈c2〉 ← B2A(Jc2K).
4. P0 and P1 produce the ELUSQLU activation 〈z〉 = 〈c1〉 · b(4〈x〉+ 〈x〉 · 〈x〉)/4c+ 〈c2〉 · 〈x〉 − 〈b2〉.

5.5 Secure Pooling Layers

The MaxPool layer max(x1, · · · , xn) (or MinPool min(x1, · · · , xn)) can be views as the pairwise maximum (or
minimum) over features within the n-width pooling window. They can be realized based on the secure MSB(·)
extraction as follows:

b← MSB(x1 − x2); //b = 0, x1 ≥ x2; b = 1, x1 < x2

z = max(x1, x2) = b · (x2 − x1) + x1; z = min(x1, x2) = b · (x1 − x2) + x2.

Based on above equations, given the secret shares of features 〈x1〉, ..., 〈xn〉, the hospital P0 and the medical
service P1 perform the secure MaxPool (or MinPool) function as follows:

XVI



-10 -8 -6 -4 -2 0 2 4 6 8 10

x

-1

0

1

2

3

4

5

6

7

8

9

10

A
p

p
ro

x
im

a
te

d
 s

ig
m

o
id

 v
a

lu
e

s

Piecewise polynomial approximation of ELU activation function

ELU

ELU
SQLU

Fig. 6. The ELU activation function and its approximation.

1. For k ∈ [1, n− 1]:
2. P0 and P1 run to get JbK← MSB(〈xk〉 − 〈xk+1〉).
3. P0 and P1 run to get additively shared MSB 〈b〉 ← B2A(JbK).
4. P0 and P1 compute the maximum value 〈zk〉 = 〈b〉 · (〈xk+1〉 − 〈xk〉) + 〈xk〉; or the minimum value 〈zk〉 =
〈b〉 · (〈xk〉 − 〈xk+1〉) + 〈xk+1〉. Pi sets 〈xk+1〉 := 〈zk〉.

5. Finally, Pi outputs the shares 〈zn〉i as MaxPool (or MinPool) result.

The average pooling layer b(x1+, ...,+xn)/nc can be directly computed over additive secret shares via secure
addition, where n is a cleartext hyper-parameter.

5.6 Security Analysis

In this section, we present a comprehensive security analysis of CryptMed’s secure inference protocol in the semi-
honest adversary model. CryptMed’s core secure inference protocol is devised based on standard additive secret
sharing techniques [71,88], where all the input data (i.e., medical data, neural network model) are perfectly pro-
tected as additive secret shares that are uniformly distributed in ring Z2` . Besides, during CryptMed’s protocol
execution, any message transcriptions are supported by standard Beaver’s multiplication/AND procedure [72]
as uniformly distributed secret shares. CryptMed provides stringent cryptographic guarantees throughout the
service procedure, where only the prescribed inference result can be learned by the hospital. Nothing else about
each party’s private input can be deduced from the counterparty beyond what is revealed from the inference
result. In what follows, we formally define the ideal functionality FCryptMed , security definition, and the security
proof of CryptMed’s secure NN inference protocol under the ideal/real world paradigm.

Definition 1. The ideal functionality FCryptMed of CryptMed’s secure deep neural network inference consists of
the following parts:

- Input. The medical service submits the DNN model W and the hospital submits the medical record X to
FCryptMed.

- Computation. Upon receivingW and X, FCryptMed conducts DNN inference and produces the inference result
W(X).

- Output. FCryptMed outputs W(X) only to the hospital, and returns no information to the medical service.

Given the ideal functionality, we formally define the security definition.

Definition 2. A protocol Π securely realizes the FCryptMed if it provides the following guarantees in the presence
of a probabilistic polynomial time (PPT) semi-honest adversary with static corruption:
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- Corrupted hospital. A corrupted semi-honest hospital H should learn no information about the medical
service’s DNN model weights except the hyper-parameters of model architecture. Formally, there should exit
a PPT simulator SimH that can simulate the view ViewΠH of the corrupted hospital in real-world protocol

execution: ViewΠH
c
≈ SimH(X,W(X)).

- Corrupted medical service. A corrupted semi-honest medical service S should learn no information about
the medical record X submitted by the hospital. Formally, there should exist a PPT simulator SimS that can

simulate the view ViewΠS of the corrupted medical service in real-world protocol execution: ViewΠS
c
≈ SimS(W).

Theorem 1. CryptMed’s secure deep neural network inference protocol securely emulates the ideal functionality
FCryptMed under the Security Definition 2.

Proof. We present a simulator for the corrupted medical service or the corrupted hospital, in a way that the
distribution of real-world protocol execution is computationally indistinguishable to the simulated distribution
under our security definition.

- Simulator for the corrupted hospital: Define the simulator of Beaver’s multiplication procedure is SimBM.
The emulated view is indistinguishable from the real-world view of the corrupted hospital H in the multipli-
cation procedure.

i) In the preprocessing phase of Π, the simulator of the corrupted hospital SimH generates the randomness

r
$←− Z2` to emulate the message W − a1 in real-world protocol execution. Both messages are uniformly

distributed in ring Z2` . Given the security of additive secret sharing, H cannot distinguish the simulated
message with the message received from real-world protocol execution. H computes 〈X̃2〉0 = a0 · r + a2

and u = a0.
ii) In the online phase of Π, H inputs the secret shares of medical record X−u or the activation 〈X̄i〉0−u for

secure linear layers and receives no messages for the linear layers. SimH works in a dummy way by directly
outputting inputs of H. Thus, the output of SimH is identically distributed to the view ViewΠH . For the

non-linear layers, SimH generates 〈X̃i+1〉1
$←− Z2` and runs SimBM to compute secure multiplication over

〈X̃i+1〉1 and 〈Xi+1〉0 whenever interactions are required. SimH outputs the simulated shares of activation
returned from the secure non-linear layer. SimH conducts the above computations for every layer. At the
end, SimH outputs the simulated shares of the last layer’s result 〈X̃L〉0, 〈X̃L〉1. The reconstructed value
of these two shares is uniformly distributed in ring Z2` , same as the result from the real-world protocol
execution. Therefore, the output of SimH(X,W(X)) is computationally indistinguishable to ViewΠH the
view of the corrupted hospital .

- Simulator for the corrupted medical service:
i) In the preprocessing phase of Π, the corrupted medical service S only inputs the secret shares of model
W −A1 and receives no message. SimS works in a dummy way by directly outputting the inputs of S
v = a1. In this way, the output of SimS is identically distributed to the view ViewΠS .

ii) In the online phase of Π, SimS generates and outputs the randomness r
$←− Z2` to emulate the message

X− u (or X̄− u) in the real-world protocol execution. Given the security of additive secret sharing, S
cannot distinguish the emulated message with the one received from real protocol. For the non-linear

layers, SimS generates 〈X̃i+1〉0
$←− Z2` . Whenever interactions happen in the secure activation function,

SimS runs SimBM to perform the Beaver’s secure multiplication procedure over 〈X̃i+1〉0 and 〈Xi+1〉1
received from the corrupted medical service S. SimS outputs the simulated shares of activation outputted
from the secure activation function. SimS conducts the above computations for every layer. Because all
simulated intermediate messages are uniformly distributed in Z2` , and given the security of additive
secret sharing and Beaver’s secure multiplication procedure, the output of SimS(W) is computationally
indistinguishable to ViewΠS the view of the corrupted medical service.

6 Performance Evaluation

We implement a proof-of-concept prototype of CryptMed in Java. We deploy our prototype to Australian
MASSIVE M3 using m3i computation nodes. Each computation node has 2.7GHz Intel Xeon Gold 6150 CPU
and 384GB RAM, running CentOS Linux 7 system. In our experiment, we choose to protect the data as additive
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Table 5. Performance of secure layer functions.

Secure layer Conv. FC BN ReLU MaxPool AvgPool
3×3 5×5 16× 16 2×2 2×2

Time (ms) 1.25 2.16 8.44 1.74 22.7 31.2 0.05
Comm. (Bytes) 36 100 943 4 78 234 0
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Fig. 7. Unit time of the secure activation functions.
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secret shares in 32-bit ring Z2` . In line with prior secure inference systems [9,10,28], we deploy the computation
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nodes representing the medical service and the hospital in a dedicated network. For cleartext neural networks
implementation and training, we use the Pytorch backend and train our models on a NVIDIA Tesla V100 GPU.

We evaluate CryptMed’s performance in terms of performance and accuracy. To evaluate the performance,
we train 78 neural network models based on six architectures (see appendix Sec. A) across 13 different acti-
vation functions. These activation functions include the secure comparison-based activations (ReLU, ReLU6,
Leaky ReLU, Binary activation), the original smooth activations (tanh, sigmoid, ELU) and the secure smooth
activations based on different approximation approaches (tanhPLA, tanhSQNL, sigmoidCRI , sigmoidPLAN2,
sigmoidLogSQNL, and ELUSQLU ). They are trained over MNIST, CIFAR-10, Breast Cancer, Diabetes, Liver
Disease, and Thyroid. The goal of our evaluation is to answer two questions:
1) Whether CryptMed’s secure inference protocol lightweight?
2) Is CryptMed practical and accurate for secure medical diagnostic service?
To answer above questions, we evaluate microbenchmarks of CryptMed’s secure layer functions and a series of
end-to-end system-level inference performance.

6.1 Microbenchmarks

Secure Layer Functions. Table 5 summarizes the performance of commonly-used secure layer functions,
including a series of secure linear layers (CONV, FC, BN, AvgPool) and the secure non-linear layers ReLU and
MaxPool. For demonstration purpose, we set the parameters of the sliding windows as 3× 3 and 5× 5 for the
CONV kernels, the pooling window as 2× 2 for the AvgPool and MaxPool, and the 16× 16 vectors for FC. As
reported, all secure layers in CryptMed are lightweight and can be efficiently evaluated within 35ms consuming
at most 1KB bandwidth.

For secure non-linear activation functions, we first investigate their performance in terms of execution
time and network consumption, including secure comparison-based activations ReLU , ReLU6, LeakyReLU ,
Binary, and secure smooth activations tanhPLA, tanhSQNL, sigmoidPLAN2, sigmoidLogSQNL, ELUSQLU .
Fig. 8 and Fig. 9 illustrate the computational and communication overheads of secure comparison-based activa-
tions (in respective left figures) and secure smooth activations (in respective right figures). As shown, all secure
smooth activations require around 10× more resources than secure comparison-based activations. Nevertheless,
CryptMed’s secure non-linear activation functions can be accomplished within 10ms for a single execution, as
plotted in Fig. 7 by grabbing 104 unit executions. In particular, for the secure smooth functions, the SQNL-
family based approximations (tanhSQNL, sigmoidLogSQNL, ELUSQLU ) are relatively lightweight than the PLA
based approximations (tanhPLA and sigmoidPLAN2). In combination with their superior prediction accuracy,
as shown later in Table 10, the SQNL-family based secure smooth activations would be more desirable in
practical medical diagnostic applications.
Secure Non-linear Layers Comparison with GC. We compare CryptMed’s secure realizations of the
secure ReLU and MaxPool with the common GC-based solutions, since prior works target only on these two
non-linear layers. The GC baseline is implemented with FlexSC [89], a Java based two-party GC framework
in the semi-honest setting. In our implementation, we adopt the free-XOR and half-AND optimizations for
GC. All GC-based realizations are implemented with equivalent functionalities to ours. As Fig. 10 depicts,
CryptMed’s realizations are 36×, 20× faster then the GC baseline for secure ReLU and MaxPool, respectively.
For bandwidth consumption, CryptMed’s secure ReLU and MaxPool achieve respective 394×, 192× bandwidth
savings compared with the GC baseline. Such improvements demonstrate that CryptMed’s secret sharing based
design is indeed lightweight and much more efficient than the prior works relying on GC [10,12,15,28].
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Table 6. Prediction workload of NNs over different secure comparison-based activation functions.

Dataset overhead Binary ReLU ReLU6 LeakyReLU

Breast Cancer time (s) 0.28 0.22 0.35 0.28
comm. (KB) 8.14 8.64 10.56 8.64

Diabetes time (s) 0.24 0.39 0.33 0.24
comm. (KB) 40.34 40.97 43.37 40.97

Liver Disease time (s) 0.19 0.19 0.34 0.19
comm. (KB) 8.22 9.22 13.07 9.22

Thyroid time (s) 0.88 0.94 1.34 0.89
comm. (KB) 110.46 113.59 125.60 113.59

MNIST time (s) 0.82 0.64 1.41 0.84
comm. (MB) 0.91 0.91 0.93 0.91

CIFAR-10 time (s) 423.58 146.9 820.07 436.05
comm. (MB) 496.18 498.83 508.98 498.83

Table 7. Prediction workload of NNs over different secure smooth activation functions.

Dataset overhead sigmoidPLAN2 sigmoidLogSQNL tanhPLA tanhSQNL ELUSQLU

Breast Cancer time (s) 0.45 0.45 0.63 0.38 0.45
comm. (KB) 13.48 13.48 19.83 12.06 13.48

Diabetes time (s) 0.45 0.45 0.67 0.37 0.45
comm. (KB) 47.02 47.02 54.95 45.24 47.02

Liver Disease time (s) 0.53 0.53 0.89 0.40 0.53
comm. (KB) 18.91 18.91 31.60 16.07 18.91

Thyroid time (s) 19.37 19.54 30.56 15.39 19.54
comm. (KB) 143.86 143.86 183.51 134.97 143.86

MNIST time (s) 2.17 2.20 3.61 1.66 2.19
comm. (MB) 0.95 0.95 1.00 0.94 0.95

CIFAR-10 time (s) 1336.20 1350.77 2304.31 991.88 1350.39
comm. (MB) 524.41 524.41 557.91 516.90 524.41

Table 8. Preprocessing overhead of secure NNs.

Overhead Breast Cancer Diabetes Liver Disease Thyroid MNIST CIFAR-10

Time (s) 0.1 0.03 0.06 0.28 0.07 243
Comm. (MB) 0.003 0.0022 0.018 0.048 0.45 246.4

6.2 CryptMed’s Protocol Performance

Prediction Workload. Table 6 and Table 7 summarize the end-to-end prediction workload of CryptMed’s sys-
tem with 9 different activation functions over real-world medical applications and the commonly-used machine
learning benchmarks. In summary, CryptMed’s secure NN inference system is lightweight and low-latency over
all medical datasets. By using the secure comparison-based activations, CryptMed can produce deep learning
based medical conclusions within 1s consuming less than 130KB bandwidth for all evaluated medical datasets.
For more complex secure smooth activations, CryptMed requires less than 31s and 200KB to produce a deep
learning based medical conclusion. For the ML benchmarks, CryptMed evaluates MNIST within 4s and 1MB
network resources. For the CIFAR-10 dataset on a complicated 10 layers NN, CryptMed produces an inference
within 14min, 509MB using secure comparison-based activations, and 38min, 558MB using secure smooth ac-
tivations. Furthermore, we report the performance of secure preprocessing overhead in Table 8. Note that, the
costs of preprocecessing are only related to the NN sizes, i.e., the amount of weights in linear layers (non-linear
layers do not produce any weights).
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Table 9. Prediction accuracy of different comparison-based activation functions.

Dataset Binary ReLU ReLU6 LeakyReLU

Breast Cancer 88.81% 93.0% 93.7% 91.61%
Diabetes 68.75% 71.87% 73.43% 73.43%

Liver Disease 71.72% 72.0% 66.89% 71.03%
Thyroid 48.77% 86.31% 86.20% 86.11%

MNIST 75.78% 97% 96.97% 97.57%
CIFAR-10 13.2% 81% 80% 82.68%

Table 10. Prediction accuracy of different approximated smooth activation functions.

Dataset sigmoid family tanh family ELU family
sigmoid sigmoidCRI sigmoidPLAN2 sigmoidLogSQNL tanh tanhPLA tanhSQNL ELU ELUSQLU

Breast Cancer 92.3% 86.01% 93.01% 95.8% 92.3% 72.02% 93.01% 95.1% 95.8%
Diabetes 68.75% 67.7% 74.47% 72.39% 70.31% 69.79% 70.31% 72.91% 71.87%

Liver Disease 71.72% 65.51% 71.72% 71.03% 69.65% 71.03% 69.65% 70.34% 69.65%
Thyroid 81.47% 5.16 ∼ 9.88% 86.55% 85.85% 85.56% 64.2% 85.88% 85.5% 85.88%

MNIST 96.44% 11.35% 91.41% 96.75% 96.03% 38.62% 96.93% 97.58% 97.67%
CIFAR-10 47.87% 10.03% 47.87% 59.08% 76.0% 19.71% 74.19% 81.27% 83.87%

Table 11. Bandwidth (MB) comparison of CryptMed with prior art.

MNIST CIFAR-10 Breast Cancer Diabetes Liver Disease

MiniONN 15.8 MiniONN 9272 XONN 0.35 XONN 0.16 XONN 0.3
CryptoNets 372.2 FALCON 1278

XONN 4.29 XONN 2599
Chameleon 10.5 Chameleon 2650

Gazelle (ReLU) ∼5000
Delphi (ReLU) ∼5100

CryptMed 0.9 CryptMed 498 CryptMed 0.008 CryptMed 0.04 CryptMed 0.009

Prediction Accuracy. Table 9 and Table 10 demonstrate the prediction accuracy of our system over different
activation functions. We note that, for the original smooth activation functions sigmoid, tanh, ELU, and the
sigmoidCRI used in prior work [18, 20], we evaluate their accuracy in cleartext domain. For each family of the
smooth functions, we highlight the most precise functions and underline the one facing with gradient vanishing
problem. As shown, our proposed approximations do not introduce many losses to prediction accuracy. In
particular, some of them from the SQNL-family can even enhance the accuracy. Consider both the evaluation
costs and the accuracy, the secure smooth functions based on the SQNL-family would be better suitable for
deep learning based medical diagnostic services.

Comparison with Prior Art. Table 11 compares CryptMed’s end-to-end inference performance with notable
prior secure NN inference works. As shown, CryptMed requires the least network resources among all other prior
works with up to 413× bandwidth saving for MNIST and up to 19× bandwidth saving for CIFAR-10. For the
medical applications, CryptMed improves up to 43× communication over XONN, the notable work investigating
medical scenario with samller quantized NNs and network trimming optimization.

For the state-of-the-art work Delphi [12], their all ReLU version consumes total 5100MB, whereas CryptMed only
requires 498MB, with a 10× enhancement5. Such significant improvement stems from the fact that CryptMed only
involves lightweight secret sharing based secure computation through out the whole service procedure. In com-
parison, Delphi relies on the usages of heavy cryptography, i.e., homomorphic encryption for secure preprocessing
and garbled circuits for secure non-linear layers. Regarding the overall runtime, we emphasize that it is not

5 Preprocessing: 243MB in CryptMed and 4915MB in Delphi.
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a fair comparison to directly compare the experiment results reported in [12]. The reason is that Delphi is
implemented in a different programming language (Rust) with significant optimizations and acceleration from
GPU computing. Our evaluation results are not based on such optimizations.

We note that secure evaluation of non-linear layers is the performance bottleneck in secure neural network
inference [12]. To support the non-linearity introduced by the original ReLU, Delphi adopts a GC-based realiza-
tion. For a fair comparison, we have reported in above Fig. 10 the performance of our design and the GC-based
realization. The results have validated a significant performance boost of our design over the GC-based realiza-
tion (36× in runtime and 398× in communication). Even with a direct (unfair) comparison, CryptMed’s overall
inference time, with much simplified implementations, is still comparable to Delphi’s reported runtime (147s in
CryptMed against 140s in Delphi) which is driven by aforementioned significantly optimized and sophisticated
implementations.

7 Conclusion
In this paper, we present CryptMed, a new secure and lightweight NN inference system towards secure intelligent
medical diagnostic services. Our protocol fully resorts to the lightweight additive secret sharing techniques, free
of heavy cryptographic operations as seen in prior art. The commonly-used non-linear comparison-based and
smooth activation functions are well supported in a secure, efficient, and accurate manner. With CryptMed, the
privacy of the medical record of the hospital and the NN model of the medical service is provably ensured with
practical performance.
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A More Details of Model Architecture

In this section, we present the detailed model architectures used in our paper.

Table 12. Model architecture of MNIST.

Layers Padding Stride
FC (input: 784, output: 128)+ ReLU - -
FC (input: 128, output: 128)+ ReLU - -
FC (input: 128, output: 10) - -
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Table 13. Model architecture of CIFAR-10.

Layers Padding Stride
CONV (input: 3× 32× 32, kernel: 3× 64× 3× 3 feature: 64× 32× 32) + ReLU 0 1
CONV (input: 64× 32× 32, kernel: 64× 64× 3× 3 feature: 64× 32× 32) + ReLU 0 1
AP (input: 64× 32× 32, window: 64× 2× 2 output: 64× 16× 16) - 2
CONV (input: 64× 16× 16, kernel: 64× 64× 3× 3 feature: 64× 16× 16) + ReLU 0 1
CONV (input: 64× 16× 16, kernel: 64× 64× 3× 3 feature: 64× 16× 16) + ReLU 0 1
AP (input: 64× 16× 16, window: 64× 2× 2 output: 64× 8× 8) - 2
CONV (input: 64× 8× 8, kernel: 64× 64× 3× 3 feature: 64× 8× 8) + ReLU 0 1
CONV (input: 64× 8× 8, kernel: 64× 64× 3× 3 feature: 64× 8× 8) + ReLU 0 1
CONV (input: 64× 8× 8, kernel: 16× 64× 3× 3 feature: 16× 8× 8) + ReLU 0 1
FC (input: 1024, output: 10) - -

Table 14. Model architecture of Breast Cancer.

Layers Padding Stride
FC (input: 30, output: 16) + BN + ReLU - -
FC (input: 16, output: 16) + BN + ReLU - -
FC (input: 16, output: 2) + BN - -

Table 15. Model architecture of Diabetes.

Layers Padding Stride
FC (input: 8, output: 20) + ReLU - -
FC (input: 20, output: 20) + ReLU - -
FC (input: 20, output: 2) - -

Table 16. Model architecture of Liver Disease.

Layers Padding Stride
FC (input: 10, output: 32) + ReLU - -
FC (input: 32, output: 32) + ReLU - -
FC (input: 32, output: 2) - -

Table 17. Model architecture of Thyroid.

Layers Padding Stride
FC (input: 21, output: 100) + BN + ReLU - -
FC (input: 100, output: 100) + BN + ReLU - -
FC (input: 100, output: 3) + BN - -
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